
MKtree � Generation and Simulations

Marta Franquesa�Niubo Pere Brunet

January ��� ����

Abstract

The problem to represent very complex systems has been studied by several authors� obtaining solu�
tions based on di�erent data structures� In this paper� aK dimensional tree �Multirresolution Kdtree�
MKtree� is introduced� The MKtree represents a hierarchical subdivision of the scene objects that
guarantees a minimum space overlap between node regions� MKtrees are useful for collision detec�
tion and for time�critical rendering in very large environments requiring external memory storage�
Examples in ship design applications are described�

� MKtrees

��� Introduction

In this paper� we introduce a new bounding volume hierarchy� the Multirresolution Kdtree
�MKtree�� to represent very complex systems	 This kind of tree is generated taking ad

vantage of two partitioning criteria� space partition and scene objects partition	 Thereby�
our MKtree can be considered as an hybrid between Kdtrees and R�trees	 Our method
precomputes and automatically stores di�erent levels of detail of objects and groups of
objects when constructing the tree	

Our MKtree incorporates the following features�

� The MKtree represents a hierarchical subdivision of the scene objects that guarantees
a minimum space overlap between node regions	

� Levels of detail �LOD� with bounded tolerance are supported at every hierarchical
level of the tree	

� Bounding approximations of objects and groups of objects are used

� The method has been conceived to manage memory eciently by developping exter

nal memory based algorithms and it is therefore useful for collision detection in large
environments and for time critical�rendering� for instance	

The particular structure of the MKtrees is specially well suited for collision and proximity
detection� using external memory in very large virtual environments	 MKtrees are also
useful for frustum�based collision detection� on�line collision detection during navigation
through the virtual model	

��� Related De�nitions

Before introducing the MKtrees� let us start with some related de�nitions�

De�nition ����� The environment is de�ned as a collections of �D objects that are usu�
ally polyhedra� even though they can be a set of more general models� Thus�

S � fo�� ��� oNg

De�nition ����� We name R�S� the axis�aligned bounding box� AABB� of all the set S�
In general R�Sn� is the AABB of a subset of objects of S� Sn� Where Sn � S�

De�nition ����� xOverlap�R�S��� R�S��� is the length of the intersection of the one�di�
mensional x projections of R�S�� and R�S��� say xProj�R�S��� and xProj�R�S���� In
other words�

xOverlap�R�S��� R�S��� �
length�xProj�R�S��� � xProj�R�S����

The functions yOverlap and zOverlap are de�ned in a similar way�

Assumption� There exists a boolean function InPage�Sn� that returns true if the com

plete geometry of Sn �ts in one disk block �and can be retrieved to the core memory using
a single disk paging operation� and false otherwise	

��� Description

Following a similar nomenclature of �KHM���� He��� a MKtree is a tree� MKT �S��
that speci�es a bounding volume hierarchy on S	 S is a set of objects	 Each node� n�
of MKT �S� corresponds to a subset� Sn � S� with the root being associated with the
full set S	 Each internal node has two children	 Thus� the MKtree is a binary tree	 The
union of the two subsets associated to the children of n is equal to Sn	 Each node is also
associated to the AABB box of Sn� R�Sn�	

A basic issue that is directly related to the performance of a MKtree is the selection of the
splitting rules when building the hierarchy	 The main goal is that during tree construction

�

we would like to assign subsets Sn� and Sn� of objects to each child of a node� n� in such
a way to minimize the probability that their R�Sn�� and R�Sn�� intersect	 Let us assume
that we have a procedure� xDivideList� that divides the collection of objects belonging
to Sn in two subsets� Sn� and Sn�� minimizing the xOverlap�R�Sn��� R�Sn���	 Let us
assume� also� that we have similar procedures for the y and z dimensions� yDivideList
and zDivideList	

Now we can de�ne a node� n� of a MKtree corresponding to a subset Sn�

� If InPage�Sn�� then n is a leaf node and stores the geometry of objects in Sn

� If no InPage�Sn�� then n is an internal node with two pointers to n� and n�� respec

tively	 Sn� and Sn� are obtained by using wDivideList �where w can be x� y or z�
with w being such that wOverlap�R�Sn��� R�Sn��� is equal to�

Min�xOverlap�R�Sn��� R�Sn����
yOverlap�R�Sn��� R�Sn����
zOverlap�R�Sn��� R�Sn����

Note� The overlap band is the value of wOverlap�R�Sn��� R�Sn���

In this way the tree construction procedure automatically generates a subdivision and a
hierarchy of all objects of S with a minimum overlap	 Groups of objects are automatically
generated �like in �WLML���� by using� here� a minimum�overlap criterium	 As it will
be seen in the result sections �sec	 �	�	� and �	�	�� �� when dealing with virtual ship
environments� in many cases overlap band is null	 In these cases� our building tree
method is at the same time an space and object partitioning method	 Thereby� our
MKtree can be considered as an intermediate model between Kdtrees �DECM��� Sam���
and Rtrees �SRF��� BKSS��� Gut��� in �D	

��� Speci�cation

The bounding approximations of objects� b� are described in this section	 It is desirable
that these class of shapes accomplish some properties�

�	 The bounding approximation of an object oi must ful�ll oi � b�oi� k�� �where k is the
level of detail�	

�	 The bounding approximation b�oi� k� must approximate objects depending on a de

sired resolution LOD� k	

�

�	 The volume distance �vDist� �ABA��� between the geometry of an object� oi� and
its bounding approximation associated to one speci�ed level of detail k� b�oi� k�� has
to satisfy to be less than a known geometric threshold �k	 In other words�

�p � oi � p� � b�oi� k� j dist�p� p�� � �k and�
�p� � b�oi� k� �p � oi j dist�p�� p� � �k

We have chosen as bounding volumes surrounding polyhedra with small number of faces
�And��� AAB���	 Each object is modeled by an o�set polyhedron generated by topology
simpli�cation �ABA���	 In fact� each object� oi� and each group of objects� Sn� have a
set of bounding approximations� one for each level of detail� k	 Ranging k from � to
M 	 The approximation error� �k� that restricts the volume distance between bounding
approximation of an object and its geometry� vDist�b�oi� k�� oi�� is decreasing while k is
increasing	 In other words� b�S� k��� is more accurate than b�S� k�	 Faces�b�S� k�� is the
number of faces of the bounding approximation of S at k level of resolution	 On the other
hand� the set of bounding approximations of objects �oi� ���� oj� that belong to a subset
Sn� will be represented by B�Sn� k�	 Thus�

B�Sn� k� � fb�oi� k�� ���� b�oj� k�g

Figure � shows a simple example in �D of b�Sn� k� and B�Sn� k�	 Observe that b�Sn� k�
corresponds to the bounding polyhedron of a pipe �red color� and B�Sn� k� corresponds to
the set of bounding approximations of the set of the pipe elements �green color�	 Figure �
presents an other example in �D where the b�Sn� k� is the bounding approximation of a
whole set of pipes �in a ship environment�	

b(Sn,k)
B(Sn,k)

Figure �� Example of b�Sn� k� and B�Sn� k� in �D

Coming back to the speci�cation of the MKtree� its data structure must be designed
to eciently return the approximations b�oi� k� and B�Sn� k�	 Moreover� in very large
models� the number of disk block accesses must be minimized during the retrieval of this
information	 This must be guaranteed by a suitable splitting rules and page structure of
the MKtree	 As a consequence� the basic queries to the MKtree will be the following�

�

(d)(c)

(b)(a)

Figure �� Example of bounding polyhedra� a� original model �S� with ��� objects and ��	� faces
 b�
Faces�b�S� ��� � ����
 c� Faces�b�S� ��� � ���
 d� Faces�b�S� ��� � ��

� Given a node n and a resolution k return b�Sn� k�

� Given a node n and a resolution k return B�Sn� k�

� Given a node n and a resolution k return the number of disk accesses to obtain the
whole b�Sn� k�

� Given a node n and a resolution k return the number of disk accesses to obtain the
whole B�Sn� k�

��� Implementation

We can think on di�erent possible implementations for the MKtrees	 In our present
implementation we are using the following structure �in �gure � can be seen an example
of a simple MKT�S� data structure��

� For an arbitrary node n we store the AABB Box R�Sn� and two integer and two
boolean arrays of dimension M �being M the number of allowed levels of detail��

	 The boolean elements� BFits�k�� k � ���M � are set to true i� InPage�B�Sn� k��
is true

	 The boolean elements� bF its�k�� k � ���M � are set to true i� InPage�b�Sn� k�� is
true

	 The integer elements� BPage�k�� k � ���M � store a pointer to the disk page lo

cation of the geometry of B�Sn� k� if BFits�k� � true	 Otherwise� if BFits�k� �

false� they store the number of disk page retrievals that are required to obtain
the full geometry of B�Sn� k�

	 In a similar way� the integer elements� bPage�k�� k � ���M � store a pointer to the
disk page location of the geometry of b�Sn� k� if bF its�k� � true	 Otherwise� if
bF its�k� � false� they store the number of disk page retrievals that are required
to obtain the full geometry of b�Sn� k�

For any node n� we can require its b�Sn� k� �or its B�Sn� k� �	 We can be in two di�erent
cases�

� The information b�Sn� k� �t into a memory page	 In this case the pointer to the page
�from the node n� is returned	

� b�Sn� k� doesn�t �t into one page �see for instance b�S�� �� in �g ��	 In this situation�
the information has being distributed between the childs of node n and to obtain the
whole b�Sn� k� we only have to traverse the subtree of n	 This is always possible due
to that the MKtree is generated making sure that objects �t into a memory page at
leaf�nodes and the b�Sn� k� approximations use less memory than the set of objects
of Sn	 Thus� MemorySize�b�Sn� k�� � MemorySize�Sn� always	

However� in most cases the number of pages required for storing b�Sn� k� is less than the
number of pages required for B�Sn� k�	 Observe� for instance� �gure �� B�S� �� has ����
faces� as B�S� �� includes the AABB box of every object in the node	 We can see that
Faces�b�S� k�� � Faces�B�S� ��� for any k from � to �	 In these cases� instead of storing
B�Sn� k� we can simply store a pointer to the corresponding b�Sn� k�	 This is done for
k � ���M � � and not for k � M � since we want to preserve the particular identity of the
objects at the maximum resolution level �see for instance b�S�� �� and b�S�� �� in �g	 ��	
Anyway� we can explicitly di�erentiate B�Sn� k� from b�Sn� k� for any resolution k � M
��gure �� if we want to preserve the particular identity of the objects at this resolution
level	

Finally� a possible improvement to reduce the total number of disk pages of the model
could be the following� whenever the geometric information corresponding to an arbitrary
b�Sn� k� occupies less than one page� then we can decide not to store it� and point to the
page associated to b�Sn� j� having more resolution � j � k� and such that InPage�b�Sn� j��
is true	 Anyway� we have not adopted this option because it increases the complexity of
the bounding approximations and it can slow down the algorithms that use the MKtrees
to compute interference or collision detection� for instance	

On the other hand� in our implementation� the representations associated to the two �rst
levels of detail have been chosen to give maximum speed to future interference tests�

�

� For k � �� we use the corresponding AABB� b�Sn� �� � R�Sn�	

� For k � �� we use the cuberille representation of Sn ��gure ��	 For fast collision
testing� b�Sn� �� is represented as a bit map� each bit corresponding to a voxel in a
voxelixation �see �JW��� MF���� of R�Sn�	

� For k � �� the bounding representations from �ABA���� �gure �� are used	

0

BFits

bFits

BPage

bPage

1

BFits

bFits

BPage

bPage

2

@b33

1

@R(S)

1

3
F F

4

b(S ,4)
3

BFits

bFits

BPage

bPage

F

BFits

bFits

BPage

bPage

@R(S)
2

@R(S)
3

BFits

bFits

BPage

bPage

T

4

33 3

F

@b32

3

@b44

T

1 2

3

3

B(S ,4)

@b42

3

@R(S)

@B11

1

4
@R(S)

@B42@B41

FFFT

@B01

2 4

22

F

F

F FT

3 5

2

T

T

3

F

TT

2

2

T

T

3 4

2

@b22

4

1 2

2

4

@B21

b(S ,3)

@B22 @B23

4

@B24

@b23

TT

1

@b24

3 4

T T T

T T

T T T

FTT

@B33@B32@B31

T

TTT

T

3

S

S

MKtree

S

S

SSS

S

Oil Tanker objects

S

Figure �� Example of a simple MKT�S� data structure

Figure � shows an example in �D of three LODs �corresponding to three di�erent levels
of detail� of a MKtree node n	 Observe that the bounding volumes of objects that belong
to Sn are more accurate for high values of k� and that collisions will be better detected�
if it is the case	

B(Sn,1) B(Sn,2) B(Sn,3)

Figure �� Example in �D of bounding volumes of node n in � di�erent LODs �k�������

� Input Data Description

We have generated several MKtrees from di�erent input data	 All the data are a subset
of oil tankers	 In table � the features of the input data are presented	 Figures �� ��

�

Input Data

identi�er objects polygons vertices dimensions
�mm�

Oil tanker � ��� ��	� ����� ���� x ��� x ���	

Oil tanker � ���� ������ ����� ����� x ����� x ����

Oil tanker � ���� ���� ���� ���	� x ��� x �����

Table �� Description of the input data

� show external and detailed views of the Oil tanker �� Oil Tanker � and Oil Tanker ��
respectively	

Figure � Oil Tanker �� View corresponding to an equipment element

� MKtree Generation

To generate the MKtrees we have designed two heuristic methods that state and solve
the problem looking for the best solution by evaluating the intermediate results that are
obtained in the direction to the �nal result� in the form of a guided processes	 Therefore�
we have implemented two algorithms based on the two approaches	

	

Figure �� Oil Tanker �� Outside and inside view

Figure �� Oil Tanker �� General and detailed view

��� MKtree Generation� Minimum Overlap Algorithm
MOA�

The MOA algorithm computes the MKtree making use of the wDivideList procedure	
For each intermediate node� n� of the tree the minimum wOverlap�R�Sn��� R�Sn��� is
computed to �ne the best dimension and value to distribute the objects belonging to Sn
in two subsets Sn� and Sn� �FNB���	

The �rst procedure� generate tree� has two input arguments	 The block size or page
capacity� MemPage� and the limit �rate� of the sublist of objects that will be examined�
R	 This second parameter helps the tree to be more or less balanced depending on its
value	 The sublist of objects to be examined is de�ned by the following rank of object
indices �see the algorithm MOA��

R 	N������ � R� 	N

Where N is the number of total objects in the actual list of objects	

�

algorithm MOA�

procedure generate tree�in List of objects� in R� in MemPage�
first 	 List of objects�first element

last 	 List of objects�last element

wDivideList�first� last�
endprocedure

procedure wDivideList�in first� in last�
N 	 last� first
 �
if

no InPage�b�Sn� k�� �
firstT reat 	 first
R �N

lastTreat 	 last�R �N

for dim in �x� y� z do

SortObjList�first� last� dim�min�
ComputeMinOverlap�first� last� firstT reat� lastT reat� dim�minOv�
SortObjList�first� last� dim�max�
ComputeMinOverlap�first� last� firstT reat� lastT reat� dim�minOv�

endfor

dimension 	 Select minimum�minOv�
Icut 	 Number of Selected objects�dimension�minOv�
newfirst 	 first� newlast 	 Icut

wDivideList�newfirst� newlast�
newfirst 	 Icut
 �� newlast 	 last

wDivideList�newfirst� newlast�
InPage�b�Sn� k�� � return

endif

endprocedure

Where N is the number of objects in the actual list of objects	

The procedure wDivideList works as follows� When the total size of the geometry of Sn
is bigger than the block size �MemPage argument�� the actual list of objects is divided
in two subsets and a recursive call is done for each one	 To compute the best dimension
and location to cut the actual list of objects belonging to Sn� six sorts of the actual list
of objects are performed	 The three �rst sorts are based on the Xmin� Ymin and Zmin
increasing order� respectively	 The other three sorts are based on the Xmax� Ymax and
Zmax increasing order� respectively	 Then� for each resulting sorted list the minimum
overlap is computed � by using the ComputeMinOverlap procedure� and stored in minOv
together with the index location where it has been produced	 In this way� we only have to
select the minimum of the six overlaps	 Once the minimum overlap is selected� the actual
list is sorted again based on the associated dimension	 After� the actual list of objects
is partitioned in two sublists� at the corresponding location associated to this dimension

��

�see algorithm MOA ��	 Finally� two recursive calls are performed� one for each of the
two resulting sublists	 And so on	

The ComputeMinOverlap is at most the key to determine the overlap space between the
objects of the future sublists by one speci�ed dimension and by one determined sorted
list	 This procedure will be called six times for each intermediate node	 One call for
each possible dimension and order criterium �by maximum or by minimum values of the
coordinate dimension�	 The procedure is presented in what follows	

algorithm MOA�

procedure ComputeMinOverlap�in first� in last� in fTreat� in R� in dim� inout minOv�
max 	 SearchMax�first� fT reat� dim�
min 	 SearchMin�fTreat
 �� last� dim�
minOv�overlap�dim 	 list�O�max�max�xyz�dim� list�O�min�min�xyz�dim
minOv�Icut�dim 	 fTreat

for n in �fTreat
 � �� lT reat do

max 	 SearchMax�first� n� dim�
min 	 SearchMin�n
 �� last� dim�
overlap 	 list�O�max�max�xyz�dim� list�O�min�min�xyz�dim
if

overlap � minOv�overlap�dim � minOv�overlap 	 overlap

minOv�Icut�dim 	 n

endif

endfor

endprocedure

The procedures SearchMax�first� n� dim� and SearchMin�n � �� last� dim� search the
maximum value of the coordinate dim of all the objects of the list that are included
from first to n and the minimum value of the coordinate dim that are included from
n� � to last� respectively	 Then� the subtraction operation of those values gives the one�
dimensional overlap� wOverlap �introduced in sec	 �	��	 If it is less than the overlap found
up to now it is stored in the minOv structure together with the n value that indicates
the place of the list where it has to be cut	

����� Results of the Minimum Overlap Algorithm

We have executed the Minimum Overlap Algorithm with the input data described in
section �	 The main results obtained are presented in several tables	 The input values of
the arguments used in each execution are detailed in the caption region of each table and
their meaning is�

��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � �	
	���� �
������ �	
	����
� � �
������ �
������ ��
��	���
� � �
������ �
������ ��
������
� � �
������ �
������ �
�����
� � �
������ �
������ ���
�����
 �� �
������ �
������ ���
������
� � �
������ �
������ �
����	�
� � ��
������ �
������ ��
������
	 �

Table �� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

� R� Rate that limits the sublist of objects to be examined	

� MemPage� Number of objects allowed in one page or block �size of one block�	

The information contained in each table is�

� tree level� corresponding level of the MKtree	 Beginning by the level � associated to
the root node	

� N� leaves� Number of leaves that have been found at the corresponding tree level	

� ovMin� Minimum overlap calculated at the corresponding tree level

� ovRel� Minimum relative overlap� ovRel� ovMin
size�b�Sn�k��

� ovMax� Maximum overlap encountered in the actual tree level

In tables �� � and � the results obtained when applying the algorithm to the Oil Tanker �
with the input values� R � ��� and ��� �� and �� objects that can be in a block at
once� values of MemPage� respectively� are presented	 Tables �� � and � show the results
obtained changing the value of the �rst argument to �	� and keeping on the values of the
second argument� respectively	

In tables �� � and ��� the results obtained when applying the MOA algorithm to the
Oil Tanker � are presented	 In all the cases the input value corresponding to the rate is
�	� �R � ����� while the MemPage has been� ���� ��� and ��� objects� respectively	 In
tables ��� �� and ��� the results of applying the MOA method to the Oil Tanker � are

��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � �	
	���� �
������ �	
	����
� � �
������ �
������ ��
��	���
� � �
������ �
������ ��
������
� � �
������ �
������ �
�����
� � ���
������ �
������ ���
�����
 � �
���	 �
����	� ���
������
� � �
������ �
������ �
������
� �

Table �� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � �	
	���� �
������ �	
	����
� � �
������ �
������ ��
��	���
� � ��
������ �
����� ��
������
� � ��
�����	 �
����	� �
�����
� � ���
������ �
������ ���
�����
 � �
���	 �
����	� ���
������
� �

Table �� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ��
������ �
����� ��
������
� � 	�
������ �
���	� ���
	���	�
� � �
������ �
������ ��
������
� � �
������ �
������ ��
��	��
� �
������ �
������ �	�
������
 �� �
������ �
������ ���
������
� � ��
������ �
����� ��
������
� � �
������ �
������ �
������
	 �

Table � Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � �	
	���� �
������ �	
	����
� � �
������ �
������ ��
��	���
� � �
������ �
������ ��
������
� � �
������ �
������ �
�����
� � ���
������ �
������ ���
�����
 � �
���	 �
����	� ���
������
� � �
������ �
������ �
������
� �

Table �� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ��
������ �
����� ��
������
� � 	�
������ �
���	� ���
	���	�
� � �
������ �
������ ��
������
� � ��
�����	 �
����	� ��
��	��
� � ���
������ �
�	���� ���
������
 �

Table �� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

exposed	 The value of the arguments are R � ��� for all of the cases� and� ���� ��� and
��� as values of the MemPage argument� respectively	

The tables ��� �� and �� correspond to the results obtained when computing the MKtree
of the Oil Tanker � by using the MOA algorithm	 The value of the rate argument is
�	� �R � ���� for all of them and the value of the MemPage argument is ���� ���
and ���� respectively	 In tables ��� �� and ��� the results obtained when applying the
MOA algorithm to the Oil Tanker �� with ���� ��� and ��� as values of the MemPage
argument� respectively and� with R � ��� for all of the cases� are exposed	

Observing the results� presented in the tables� we can see how the values of the input
arguments a�ect to the resulting MKtrees	 When we change the value of the block size�
keeping on the rate� we obeserve�

� As MemPage increases� the deep of the MKtree decreases in all the cases	 See� for
instance� tables � and ��	 In the �rst table the value of the MemPage is set to ���
and in the second one� this value is set to ���	 While the deep of the �rst MKtree is
�� �� �� ���� the deep of the second is � �� �� ��	

� When the MemPage is low �i	e	 ��� for the Oil Tanker �� see table �� the values of
the ovMin and ovMinRel are low also� and those values have the tendency to be
zero	 Compare� for instance� the table �� where ovMin is zero in six levels� and the
table �� where there is one ovMin equal to zero� only	

On the other hand� the e�ects of �xing the value of the MemPage argument and changing
the R values to the resulting MKtrees can be summarized in�

� For high values of the R the computed MKtree has less levels than for low values
of rate argument	 See tables �� and ��� for instance	 Thus� for high values of R

�

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
������ ����
������
� � ��
������ �
����� ����
�����
� � �
������ �
������ ����
�	����
� � �
������ �
������ ���	
���	
� � �
������ �
������ ���
������
 � �
������ �
������ ���
������
� �� �
������ �
������ ���
����	
� �� �
������ �
������ ����
����	
	 �� �
������ �
������ �	�
������
� �� ���
����� �
�	��� �	�
���	
�� � ���
���	� �
�	���� �	��
	�	��
�� � ���
	����� �
������ �	��
������
�� � ����
��	� �
������ ����
��	�
�� �

Table 	� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ���

argument� the computed MKtrees are more balanced than for low values of this
parameter	

� For higher levels of the rate the MKtrees have a higher values of ovMin and ovRel
than for lower values of this parameter	

� As a consecuence� we can see that depending on the context problem we can decide
to get MKtrees with low values of ovMin or MKtrees with high values of ovMin	 In
the second case� we will get more balanced MKtrees than in the �rst� but the page
faults when computing collisions� for intance� will be higher	 Although this is true�
on the other hand� for higher values of the rate argument the generated MKtrees
will be more balance �as said before� and not so deep as for lower values of rate	
It means� that high values give higher ovMin between spaces belonging to di�erent
grey nodes� but at the same time� the number of grey nodes is less	 If the number of
the grey nodes is low it implies less queries to retrieval pages from disk	

Figures � and � graphicaly represent the MKtrees of the Oil Tanker � generated with
values of arguments R � ��� and MemPage � ���� for the �rst �gure� and R � ��� and
MemPage � ��� for the second one	 The grey nodes of the MKtree have been draw
as boxes and the leaves nodes as ellipses	 Inside each ellipse there apears the number

��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
������ ����
������
� � ��
������ �
����� ����
�����
� � ���
������ �
������ ����
�	����
� � ��
	���� �
��	�� ���	
���	
� � �
������ �
������ ���
������
 � �
������ �
������ ���
������
� �
������ �
������ ���
����	
� 	 �
������ �
������ ����
����	
	 � 	�
������ �
����� �	�
������
� � ��
�����	 �
���	�� �	�
���	
�� � ���
���	� �
�	���� ���
���	�
�� �

Table �� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ���

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
������ ����
������
� � ��
������ �
����� ����
�����
� � ���
������ �
������ ����
�	����
� ���	
���	 �
������ ���	
���	
� � ��
������ �
�	���� ���
������
 � 	��
����� �
����� ���
������
� � ���	
������ �
����	 ���	
������
� �

Table ��� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
���	� ����
������
� � ��
������ �
����� ���	
���	
� � ��
������ �
����� ����
������
� � �
������ �
������ ���
������
� � �
������ �
������ ����
����	
 �� �
������ �
������ ����
�����
� � �
������ �
������ ����
������
� �	 �
������ �
������ ����
������
	 � ����
���� �
����	 ����
	�	��
� �

Table ��� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ���

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
���	� ����
������
� � ��
������ �
����� ���	
���	
� � ��
������ �
����� ����
������
� � �
������ �
������ ���
������
� � ���
������ �
������ ����
����	
 �� ���
������ �
���� ����
�����
� ��
������ �
����� ����
������
� ����
���� �
����� ����
����
	 �

Table ��� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ���

�	

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
���	� ����
������
� � ��
������ �
����� ���	
���	
� � ���
����� �
����� ����
������
� � ���
����� �
�	��� ���
������
� � ���
������ �
������ ����
����	
 �

Table ��� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ��
����� �
�	�	�� ��
�����
� � ���
	����� �
�	���	 ���
������
� � ��
	���	 �
������ ����
������
� � �
������ �
������ ����
������
� �
������ �
������ �	��
���	��
 	 �
������ �
������ ����
������
� �� �
������ �
������ �	��
������
� � ���
������ �
����� ���
������
	 � �
������ �
������ ���
�����
� �� �
������ �
������ ���
�	����
�� � ���
������ �
����	 ����
������
�� �	�
������ �
������ ����
���	�
�� ���
������ �
����	� ���
������
�� �

Table ��� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ���

��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ��
����� �
�	�	�� ��
�����
� � ���
	����� �
�	���	 ���
������
� � ��
������ �
������ ����
������
� � �
����� �
������ ����
������
� � �
������ �
������ �	��
���	��
 � �
������ �
������ ����
������
� � �
������ �
������ �	��
������
� � ���
����� �
��	�� ���
������
	 �
������ �
������ �
������
� � ���
	����� �
���	�� ��
������
�� � ����
������ �
���		� ����
������
�� �

Table �� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ���

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ��
����� �
�	�	�� ��
�����
� � ���
	����� �
�	���	 ���
������
� � ��
������ �
������ ����
������
� � �
����� �
������ ����
������
� � �	��
���	�� �
����� �	��
���	��
 � ����
������ �
����� ����
������
� � �	��
������ �
�����	 �	��
������
� � ���
������ �
�����	 ���
������
	 � �
������ �
������ �
������
� �

Table ��� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���
������ �
���	� ���
������
� � ���
����� �
����	� ��	�
������
� � ���
������ �
����� ����
������
� �
������ �
����	 �	
������
� � �
������ �
������ ���
����	�
 �� �
������ �
������ ���
������
� �� �
������ �
������ ����
������
� �� �
������ �
������ ����
�	���
	 �� ��
������ �
���� ���
������
� � ���
����� �
������ ���
�����
�� �

Table ��� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ���

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���
������ �
���	� ���
������
� � ���
����� �
����	� ��	�
������
� � ���
������ �
����� ����
������
� �
������ �
����	 �	
������
� � �
������ �
������ ���
����	�
 �� �
���	� �
������ ���
������
� 	 �
������ �
��		�� ���
������
� � ���
������ �
������ ���
������
	 �

Table �	� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ���

��

Oil Tanker � Minimum Overlap Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���
������ �
���	� ���
������
� � ���
����� �
����	� ��	�
������
� � ���
������ �
�����	 ����
������
� � 	�
������ �
������ �	
������
� � ���
����	� �
����	� ���
����	�
 � ���
����	� �
����� ���
����	�
� �

Table ��� Minimum Overlap Algorithm applied to Oil Tanker � with R � ��� and MemPage � ��

of objects that the associated leaf contains �this number is always less that the value of
MemPage�	 The information associated inside each box� grey node� is�

� nO� Number of objects that belong to Sn �for a grey node n�	

� dim� Cut dimension selected for the subset Sn to obtain Sn� and Sn�
� ovS� wOverlap selected for the current node �corresponding to the minimum
overlap band introduced in section �	��

� ovR� Minimum relative overlap� where ovR� ovS
size�b�Sn�k��

Thus� for example the root node� say Sn� of the MKtree of �gure ��

� nO � ����� Contains ���� objects

� dim � Y � The cut dimension corresponds to the Y axis� it means that
wOverlap�R�Sn��� R�Sn��� � yOverlap�R�Sn��� R�Sn��� �see sec	 �	� for details�

� ovS� The minimum overlap band computed has been ������mm

� ovR� The ovS relative to the ySize�R�Sn�� is ��������

Looking at the MKtree of �gures � and �� we observe how the values of the rate argument
a�ect to the resulting MKtrees	 The �rst MKtree� corresponding to R � ���� is more
balanced than the second one� where R � ���	

��

nO = 3900
dim= Y
ovS= 1747.0
ovR= 0.135180

nO = 2726
dim= Y
ovS= 2398.529785
ovR= 0.230440

nO = 1174
dim= Y
ovS= 405.0
ovR= 0.095026

nO = 1277
dim= Y
ovS= 783.979980
ovR= 0.125437

nO = 1449
dim= Y
ovS= 2497.0
ovR= 0.380813

nO = 893
dim= Y
ovS= 1150.0
ovR= 0.1840

nO = 1014
dim= X
ovS= 2534.0
ovR= 0.174146

nO = 624
dim= X
ovS= 721.140137
ovR= 0.047132

nO=384

nO=168

nO=269

nO=188 nO=436

nO = 557
dim= Y
ovS= 2699.029785
ovR= 0.411624

nO=457

nO=435

nO=389

nO=353

nO = 821
dim= Y
ovS= 649.50
ovR= 0.152393

nO = 574
dim= Y
ovS= 791.599609
ovR= 0.185734

nO=247

nO=374 nO=200

Figure 	� Example of MKtree corresponding to the Oil tanker � computed by using the Minimum Overlap
Algorithm with R � ��� and MemPage � �	���bytes ���obj�

��

nO = 3900
dim= Y
ovS= 1431.099609
ovR= 0.110736

nO = 3118
dim= Y
ovS= 2021.650391
ovR=0.194231

nO = 782
dim= Y
ovS= 250.0
ovR= 0.063354

nO = 2494
dim= X
ovS= 2304.98046
ovR= 0.150649

nO = 624
dim= Y
ovS= 372.1904
ovR= 0.222077

nO = 1995
dim= Y
ovS= 2398.529
ovR= 0.230440

nO = 968
dim= Y
ovS= 500.0
ovR= 0.08

nO=499 nO=499

nO=157

nO = 625
dim= Y
ovS= 377.7998
ovR= 0.095840

nO=126 nO=499

nO = 1027
dim= Y
ovS= 2500.0
ovR=0.381270

nO = 773
dim= Y
ovS= 849.5
ovR= 0.13592

nO=195

nO = 618
dim= Y
ovS= 1068.49023
ovR= 0.170958

nO=155

nO=124nO=494

nO = 766
dim= X
ovS= 2534.0
ovR=0.174374

nO=261

nO=463 nO=303

nO=125

Figure �� Example of MKtree corresponding to the Oil tanker � computed by using the MOA algorithm
with R � ��� and MemPage � �	���bytes ���obj�

��

Figures ��� �� and ��� are images of MKtrees of the three oil tankers� presented in several
colors corresponding to the MKtree spaces �nodes�� up to level � or �� of the tree and
with di�erent values of LOD� depending on the image	 The values of the input arguments
to the MOA algorithm of every image are exposed in associated caption region of each
image	

Figure ��� MKtree up to level � of the Oil Tanker �� computed by using the MOA algorithm with R � ���
and MemPage � �
 Left LOD � max
 Right LOD � �

Figure ��� MKtree up to level � and LOD � max �left� and to level � and LOD � � �right�
of the Oil Tanker �� computed by using the MOA algorithm with R � ��� and MemPage �
�	���bytes ���objs�

��� MKtree Generation� Look Ahead Algorithm
LAA�

The LAA algorithm computes the MKtree by using the wDivideList procedure �see
algorithm LAA�� which makes use of a LookAhead function �see algorithm LAA��	 This
function selects the best dimension and location to cut Sn in two subsets� Sn� and Sn� �
looking for the minimum accumulated overlap between all the possible subtrees that begin
from n	 In other words� the LookAhead function explores the possible subtrees that
results from each overlap previously computed �by the ComputeMinOverlap procedure �
see algorithm LAA�� and selects the best cut depending on the accumulated overlap found

�

Figure ��� MKtree up to level � with LOD � max �left� and to level � with LOD � � �right�
of the Oil Tanker �� computed by using the MOA algorithm with R � ��� and MemPage �
�	���bytes ���objs�

from the actual level �corresponding to the grey node n� until to a pre�speci�ed look level
of the simulated or trial MKtree	 Where Look level
 actual level	 The trial generation
that permits to compute the simulated MKtrees is performed by the wDivideListT rial
procedure �see algorithm LAA��� which is called six times by the LookAhead function	

The �rst procedure� generate tree� has three input arguments �see algorithm LAA��	 The
block size or the capacity of the page� MemPage� the rate value that limits the sublist
of objects to be examined� R� and� �nally� the LookAhead level to compute the trial
�subtrees�	 The last one� determines the deep of the simulated subtrees	

Thereby� for each intermediate node� n� of the tree� six values of wOverlap�R�Sn��� R�Sn���
are computed	 One for each dimension � x� y� and z� and sorting criterium	 The three
�rst sorts are based on the Xmin� Y min� and Zmin �coordinates of objects� increasing
order� respectively	 The other three sorts are based on the Xmax� Ymax and Zmax
�coordinates of objects� increasing order� respectively	

Then� for each resulting sorted list� the minimum overlap is computed �by using the
ComputeMinOverlap procedure� and stored in minOv structure� together with the index
location where it has been produced �see algorithm LAA��	

To select the best dimension and location to cut Sn in two subsets� Sn� and Sn�� a call to
LookAhead function is performed �see algorithm LAA��	 The LookAhead function gen

erates� in a trial way� six simulated subtrees corresponding to the six overlaps previously
computed and stored in minOv	 Thus� the best cut� is selected taking into account the
accumulated overlaps found in each simulated subtree	

In fact� the trial subtrees are generated� in a simulated way� from the actual level of the
MKtrees to an pre�speci�ed look level	 Where�

look level � actual level � LookAhead level

To compute the LookAhead trees �or simulated subtrees� we have implemented a
wDivideListT rial recursive procedure �see algorithm LAA�� that is a trial of the wDivideList	

��

Thus� the wDivideListT rial computes all possible subtrees and the LookAhead function
chooses the optimal one	 The algorithm is presented is what follows	

algorithm LAA�

procedure generate tree�in List of objects� in R� in MemPage� in LookAhead level�
first 	 List of objects�first element

last 	 List of objects�last element

actual level 	 �
wDivideList�first� last� actual level� LookAhead level�

endprocedure

procedure wDivideList�in first� in last� in actual level� in LookAhead level�
act level 	 actual level

if

no InPage�b�Sn� k�� �
firstT reat 	 first
R � numberobjects

lastT reat 	 last�R � number objects

for dim in �x� y� z do

SortObjList�first� last� dim�min�
ComputeMinOverlap�first� last� firstT reat� lastT reat� dim�minOv�
SortObjList�first� last� dim�max�
ComputeMinOverlap�first� last� firstT reat� lastT reat� dim�minOv�

endfor

which 	 LookAhead�first� last�minOv� actual level� LookAhead level�
Icut 	 minOv�I�which
act level 	 act level
 �
newfirst 	 first� newlast 	 Icut�
wDivideList�newfirst� newlast� act level� LookAhead level�
newfirst 	 Icut
 �� newlast 	 last

wDivideList�newfirst� newlast� act level� LookAhead level�
InPage�b�Sn� k�� � return

endif

endprocedure

The wDivideList procedure computes the cut dimension and value to divide the initial
list of objects in two sublists	 To select those values �from minOv structure� it calls to
the LookAhead function indicating the LookAhead level	 This last argument limits the
MKtree level up to the LookAhead function has to explore	 The output of the LookAhead
function is an integer that indicates the value of the index of the minOv structure that
has to be chosen	

��

algorithm LAA�

function LookAhead�in first� in last� in minOv� in actual level� in LookAhead level� return integer

F loatSix����� 	 minOv�V �����
look level 	 LookAhead level
 actual level

for i in ����� do

first now 	 first

last now 	 minOv�I�i
child over 	 minOv�V �i
wDivideListTrial�first now� last now� actual level� look level�
F loatSix�i 	 child ove
 F loatSix�i
first now 	 minOv�I�i
 �
last now 	 last

child over 	 minOv�V �i
wDivideListTrial�first now� last now� actual level� look level�
F loatSix�i 	 child ove
 F loatSix�i

endfor

return minimum�F loatSix�
endfunction

The LookAhead function returns an integer value �� �� �� that indicates for which axes
�dimension� and where �in terms of number of objects� have the subset Sn to be cut	 All
the possible subtrees that will be generated� depending on each value of the overlap band
for Sn� are taken into account	 In other words� the function explores the possible subtrees
that results from each overlap computed �and stored in minOv� and selects the best cut
depending on the accumulated overlap found from the actual level to the look level of the
trial MKtree � where look level � actual level � LookAhead level�	 The trial generation
that permits to compute the optimal tree is performed by the wDivideListT rial proce

dure� which is called six times by the LookAhead function	 One for each value contained
in minOv	 The wDivideListT rial is presented in what follows	

algorithm LAA�

procedure wDivideListTrial�in first� in last� in actual level� in look level�
if

no InPage�b�Sn� k�� and
actual level �	 look level �

firstT reat 	 first
R � numberobjects

lastT reat 	 last�R � number objects

for dim in �x� y� z do

SortObjList�first� last� dim�min�
ComputeMinOverlap�first� last� firstT reat� lastT reat� oversix�
SortObjList�first� last� dim�max�
ComputeMinOverlap�first� last� firstT reat� lastT reat� oversix�

endfor

�	

which 	 minimum�oversix�
child ove 	 oversix�V �which
 child ove

actual level 	 actual level
 �
newfirst 	 first� newlast 	 oversix�I�which
wDivideListTrial�newfirst� newlast� actual level� look level�
newfirst 	 oversix�I�which
 �� newlast 	 last

wDivideListTrial�newfirst� newlast� actual level� look level�
InPage�b�Sn� k�� or �actual level � look level� � return

endif

endprocedure

The wDivideListT rial computes a simulated subtree of an MKtree from the input
actual level up to the look level � actual level � LookAhead level	 Thus� the simu

lated subtree will have look level levels	 In this way� the value of the LookAhead level�
argument of the generate tree procedure� limits the deep of the MKtree to be explored
and� as a consecuence� if its value is high the �nal MKtree generated will be more optimal
than if its value is low	 In fact� when its value is equal to zero the MKtree generated
by using the LAA method will be similar than the MKtree generated by using the MOA
method	

����� Results of the Look Ahead Algorithm

The tables ��� �� and ��� show the results obtained when applying the LookAhead algo

rithm to the Oil Tanker �	 The values of the arguments are� R � ��� �for all of the three
cases�� ��� �� and ��� respectively� as values of the MemPage and the LookAhead level
has been set at the maximum level in all the cases	 Tables ��� �� and �� present the
results when changing the R argument to ��� with respect the previous three tables� and
mantain the values of the two other arguments	

Tables ��� �� and ��� summarize the results obtained by applying the LookAhead algo

rithm to the Oil Tanker �	 The values of the arguments are� R � ���� for every case�
���� ��� and ��� as a values of MemPage� respectively� and the maximum value for the
LookAhead level have been selected for all of the executions	 Applying the algorithm to
the same Oil Tanker� the results obtained� when setting the rate value to ��� and keep

ing on the values of the other two arguments �with respect to the three �rst cases�� are
presented in tables ��� �� and ��	

In tables ��� ��� ��� ��� �� and �� the results obtained when applying the LAA algorithm
to the Oil Tanker � are presented	 The values of the arguments that have been used for
each execution are described in the caption of each table	

In most of the tables presented in this section the value of the LookAhead level has
been set to the maximum possible in order to obtain the more optimal MKtree	 As

��

Oil Tanker � Look Ahead Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � �	�
������ �
���	�� �	�
������
� � �
������ �
��	��� �	
	����
� � �
������ �
������ ���
��	��	
� � �
������ �
������ �
������
� � �
������ �
������ �
������
 � �
������ �
������ �
������
� � �
������ �
������ ��
������
� � �
������ �
������ �
���	
	 � �
������ �
������ �
������
� � ��
������ �
������ ��
�����
�� �

Table ��� Look Ahead Algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA�maximum

Oil Tanker � Look Ahead Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � �	
	���� �
������ �	
	����
� � �
������ �
����� ��
�����
� � �
������ �
������ ��
��	���
� � �
������ �
������ ���
������
� � �
������ �
������ ��
������
 � �
����	 �
������ �
���	
� � �
������ �
������ �
������
� �

Table ��� Look Ahead Algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA�maximum

��

Oil Tanker � Look Ahead Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � �	
	���� �
������ �	
	����
� � �
������ �
������ ��
�����
� � �
������ �
������ ��
��	���
� � ��
������ �
����� ���
������
� � ��
������ �
������ ��
������
 � �
������ �
������ �
������
� �

Table ��� Look Ahead Algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA�maximum

Oil Tanker � Look Ahead Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ��
������ �
����� ��
������
� � ��
	���� �
����	 ��
������
� � 	
	���� �
�����	 ��
�����
� � �
������ �
������ 	�
������
� 	 �
������ �
������ ���
�����
 �� �
������ �
������ ��
��	���
� � �
������ �
������ �
��	���
� �

Table ��� Look Ahead Algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA�maximum

��

Oil Tanker � Look Ahead Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ��
������ �
����� ��
������
� � 	�
������ �
���	� ��
	����
� � ��
������ �
��	��� ��
������
� � �
������ �
������ ��
������
� � �
������ �
������ ��
��	���
 ���
������ �
�	���� ���
������
� �

Table ��� Look Ahead Algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA�maximum

Oil Tanker � Look Ahead Algorithm Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ��
������ �
����� ��
������
� � 	�
������ �
���	� ��
	����
� � �
������ �
���	�� ��
������
� � ��
�����	 �
����	� ��
������
� ��
��	��� �
������ ��
��	���
 �

Table �� Look Ahead Algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA�maximum

��

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���	
������ �
��			� ���	
������
� � ���
������ �
�����	 ����
���	�
� � �	�
������ �
����� �	��
���		�
� � �
������ �
������ ���	
���	
� 	 �
������ �
������ ���
����
 � �
������ �
������ ����
������
� � �
������ �
������ ����
������
� �� �
������ �
������ �		�
������
	 �� �
������ �
������ ����
	����
� �� ���
������ �
���	� ���
������
�� � ���
������ �
������ ����
�����
�� � �
������ �
������ 	��
�����
�� �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � ��� and

LA level�maximum

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���	
������ �
��			� ���	
������
� � ���
������ �
�����	 ����
���	�
� � ���
����� �
����� �	��
���		�
� � ���
����� �
������ ����
������
� � ��
����	� �
���	� ���
�����
 � ���
������ �
���� ����
������
� 	 ���
������ �
������ ���
������
� �
������ �
������ ���
���	�
	 � ��
����� �
����� ���
������
� �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � ��� and

LA level�maximum

��

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
������ ����
������
� � ��
������ �
����� ����
������
� � ���
���	� �
��	�� �	��
�����
� ����
������ �
��	��� ����
������
� � ����
����� �
���	�� ���
�����
 � ��	
�	���� �
������ ��	
�	����
� � ���
������ �
��	��� ���
������
� �

Table �	� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA level�maximum

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
���	� ����
������
� � ��
������ �
����� ��		
������
� � �	�
������ �
����	 ���
�����
� � �
������ �
������ ����
���	��
� �
������ �
������ ����
������
 	 �
������ �
������ ��
����	
� �� �
������ �
������ ����
������
� �� �
������ �
������ ���
	���	
	 	 ��	
����	� �
������ ����
������
� �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � ��� and

LA level�maximum

��

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
���	� ����
������
� � ��
������ �
����� ��	�
������
� � ��
������ �
����� ���	
���	
� � �
������ �
������ ���
������
� � �
������ �
������ ���
������
 � �
������ �
������ �	��
���		�
� 	 ����
����� �
������ ���
������
� �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � ��� and

LA level�maximum

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���	
���	 �
�	�� ���	
���	
� � �	�
����	� �
����� ����
������
� � ���
����� �
�	���� ���
�����
� � ���
���		� �
������ ���
������
� � ���
������ �
������ ���
������
 �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA level�maximum

�

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���
������ �
������ ���
������
� � ��
���	� �
������ ���
	����
� � ���
������ �
���	�� ����
������
� � �
������ �
������ ���
������
� � �
������ �
������ ���
������
 �� �
������ �
������ ��
����
� � �
������ �
������ ��
������
� �� �
������ �
������ ��
������
	 �� �
������ �
������ ��
������
� � 	�
������ �
���	� ���
	����	
�� �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � ��� and

LA level�maximum

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
����� ����
������
� � �	�
������ �
������ ����
������
� � �	
������ �
����� ��	�
�����
� � 	�
	����� �
������ ���
������
� �
������ �
������ ���
������
 � �
������ �
������ ���
���	�
� � ��
������ �
���	�� ��
�����
� � �
������ �
������ ���
�	���
	 ���
������ �
����� ���
������
� � ���
������ �
�����	 ���
������
�� � ��
����� �
�	���� ��
�����
�� � ���
����� �
����� ���
�����
�� �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � ��� and

LA level�maximum

��

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���
������ �
���	� ���
������
� � ���
	����� �
���� ����
������
� � ��
������ �
������ ����
������
� � ���
������ �
����� ���
�����
� � ��
������ �
��	��� 	��
����
 � 	��
����� �
������ 	��
�����
� � �
������ �
������ �
������
� � ��
������ �
����	 ��
������
	 �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA level�maximum

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���
����	 �
������ ���
����	
� � ��	
������ �
����� ���
�����
� � ���
����� �
��	 ���
������
� � �
������ �
������ ����
�����
� � �
������ �
������ ���	
�����
 	 �
������ �
������ ����
������
� �� �
������ �
������ ���
�	����
� �� �
������ �
������ ���
�����
	 �� ��
�	���� �
����	� ���
������
� �

Table �� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � ��� and

LA level�maximum

��

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���
������ �
���	� ���
������
� � ��	�
������ �
��	� ����
�	���
� � ���
������ �
�����	 ����
������
� � �
������ �
������ ��
������
� � �
������ �
������ ����
���	�
 � �	�
������ �
������ ���
	�����
� � ��
����� �
����� ��		
������
� ���
����� �
��		�� ���
�����
	 �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � ��� and

LA level�maximum

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ���
������ �
���	� ���
������
� � ���
����� �
����	� ��	�
������
� � ���
������ �
�����	 ����
������
� � 	�
������ �
������ ���
��	�	�
� � ����
������ �
������ ����
������
 � ��	
����� �
������ ��	
�����
� �

Table ��� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � �� and

LA level�maximum

�	

Oil Tanker � LookAhead Results

tree level N
 leaves ovMin ovMinRel ovMax

� � ����
������ �
���	� ����
������
� � ��
������ �
����� ���	
���	
� � ���
����� �
����� ����
������
� � ���
����� �
�	��� ���
������
� � ���
������ �
������ ����
����	
 �

Table �	� Look Ahead algorithm applied to Oil Tanker � with R � ���� MemPage � �� and LA level��

the value of the LookAhead level argument descreases the �nal MKtree generated is
less optimal in terms of accumulated overlap in the whole tree	 For instance� the ac

cumulated overlap associated to the MKtree corresponding to the table ��� where the
LookAhead level � �� is �����	������� with �� grey nodes and with an accumulated rel

ative overlap per node equal to ����	������	 While the MKtree associated to the table
��� where LookAhead level � �� has an accumulated overlap of �����	������� with ��
grey nodes and the accumulated relative overlap per node is ����	������	 Therefore� the
MKtree resulting of the LAA method is more or less optimum depending on higher or
lower values of the input argument LookAhead level	

The e�ects of the values of the other two parameters� R and MemPage� to the computed
MKtrees� are similar than in the case of the MOA algorithm	 See section �	�	� for details	

In �gure �� the MKtree of Oil Tanker � generated with the values of input parameters�
MemPage � �����bytes� R � ��� and LookAhead level � � �maximum�� is presented	
The information associated to each node of the tree has the same meaning than in the
case of MOA �gures �see	 section �	�	��	

In �gure �� the MKtree of Oil Tanker � generated with the values of input parameters�
MemPage � �����bytes� R � ��� and LookAhead level � � �maximum�� is presented	
The information associated to each node of the tree has the same meaning than in the
case of MOA �gures �see	 section �	�	��	

Figures ��� �� and �� are images of the MKtrees obtained by using the LAA algorithm
of the three oil tankers� presented in several colors corresponding to the MKtree spaces
�nodes� up to level � or � of the tree and di�erents values of LOD� depending on the

��

nO = 3900
dim= Y
ovS= 2398.529785
ovR= 0.185594

nO = 3118
dim= Z
ovS= 2904.49023
ovR= 0.106194

nO = 782
dim= Y
ovS= 250.0
ovR= 0.063354

nO = 2494
dim= Y
ovS= 1824.70
ovR= 0.178498

nO = 1995
dim= X
ovS= 1969.740234
ovR= 0.128746

nO=499

nO = 625
dim= Y
ovS= 377.7998
ovR= 0.095840

nO=126 nO=499

nO=157

nO=499

nO = 624
dim= Z
ovS= 648.0
ovR=0.059425

nO = 708
dim= X
ovS= 2375.509
ovR= 0.240578

nO = 1287
dim= Y
ovS= 1226.060059
ovR= 0.13983

nO=234nO=474
nO = 827
dim= Y
ovS= 478.689941
ovR= 0.097437

nO=460

nO = 661
dim= Z
ovS= 732.0
ovR= 0.068411

nO=166

nO=479nO=182

nO=125

Figure ��� Example of MKtree corresponding to the Oil tanker � generated by using the Look Ahead
Algorithm
 With R � ���� MemPage � �� and LookAhead level � � �maximum�

image	 The values of the input arguments to the LAA algorithm� for each MKtree� are
exposed in each associated caption region	

��

nO = 3900
dim= Y
ovS= 2398.529785
ovR= 0.185594

nO = 1277
dim= Y
ovS= 783.979980
ovR= 0.125437

nO = 2623
dim= Y
ovS= 1434.0
ovR= 0.158068

nO = 893
dim= Y
ovS= 1150.0
ovR= 0.1840

nO = 624
dim= X
ovS= 721.140137
ovR= 0.047132

nO=269

nO=436

nO = 787
dim= Y
ovS= 329.50
ovR= 0.083439

nO = 550
dim= Y
ovS= 507.900391
ovR= 0.128843

nO=237

nO=166 nO=384

nO = 1836
dim= Y
ovS= 1954.50
ovR= 0.298077

nO=384

nO = 1284
dim= Y
ovS= 2503.0
ovR= 0.381728

nO = 552
dim= Z
ovS= 371.629883
ovR= 0.021473

nO = 863
dim= X
ovS= 2534.0
ovR= 0.174146

nO=217 nO=335

nO=463 nO=400

nO=421nO=188

Figure ��� Example of MKtree corresponding to the Oil tanker � generated by using the Look Ahead
Algorithm
 With R � ���� MemPage � �� and LookAhead level � �maximum�

��

Figure �� Images of MKtrees of the Oil Tanker �
 Left image� MKtree up to level � and LOD � �

Right image� MKtree up to level � and LOD � max
 Input values of the LAA algorithm� R � ����
MemPage � �objs and LookAhead level � max

Figure ��� Images of MKtrees of the Oil Tanker �
 Left image� MKtree up to level � and LOD � �

Right image� MKtree up to level � and LOD � max
 Input values of the arguments the LAA algorithm�
R � ���� MemPage � �	���bytes ���objs� and LookAhead level � max

Figure ��� Images of MKtrees of the Oil Tanker �� computed by using the LAA algorithm with R � ����
MemPage � �	��� ���objs� and LookAhead level � max
 Left image� MKtree up to level � and
LOD � �
 Right image� MKtree up to level � and LOD � max

��

Oil Tanker � MOA accumulated overlap

R MemPage ovAccumulated Ng ovAverage

�
�� �� ����
	�	�� �� ��
����	�
�
�� �� ����
������ � �
�����
�
�� �� ���
���	�� � �
����
�
� �� ���	
������ �� �
		����
�
� �� ��
����� � �
������
�
� �� ��	
����� �� ��
����
�
� �� �	
������ �� �
���	�
�
� �� ��
����� �� ��
������
�
� �� �	�
������ �� �	
������

Table ��� Minimum Overlap Algorithm applied to Oil Tanker �� Results of the total accumulated overlap

in each MKtree

� Algorithms evaluation

In the way to compare the Minimum Overlap Algorithm �MOA� and the Look Ahead
Algorithm �LAA� we have computed the total accumulated overlap� ovAccumulated� of
each MKtree generated by using the two methods	 The ovAccumulated for an MKtree
has been computed as�

PNg

i�� ovMini

Where Ng is the number of grey nodes in the MKtree	

In fact� to evaluate the MKtrees obtained by using the two algorithms� MOA and LAA�
we have used the average overlap� ovAverage	 This data is the result of dividing the total
accumulated overlap for an MKtree by the number of grey nodes that it has� Ng	 Thus�

ovAverage � ovAccumulated�Ng

The results obtained are presented in tables ��� �� and �� for the MOA method and in
tables ��� �� and �� for the LAA method	 The ovAccumulated and the ovAverage are
expressed in millimeters in all the tables	

Looking at the tables� in general� we can see that in the most of cases the MKtrees
obtained by the LAA method are less expensive� in terms of ovAverage� than the MKtrees
computed by the MOA algorithm	 Observe that� in tables �� and ��� the number of grey
nodes of the MKtree when the input parameters are� R � ���� and MemPage � �� is less
when using the LAA than when using the MOA ��� vs ���� and the ovAverage is also less

��

Oil Tanker � MOA accumulated overlap

R MemPage ovAccumulated Ng ovAverage

�
�� ��� ����	�
��	�� �� 	�
�����
�
�� ��� ��	��	
����� ��	 ���
������
�
�� �� ��	���
����� ��	 ����
������
�
� ��� �����
������ �� ���
	�����
�
� ��� ����
�		�	� �� ����
���	�
�
� �� ����	
������ �� ��	�
������
�
� ��� ���	�
��	�� � ��
������
�
� ��� �����
	�	�� �� ����
���	��
�
� �� �����
������ �� ��		
��	���

Table ��� Minimum Overlap Algorithm applied to Oil Tanker �� Results of the total accumulated overlap

in each MKtree

Oil Tanker � MOA accumulated overlap

R MemPage ovAccumulated Ng ovAverage

�
�� ��� ����
���	� ��� ��	
�����
�
�� ��� �����
����� ��� ���
����	
�
�� �� ����
�	��� ��� ���
����
�
� ��� ���
����� �� �	�
������
�
� ��� �����
������ �� �	�
��	���
�
� �� ����	
����	 � ����
�����
�
� ��� �	���
������ �� ���
	����	
�
� ��� �	�	�
	���� �� ���
�����
�
� �� ����
������ �� 		�
�����

Table ��� Minimum Overlap Algorithm applied to Oil Tanker �� Results of the total accumulated overlap

in each MKtree

��

Oil Tanker � LAA accumulated overlap

look level R MemPage ovAccumulated Ng ovAverage

�� �
�� �� ����
������ �� ��
���	
�� �
�� �� ���
���	� �� ��
�����
�� �
�� �� ���
��	�� �� �
������
�� �
� �� 		�
������ �� ��
������
� �
� �� 		�
���� �� �
���	�
� �
� �� ���
�	��	� �� ��
��	���
� �
� �� ���
���	�	 �� ��
���	��
� �
� �� 	��
�	���� �� �
������
 �
� �� ���
������ �� ��
�����	

Table ��� Look Ahead Algorithm applied to Oil Tanker �� Results of the total accumulated overlap in

each MKtree

Oil Tanker � LAA accumulated overlap

look level R MemPage ovAccumulated Ng ovAverage

� ��		� �
�� ��� �����
���� �� 	��
��	���
� ��� �
�� ��� ������
����� ��� ���
�����
� ��� �
�� �� ������
	��	 �� ���
��	���
�� �
� ��� ����
��	�� �� 	�
�����
� �
� ��� �����
�		��� �� 	��
���	�
� �
� �� ����	
�			�� �� ����
���
� �
� ��� �����
	����� 	 ���
�	����
� �
� ��� ����	
������ �	 ���
�����
 �
� �� ���		
�	���� �� ���
�	���

Table ��� Look Ahead Algorithm applied to Oil Tanker �� Results of the total accumulated overlap in

each MKtree

�

Oil Tanker � LAA overlap accumulated

look level R MemPage ovAccumulated Ng ovAverage

� ����� �
�� ��� ����	
	�	�� ��� 	�
����
� ���� �
�� ��� �����
����� ��� ���
	�����
� ����� �
�� �� 	�	��
����� ��� ���
������
�� �
� ��� ��	�
��	��� �� ���
�����
�� �
� ��� ����
����� �� ��
������
	 �
� �� 	���
���	�� �� ���
�����
� �
� ��� ���	�
����� �� �		
��	���
	 �
� ��� ����
����	� �� ��
��	���
� �
� �� ���	
����	� �� 	��
����	�

Table ��� Look Ahead Algorithm applied to Oil Tanker �� Results of the total accumulated overlap in

each MKtree

���	������ vs ��	�������	 And� for the Oil tanker �� in general� the ovAverage column of
the second table ���� has lower values for the ovAverage than the corresponding column
of the �rst table ����	

Observing the tables �� and �� for the Oil tanker �� and �� and �� for the Oil tanker ��
we see that the Ng and the ovAverage are less when using the LAA method than when
using the MOA method	

Those results con�rms that the LAA is more ecient� in terms of memory occupancy and
in the number of page retrievals from disk to core memory �even though more expensive
in terms of time computing�� than the MOA method	 This is due to that the �rst one
looks for the best MKtree that it can computes from the minimum overlap� in a trial way	

The obtained value of ovAverage can give us� also� an idea of the hybridness degree of
the resulting MKtree	 When its value is low it implies that the MKtree is near to be an
Kdtree	 When its value is high� it means that the resulting MKtree is near to be an Rtree	
Thus� after looking the results applying the two algorithms to the three oil tankers� we can
conclude that the LAA method produces better MKtrees �that are nearest to Kdtrees�
than MOA method	 In other words� the overlapping spaces between di�erent grey node
regions are less when using the LAA than when using the MOA method	 Then� the
number of blocks in disk to store the whole MKtree is less� also	 Even more� when the
level of the trial process is high� look ahead level� the results obtained by the LAA are
much better than the ones obtained by the MOA	

��

On the other hand� as mentioned before� every resulting overlap computed by our algo

rithms and presented in the present chapter is expressed in millimeters	 Thereby� the
accumulated overlap in average� ovAverage� is expressed in mm too	 Observing the
ovAverage rank values contained in tables ��� �� and �� for the MOA method and in
tables ��� �� and �� for the LAA method� and taking into account the dimensions of the
input data �see table ��� we can conclude that the results obtained by our methods are ac

ceptable and satisfactory	 Look� for instance� at table �� where the ovAverage minimum
value is ����������mm and the maximum is ����������mm	

� Conclusions

In this paper we have introduced the MKtrees to represent complex systems and two
algorithms to generate them� Minimum Overlap and LookAhead	 Those algorithms com

pute automatically an MKtree that represents a hierarchical subdivision and grouping of
the scene objects guaranteeing a minimum space overlap	 The algorithms minimize the
amount of disk accesses	

The methods to generate MKtrees� MOA and LAA� have been exposed and explained in
detail	 The results of applying them to the input data described� corresponding to three
oil tankers� are presented	 The di�erent results obtained depending on the values of the
input parameters to the algorithms are exposed and analyzed	 Finally� the evaluation and
comparation of the eciency of the two methods have been exposed� too	

Other bounding volume hierarchies that have been proposed are not based on external
memory representations and require considerable storage on memory �k
dops �KHM�����
OBBtrees �GLM��� BCG���� GASF���� spherical shells �KPLM���� sphere trees �Hub����	

� Acknowledgements

This work has been partially supported by the CICYT project TIC���������C�����	

��

References

�AAB��� C	 And�ujar� D	 Ayala� and P	 Brunet	 Validity
preserving simpli�cation of very
complex polyhedral solids	 In Proc� 	TH Eurographics workshop on virtual
environments� EGVE

� pages ����� ����	

�ABA��� C	 And�ujar� P	 Brunet� and D	 Ayala	 Robust topology simpli�cation	 ACM
Transactions on Graphics� ����	 Accepted for publication	

�And��� C	 And�ujar	 Octree�based Simpli�cation of Polyhedral Solids	 PhD thesis�
Dept	 LSI� Universitat Polit�ecnica de Catalunya� Barcelona� Spain� ����	

�BCG���� G	 Barequet� B	 Chazelle� L	J	 Guibas� J	S	B	 Mitchell� and A	 Tal	
BOXTREE� A hierarchical representation for surfaces in �D	 In EURO�
GRAPHICS Conf� Proc�� volume ��� pages �������	 Blackwell Publishers�
August ����	

�BKSS��� Norbert Beckmann� Hans
Peter Kriegel� Ralf Schneider� and Bernhard Seeger	
The r�
tree� An ecient and robust access method for points and rectangles	
In Hector Garcia
Molina and H	 V	 Jagadish� editors� Proceedings of the �

�
ACM SIGMOD International Conference on Management of Data� Atlantic
City� NJ� May ��	� �

�� pages �������	 ACM Press� ����	

�DECM��� A	 Duch� V	 Estivill
Castro� and C	 Mart� nez	 Randomized k
dimensional
binary search trees	 In K	
Y	 Chwa and O	H	 Ibarra� editors� Proc� of the
th
Int� Symp� on Algorithms and Computation �ISAAC�� volume ���� of Lecture
Notes in Computer Science� pages �������	 Springer
Verlag� ����	

�FNB��� M	 Franquesa
Niubo and P	 Brunet	 Collision detection using multirresolution
Kdtrees	 Computer Graphics Forum� Submitted for publication� ����	

�GASF��� A	 Garcia
Alonso� N	 Serrano� and J	 Flaquer	 Solving the collision detection
problem	 IEEE Computer Graphics and Applications� pages ������ May ����	

�GLM��� S	 Gottschalk� M	C	 Lin� and D	 Manocha	 OBBtree� A hierarchical structure
for rapid interference detection	 In ACM SIGGRAPH Conf� Proc�� pages ����
���� August ����	

�Gut��� A	 Guttman	 R
trees� A dynamic index structure for spatial searching	 In In
Proc� ACM SIGMOD Int� Conference on Management of Data� pages ������
June ����	 Boston� MA� USA	

�He��� T	 He	 Fast collision detection using QuOSPO trees	 Symp� on Interactive
�D Graphics� Atlanta� ACM� pages ������ ����	

�	

�Hub��� Philip M	 Hubbard	 Aproximating polyhedra with spheres for time�critical
collision detection	 ACM Transactions on Graphics� �������������� July ����	

�JW��� D	 Jevans and B	 Wyvill	 Adaptive voxel subdivision for ray tracing	 In Proc�
Graphics Interface� pages �������� ����	

�KHM���� J	 T	 Klosowski� M	 Held� J	 S	B	 Mitchel� H	 Sowizral� and K	 Zikan	 E�cient
collision detection using bounding volume hierarchies of k�dops	 IEEE Trans�
actions on Visualization and Computer Graphics� ����������� january
march
����	

�KPLM��� S	 Krishnan� A	 Pattekar� M	 Lin� and D	 Manocha	 Spherical shell� A higher
order bounding volume for fast proximity queries	 In In Proc� of Third Inter�
national Workshop on Algorithmic Foundations of Robotics� ����	

�MF��� G	 Mueller and D	 W	 Fellner	 Hybrid scene structuring with application to ray
tracing	 In Proc� of the Intl� Conference on Visual Computing� pages ������
����	

�Sam��� H	 Samet	 The Design and Analysis of Spatial Data Structures	 Addison

Wesley� ����	 ISBN �
���
�����
�	

�SRF��� T	 Sellis� N	 Roussopoulus� and C	 Faloutsos	 The R��tree� A dynamic index
for multidimensional objects	 In Brighton ��th�� pages �������	 VLDB Conf	�
����	

�WLML��� A	 Wilson� E	 Larsen� D	 Manocha� and M	C	 Lin	 Partitioning and handling
massive models for interactive collision detection	 Computer Graphics Forum�
�������������� September ����	

��

