MKtree : Generation and Simulations

Marta Franquesa—Niubo Pere Brunet

January 23, 2002

Abstract

The problem to represent very complex systems has been studied by several authors, obtaining solu-
tions based on different data structures. In this paper, a K dimensional tree (M ultirresolution Kdtree,
MKtree) is introduced. The MKtree represents a hierarchical subdivision of the scene objects that
guarantees a minimum space overlap between node regions. MKtrees are useful for collision detec-
tion and for time—critical rendering in very large environments requiring external memory storage.
Examples in ship design applications are described.

1 MKtrees

1.1 Introduction

In this paper, we introduce a new bounding volume hierarchy, the Multirresolution Kdtree
(MKtree), to represent very complex systems. This kind of tree is generated taking ad-
vantage of two partitioning criteria: space partition and scene objects partition. Thereby,
our MKtree can be considered as an hybrid between Kdtrees and R—trees. Our method
precomputes and automatically stores different levels of detail of objects and groups of
objects when constructing the tree.

Our MKtree incorporates the following features:

e The MKtree represents a hierarchical subdivision of the scene objects that guarantees
a minimum space overlap between node regions.

e Levels of detail (LOD) with bounded tolerance are supported at every hierarchical
level of the tree.

e Bounding approximations of objects and groups of objects are used

e The method has been conceived to manage memory efficiently by developping exter-
nal memory based algorithms and it is therefore useful for collision detection in large
environments and for time critical-rendering, for instance.

The particular structure of the MKtrees is specially well suited for collision and proximity
detection, using external memory in very large virtual environments. MKtrees are also
useful for frustum-based collision detection: on-line collision detection during navigation
through the virtual model.

1.2 Related Definitions

Before introducing the MKtrees, let us start with some related definitions:

Definition 1.2.1 The environment is defined as a collections of 3D objects that are usu-
ally polyhedra, even though they can be a set of more general models. Thus,

S = {01, ey ON}

Definition 1.2.2 We name R(S) the azis—aligned bounding box, AABB, of all the set S.
In general R(S,,) is the AABB of a subset of objects of S: S,. Where S, C S.

Definition 1.2.3 xOverlap(R(S;), R(S2)) is the length of the intersection of the one—di-
mensional x© projections of R(S1) and R(Ss), say xProj(R(S1)) and xProj(R(Ss)). In
other words,

zOverlap(R(Sy), R(S2)) =
length(xzProj(R(S1)) N xProj(R(Ss)))

The functions yOverlap and zOwverlap are defined in a similar way.

Assumption: There exists a boolean function InPage(S,) that returns true if the com-
plete geometry of S, fits in one disk block (and can be retrieved to the core memory using
a single disk paging operation) and false otherwise.

1.3 Description

Following a similar nomenclature of [KHM"98, He99] a M Ktree is a tree, MKT(S),
that specifies a bounding volume hierarchy on S. S is a set of objects. Each node, n,
of MKT(S) corresponds to a subset, S, C S, with the root being associated with the
full set S. Each internal node has two children. Thus, the MKtree is a binary tree. The

union of the two subsets associated to the children of n is equal to S,,. Each node is also
associated to the AABB box of S,,: R(S,).

A basic issue that is directly related to the performance of a MKtree is the selection of the
splitting rules when building the hierarchy. The main goal is that during tree construction

we would like to assign subsets S,,, and S,, of objects to each child of a node, n, in such
a way to minimize the probability that their R(S,,) and R(S,,) intersect. Let us assume
that we have a procedure, xDivideList, that divides the collection of objects belonging
to S, in two subsets, S,, and S,,, minimizing the xOverlap(R(S,,), R(S,,)). Let us
assume, also, that we have similar procedures for the y and z dimensions, yDivideList
and zDivideList.

Now we can define a node, n, of a MKtree corresponding to a subset S,,:

e If InPage(S,), then n is a leaf node and stores the geometry of objects in S,

e If no InPage(S,), then n is an internal node with two pointers to n; and ny, respec-
tively. S,, and S,, are obtained by using wDivideList (where w can be z, y or z)
with w being such that wOwverlap(R(S,,), R(Sy,)) is equal to:

Min(zOverlap(R(Sy,), R(Sn,)),
yOwerlap(R(Sy,), R(Sh,)),
zOverlap(R(Sy,), R(Sy,)))

Note: The overlap_band is the value of wOwverlap(R(Sy,,), R(Sy,))

In this way the tree construction procedure automatically generates a subdivision and a
hierarchy of all objects of S with a minimum overlap. Groups of objects are automatically
generated (like in [WLML99]) by using, here, a minimum-overlap criterium. As it will
be seen in the result sections (sec. 3.1.1 and 3.2.1)), when dealing with virtual ship
environments, in many cases overlap_band is null. In these cases, our building tree
method is at the same time an space and object partitioning method. Thereby, our
MKtree can be considered as an intermediate model between K dtrees [DECM98, Sam90]
and Rtrees [SRF87, BKSS90, Gut84] in 3D.

1.4 Specification

The bounding approximations of objects, b, are described in this section. It is desirable
that these class of shapes accomplish some properties:

1. The bounding approximation of an object o; must fulfill o; C b(0;, k), (where k is the
level of detail).

2. The bounding approximation b(o;, k) must approximate objects depending on a de-
sired resolution LOD, k.

3. The volume distance (vDist) [ABAO1] between the geometry of an object, o;, and
its bounding approximation associated to one specified level of detail k, b(o;, k), has
to satisfy to be less than a known geometric threshold ;. In other words,

Vp € 0; 3 pr€blok) | dist(p,pl) < e and,
Vpl € b(o;, k) Tp € o; | dist(pt,p) < &y

We have chosen as bounding volumes surrounding polyhedra with small number of faces
[And99, AAB99]. Each object is modeled by an offset polyhedron generated by topology
simplification [ABAO1]. In fact, each object, o;, and each group of objects, S,, have a
set, of bounding approximations, one for each level of detail, k. Ranging k from 1 to
M. The approximation error, €, that restricts the volume distance between bounding
approximation of an object and its geometry, vDist(b(o;, k), 0;), is decreasing while k is
increasing. In other words: b(S, k+ 1) is more accurate than b(S, k). Faces(b(S,k)) is the
number of faces of the bounding approximation of S at k level of resolution. On the other
hand, the set of bounding approximations of objects (o, ...,0;) that belong to a subset
Sp, will be represented by B(S,, k). Thus,

B(Sn, k) = {b(o;, k), ...,b(0;, k) }
Figure 1 shows a simple example in 2D of b(S,, k) and B(S,, k). Observe that b(S,, k)
corresponds to the bounding polyhedron of a pipe (red color) and B(S,, k) corresponds to
the set of bounding approximations of the set of the pipe elements (green color). Figure 2

presents an other example in 3D where the b(S,, k) is the bounding approximation of a
whole set of pipes (in a ship environment).

=3 b(SnK)
1 B(SnK)

Figure 1: Example of b(Sy, k) and B(Sy, k) in 2D

Coming back to the specification of the MKtree, its data structure must be designed
to efficiently return the approximations b(o;, k) and B(S,, k). Moreover, in very large
models, the number of disk block accesses must be minimized during the retrieval of this
information. This must be guaranteed by a suitable splitting rules and page structure of
the MKtree. As a consequence, the basic queries to the MKtree will be the following:

© (d)

Figure 2: Example of bounding polyhedra: a) original model (S) with 222 objects and 3989 faces. b)
Faces(b(S,4)) = 1277. ¢) Faces(b(S,2)) = 122. d) Faces(b(S,3)) = 351

e Given a node n and a resolution k return b(S,, k)
e Given a node n and a resolution k return B(S,, k)

e Given a node n and a resolution k return the number of disk accesses to obtain the
whole b(S,, k)

e (Given a node n and a resolution k& return the number of disk accesses to obtain the
whole B(S,, k)

1.5 Implementation

We can think on different possible implementations for the MKtrees. In our present
implementation we are using the following structure (in figure 3 can be seen an example
of a simple MKT(S) data structure):

e For an arbitrary node n we store the AABB Box R(S,) and two integer and two
boolean arrays of dimension M (being M the number of allowed levels of detail):

— The boolean elements, BF'its|k], k = 1..M, are set to true iff InPage(B(S,, k))
is true

— The boolean elements, bFits[k], k = 1..M, are set to true iff InPage(b(S,,, k)) is
true

— The integer elements, BPagelk|, k = 1..M, store a pointer to the disk page lo-
cation of the geometry of B(S,, k) if BF'its|k] = true. Otherwise, if BF'its|k| =

false, they store the number of disk page retrievals that are required to obtain
the full geometry of B(S,, k)

— In a similar way, the integer elements, bPagelk], k = 1..M, store a pointer to the
disk page location of the geometry of b(S,, k) if bF'its[k] = true. Otherwise, if
bFits[k] = false, they store the number of disk page retrievals that are required
to obtain the full geometry of b(S,, k)

For any node n, we can require its b(S,, k) (or its B(S,, k)). We can be in two different
cases:

e The information b(S,, k) fit into a memory page. In this case the pointer to the page
(from the node n) is returned.

e O(S,, k) doesn’t fit into one page (see for instance b(S1,2) in fig 3). In this situation,
the information has being distributed between the childs of node n and to obtain the
whole b(S,,, k) we only have to traverse the subtree of n. This is always possible due
to that the MKtree is generated making sure that objects fit into a memory page at
leaf-nodes and the b(S,, k) approximations use less memory than the set of objects
of S,,. Thus, MemorySize(b(S,, k)) C MemorySize(S,) always.

However, in most cases the number of pages required for storing b(Sy, k) is less than the
number of pages required for B(S,, k). Observe, for instance, figure 2: B(S,1) has 1332
faces, as B(S,1) includes the AABB box of every object in the node. We can see that
Faces(b(S,k)) < Faces(B(S, 1)) for any k from 1 to 4. In these cases, instead of storing
B(S,, k) we can simply store a pointer to the corresponding b(S,, k). This is done for
k =1..M — 1 and not for k = M, since we want to preserve the particular identity of the
objects at the maximum resolution level (see for instance b(Sy4,3) and b(Ss,4) in fig. 3).
Anyway, we can explicitly differentiate B(S,, k) from b(S,, k) for any resolution k < M
(figure 4) if we want to preserve the particular identity of the objects at this resolution
level.

Finally, a possible improvement to reduce the total number of disk pages of the model
could be the following: whenever the geometric information corresponding to an arbitrary
b(Sy, k) occupies less than one page, then we can decide not to store it, and point to the
page associated to b(.S,,,) having more resolution (j > k) and such that InPage(b(Sy, 7))
is true. Anyway, we have not adopted this option because it increases the complexity of
the bounding approximations and it can slow down the algorithms that use the MKtrees
to compute interference or collision detection, for instance.

On the other hand, in our implementation, the representations associated to the two first
levels of detail have been chosen to give maximum speed to future interference tests:

e For k =1, we use the corresponding AABB: b(S,,1) = R(S,).

e For k£ = 2, we use the cuberille representation of S, (figure 4). For fast collision
testing, b(S,,2) is represented as a bit map, each bit corresponding to a voxel in a
voxelixation (see [JW89, MF99]) of R(S,).

e For k& > 2, the bounding representations from [ABAO01], figure 2, are used.

Oil Tanker objects

Sy Ss
S~

Figure 3: Example of a simple MKT(S) data structure

Figure 4 shows an example in 2D of three LODs (corresponding to three different levels
of detail) of a MKtree node n. Observe that the bounding volumes of objects that belong
to S, are more accurate for high values of k£, and that collisions will be better detected,

if it is the case.
M
|| = D G

= B(Sn,1) = B(2 1 B(Sn3)

Figure 4: Example in 2D of bounding volumes of node n in 3 different LODs (k=1,2,3)

2 Input Data Description

We have generated several MKtrees from different input data. All the data are a subset
of oil tankers. In table 1 the features of the input data are presented. Figures 5, 6,

Input Data

identifier objects | polygons | vertices dimensions
(mm)
Oil_tanker_1 222 3989 16432 3920 x 1935 x 1308
Oil_tanker 2 | 3900 106703 | 449605 | 17294 x 12924 x 27351
Oil_tanker 3 | 4096 132557 | 546795 | 22087 x 7965 x 10301

7 show external and detailed views of the Oil_tanker_1, Oil_Tanker_2 and Oil_Tanker_3,

respectively.

Table 1: Description of the input data

Figure 5: Oil_Tanker_1: View corresponding to an equipment element

3 MKtree Generation

To generate the MKtrees we have designed two heuristic methods that state and solve
the problem looking for the best solution by evaluating the intermediate results that are
obtained in the direction to the final result, in the form of a guided processes. Therefore,

we have implemented two algorithms based on the two approaches.

Figure 7: Oil_Tanker_3: General and detailed view

3.1 MKtree Generation: Minimum Overlap Algorithm (MOA)

The MOA algorithm computes the MKtree making use of the wDivideList procedure.
For each intermediate node, n, of the tree the minimum wOverlap(R(Sy,), R(Sy,)) is
computed to fine the best dimension and value to distribute the objects belonging to S,
in two subsets S, and S,, [FNBO1].

The first procedure, generate_tree, has two input arguments. The block size or page
capacity, MemPage, and the limit (rate) of the sublist of objects that will be examined,
R. This second parameter helps the tree to be more or less balanced depending on its
value. The sublist of objects to be examined is defined by the following rank of object
indices (see the algorithm MOAT1)

RxN..(1.0—R)*x N
Where N is the number of total objects in the actual list of objects.

algorithm MOA1

procedure generate_tree(in List_of_objects,in R,in MemPage)
first = List_of _objects. first_element
last = List_of _objects.last_element
wDivideList(first, last)

endprocedure

procedure wDivideList(in first,in last)
N =last — first +1
if
no InPage(b(Sy, k)) —
firstTreat = first + R+ N
lastTreat = last — R %+ N
for dim in [z,y,2] do
SortObj List(first,last, dim, min)
ComputeMinOverlap(first,last, firstTreat,lastTreat,dim, minOv)
SortObjList(first,last,dim, mazx)
ComputeMinOverlap(first,last, firstTreat,lastTreat,dim, minOv)
endfor
dimension = Select_minimum(minOv)
Icut = Number_of _Selected_objects(dimension, minOv)
new first = first; newlast = Icut
wDivideList(new first, newlast)
new first = Icut + 1; newlast = last
wDivideList(new first, newlast)
InPage(b(Sn,k)) — return
endif
endprocedure

Where N is the number of objects in the actual list of objects.

The procedure wDivideList works as follows: When the total size of the geometry of S,
is bigger than the block size (MemPage argument), the actual list of objects is divided
in two subsets and a recursive call is done for each one. To compute the best dimension
and location to cut the actual list of objects belonging to S, six sorts of the actual list
of objects are performed. The three first sorts are based on the Xmin, Ymin and Zmin
increasing order, respectively. The other three sorts are based on the Xmaxz, Ymax and
Zmazx increasing order, respectively. Then, for each resulting sorted list the minimum
overlap is computed (by using the Compute MinOverlap procedure) and stored in minOv
together with the index location where it has been produced. In this way, we only have to
select the minimum of the six overlaps. Once the minimum overlap is selected, the actual
list is sorted again based on the associated dimension. After, the actual list of objects
is partitioned in two sublists, at the corresponding location associated to this dimension

10

(see algorithm MOA 2). Finally, two recursive calls are performed, one for each of the
two resulting sublists. And so on.

The ComputeMinQOuverlap is at most the key to determine the overlap space between the
objects of the future sublists by one specified dimension and by one determined sorted
list. This procedure will be called six times for each intermediate node. One call for
each possible dimension and order criterium (by maximum or by minimum values of the
coordinate dimension). The procedure is presented in what follows.

algorithm MOA2

procedure ComputeMinOverlap(in first,in last,in fTreat,in R, in dim,inout minOv)
max = SearchMazx(first, fTreat, dim)
min = SearchMin(fTreat + 1,last,dim)
minOv.overlap[dim] = list.O[maz].maz.zyz[dim] — list.O[min].min.zyz[dim]
minOv.Icut[dim] = fTreat
for nin [fTreat +1 .. [Treat] do
maz = SearchMax(first,n,dim)
min = SearchMin(n + 1, last, dim)
overlap = list.Omaz].maz.zyz[dim] — list.Omin].min.zyz[dim]
if
overlap < minOv.overlap[dim] — minOv.overlap = overlap
minOv.Icut[dim] = n
endif
endfor
endprocedure

The procedures SearchMaz(first,n,dim) and SearchMin(n + 1,last,dim) search the
maximum value of the coordinate dim of all the objects of the list that are included
from first to n and the minimum value of the coordinate dim that are included from
n+ 1 to last, respectively. Then, the subtraction operation of those values gives the one—
dimensional overlap, wOwerlap (introduced in sec. 1.3). If it is less than the overlap found
up to now it is stored in the minOwv structure together with the n value that indicates
the place of the list where it has to be cut.

3.1.1 Results of the Minimum Overlap Algorithm

We have executed the Minimum Overlap Algorithm with the input data described in
section 2. The main results obtained are presented in several tables. The input values of
the arguments used in each execution are detailed in the caption region of each table and
their meaning is:

11

Oil_Tanker_1 Minimum Overlap Algorithm Results
tree level | N. leaves ovMin ovMinRel ovMax

0 0 18.895020 | 0.014446 | 18.895020
1 0 0.000000 | 0.000000 | 34.998993
2 0 15.000000 | 0.021244 | 156.999023
3 2 0.000000 | 0.000000 | 59.250992
4 4 0.000000 | 0.000000 | 136.105011
5 11 0.000000 | 0.000000 | 122.001007
6 7 0.000000 | 0.000000 | 53.001984
7 3 30.000000 | 0.040000 | 61.999023
8 6

Table 2: Minimum Querlap Algorithm applied to Oil_Tanker_1 with R = 0.2 and MemPage = 10

e R: Rate that limits the sublist of objects to be examined.

e MemPage: Number of objects allowed in one page or block (size of one block).

The information contained in each table is:

e tree level: corresponding level of the MKtree. Beginning by the level 0 associated to
the root node.

e N. leaves: Number of leaves that have been found at the corresponding tree level.

e ovMin: Minimum overlap calculated at the corresponding tree level

ovMin

size(b(Sn,k))
e ovMaz: Maximum overlap encountered in the actual tree level

e ovRel: Minimum relative overlap: ovRel=

In tables 2, 3 and 4 the results obtained when applying the algorithm to the Oil_Tanker_1
with the input values: R = 0.2 and 10, 20 and 30 objects that can be in a block at
once, values of MemPage, respectively, are presented. Tables 5, 6 and 7 show the results
obtained changing the value of the first argument to 0.3 and keeping on the values of the
second argument, respectively.

In tables 8, 9 and 10, the results obtained when applying the MOA algorithm to the
Oil_Tanker_2 are presented. In all the cases the input value corresponding to the rate is
0.2 (R = 0.2), while the MemPage has been: 100, 200 and 500 objects, respectively. In
tables 11, 12 and 13, the results of applying the MOA method to the Oil_Tanker_2 are

12

Oil_Tanker_1 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax

0 0 18.895020 | 0.014446 | 18.895020
1 0 0.000000 0.000000 | 34.998993
2 1 15.000000 | 0.011299 | 156.999023
3 2 0.000000 0.000000 | 59.250992
4 6 100.000000 | 0.141772 | 136.105011
5 2 35.359985 | 0.030784 | 122.001007
6 3 0.000000 0.000000 0.000000
7 2

Table 3: Minimum Overlap Algorithm applied to Oil_Tanker-1 with R = 0.2 and MemPage = 20

Oil_Tanker_1 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax

0 0 18.895020 | 0.014446 | 18.895020
1 0 0.000000 0.000000 | 34.998993
2 2 20.000000 | 0.011527 | 156.999023
3 1 14.999298 | 0.013380 | 59.250992
4 4 100.000000 | 0.141772 | 136.105011
5 2 35.359985 | 0.030784 | 122.001007
6 4

13

Table 4: Minimum Querlap Algorithm applied to Oil_Tanker_1 with R = 0.2 and MemPage = 30

Oil_Tanker_1 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax

0 0 156.999023 | 0.040051 | 156.999023
1 0 80.000000 | 0.027875 | 129.894989
2 0 0.000000 0.000000 | 150.000000
3 1 0.000000 0.000000 | 94.248596
4 5 0.000000 0.000000 | 181.000000
5 13 0.000000 0.000000 | 100.000000
6 9 70.113007 | 0.063451 70.113007
7 1 0.000000 0.000000 0.000000
8 2

Table 5: Minimum Overlap Algorithm applied to Oil_Tanker-1 with R = 0.3 and MemPage = 10

Oil_Tanker_1 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax

0 0 18.895020 | 0.014446 | 18.895020
1 0 0.000000 0.000000 | 34.998993
2 1 15.000000 | 0.011299 | 156.999023
3 2 0.000000 0.000000 | 59.250992
4 6 100.000000 | 0.141772 | 136.105011
5 2 35.359985 | 0.030784 | 122.001007
6 3 0.000000 0.000000 0.000000
7 2

14

Table 6: Minimum Querlap Algorithm applied to Oil_Tanker_1 with R = 0.3 and MemPage = 20

Oil_Tanker_1 Minimum Overlap Algorithm Results
tree level | N. leaves ovMin ovMinRel ovMax

0 0 156.999023 | 0.040051 | 156.999023
1 0 80.000000 | 0.027875 | 129.894989
2 0 0.000000 0.000000 | 150.000000
3 6 14.999298 | 0.013380 | 94.248596
4 3 122.001007 | 0.189369 | 122.001007
5 2

Table 7: Minimum Overlap Algorithm applied to Oil_Tanker-1 with R = 0.3 and MemPage = 30

exposed. The value of the arguments are R = 0.3 for all of the cases, and, 100, 200 and
500 as values of the MemPage argument, respectively.

The tables 14, 15 and 16 correspond to the results obtained when computing the MKtree
of the Oil_Tanker_3 by using the MOA algorithm. The value of the rate argument is
0.2 (R = 0.2) for all of them and the value of the MemPage argument is 100, 200
and 500, respectively. In tables 17, 18 and 19, the results obtained when applying the
MOA algorithm to the Oil_Tanker_3, with 100, 200 and 500 as values of the MemPage
argument, respectively and, with R = 0.3 for all of the cases, are exposed.

Observing the results, presented in the tables, we can see how the values of the input
arguments affect to the resulting MKtrees. When we change the value of the block size,
keeping on the rate, we obeserve:

e As MemPage increases, the deep of the MKtree decreases in all the cases. See, for
instance, tables 8 and 10. In the first table the value of the MemPage is set to 100
and in the second one, this value is set to 500. While the deep of the first MKtree is
14 (0 .. 13), the deep of the second is 7 (0 .. 6).

e When the MemPage is low (i.e. 100 for the Oil_Tanker_2, see table 8) the values of
the ovMin and ovMinRel are low also, and those values have the tendency to be
zero. Compare, for instance, the table 14 where ovM1in is zero in six levels, and the
table 16 where there is one ovM1in equal to zero, only.

On the other hand, the effects of fixing the value of the MemPage argument and changing
the R values to the resulting MKtrees can be summarized in:

e For high values of the R the computed MKtree has less levels than for low values
of rate argument. See tables 14 and 17, for instance. Thus, for high values of R

15

Oil_Tanker_2 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1431.099609 | 0.110736 | 1431.099609
1 0 250.000000 | 0.063354 | 2021.650391
2 0 0.000000 0.000000 | 2304.980469
3 1 0.000000 0.000000 | 2398.529785
4 7 0.000000 0.000000 | 2500.000000
5 3 0.000000 0.000000 | 2534.000000
6 12 0.000000 0.000000 | 2615.029785
7 11 0.000000 0.000000 | 2699.029785
8 11 0.000000 0.000000 | 2853.000000
9 11 330.500000 | 0.058100 | 2845.529785
10 4 739.799805 | 0.086693 | 2892.589844
11 2 943.899902 | 0.234670 | 1829.939941
12 3 2213.599854 | 0.291267 | 2213.599854
13 2

Table 8: Minimum Querlap Algorithm applied to Oil_Tanker_2 with R = 0.2 and MemPage = 100

argument, the computed MKtrees are more balanced than for low values of this
parameter.

For higher levels of the rate the MKtrees have a higher values of ovMin and ovRel
than for lower values of this parameter.

As a consecuence, we can see that depending on the context problem we can decide
to get MKtrees with low values of ov Min or MKtrees with high values of ovMin. In
the second case, we will get more balanced MKtrees than in the first, but the page
faults when computing collisions, for intance, will be higher. Although this is true,
on the other hand, for higher values of the rate argument the generated MKtrees
will be more balance (as said before) and not so deep as for lower values of rate.
It means, that high values give higher ovMin between spaces belonging to different
grey nodes, but at the same time, the number of grey nodes is less. If the number of
the grey nodes is low it implies less queries to retrieval pages from disk.

Figures 8 and 9 graphicaly represent the MKtrees of the Oil_Tanker_2 generated with
values of arguments R = 0.3 and MemPage = 500, for the first figure, and R = 0.2 and
MemPage = 500 for the second one. The grey nodes of the MKtree have been draw
as boxes and the leaves nodes as ellipses. Inside each ellipse there apears the number

16

Oil_Tanker_2 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1431.099609 | 0.110736 | 1431.099609
1 0 250.000000 | 0.063354 | 2021.650391
2 1 372.190430 | 0.222077 | 2304.980469
3 2 305.810059 | 0.018059 | 2398.529785
4 2 0.000000 0.000000 | 2500.000000
5 7 0.000000 0.000000 | 2534.000000
6 5 0.000000 0.000000 | 2615.029785
7 8 0.000000 0.000000 | 2699.029785
8 2 815.000000 | 0.099975 | 2853.000000
9 2 533.600098 | 0.049869 | 2845.529785
10 3 739.799805 | 0.086693 | 739.799805
11 2

Table 9: Minimum QOuverlap Algorithm applied to Oil_Tanker_2 with R = 0.2 and MemPage = 200

Oil_Tanker_2 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1431.099609 | 0.110736 | 1431.099609
1 0 250.000000 | 0.063354 | 2021.650391
2 1 372.190430 | 0.222077 | 2304.980469
3 5 2398.529785 | 0.230440 | 2398.529785
4 0 500.000000 | 0.080000 | 2500.000000
5 2 849.500000 | 0.135920 | 2534.000000
6 3 1068.490234 | 0.170958 | 1068.490234
7 2

Table 10: Minimum Overlap Algorithm applied to Oil_Tanker_2 with R = 0.2 and MemPage = 500

17

Oil_Tanker_2 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1747.000000 | 0.135180 | 1747.000000
1 0 405.000000 | 0.095026 | 2398.529785
2 0 159.000000 | 0.392593 | 2497.000000
3 0 0.000000 0.000000 | 2534.000000
4 4 0.000000 0.000000 | 2699.029785
5 11 0.000000 0.000000 | 2601.700195
6 15 0.000000 0.000000 | 2970.020020
7 18 0.000000 0.000000 | 2916.000000
8 6 1217.560059 | 0.259478 | 3120.589844
9 4

Table 11: Minimum Overlap Algorithm applied to Oil_Tanker_2 with R = 0.3 and MemPage = 100

Oil_Tanker_2 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1747.000000 | 0.135180 | 1747.000000
1 0 405.000000 | 0.095026 | 2398.529785
2 0 159.000000 | 0.392593 | 2497.000000
3 1 0.000000 0.000000 | 2534.000000
4 7 146.000000 | 0.010440 | 2699.029785
5 10 312.000000 | 0.317557 | 2601.700195
6 5 957.000000 | 0.054403 | 2970.020020
7 5 1207.560059 | 0.257347 | 1207.560059
8 2

Table 12: Minimum Querlap Algorithm applied to Oil_Tanker_2 with R = 0.3 and MemPage = 200

18

Oil_Tanker_2 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1747.000000 | 0.135180 | 1747.000000
1 0 405.000000 | 0.095026 | 2398.529785
2 1 649.500000 | 0.152393 | 2497.000000
3 3 791.599609 | 0.185734 | 2534.000000
4 4 721.140137 | 0.047132 | 2699.029785
5 4

Table 13: Minimum Querlap Algorithm applied to Oil_Tanker_2 with R = 0.3 and MemPage = 500

Oil_Tanker_3 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1455.949951 | 0.182819 | 1455.949951
1 0 117.823997 | 0.080128 | 1591.000000
2 0 40.850098 0.346704 | 1393.000000
3 1 0.000000 0.000000 | 1749.649902
4 5 0.000000 0.000000 | 1869.319824
5 8 0.000000 0.000000 | 2012.000000
6 11 0.000000 0.000000 | 1847.000000
7 9 100.000000 | 0.052301 | 2035.669922
8 9 0.000000 0.000000 | 907.500977
9 13 0.000000 0.000000 | 709.082031
10 6 103.000000 | 0.014548 | 1016.700012
11 5 180.000000 | 0.024000 | 1022.005981
12 5 376.000000 | 0.044282 | 376.000000
13 2

Table 14: Minimum Overlap Algorithm applied to Oil_Tanker_3 with R = 0.2 and MemPage = 100

19

Oil_Tanker_3 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1455.949951 | 0.182819 | 1455.949951
1 0 117.823997 | 0.080128 | 1591.000000
2 1 150.000000 | 0.102010 | 1393.000000
3 2 0.390015 0.000040 | 1749.649902
4 2 0.000000 0.000000 | 1869.319824
5 6 0.000000 0.000000 | 2012.000000
6 7 50.000000 0.003246 | 1847.000000
7 7 119.050049 | 0.068145 | 2035.669922
8 5 0.000000 0.000000 0.000000
9 0 399.800049 | 0.094829 | 570.000000
10 3 1016.700012 | 0.211887 | 1016.700012
11 2

Table 15: Minimum Qverlap Algorithm applied to Oil_Tanker_3 with R = 0.2 and MemPage = 200

Oil_Tanker_3 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1455.949951 | 0.182819 | 1455.949951
1 0 117.823997 | 0.080128 | 1591.000000
2 1 150.000000 | 0.102010 | 1393.000000
3 2 0.390015 0.000040 | 1749.649902
4 7 1869.319824 | 0.377259 | 1869.319824
5 1 2012.000000 | 0.252320 | 2012.000000
6 1 1847.000000 | 0.231628 | 1847.000000
7 1 2035.669922 | 0.419408 | 2035.669922
8 1 0.000000 0.000000 0.000000
9 2

Table 16: Minimum Querlap Algorithm applied to Oil_Tanker_3 with R = 0.2 and MemPage = 500

20

Oil_Tanker_3 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1950.030029 | 0.244859 | 1950.030029
1 0 474.599609 | 0.021489 | 1187.209961
2 0 232.199219 | 0.014256 | 1162.169922
3 0 55.900391 0.003538 | 785.270020
4 2 0.000000 0.000000 | 1353.479980
5 13 0.000000 0.000000 | 1500.000000
6 21 0.000000 0.000000 | 1900.900391
7 11 0.000000 0.000000 | 1017.528992
8 12 254.170044 | 0.103556 | 260.000000
9 3 124.619995 | 0.079096 | 124.619995
10 2

Table 17: Minimum Qverlap Algorithm applied to Oil_Tanker_3 with R = 0.3 and MemPage = 100

Oil_Tanker_3 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax

1950.030029 | 0.244859 | 1950.030029
474.599609 | 0.021489 | 1187.209961
232.199219 | 0.014256 | 1162.169922
55.900391 0.003538 | 785.270020
0.000000 0.000000 | 1353.479980
1.799805 0.000147 | 1500.000000
505.000000 | 0.048827 | 670.030029
434.000000 | 0.037034 | 434.000000

0~ DU WN O
MWD OO, OOO

Table 18: Minimum Overlap Algorithm applied to Oil_Tanker_3 with R = 0.3 and MemPage = 200

21

Oil_Tanker_3 Minimum Overlap Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1950.030029 | 0.244859 | 1950.030029
1 0 474.599609 | 0.021489 | 1187.209961
2 1 369.169922 | 0.112708 | 1162.169922
3 2 81.000000 0.004229 | 785.270020
4 7 1353.479980 | 0.197387 | 1353.479980
5 1 1235.979980 | 0.229652 | 1235.979980
6 2

Table 19: Minimum Overlap Algorithm applied to Oil_Tanker_3 with R = 0.3 and MemPage = 500

of objects that the associated leaf contains (this number is always less that the value of
MemPage). The information associated inside each box, grey node, is:

e nO: Number of objects that belong to S,, (for a grey node n).
e dim: Cut dimension selected for the subset S, to obtain S,,, and S,

e ovS: wOverlap selected for the current node (corresponding to the minimum
overlap_band introduced in section 1.3)

. .. . _ ouvS
e ovR: Minimum relative overlap, where oVR= S (8

Thus, for example the root node, say S,,, of the MKtree of figure 8:
e nO = 3900: Contains 3900 objects

e dim =Y: The cut dimension corresponds to the Y axis, it means that
wOwverlap(R(Sy,), R(Sy,)) = yOverlap(R(S,,), R(S,,)) (see sec. 1.3 for details)

e 0vS: The minimum overlap_band computed has been 1747.0mm
e ovR: The ovS relative to the ySize(R(S,)) is 0.135180

Looking at the MKtree of figures 8 and 9, we observe how the values of the rate argument

affect to the resulting MKtrees. The first MKtree, corresponding to R = 0.3, is more
balanced than the second one, where R = 0.2.

22

nO = 3900
dim=Y
ovS= 1747.0
OVR= 0.135180
no = 2726 r[}o =1174
dim=Y im=Y
ovS= 2398529785 ovS=405.0
ovR=0.230440 ovR= 0.095026
no = 1277 nO = 1449 / no =821
dim=Y dim=Y dim=Y
ovS= 783.979980 ovS=2497.0 ovS= 649.50
OVR=0.125437 ovR=0.380813 ovR=0.152393
n0=1014 \ /
n0 =893 nO 384 dime X no =574
dim= Y ovS= 2534.0 dim= ¥
ovS= 1150.0 OVR= 0.174146 ovS= 791599609
ovR=0.1840 ovR=0.185734
\ nO =557 \
nO=624 dim= Y
ovS= 721140137 OVR= 0.411624
ovR=0.047132 :

I A

Figure 8: Example of MKtree corresponding to the Oil_tanker_2 computed by using the Minimum Overlap
Algorithm with R = 0.3 and MemPage = 48000bytes (5000b7)

nO = 3900

dim=Y

0vS= 1431.099609
ovR= 0.110736

no = 3118 no =782
dim=Y dim=Y
ovS= 2021.650391 ovS= 250.0
OVR=0.194231 ovR= 0.063354
- nO = 624 nO =625
no = 2494 dim=Y dim=Y
dim= X oV 372.1904 @ ovS= 377.7998
0vS= 2304.98046 oVR= 0.222077 ovR= 0.095840
ovR=0.150649
nO = 1995 / \ \
dim=Y
ovS= 2398529 no=4%9 no-es
ovR=0.230440
n0 =968 no = 1027
dim=Y dim=Y
ovS=500.0 ovS= 2500.0
ovR=0.08 ovR=0.381270

nO=773 nO = 766 \
ovS= 849.5 ovS= 2534.0

ovR=0.13592 ovR=0.174374
nO =618 \
dim=Y
ovS= 1068.49023
ovR=0.170958

/ N\
> o>

Figure 9: Example of MKtree corresponding to the Oil_tanker_2 computed by using the MOA algorithm
with R = 0.2 and MemPage = 48000bytes (5000bj)

24

Figures 10, 11 and 12, are images of MKtrees of the three oil tankers, presented in several
colors corresponding to the MKtree spaces (nodes), up to level 1 or 2, of the tree and
with different values of LOD, depending on the image. The values of the input arguments
to the MOA algorithm of every image are exposed in associated caption region of each
image.

Figure 10: MKtree up to level 2 of the Oil_Tanker_1, computed by using the MOA algorithm with R = 0.3
and MemPage = 50. Left LOD = max. Right LOD = 1.

Figure 11: MKtree up to level 2 and LOD = maz (left) and to level 1 and LOD = 1 (right)
of the Oil_Tanker 2, computed by using the MOA algorithm with R = 0.3 and MemPage =
48000bytes (5000bjs).

3.2 MKtree Generation: Look Ahead Algorithm (LAA)

The LAA algorithm computes the MKtree by using the wDivideList procedure (see
algorithm LAA1) which makes use of a Look Ahead function (see algorithm LAA2). This
function selects the best dimension and location to cut S, in two subsets, S,, and S,,,
looking for the minimum accumulated overlap between all the possible subtrees that begin
from n. In other words, the LookAhead function explores the possible subtrees that
results from each overlap previously computed (by the Compute MinOuverlap procedure —
see algorithm LAA1) and selects the best cut depending on the accumulated overlap found

25

Figure 12: MKtree up to level 2 with LOD = maxz (left) and to level 1 with LOD = 1 (right)
of the Qil_Tanker 3, computed by using the MOA algorithm with R = 0.3 and MemPage =
48000bytes (5000bjs).

from the actual_level (corresponding to the grey node n) until to a pre-specified look_level
of the simulated or trial MKtree. Where Look_level > actual_level. The trial generation
that permits to compute the simulated MKtrees is performed by the wDivideListTrial
procedure (see algorithm LAA3), which is called six times by the LookAhead function.

The first procedure, generate_tree, has three input arguments (see algorithm LAAT1). The
block size or the capacity of the page, MemPage, the rate value that limits the sublist
of objects to be examined, R, and, finally, the LookAhead_level to compute the trial
“subtrees”. The last one, determines the deep of the simulated subtrees.

Thereby, for each intermediate node, n, of the tree, six values of wOverlap(R(Sy,), R(Sn,))
are computed. One for each dimension (x, y, and z) and sorting criterium. The three
first sorts are based on the Xmin, Ymin, and Zmin (coordinates of objects) increasing
order, respectively. The other three sorts are based on the Xmax, Ymax and Zmax
(coordinates of objects) increasing order, respectively.

Then, for each resulting sorted list, the minimum overlap is computed (by using the
Compute M inOverlap procedure) and stored in minOwv structure, together with the index
location where it has been produced (see algorithm LAAT1).

To select the best dimension and location to cut S, in two subsets, S,,, and S,,, a call to
Look Ahead function is performed (see algorithm LAA1). The LookAhead function gen-
erates, in a trial way, six simulated subtrees corresponding to the six overlaps previously
computed and stored in minOv. Thus, the best cut, is selected taking into account the
accumulated overlaps found in each simulated subtree.

In fact, the trial subtrees are generated, in a simulated way, from the actual_level of the
MKtrees to an pre—specified look_level. Where:

look_level = actual_level + LookAhead_level

To compute the LookAhead_trees (or simulated subtrees) we have implemented a
wDivideListTrial recursive procedure (see algorithm LAA3) that is a trial of the wDivide List.

26

Thus, the wDivideListTrial computes all possible subtrees and the LookAhead function
chooses the optimal one. The algorithm is presented is what follows.

algorithm LAA1

procedure generate_tree(in List_of_objects,in R,in MemPage,in Look Ahead level)
first = List_of _objects.first_element
last = List_of _objects.last_element
actual_level =0
wDivideList(first, last, actual level, Look Ahead_ level)
endprocedure

procedure wDivideList(in first,in last,in actual level,in LookAheadlevel)
act_level = actual_level
if
no InPage(b(Sn, k)) —
firstTreat = first + R * numberybjects
lastTreat = last — R % number_objects
for dim in [z,y,z] do
SortObj List(first,last,dim, min)
ComputeMinOverlap(first,last, firstTreat,lastTreat,dim, minOv)
SortObj List(first,last, dim, maz)
ComputeMinOverlap(first,last, firstTreat,lastTreat,dim, minOv)
endfor
which = Look Ahead(first,last, minOv, actual level, Look Ahead_ level)
Icut = minOv.I[which]
act_level = act_level + 1
new first = first; newlast = Icut;
wDivideList(new first, newlast, act_level, Look Ahead_level)
new first = Icut + 1; newlast = last
wDivide List(new first, newlast, act_level, Look Ahead_ level)
InPage(b(Sn, k)) — return
endif

endprocedure

The wDivideList procedure computes the cut dimension and value to divide the initial
list of objects in two sublists. To select those values (from minOv structure) it calls to
the LookAhead function indicating the LookAhead_level. This last argument limits the
MKtree level up to the Look Ahead function has to explore. The output of the Look Ahead
function is an integer that indicates the value of the index of the minOuv structure that
has to be chosen.

27

algorithm LAA2

function LookAhead(in first,in last,in minOv,in actual_level,in LookAheadlevel) return integer
FloatSiz[1..6] = minOv.V[1..6]
look_level = LookAhead level + actual level
for iin [1..6] do
first_now = first
last_now = minOv.I[i]
child_over = minOv.Vi]
wDivideListTrial(first_now, last_now, actual_level, look_level)
FloatSiz[i] = child_ove + FloatSiz][i]
first_now = minOv.I[i] + 1
last_now = last
child_over = minOv.Vi]
wDivide ListTrial(first_now, last_now, actual_level, look_level)
FloatSiz[i] = child_ove + FloatSiz]i]
endfor
return minimum(FloatSiz)
endfunction

The LookAhead function returns an integer value (1 .. 6) that indicates for which axes
(dimension) and where (in terms of number of objects) have the subset S, to be cut. All
the possible subtrees that will be generated, depending on each value of the overlap_band
for S,,, are taken into account. In other words, the function explores the possible subtrees
that results from each overlap computed (and stored in minOv) and selects the best cut
depending on the accumulated overlap found from the actual_level to the look _level of the
trial MKtree (where look_level = actual_level + LookAhead_level). The trial generation
that permits to compute the optimal tree is performed by the wDivideListTrial proce-
dure, which is called six times by the LookAhead function. One for each value contained
in minOwv. The wDivideListTrial is presented in what follows.

algorithm LAA3

procedure wDivideListTrial(in first,in last,in actual level,in look_level)
if
no InPage(b(Sy, k)) and
actual level <= look_level —

firstTreat = first + R * number,bjects

lastTreat = last — R % number_objects

for dim in [z,y,z] do
SortObj List(first,last,dim, min)
Compute MinOverlap(first,last, firstTreat,lastTreat,oversiz)
SortObjList(first,last,dim, mazx)
Compute MinOverlap(first,last, firstTreat,lastTreat,oversiz)

endfor

28

which = minimum(oversiz)
child_ove = oversiz.V[which] + child_ove
actual level = actual level 4+ 1
new first = first; newlast = oversiz.I[which]
wDivideListTrial(new first, newlast, actual_level, look_level)
new first = oversiz.I[which] + 1; newlast = last
wDivideListTrial(new first, newlast, actual level, look_level)
InPage(b(Sn, k)) or (actual_level > look_level) — return
endif

endprocedure

The wDivideListTrial computes a simulated subtree of an MKtree from the input
actual_level up to the look_level = actual_level + LookAhead_level. Thus, the simu-
lated subtree will have look_level levels. In this way, the value of the LookAhead_level,
argument of the generate_tree procedure, limits the deep of the MKtree to be explored
and, as a consecuence, if its value is high the final MKtree generated will be more optimal
than if its value is low. In fact, when its value is equal to zero the MKtree generated
by using the LAA method will be similar than the MKtree generated by using the MOA
method.

3.2.1 Results of the Look Ahead Algorithm

The tables 20, 21 and 22, show the results obtained when applying the LookAhead algo-
rithm to the Oil_Tanker_1. The values of the arguments are: R = 0.2 (for all of the three
cases), 10, 20 and 30, respectively, as values of the MemPage and the LookAhead_level
has been set at the maximum level in all the cases. Tables 23, 24 and 25 present the
results when changing the R argument to 0.3 with respect the previous three tables, and
mantain the values of the two other arguments.

Tables 26, 27 and 28, summarize the results obtained by applying the LookAhead algo-
rithm to the Oil_Tanker_2. The values of the arguments are: R = 0.2, for every case,
100, 200 and 500 as a values of MemPage, respectively, and the maximum value for the
Look Ahead_level have been selected for all of the executions. Applying the algorithm to
the same Oil_Tanker, the results obtained, when setting the rate value to 0.3 and keep-
ing on the values of the other two arguments (with respect to the three first cases), are
presented in tables 29, 30 and 31.

In tables 32, 33, 34, 35, 36 and 37 the results obtained when applying the LAA algorithm
to the Oil_Tanker_3 are presented. The values of the arguments that have been used for
each execution are described in the caption of each table.

In most of the tables presented in this section the value of the LookAhead_level has
been set to the maximum possible in order to obtain the more optimal MKtree. As

29

Table 20: Look Ahead Algorithm applied to Oil_Tanker-1 with R

LA=mazimum

Table 21:
LA=mazimum

Oil_Tanker_1 Look Ahead Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 286.132996 | 0.147872 | 286.132996
1 0 9.001297 0.008230 | 18.895020
2 0 0.000000 0.000000 | 343.108978
3 2 0.000000 0.000000 0.000000
4 7 0.000000 0.000000 0.000000
) 7 0.000000 0.000000 | 25.002014
6 4 0.000000 0.000000 | 40.000000
7 2 0.000000 0.000000 | 35.359985
8 2 0.000000 0.000000 0.000000
9 2 30.000000 | 0.040000 | 34.999596
10 4

= 0.2, MemPage

Oil_Tanker_1 Look Ahead Algorithm Results

30

tree level | N. leaves ovMin ovMinRel ovMax
0 0 18.895020 | 0.014446 | 18.895020
1 0 57.132996 | 0.501629 | 352.175964
2 1 0.000000 | 0.000000 | 34.998993
3 2 0.000000 | 0.000000 | 140.112976
4 4 0.000000 | 0.000000 | 150.000000
5 6 35.001598 | 0.049736 | 35.359985
6 3 0.000000 | 0.000000 0.000000
7 2
Look Ahead Algorithm applied to Oil_Tanker-1 with R

= 0.2, MemPage

10 and

20 and

Table 22:
LA=mazimum

Oil_Tanker_1 Look Ahead Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax

0 0 18.895020 | 0.014446 | 18.895020
1 0 15.000000 | 0.011299 | 352.175964
2 1 0.000000 0.000000 | 34.998993
3 4 20.000000 | 0.011527 | 140.112976
4 3 150.000000 | 0.124622 | 150.000000
5 1 0.000000 0.000000 0.000000
6 2

Look Ahead Algorithm applied to QOil_Tanker-1 with R

= 0.2, MemPage

Oil_Tanker_1 Look Ahead Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 156.999023 | 0.040051 | 156.999023
1 0 91.895996 | 0.075448 | 265.000000
2 0 8.895020 0.024708 | 495.359497
3 0 0.000000 0.000000 | 80.000000
4 8 0.000000 0.000000 | 142.500000
5 11 0.000000 0.000000 | 34.998993
6 7 0.000000 0.000000 9.248993
7 6
Table 23: Look Ahead Algorithm applied to Oil_Tanker_-1 with R

LA=mazimum

31

= 0.3, MemPage

30 and

10 and

Table 24: Look Ahead Algorithm applied to Oil_Tanker_-1 with R

LA=mazimum

Table 25:
LA=mazimum

Oil_Tanker_1 Look Ahead Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax

0 0 156.999023 | 0.040051 | 156.999023
1 0 80.000000 | 0.027875 | 91.895996
2 0 10.000000 | 0.008706 | 20.000000
3 3 0.000000 0.000000 | 175.112976
4 7 0.000000 0.000000 | 39.248993
5 5 122.001007 | 0.180943 | 122.001007
6 2

= 0.3, MemPage

Oil_Tanker_1 Look Ahead Algorithm Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 156.999023 | 0.040051 | 156.999023
1 0 80.000000 | 0.027875 | 91.895996
2 1 15.000000 | 0.013863 | 20.000000
3 3 14.999298 | 0.013380 | 175.112976
4 5 39.248993 | 0.034642 | 39.248993
5 2

Look Ahead Algorithm applied

to Oil_Tanker_1 with R

32

= 0.3, MemPage

20 and

30 and

Oil_Tanker_2 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 2978.149902 | 0.108887 | 2978.149902
1 0 677.000000 | 0.061668 | 1243.299805
2 0 182.000000 | 0.020975 | 1809.129883
3 1 0.000000 0.000000 | 2398.529785
4 8 0.000000 0.000000 | 976.560059
5 4 0.000000 0.000000 | 2371.000000
6 6 0.000000 0.000000 | 1163.000000
7 11 0.000000 0.000000 | 1881.939941
8 11 0.000000 0.000000 | 1690.890015
9 12 207.000000 | 0.015181 | 732.000000
10 2 944.209961 | 0.206336 | 2177.959961
11 2 0.000000 0.000000 | 839.700195
12 4

Table 26: Look Ahead algorithm applied to Oil_Tanker-2 with R

LA_level=mazimum

= 0.2, MemPage

Oil_Tanker_2 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 2978.149902 | 0.108887 | 2978.149902
1 0 677.000000 | 0.061668 | 1243.299805
2 1 264.500000 | 0.067059 | 1809.129883
3 2 364.500000 | 0.092466 | 1969.740234
4 2 43.497986 0.002589 | 2375.509766
5 6 223.000000 | 0.156053 | 2392.000000
6 8 310.000000 | 0.036267 | 444.120117
7 5 0.000000 0.000000 | 966.799805
8 4 10.500000 0.001757 | 622.009766
9 4

Table 27: Look Ahead algorithm applied
LA_level=mazimum

to Oil_Tanker_.2 with R

33

= 0.2, MemPage

100 and

200 and

Oil_Tanker_2 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax

0 0 1431.099609 | 0.110736 | 1431.099609
1 0 250.000000 | 0.063354 | 2904.490234
2 1 377.799805 | 0.095840 | 1824.700195
3 5 1969.740234 | 0.128746 | 1969.740234
4 0 1226.060059 | 0.139830 | 2375.509766
5 3 478.689941 | 0.097437 | 478.689941
6 1 732.000000 | 0.068411 | 732.000000
7 2

Table 28: Look Ahead algorithm applied to Oil_Tanker-2 with R

LA _level=mazimum

= 0.2, MemPage

Oil_Tanker_2 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax

0 0 1747.000000 | 0.135180 | 1747.000000
1 0 405.000000 | 0.095026 | 3988.099609
2 0 280.000000 | 0.691358 | 2375.509766
3 0 0.000000 0.000000 | 2123.619873
4 5 0.000000 0.000000 | 2334.000000
5 8 0.000000 0.000000 | 2355.029785
6 17 0.000000 0.000000 | 2491.294922
7 17 0.000000 0.000000 | 301.850098
8 8 118.979980 | 0.013620 | 1030.000000
9 4

Table 29: Look Ahead algorithm applied to Oil_Tanker-2 with R

LA _level=mazimum

34

= 0.3, MemPage

500 and

100 and

Oil_Tanker_2 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax

0 0 1747.000000 | 0.135180 | 1747.000000
1 0 405.000000 | 0.095026 | 3383.900391
2 0 159.000000 | 0.392593 | 2398.529785
3 1 0.000000 0.000000 | 2500.000000
4 7 0.000000 0.000000 | 2534.000000
5 9 0.000000 0.000000 | 3892.629883
6 8 1090.310059 | 0.139212 | 1175.000000
7 4

Table 30: Look Ahead algorithm applied to Oil_Tanker-2 with R

LA_level=mazimum

= 0.3, MemPage

Oil_Tanker_2 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 2398.529785 | 0.185594 | 2398.529785
1 0 783.979980 | 0.125437 | 1434.000000
2 1 329.500000 | 0.083439 | 1954.500000
3 2 371.629883 | 0.021473 | 2503.000000
4 7 2534.000000 | 0.174146 | 2534.000000
5 2

Table 31:
LA _level=mazimum

35

Look Ahead algorithm applied to Oil_Tanker-2 with R

= 0.3, MemPage

200 and

500 and

Oil_Tanker_3 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 2511.000000 | 0.113692 | 2511.000000
1 0 665.799805 | 0.099299 | 1509.589966
2 0 106.399399 | 0.069812 | 1949.010010
3 1 0.000000 0.000000 | 907.320313
4 3 0.000000 0.000000 | 693.099609
5 12 0.000000 0.000000 | 547.451050
6 6 0.000000 0.000000 | 959.701172
7 17 0.000000 0.000000 | 536.017029
8 16 0.000000 0.000000 | 536.017029
9 9 80.020020 0.014584 | 322.817078
10 6

Table 32: Look Ahead algorithm applied to Oil_Tanker-3 with R = 0.2, MemPage

LA_level=mazimum

Oil_Tanker_3 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 2493.399902 | 0.242075 | 2493.399902
1 0 383.709961 | 0.079616 | 1310.000000
2 1 98.476303 0.074350 | 2181.449951
3 1 80.899414 0.004224 | 1950.030029
4 5 0.000000 0.000000 | 437.679932
5 6 0.000000 0.000000 | 443.100586
6 3 26.199219 0.001836 | 745.449951
7 7 0.000000 0.000000 | 794.158997
8 5 636.000000 | 0.044522 | 636.000000
9 1 937.969971 | 0.214478 | 937.969971
10 1 253.119995 | 0.081317 | 253.119995
11 1 302.599609 | 0.030925 | 302.599609
12 2

Table 33: Look Ahead algorithm applied to Oil_Tanker-3 with R = 0.2, MemPage

LA_level=mazimum

36

100 and

200 and

Oil_Tanker_3 LookAhead Results

LA _level=mazimum

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1950.030029 | 0.244859 | 1950.030029
1 0 164.873993 | 0.050335 | 1219.020020
2 1 195.199219 | 0.009949 | 1193.040039
3 4 369.020020 | 0.073567 | 621.599609
4 2 450.000000 | 0.028121 | 834.579956
5 3 823.599609 | 0.042707 | 823.599609
6 1 0.000000 0.000000 0.000000
7 1 570.000000 | 0.114458 | 570.000000
8 2

Table 34: Look Ahead algorithm applied to Oil_Tanker-3 with R = 0.2, MemPage
Oil_Tanker_3 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 2549.350098 | 0.320113 | 2549.350098
1 0 248.419922 | 0.052203 | 1503.699951
2 0 147.410156 | 0.565158 | 2530.000000
3 0 0.000000 0.000000 | 2627.910156
4 4 0.000000 0.000000 | 2178.699951
5 8 0.000000 0.000000 | 1360.099609
6 22 0.000000 0.000000 | 702.780029
7 14 0.000000 0.000000 | 760.695007
8 10 97.489990 0.020982 | 144.000000
9 4

Look Ahead algorithm applied to Oil_Tanker-3 with R = 0.3, MemPage

Table 35:
LA _level=mazimum

37

500 and

100 and

Oil_Tanker_3 LookAhead Results

LA_level=mazimum

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1950.030029 | 0.244859 | 1950.030029
1 0 1187.209961 | 0.118955 | 1366.487305
2 0 241.341003 | 0.176098 | 1162.169922
3 1 0.000000 0.000000 195.199219
4 7 0.000000 0.000000 | 1133.299805
5 9 187.900391 | 0.014241 792.800049
6 7 62.200195 0.004354 | 1488.000000
7 5 401.050049 | 0.128841 | 401.050049
8 2
Table 36: Look Ahead algorithm applied to Oil_Tanker-3 with R = 0.3, MemPage
Oil_Tanker_3 LookAhead Results
tree level | N. leaves ovMin ovMinRel ovMax

0 0 1950.030029 | 0.244859 | 1950.030029
1 0 474.599609 | 0.021489 | 1187.209961
2 1 369.169922 | 0.112708 | 1162.169922
3 2 81.000000 0.004229 | 767.398987
4 7 1412.000000 | 0.431614 | 1412.000000
5 1 648.335999 | 0.092407 | 648.335999
6 2

Table 37: Look Ahead algorithm applied to Oil_Tanker-3 with R

LA _level=mazimum

38

= 0.3, MemPage

200 and

500 and

Oil_Tanker_2 LookAhead Results

tree level | N. leaves ovMin ovMinRel ovMax
0 0 1747.000000 | 0.135180 | 1747.000000
1 0 405.000000 | 0.095026 | 2398.529785
2 1 649.500000 | 0.152393 | 2497.000000
3 3 791.599609 | 0.185734 | 2534.000000
4 4 721.140137 | 0.047132 | 2699.029785
5 4

Table 38: Look Ahead algorithm applied to Oil_Tanker_2 with R = 0.3, MemPage = 500 and LA _level=2

the value of the LookAhead_level argument descreases the final MKtree generated is
less optimal in terms of accumulated overlap in the whole tree. For instance, the ac-
cumulated overlap associated to the MKtree corresponding to the table 38, where the
Look Ahead_level = 2, is 16376.779297, with 11 grey nodes and with an accumulated rel-
ative overlap per node equal to 1488.798118. While the MKtree associated to the table
31, where LookAhead_level = 5, has an accumulated overlap of 14688.180664, with 11
grey nodes and the accumulated relative overlap per node is 1335.289151. Therefore, the
MKtree resulting of the LAA method is more or less optimum depending on higher or
lower values of the input argument LookAhead_level.

The effects of the values of the other two parameters, R and MemPage, to the computed
MKtrees, are similar than in the case of the MOA algorithm. See section 3.1.1 for details.

In figure 13 the MKtree of Oil_Tanker_2 generated with the values of input parameters:
MemPage = 48000bytes, R = 0.2 and LookAhead_level = 7 (maximum), is presented.
The information associated to each node of the tree has the same meaning than in the
case of MOA figures (see. section 3.1.1).

In figure 14 the MKtree of Oil_Tanker_2 generated with the values of input parameters:
MemPage = 48000bytes, R = 0.3 and LookAhead_level = 5 (maximum), is presented.
The information associated to each node of the tree has the same meaning than in the
case of MOA figures (see. section 3.1.1).

Figures 15, 16 and 17 are images of the MKtrees obtained by using the LAA algorithm
of the three oil tankers, presented in several colors corresponding to the MKtree spaces
(nodes) up to level 1 or 2 of the tree and differents values of LOD, depending on the

39

nO = 3900

dim=Y
ovS= 2308.520785
OVR= 0,185594
no =3118 hO=T782
dim=2 dim=Y
ovS= 2904.49023 ovS= 2500
OVR=0106194 OVR= 0063354
=625
nO = 2494 no = 624 zi?ﬂz v
dim=Y dim=2 @ ovS= 377.7998
ovS= 1824.70 ovS= 648.0 ovR= 0.005840
OVR= 0.178498 0VR=0.059425 -

O = 1995 / \
dim= X n0=499 n0=499 @ n0=499
ovS= 1969.740234

ovR= 0.128746
nO =708 nO = 1287
dim= X dim=Y
ovS= 2375.509 0ovS= 1226.060059
ovR=0.240578 ovR=0.13983

AN

nO =827
ovS= 478.689941
ovR= 0.097437
nO =661
ovS=732.0
ovR=0.068411

Figure 13: Example of MKtree corresponding to the Oil_tanker_2 generated by using the Look Ahead
Algorithm. With R = 0.2, MemPage = 500 and Look Ahead-level = 7 (maximum)

image. The values of the input arguments to the LAA algorithm, for each MKtree, are
exposed in each associated caption region.

40

nO = 3900
dim=Y
0vVS= 2398.529785
ovR=0,185594
nO = 1277 no = 2623
dim=Y dim=Y
0vS= 783.979980 ovS= 1434.0
ovR= 0.125437 ovR= 0 1580R8
nO =893 nO = 1836 nO =787
dim=Y 10=384 dim=Y dim=Y
ovS= 1150.0 ovS= 1954.50 ovS= 329.50
ovR=0.1840 ovR=0.298077 ovR= 0.083439
/ no = 1284 nO = 552 / =
nO= 624 dim=Y dim=2 no =550

dim=X ovS= 2503.0 ovS= 371.629883 - ﬁ'VE ‘5(07 900391
- OvR=0.381728 OVR=0.021473 no= :
ovS= 721140137 - VR 0198843

ovR=0.047132 \

/

A CECEPICEP G
Im=

ovS= 2534.0
ovR=0.174146

\

Figure 14: Example of MKtree corresponding to the Oil_tanker_2 generated by using the Look Ahead
Algorithm. With R = 0.3, MemPage = 500 and Look Ahead-level = 5 (maximum)

41

Figure 15: Images of MKtrees of the Oil_Tanker_1. Left image: MKtree up to level 1 and LOD = 1.
Right image: MKtree up to level 2 and LOD = max. Input values of the LAA algorithm: R = 0.3,
MemPage = 500bjs and LookAhead_level = max.

Figure 16: Images of MKtrees of the Oil_Tanker 2. Left image: MKtree up to level 1 and LOD = 1.
Right image: MKtree up to level 2 and LOD = maz. Input values of the arguments the LAA algorithm:
R = 0.3, MemPage = 48000bytes (5000bjs) and Look Ahead level = max.

Figure 17: Images of MKtrees of the Oil_Tanker_3, computed by using the LAA algorithm with R = 0.3,
MemPage = 48000 (5000bjs) and LookAhead_level = max. Left image: MKtree up to level 1 and
LOD = 1. Right image: MKtree up to level 2 and LOD = maz.

42

Oil_Tanker_1 MOA accumulated overlap

R | MemPage | ovAccumulated | N, | ovAverage
0.01 10 2302.828125 62 | 37.142387
0.01 20 2017.762939 | 35 | 57.650372
0.01 30 1305.764893 | 25 | 52.230595
0.2 10 1148.223022 32 | 35.881969
0.2 20 753.609253 15 | 50.240616
0.2 30 738.609253 12 | 61.550770
0.3 10 1558.700439 | 30 | 51.956680
0.3 20 753.609253 16 | 61.343933
0.3 30 783.142944 10 | 78.314293

Table 39: Minimum Querlap Algorithm applied to Oil_Tanker_1. Results of the total accumulated overlap
in each MKtree

4 Algorithms evaluation

In the way to compare the Minimum Overlap Algorithm (MOA) and the Look Ahead
Algorithm (LAA) we have computed the total accumulated overlap, ov Accumulated, of
each MKtree generated by using the two methods. The ovAccumulated for an MKtree
has been computed as:

Zg\r:gl ovMin;
Where N, is the number of grey nodes in the MKtree.
In fact, to evaluate the MKtrees obtained by using the two algorithms, MOA and LAA,

we have used the average overlap, ovAverage. This data is the result of dividing the total
accumulated overlap for an MKtree by the number of grey nodes that it has, N,. Thus,

ovAverage = ovAccumulated/N,

The results obtained are presented in tables 39, 40 and 41 for the MOA method and in
tables 42, 43 and 44 for the LAA method. The ovAccumulated and the ovAverage are
expressed in millimeters in all the tables.

Looking at the tables, in general, we can see that in the most of cases the MKtrees
obtained by the LAA method are less expensive, in terms of ov Average, than the MKtrees
computed by the MOA algorithm. Observe that, in tables 39 and 42, the number of grey
nodes of the MKtree when the input parameters are: R = 0.01 and MemPage = 10 is less
when using the LAA than when using the MOA (49 vs 62), and the ovAverage is also less

43

Oil_Tanker 2 MOA accumulated overlap

R | MemPage | ovAccumulated | N, | ovAverage
0.01 100 300182.218750 | 353 | 850.374573
0.01 200 168028.343750 | 218 | 770.772217
0.01 500 108011.234375 | 108 | 1000.104004
0.2 100 47179.414063 | 66 | 714.839600
0.2 200 34059.988281 | 33 | 1032.120850
0.2 500 16608.240234 | 12 | 1384.020020
0.3 100 43289.328125 | 57 | 759.461914
0.3 200 32216.587891 | 29 | 1110.916870
0.3 500 16376.779297 | 11 | 1488.798096

Table 40: Minimum Overlap Algorithm applied to Oil_Tanker_2. Results of the total accumulated overlap
in each MKtree

Oil_Tanker_3 MOA accumulated overlap

R | MemPage | ovAccumulated | N, | ovAverage
0.01 100 235352.046875 | 363 | 648.352722
0.01 200 152447.703125 | 242 | 629.949158
0.01 500 75662.484375 | 109 | 694.151245
0.2 100 35165.062500 73 | 481.713196
0.2 200 23332.447266 | 34 | 686.248474
0.2 500 16408.642578 15 | 1093.909546
0.3 100 28212.699219 | 63 | 447.820618
0.3 200 18183.812500 | 30 | 606.127075
0.3 500 10562.667969 12 | 880.222351

Table 41: Minimum Overlap Algorithm applied to Oil_Tanker_3. Results of the total accumulated overlap
in each MKtree

44

Oil_Tanker_1 LAA accumulated overlap

look level | R | MemPage | ovAccumulated | N, | ovAverage
24 0.01 10 1423.674316 | 49 | 29.054578
17 0.01 20 1050.001587 | 29 | 36.206951
14 0.01 30 672.504822 19 | 35.394991
10 0.2 10 882.499939 29 | 30.431032
7 0.2 20 882.926575 17 | 51.936859
6 0.2 30 731.182983 10 | 73.118301
7 0.3 10 1524.173828 | 31 | 49.166897
6 0.3 20 834.283264 16 | 52.142704
5 0.3 30 662.149292 10 | 66.214928

Table 42: Look Ahead Algorithm applied to Oil_Tanker_1. Results of the total accumulated overlap in
each MKtree

Oil_Tanker_2 LAA accumulated overlap

look level | R | MemPage | ovAccumulated | N, | ovAverage
2 (188) | 0.01 100 290495.156250 | 359 | 809.178711
2 (155) | 0.01 200 164230.750000 | 216 | 760.327576
2 (95) 0.01 500 100999.585938 | 96 | 1052.078979
12 0.2 100 35009.968750 | 60 | 583.499451

9 0.2 200 24902.388672 | 31 | 803.302856

7 0.2 500 14218.088867 11 | 1292.553533

9 0.3 100 36231.816406 58 | 624.686462

7 0.3 200 26248.199219 28 | 937.435669

5 0.3 500 14688.180664 11 | 1335.289151

Table 43: Look Ahead Algorithm applied to Oil_Tanker_-2. Results of the total accumulated overlap in
each MKtree

45

Oil_Tanker_3 LAA overlap accumulated

look level | R | MemPage | ovAccumulated | N, | ovAverage
2 (176) | 0.01 100 125628.828125 | 214 | 587.050599
2 (151) | 0.01 200 109005.312500 | 162 | 672.872299
2 (106) | 0.01 500 84843.609375 | 107 | 792.930929
10 0.2 100 21815.908203 69 | 316.172577

12 0.2 200 17254.753906 32 | 539.211060

8 0.2 500 8602.962891 13 | 661.766357

9 0.3 100 23687.410156 61 | 388.318207

8 0.3 200 15367.146484 30 | 512.238220

6 0.3 500 9968.633789 12 | 830.719482

Table 44: Look Ahead Algorithm applied to Oil_Tanker_3. Results of the total accumulated overlap in
each MKtree

(29.054578 vs 37.142387). And, for the Oil_tanker_1, in general, the ov Average column of
the second table (42) has lower values for the ovAverage than the corresponding column
of the first table (39).

Observing the tables 40 and 43 for the Oil_tanker_2, and 41 and 44 for the Oil_tanker_3,
we see that the N, and the ovAverage are less when using the LAA method than when
using the MOA method.

Those results confirms that the LAA is more efficient, in terms of memory occupancy and
in the number of page retrievals from disk to core memory (even though more expensive
in terms of time computing), than the MOA method. This is due to that the first one
looks for the best MKtree that it can computes from the minimum overlap, in a trial way.

The obtained value of ovAverage can give us, also, an idea of the hybridness degree of
the resulting MKtree. When its value is low it implies that the MKtree is near to be an
Kdtree. When its value is high, it means that the resulting MKtree is near to be an Rtree.
Thus, after looking the results applying the two algorithms to the three oil_tankers, we can
conclude that the LAA method produces better MKtrees (that are nearest to Kdtrees)
than MOA method. In other words, the overlapping spaces between different grey node
regions are less when using the LAA than when using the MOA method. Then, the
number of blocks in disk to store the whole MKtree is less, also. Even more, when the
level of the trial process is high, look_ahead_level, the results obtained by the LAA are
much better than the ones obtained by the MOA.

46

On the other hand, as mentioned before, every resulting overlap computed by our algo-
rithms and presented in the present chapter is expressed in millimeters. Thereby, the
accumulated overlap in average, ovAwerage, is expressed in mm too. Observing the
ovAverage rank values contained in tables 39, 40 and 41 for the MOA method and in
tables 42, 43 and 44 for the LAA method, and taking into account the dimensions of the
input data (see table 1), we can conclude that the results obtained by our methods are ac-
ceptable and satisfactory. Look, for instance, at table 44 where the ovAverage minimum
value is 316.172577mm and the maximum is 830.719482mm.

5 Conclusions

In this paper we have introduced the MKtrees to represent complex systems and two
algorithms to generate them, Minimum Owverlap and LookAhead. Those algorithms com-
pute automatically an MKtree that represents a hierarchical subdivision and grouping of
the scene objects guaranteeing a minimum space overlap. The algorithms minimize the
amount of disk accesses.

The methods to generate MKtrees, MOA and LAA, have been exposed and explained in
detail. The results of applying them to the input data described, corresponding to three
oil_tankers, are presented. The different results obtained depending on the values of the
input parameters to the algorithms are exposed and analyzed. Finally, the evaluation and
comparation of the efficiency of the two methods have been exposed, too.

Other bounding volume hierarchies that have been proposed are not based on external

memory representations and require considerable storage on memory (k-dops [KHM 98],
OBBtrees [GLM96, BCGT96, GASF94], spherical shells [KPLM98], sphere trees [Hub96]).

6 Acknowledgements

This work has been partially supported by the CICYT project TIC-98-0586—-C03-01.

47

References

[AABY9]

[ABAO1]
[And99]

[BOG*96]

[BKSS90]

[DECMOS]

[FNBO1]
[GASF94]

[GLMO6]

[Gut84]

[He99)]

C. Anddjar, D. Ayala, and P. Brunet. Validity-preserving simplification of very
complex polyhedral solids. In Proc. 5TH Eurographics workshop on virtual
environments, EGVE99, pages 1-10, 1999.

C. Andujar, P. Brunet, and D. Ayala. Robust topology simplification. ACM
Transactions on Graphics, 2001. Accepted for publication.

C. Andujar. Octree-based Simplification of Polyhedral Solids. PhD thesis,
Dept. LSI, Universitat Politecnica de Catalunya, Barcelona, Spain, 1999.

G. Barequet, B. Chazelle, L.J. Guibas, J.S.B. Mitchell, and A. Tal.
BOXTRFEE: A hierarchical representation for surfaces in 3D. In EURO-
GRAPHICS Conf. Proc., volume 15, pages 387-396. Blackwell Publishers,
August 1996.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
The r*-tree: An efficient and robust access method for points and rectangles.
In Hector Garcia-Molina and H. V. Jagadish, editors, Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, Atlantic
City, NJ, May 23-25, 1990, pages 322-331. ACM Press, 1990.

A. Duch, V. Estivill-Castro, and C. Martinez. Randomized k-dimensional
binary search trees. In K.-Y. Chwa and O.H. Ibarra, editors, Proc. of the 9th
Int. Symp. on Algorithms and Computation (ISAAC), volume 1533 of Lecture
Notes in Computer Science, pages 199-208. Springer-Verlag, 1998.

M. Franquesa-Niubo and P. Brunet. Collision detection using multirresolution
Kdtrees. Computer Graphics Forum. Submitted for publication, 2001.

A. Garcia-Alonso, N. Serrano, and J. Flaquer. Solving the collision detection
problem. IEEE Computer Graphics and Applications, pages 36-43, May 1994.

S. Gottschalk, M.C. Lin, and D. Manocha. OBBtree: A hierarchical structure
for rapid interference detection. In ACM SIGGRAPH Conf. Proc., pages 171—
180, August 1996.

A. Guttman. R-trees: A dynamic index structure for spatial searching. In In
Proc. ACM SIGMOD Int. Conference on Management of Data, pages 47-57,
June 1984. Boston, MA, USA.

T. He. Fast collision detection using QuOSPO trees. Symp. on Interactive
3D Graphics, Atlanta, ACM, pages 55—62, 1999.

48

[Hub96]

[TW89)]

[KHM+98]

[KPLMO93]

[MF99)

[Sam90)]

[SRF87]

[WLML9]

Philip M. Hubbard. Aproximating polyhedra with spheres for time—critical
collision detection. ACM Transactions on Graphics, 15(3):179-210, July 1996.

D. Jevans and B. Wyvill. Adaptive voxel subdivision for ray tracing. In Proc.
Graphics Interface, pages 164-172, 1989.

J. T. Klosowski, M. Held, J. S.B. Mitchel, H. Sowizral, and K. Zikan. Eficient
collision detection using bounding volume hierarchies of k—dops. IEEE Trans-

actions on Visualization and Computer Graphics, 4(1):21-36, january-march
1998.

S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical shell: A higher
order bounding volume for fast proximity queries. In In Proc. of Third Inter-
national Workshop on Algorithmic Foundations of Robotics, 1998.

G. Mueller and D. W. Fellner. Hybrid scene structuring with application to ray
tracing. In Proc. of the Intl. Conference on Visual Computing, pages 19-26,
1999.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990. ISBN 0-201-50255-0.

T. Sellis, N. Roussopoulus, and C. Faloutsos. The R*—tree: A dynamic index
for multidimensional objects. In Brighton 13th., pages 507-518. VLDB Conf.,
1987.

A. Wilson, E. Larsen, D. Manocha, and M.C. Lin. Partitioning and handling
massive models for interactive collision detection. Computer Graphics Forum,
18(3):319-329, September 1999.

49

