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Abstract

Partial match queries constitute the most basic type of associative
queries in multidimensional data structures such asK-d trees or quadtrees.
Given a query q = (q0, . . . , qK−1) where s of the coordinates are specified
and K − s are left unspecified (qi = ∗), a partial match search returns
the subset of data points x = (x0, . . . , xK−1) in the data structure that
match the given query, that is, the data points such that xi = qi whenever
qi 6= ∗. There exists a wealth of results about the cost of partial match
searches in many different multidimensional data structures, but most of
these results deal with random queries. Only recently a few papers have
begun to investigate the cost of partial match queries with a fixed query
q. This paper represents a new contribution in this direction, giving a
detailed asymptotic estimate of the expected cost Pn,q for a given fixed
query q. From previous results on the cost of partial matches with a fixed
query and the ones presented here, a deeper understanding is emerging,
uncovering the following functional shape for Pn,q

Pn,q = ν ·

 ∏
i:qi is specified

qi(1− qi)

α/2

· nα + l.o.t.1

in many multidimensional data structures, which differ only in the expo-
nent α and the constant ν, both dependent on s and K, and, for some data
structures, on the whole pattern of specified and unspecified coordinates
in q as well. Although it is tempting to conjecture that this functional
shape is “universal”, we have shown experimentally that it seems not to
be true for a variant of K-d trees called squarish K-d trees.
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1 Introduction

Multidimensional data structures have numerous applications in a broad range
of areas of Computer Science, like geographical information systems, computer
graphics, video games, databases, and data mining just to name a few. General-
purpose multidimensional data structures, such as K-dimensional trees (K-d
trees, for short) [Ben75] or quadtrees [BF74], must support efficient updates
(insertions and deletions) and exact searches, as any ordinary dictionary data
structure, but they should also efficiently support associative queries: orthogo-
nal range queries (which data points in the data structure have all their coor-
dinates within the ranges specified by given lower and upper bounds along each
dimension?), nearest neighbor queries (which data point in the data structure is
closest —according to a fixed given distance measure— to a given query point?),
and others. Among these, partial match (PM) queries constitute the most ba-
sic type of associative query: given a query q = (q0, . . . , qK−1) where only s,
0 < s < K, out of the K coordinates are specified, find the K-dimensional
data points x that match q, that is, the data points x = (x0, . . . , xK−1) in the
data structure such that xi = qi whenever qi is specified. Besides their intrinsic
interest, PM queries are a fundamental associative query since the performance
of many other associative queries is closely related to the performance of PM
searches [DM02, CDZC01].

There is a vast literature on the analysis of the performance of partial match
search2 in various multidimensional data structures, starting with the seminal
paper by Flajolet and Puech [FP86] that gives the expected performance of a
random PM search for several multidimensional data structures. As in [FP86],
most of the existing literature only covers the performance of PM search when
the query is random, that is, when the query is drawn at random with the
same distribution as the data points, with K − s of its coordinates “marked”
as unspecified. Here, as in the rest of the literature, the cost of partial match
searches will be measured by the number of visited nodes of the tree.

In particular, Flajolet and Puech proved the theorem below for random PM
search in random standard K-d trees where s coordinates are specified and the
pattern of specified and unspecified coordinates is u (e.g., u = SS∗ indicates
the first and second coordinates are specified, the third is not).

Theorem 1 (Flajolet, Puech [FP86]). The expected cost Pn,u of a random PM
search with query pattern u, where s out of the K coordinates of the query are
specified and the other K − s are not, in a random standard K-d tree of size n
is

Pn,u = βun
α(s/K) + l.o.t.,

where βu is a constant that depends on the pattern u and α(x) is the unique
real solution in [0, 1] of

(α+ 2)x(α+ 1)1−x = 2.
2The algorithm to perform a partial match query is a partial match search; however,

sometimes we will abuse the terminology and use the term partial match query when we
should actually say partial match search.
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Similar results have been shown for other variants of K-d trees and other
multidimensional data structures. For instance, for relaxed K-d trees (defined
in Section 2) we have the following result.

Theorem 2 (Duch et al. [DECM98], Mart́ınez et al. [MPP01]). The expected
cost Pn,s,K of a random PM query where s out of the K coordinates of the query
are specified and the other K − s are not, in a random relaxed K-d tree of size
n is

Pn,s,K = βs,Kn
α(s/K) + l.o.t.,

where

α := α(x) =
1

2

(√
9− 8x− 1

)
,

and the constant βs,K = β(s/K) depends only on the ratio s/K, with

β(x) =
1

1− x
Γ(2α+ 1)

(α+ 1)Γ(α+ 1)α2Γ2(α)
.

In the case of squarish K-d trees (defined in next section) we have the
following theorem.

Theorem 3 (Devroye et al. [DJZC00]). The expected cost Pn,s,K of a random
PM query where s out of the K coordinates of the query are specified and the
other K − s are not, in a random squarish K-d tree of size n is

Pn,s,K = Θ(nα(s/K)), with α(x) = 1− x.

Only recently a handful of papers have studied the performance of PM search
with given fixed queries. In [CJ11, BNS13], the authors investigate the expec-
tation, variance and limit distribution of PM search in 2-dimensional quadtrees;
in [DJM14] the authors analyze the expected performance of PM search in stan-
dard and relaxed K-d trees when exactly s = 1 coordinate is specified. In the
mentioned papers it is shown that

E[Pn,q] ∼ νq · (qi · (1− qi))α/2 · nα + l.o.t., (1)

where Pn,q is the cost of a PM search with fixed query q, qi ∈ (0, 1) is the
unique specified coordinate in q, α = α(1/K) is the same exponent as in the
expected cost for random PM queries (the exponent is different for the different
multidimensional data structures considered) and νq depends only on K and s
(e.g., for relaxed trees), or on the pattern u of the query q (e.g., for standard
K-d trees). When νq = νu(q) depends on the pattern, it also depends on s and
K, but these quantities are implicit in the query pattern.

The main contribution of the present paper is the generalization of the anal-
ysis for general s in standard and relaxed K-d trees. We will show in Theorems 4
(for relaxed K-d trees) and 7 (for standard K-d trees) in Sections 3 and 4, re-
spectively, that the cost Pn,q of a PM search with fixed query q in a random
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K-d tree of size n, satisfies

E[Pn,q] = νq ·

 ∏
i:qi is specified, qi ∈ (0, 1)

qi · (1− qi)

α/2

· nα + l.o.t., (2)

where νq and α = α(s/K) are explicitly computable constants, depending on s
and K and on the multidimensional data structure under consideration. In the
case of standard K-d trees the constant νq depends also on the pattern u (that
is, on the way in which specified and unspecified coordinates are distributed in
q), whereas for relaxed K-d trees the pattern does not affect the value of νq.
We will thus write the constant factor as νu for standard K-d trees and νs,K for
relaxed K-d trees. The exponent α of n in (2) is the same (when all qi ∈ (0, 1))
as in the expected cost of a random PM search, as given in Theorems 1 and 2
above.

The paper is organized as follows: in Section 2 we review the different K-
d tree variants that we will investigate, the partial match algorithm, and the
probabilistic model for random K-d trees which we need for the subsequent
analysis. Section 3 is devoted to the analysis of Pn,q = E[Pn,q], in particular, to
prove Eq. (2) for random relaxed K-d trees (Theorem 4). In the course of this
analysis, we will have to study the situation where several specified coordinates
attain their extreme value (say qi = 0 or qi = 1); in particular we prove an
intermediate result (Theorem 5) about the expected performance of random
PM queries where several coordinates are extreme. The next section addresses
the analysis of Pn,q in standard K-d trees (Theorem 7); we focus only on the
aspects that are specific to standard K-d trees since most of the proofs are very
similar to the corresponding ones for relaxed K-d trees. Section 5 covers the
experimental study that we have performed to compare our theoretical findings
with the experimental data. Given the asymptotic nature of our formulæ, the
experiments help us to validate the theoretical results for moderate values of the
input size. Although we have not obtained theoretical results for squarish K-d
trees the experiments suggest that an analogous equation to (2) does not hold
for this variant of K-d trees. We make a conjecture about the expected cost
of PM search with fixed queries in squarish K-d trees which has some sound
theoretical basis and is supported by the experimental data. Finally, Section 6
summarizes our findings and conclusions, and describes our lines of on-going and
future work in this topic. This paper extends many of the preliminary results
presented in [DLM14].

2 K-d trees & partial match queries

Let F be a collection of n multidimensional records, each one endowed with a
K-dimensional key x = (x0, . . . , xK−1), with coordinate xi drawn from a totally
ordered domain Di. It is generally assumed, without loss of generality, that no
two keys in the collection have the same coordinates in any of the dimensions.
For convenience, here we will also assume that, for all 0 ≤ i < K, Di = [0, 1].
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Initially proposed by Bentley [Ben75] a K-dimensional tree storing a collec-
tion F of multidimensional records can be defined as follows.

Definition 1 (Bentley [Ben75]). A K-dimensional tree (or K-d tree) T of size
n ≥ 0 is a binary tree such that

• it is either empty when n = 0, or

• its root stores a record with key x and a discriminant i, 0 ≤ i < K, and
the remaining n− 1 records are stored in the left and right subtrees of T ,
say TL and TR, in such a way that both TL and TR are K-d trees, where
for any key y ∈ TL, it holds that yi < xi and for any key y′ ∈ TR, it holds
that xi < y′i.

Any K-d tree of size n induces a partition of the domain D = D0×· · ·×DK−1

into n + 1 regions, each corresponding to a leaf (or, equivalently an empty
subtree) in the K-d tree.

Let 〈x, i〉 denote a node that contains a key x with discriminant i. The
bounding box of 〈x, i〉 is the region of the space delimited by the leaf in which
x falls when it is initially inserted into the tree. Thus, if the root is 〈x, i〉, its
bounding box is [0, 1]K , the bounding box of its left subtree is [0, 1] × · · · ×
[0, xi)× · · · × [0, 1], and so on.

Different variants of K-d trees have been proposed so far; most only differ
by the way in which discriminants are assigned to nodes (this is the case for
the variants that we will consider here). In the original or standard K-d trees
by Bentley [Ben75], the root of the tree (at level 0) gets discriminant 0, its
subtrees in the first level get 1, . . . , those in the (K − 1)-th level get K − 1,
those in the K-th level get 0, and so on, in a cyclic way. In general, nodes
at level i of the trees discriminate by coordinate i mod K. In Figure 1 we
show a standard 2-d tree of five nodes together with the partition of the space
that it induces. Duch et al. [DECM98] proposed relaxed K-d trees, where each
node is assigned a random discriminant, uniformly and independently drawn
from {0, . . . ,K − 1}. The squarish K-d trees of Devroye et al. [DJZC00] try
to achieve a more balanced partition of the space by discriminating along the
coordinate for which the bounding box of the node is most elongated.

Because of their definitions, the insertion and exact search algorithms for K-
d trees are straightforward, and we will not give the details here. Insertions work
identically in the three variants, except in the way discriminants are assigned
to new inserted nodes. The exact search algorithm is the same for all variants.

In a partial match search we are given a query q = (q0, . . . , qK−1) with
qi ∈ Di ∪ {∗} = [0, 1] ∪ {∗}. Coordinates such that qi 6= ∗ are called specified,
otherwise they are called unspecified ; we assume that the number s of specified
coordinates satisfies 0 < s < K. Specified coordinates can be extreme (if qi = 0
or qi = 1), otherwise we call them regular. The goal of the PM search is
to retrieve all records in the K-d tree that match the pattern q, that is, the
records x such that xi = qi whenever qi 6= ∗. In Figure 1 we show with a dashed
line a PM query q = (∗, q1).
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Figure 1: A standard 2-d tree T , the partition that it induces and the PM query
q such that u(q) = ∗S and r(q, T ) = (∗, 3)

The query pattern, u = u0 u1 · · · uK−1, is such that ui = S if qi 6= ∗ and
ui = ∗ if qi = ∗; for queries with extreme specified coordinates, we write ui = S
if the i-th coordinate is regular, and ui = E if it is extreme. For the query in
the example of Figure 1 we have u(q) = ∗S.

To perform a PM search with query q, the K-d tree is recursively explored.
First, we check whether the root matches q or not, to report it in the former
case. Then, if the root discriminates with respect to an unspecified coordinate,
we make recursive calls in both subtrees. Otherwise, if the root is 〈x, i〉 we
continue recursively in the appropriate subtree, depending on whether qi < xi
or qi ≥ xi. The exact procedure is shown in Algorithm 1.

The cost of a PM search with query q in a tree T is measured as the number
of nodes of the tree that are visited by Algorithm 1.

We now turn our attention to the probabilistic model that we will use later,
when analyzing the expected performance of the previous algorithm.

Definition 2. A K-d tree T of size n is random if and only if it is either empty
(n = 0), or if its left and right subtrees, TL and TR are random K-d trees of
sizes j and n− 1− j, respectively, with

P[size of TL = j | size of T = n] =
1

n
,

for any 0 ≤ j < n.

Another usual characterization of random K-d trees is that they are built
by performing n random insertions into an initially empty tree. An insertion is
said to be random if the (j + 1)-th inserted data point x is equally likely to fall
in any of the j+1 leaves of the K-d tree; this is what happens if the data points
are independently drawn from a vector of continuous distributions in [0, 1]K .
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Algorithm 1 PartialMatch reports all records x in the K-d tree T that
match q

procedure PartialMatch(q, T )
. T.discr is the discriminant associated to the root of T
. T.key is the key associated to the root of T
. T.left is the left subtree of T
. T.right is the right subtree of T
if T = � then return
x← T.key
if x matches q then

Report x

i← T.discr
if qi = ∗ then

PartialMatch(q, T.left)
PartialMatch(q, T.right)

else
if qi < xi then

PartialMatch(q, T.left)
else

PartialMatch(q, T.right)

It is worth remembering here that we will say that a PM query Q is random
if all its specified coordinates are randomly generated by the same continuous
distribution(s) as the coordinates of the keys in the random K-d tree. In other
words, the query is random if it is independently generated from the same distri-
bution as the data points, then some of the coordinates are marked “unspecified”
as dictated by the query pattern. When all the specified coordinates have fixed
values, we say that the query is fixed, i.e., q is a given element of

∏K−1
i=0 Di∪{∗}.

We will systematically (we have already done that in the introduction) use P
to denote the cost of a PM search, with subscripts for the main parameters:
Pn,q = E[Pn,q] for the expected cost of a PM search with fixed query q, and
Pn,• = E[Pn,Q] for the expected cost of a PM search with a random query Q,
the • standing for the other relevant parameters, e.g., the query pattern u(Q),
or the number of specified coordinates s and the dimension K.

In this paper we will assume that each coordinate i, 0 ≤ i < K, of each
data point is independently drawn from a continuous distribution Fi in [0, 1].
Therefore, a random PM query Q in a random K-d tree corresponds to an
“unsuccessful” PM search, since the probability that Q matches a key in the
tree is zero.

For the sake of simplicity, we can safely assume that F0 = F1 = · · · =
FK−1 = Uniform(0, 1). However, for the majority of our results this last as-
sumption is not necessary; we will explicitly state those results where the as-
sumption of uniformity cannot be avoided.
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3 Fixed partial match queries in relaxed K-d
trees

3.1 Queries and ranks

One key observation about the PM algorithm in K-d trees (the same holds
in other comparison-based multidimensional data structures, e.g., quadtrees) is
that, except for eventual matches, only the relative ranks of the coordinates
matter. To be more precise, let us call the rank vector of a query q the vector
r(q, T ) = (r0, . . . , rK−1) defined as follows: if qi = ∗ then ri = ∗; if qi 6= ∗ then
ri is the number of records x in the collection (represented by the K-d tree T )
such that xi ≤ qi. Notice that each specified ri ranges between 0 and n. We
will also use the notation rk(q, T ) to refer to the k-th component of r(q, T ). For
ease of notation, we will usually omit the K-d tree T and simply write r(q) or
rk(q), unless it is necessary to explicitly indicate which is the tree of reference.
In the example of Fig. 1, the rank vector r(q, T ) = r((∗, q1)) = (∗, 3), since 3
data points have coordinate y smaller that q1.

Then, for any two given different queries q and q′ with equal rank vectors
r(q) = r(q′), the PM algorithm (Algorithm 1) will visit exactly the same set of
nodes of the tree.

It makes sense thus to consider the random variable Pn,r, the cost of a PM
query in a random K-d tree of size n where the rank vector of the query is r.
The results for Pn,r = E[Pn,r] can easily be translated to Pn,q = E[Pn,q], via
conditioning as follows:

Pn,q =
∑
r

P[r(q) = r] · Pn,r.

If the coordinates of the records are independently drawn it follows that

P[r(q) = r] =
∏
qj 6=∗

P[rj(q) = rj ] .

If we assume that the coordinates are uniformly distributed —here the assump-
tion is a must— then, for qj 6= ∗, rj(q) follows a binomial distribution Bin(n, qj).
Because of the smooth behavior of Pn,r = E[Pn,r], and the binomial distribution
being highly concentrated around its mean, one can prove that

Pn,q = Pn,r + l.o.t., (3)

with r = nq, i.e., rj = nqj if qj 6= ∗ and rj = ∗, otherwise. The technical details
to finish the proof of (3) are discussed at the end of Subsection 3.6.

Likewise, for a fixed rank vector r = (r0, . . . , rK−1), we have

Pn,r = Pn,q + l.o.t.,

with qi = ri/n if 0 ≤ ri ≤ n and qi = ∗ if ri = ∗.
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3.2 Main result and outline of its proof

Hereinafter we will concentrate on the analysis of Pn,r since working with ranks
conveniently allows a purely combinatorial approach. In this section we will
consider the expected cost of a PM search in random relaxed K-d trees, as it
turns out to be the multidimensional data structure that is easiest to analyze.
The fundamental problems and main steps of the analysis already appear when
considering relaxed K-d trees. In Section 4 we are able to extend the analysis
to standard K-d trees.

The ultimate goal of our analysis is to find the expected cost Pn,q of a
PM search with a fixed query q, that is, to formally prove Equation (2) in the
Introduction or, as we have discussed, to solve the essentially equivalent problem
of finding the expected cost Pn,r of a PM search with a fixed rank vector r.

It turns out that the distinction between the specified coordinates of a PM
query as extreme (qi = 0 or qi = 1) or as regular (qi ∈ (0, 1)) will be of
utmost importance in what follows. In terms of rank vectors, a rank ri will
be called extreme if either ri = o(n) or ri = n − o(n); it will be called regular
otherwise. The number of extreme coordinates s0, 0 ≤ s0 ≤ s (or, equivalently,
the number of regular coordinates t = s − s0) will play a fundamental role in
the expected cost as we shall see. Namely, we will show that Pn,r is of order
nα, where α = α(ρ, ρ0), with ρ = s/K and ρ0 = s0/K. When ρ0 = 0, α(ρ, 0)
coincides with the exponent α(ρ) in the expected cost of a random PM query
(see Section 1); indeed, the probability that one or more coordinates of a random
query are extreme is 0.

Let us now state the main theorem of this section:

Theorem 4. For a query q with rank vector r = (r0, . . . , rK−1) such that
ri = zin+ o(n), 0 < zi < 1, for all i, 0 ≤ i < t, ri = o(n) or ri = n− o(n) for
all i, t ≤ i < s and ri = ∗ for all i, s ≤ i < K, the expected cost of a partial
match search in a random relaxed K-d tree of size n is

Pn,r = νs,t,K ·

(
t−1∏
i=0

zi(1− zi)

)α/2
· nα + o(nα),

where ρ = s/K, ρ0 = s0/K = (s − t)/K, α = α(ρ, ρ0) is given in Theorem 5
below and νs,t,K is:

νs,t,K = β(ρ, ρ0)
Γt(α+ 2)

Γ2t(α/2 + 1)
.

with β also as given in Theorem 5:

β = β(ρ, ρ0) =
1

(1− ρ)

Γ(2α+ 1 + ρ0)

(α+ 1)Γ(α+ 1 + ρ0)α2Γ2(α)
.

Moreover, if the n data points are drawn from the uniform distribution in [0, 1]K

then the expected cost of a partial match

q = (q0, . . . , qt−1,

s0︷ ︸︸ ︷
0 . . . , 0,

K−s︷ ︸︸ ︷
∗, . . . , ∗)
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in a random relaxed K-d tree of size n, with qi ∈ (0, 1) for all 0 ≤ i < t, is

Pn,q = νs,t,K ·

(
t−1∏
i=0

qi(1− qi)

)α/2
· nα + o(nα),

where νs,t,K and α are as above.

In the following subsections we will first analyze the expected cost Pn :=
Pn,ρ,ρ0 of a PM search with a random query in which s0 coordinates are extreme
and t = s− s0 are chosen at random; the remaining K − s coordinates are left
unspecified. The analysis is quite simple and straightforward, but it will give us
the analytic closed form for the quantities α and β needed in subsequent steps.

The next step will be to set up the exact recurrence for Pn,r. Without
loss of generality, for the specific case of relaxed K-d trees we can assume that
the first t coordinates of the query (or the rank vector) are regular, then we
have s0 extreme coordinates, then K− s unspecified coordinates. Thus we have

r = (r0, r1, . . . , rt−1,

s0︷ ︸︸ ︷
0, . . . , 0,

K−s︷ ︸︸ ︷
∗, . . . , ∗) and write r = (r0, . . . , rt−1). Furthermore

we will write zi = limn→∞ ri/n, 0 ≤ i < t, with 0 < zi < 1.
In order to solve the (complicated) recurrence for Pn,r and thus prove our

main theorem (Theorem 4), we will proceed in several steps: 1) assuming that
there is some γ > 0 such that limn→∞ n−γPn,r = f(z0, . . . , zt−1) exists and
it is not identically null, we prove that we must have γ = α(ρ, ρ0), and we
derive an integral equation, together with a set of boundary/initial conditions,
for which f(z0, . . . , zt−1) is a solution; 2) we solve the integral equation and
find the explicit form of f(z0, . . . , zt−1); 3) once we have a closed form for
f(z0, . . . , zt−1), we explicitly show that

f
(r0

n
, . . . ,

rt−1

n

)
nα + o(nα)

is a solution of the homogeneous recurrence satisfied by Pn,r, by unwinding the
successive approximations that we made and bounding the corresponding errors.
Using the boundary conditions on Pn,r, the arbitrary constant in the solution
of the integral equation can be fixed to get the desired estimate for Pn,r. The
last part of Subsection 3.6 is devoted to prove the asymptotic estimate for Pn,q,
which easily follows from the asymptotic estimate of Pn,r and our discussion
in 3.1.

It is also worth mentioning that in the second step above (“solving the
integral equation”) we will proceed inductively to show that f(z0, . . . , zt−1) = 0
if any of the zi’s is 0 (or 1).

3.3 Some useful properties of Pn,q

The PM algorithm in relaxed K-d trees exhibits some symmetries that can
be exploited to simplify the analysis. For instance, the pattern of specified
and unspecified coordinates in q is irrelevant for the expected performance of
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the algorithm, and thus we will assume that the query is of the form q =

(q0, . . . , qs−1,

K−s︷ ︸︸ ︷
∗, . . . , ∗), hence r(q) = (r0, . . . , rs−1,

K−s︷ ︸︸ ︷
∗, . . . , ∗). We will just write

r(q) = (r0, . . . , rs−1), omitting the unspecified ranks. We have also Pn,r = Pn,r′

if r′ is any permutation of the rank vector r.
In the case of standard K-d trees, where the pattern of specified and un-

specified coordinates matters, we have Pn,r = Pn,r′ if r′ is any permutation
of the specified coordinates of r (leaving the same unspecified coordinates in
both rank vectors). This happens because of the symmetric behavior of left and
right subtrees, and the unbiased rule to assign discriminants (no direction is fa-
vored). Other “well-behaved” variants of K-d trees will also satisfy Pn,r = Pn,r′

for permutations of the specified coordinates.
Another property that applies to any variant of K-d trees is that, because

of the symmetry of left and right in K-d trees, we must have that for any i,
0 ≤ i < s,

Pn,(r0,...,ri−1,ri,ri+1,...,rs−1) = Pn,(r0,...,ri−1,n−ri,ri+1,...,rs−1). (4)

The last useful property that we will use in our analysis is the following: if
Pn is the expected cost of a random PM query with s, 0 < s < K, specified
coordinates then

Pn =
1

(n+ 1)s

∑
r

Pn,r. (5)

where the summation extends, without loss of generality, over all rank vectors

of the form r = (r0, . . . , rs−1,

K−s︷ ︸︸ ︷
∗, . . . , ∗) or equivalent.

3.4 Random partial match queries with extreme coordi-
nates

We consider here the expected cost Pn := Pn,ρ,ρ0 of a PM search with a random
query with s0 extreme coordinates, t = s − s0 random coordinates (which will
be regular with probability 1), and K − s unspecified coordinates. Our result is
cast into the following theorem.

Theorem 5. Let Pn := Pn,ρ,ρ0 = E[Pn,Q] be the expected cost (measured as the
number of visited nodes) of a PM search in a random relaxed K-d tree of size n
with a random query Q in which s coordinates are specified and the remaining
K − s coordinates are left unspecified. Of the s specified coordinates exactly
t coordinates are independently drawn at random from the same continuous
distribution(s) from which data coordinates are drawn, and exactly s0 = s − t
coordinates are extreme (we assume, w.l.o.g., that they are 0). Then

Pn = β(ρ, ρ0) · nα(ρ,ρ0) + l.o.t.,
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where ρ = s/K = (s0 + t)/K, ρ0 = s0/K,

α := α(ρ, ρ0) =
1

2

(√
(3− ρ0)2 − 8(ρ− ρ0)− 1− ρ0

)
, and

β := β(ρ, ρ0) =
1

(1− ρ)

Γ(2α+ 1 + ρ0)

(α+ 1)Γ(α+ 1 + ρ0)α2Γ2(α)
.

Proof. The proof relies on fairly standard tools of Analytic Combinatorics [FS09],
although it involves somewhat lengthy calculations. The first step is to set up
a recurrence for Pn.

If n = 0 then we have P 0 = 0. For n > 0, we will condition on the size j of
the left subtree; in the probability model that we consider (see Section 2) j is any
value in {0, . . . , n−1} with identical probability 1/n. Now, with probability t/K
the root of the randomK-d tree of size n discriminates with respect to a specified
regular coordinate and the PM search will continue in only one of the subtrees of
the random K-d tree; if the size of the subtree is j then the probability that the
PM search continues in that subtree is (j + 1)/(n+ 1). With probability s0/K
the root discriminates with respect to an extreme coordinate and the recursion
will continue in the left subtree (which is of size j). Finally, with probability
(K−s)/K the discriminant at the root corresponds to an unspecified coordinate
and the PM search will be called recursively in both subtrees.

Collecting everything and taking into account the symmetries, for n > 0

Pn = 1 +
2t

K

1

n

n−1∑
j=0

j + 1

n+ 1
P j +

2(K − s) + s0

K

1

n

n−1∑
j=0

P j

and then we translate the recurrence into a differential equation for the cor-
responding generating function. In particular, if P (z) =

∑
n≥0 Pnz

n then we
obtain the second order linear differential equation

P ′′(z) + P ′(z)
2− (4− ρ0)z

z(1− z)
− P (z)

4− 2ρ− (2− ρ0)z

z(1− z)2
=

2

z(1− z)3
,

with initial conditions P (0) = P 0 = 0 and P ′(0) = P 1 = 1. The solution is

P (z) =
1

2

(
2F1

(
1−α−ρ0,−α

2

∣∣ z)
(1− z)α+1

− 1

1− z

)
,

where 2F1

(
a,b
c

∣∣∣ z) denotes the hypergeometric function and

α := α(ρ, ρ0) =
1

2

(√
(3− ρ0)2 − 8(ρ− ρ0)− 1− ρ0

)
.

To get the asymptotic estimate for Pn = [zn]P (z) we only need to study the
asymptotic behavior of P (z) near its dominant singularity at z = 1, and using
the transfer lemma of Flajolet and Odlyzko [FO90, FS09] the result follows.
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In the case of relaxed K-d trees, for any ρ and ρ0 such that 0 ≤ ρ0 ≤ ρ ≤ 1,
we have 1 − ρ ≤ α(ρ, ρ0) ≤ α(ρ, 0) ≤ 1. The most important property to keep
now in mind is that the function is decreasing in both ρ and ρ0. In particular
we have

1− s

K
= α

( s
K
,
s

K

)
< α

(
s

K
,
s− 1

K

)
< α

(
s

K
,
s− 2

K

)
· · ·

< α

(
s

K
,

1

K

)
< α

( s
K
, 0
)

=: α
( s
K

)
.

On the other hand, when we take extreme coordinates into consideration
Eq. (5) must be changed to

Pn,ρ,ρ0 ∼
1

(n+ 1)t

∑
r

Pn,r, (6)

where the summation extends, without loss of generality, over all rank vectors

of the form r = (r0, . . . , rt−1,

s0︷ ︸︸ ︷
0, . . . , 0,

K−s︷ ︸︸ ︷
∗, . . . , ∗). In fact, for any rank vector

r of a query of the form q = (q0, q1, . . . , qt−1,

s0︷ ︸︸ ︷
0, . . . , 0,

K−s︷ ︸︸ ︷
∗, . . . , ∗) with t regular

coordinates, s0 extreme coordinates and K−s unspecified coordinates there are

2s0
(
K

t

)(
K − t
s0

)
rank vectors (including r) with exactly the same expected cost Pn,r. If the
summation ranged over all possible rank vectors, we would have to divide by

(n+ 1)s
(
K

s

)
instead. Equation (6) gives only asymptotic equivalence, not equality, since we
are considering that the extreme rank values are all identically 0, and disregard
the asymptotically negligible contributions of rank vectors with one or more
extreme values ri = o(n).

3.5 Setting up the recurrence

Let us now move to the general recurrence for Pn,r. The basis is obviously
P0,r = 0. Let Ai,j be the event that the root of the random K-d tree T of size
n is discriminating with respect to i and that the size of its left subtree L is j,
0 ≤ j < n. Then

Pn,r =
1

nK

∑
0≤i<K

∑
0≤j<n

E[Pn,r |Ai,j ] .
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We now consider separately two cases—at this point the distinction between
regular and extreme specified coordinates is not relevant yet: 1) the discrim-
inating coordinate i of the root is specified (0 ≤ i < s); 2) it is unspecified
(s ≤ i < K).

Suppose that i is a specified coordinate, that is, 0 ≤ i < s. Now, if ri ≤
j then the PM algorithm will only continue, recursively, in the left subtree,
whereas if j < ri it will only make a recursive call in the right subtree. If, on
the other hand, i is an unspecified coordinate then the PM search will proceed
recursively into both subtrees. The crucial point is then: how does the rank
vector evolve as we “explore” the K-d tree? Let q be any query such that
r(q, T ) = r. Let B−i,j(r) be the event that i is specified (0 ≤ i < s), ri ≤ j and

Ai,j . Similarly let B+
i,j(r) be the event that i is specified (0 ≤ i < s), j < ri and

Ai,j ; finally, let B∗i,j(r) be the event that i is not specified (s ≤ i < K) and Ai,j .

We will need to compute the probability π
(i,j)
L (r, r′) that r(q, L) = r′ given the

event B−i,j(r), that is, the probability that r(q, L) = r′ when only the left branch

is followed. Similarly, we will need to compute the probability π
(i,j)
R (r, r′) that

r(q, R) = r′ given the event B+
i,j(r) (with R the right subtree of size n− 1− j

of T ); finally, we will also need to compute the probability π
(i,j)
B (r, r′, r′′) that

r(q, L) = r′ and r(q, R) = r′′ given the event B∗i,j(r), that is the probability
that the rank vectors are r′ and r′′ when both branches must be followed. With
these probabilities in hand the recurrence reads

Pn,r = 1 +
1

nK

[ ∑
0≤i<s

(n−1∑
j=ri

∑
r′∈L(i,j)

r

π
(i,j)
L (r, r′)Pj,r′

+

ri−1∑
j=0

∑
r′∈R(i,j)

r

π
(i,j)
R (r, r′)Pn−1−j,r′

)

+
∑

s≤i<K

n−1∑
j=0

∑
〈r′,r′′〉∈B(i,j)

r

π
(i,j)
B (r, r′, r′′) (Pj,r′ + Pn−1−j,r′′)

]
,

where

L(i,j)
r = {r′ | r′i = ri ∧ ∀k : 0 ≤ k < s ∧ k 6= i : 0 ≤ r′k ≤ min(j, rk)},
R(i,j)

r = {r′ | r′i = ri − j − 1 ∧ ∀k : 0 ≤ k < s ∧ k 6= i : 0 ≤ r′k ≤ min(n− j − 1, rk)},
B(i,j)
r = {〈r′, r′′〉 | r′ ∈ L(i,j)

r ∧ r′′ ∈ R(i,j)
r ,∀k : rk − 1 ≤ r′k + r′′k ≤ rk}.

If the root discriminates w.r.t. i for some specified coordinate i (0 ≤ i < s), the
size of the left subtree is j and ri ≤ j then the PM search will only continue in

the left subtree and ri(q, L) = ri(q, T ). Hence, the rank vectors in the set L(i,j)
r

must all have r′i = ri. If, on the other hand, ri > j then the PM search will
recursively proceed in the right subtree and ri(q, R) = ri(q, T )− j− 1 since the
root and the data points in the left subtree are discarded, hence r′i = ri − j − 1

for all rank vectors in R(i,j)
r .
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In the probabilistic model that we have assumed, the coordinates of each
data point are independently drawn and thus

π
(i,j)
L (r, r′) =

∏
0≤k<s,
k 6=i

π
(i,j)
L (k), π

(i,j)
R (r, r′) =

∏
0≤k<s,
k 6=i

π
(i,j)
R (k),

π
(i,j)
B (r, r′, r′′) =

∏
0≤k<s

π
(i,j)
B (k),

where π
(i,j)
L (k) is the probability that rk(q, L) = r′k given that rk(q, T ) = rk

and the event B−i,j(r) with k 6= i, π
(i,j)
R (k) is the probability that rk(q, R) = r′k

given that rk(q, T ) = rk and the event B+
i,j(r), again for k 6= i, and π

(i,j)
B (k) is

the probability that rk(q, L) = r′k and rk(q, R) = r′′k given that rk(q, T ) = rk
and the event B∗i,j(r) (and k 6= i because the i-th coordinate is not specified
and k is the index of the specified coordinate).

Let us consider now π
(i,j)
L (k). It can easily be shown that

π
(i,j)
L (k) =

(
j
r′k

)(
n−j
rk−r′k

)(
n
rk

)
since out of the

(
n
rk

)
configurations such that rk(q, T ) = rk, the numerator

gives the number of configurations in which the left subtree of size j gets r′k
data points where the k-th coordinate is ≤ qk, and rk − r′k of the remaining
n− j data points also have their k-th coordinate ≤ qk. Analogously,

π
(i,j)
R (k) =

(
n−1−j
r′k

)(
j+1
rk−r′k

)(
n
rk

) .

The analysis of π
(i,j)
B (k) is a bit more complicated, as we must separately con-

sider the situation in which the root has k-th coordinate ≤ qk or > qk. If the
k-th coordinate of the root is > qk, which happens with probability (n− rk)/n,
then

π
(i,j)
B (k) =

(
j
r′k

)(
n−1−j
rk−r′k

)(
n−1
rk

) ,

that is, we must have r′′k = rk − r′k, otherwise π
(i,j)
B (k) = 0. If, on the other

hand, the k-th coordinate of the root is ≤ qk, with probability rk/n, then

π
(i,j)
B (k) =

(
j
r′k

)(
n−1−j
rk−1−r′k

)(
n−1
rk−1

) ,

hence we must have r′′k = rk−1−r′k, otherwise π
(i,j)
B (k) = 0. This means that in

the recurrence the terms corresponding to unspecified coordinates (s ≤ i < K)
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can be rewritten as

∑
s≤i<K

n−1∑
j=0

∑
r′∈L(i,j)

r

∑
δ∈{0,1}s

∏
0≤k<s

P[∆k = δk]

(
j
r′k

)(
n−1−j

rk−δk−r′k

)(
n−1
rk−δk

) (Pj,r′ + Pn−1−j,r−r′−δ) ,

where ∆ is the indicator random vector for the event xk ≤ qk, and x is the data
point at the root of the random K-d tree.

The complete recurrence can be written in full by gathering all its different
“pieces”:

Pn,r = 1 +
1

nK

[ ∑
0≤i<s

{
n−1∑
j=ri

∑
r′∈L(i,j)

r

∏
0≤k<s,k 6=i

(
j
r′k

)(
n−1−j
rk−r′k

)(
n−1
rk

) Pj,r′ (7)

+

ri−1∑
j=0

∑
r′∈R(i,j)

r

∏
0≤k<s,k 6=i

(
n−1−j
r′k

)(
j+1
rk−r′k

)(
n
rk

) Pn−1−j,r′

}

+
∑

s≤i<K

n−1∑
j=0

∑
r′∈L(i,j)

r∑
δ∈{0,1}s

∏
0≤k<s

h(δk)

(
j
r′k

)(
n−1−j

rk−δk−r′k

)(
n−1
rk−δk

) (Pj,r′ + Pn−1−j,r−r′−δ)

]
,

with

h(δk) = P[∆k = δk] =

{
rk
n , if δk = 1,
n−rk
n , if δk = 0,

or more concisely, h(δk) = (δkrk + (1− δk)(n− rk))/n.
The recurrence looks daunting, and the chances of obtaining the asymptotic

behavior of Pn,r as n→∞ with the standard machinery of Analytic Combina-
torics seem extremely small, not to speak of solving the recurrence exactly. But
after several simplifications we can obtain a recurrence which is much easier and
can be solved using rather standard asymptotic techniques.

3.6 Proof of Theorem 4

Let us recall our strategy to prove Theorem 4. Once we have derived the recur-
rence that Pn,r satisfies, our next step will be to assume that there is some γ > 0
such that limn→∞ n−γPn,r = f(z0, . . . , zt−1) exists and it is not zero, which will
allow us to prove that we must have γ = α(ρ, ρ0), and to obtain an integral
equation, plus a set of boundary/initial conditions, for which f(z0, . . . , zt−1) is
a solution. That is, our assumption here—that limn→∞ n−γPn,r exists and it is
not identically null—is just a useful “trick” to transform the original recurrence
into the somewhat simpler integral equation (8).

This will be formalized in Proposition 1 below. Then we will solve the
integral equation and find the explicit form of f(z0, . . . , zt−1) which is given in
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Proposition 2. The rest of this section is mainly devoted to prove that the

f
(r0

n
, . . . ,

rt−1

n

)
nα + o(nα)

is a solution of the recurrence satisfied by Pn,r.
Last but not least, the asymptotic estimate for Pn,r together with the dis-

cussion in Subsection 3.1 allows us to prove the last part of Theorem 4, namely,
the asymptotic estimate for Pn,q.

Proposition 1. Let r = (r0, . . . , rK−1) be such that zi = limn→∞ ri/n ∈ (0, 1)
for all i, 0 ≤ i < t, ri = o(n) or ri = n − o(n) for all i, t ≤ i < s, and
ri = ∗ for all i, s ≤ i < K. Assume that 0 < t ≤ s < K, that is, the rank
vector corresponds to a partial match query with at least one regular specified
coordinate and at least an unspecified coordinate.

If limn→∞
Pn,r
nγ exists for some γ and it is non-null then γ = α(ρ, ρ0) (as

given in Theorem 5) and

f(z0, . . . , zt−1) = lim
n→∞

Pn,r
nγ

is the solution of the integral equation

f(z0, . . . , zt−1) = λ

t−1∑
i=0

{
zγ+1
i

∫ 1

zi

f(z0, . . . , zi−1, z, zi+1, . . . , zt−1)
dz

zγ+2
(8)

+ (1− zi)γ+1

∫ zi

0

f(z0, . . . , zi−1, z, zi+1, . . . , zt−1)
dz

(1− z)γ+2

}
,

where λ = (α+ 2)/2t and the function f is subject to the following constraints:

(a) The function f is symmetric with respect to any permutation of its argu-
ments.

(b) For any i, 0 ≤ i < t, and zi ∈ (0, 1), f(z0, . . . , zi−1, zi, zi+1, . . . , zt−1) =
f(z0, . . . , zi−1, 1− zi, zi+1, . . . , zt−1).

(c) For any i, 0 ≤ i < t,

lim
zi→0

f(z0, . . . , zi−1, zi, zi+1, . . . , zt−1) =

lim
zi→1

f(z0, . . . , zi−1, zi, zi+1, . . . , zt−1) = 0.

(d) ∫ 1

0

· · ·
∫ 1

0

f(y0, . . . , yt−1) dy0 · · · dyt−1 = β(ρ, ρ0).

For the proof of the proposition above, we have to go through several
approximations of recurrence (7); then plugging the assumption Pn,r/n

γ =

17
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f(z0, . . . , zt−1)+o(1) and passing to the limit yields the integral equation (8) for
f given in the proposition. The constraints (boundary conditions) that f must
satisfy easily follow from the symmetry properties of Pn,r. Constraint (d) and
γ = α(ρ, ρ0) are consequences of (6). In fact, we must have γ = α(ρ, ρ0), for
otherwise we would have a contradiction with our hypothesis: either we would
have that limn→∞ Pn,r/n

γ = 0 or that limit does not exist (the limit would be
∞). To establish the constraints in (c) we use induction on t, for fixed s; the
crucial point here is that α(ρ, ρ0) > α(ρ, ρ′0) if ρ0 < ρ′0. More details of the
proof can be found in Appendix A.

We move next to the second proposition here, giving us the explicit form of
the solution to the integral equation (8).

Proposition 2. Let

f(z0, . . . , zt−1) = νs,t,K ·

(
t−1∏
i=0

zi(1− zi)

)α/2
where ρ = s/K, ρ0 = s0/K = (s − t)/K, α = α(ρ, ρ0) is given in Theorem 5
and νs,t,K is

νs,t,K = β(ρ, ρ0)
Γt(α+ 2)

Γ2t(α/2 + 1)
.

with

β = β(ρ, ρ0) =
1

(1− ρ)

Γ(2α+ 1 + ρ0)

(α+ 1)Γ(α+ 1 + ρ0)α2Γ2(α)
.

Then f is a solution of (8) satisfying all the constraints stated in Proposition 1.

In order to solve the integral equation, we can take successive partial deriva-
tives to obtain a PDE for f . However, because of the symmetries of f on all its
arguments, we can assume that

f(z0, . . . , zt−1) = φ0(z0) · · ·φt−1(zt−1)

for some φ0, . . . , φt−1. Moreover, we can safely assume that φ0 = · · · = φt−1 =
φ. So we end up with an ODE for φ and a set of constraints on φ (e.g., φ(z) =
φ(1 − z) for all z ∈ (0, 1)) for which the unique solution can be found quite
easily. The complete details of the proof are given in Appendix B.

To complete the proof of Theorem 4 we carefully compute the errors in
passing from recurrence (7) to the integral equation (8). Having the explicit
form for f(z0, . . . , zt−1) is crucial here. The details are given in Appendix C,
showing that the error is O(∆2/n) +O(1/n) with ∆ = o(

√
n), that is, the error

is o(1). The de Moivre-Laplace method that we mentioned above plays also an
important role in these computations.

Let us now write recurrence (7) in a more compact form:

Pn,r = 1 +
1

nK

K−1∑
i=0

n−1∑
j=0

∑
r′

ω(i,j)
n (r, r′) · Pj,r′ ,

18
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where the weights ω
(i,j)
n (r, r′) denote the average number of recursive calls on a

subtree of size j with rank vector r′ when the call is made on a (sub)tree of size
n, the rank vector is r and the root discriminates with respect to coordinate i.

To simplify, for the rest of the section we will assume that the query has no
extreme coordinates, that is, ρ0 = 0 (the arguments below can be easily adapted
to the case ρ0 > 0, however the details are slightly messier). It is not difficult
to show that if we set P ′n,r = Pn,r − 1

1−ρ , then P ′n,r satisfies the homogeneous
recurrence

P ′n,r =
1

nK

K−1∑
i=0

n−1∑
j=0

∑
r′

ω(i,j)
n (r, r′) · P ′j,r′ , (9)

and P ′0,r = −1/(1− ρ), since P0,r = 0. The same can be done for any other toll
function τn,r in the recurrence, as long as τn,r = o(nα). That is, if

Un,r = τn,r +
1

nK

K−1∑
i=0

n−1∑
j=0

∑
r′

ω(i,j)
n (r, r′) · Uj,r′ ,

then we can write Un,r = U
[hom]
n,r +Vn,r, with U

[hom]
n,r satisfying the homogeneous

recurrence (9) and Vn,r = O(τn,r) = o(nα). The initial conditions that U
[hom]
n,r

satisfies are of course different from the initial conditions of Un,r.
The computations (most of them given in Appendices A and B) that lead

to the closed form for f actually show that

f [hom](z0, . . . , zt−1) = c ·

(
t−1∏
i=0

zi(1− zi)

)α/2
,

with c an arbitrary constant, and zi = ri/n, give us the general solution of
the homogeneous recurrence, subject only to the constraints (a), (b) and (c)
given in Proposition 1 since these stem from the symmetries in the weights

ω
(i,j)
n of the recurrence (see the discussion in Appendix A). In this sense, the

only “arbitrary” initial condition is the one in constraint (d) since it is directly

related to the initial values of U
[hom]
n,r .

The computations in Appendix C show that Un,r = f [hom](r/n) ·nα + o(nα)
is a solution of the homogeneous recurrence (9), satisfying only the structural
constraints (a)–(c) of Proposition 1. To establish that, we only need the closed
form for f and the computations given in Appendix C: we do not need to
hypothesize the existence of the limit f = limn→∞ Pn,r/n

γ ; the hypothesis is a
useful guess to arrive at the closed form for f .

Finally, taking into account constraint (d) gives us the value of c and shows
that Pn,r = f(r/n) · nα + o(nα).

We have already discussed at the end of Subsection 3.1 the connection be-
tween Pn,q and Pn,r. Since Pn,r = f(r0/n, . . . , rt−1/n) · nα + o(nα), where f is
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given in Proposition 2, when the coordinates of the n data points are indepen-
dent and uniformly distributed we write

Pn,q =
∑
r

(f(r0/n, . . . , rt−1/n)nα (1 + o(1))

t−1∏
i=0

(
n

ri

)
qrii (1− qi)n−ri

= nανs,t,K

t−1∏
i=0

∑
0≤r≤n

(
n

r

)
qri (1− qi)n−r

( r
n

(
1− r

n

))α/2
+ o(nα).

Now, the main contribution in each summation of the form∑
0≤r≤n

(
n

r

)
qri (1− qi)n−r

( r
n

(
1− r

n

))α/2
comes from a neighborhood of size ∆ of r = nqi. With ∆ = o(n2/3) we can apply
the de Moivre-Laplace limit theorem [Fel71] to show that the contributions of the
ranges r < r−∆ and r > r+ ∆ are negligible and to compute the contribution
from the middle range r −∆ ≤ r ≤ r + ∆. Finally, we can expand r

n (1− r
n ) as

r
n (1− r

n ) +O(∆/n) proving thus

∑
0≤r≤n

(
n

r

)
qri (1− qi)n−r

( r
n

(
1− r

n

))α/2
=

(
r

n

(
1− r

n

))α/2
(1 +O(∆2/n))

= (qi(1− qi))α/2 (1 + o(1)).

The asymptotic estimate for Pn,q given in the last part of Theorem 4 follows

Pn,q = νs,t,K ·

(
t−1∏
i=0

qi(1− qi)

)α/2
· nα + o(nα).

4 Fixed partial match queries in standard K-d
trees

The analysis of the expected cost of a PM search with a fixed query in random
standard K-d trees goes along the same lines as the analysis for relaxed K-d
trees in the previous section. The major differences stem from the fact that now
the query pattern is relevant for the performance of PM searches.

As in Section 3, we will need an intermediate result about the expected cost
of random PM queries with t regular coordinates, s0 extreme coordinates and
K−s = K− (t+s0) unspecified coordinates. The constant factor in the leading
term of Pn depends on the query pattern u(q) and thus we shall write Pn,u for
the expected cost of a random PM query with pattern u in a random standard
K-d tree of size n.
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Theorem 6. Let Pn,u = E[P,u,Q] be the expected cost of a PM search in a ran-
dom standard K-d tree of size n with a random query Q with pattern u = u(Q),
in which s coordinates are specified and the remaining K−s coordinates are left
unspecified. Of the s specified coordinates exactly t coordinates are indepen-
dently drawn at random from the same continuous distribution(s) from which
data coordinates are drawn, and exactly s0 = s− t coordinates are extreme (we
assume, w.l.o.g., that they are 0). Then

Pn,u = βun
α(ρ,ρ0) + o(nα(ρ,ρ0)),

where the exponent α(ρ, ρ0) is the unique positive real root in (0, 1) of the equa-
tion (

α(ρ, ρ0) + 2

)ρ−ρ0(
α(ρ, ρ0) + 1

)1−ρ+ρ0
= 21−ρ0 , (10)

and the βu’s are constants that depend on the query pattern u (and implicitly
on s, s0 and K).

Proof. Given the fixed rule to assign discriminants to nodes in standard K-d
trees we need to introduce some notation. We will abbreviate (i+ 1) mod K as
i⊕ 1. Let u(i) be the pattern u shifted to the left i times; in particular we have

u(K) = u(0) = u. Let P
(i)

n,u be the expected cost of a PM query with pattern u
in a random standard K-d tree of size n when the root discriminates w.r.t. the
i-th coordinate; of course, we are interested in P

(0)

n,u = Pn,u.

Let P
(i)
u (z) =

∑
n≥0 P

(i)

n,uz
n be the generating function for the expected

costs P
(i)

n,u, 0 ≤ i < K. If ui = ∗ the search has to continue in both subtrees,
if ui = E the search has to continue in only one subtree (w.l.o.g. we can
assume that it is in the left subtree), and if ui = S the search continues on
the left subtree with probability (j + 1)/(n + 1) and on the right subtree with
probability (n − j)/(n + 1). This gives us a system of differential equations

for the vector 〈P (0)
u (z), . . . , P

(K−1)
u (z)〉 which can be analyzed using the same

techniques as in [FP86] or [CLF89], for instance; the only difference in setting
up such a system comes from the extreme coordinates, that is, whenever ui = E.
The singularity analysis of this system yields that

P (i)
u (z) ∼ ηu(1− z)−(α+1), 0 ≤ i < K,

around the singularity z = 1, where α = α(ρ, ρ0) is the unique solution in (0, 1)
of (

α(ρ, ρ0) + 2

)ρ−ρ0(
α(ρ, ρ0) + 1

)1−ρ+ρ0
= 21−ρ0 .

The rest of the proof easily follows from standard singularity analysis tech-
niques [FO90, FS09] with βu = ηu/Γ(α+ 1).

It is not too difficult to prove that α(ρ, ρ0), with 0 ≤ ρ0 ≤ ρ < 1 is strictly
decreasing as ρ0 increases (for a fixed ρ) and it is also decreasing if ρ increases,
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just as in the case of relaxed K-d trees (there, the proof of these facts is straight-
forward, as a simple closed form for α(ρ, ρ0) is available).

In particular, α(0, 0) = 1, α(ρ, ρ) = 21−ρ − 1 and limρ→1 α(ρ, g(ρ)) = 0 for
any function g such that g(x) ≤ x. Furthermore, α(ρ, ρ0) ≥ 21−ρ − 1 for any ρ
and ρ0 ≤ ρ.

Since the query pattern is relevant, we can no longer assume that the query
q or its rank vector r have particularly convenient forms; instead, we will need
to introduce `k for the index of the k-th specified regular coordinate. Thus
q`k ∈ (0, 1) for 0 ≤ k < t; all other positions correspond to specified extreme
coordinates or unspecified coordinates. We can now state the main result of
this section.

Theorem 7. For a query q with rank vector r = (r0, . . . , rK−1) such that
r`k = z`kn+ o(n), 0 < z`k < 1, for all k, 0 ≤ k < t, ri = o(n) or ri = n− o(n)
for exactly s0 coordinates and ri = ∗ for the remaining K − s coordinates, the
expected cost of the partial match in a random standard K-d tree of size n is

Pn,r = νu(r) ·

(
t−1∏
k=0

z`k(1− z`k)

)α/2
· nα + o(nα),

where the exponent α(ρ, ρ0) is the same as in Equation (10) of Theorem 6, and

νu = βu
Γt(α+ 2)

Γ2t(α2 + 1)
,

with βu the constant factor in the leading term of Pn,u (see Theorem 6).

Let P
(i)
n,r denote the expected cost of a PM search for a fixed query with rank

vector r in a random standard K-d tree of size n where the root discriminates
with respect to coordinate i, 0 ≤ i < K. As before the quantity of interest will be

Pn,r := P
(0)
n,r . Reasoning as in Subsection 3.5 and using the same notation as we

have used there (e.g., h(δk), L(i,j)
r , . . . ), we can set up a system of recurrences3:

P (i)
n,r = 1 +

1

n

[
n−1∑
j=ri

∑
r′∈L(i,j)

r

∏
0≤k<s
`k 6=i

(
j
r′`k

)(
n−1−j
r`k−r

′
`k

)
(
n−1
r`k

) P
(i⊕1)
j,r′

+

ri−1∑
j=0

∑
r′∈R(i,j)

r

∏
0≤k<s
`k 6=i

(
n−1−j
r′`k

)(
j+1

r`k−r
′
`k

)
(
n
r`k

) P
(i⊕1)
n−1−j,r′

]
, if ui(r) 6= ∗,

3For brevity, we do not make the distinction between regular and extreme coordinates; `0,
. . . , `s−1 give the indices of specified coordinates.
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and

P (i)
n,r = 1 +

1

n

n−1∑
j=0

∑
r′∈L(i,j)

r

∑
δ∈{0,1,∗}K

∏
0≤k<s

h(δ`k)

(
j
r′`k

)(
n−1−j

r`k−δk−r
′
`k

)
(
n−1

r`k−δk

)
×
(
P

(i⊕1)
j,r′ + P

(i⊕1)
n−1−j,r−r′−δ

)
, if ui(r) = ∗.

Using the same techniques as in the previous section and Appendix A we
can show that if the limits

f (i)
u (z`0 , . . . , z`t−1

) = lim
n→∞

P
(i)
n,r

nγ

exist and are not identically null, with z`k = limn→∞ r`k/n, 0 < z`k < 1, and
u = u(r), then we get4

f (i)(z`0 , . . . , z`t−1) =


2

γ+1f
(i⊕1)(z`0 , . . . , z`t−1

), if ui = ∗,
1

γ+1f
(i⊕1)(z`0 , . . . , z`t−1), if ui = E,

zγ+1
i

∫ 1

zi
f (i⊕1) (. . . , z, . . .) dz

zγ+2

+(1− zi)γ+1
∫ zi

0
f (i⊕1) (. . . , z, . . .) dz

(1−z)γ+2 , if ui = S.

The constraints that this system of integral equations must satisfy are anal-
ogous to those in the case of relaxed K-d trees. In particular, we must have
γ = α(ρ, ρ0), and

(a) For any k, 0 ≤ k < t, and z`k ∈ (0, 1), f(. . . , z`k , . . .) = f(. . . , 1− z`k , . . .).

(b) For any k, 0 ≤ k < t,

lim
z`k→0

f(z`0 , . . . , z`k , . . . , z`t−1
) = lim

z`k→1
f(z`0 , . . . , z`k , . . . , z`t−1

) = 0.

(c) ∫ 1

0

· · ·
∫ 1

0

fu(y0, . . . , yt−1) dy0 · · · dyt−1 = βu.

To solve the system of integral equations and to complete the proof of The-
orem 7 we can proceed along similar steps to those in Appendices B and C.

5 Experiments

Our analysis of the expected cost of PM search for fixed queries is only asymp-
totic and provides the leading order term. We have conducted several experi-
ments in order to investigate for which input sizes we can expect to get relatively

4From now on, we shall omit the subscript u of f to simplify notation.
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good predictions from the theoretical analysis. As we will see, the main conclu-
sion of our experiments is that, despite the asymptotic nature of our theoretical
results, they do quite a reasonable job at predicting the cost of PM queries,
even for inputs of moderate size, e.g., n ≈ 5000.

Each run of our experiments can be described by a tuple 〈T ,q, n,M〉 where
T is a type of K-d trees (standard, relaxed or squarish), q is the query, n is the
size of the trees in the sample and M is the size of the sample. For each run we
generate M random K-d trees of type T and size n. In each tree we perform a
PM search with query q, counting the total number of visited nodes and taking

the corresponding sample mean pn,q := 1/M
∑M
i=1 P

(i)
n,q, where the P(i)

n,q are
independent identical realizations of Pn,q. Most of the plots that follow depict
the normalized mean cost cn,q := pn,q/n

α, with α the appropriate exponent for
each case—that is, depending on T and the ratios ρ0 and ρ that correspond
to q. For comparison, we depict also the theoretical value f(q0, . . . , qt−1) ∼
Pn,q/n

α. In all of these plots one of the most conspicuous features is the dome-
like symmetrical shape of the PM search cost along every specified coordinate.

Let us start by reporting results for random relaxed 3-d trees. Figure 2 shows
the behavior of the normalized mean cost cn,q for queries with two specified co-
ordinates, x and y; the plot shows the variation of the experimentally measured
cost w.r.t. y, as x takes several distinct values (x = 0, 0.1, 0.25, 0.5). For x 6= 0
we have normalized dividing by nα(2/3,0) = n0.457..., whereas for x = 0 we have
normalized dividing by nα(2/3,1/3) = n0.387.... For each value of x we also plot
the theoretical prediction f(x, y) (smooth curves). A simple visual inspection
of the plots reveals that the experimental data (ragged curves) match the pre-
dicted costs quite well. Because of the normalization the curves for x = 0 lie
somewhere between those for x = 0.25 and x = 0.5; however, the reader must
recall that different normalizations have been used to plot these curves and the
mean cost pn,q when x = 0 is actually significantly smaller than the mean cost
when x is sufficiently away from 0.

Figure 3 plots the relative error in the previous experiment, that is,

εn,q =

√
s2
n,q

pn,q
,

where s2
n,q is the sample variance. A plausible explanation for the high relative

errors that we get in the experiments is that V[Pn,q] is likely of order n2α

(that has been proven true for 2-d quadtrees [BNS13]) and hence there is no
concentration around the expectation. More specifically, as we will later discuss,
we conjecture that

V[Pn,q] = ν
(2)
s,t,K ·

(
t−1∏
i=0

qi(1− qi)

)α/2
· n2α + l.o.t.

for some constant ν
(2)
t,s,K and thus εn,q ≈

√
ν(2)/ν. The experiments give cred-

ibility to this hypothesis; moreover, when x = 0, the constant ν changes (and
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Figure 2: Normalized expected costs (experimental vs. theoretical) for different
fixed PM queries in relaxed 3-d trees

likely ν(2) does too); from the experiment it seems that their ratio would be

larger than the ratio
√
ν

(2)
s,s,K/νs,s,K .

Figure 4 shows how the experimental results get closer to the theoretical
predicted expected cost for increasing values of n. As we already have mentioned
for moderate input sizes such as n = 5000, the experimental mean costs are
already quite close to the theoretical expectation (which is approximated by
its leading order term). The queries used in this experiment are of the form
q = (0.25, y, ∗).

Figures 5 and 6 are similar to Figures 2 and 3, but for standard 3-d trees.
In contrast with relaxed K-d trees, the pattern of regular, extreme and unspec-
ified coordinates in the query is relevant. In Figure 5 we try to capture that
dependency by considering three different queries which differ in their pattern:
q = (0.25, y, ∗), q = (0.25, ∗, y) and q = (∗, 0.25, y). In all three runs the
normalizing factor of the mean costs is n−α(2/3,1/3) = n−0.3146.... We can ap-
preciate again that we obtain qualitatively similar behavior of the average costs
as the one for relaxed K-d trees, just as our theoretical results predict. In this
case it is important to remark that both the average cost and the variance are
smaller than the ones for relaxed K-d trees (the exponent α(2/3, 0) = 0.395 . . .
for standard 3-d trees, whereas α(2/3, 0) = 0.457 . . . for relaxed 3-d trees).
Furthermore, the constant coefficient ν in Pn,q depends on the pattern u(q)
(because ν depends on β), a dependency that is well reflected in the experi-
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Figure 3: Relative errors of measured costs for different fixed PM queries in
relaxed 3-d trees

Figure 4: Normalized expected cost (experimental vs. theoretical) for fixed PM
queries in relaxed 3-d trees of different sizes.
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mental data and well predicted by the theoretical asymptotic expected costs.
Like in relaxed K-d trees, a plausible (and analogous) hypothesis for V[Pn,q] in
standard K-d trees leads to εn → c for some constant c not depending on the
actual values of the specified regular coordinates of q, but only on its pattern.
Again the experiments support this hypothesis. A remark is in order here: while
we have refrained from giving further details about βu (and thus about νu), the
values βSS∗, βS∗S and β∗SS are readily available from the literature (and re-
lated because the three patterns are circular shifts one from the other [CH06]).
From these we can obtain the theoretical curves against which to compare the
experimental data.

Figure 5: Normalized expected cost (experimental vs. theoretical) for fixed PM
queries in standard 3-d trees with different patterns.

The last variant of K-d trees that we have considered in our experiments is
squarish K-d trees. Here we have no theoretical results to compare with, but
experiments can be used to test several different hypotheses. Recall that the
expected cost of a random PM query is Θ(n1−s/K), and experiments could give
useful hints about the expected cost of fixed PM queries in these K-d trees.
The experiments for squarish K-d trees hide a “surprise”: Pn,q seems not to
depend on q at all, only on s and K. That is in sharp contrast with what can
be analytically proved and experimentally observed for relaxed and standard
K-d trees. Figure 7 shows the normalized mean cost for squarish 3-d trees; the
normalizing factor is n−1/3. A combinatorial argument shows that the order of
specified and unspecified coordinates in the query is irrelevant, like in relaxed
K-d trees and thus we anticipated that Pn,q would not depend on u(q) for
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Figure 6: Relative errors of the expected costs for fixed PM queries in standard
3-d trees with different patterns.

squarish K-d trees. The (initially) surprising fact is that Pn,q seems not to
depend on the values of the specified regular coordinates either—at least, the
experiments indicate so. This drastically different behavior is not so surprising
in the light that squarish K-d trees are far more balanced than the other variants
(the exponent α = 1− s/K is optimal for the expected cost of a PM query with
s regular coordinates in any multidimensional data structure). The experiments
support then the conjecture that

Pn,q ∼ νt,s,Kn1−s/K

in squarish K-d trees. The exponent in n is always 1− s/K, irrespective of s0

and t, and the constant ν does depend on s and t (or s0 = s− t), but not on the
actual values of the regular coordinates of q. In fact, we conjecture that this is
also the case with any other multidimensional data structure that attains the
optimal exponent α = 1− s/K for PM search.

Besides K = 3, we have also conducted experiments in relaxed, standard
and squarish K-d trees for higher dimensional settings, all showing qualitatively
identical results to those reported above.

All the programs used in the experiments were written in the C++ program-
ming language and compiled with the GNU gcc compiler version v4.4.3. The
experiments were run on a Pentium Genuine Intel x86 64 64-bit dual 32K core
processor.
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Figure 7: The average cost of fixed PM queries in squarish 3-d trees

6 Conclusions

For a period of 25 years, the probabilistic analysis of partial match and other as-
sociative queries in multidimensional data structures focused on random queries,
a program which has been extremely successful and has yielded a good share of
interesting results. In the last four years several authors [CJ11, BNS13, DJM14]
have tackled the analysis of partial match with fixed queries; this paper is one
additional contribution in that direction. The three mentioned papers, together
with the present one, have uncovered the pervasiveness of the function

ψ(z) = (z(1− z))α/2

at the heart of the cost of PM searches with fixed queries for several different
data structures, namely, 2-d quadtrees, relaxed K-d trees and standard K-d
trees. The function appears in the expected cost Pn,q (in all three mentioned
variants); Broutin et al. [BNS13] have also proved that it is involved in a very
deep sense in the case of 2-d quadtrees (an analogous result holds for standard
2-d trees): there exists a random variable Φ such that, for a query q = (z, ∗)
(or q = (∗, z)), (

Pn,q
ν · nα

, z ∈ (0, 1)

)
(d)−−→ (ψ(z) · Φ, z ∈ (0, 1))

where the exponent α = α(1/2) = (
√

17 − 3)/2 is the one corresponding to a
random PM query in a random 2-d quadtree and ν is a constant (we don’t give
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its explicit form here, but it has been computed in [BNS13]). By Xn
(d)−−→ X we

mean that the sequence of random variables Xn converges in distribution to the
random variable X, as n→∞. The same notation is used for the convergence
of a stochastic process (Xn(z), z ∈ (0, 1)) to a continuous random function X.

We conjecture that this is the situation for all hierarchical multidimensional
data structures (quadtrees and many variants of K-d trees, for instance) such
that α(x) > 1− x. In fact, we conjecture that

(
Pn,q
nα

)
(d)−−→ Γs(α+ 2)

Γ2s(α/2 + 1)

 ∏
i:qi 6=∗,qi 6∈{0,1}

ψ(qi)

 · Φu(q), (11)

where Φu(q) is the random variable such that

Pn,q
nα(ρ,ρ0)

(d)−−→ Φu(q),

and Pn denotes the cost of a random PM query with pattern u (in some data
structures such as quadtrees and relaxed K-d trees the query pattern is irrele-
vant, but this formulation is the most general). It is also reasonable to conjecture
that for expected costs,

(
Pn,q
nα

)
→ βu(q) ·

Γs(α+ 2)

Γ2s(α/2 + 1)

 ∏
i:qi 6=∗,qi 6∈{0,1}

ψ(qi)

 , n→∞

where βu and α come from the expected cost of a random PM query, namely,

Pn,u = E
[
Pn,u

]
= βun

α + l.o.t.

Indeed, we have proved in this paper that such is the case for relaxed and
standard K-d trees.

We believe (see Section 5) that the conjecture (11) above does not hold
in squarish K-d trees and other multidimensional data structures such that
α(x) = 1− x. Instead, we conjecture that, in these cases,

Pn,q/n1−s/K (d)−−→ cu(q) (12)

for some constant cu that only depends on ρ0 and ρ for squarish K-d trees
and, more generally, might depend on the pattern u of the query for other data
structures. Also, if we consider the expected cost of fixed PM queries in such
data structures, it is natural to anticipate that Pn,q = cun

1−s/K + l.o.t..
The two conjectures discussed above (Eqs. (11) and (12)) are far-reaching

as they would apply to whole families of multidimensional data structures, and
the analysis should be conducted at a very high level of abstraction. We are
currently working on the distributional analysis of PM queries in standard and
relaxed K-d trees, with the goal of proving the conjecture for these particular
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variants of K-d trees. Somewhat simpler than the distributional analysis, the
analysis of the variance and other higher order moments of Pn,q can be carried
out using the same techniques as in this paper, without the need for more
sophisticated tools such as the contraction method used in [BNS13]. Another
family of K-d trees for which we already have encouraging preliminary results is
K-d-t trees [CLF89] (they result from the addition of a local rebalancing rule of
small subtrees to a regular variant of K-d trees, e.g., relaxed K-d-t trees). We
also plan to analyze PM searches with fixed queries in other multidimensional
data structures in the near future.

Another interesting line of research is to extend the results about partial
match queries to other associative queries with fixed parameters, e.g., nearest
neighbor queries for a given query point q or orthogonal range queries with a
fixed hyperrectangle query Q = [`0, u0]× · · · × [`K−1, uK−1].
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A Getting the integral equation (8)

The hypothesis of Proposition 1 is that there exists some γ such that

lim
n→∞

n−γPn,r = f(z0, . . . , zt−1)

exists and is not identically null, with zi = limn→∞ ri/n ∈ (0, 1), 0 ≤ i < t.
We shall also assume here that all ri ≤ n/2, for otherwise we can replace ri by
n− ri.

First of all, in the asymptotic regime, when ri = o(n) , the probability that
we recursively continue the PM search in the right subtree is o(1), so we can
assume all extremal ranks are ri = 0 (t ≤ i < s), and thus we can rewrite the
recurrence as

Pn,r ∼ 1 +
1

nK

[ ∑
0≤i<t

(n−1∑
j=ri

∑
r′∈L(i,j)

r

π
(i,j)
L (r, r′)Pj,r′

+

ri−1∑
j=0

∑
r′∈R(i,j)

r

π
(i,j)
R (r, r′)Pn−1−j,r′

)

+
∑
t≤i<s

n−1∑
j=0

∑
r′∈L(i,j)

r

π
(i,j)
L (r, r′)Pj,r′

+
∑

s≤i<K

n−1∑
j=0

∑
〈r′,r′′〉∈B(i,j)

r

π
(i,j)
B (r, r′, r′′) (Pj,r′ + Pn−1−j,r′′)

]
.

A second simplification comes from the realization that π
(i,j)
L (r, r′), π

(i,j)
R (r, r′)

are highly concentrated around the expected value of r′; in particular,∑
r′∈L(i,j)

r

π
(i,j)
L (r, r′)Pj,r′ ∼ Pj,←−r

where ←−ri = ri and ←−rk = j
nrk for k 6= i.

Similarly, ∑
r′∈R(i,j)

r

π
(i,j)
R (r, r′)Pn−1−j,r′ ∼ Pn−1−j,−→r ,

where −→ri = ri − j − 1 and −→rk = n−1−j
n rk for k 6= i. Last but not least,

∑
r′∈L(i,j)

r

∑
δ∈{0,1}s

∏
0≤k<s

h(δk)

(
j
r′k

)(
n−1−j

rk−δk−r′k

)(
n−1
rk−δk

) (Pj,r′ + Pn−1−j,r−r′−δ)

∼ Pj,←→r + Pn−1−j,r−←→r ,
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where ←→rk = j
nrk, 0 ≤ k < s. Setting Cn,r := 0 if n = 0, and Cn,r := n−γPn,r if

n > 0,

Cn,r ∼
1

nγ
+

1

nK

[ ∑
0≤i<t

(
n−1∑
j=ri

Cj,←−r ·
(
j

n

)γ
+

ri−1∑
j=0

Cn−1−j,−→r ·
(
n− 1− j

n

)γ)]
(13)

+
s0

nK
·
n−1∑
j=0

Cj,←−r ·
(
j

n

)γ

+
(K − s)
nK

·
n−1∑
j=0

(
Cj,←→r ·

(
j

n

)γ
+ Cn−1−j,r−←→r ·

(
n− 1− j

n

)γ)
.

Notice that when t ≤ i < s, we assume ri = 0 and thus←−ri = 0 as well. Now,
since t > 0,

lim
n→∞

Pn,r
nγ

= f(z0, . . . , zt−1)

exists and it is not identically null, by hypothesis. If we substitute Cn,r by
f
(
r0
n , . . . ,

rt−1

n

)
then

f
(r0

n
, . . . ,

rt−1

n

)
∼ 1

nγ

+
1

nK

[ ∑
0≤i<t

(
n−1∑
j=ri

f

(
r0

n
, . . . ,

ri
j
, . . . ,

rt−1

n

)
·
(
j

n

)γ

+

ri−1∑
j=0

f

(
r0

n
, . . . ,

ri − j − 1

n− 1− j
, . . . ,

rt−1

n

)
·
(
n− 1− j

n

)γ)]

+
s0

nK
·
n−1∑
j=0

f
(r0

n
, . . . ,

rt−1

n

)
·
(
j

n

)γ

+
(K − s)
nK

·
n−1∑
j=0

(
f
(r0

n
, . . . ,

rt−1

n

)
·
(
j

n

)γ

+ f
(r0

n
, . . . ,

rt−1

n

)
·
(
n− 1− j

n

)γ)
.

Passing to the limit when n→∞, with zi = limn→∞(ri/n), we replace sums
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by integrals and thus

f (z0, . . . , zt−1) =
1

K

[ ∑
0≤i<t

(∫ 1

zi

f
(
z0, . . . ,

zi
z
, . . . , zt−1

)
· zγ dz

+

∫ zi

0

f

(
z0, . . . ,

zi − z
1− z

, . . . , zt−1

)
· (1− z)γ dz

)
+ s0 ·

∫ 1

0

f (z0, . . . , zt−1) · zγ dz

+ (K − s) ·
∫ 1

0

(
f (z0, . . . , zt−1) · zγ

+ f (z0, . . . , zt−1) · (1− z)γ
)
dz

]
,

which can be further manipulated to give

f (z0, . . . , zt−1) =
1

K

[ ∑
0≤i<t

(∫ 1

zi

f
(
z0, . . . ,

zi
z
, . . . , zt−1

)
· zγ dz

+

∫ zi

0

f

(
z0, . . . ,

zi − z
1− z

, . . . , zt−1

)
· (1− z)γ dz

)
+ s0 · f (z0, . . . , zt−1) · 1

γ + 1

+ (K − s) · f (z0, . . . , zt−1) · 2

γ + 1

]
.

Hence

f(z0, . . . , zt−1) = λ

[ ∑
0≤i<t

(∫ 1

zi

f
(
z0, . . . ,

zi
z
, . . . , zt−1

)
· zγ dz

+

∫ zi

0

f

(
z0, . . . ,

zi − z
1− z

, . . . , zt−1

)
· (1− z)γ dz

)]
,

with

λ =
1

K

1

1− 2(K−s)+s0
K(γ+1)

.

Furthermore,

f(z0, . . . , zt−1) = λ

t−1∑
i=0

{
zγ+1
i

∫ 1

zi

f(z0, . . . , zi−1, z, zi+1, . . . , zt−1)
dz

zγ+2

+ (1− zi)γ+1

∫ zi

0

f(z0, . . . , zi−1, z, zi+1, . . . , zt−1)
dz

(1− z)γ+2

}
.
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with the substitution z := zi/z in the first integral and z := (zi − z)/(1− z) in
the second.

Besides the integral equation (8), the properties of Pn,r translate into several
constraints that f(z0, . . . , zt−1) must satisfy:

(a) The function f is symmetric with respect to any permutation of its argu-
ments.

(b) For any i, 0 ≤ i < t, and zi ∈ (0, 1), f(z0, . . . , zi−1, zi, zi+1, . . . , zt−1) =
f(z0, . . . , zi−1, 1− zi, zi+1, . . . , zt−1).

(c) For any i, 0 ≤ i < t,

lim
zi→0

f(z0, . . . , zi−1, zi, zi+1, . . . , zt−1) =

lim
zi→1

f(z0, . . . , zi−1, zi, zi+1, . . . , zt−1) = 0.

(d) ∫ 1

0

· · ·
∫ 1

0

f(y0, . . . , yt−1) dy0 · · · dyt−1 = β(ρ, ρ0).

Constraint (d) follows because of (6). In fact, we must have γ = α(ρ, ρ0), for
otherwise we would have a contradiction with our hypothesis: either we have
that limn→∞ Pn,r/n

γ = 0 or that limit does not exist (→ ∞). Also, because
γ = α(ρ, ρ0) =: α we must have,

λ =
α+ 2

2t
,

since

1− 2(K − s) + s0

K(γ + 1)
=

2t

K(α+ 2)
.

Constraint (c) follows from inductive reasoning. Suppose that for any rank
vector r′ with s0 + 1 extreme values we have Pn,r′ = Θ

(
nα(ρ,ρ0+1/K)

)
. Since

setting zi = 0 or zi = 1 corresponds to one more extreme rank, dividing Pn,r by
n−α(ρ,ρ0) yields that f is 0, because α(ρ, ρ0+1/K) < α(ρ, ρ0). To prove the basis
of this induction, we must analyze the case when all the specified coordinates
of a query are extreme. The recurrence for Pn,r in this case (s0 = s) is greatly
simplified. Indeed, for such queries we have

Pn,r = 1 +
s

nK

n−1∑
j=0

Pj,r +
K − s
nK

n−1∑
j=0

(Pj,r + Pn−1−j,r)

as the query (actually, its rank vector) does not change as we proceed recursively
with the PM search; moreover, whenever the discriminant at the root is one of
the specified extreme coordinates we will systematically continue in the left
subtree. The solution of the recurrence above is straightforward:

Pn,r = Θ(n1−ρ0),
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that is, Pn,r = Θ
(
nα(ρ0,ρ0)

)
, as we wanted to show. It is also interesting to note

that constraint (c) can also be proved as a consequence of the symmetries (a)
and (b), and the symmetries of the weights of the recurrence lead to constraints
(a) and (b).

B Solving the integral equation (8)

In order to solve the integral equation (8) given in Proposition 1, together
with constraints (a)–(d) we transform it into an equivalent partial differential
equation (PDE).

For any function f(z0, z1, . . . , zt−1) let

Li[f ] := zα+1
i

∫ 1

zi

f(z0, . . . , zi−1, z, zi+1, . . . , zt−1)
dz

zα+2
,

and, similarly let

Ri[f ] := (1− zi)α+1

∫ zi

0

f(z0, . . . , zi−1, z, zi+1, . . . , zt−1)
dz

(1− z)α+2
.

If we set T := λ
∑t−1
i=0(Li + Ri) where λ = α+2

2t then the function f we are
looking for is a non-trivial solution to the fix-point equation f = T [f ] with the
constraints (a)–(d).

Let us now assume that the solution to the integral equation is a function in
separable variables, namely f(z0, z1, . . . , zt−1) = φ0(z0) · φ1(z1) · · ·φt−1(zt−1).
Because of the symmetry of f (constraint (a)), it follows that we can safely
assume φ0 = φ1 = · · · = φt−1 =: φ. Furthermore, because of constraint (b), we
must have φ(z) = φ(1−z) for any z ∈ (0, 1). We must also have limz→0 φ(z) = 0
to satisfy constraint (c).

Going back to the integral equation, if we denote φi := φ(zi) we must have

φ0 · φ1 · · ·φt−1 = λ
t−1∑
i=0

φ0 · · ·φi−1 · φi+1 · · ·φt−1

(
Li[φi] +Ri[φi]

)
.

If, for all i, 0 ≤ i < t,

φi = tλ
(
Li[φi] +Ri[φi]

)
, (14)

then

λ

t−1∑
i=0

φ0 · · ·φi−1·φi+1 · · ·φt−1·
(
Li[φi]+Ri[φi]

)
= λ

t−1∑
i=0

φ0 · · ·φt−1

tλ
= φ0 · · ·φt−1.

The solution of (14), namely, the solution of

φ(z) = tλ

(
zα+1

∫ 1

z

φ(u)
du

uα+2
+ (1− z)α+1

∫ z

0

φ(u)
du

(1− u)α+2

)
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can be obtained by solving the equivalent ordinary differential equation that we
obtain applying the operator

Φi[g(zi)] := zi(1− zi)
d2g

dz2
i

+ α(2zi − 1)
dg

dzi
− α(α+ 1)g(zi),

to both sides. The linear operator Φ allows us to remove the integrals in Li and
Ri:

Φi[Li[g]] = (zi − 1)
dg

dzi
− αg

Φi[Ri[g]] = zi
dg

dzi
− αg

Φi[(Li +Ri)[g]] = (2zi − 1)
dg

dzi
− 2αg.

In particular, we obtain the following ODE for φ(z), after rearranging:

z(1− z)φ′′(z) + α(2z − 1)φ′(z)− α(α+ 1)φ(z) = tλ
(

(2z − 1)φ′(z)− 2αφ(z)
)
,

or more conveniently,

z(1− z)φ′′(z) + (α− tλ)(2z − 1)φ′(z)− α(α+ 1− 2tλ)φ(z) = 0,

with the initial condition φ(0) = 0. Again we have a second order linear hyper-
geometric ODE, and without too much effort, as in [DJM14], we can obtain the

solution φ(z) = µ (z(1− z))α/2, for some constant µ and α = α(ρ, ρ0). We have
thus

f(z0, . . . , zt−1) = νs,t,K

(
t−1∏
i=0

zi(1− zi)

)α/2
,

with νs,t,K := µt. This family of solutions (parameterized by the “arbitrary”
νs,t,K) obviously satisfies constraints (a), (b) and (c). Constraint (d) yields the
sought function, as we impose

νs,t,K
Γ2t(α/2 + 1)

Γt(α+ 2)
= β(ρ, ρ0).

C Bounding the errors

Once we have an explicit form for f(z) := f(z0, . . . , zt−1), we can compute error
bounds for the successive approximations that led us from the recurrence in (7)
to the integral equation (8). Our knowledge of the function f(z0, . . . , zt−1) and
its derivatives in (0, 1) is the key to find these bounds. First, we can use the
trapezoid rule or the Euler-Maclaurin summation formula to bound the error in
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passing from sums to integrals; for instance

1

n

n−1∑
j=ri

f

(
r0

n
, . . . ,

ri
j
, . . . ,

rt−1

n

)(
j

n

)γ
=

1

n

∫ n

ri

f
(r0

n
, . . . ,

ri
u
, . . . ,

rt−1

n

)(u
n

)γ
du

− 1

2n
f
(r0

n
, . . . ,

ri
n
, . . . ,

rt−1

n

)
+O(n−2),

and similarly for the other integrals.
Now, if we compare recurrence (7) for Pn,r to the recurrence (13) for Cn,r,

apart from the normalizing factor nγ , the difference comes from the splitting

probabilities π
(i,j)
L (r, r′), π

(i,j)
R (r, r′) and π

(i,j)
B (r, r′, r′′), which we argued are

highly concentrated around their respective means. Here, Laplace’s method for
summations can be used to bound the error in that step. For instance, take

∑
r′∈L(i,j)

r

π
(i,j)
L (r, r′)f

(
r′0
j
, . . . ,

ri
j
, . . . ,

r′t−1

j

)

= νs,t,K
∑

r′∈L(i,j)
r

φ

(
ri
j

)
·

 ∏
0≤k<t
k 6=i

(
j
r′k

)(
n−j
rk−r′k

)(
n
rk

) φ

(
r′k
j

) ,

for some j such that j/n→ c, for some constant 0 < c < 1. Now, the right-hand
side above can be re-written as

φ

(
ri
j

) ∏
0≤k<t
k 6=i

∑
0≤r′k≤rk

(
j
r′k

)(
n−j
rk−r′k

)(
n
rk

) φ

(
r′k
j

)

and we can deal with each factor separately (here, the fact that f(z0, . . . , zt−1) =
φ(z0) · · ·φ(zt−1) greatly simplifies the proof). With our assumption that rk/n→
zk for some 0 < zk < 1, we need just to show that

∑
0≤r′k≤rk

(
j
r′k

)(
n−j
rk−r′k

)(
n
rk

) φ

(
r′k
j

)
∼ φ

(rk
n

)
The splitting probabilities are given by products of the hypergeometric distri-
bution (owing to the independence with which coordinates of each data point
are drawn)

π
(i,j)
L (k) =

(
j
r′k

)(
n−j
rk−r′k

)(
n
rk

)
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and then we can apply the following approximation to the binomial distribu-
tion [JKK92] as long as rk = zkn+ o(n) and j = cn+ o(n)(
j
r′k

)(
n−j
rk−r′k

)(
n
rk

) =

(
rk
r′k

)(
j

n

)r′k (
1− j

n

)rk−r′k (
1 +

r′k − (r′k − rk)2

2j
+O

(
1

j2

))
,

where rk = rk
j
n is the mean value of the hypergeometric distribution.

If we divide the range of summation of r′k into three parts, from 0 to rk−∆−1,
from rk − ∆ to rk + ∆ and from rk + ∆ + 1 to rk, we can consider the three
parts separately, with the main contribution coming from the middle range.
In particular, we need ∆3/n2 → 0 as n → ∞, that is ∆ = o(n2/3), to be
able to apply the de Moivre-Laplace limit theorem to the middle sum. With
σ = rk

j
n

(
1− j

n

)
, we have that the middle sum is

rk+∆∑
r′k=rk−∆

1√
2πσ

e−(r′k−rk)2/(2σ)+O(∆3/n2)+O(∆/n)

× φ
(
r′k
j

)(
1 +O(∆/n) +O(∆2/n) +O

(
1

n2

))
,

where we have also expressed the error bounds for the approximation of the
hypergeometric distribution in terms of ∆; we need ∆ = o(

√
n) too for the

approximation to be of any use. Using ex = 1 + O(x) we can write the sum
above as

rk+∆∑
r′k=rk−∆

1√
2πσ

e−(r′k−rk)2/(2σ)(1 +O(∆/n))φ

(
r′k
j

)(
1 +O(∆2/n)

)
,

since O(∆3/n2) = O(∆/n) for ∆ = o(
√
n). Finally, we can expand φ(r′k/j) =

φ(rk/j + y/j) for y = r′k − rk, y ∈ [−∆,∆] as φ(r′k/j) = φ(rk/j) + O(∆/n) to
get

rk+∆∑
r′k=rk−∆

1√
2πσ

e−(r′k−rk)2/(2σ)(1+O(∆/n))φ

(
rk
j

)
(1 +O(∆/n))

(
1 +O(∆2/n)

)
= φ

(
rk
j

)
(1 +O(∆2/n)) = φ

(
rk
j

)
(1 + o(1)).

To complete this part of the analysis we only need to show that the other
two sums (with r′k < rk − ∆ and r′k > rk + ∆) are negligible as n → ∞.
This immediately follows since φ(r′k/j) is bounded by a constant, and we only
need to note that the tails of the hypergeometric distribution (or its binomial
approximation) decay polynomially as we move away from the mean rk, then
exponentially. To have an error bound as small as possible it helps to take ∆
as large as possible, as long as it remains o(

√
n).
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We handle the other inner sums (for rank vectors in L(i,j)
r , R(i,j)

r and B(i,j)
r )

in (7) analogously; we have thus that the error bound inside each summation on
j is (1 +O(∆2/n)), but the approximations are not valid if j = o(n). However
these can be disregarded as their total contribution is negligible, since the tail
of the hypergeometric distribution decays exponentially. This also justifies the
assumption that all extreme ranks are ri = 0 when we actually have extreme
ranks ri = o(n) (or ri = n− o(n), but then we can take ri := n− ri because of
the symmetry).

Altogether, these computations show that C ′n,r = f(r/n) + o(1) satisfies

C ′n,r ∼ o(1) +
1

nK

[ ∑
0≤i<t

(
n−1∑
j=ri

C ′j,←−r ·
(
j

n

)γ
+

ri−1∑
j=0

C ′n−1−j,−→r ·
(
n− 1− j

n

)γ)]
(15)

+
s0

nK
·
n−1∑
j=0

C ′j,←−r ·
(
j

n

)γ

+
(K − s)
nK

·
n−1∑
j=0

(
C ′j,←→r ·

(
j

n

)γ
+ C ′n−1−j,r−←→r ·

(
n− 1− j

n

)γ)
,

and hence f(r/n) ·nα + o(nα) satisfies the full recurrence (7), with toll function
o(nα) instead of the toll function τn,r = 1.
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