1,081 research outputs found

    Particle Filters for Colour-Based Face Tracking Under Varying Illumination

    Get PDF
    Automatic human face tracking is the basis of robotic and active vision systems used for facial feature analysis, automatic surveillance, video conferencing, intelligent transportation, human-computer interaction and many other applications. Superior human face tracking will allow future safety surveillance systems which monitor drowsy drivers, or patients and elderly people at the risk of seizure or sudden falls and will perform with lower risk of failure in unexpected situations. This area has actively been researched in the current literature in an attempt to make automatic face trackers more stable in challenging real-world environments. To detect faces in video sequences, features like colour, texture, intensity, shape or motion is used. Among these feature colour has been the most popular, because of its insensitivity to orientation and size changes and fast process-ability. The challenge of colour-based face trackers, however, has been dealing with the instability of trackers in case of colour changes due to the drastic variation in environmental illumination. Probabilistic tracking and the employment of particle filters as powerful Bayesian stochastic estimators, on the other hand, is increasing in the visual tracking field thanks to their ability to handle multi-modal distributions in cluttered scenes. Traditional particle filters utilize transition prior as importance sampling function, but this can result in poor posterior sampling. The objective of this research is to investigate and propose stable face tracker capable of dealing with challenges like rapid and random motion of head, scale changes when people are moving closer or further from the camera, motion of multiple people with close skin tones in the vicinity of the model person, presence of clutter and occlusion of face. The main focus has been on investigating an efficient method to address the sensitivity of the colour-based trackers in case of gradual or drastic illumination variations. The particle filter is used to overcome the instability of face trackers due to nonlinear and random head motions. To increase the traditional particle filter\u27s sampling efficiency an improved version of the particle filter is introduced that considers the latest measurements. This improved particle filter employs a new colour-based bottom-up approach that leads particles to generate an effective proposal distribution. The colour-based bottom-up approach is a classification technique for fast skin colour segmentation. This method is independent to distribution shape and does not require excessive memory storage or exhaustive prior training. Finally, to address the adaptability of the colour-based face tracker to illumination changes, an original likelihood model is proposed based of spatial rank information that considers both the illumination invariant colour ordering of a face\u27s pixels in an image or video frame and the spatial interaction between them. The original contribution of this work lies in the unique mixture of existing and proposed components to improve colour-base recognition and tracking of faces in complex scenes, especially where drastic illumination changes occur. Experimental results of the final version of the proposed face tracker, which combines the methods developed, are provided in the last chapter of this manuscript

    Human detection in surveillance videos and its applications - a review

    Get PDF
    Detecting human beings accurately in a visual surveillance system is crucial for diverse application areas including abnormal event detection, human gait characterization, congestion analysis, person identification, gender classification and fall detection for elderly people. The first step of the detection process is to detect an object which is in motion. Object detection could be performed using background subtraction, optical flow and spatio-temporal filtering techniques. Once detected, a moving object could be classified as a human being using shape-based, texture-based or motion-based features. A comprehensive review with comparisons on available techniques for detecting human beings in surveillance videos is presented in this paper. The characteristics of few benchmark datasets as well as the future research directions on human detection have also been discussed

    Adaptive detection and tracking using multimodal information

    Get PDF
    This thesis describes work on fusing data from multiple sources of information, and focuses on two main areas: adaptive detection and adaptive object tracking in automated vision scenarios. The work on adaptive object detection explores a new paradigm in dynamic parameter selection, by selecting thresholds for object detection to maximise agreement between pairs of sources. Object tracking, a complementary technique to object detection, is also explored in a multi-source context and an efficient framework for robust tracking, termed the Spatiogram Bank tracker, is proposed as a means to overcome the difficulties of traditional histogram tracking. As well as performing theoretical analysis of the proposed methods, specific example applications are given for both the detection and the tracking aspects, using thermal infrared and visible spectrum video data, as well as other multi-modal information sources

    Cross-Relation Characterization of Knowledge Networks

    Full text link
    Knowledge networks have become increasingly important as a changing repository of data which can be represented, studied and modeled by using complex networks concepts and methodologies. Here we report a study of knowledge networks corresponding to the areas of Physics and Theology, obtained from the Wikipedia and taken at two different dates separated by 4 years. The respective two versions of these networks were characterized in terms of their respective cross-relation signatures, being summarized in terms of modification indices obtained for each of the nodes that are preserved among the two versions. The proposed methodology is first evaluated on Erdos-Renyi (ER) and Barabasi-Albert model (BA) networks, before being tested on the knowledge networks obtained from the Wikipedia respectively to the areas of Physics and Theology. In the former study, it has been observed that the nodes at the core and periphery of both types of theoretical models yielded similar modification indices within these two groups of nodes, but with distinct values when taken across these two groups. The study of the Physics and Theology networks indicated that these two networks have signatures respectively similar to those of the BA and ER models, as well as that higher modification values being obtained for the periphery nodes, as compared to the respective core nodes.Comment: 23 pages, 15 figure

    Road Feature Extraction from High Resolution Aerial Images Upon Rural Regions Based on Multi-Resolution Image Analysis and Gabor Filters

    Get PDF
    Accurate, detailed and up-to-date road information is of special importance in geo-spatial databases as it is used in a variety of applications such as vehicle navigation, traffic management and advanced driver assistance systems (ADAS). The commercial road maps utilized for road navigation or the geographical information system (GIS) today are based on linear road centrelines represented in vector format with poly-lines (i.e., series of nodes and shape points, connected by segments), which present a serious lack of accuracy, contents, and completeness for their applicability at the sub-road level. For instance, the accuracy level of the present standard maps is around 5 to 20 meters. The roads/streets in the digital maps are represented as line segments rendered using different colours and widths. However, the widths of line segments do not necessarily represent the actual road widths accurately. Another problem with the existing road maps is that few precise sub-road details, such as lane markings and stop lines, are included, whereas such sub-road information is crucial for applications such as lane departure warning or lane-based vehicle navigation. Furthermore, the vast majority of roadmaps aremodelled in 2D space, whichmeans that some complex road scenes, such as overpasses and multi-level road systems, cannot be effectively represented. In addition, the lack of elevation information makes it infeasible to carry out applications such as driving simulation and 3D vehicle navigation

    Real time tracking using nature-inspired algorithms

    Get PDF
    This thesis investigates the core difficulties in the tracking field of computer vision. The aim is to develop a suitable tuning free optimisation strategy so that a real time tracking could be achieved. The population and multi-solution based approaches have been applied first to analyse the convergence behaviours in the evolutionary test cases. The aim is to identify the core misconceptions in the manner the search characteristics of particles are defined in the literature. A general perception in the scientific community is that the particle based methods are not suitable for the real time applications. This thesis improves the convergence properties of particles by a novel scale free correlation approach. By altering the fundamental definition of a particle and by avoiding the nostalgic operations the tracking was expedited to a rate of 250 FPS. There is a reasonable amount of similarity between the tracking landscapes and the ones generated by three dimensional evolutionary test cases. Several experimental studies are conducted that compares the performances of the novel optimisation to the ones observed with the swarming methods. It is therefore concluded that the modified particle behaviour outclassed the traditional approaches by huge margins in almost every test scenario

    Generating depth maps from stereo image pairs

    Get PDF

    Person re-Identification over distributed spaces and time

    Get PDF
    PhDReplicating the human visual system and cognitive abilities that the brain uses to process the information it receives is an area of substantial scientific interest. With the prevalence of video surveillance cameras a portion of this scientific drive has been into providing useful automated counterparts to human operators. A prominent task in visual surveillance is that of matching people between disjoint camera views, or re-identification. This allows operators to locate people of interest, to track people across cameras and can be used as a precursory step to multi-camera activity analysis. However, due to the contrasting conditions between camera views and their effects on the appearance of people re-identification is a non-trivial task. This thesis proposes solutions for reducing the visual ambiguity in observations of people between camera views This thesis first looks at a method for mitigating the effects on the appearance of people under differing lighting conditions between camera views. This thesis builds on work modelling inter-camera illumination based on known pairs of images. A Cumulative Brightness Transfer Function (CBTF) is proposed to estimate the mapping of colour brightness values based on limited training samples. Unlike previous methods that use a mean-based representation for a set of training samples, the cumulative nature of the CBTF retains colour information from underrepresented samples in the training set. Additionally, the bi-directionality of the mapping function is explored to try and maximise re-identification accuracy by ensuring samples are accurately mapped between cameras. Secondly, an extension is proposed to the CBTF framework that addresses the issue of changing lighting conditions within a single camera. As the CBTF requires manually labelled training samples it is limited to static lighting conditions and is less effective if the lighting changes. This Adaptive CBTF (A-CBTF) differs from previous approaches that either do not consider lighting change over time, or rely on camera transition time information to update. By utilising contextual information drawn from the background in each camera view, an estimation of the lighting change within a single camera can be made. This background lighting model allows the mapping of colour information back to the original training conditions and thus remove the need for 3 retraining. Thirdly, a novel reformulation of re-identification as a ranking problem is proposed. Previous methods use a score based on a direct distance measure of set features to form a correct/incorrect match result. Rather than offering an operator a single outcome, the ranking paradigm is to give the operator a ranked list of possible matches and allow them to make the final decision. By utilising a Support Vector Machine (SVM) ranking method, a weighting on the appearance features can be learned that capitalises on the fact that not all image features are equally important to re-identification. Additionally, an Ensemble-RankSVM is proposed to address scalability issues by separating the training samples into smaller subsets and boosting the trained models. Finally, the thesis looks at a practical application of the ranking paradigm in a real world application. The system encompasses both the re-identification stage and the precursory extraction and tracking stages to form an aid for CCTV operators. Segmentation and detection are combined to extract relevant information from the video, while several combinations of matching techniques are combined with temporal priors to form a more comprehensive overall matching criteria. The effectiveness of the proposed approaches is tested on datasets obtained from a variety of challenging environments including offices, apartment buildings, airports and outdoor public spaces

    Learning Human Behaviour Patterns by Trajectory and Activity Recognition

    Get PDF
    The world’s population is ageing, increasing the awareness of neurological and behavioural impairments that may arise from the human ageing. These impairments can be manifested by cognitive conditions or mobility reduction. These conditions are difficult to be detected on time, relying only on the periodic medical appointments. Therefore, there is a lack of routine screening which demands the development of solutions to better assist and monitor human behaviour. The available technologies to monitor human behaviour are limited to indoors and require the installation of sensors around the user’s homes presenting high maintenance and installation costs. With the widespread use of smartphones, it is possible to take advantage of their sensing information to better assist the elderly population. This study investigates the question of what we can learn about human pattern behaviour from this rich and pervasive mobile sensing data. A deployment of a data collection over a period of 6 months was designed to measure three different human routines through human trajectory analysis and activity recognition comprising indoor and outdoor environment. A framework for modelling human behaviour was developed using human motion features, extracted in an unsupervised and supervised manner. The unsupervised feature extraction is able to measure mobility properties such as step length estimation, user points of interest or even locomotion activities inferred from an user-independent trained classifier. The supervised feature extraction was design to be user-dependent as each user may have specific behaviours that are common to his/her routine. The human patterns were modelled through probability density functions and clustering approaches. Using the human learned patterns, inferences about the current human behaviour were continuously quantified by an anomaly detection algorithm, where distance measurements were used to detect significant changes in behaviour. Experimental results demonstrate the effectiveness of the proposed framework that revealed an increase potential to learn behaviour patterns and detect anomalies
    • …
    corecore