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Abstract

The world’s population is ageing, increasing the awareness of neurological and behavioural

impairments that may arise from the human ageing. These impairments can be mani-

fested by cognitive conditions or mobility reduction. These conditions are difficult to be

detected on time, relying only on the periodic medical appointments. Therefore, there is

a lack of routine screening which demands the development of solutions to better assist

and monitor human behaviour. The available technologies to monitor human behaviour

are limited to indoors and require the installation of sensors around the user’s homes

presenting high maintenance and installation costs. With the widespread use of smart-

phones, it is possible to take advantage of their sensing information to better assist the

elderly population. This study investigates the question of what we can learn about hu-

man pattern behaviour from this rich and pervasive mobile sensing data. A deployment

of a data collection over a period of 6 months was designed to measure three different

human routines through human trajectory analysis and activity recognition comprising

indoor and outdoor environment. A framework for modelling human behaviour was

developed using human motion features, extracted in an unsupervised and supervised

manner. The unsupervised feature extraction is able to measure mobility properties such

as step length estimation, user points of interest or even locomotion activities inferred

from an user-independent trained classifier. The supervised feature extraction was de-

sign to be user-dependent as each user may have specific behaviours that are common to

his/her routine. The human patterns were modelled through probability density func-

tions and clustering approaches. Using the human learned patterns, inferences about

the current human behaviour were continuously quantified by an anomaly detection

algorithm, where distance measurements were used to detect significant changes in be-

haviour. Experimental results demonstrate the effectiveness of the proposed framework

that revealed an increase potential to learn behaviour patterns and detect anomalies.

Keywords: Human Behaviour, Pattern Recognition, Anomaly Detection, Ambient As-

sisted Living, Probability Density Function, Clustering
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Resumo

A população mundial está a envelhecer, o que aumenta a conscientização de imparidades

neurológicas e comportamentais que podem surgir com o envelhecimento humano. Estas

imparidades podem se manifestar através de condições cognitivas ou da redução da mobi-

lidade, sendo dificilmente detetadas a tempo, quando dependentes de consultas médicas

periódicas. Portanto, existe falta de monitorização da rotina humana, o que exige o desen-

volvimento de soluções que permitam assistir e monitorizar o comportamento humano.

As tecnologias disponíveis são limitadas a espaços interiores, e requerem a instalação de

sensores no interior da casa dos utilizadores, o que apresenta elevados custos de manuten-

ção e instalação. A ampla utilização dos telemóveis, tornou possível o aproveitamento dos

seus sensores para assistir a população envelhecida. Este estudo investiga a questão de o

que podemos aprender do comportamento humano a partir da informação rica dos sen-

sores dos telemóveis. Ao longo de um período de 6 meses foram adquiridos dados de três

rotinas humanas diferentes, através da análise da trajetória e do reconhecimento humano,

compreendendo espaços interiores e exteriores. Foi desenvolvida uma ferramenta para

modelar o comportamento humano que permite extrair características do movimento

humano de uma forma não-supervisionada e supervisionada. A extração não supervisio-

nada consiste na medição de propriedades da mobilidade, tal como, o comprimento do

passo, os pontos de interesse, ou atividades da locomoção do utilizador, inferidas através

de um classificador de atividades que não depende do utilizador. A extração supervi-

sionada foi projetada para ser dependente do utilizador, visto que, cada utilizador tem

comportamentos específicos que são comuns à sua rotina. Através dos padrões humanos

aprendidos, o comportamento inferido foi quantificado de forma contínua, através de um

algoritmo para a deteção de anomalias, onde uma medida de distância foi utilizada para

detetar alterações significativas no comportamento humano. Resultados experimentais

demonstraram a eficiência da ferramenta desenvolvida, revelando um elevado potencial

para aprender padrões no comportamento humano e para detetar anomalias.

Palavras-chave: Comportamento Humano, Reconhecimento de Padrões, Deteção de Ano-

malias, Ambiente de Vida Assistida, Função Densidade de Probabilidade, Agrupamento
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1
Introduction

1.1 Motivation

The increase in life expectancy leads to the ageing population growing worldwide. Ac-

cording to United Nations [1], the global population over 60 years in 2017 was more than

twice as large as in 1980, and the number of elderly people is expected to double again

in 2050, as it can be seen in Figure 1.1. As a consequence, common health conditions

associated with ageing, that affects human behaviour, such as physical declining, psycho-

logical and cognitive alterations are increasing. This is the case of people suffering from

dementia that according to the World Alzheimer report of 2018 [2], 50 million people

worldwide were living with dementia in 2018 and the estimation is to increase to 152

million in 2050.

Physical declining of elderly people is observed through the decrease of walking speed,

mobility disability that is associated with falls, social isolation, difficulty in performing
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Figure 1.1: Percentage of population aged over 60 years by region, from 1980 to 2050.
Adapted from [1].
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CHAPTER 1. INTRODUCTION

activities of daily living such as cooking, using the toilet and dressing. On the other hand,

cognitive alterations, that includes cognitive ageing, dementia and depression are more

difficult to be detected in early stages of the disease [3]. For example, early symptoms of

dementia that include memory impairment, may not be detected by doctors in periodical

visits, given that there is a lack of routine screening. So the role of the caregiver is very

important for the early diagnosis of these health conditions [4]. However, a significant

portion of these people live home alone [5], and it may be difficult to either detect and

monitor the disease leading to its progression. Thus, a reliable tool for learning more

about the person’s daily living for helping the diagnose and follow-up these impairments

is needed. The assessment of human behaviour is the basis for understanding people’s

needs and problems, subsequently, helping them improve their lives. Human behaviour

tends to promote well-defined motions which are repeated every day, suchlike trajec-

tory patterns and sequences of performed activities. With the widespread of technology,

specifically smartphones, it is possible to recognise human motions and to monitor hu-

man daily routines, since they possess multiple accurate sensors to better assist humans.

Moreover, smartphones allow the monitoring of routines in a cheap and unobtrusive way.

1.2 Applications

The understanding of human behaviour patterns has a considerable impact in health-

care [6], however, it has other meaningful applications such as marketing analysis, secu-

rity and even tourist management.

• Health-Care

In healthcare, the analysis of human behaviour is important for understanding

changes in behaviour that are associated with different health conditions such as

dementia, depression, memory loss or even unhealthy daily habits. The quantifi-

cation of these changes can assist doctors to diagnose diseases or even evaluate its

progression.

• Marketing

In the marketing point of view, companies intent to influence consumers to buy their

products, to do so, they need to understand people’s needs, what are the kind of

products do they buy, at which specific times and places [7]. For the improvement

of marketing strategies, it is important the understanding of consumers behaviour

to describe the several types of consumers, predict their behaviour and thus to

develop marketing strategies that are directly constructed to affect each particular

behaviour.

• Security

The analysis of human behaviour for security purposes has a significant role to

guarantee the well being of society. This analysis allows to find patterns of normal
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human behaviours and from these patterns detect suspicious behaviours potentially

indicative of terrorism, robberies or even cyberattacks [8, 9].

• Tourist Management

Understanding tourist behaviour by mobility patterns is a key goal in tourist man-

agement, as understanding the favourites places visited by tourists may be impor-

tant for marketing purposes, urban planning and transportation [10].

1.3 Literature Review

The focus of this study is to learn human motion patterns on an everyday basis by human

trajectory analysis and activity recognition, that are detected by several sensors embedded

in smartphones. In the following, the related work regarding activity recognition, location

technologies, human patterns and anomaly detection is reviewed.

1.3.1 Human Activity Recognition

In the context of activity recognition using smartphones, the available studies in the

literature are mainly divided into simple and complex activities. Simple activities are

focused on recognising locomotion activities such as walking, standing, sitting, walking up
and walking down. The complex ones are more concerned in detecting activities such as

brewing coffee, cooking, taking shower, teeth brushing, among others. For human behaviour

analysis, both simple and complex activities will be addressed in this study.

Regarding simple activities, Ronao et al. [11], by stating that activities are hierarchical,

proposed a two-stage Continuous hidden markov model (CHMM) using accelerometer

and gyroscope data from a smartphone to recognise six human activities (walking, walk-
ing up, walking down, sitting, standing, lying). Although several classification methods

were tested during this study, CHMM showed competitive performance and low errors,

resulting in an accuracy of 91.76%. Chernbumroong et al. [12] proposed a study for the

recognition of five human activities (standing, lying, walking and running) using a single

wrist-worn accelerometer. By selecting a total of 13 features from temporal and frequency

domain, the highest accuracy obtained was 94% using a Decision Tree (DT) classifier. San-

tos [13] focus on detecting 10 complex activities, suchlike opening a door, brushing teeth
and typing the keyboard. The developed framework uses signals from accelerometer, gyro-

scope, magnetometer and microphone sensors, and the classifier was based on multiple

hidden Markov models, one per activity. The developed solution was evaluated in the

offline context, where it achieved an accuracy of 84±4.8%. Shoaib et al. [14] evaluated the

performance of combining wrist and pocket positioning motion sensors for recognising

both simple and complex activities with seven different windows sizes by using K Nearest

Neighbor (KNN), DT and Naive Bayes (NB) classifiers. They concluded that for complex

activities the recognition performance is increased with increasing window size and the

three classifiers presented similar behaviours.
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1.3.2 Location Technologies

For the purpose of detecting trajectories at the outdoor level the most common method is

Global Positioning System (GPS). However, it is not a feasible solution for indoor location

because inside buildings the GPS signal is attenuated by the building structure. In the

last two decades, the effort from the scientific community to develop a robust and precise

indoor location system resulted in a large number of solutions. Indoor location systems

can be divided into infrastructure-free and infrastructure-based. The most common

sources of information about infrastructure-based solutions are radio frequency signals,

such as Bluetooth, ultrasounds or light [15]. Normally, the used infrastructure transmits

a specific signal to the device being located. On the other hand, infrastructure-free

solutions use opportunistic readings from signals that are pervasively available in the

majority of environments, like a magnetic field, atmospheric pressure, ambient light,

Wi-Fi or sound [16, 17, 18].

An example of an infrastructure-free solution is the study conducted by Guimarães

et al. [16] that relies on a human motion tracking algorithms combined with an oppor-

tunistic sensing mechanism. The human motion tracking algorithm is based on multiple

gait-model based filtering techniques that include sensor fusion, movement detection,

direction of movement and floor changes detection. The evaluation process resulted in

overall median localisation errors between 1.11m and 1.68m. Leornardo et al. [18] devel-

oped a framework for determining the user’s location through the sound recorded by the

user’s device. The proposed algorithm for room-level location purposes used a Support

Vector Machine (SVM) classifier and obtained an accuracy of 90%.

1.3.3 Motion Patterns

A pattern is defined as regularity in data, for instance, when data elements are repeated

predictably. The search for patterns is a common subject in a variety of engineering and

scientific areas [19]. The pattern discovery that is dedicated to learning motion patterns is

the focus of this study since motion patterns can be used to infer about human behaviour.

Common human behaviour can be found either in trajectory or activity recognition. In the

following, some studies that find human motion patterns through trajectory or activity

recognition are described.

Zheng et al. [20] proposed a heuristic method combining Dynamic Time Warping

(DTW) and Earth Mover’s Distance (EMD) to understand tourist mobility through the

measurement of trajectory similarity. Trajectory similarity was calculated based on the

weighted sum of spatial and temporal similarity, and types of tourist trajectory were ob-

tained through KNN algorithm. The resulting method proved to be accurate and noise

resistant. Shou and Di [21] created a methodological framework to analyse the similarity

of activity patterns using multi-person multi-day GPS trajectories, which helps to ana-

lyze people’s frequent travel patterns. Pattern similarity was measured using the Longest

Common Sequence (LCS) and hierarchical clustering was applied to obtain clusters based
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on a dissimilarity measure, without the need of a predefined cluster number. This work

presents some limitations because temporal-spatial information is not considered. Mah-

moud et al. [22] used Recurrent Neural Networks (RNN) to identify behavioural patterns,

based on activity recognition, in an intelligent environment constituted by binary sensors

from which data is converted to temporal sequences of activities. By comparing two

models of RNN , Non-linear Autoregressive netwoRk with eXogenous (NARX) inputs

and Elman network, it was concluded, by the authors, that NARX performed better than

Elman network to predict and extract behavioural patterns. The study conducted by

Farrahi and Gatica-Perez [23] discovers human routines, characterising both individual

and group behaviours, using location data collected by mobile phones in an unsuper-

vised manner. This study uses topic models that are probabilistic generative models for

documents. An individual’s day is represented by a bag of location sequences (or words)

that is the histogram of the location sequence present in the day, these bags consider

location transitions and fine-grain, coarse-grain time considerations. These bags are used

as an input for topic models including Latent Dirichlet Allocation (LDA) that is used to

find routine patterns characteristic of all days in the dataset, and author topic model that

discovers routines of individual users considering the user identity.

1.3.4 Anomaly Detection

Anomalies are characterised as a non-conformity of the expected behaviour that follows a

specific pattern. Anomalies detection is an important subject matter, and it is widely used

for fraud detection, health-care, intrusion detection or even military surveillance [24].

Hence, besides learning motion patterns, some authors focus on detecting anomalies.

Suzuki et al. [25] proposed an unsupervised learning method to learn motion patterns

and detect anomalies by the analysis of human trajectory recorded in a real store by cam-

eras. Hidden Markov Models (HMM) were used to model spatial and temporal features

of trajectory to detect patterns and anomalies. Through probabilistic distances between

HMM the method detects anomalies and classifies several behaviour patterns. Trajecto-

ries were projected onto a low-dimensional space applying Multi-Dimensional Scaling

and grouped using the k-means clustering method. The result of clustering showed

trajectory patterns, and those trajectories whose maximum likelihood of clusters was

smaller than a certain threshold was considered an anomaly. Forkan et al. [26] developed

a context-aware change detection model using machine learning and statistical models.

This study models behaviour through daily activity and vital signals. They created a

HMM to detect anomalies in sequences of daily activities in an ambient assisted living.

To detect behavioural changes in a user’s lifestyle related to the time duration of activities

or activities frequency a statistical model measuring Gaussian distribution of activities

was used. To detect increasing or decreasing trend of vital signals a Holt’s linear trend

method was implemented. By combining anomalies from all domains they obtained a

final decision either is a true anomaly or not using a fuzzy rule-based model categorised
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in four stages including normal, warning, alert and emergency. A study conducted by

Tomforde et al. [27] developed models to learn the user’s behaviour in a health enabling

living environments equipped with multiple sensors, by detecting the user’s location and

activities sequences. Two multinomial HMM were trained with the normal course of the

user’s days, the first relying on the user’s location sequence and the second the user’s

activities sequence using the locations as hidden states. The resulting log-likelihood of

the HMM were modelled into a Kernel Density Estimate (KDE) to signalise a deviation

from the expected normal behaviour pattern.

An interesting technology that has been developed in the field of human behaviour

modelling is Hive Link 1. Hive Link is a recent innovating solution developed by Centrica

Hive Limited that provides a home service that allows caregivers to check in and detect

deviations on a person’s routine. This smart service involves the prior installation of

smart-plugs and sensors around the home, that use pattern detection to get to know the

person’s routine and detect any changes. The system takes seven days to learn a person’s

routine and has the capability of getting smarter with experience. The system also com-

prises a Hive app where caregivers can check the activity log and receive notifications

if the person is not following their usual routine. Hive Link is an inspiring solution for

this study because of its focus on finding out patterns and deviations from a person’s

routine. However, the solution that is going to be developed in this study presents some

advantages compared to Hive Link. Firstly, the use of data from smartphone/wearable

sensors to model behaviour patterns, decreases the maintenance costs, since, there is no

need for installation of sensors around home. Secondly, the Hive Link solution is limited

to indoors and the covered area by the installed sensors. This study extends the range of

application to outdoors and uses a large number of metrics (both indoors and outdoors)

that can be applied in different contexts such as health-care, security or management.

1.3.5 Summary

The widespread use of mobile devices is producing a huge amount of data, making the

discovery of human actions, activities and interactions possible. The challenge now

is no longer that of obtaining data, but that of using these vast amounts of data from

different sources and recognising patterns that could give us a better understanding of

human behaviour. Although there are some studies in the literature about modelling

human behaviour, the people’s behaviour changes are often hard to quantify. Moreover,

the aggregation of both activity recognition and trajectory analysis remains relatively

unexplained. Furthermore, most of the studies that found patterns by activity recognition

rely on the installation of sensors around the home, which presents higher installation

and maintenance cost compared to the use of smartphone sensors that are going to be

used in this study. Finally, with this study, it will be evaluated the possibility to detect

and quantify anomalies in humans routines by continuously learning their daily patterns.

1Available in https://www.hivehome.com/services/connected-care-hive-link (visited on 27/02/2019)
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1.4 Objectives

The main goal of this study is to develop a solution for learning human behaviour patterns

by the analysis of trajectory and activity recognition. For reaching this goal, models for

learning human behaviour patterns, to classify and quantify changes in human behaviour

considering the learned behavioural patterns are proposed. We also intend to explore the

extraction of relevant features suitable for learning a wide variety of human behaviour

patterns through an unsupervised manner, i.e. features that can be extracted without the

need for any annotation effort, and a supervised manner, once more detailed information

about the human daily living is required.

The main goals are the following: (1) conduct a deep exploration of how smartphone’

sensors can be used to extract information about human behaviour; (2) design and acquire

a complete and extensive dataset of human routines comprising different challenges,

such as indoor or outdoor environment; (3) create an algorithm to extract human motion

features through unsupervised and supervised methods; (4) develop a framework to learn

and model human behaviour using the extracted features; (5) propose an unsupervised

anomaly detection algorithm for an earlier detection of human behaviour changes.

By modelling human behaviour it will be possible to help in the early diagnosis of

pathologies that cause changes in behaviour, providing timely treatment and improving

quality of life.

1.5 Document Structure

The document structure is divided into five chapters as illustrated in Figure 1.2. The

first chapter is the introduction starting with this study motivation, real-context appli-

cations, the literature review, and the study objectives. The second chapter addresses

the theoretical background needed for the development of this study. The third chapter

contains a detailed description of the implemented framework for learning human be-

haviour patterns. The fourth chapter regards the main results achieved by evaluating real

case scenarios using the developed framework. The fifth and last chapter comprises these

study conclusions and future work.

Document Structure

Introduction Theoretical
Background Framework Results Conclusion

Figure 1.2: Document structure overview. The document comprises five chapters namely
the introduction, theoretical background, framework, results and conclusion.
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Theoretical Background

This chapter contains the essential theoretical background to develop this project, it is

composed by four sections. The first section includes the description of human behaviour,

and motion patterns and anomalies detection concepts. The second section presents some

notions of activity recognition and location technologies, followed by the description of

smartphone sensors that are going to be used in this study. The third embraces machine

learning concepts that are going to be used for learning human behaviour patterns. The

fourth and last section comprises similarity measures.

2.1 Human Behaviour

Understanding human behaviour is not a trivial task, as it is stated by Skinner [28] "Be-

haviour is a difficult subject matter, not because it is inaccessible, but because it is ex-

tremely complex. Since it is a process, rather than a thing, it cannot easily be held still for

observation.". Human behaviour is defined as the response of an individual to internal or

external stimuli, involving cognition, emotion and executive functions.

Cognitive Functions: Cognition refers to functional proprieties of an individual that

may be inferred from behaviour, namely receptive functions that corresponds to the in-

dividual capability to acquire, classify and integrate information, memory and learning

functions referring to information storage and retrieval, thinking that involves mental or-

ganisation and reorganisation of information, and expressive functions that are defined as

how the information is communicated or acted upon. Cognitive impairments are related

to the degree of consciousness of the person, the attention level and the activity rate that

affects the speed of mental processes and consequently the speed of motor responses [29].

Emotional Functions: Emotional or personality functions refers to human feelings

9



CHAPTER 2. THEORETICAL BACKGROUND

and motivations. Impairments in these functions are usually associated with brain in-

juries and the most severe impairments may be related to brain diseases. Emotional

and personality changes are dependent on the severity of the brain impairments. Direct

effects of brain injuries include disinhibition, diminution of anxiety and mild eupho-

ria. Profound emotional and personality changes involve chronic frustration and radical

changes in lifestyle, these changes are usually expressed by human depression [29].

Executive Functions: Executive functions correspond to the capabilities that enable

humans to have independent, purposive and self-serving behaviour. Obvious defects

of executive functions are the ones that are observable by naive persons, for example,

emotional lability, irritability or excitability. The most serious defects are the ones that

may be missed or not recognised by experts due to the lack of routine monitoring of these

patients. These defects include the impaired capacity to initiate an activity, decreased or

absent motivations and defects in planning and carrying out the sequence of activities

that express high-level behaviours [29].

To assess human behaviour it is important to understand that human behaviour also

relies on subject variability, where humans in the same situation can take different actions.

Human behaviour variability may be influenced by cultural, ecological, socio-political

and education contexts, and by biological and genetic transmissions [30]. Variability types

are divided into variability within-subject and across-subject. Within-subject variability

corresponds to a situation where an individual takes different actions at different times

in the same situation. Across-subject variability refers to different actions taken by two

different people in the same circumstance [31].

Human behaviour variability increases the complexity of this study because humans

do not always behave in the same way. Therefore, one human may have multiple be-

haviour patterns and the behaviour patterns found for one subject may not have the same

meaning for defining if the behaviour is or not normal comparing to other subjects. It only

has meaning comparing to the subject behaviour pattern. Thus, the model for finding

human behaviour patterns should be learned for each subject, because each subject will

have its specific behaviour patterns.

The assessment of human behaviour, in this study, is going to be done through the

analysis of motion patterns that derive from responses involving cognitive, emotional

and executive functions describing human behaviour.

2.1.1 Motion patterns discovery

Motion patterns are repeated observations of motion that can be used to infer about

human behaviour, including patterns in trajectories and activities. Human trajectory

patterns can be assessed by the similarity between trajectories, based on location, velocity

between locations and permanence time in a specific place [32]. Common features used

in literature for trajectory analysis are subject Points of Interest (POI) and Times of Inter-

est (TOI) [33]. Measuring trajectory similarity through POI has the purpose of finding
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Figure 2.1: Representation of a set of trajectories being partitioned into a set of t-partitions.
The outlying t-partitions are identified based on the distance from neighbouring trajecto-
ries [36].

specific interests of the subject being analysed in his/her normal routine. This type of

analysis can be done in a more restrictive environment, such as a home, using indoor loca-

tion methods. For instance, the time passed in the kitchen can give us information about

personal interest in cooking. The motion patterns discovery can also be done on a wider

scale, such as a commuting routine, using for this purpose a combination of indoor and

outdoor location methods. Clustering methods are frequently used to divide trajectories

into clusters of similar trajectory considering spatial or spatio-temporal similarity [34].

Motion patterns are also found in human activities, by analysing the sequence of

performed activities, their duration and the number of times each activity is executed [26].

The pursuit for activity patterns is based on efficient methods in pattern data mining

such as HMM to evaluate the probability of activities sequences and statistical models to

evaluate duration and activities occurrence.

2.1.2 Anomaly detection

Once motion patterns are defined, it is possible to detect anomalies on those patterns

that are characterised as a pattern deviation. Atallah and Yang [35] define anomalies as

a deviation from learned models of behaviour and also state that classes distance can

provide information about the anomaly level. Anomalous trajectories can be detected,

for example, through distance [36] and clustering-based methods [37]. Distance-based

outliers were defined by Knorr et al. [38] as "An object O in a dataset T is a DB(p, D)2-

outlier if at least fraction p of the objects in T lies greater than distance D from O". An

example of a distance-based outlier trajectory is shown in Figure 2.1.

Clustering-based methods cluster trajectories into groups by first measuring trajectory

similarity and defining the clustering method. Anomalous clusters are the ones that

contain only one trajectory [37].

Considering a trained HMM by activities or indoor locations sequences, the log-

likelihood output can be modelled through a statistical distribution and an anomaly will

2DB(p, D) is shorthand notation for a Distance-Based outliers detected using parameters p and D [38].
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be given by the behaviour that generates a HMM log-likelihood output with a probability

value that is too different compared with the expected behaviour [27].

2.2 Motion detection using pervasive sensing

Learning human motion patterns on everyday basis compromises activity recognition

methods and trajectory analysis. In this section, a brief description of Human Activity

Recognition (HAR) and location technologies is introduced, as well as the sensors used

for this detection.

2.2.1 Human Activity Recognition

HAR is an important and challenging research area in computer vision and machine

learning that studies gestures and human motions through the use of sensors for the

recognition of activities. It contains many important applications in health-care, life-care,

smart environments, and homeland security [39]. The existing studies of HAR suggest

the existence of two main classes of activity recognition, namely simple and complex

activities. Simple activities are characterised by different body posture and locomotion

of humans, comprising more repetitive motions, such as walking, standing, lying, sitting,
walking up and walking down [11]. Complex activities are constituted by multiple simple

activities and a specific function involving cognitive functioning [40].

Activities of Daily Living (ADLs) belongs to the set of complex activities and includes

daily activities such as bathing, toileting, brushing teeth, eating and cooking. With the recog-

nition and analysis of these activities, it is possible to infer about cognitive and physical

capabilities of elderly people [41]. Thus, pathological behaviour related to physical activ-

ity can be detected, allowing early diagnosis of diseases and intervention procedures [42].

There are different approaches for HAR, some studies recognise human activity using

cameras [43], external and wearable sensors [44]. HAR using cameras has obvious pri-

vacy issues associated because not everyone is willing to be continuously monitored by a

camera. Intelligent homes using a wireless sensor network allows to observe what goes on

in the house and infer human activities from sensor data [44], an issue associated to this

method is maintenance of the sensors which are usually expensive, moreover, nothing

can be done to recognise human activity if the person is out of the sensors range [45].

In recent years, smartphones usability has increased and because of the availability of

various sensors in these devices, for being unobtrusive and also an affordable asset, there

has been a shift towards smartphones to perform HAR [46, 47].

2.2.2 Location Technologies

Outdoor location positioning uses GPS to calculate users exact location by using signal in-

formation transmitted through a satellite-based navigation system [48]. Regarding indoor

location, GPS based approaches are less effective because GPS signal is attenuated and
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scattered by roofs, walls and other objects inside buildings [49]. Indoor location solutions

created to overcome this problem are divided into two main categories: Infrastructure-

free and infrastructure-based. Radio frequency signals such as Bluetooth, where beacons

are used to transmit a specific signal to the device being located, are one of the most com-

mon applications of infrastructure-based solutions [50]. Although Wi-Fi signals depend

on infrastructure, they can be considered as an infrastructure-free solution, due to its

wide implementation inside buildings. Inertial sensors, magnetic field and atmospheric

pressure are commonly used for infrastructure-free solutions [16].

The indoor location has been a useful tool for many applications such as tracking

of medical equipment’s or visitors in hospitals, locate books in libraries, shopping mall

navigation, fire emergency rescue and assistant living systems for elderly people. For the

analysis of human trajectory, the main location technologies used in this study are the

GPS, Wi-Fi and Dead Reckoning (DR) approach.

2.2.2.1 Global Positioning System

GPS is a satellite-based navigation system that allows calculating user’s location expressed

by latitude, longitude and altitude together with timing information. GPS is constituted

by three segments: the space segment, the control segment and the user segment. The

space segment consists of a constellation of 24 to 32 satellites [51], where each GPS

satellite transmits a microwave radio signal composed by two carriers frequencies, two

digital codes and a navigation message. The carriers and codes are used to determine the

distance between the GPS receiver and the satellite and the navigation message contains

the coordinates of the satellites as a function of time. The control segment is a worldwide

network of tracking stations that track GPS satellites providing multiple control infor-

mation [52]. The user segment includes all users with a GPS receiver. User’s location

is determined by employing a triangulation process that considers distances from GPS

receiver to three GPS satellites along with the satellites’ locations. If a fourth satellite is

available, altitude information can also be determined. GPS enabled smartphones are

accurate within a 5-meter radius under open sky [53]. However, GPS accuracy is reduced

near buildings, tunnels, bridges because GPS signal is attenuated and scattered by roofs,

walls and other objects [49].

2.2.2.2 Wi-Fi Technology

Wi-Fi devices are used for location estimation due to its wide implementation inside

buildings. Taking into account that all Wi-Fi Access Point (AP) has a unique ID called

Basic Service Set Identifier (BSSID) that is transmitted periodically to any Wi-Fi client, it

is possible to estimate client’s position by mainly 3 technologies: Proximity, Triangulation

and Scene Analysis (Fingerprinting):

• Proximity is the most simple method that uses AP’s location with the strongest

signal to estimate the user’s position. It is a simple, fast real-time positioning
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Figure 2.2: Lateration technique. P posi-
tion is obtained based on the distance from
P to three reference points A, B, C [55].

Figure 2.3: Angulation technique. P po-
sition can be found by the intersection of
several pairs of angle direction lines [55].

method, however, it has limited accuracy, since it returns the position within the

range of the nearest AP, and in the case of multi-floor buildings, it can not provide

accurately in which floor the user is located due to signals overlap [54].

• Triangulation uses geometric properties of triangles to estimate the user’s position.

It includes lateration (Figure 2.2) and angulation (Figure 2.3) techniques. Lateration

estimates position by measuring the user’s distance to multiple reference points. On

the other hand, angulation locates the user by measuring angles relative to multiple

reference points [55].

• Scene analysis includes algorithms based on fingerprints. This method is divided

into two stages: online and offline stages. The offline stage comprises features

collection of a scene, where fingerprints store the signal strength of each location co-

ordinate, as it is presented in Figure 2.4. The online stage allows estimating location

by comparing currently observed signals strengths with the closest a priori location

fingerprints, collected during the offline stage [55]. For fingerprinting methods to

correctly estimate the position it is needed a sufficient amount of collected informa-

tion beforehand, these acquisitions are time-consuming and error prone [56]. The

main challenge of this technique remains in the fact that Received Signal Strength

Indicator (RSSI) can be affected by diffraction, reflection and scattering during its

propagation [55]. Therefore, the search for a more accurate and efficient indoor

position system still continues.

2.2.2.3 Dead Reckoning technology

DR is an inertial navigation estimation technology that uses data collected from the ac-

celerometer, magnetometer and gyroscope to estimate user’s current position by using

a previously determined position, heading and velocity [16, 57]. The accelerometer is

used to detect steps and step length. The magnetometer is used to determine the Earth

magnetic north to be used as a reference to determine movement direction. Gyroscope is
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Figure 2.4: Wi-Fi RSSI map of an office building. Signal intensity is represented by
colours, red colour means more intense [16].

usually used together with a magnetometer to improve the estimation of movement di-

rection mainly in indoor environments since ferromagnetic materials cause disturbances

in magnetometer readings [58].

2.2.3 Smartphone Sensors

To recognise human activity and location, smartphones are going to be used since they

contain several sensors capable of measuring physical quantities in our surrounding. In

the context of this study, the most relevant sensors are described bellow.

• Accelerometer measures acceleration in m/s2. Smartphones use a tri-axial ac-

celerometer sensor that can measure linear acceleration, relative to the Earth’s, in

three orthogonal axes determining the acceleration parts of each spatial direction

(x,y and z-axis), as it can be seen in Figure 2.5. The obtained signal contains a dy-

namic component caused by smartphone movement and a static component that is

gravity acceleration force.

• Gyroscope provides angular velocity information in rad/s in three orthogonal axis.

Orientation over time can be calculated by the integration of gyroscope data result-

ing in rotation angles around x, y and z-axis, namely pitch, roll and yaw (Figure

2.5).

• Light Sensor provides the measurement of surrounding illumination intensity in

SI lux units.

• Microphone records a sound signal using a transducer that converts a sound wave,

that consists in a pressure wave, into an electrical signal proportional to its pres-

sure [59].

• Magnetometer provides the orientation of the device relative to the Earth’s mag-

netic north pole by measuring the strength of the local magnetic field along three

orthogonal axes in µT. The local magnetic field obtained combines the geomagnetic

field and magnetic field from the environment.
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Figure 2.5: Smartphones coordinate system [61].

• Barometer pressure sensor provides the altitude of the device relative to its initial

position by measuring the atmospheric pressure, in hPa or mbar, to infer about

altitude above the sea [60].

• Wi-Fi is a wireless networking technology, that contains devices called AP that use

radio waves to establish a communication between the Wi-Fi device and a wired

network, typically the Ethernet. Smartphones contain a Wi-Fi receiving module

that allows the connection to a wired network, from which we can extract the RSSI,

BSSID and the frequency over which the client is communicating with the AP in

MHz.

The previous section detailed the main areas and the types of sensors that can be used

to obtain relevant information that reflects a change in subjects or surrounding. However,

developing methods that can accurately model the true nature of human behaviour re-

mains a challenge [35]. Using the previous knowledge of HAR and location technologies,

behaviour can be modelled, through which patterns and deviations to those patterns can

be detected.

2.3 Machine Learning

Machine learning is the field of computer science derived from artificial intelligence that

gives the capability to computer programs to learn without being explicitly programmed.

According to Tom M. Mitchel [62] machine learning definition is "A computer program

is said to learn from experience E with respect to some class of tasks T and performance

measure P , if its performance at tasks in T , as measured by P , improves with experience

E". Machine learning includes several algorithms based mainly in four types of learning:

Supervised learning, Unsupervised learning, Semi-supervised learning and Reinforce-

ment learning.

• Supervised learning uses a labelled dataset to train the classifier, which means, the

input, sample x, of the classifier has the output, prediction y, already defined. After

the training procedure, the classifier is capable of predicting new outputs.
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Figure 2.6: Machine learning classification architecture. The grey objects represent the
variables inputs/outputs from the processes coloured in green.

• Unsupervised learning trains the classifier with an unlabelled dataset, finding

patterns in the dataset relying on data similarity.

• In Semi-supervised learning the classifier is trained using a labelled and unla-

belled dataset, containing more unlabelled data than labelled.

• Reinforcement learning trains the classifier that learns by interacting with a dy-

namic environment using the experience gathered to optimise its performance. In

other words, by a trial and error method, it must reach a certain goal in the interact-

ing environment such as winning a game.

Figure 2.6 represents the machine learning classification architecture. The dataset is

segmented into equal-sized data windows from which features are extracted, followed by

the implementation of a machine learning classifier, a validation procedure, and lastly,

the prediction result.

2.3.1 Pre-processing

Before employing a machine learning algorithm, data needs to be processed to enhance

relevant signal properties. In the case of a continuous stream of data, segmentation

techniques are usually used to process this data. Data is segmented into equal-sized

windows, whose length can be defined according to the recognition problem at state.

Additionally, data windows may or not overlap depending if it is important to detect

transitions between activities [63] or to enhance relevant features properties that may be

overshadowed by segmenting the signal into a fixed window size.

Determining the appropriate window size is a common challenge in the scientific

community [64, 65]. Shorter windows may be useful for the recognition of repetitive

activities or activities with short duration [66] and it has the advantage of reducing energy

consumption and faster recognition. On the other hand, the short window size is not
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appropriate for the recognition of long complex activities that are not so repetitive. Thus,

longer complex activities need to be recognised using a larger window size that allows

enhancing relevant features of the activity [67]. Hence, it is important the selection of the

window size, depending on the recognition problem.

After data is segmented into windows it is important to properly balance the dataset.

An imbalanced dataset contains more samples of some classes than others. This is a

common problem when working with standard machine learning algorithms because

these algorithms expect a balanced dataset. When a complex and imbalanced dataset is

provided, they tend to choose the classes with more samples and ignore the small ones

[68]. Several solutions were developed to solve this problem at the data level including

re-sampling methods and the algorithm level involving the adjustment of the cost of the

various classes [69, 70].

2.3.2 Feature Extraction

Feature extraction is an important stage of machine learning algorithms, it is when each

data window is transformed into a low dimensional subspace preserving most of the

relevant information [71]. Features are typically extracted from time, spectral and statis-

tic domains. A python library developed by Fraunhofer Portugal, named Time Series

Feature Extraction Library (TSFEL)3, extracts a total of 43 features including 12 from

the temporal domain, 18 from the spectral domain and 13 from the statistical domain.

A detailed description of TSFEL is presented in Appendix A. After feature extraction,

features need to be normalised to a common scale so that new extracted features can

contribute equally to the classifier. In this work, features were normalised by a Z-score

normalisation, resulting in a zero mean and standard deviation of one, as it can be seen

in Equation 2.1:

Zn =
Xn −µ
σ

(2.1)

Where, Xn is the feature, µ the mean and σ the standard deviation. The mean and

standard deviation from the training set are parameters that need to be learned to be

used for the normalisation of the new data for prediction.

2.3.3 Feature Selection

Feature selection algorithms are one of the most important in a classification process

because they allow to remove features with redundant, misleading and irrelevant infor-

mation, reducing computation time, overfitting, complexity and improving the learning

process of the classifier. Feature selection methods can be subdivided into Filters, Wrap-

pers and Embedded methods.

3Available in https://github.com/fraunhoferportugal/tsfel (visited on 03/09/2019)

18

https://github.com/fraunhoferportugal/tsfel


2.3. MACHINE LEARNING

• Filters: Filter methods, have low computational cost and time, they do not rely on

the classifier being used, and evaluates features based on general characteristics of

the data [72].

• Wrappers: Wrappers methods are dependent on the machine learning classifier

being used, having a better performance than filter methods. However, they present

higher computational cost and time, because each feature set needs to be evaluated

with the trained classifier [73].

• Embedded: These methods use both advantages of wrappers and filter methods.

2.3.4 Classification

In a machine learning classification process the training procedure can be divided into

supervised and unsupervised learning methods.

2.3.4.1 Supervised Learning

This subsection describes the commonly used classifiers in supervised recognition prob-

lems.

Decision Tree constitution comprises nodes and a hierarchy of branches. There are

three types of nodes, the root or decision node, the internal or chance node and the leaf

or end node. The root node consists in the choice that leads to the subdivision of all

samples in two or more exclusive subsets. The internal node corresponds to one of the

possible choices available, its top edge is connected to the parent node and the bottom to

the sun node. The outcomes of root and internal nodes are named branches. At each node,

if-then-else rules are applied and after all the decision events, the leaf node is reached

representing the final result [74].

K-Nearest Neighbors algorithm can be divided into mainly two stages, the first con-

sists in determining the nearest neighbours and the second, according to the determined

nearest neighbours, to decide the corresponding class. The nearest neighbours are se-

lected by computing the distance, for example, the euclidean distance [75], between an

unlabelled sample and a training labelled dataset with a class label. The nearest neigh-

bours will be those at the shortest distance. The most straightforward approach to decide

the corresponding class is to assign the majority class of the nearest neighbours.

Random Forest is a combination of decision trees, where each tree node contains a

set of features randomly selected from the whole set of attributes, as employed in the

bagging method [76]. The classification result arises from majority voting.

AdaBoost classifier combines many weak classifiers and it is based on an iterative

algorithm [77]. It first starts with an unweighted training set, according to the classifica-

tion results, the weight of the miss-classified samples, in the next iteration, is increased,

i.e boosted. This way, the next classifier has no longer equal-weighted samples. The
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Figure 2.7: Hidden Markov Models chain, where S refers to hidden states and X to
observations. Adapted from [79].

procedure continues, each classifier gets a score, and the final classifier will be a linear

combination of the classifier’s scores at each stage.

Naive Bayes classifier assigns the most likely class, y, for a sample , x, according to

Equation 2.2:

ŷ = argmax
y

P (y)
x∏
i=1

P (xi |y) (2.2)

Where ŷ is the assigned class, x is a feature sample, and P (y) is estimated using the

Maximum A Posteriori estimation and the likelihood of features is assumed to be Gaussian:

P (xi |y) =
1√

2πσ2
y

exp(−
(xi −µy)2

2πσ2
y

) (2.3)

Where σy and µy are estimated by maximum likelihood. This classifier works by

assuming, in a naive way, the independence between features given a class, according to

Bayes rule (Equation 2.4), where y is the predicted class, and (x1,x2, ...,xn) is the feature

vector.

P (y|x1,x2, ...,xn) =
P (y)P (x1,x2, ...,xn|y)
P (x1,x2, ...,xn)

(2.4)

Hidden Markov Models are effective to infer about hidden states (S) of a system that

gives rise to a time series of observations. It is constituted by a set of hidden states, which

variables are discrete, called Markov Chain, observations generated by some process

whose state is hidden from the observer, by the probability of transitioning from one state

to another, including self-transitions and by emission probabilities (see Figure 2.7) [78].

HMM satisfies Markov property, well described by Ghahramani [80], which states

that "an n-th order Markov process is one in which St given St−1 ... St−n is independent of

Sτ for τ<t-n.". This means that the Markov chain bases its state choice only in transition

probabilities from the previous state.

According to Rabiner [81], hidden states sequence can be estimated from a given

model λ = (A,B,π), where A corresponds to state transition probability matrix, B refers

to emission probability matrix and π the initial state distribution vector.
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However, to properly estimate the hidden states the following three basic problems

are addressed:

• Problem 1: Viewed as an evaluation problem, how do we compute the probability

of a given sequence and the model, P (O|λ), where O is a sequence of observations

and λ a model. In other words, how well a given model matches a given observation

sequence.

• Problem 2: Attempt to uncover the hidden states of the model, given the observation

sequences O and the model λ, how do we find the optimal state sequence.

• Problem 3: Optimisation of the model parameters λ = (A,B,π) to maximise P (O|λ).

2.3.4.2 Unsupervised Learning

Unsupervised learning comprises clustering methods and allows to model probability

densities of input data.

Clustering methods divide data into groups according to their similarity, without the

need of knowing previous knowledge of the group definitions. Each group of similar data

is called a cluster. Clustering techniques satisfies two conditions, the objects in each group

need to be similar to each other and different from objects contained in other clusters.

Clustering techniques are divided into hierarchical methods, partitioning methods and

density-based algorithms.

• Hierarchical Methods: In hierarchical methods, clusters are divided hierarchically,

not in a single step. Thus, it is possible to obtain different partitions of data, from

only one cluster containing all objects, to x clusters containing only one object [82].

Hierarchical methods are subdivided into agglomerative and divisive hierarchical

clustering [83]. In agglomerative hierarchical clustering, initially each object repre-

sents one cluster, then clusters are grouped to originate the desired cluster structure.

Meanwhile, in divisive hierarchical clustering, initially all objects belong to one sin-

gle cluster and then the cluster is subdivided into smaller clusters until the desired

cluster structure is obtained. The result of the hierarchical clustering methods is a

dendrogram that illustrates the grouping or divisions made at each successive stage

of the clustering analysis, an example is shown in Figure 2.8.

• Partitioning Methods: Partitioning methods start with an initial partitioning, where

the number of clusters is pre-selected by the user. For the adequate partitioning,

iterative optimisation of the cluster centres is performed [83].

• Density Based Methods: Density-based methods are used for discovering clus-

ters with arbitrary shape. The objects are grouped according to a specific density

function. In this method, it is necessary to define the minimum number of objects

contained in a given neighbourhood radius, and the cluster keeps growing as long
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Figure 2.8: Representation of a dendrogram and corresponding clusters. The left part
of the figure illustrates the dendrogram, whose dashed coloured lines represent the divi-
sions giving origin to the corresponding coloured cluster on the right part of the figure.
Adapted from [84].

Figure 2.9: Representation of a core, border and noise points according to DBSCAN,
considering Minpts <= 7. A point is a core point since its density region, coloured in
green, contains 7 points, B point is a border point as it is on the edge of a density region
and C point is a noise point since is neither a border or core point. Adapted from [84].

as the density, number of objects, in the neighbourhood exceeds a given parameter.

Density-based methods are useful to find outlier objects [83]. Common density

based methods include Density-based spatial clustering of applications with noise

(DBSCAN) and Hierarchical Density-based spatial clustering of applications with

noise (HDBSCAN).

1. DBSCAN is an effective method for separating a dataset with different density

regions. The density of a specific point of the dataset is given by the number of

objects within a given radius from that point, this radius is an input parameter

in DBSCAN methods called Eps. The minimum number of objects inside a re-

gion,minP ts, is also an input for DBSCAN algorithm [84]. DBSCAN algorithm

works as described in the following.

Initially, each point in the dataset is going to be classified as:

– Core point if it is inside a density region, namely if the number of points

within a given radius Eps exceed the minP ts (see Figure 2.9).

– Border point if it is on the edge of the density region (see Figure 2.9).

– Noise point if it is in a sparsely occupied region (see Figure 2.9).

Next, noise points will be eliminated. An edge will separate all core points that

are within Eps of each other into density-based clusters. Finally, each border
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point will be assigned to one of the clusters of its associated core points.

This algorithm has the advantage of not being necessary to define the final

number of clusters, allowing the discovery of clusters with arbitrary shape and

size and for being a noise-resistant method. However, it also presents some

disadvantages, regarding the search of the optimal Eps value, some problems

in the DBSCAN method when working with clusters whose density varies

widely and if the dataset is constituted by high-dimensional data.

2. HDBSCAN is a hierarchical version of DBSCAN that is capable of dealing with

clusters of different densities. Moreover, it is an improvement of DBSCAN as

Eps parameter is not required. It has an input parameter minP ts, and for a

given minP ts value the HDBSCAN algorithm computes the distance required

to obtain thatminP ts, and produces a clustering tree containing all clusters ob-

tained by DBSCAN, hierarchically. The clustering tree includes nodes that de-

note the transition of the different density levels that are hierarchically tested

to optimise the value that provides the best results [34].

For modelling the probability density function of datasets whose function is unknown,

the density estimation used in this study is KDE.

Kernel Density Estimate was firstly defined by Rosenblatt [85] and Parzen [86], the

kernel estimate is given by the sum of the kernel function K placed at each point of the

dataset, as it is defined in Equation 2.5.

f̂ (x) =
1
nh

n∑
i=1

K
(x −Xi

h

)
(2.5)

Where n is the number of points in the dataset, h is the bandwidth (also called smooth-

ing parameter) and K is the kernel function centred on Xi with width h. The kernel

function K needs to satisfy: ∫ +∞

−∞
K(x)dx = 1 (2.6)

This condition requires the normalisation of the kernel estimate that is ensured di-

viding it by n. This way it is guaranteed that the probability density function has a total

probability of one. Moreover, K is usually a symmetric function and it is non-negative

since probabilities are non-negative.

Examples of symmetric kernel functions are Epanechnikov, Biweight, Triangular,

Gaussian and Rectangular [87], illustrated in Figure 2.10. Since these functions are

symmetric they will have little impact on the choice of the estimator. Thus, in this study

it will be used the Gaussian function, given by Equation 2.7:

K(x) =
1
√

2π
e
−x2

2 (2.7)

One of the challenges on the implementation of this algorithm is the choice of the

optimal h parameter if it is too big the probability density function will be spread, not
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Figure 2.10: Illustration of symmetric kernel functions namely Epanechnikov, Biweight,
Triangular, Gaussian and Rectangular, whose labels lines are coloured with the corre-
sponding distribution colour [87].

revealing structural features. If h parameter is too little, the probability density function

will be too narrow, showing spurious features [88]. Hence, the division by h inside and

outside the kernel function in Equation 2.5 is to guarantee that the growth of K equals

one.

There are automatic methods for calculating the optimal smoothing parameter includ-

ing the rule of thumb, maximal smoothing principle, cross-validation methods, plug-in

methods, well described in Turlach review [88].

The rule of thumb defined by Silverman [89] will be the method for calculating the

optimal smoothing parameter in this study. This method assumes that data is normally

distributed with a standard deviation, σ , and h will be the value that minimises the

integrated mean square error, given by Equation 2.8.

h = 1.06σ̂n−
1
5 (2.8)

2.3.5 Validation

Validation is one important stage of machine learning algorithms, to properly build a

classifier. Datasets used in the machine learning algorithm are usually divided into three

sets: a training set, a testing set and a validation set. The subdivision of the dataset

is important to avoid that the classifier ever sees the evaluation data, preventing the

occurrence of overfitting [90].

Model validation techniques include k-fold cross-validation, split sets, leave one out

and bootstrapping.

• K-fold cross-validation: In K-fold cross-validation the dataset is subdivided into

equal-sized K folds, the classifier is trained in k iterations using one fold to validate

the results and the rest for training.

• Split sets: Split sets consists in dividing a percentage of the dataset for training and

the remaining for performance evaluation.

• Leave one out: Leave one out validation, presents a higher computational cost,

because it leaves out one sample for validation and trains with all the other, having
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Table 2.1: Confusion Matrix, where TP - True positive, TN - True negative, FP - False
positive, FN - False negative.

Predicted Labels
Positive Negative

Positive TP FN
True Labels

Negative FP TN

the number of iterations equal to the dataset size. On the other hand, this technique

returns more accurate results.

• Bootstrapping: Bootstrapping uses a dataset of size n to create bootstrap samples,

with n instances, by resampling the dataset iteratively with replacement, using one

bootstrap sample for testing and the rest for training [91].

After the classifier is trained, several metrics can be used to evaluate its performance [92],

described in the following.

Confusion matrix is an N×N matrix that allows visualising the classifier performance,

it is constituted by N rows indicating the true labels of the samples being classified, and

N columns that correspond to the predicted labels. An example is represented in Table

2.1.

One of the most common metrics for evaluating performance is the accuracy that

corresponds to the number of successful classifications divided by the total number of

classifications.

Accuracy =
T P + TN

T P +FP +FN + TN
(2.9)

Sensitivity transmits the ability of the classifier to classify correctly all true labels,

and it is calculated by the number of successful classification from one specific class

divided by the total number of successful classifications.

Sensitivity =
T P

T P +FN
(2.10)

Specificity indicates how well the negatives are detected and corresponds to the num-

ber of true negatives divided by the total number of negatives. The lower the specificity,

higher are the false positives.

Specif icity =
TN

TN +FP
(2.11)

Precision is the number of true positives divided by all the predicted labels.

P recision =
T P

T P +FP
(2.12)

F1-score relies on the weighted average of the precision and sensitivity, returning a

number on a scale between 0 and 1, where 1 is the best score.
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Figure 2.11: Distance measurement of two time series using the Euclidean Distance.
Adapted from [61].

F1 =
2× (precision× sensitivity)
precision+ sensitivity

(2.13)

Receiver operating characteristics curve also allows a visual analysis of the clas-

sifier’s behaviour as it illustrates the performance of the true positive rate against the

false-positive rate regarding different threshold values. Receiver Operating Characteris-

tics (ROC) is reduced to a single value by calculating the Area Under the Curve (AUC).

Ideally, a classifier has an AUC of one.

2.4 Similarity distances

In the context of human motion patterns, the analysis of similarities between time-series

is a valuable tool to extract human routines through distance metrics. In the following

subsections, a description of the distances addressed in this study is presented.

2.4.1 Euclidean Distance

Euclidean Distance (ED) can be defined as:

D(X,Y ) =

√√
n∑
i=1

(xi − yi)2 (2.14)

Where X and Y are two time series given by X = x1...xn and Y = y1...yn.

This is a simple approach to measure distance similarity (see Figure 2.11) and its

principal advantage is the linear time complexity that is held. ED main limitation consists

on the requirement of the two analysed time-series must have the same length, otherwise,

addition, removal of point or the search of a partial alignment using a sliding window is

required [93].

2.4.2 Dynamic Time Warping

DTW can measure the similarity between two time series, warping them non-linearly

to align non-linear changes in time domain, as it is shown in Figure 2.12. Given two
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Figure 2.12: Similarity measurement using Dynamic Time Warping. Adapted from [61].

sequences X := (x1,x2, ...,xN ) and Y := (x1,x2, ...,xM), an accumulated cost matrix with

dimensions N ×M is computed, where the first column is given by Equation 2.15 and the

first row by Equation 2.16, where c denotes the local cost, or local distance, that is given

by the absolute distance between x and y (with x ∈ X and y ∈ Y ) [94]. Equations 2.15 and

2.16 correspond to the cumulative distance (or cumulative cost) along the first column,

row, respectively.

D(n,1) =
n∑
k=1

c(xk , y1) f or n ∈ [1 :N ] (2.15)

D(1,m) =
m∑
k=1

c(x1, yk) f or m ∈ [1 :M] (2.16)

Hereafter, the remaining accumulated cost matrix positions can be calculated by Equa-

tion 2.17, that corresponds to the cumulative distance between each point of the two

sequences [94].

Cd(i, j) = c(i, j) +min


Cd(i − 1, j − 1)

Cd(i − 1, j)

Cd(i, j − 1)

, i ∈ [2 :N ] and j ∈ [2 :M] (2.17)

After the accumulated cost matrix is computed, DTW finds the optimal warping

path, which means, the path with the minimum cumulative distance, by satisfying the

following three conditions [94].

Boundary conditions - the first and last point of the two trajectories should match.

Thus, it is a guarantee that all sequence is considered.

Monotonicity conditions - the alignment does not go back in time, ensuring that

there are not replications in the alignment.

Continuity conditions - there are no omitted samples in time, to ensure that all sam-

ples are considered.

The DTW distance will be given by the accumulated distance at [N, M] accumulated

cost matrix position.
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2.4.3 Subsequence - Dynamic time Warping

Subsequence-DTW (S-DTW) is a modification of the classical DTW, defined by Muller

[94], that finds matching subsequences between a sequence X := (x1,x2, ...,xN ) and Y :=

(x1,x2, ...,xM ), where the length of Y (M) is much larger than the length of X(N ). The goal

is to find the subsequence that optimally matches Y , given by Y (a∗ : b∗) = (ya∗ , ya∗+1, ..., yb∗),

where 1 ≤ a∗ ≤ b∗ ≤ M, that corresponds to the subsequence that minimises the DTW

distance to X (i.e. Equation 2.18).

(a∗,b∗) = argmin
(a,b):1≤a≤b≤M

(DTW (X,Y (a : b))) (2.18)

To obtain a∗ and b∗ the cost matrix needs to be modified. In the classic DTW, the

distance in the first column is given by Equation 2.15 and the first row by Equation 2.16,

which means they are defined by the cumulative distance (or cumulative cost) given by c,

that is referred as a local distance between the two points [94].

In S-DTW the first column is given by 2.15 but the first row is given by D(1,m) =

c(x1, yk) for k ∈ [1 :M]. Hence, all points (1 :M) are possible candidates to starting points

for the optimal matching subsequence. Subsequently, the cost matrices is computed, and

the optimal matching subsequence ending point in b∗ is given by Equation 2.19.

b∗ = argmin
b∈[1:M]

D(N,b) (2.19)

This way, the optimal matching sequence can end in any position along the sequence Y .

Once, the last position of the subsequence is found, a track-back dynamic programming

procedure finds the optimal first position of the optimal matching function, that is given

by a∗. After the sequence is found, all positions around (N,b) will be set to a large value

and the search for the next best end position starts [95].
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3
Framework for Learning Human Patterns

Behaviour

Human behaviour analysis presents unique challenges to learn and understand human

patterns that can not be addressed with conventional approaches. This chapter presents a

framework for modelling human motion patterns behaviour. The key insight is to exploit

the human motion by trajectory analysis and activity recognition, effectively capturing

both indoor and outdoor environment.

An overview of the framework is presented in Figure 3.1 where each section is repre-

sented with different colours.

Figure 3.1: Representation of framework overview, first features are extracted from sig-
nals coloured in green (1st Section), that are used to define a pattern (2nd Section), then
from a new day, features are extracted and the distance to the pattern will determine
whether the day is or not anomalous (3rd Section).
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The first section describes the methods applied for the feature extraction along each

day, the second section uses the extracted features from a set of days to learn patterns, and

the last section describes the process for anomaly detection using the previously detected

patterns and features from a specific day.

3.1 Feature Extractor

The extraction of relevant features for the human motion pattern analysis can be simpli-

fied to the Equation 3.1 where dayi represents signals acquired from smartphone sensors

along a day and fextractor is a set of the methods and models used to extract features

that are represented by fday . The feature extractor can be applied to unsupervised and

supervised methods depending on the available information.

fdayi = fextractor(dayi) (3.1)

3.1.1 Unsupervised Feature Extraction

This section describes the extracted features from human behaviour in an unsupervised

manner, specifically all features that may be extracted without any previous annotation.

Extracted features can be grouped by the type of information source used and are divided

into the outdoor trajectory, DR and simple activities.

3.1.1.1 Outdoor Trajectory

Outdoor trajectories are acquired through GPS sensor embedded in smartphones. As

mentioned in 2.2.2.1, GPS accuracy is reduced near buildings, walls and other objects

that scatter and attenuate this signal, leading to inaccurate results. Figure 3.2a represents

one trajectory that is clearly affected by GPS inaccuracy.

To use GPS signal to extract features such as walking velocity or distance, the correc-

tion of GPS outlier points must be done.

The Kalman filter is a well-known method and is usually referred in literature for

noise reduction in GPS signal [96]. Kalman filter is a recursive and mathematical al-

gorithm that processes inaccurate observation input data and generates a statistically

optimal estimate of the next state by employing a prediction and observation model,

where the prediction model estimates the next state considering the last measurement

and the movement dynamics, assuming constant acceleration. The observation model

retains the real measurements. Therefore, the first approach for correcting GPS outlier

points was the implementation of a Kalman Filter, however, as the GPS measurements

were too noisy, the Kalman filter was not very efficient in correcting these measurements

as it can be observed in Figure 3.2b.
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(a) Raw signal. (b) Kalman filter approach. (c) Algorithm 1 approach.

Figure 3.2: Process for correcting GPS trajectories. Figure 3.2a represents the raw GPS
signal. Figure 3.2b the outlier’s correction using a Kalman filter, where the original signal
is coloured in blue and the corrected in green. Figure 3.2c corresponds to the outlier’s
removal using Algorithm 1.

Thus, instead of correcting GPS outlier points, an approach that relies on removing

these points was applied.

Given a GPS trajectory, T r, where each point T ri , is denoted by latitude, longitude

and time and i ∈ [0,1, ..., len(T r)], the first step was to convert the GPS coordinates from

degrees to meters to estimate the maximum velocity between consecutive points and

remove the ones with an inconsistent velocity. The threshold velocity for removing the

GPS outlier points was empirically tested resulting in a threshold of 400 m/min (' 6.7

m/s).

The implementation is presented in Algorithm 1 and the obtained results can be

observed in Figure 3.2c.

Algorithm 1 GPS outlier removal

1: INPUT: T r ⇐ GPS raw signal in meters
2: OUTPUT: T rp⇐ GPS signal without outliers
3: di = euclidean_distance(T ri ,T ri+1)⇐ i ∈ [0,1, ..., len(T r)]
4: vi = di

∆t
5: id_del = where(vi > threshold)
6: while len(id_del) > 0 do
7: Delete GPS points with i ∈ id_del
8: di = euclidean_distance(T ri ,T ri+1)
9: vi = di

∆t
10: id_del = where(di > threshold)
11: end while

Human behaviour tends to promote well-defined motions which are repeated every

day, to access human behaviour motion patterns through GPS trajectories, some features

were extracted from the preprocessed GPS signal measurements. GPS signal outputs

include timestamped geographic coordinates such as longitude and latitude, altitude and

velocity. From these outputs, the following features were computed:
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• Mean and Maximum Velocity (m/s): From the velocity obtained directly by the

GPS outputs, the mean velocity is calculated. The maximum velocity corresponds

to the 95 percentile of the velocity to reduce the influence of outlying measurements.

• Mean and Maximum altitude variation (m): The altitude variation is extracted

from the altitude GPS measurements and subsequently the mean and maximum

altitude variations are calculated.

• Walking Distance (m): Walking distance is calculated by the sum of the euclidean

distance between GPS coordinates.

• Walking Time (min): Walking time is computed by the difference between the last

and the first timestamps of GPS measurements in minutes.

3.1.1.2 Dead Reckoning

DR is an inertial navigation estimation technology used to estimate the user’s current

position by using a previously determined position. To learn mobility patterns that can

not be measured using GPS measurements, this technology was used to extract features

from the step detection and its estimated length. The DR algorithm implemented in

this framework was developed by Fraunhofer AICOS [16]. The output features from this

algorithm were:

• Number of steps: The detection of steps is done using the accelerometer signal and

a sum of the detected steps during the whole acquisition is computed.

• Mean step length (m): Once a step is detected, the step length is estimated based on

Weinberg’s method [16], and the mean step length considering the whole acquisition

is computed.

3.1.1.3 Simple Activities

For the recognition of simple activities such as walking, standing, walking up and walking
down, a machine learning classifier was implemented. Although a supervised machine

learning classifier was used, this classifier was included in unsupervised feature extrac-

tion since it is user-independent. The recognition of human locomotion is essential for

understanding the walking difficulty that can be characterised by having more or fewer

altitude variations or even stops. The implementation of this classifier undergoes several

stages that are commonly applied in activity recognition algorithms, described in section

2.3 and relies only on accelerometer and barometer sensors. Both sensors signals were re-

sampled to 30 Hz. The choice of the resampling frequency relied on the study conducted

by Figueira [97], that chooses 30 Hz as the ideal sampling rate to provide a low power

consumption and good accuracy to monitor human movements. Since this framework

focus is the evaluation of human behaviour that needs to be continuously monitored, it is
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desirable that the developed algorithms allow the minimum power consumption, to save

the smartphone’s battery, and simultaneously, fulfil a good performance.

Besides the tri-axial raw data from the accelerometer, the acceleration magnitude was

also calculated using the following Equation 3.2.

magnitude =
√
x2 + y2 + z2 (3.2)

Where x, y, z are the acceleration in each direction.

Afterwards, acceleration and pressure data are segmented into equal-sized 5 seconds

windows without overlap, from which are extracted a total of 17 features from the tem-

poral, spectral and statistical domains, included on TSFEL. After feature extraction, a

normalisation using Equation 2.1 was applied. Regarding the feature selection algorithm,

a feed-forward feature selection from wrapping methods [98] was used with a 10-fold

cross-validation method.

Regarding the extracted features using this locomotion classifier, its predictions are

used to calculate the percentage of time each activity is being performed. This percentage

time is calculated by Equation 3.3.

tactivity(%) =
∆tactivity
∆troute

× 100 (3.3)

Where ∆tactivity represents the activity duration along all route and ∆troute corre-

sponds to the route duration. Thus, the output features are:

• Walking (%): Different walking speeds were considered for training.

• Standing (%): This activity includes both sitting and standing activities.

• Walking Up (%): Walking through stairs (up) and also ramps with high elevation

are included in this activity.

• Walking Down (%): Walking down includes walking through stairs (down) and

also very steep descents.

3.1.2 Supervised Feature Extraction

In this section, features from location and activities are extracted in a supervised way,

which means, that there is previous knowledge about the user being studied that can be

used as input to the algorithms for extracting more personalised information about the

routine performed.

3.1.2.1 Indoor Location

For the human behaviour trajectory evaluation in the indoor environment, a technol-

ogy for indoor positioning is required. As the main solutions for indoor positioning
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need installation of equipment or depend on fingerprinting processes, that can be time-

consuming, for this study a room-level indoor location solution with a fast deployment

was chosen. This solution relies on Wi-Fi RSSI measurements to recognise in which room

the user is located. The algorithm used was developed by Fraunhofer and its training

process is as simple as starting a data recording in each room separately. Using the unique

IDs from AP and the corresponding signal strength, a statistical classifier is trained and

the prediction step is based on the highest probability.

The output of the algorithm includes the labels of the predicted rooms over time. Thus,

it is possible to extract some relevant features for finding patterns in human behaviour,

namely:

• TOI (min): Given by the time spent in each room.

• Number of entries: The number of times the user goes into each room.

3.1.2.2 Complex Activities

The recognition of complex activities involves a deeper knowledge about the user being

studied.

For this reason, depending on the user and also on the characteristics of the routine

being analysed, a personalised training process is required. For this training process, a set

of activities is selected, and the user must perform each activity several times beforehand.

Alternatively, during his/her routine the annotation of activities can be done and used

for training after a few days.

For the recognition of the complex activities, data from the accelerometer, gyroscope,

magnetometer, barometer and microphone smartphone sensors are acquired. Similar to

simple activities, data is resampled to 30 Hz and the magnitude of tri-axial sensors is

calculated. A resample exception is applied to microphone since a sampling frequency

of 8000 Hz is needed to detect small sound variations.

The complex activities classifier follows machine learning steps described in section

2.3. Additionally to TSFEL features, the ratio between the range of 0.6 Hz and 2.5 Hz

frequencies with all frequency bands was added. This range of frequency was chosen

because it is the range of frequencies of human movements [99]. This feature may be

interesting for the recognition of these activities since the smartphone is placed on the

wrist, thus it will be even more sensitive to human movements.

Independently of the train classifier, features that result from the prediction of each

activity are extracted, namely:

• Duration of activityi (min): Time that activity i takes to be performed.

• Number of activityi: Number of times that activity i is performed.
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These features are useful for understanding the user’s pattern in the execution of

daily activities and may provide information about the user’s cognitive behaviour. A long

duration may indicate the difficulty of the user in executing a given activity. The missing

activities from the user routine may also suggest the inability to perform them or the lack

of interest in some activities that used to be part of the routine.

3.1.2.3 Hidden Markov Models

According to the literature, HMM is an effective method for finding patterns [25, 100,

101, 102]. This method infers about hidden states given a time series of observations and

returns the log-likelihood of each time series of observations. This framework uses HMM

to infer about the probability of a given sequence of observations including sequences of

locations and activities performed by humans, that arise from the output of indoor loca-

tion method described in subsection 3.1.2.1 and complex activity recognition explained

in subsection 3.1.2.2.

Since the input is a discrete sequence of observations, a multinomial HMM was trained

and tested recurring to hmmlearn library4. The number of hidden states (k) is a parameter

that needs to be defined to implement HMM. The search for the optimal number of

hidden states uses the Bayesian Inference Criterion (BIC), well-described in [103], that

combines a Maximised Likelihood (ML) and a penalty term. The basis of BIC is that a

model is penalised according to the number of parameters it contains, which means that

more parameters lead to a complex model, increasing the likelihood and consequently

the penalty term. The optimal number of states is given by:

kBIC = argmaxBIC(k) (3.4)

Where,

BIC(k) = logP (O|λk)−
Nk
2
log(n) (3.5)

The term logP (O|λk) is the log-likelihood estimate of the model with k states, Nk is

the number of free parameters, given by Equation 3.6, and n the number of observations.

Nk = [k × (k − 1)]− T otal number of zeros in transition matrix (3.6)

Thus, a set of numbers of hidden states was tested, in each iteration the BIC value is

stored and the chosen k is the one that maximises BIC (see Equation 3.4).

Recurring to HMM the following features were extracted:

• Activity sequence Log-likelihood: Log-likelihood of each activity sequence per-

formed.

• Location sequence Log-likelihood: Log-likelihood of each location sequence per-

formed.

4Available in https://github.com/hmmlearn/hmmlearn (visited on 03/09/2019)
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3.1.2.4 Activity search

The activity search is an alternative for the recognition of an activity without implement-

ing a machine learning classifier. Supposing that a specific activity needs to be monitored

in a person’s daily routine, for instance, taking the medication activity, it is possible to

apply the activity search algorithm for this recognition. Powering the training process

of a machine learning classifier this algorithm relies on the application S-DTW for the

activity search.

S-DTW is a modification of the classical DTW described in subsection 2.4.3. It is a

useful method for comparing two sequences X and Y with too distinctive lengths. Con-

sidering that the length of X is much larger than the length of Y , the goal here is to

find a subsequence in X that corresponds to the minimum DTW distance between all

subsequences computed in X and sequence Y .

S-DTW is effective in finding subsequences in time series, however, when the sequence

that is being searched has high variability, the subsequence with the minimum DTW

distance may not be the correct one. To overcome this difficulty, a modification to S-DTW

was developed to select the subsequence using a different criteria. The standard S-DTW

only returns one subsequence, that corresponds to the minimum DTW distance. It is

noticeable that a small variation in the subsequence that we are searching for, can lead to

a high cost in the accumulated cost matrix, and this variability is frequent, since activities

are not always performed in the same way. Thus, a criteria based on the minimum median

value of the cost matrix path was implemented. The median value is more suitable in

this case because it is less sensitive to noise. Furthermore, to avoid choosing the wrong

subsequence due to the signal size, an additional condition was imposed (see Equation

3.7):

0.5×∆tref ≤ ∆tquery ≤ 1.5×∆tref (3.7)

Where ∆tref is the duration of the sequence that is being searched and ∆tquery is the

duration of the returned subsequence. This way, it is more likely to find the correct

subsequence.

The output of the activity search is a Boolean value with the following extracted

feature:

• Activity x: Boolean value for activity x, where 1 indicates that the activity was found

and 0 the activity was not found.

3.2 Pattern Discovery

The pattern discovery step plays a key role for modelling patterns in human behaviour.

Using the notation from Figure 3.1, the pattern discovery can be described by Equation

3.8. Where fdayi represents the obtained extracted features from Equation 3.1 of day i,
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Figure 3.3: Example of a feature modelled through a KDE. The corresponding values are
assigned with the points bellow.

fpattern is a function composed by models to learn motion patterns and P attern is the

learned patterns using n days.

P attern = fpattern(fday1
, fday2

, ..., fdayn) (3.8)

Hereafter, two methods for learning patterns using the extracted features from un-

supervised and supervised feature extraction, are proposed, namely: probability density

functions and clustering approaches.

3.2.1 Kernel Density Estimation

The first approach for learning human patterns is to model the previously extracted

features into a probability density function. As the probability density function of the

extracted features is unknown, a KDE was used to model each extracted feature in section

3.1.

This method was designed to be independent of the feature being used and all features

from the Feature Extractor step were equally modelled with KDE. Thus, the process

of adding more features to model a specific routine can be easily introduced in this

framework without changing the pattern discovery method. Depending on the intrinsic

characteristics of each feature for a specific user, the modelling process may need more

or fewer days to learn the feature pattern. Naturally, the pattern will become more robust

with the addition of more days. In Figure 3.3 an evolution of the KDE for mean velocity

through the number of days is presented. It is possible to verify that after approximately

16 days the KDE stabilise and adding more days do not make significant differences to

the distributions.
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Figure 3.4: Trajectory similarity representation using DTW distance.

3.2.2 Clustering

Although the majority of features can be modelled using KDE, other patterns can be

learned using spatial information. For example, we can learn that a specific activity

occurs always in the same geographic location. For this purpose, clustering methods

are adequate for finding patterns in an unsupervised way, relying on data similarity.

Hereafter, cluster analysis is applied in trajectories, POI and sensory signatures.

3.2.2.1 Trajectory

Trajectory similarity is measured using DTW, it is a robust distance measure for cal-

culating spatial similarity since it can warp trajectories non linearly and have a good

performance when measuring the similarity of trajectories with different lengths and

sampling rates. This is ideal for dealing with human trajectories, as humans travel with

different speeds and do not always walk the same distance. Hence, the Pierre-Rouanet

DTW algorithm 5 is adapted for the calculation of DTW in two dimensional data, as GPS

trajectories are two-dimensional. The detailed algorithm is shown in Algorithm 2, and

an illustration of this distance feature which was applied to two outdoor trajectories is

presented in 3.4.

Algorithm 2 DTW in two dimensional trajectories

1: INPUT: Two trajectories P and Q in meters
2: OUTPUT: distanceP _Q ⇐ DTW distance between P and Q in meters

3: euclidean_norm =
√

(px − qx)2 + (py − qy)2 ⇐ where px, py , qx, qy are the points of

trajectories P and Q in x, y axis respectively.
4: distanceP _Q = dtw(P ,Q,norm = euclidean_norm)

Once trajectory distance is measured, it is required an automatic method that groups

trajectories according to their spatial similarity. Since the final number of clusters is

unknown, DBSCAN and HDBSCAN are two suitable clustering methods. For this study,

5Available in https://github.com/pierre-rouanet/dtw (visited on 03/09/2019)
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HDBSCAN, from hdbscan clustering library6, was chosen as it automatically finds the

optimal Eps value and is capable of dealing with clusters of different densities.

The input of HDBSCAN algorithm is a precomputed distance matrix using DTW in

two-dimensional data. Additionally, the only required parameter is the minimum cluster

size that was set to three, which means, that one group needs to contain at least three

samples to be considered a cluster.

An example of this clustering process using an outdoor routine of 11 days is presented

in Figure 3.5a, where 2 clusters were obtained.

(a) Representation of two trajectory clusters in
blue and purple using a routine of 11 days.

(b) Representation of one POI in blue for a rou-
tine of 11 days.

3.2.2.2 Points of interest

POI are locations of interest, in other words, it is where the user stays for a specific time in

different routes. In this study, a POI is defined as the location where the person stands for

the minimum time of 1 minute and occurs in at least 3 different days. An algorithm based

on the prediction of the simple activities classifier was developed (see section 3.1.1.3),

for the assessment of these locations. This algorithm uses the standing predictions of the

classifier combined with time and spatial information, to detect the locations where the

user stayed at least one minute. A POI is also defined within a radius of 50 meters. As

the final number of clusters is unknown and minimum radius for considering the points

of the same cluster (i.e. 50 meters) is well-known, it was implemented the DBSCAN

clustering method, for the POI search. The DBSCAN input is the pre-computed distance

matrix between coordinate points using the euclidean distance between coordinate points.

Moreover, the required parameters of DBSCAN were empirically tested obtained 50 for

Eps and 3 for minpts. An example is shown in Figure 3.5b, where one POI was identified

in a routine of 11 days.

3.2.2.3 Sensory signatures

Humans have predictable behaviours that can be translated into sensor signatures. By

assimilating sensor data from routines, a practical scheme that employs unsupervised
6Available in https://hdbscan.readthedocs.io/en/latest/index.html (visited on 07/09/2019)
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learning to extract unique sensor signatures from human routine was done. The idea of

sensory signatures was to find motion patterns in a more abstract level. Thus, sensory sig-

natures that were repeated in more than one day, within human routines, were searched.

This is a non-obvious and complex question that leads to the implementation of several

approaches, it was tested on the accelerometer signal as it provides significant informa-

tion about human movements. Several attempts using different methods, ranging from

signal entropy analysis, S-DTW, deep learning, among others, were performed. Although

the preliminary results were promising, the obtained results turn out to be unsatisfactory

to make reliable conclusions about these methods.

In order to simplify this search, as the signals regions with more entropy were also

characterised by having a high acceleration, a search for regions with high acceleration

(higher than 11 m/s) was done. Subsequently, the found regions were mapped through

their corresponding GPS coordinates. This way, if a signal with high acceleration was

found in the same location, it was more likely referred to the same activity. Similarly

to 3.2.2.2, the GPS coordinates of the signals regions with acceleration higher than 11

m/s2 were extracted from all days. Then, DBSCAN clustering method was applied with

parameters Eps and minpts equal to 50 and 3 respectively. This means that clusters

contain at least 3 locations, considering different routes, whose signal has an acceleration

higher than 11 m/s2 within a radius of 50 meters.

3.3 Anomaly Detection

Once motion patterns were defined, the next step of this framework aimed to detect

anomalies on those patterns. Using the notation from Figure 3.1, the anomaly detection

can be described by Equation 3.9, where P attern is the learned patterns from section 3.2,

fdayi represents the extracted features for dayi , fdistance is a method based on a distance

measure to detect deviations from the P attern and ∆dayi is the distance value.

∆dayi = fdistance(P attern,fdayi ) (3.9)

To describe the anomaly detection a detailed fluxogram is present in Figure 3.6. This

figure summarises both human behaviour learning and anomaly detection. First, features

were extracted from each day and the behaviour pattern is only defined after a predefined

number of days (daylearn). When daylearn was reached, the pattern was learned and

the threshold to detect an anomaly was defined. The following days were evaluated

by measuring the distance of each day to the pattern. To predict an anomaly more robust,

the anomalous decision was done through the evaluation of a predefined number of

consecutive days (dayanom). Therefore, only if the mean distance along the dayanom days

was above a threshold an anomaly was detected.
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Figure 3.6: Learning patterns continuously and anomaly detection fluxogram.

The distance to the pattern and the threshold for detecting an anomaly were defined

according to the pattern being evaluated.

The threshold was initially defined considering the learned behaviour regarding daylearn.

Once the threshold was defined, the behaviour distance accounting the following dayanom
days was computed and if this distance was lower than the threshold, then the thresh-

old was updated considering the new behaviour and the process continues, otherwise an

anomaly was detected and the pattern model would not learn the day covered on dayanom
days with a higher distance value.

Since patterns were defined as probability density functions and clustering, the detec-

tion of anomalies will be described considering those two methods.

3.3.1 Anomalies in distributions

Assuming that a specific feature is well modelled through KDE, we can use the density

value from KDE to assess the feature probability given a predefined feature value.

To transform density values to distance values, we normalised each distribution by its

maximum value. Therefore, the KDE distance is a scale from 0 to 1 and we can assess the

level of deviation from pattern through a quantitative measure.

In Figure 3.7 a KDE distribution modelling a specific feature is represented. For eval-

uating the anomalous level of a new measure, the intersection between the distribution

and the new measure was obtained. For example, the green line corresponds to a likely

measure according to that distribution, since the interception with the distribution re-

turns a value above the anomalous threshold. The distance to the pattern is given by

1−KDEdistance, thus in this example, a value of 0.12 is obtained. In contrast, the red line

refers to an unlikely measure with a distance to the pattern of 0.88 which is considered

as an anomalous value.

This method provides a quantitative measure of the anomaly considering the distribu-

tion pattern and it is useful for evaluating the anomaly level of a specific user’s feature.

To combine several features and return an overall level of anomaly a global distance
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Figure 3.7: KDE distribution, where the x-axis is the evaluated feature and y is the KDE
distance. The green line is a likely feature value, the red line in an unlikely feature value
and the black horizontal line corresponds to the anomalous threshold.

(Dpattern) was computed by a weighted arithmetic mean where depending on the im-

portance of each feature, different weights can be assigned. Dpattern was computed by

Equation 3.10, where df i is the distance to the pattern of each feature i in a total of n

features and wf i are the corresponding weights, thus we can define a weight for each

feature to measure the anomalous behaviour.

Dpattern =

∑n
i=0df i ×wf i∑n

i=0wf i
(3.10)

The current Behaviour (Figure 3.6) is given by:

Behaviourj =

∑j+dayanom
x=j Dpatternx

dayanom
(3.11)

The anomalous threshold was defined by Equation 3.12, where all behaviours corre-

spond to normal behaviour only.

TH = 1.1×max(Behaviour0,Behaviour1, ...,Behaviourm) (3.12)

By defining the threshold as more 10% of the maximum behaviour distance, only the

distances to behaviour that are higher than 10% of the maximum behaviour distance of

the trained model would account as anomalies, thus the model becomes less sensitive to

false positives.
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3.3.2 Anomalies in clustering

This framework comprises clustering methods that are sensitive to noise, namely DB-

SCAN and HDBSCAN. Hence, anomalies in clustering were identified as the resulting

noise data of clustering methods, as shown in Figure 3.8a. Additionally, the search for

anomalies within a cluster was also done using distance metrics. Trajectory clusters were

separated through spatial similarity, therefore, within a cluster, it is important to detect

trajectories that are distinguishable, such as a person getting lost while trying to reach

a specific location. Figure 3.8b shows an example of a trajectory cluster, where the red

trajectory is visually different from the remaining. For the detection of these anomalies,

the output of the clustering method combined with a threshold-based approach was used

to detect an anomaly if the maximum distance of the new trajectory with all trajectories

inside the cluster was higher than a threshold. In this clustering method, Dpattern is

defined as the DTW distance between all trajectories within a cluster as in Equation 3.13,

being T r a trajectory of a set of N trajectories.

Dpattern =DTW (T ri ,T rj ) f or i and j ∈ [0,N ] (3.13)

(a) DBSCAN clustering results (b) HDBSCAN trajectories results.

Figure 3.8: Clustering approaches illustration. Figure 3.8a represents the DBSCAN result,
finding three clusters and noise points represented in green, blue, purple and black,
respectively. Figure 3.8b illustrates an anomalous trajectory coloured in red within a
cluster of similar spatial trajectories coloured in blue.
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4
Results and Discussion

This chapter comprises the results of the framework for learning human patterns be-

haviour tested on three different datasets involving the daily living of two different users.

First, a description of signal acquisition and datasets is presented followed by the results

obtained by each dataset, regarding the extracted features, motion patterns and anomaly

detection according to case studies.

4.1 Signal Acquisition

The signal acquisition was done using the Recorder mobile application developed by

Fraunhofer AICOS. The application extracts the data perceived not only by smartphone

sensors but also by external sensors connected to the smartphone. The application allows

selecting the sensors from which data should be recorded, as it can be seen in the first

image of Figure 4.1. In this study, the accelerometer, gyroscope, magnetometer, barom-

eter, sound, Wi-Fi and location sensors were recorded. The Recorder application stores

the data according to a predefined folder structure. Each user has an identification folder,

which contains multiple folders organised by each day of acquisition, named with the cor-

responding date. The acquisition folder contain text files, properly identified by sensors

names, with the sensing information acquired during the acquisition.

During the data recording, the user was asked to behave as naturally as possible, for

extracting the user’s behaviour most realistically, and to perform his/her routine without

any recording interruptions. After the acquisition is finished, data is automatically saved

in the smartphone.
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Figure 4.1: Recorder application mobile layout. From left to the right, the first image
corresponds to the layout for activating the sensors, the second and third images present
customised layouts for the user’s routine, and the last image illustrates the annotation of
eating activity and kitchen location.

4.1.1 Annotation Procedure

Once the data recording starts, different layouts appear on the screen according to the

user’s routine (see Figure 4.1). These layouts were designed for the scope of this study,

and customised for each user, according to his/her routine, to provide an attractive, and

easy annotation during the acquisition.

For validation purposes, the user was asked to annotate the start and end of each

complex activity performed, and every time the user entered or left a specific location.

To stamp the beginning of an activity/location, the user only needed to click on the

corresponding button and a green light colour will indicate the activity/location that was

taking place (see the fourth image of Figure 4.1). When the user stopped performing an

activity or left a specific location, the button should be clicked again for stamping the

end of the activity/location.

4.1.2 Sensor Placement

Since the data recording of human routines is an exhaustive and long procedure, the

sensor placement was carefully chosen to minimise the user’s discomfort. Furthermore,

sensor placement should be sensitive enough to perceive human motions in order to

recognise predefined complex activities that need to be monitored. Hence, it was decided

to place the smartphone on the user’s wrist of the dominant hand, hold by a band support

as shown in Figure 4.2. In real life application, the smartphone should be replaced

by a bracelet or smartwatch comprising the needed sensors to perceive human motion

behaviour.
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Figure 4.2: Sensors placement illustration with Recorder mobile application on going.

4.1.3 Ethical and privacy considerations

Smartphone sensors allow to record data of naturalistic behaviour, objectively, continu-

ously and in an unobtrusive way. In this study, the collected data, using a smartphone,

was processed and analysed to learn human pattern behaviour by the recognition of ac-

tivities and trajectory of the user at study. The collected information may lead to the

identification of the user, so it is important to consider ethics and to safeguard user data

privacy.

The following ethical and privacy considerations were considered relevant based on

Harari et al. [104] study. The study participants should consent to enrol voluntarily in

this study, and they should be duly informed about the nature of the collected data. They

also should authorised the use of the sensing application on his/her smartphone. The

participants should be informed in a clear and perceptible manner on how the application

works and on the data storage practices being implemented. The goals of the study must

be explicit and the user should have the opportunity to receive a copy of the acquired

data. Participants data should be discussed carefully so that privacy is respected. At any

time, the user has the right of deleting or removing their personal data and withdraw

from the study. According to Boase [105] data must be stored in a safe place to avoid the

access of unauthorised people, avoiding the exposure of participants information. Data

should also be anonymous and removed all identifying information.

A copy of the informed consent filled by the participants of this study is presented in

Appendix B.

4.2 Human mobility on daily walks dataset

This dataset was recorded by User 1 to extract mobility patterns during the daily walks.

The User 1 dataset comprises the outdoor daily walks of the user with his/her dog. During

the walks the user frequently performed the following complex activities: washing the dog
paws, feeding the dog and playing with the dog. These activities may also be characteristic
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Figure 4.3: Playing with the dog, washing the dog paws and feeding the dog activities acqui-
sition time in seconds with the corresponding repetitions inside the brackets.

of the user’s mobility, so it is important to recognise them. Hence, the user was asked to

perform a set of complex activities repetitions separately from the routine, to implement

a classifier for their automatic recognition on the routines. The activities acquisition time

is presented in Figure 4.3. Thus for validation purposes, the user also had to annotate

these activities during the daily walks.

Despite the normal routine days acquired in this dataset, it also comprises days with

planned anomalies reflecting a human that starts to express reduced mobility. Reduced

mobility is a serious disability concerning elderly people, associated with falls that may

have critical consequences. The planned anomalies were directly related to mobility,

thus, User 1 during the anomalous days started to walk slowly and to perform shorter

trajectories in less challenging paths.

The data recording comprises a total of 61 days of acquisition, 49 normal days and

12 anomalous days, over a period of 6 months. The dataset overall information is sum-

marised in Table 4.1. A set of the recorded days faced some issues during the acquisitions,

such as missing sensor data file or inaccuracies on GPS data points. Both issues limited

the extraction of some relevant features. Less frequently, wrong and missing annotations

also occurred. Despite some excluded features, all acquisition days were used for pattern

discovery. However, for anomaly detection only 38 days, 31 normal and 7 anomalous,

were reliable for the detection of anomalies, since only those contained all the information

needed for the anomaly behaviour detection procedure.

4.2.1 Feature Extractor

Feature extractor contains the results from unsupervised and supervised feature extrac-

tion regarding the performance of the implemented machine learning classifiers, routine

activity sequences and activity search algorithm.

4.2.1.1 Locomotion classifier

To recognise basic activities on daily walks such as standing, walking, walking up and walk-
ing down, five different machine learning classifiers were trained. As stated in subsection

3.1.1.3, only accelerometer and barometer sensors were used for this recognition. A total

of 17 features were extracted, namely mean values, standard deviations, maximum fre-

quency magnitudes and maximum peaks from the magnitude and tri-axial accelerometer

signals, and linear regression from the barometer. A feed-forward feature selection was
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Table 4.1: Dataset information regarding the user ID, activities performed, activated
sensors, acquisition device, device position and recording days and hours.

Dataset Information
User ID 1

Simple Complex

Activities
Standing, Walking,

Walking up,
Walking down

Feeding the dog,
Washing the dog paws,
Playing with the dog

Sensors

Accelerometer (200Hz), Gyroscope (200 Hz),
Magnetometer (100 Hz), Barometer (5 Hz),

Sound (8000 Hz) , Location (1 Hz),
Wi-Fi (0.3 Hz)

Acquisition Device Samsung Galaxy S6
Device Position Dominant Wrist

Normal Anomalous
Recording Days

49 12
Normal Anomalous

Recording Hours ∼30 hours ∼3 hours

Table 4.2: Accuracy of machine learning classifiers classifiers for simple activities recogni-
tion (walking, standing, walking up and walking down) using a test set of 30% of the input
samples. The classifier with highest accuracy (DT) is highlighted in bold.

Classifier Accuracy (%)
DT 90.2%
KNN 89.0%
RF 87.8%
NB 84.1%
ADA 63.0%

applied using 10-fold cross-validation, and the train and test sets were randomly split us-

ing a ratio of 70% / 30% of the input samples. The obtained results of the 5 classifiers are

presented in Table 4.2, with the accuracy of the high-performance classifier, highlighted

in bold. The corresponding normalised confusion matrix is represented in Figure 4.4.

The DT classifier ended up with an accuracy of 90.2%, using the following selected fea-

tures: Standard deviation of acceleration magnitude, barometer linear regression, mean

y-axis acceleration, the total number of peaks of x-axis acceleration and standard devi-

ation of y-axis acceleration. By the analysis of the confusion matrix, the standing class

is well recognised. However, walking, walking up and walking down classes present some

confusion, which is expectable since all activities rely almost on the same movements.

One of the main differences between these activities can be assessed by the pressure that

tends to vary when walking up or walking down, and this classification scenario is given

by the barometer linear regression feature.
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Figure 4.4: Normalised confusion matrix of locomotion recognition activities using DT
classifier.

4.2.1.2 Routine activities classifier

Even though locomotion activities are meant to evaluate human’s mobility, more complex

activities that may be characteristic from the human’s routine being studied, may also

bring relevant information for detecting reduced mobility. For instance, the detection

that a specific activity was no longer performed. For this purpose, three daily complex

activities performed in the human routine at study were selected, namely washing the dog
paws, feeding the dog and playing with the dog.

In order to train a classifier to recognise these 3 activities, the user was asked to per-

form the activities at least 6 times, while data recording. After this process, features from

the segmented windows (5 seconds with 50% overlap) were extracted, and the best fea-

tures selected through feed-forward feature selection method. TSFEL features were not

all chosen for this recognition problem since it would increase the time complexity of the

forward selection algorithm. From the sound, only Mel Frequency Cepstral Coefficients

(MFCC) values and spectral features were extracted. From barometer, only features that

did not rely on the absolute barometer value were extracted, since this value depends

on the atmospheric pressure that varies along the days. From the accelerometer, magne-

tometer and gyroscope, spectral, statistical and temporal features were extracted from

the three-axes and magnitude windows. Thus, a total of 128 features were extracted and

used as input to a feed-forward feature selection algorithm. The validation process was a

10-fold cross-validation and all user activity repetitions were used to train the classifiers.

The test set was composed by the activities performed and annotated during each day

of the user routine. The obtained accuracy and F1-score using 5 different classifiers is

presented in Table 4.3.

Afterwards, a post-processing was applied to the prediction result, correcting predic-

tions by majority voting. Consider the segmented prediction labels, into windows, by a

step of one. The first label of each window is assigned to the majority prediction of that
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Figure 4.5: The grey circles represent predictions with the boundaries of the segmented
predictions bellow. The orange boundaries represent the windows that contain a pre-
diction that is reassigned due to the majority voting of the corresponding window. The
process is analysed from the left to the right.

Table 4.3: Results of supervised learning classifiers tested in all days of user routine in
terms of accuracy and F1-score before and after post-processing. The best results are in
bold.

Classifier
Accuracy (%)

Before PP
F1-Score (%)

Before PP
Accuracy (%)

After PP
F1-Score (%)

After PP
DT 44.1% 40.4% 46.0% 43.4%

KNN 81.6% 82.1% 94.0% 94.1%
RF 70.4% 71.0% 83.1% 84.0%
NB 82.3% 82.1% 92.4% 92.2%

ADA 73.6% 74.0% 86.4% 86.7%

window, see an example in Figure 4.5. The application of this post-processing resulted in

an accuracy improvement for all tested classifiers, as it can be seen in Table 4.3.

The classifier that achieved the highest accuracy and F1-score after post-processing

was KNN with K equals to 5 and using the following selected features: Standard deviation

of the acceleration magnitude (Acc Mag std), dominant frequency of y-axis magnetometer

value (Mag y dominant frequency), sound MFCC 0 (Sound MFCC 0), mean y-axis accelera-

tion (Acc y Mean), mean acceleration magnitude (Acc mag Mean), mean x-axis gyroscope

value (Gyro x Mean), ratio between the range of frequencies between 0.6 and 2.5Hz and

the all frequency band of the acceleration magnitude (Acc Mag 0.6_2.5 and all band), stan-

dard deviation of gyroscope magnitude (Gyro Mag std) and the ratio between the range of

frequencies between 0.6Hz and 2.5Hz and the all frequency band of z-axis magnetometer

value (Mag z 0.6_2.5 and all band). The horizon plot in Figure 4.6, illustrates the behaviour

of the selected features on the three classified activities. The contribution of each feature

can be assessed by the interpretation of horizon plot (Figure 4.6), where we can visualise

some distinct characteristics, for instance, the Mag y dominant frequency is clearly different

between washing the dog paws activity and the remaining activities since it presents two

great positive peak values. Moreover, play with the dog activity can be distinguished from

the remaining activities by the Acc y Mean, as it contains a great positive value. Feeding
the dog is explicitly enhanced through its great positive Gyro x Mean. The combination

of all these features leads to a good discrimination between activities, resulting in an

overall accuracy of 94%. The normalised confusion matrix of KNN after post-processing

is shown in 4.7.
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Paws
FeedingPlayingthe

Figure 4.6: Horizon plot with selected features represented from top to the bottom. The
x-axis contains the three activities, namely washing the dog paws, playing with the dog and
feeding the dog. The range of y-axis corresponds to a third of the maximum value of each
feature corresponding to the darkest values. The blue and green colours correspond to
positive and negative values, respectively.
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Figure 4.7: Normalised confusion matrix for routine activities classification, using KNN
classifier, after post-processing.

Although the obtained results were satisfactory, it is important to note that in an

online recognition process an activity spotting process is required. As activity spotting is

a complex problem [106] and the attempt approaches, such as the creation of a rejection

class or a None class, did not achieve successful results, this topic is identified as future

work since the main goal of this study is the discovery of motion patterns.

4.2.1.3 Routine activities sequence

Based on the routine activity classifier, HMM are used to infer about the hidden states of

a given sequence of observations, specifically a sequence of performed activities by the

user. In this dataset, the user performs a maximum of three activities concerning feeding
the dog (label 0), playing with the dog (label 1) and washing the dog paws (label 2). Here we
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Figure 4.8: Representation of the BIC value by increasing the number of hidden states.
The marker in orange corresponds to the number of hidden states that leads to a higher
BIC value.

are interested not in the hidden states sequence but on the returned log-likelihood of the

sequence of observations. For the implementation of HMM, it is necessary to define the

number of hidden states in advance.

The number of hidden states was estimated through BIC, where the BIC value was

calculated by testing the model using a sequence of observations with 10 different hidden

states. According to the results of BIC shown in Figure 4.8, 2 hidden states are suitable

for inferring about the likeliness of activity sequences, since it is the number of hidden

states that leads to the largest BIC value.

Thus, a HMM was trained with all activity sequence from all days of the user routine,

using both true (from annotations) and predicted activities from the trained classifier.

4.2.1.4 Activity search algorithm

The activity search algorithm was implemented to find a known activity from the user

routine. As for the classification process of complex activities, a training step, where the

user needs to acquire specific activities, several times, beforehand, is required, a simpler

approach was developed. For this algorithm, the user only needs to perform the activity

one time. For validation purposes, one repetition of washing the dog paws activity was

selected. The search for this activity relies on the magnitude of the accelerometer signal as

shown in the top of Figure 4.9. To reduce the computational cost, the signal is resampled

to 30Hz, and a smoothing filter is applied to the resampled accelerometer magnitude

signal, as it can be shown in the bottom signal of Figure 4.9.

The activity search algorithm, as explained in section 3.1.2.4, is based on a modifica-

tion of S-DTW. The implemented algorithm, instead of finding only one sequence that

ends on the minimum value of the last cost matrix line, returns several sequences corre-

sponding to the ending points bellow the 10 percentile of the last cost matrix line. Using

a routine day as an example, a total of 8 sequences were obtained (see Figure 4.10). As it

can be seen from Figure 4.10, the subsequences 2, 3, 4, 6 and 7 have a duration of less than

half of the search subsequence, being excluded by algorithm condition (see Equation 3.7).
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Figure 4.9: Illustration of the searched activity. The top signal is the raw accelerometer
magnitude of the washing the dog paws activity, the bottom signal is the same signal after
the application of a smoothing filter.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 4.10: Illustration of the 8 found subsequences in the search for washing the dog
paws activity.

Therefore, the remaining subsequences are compared by their median value of the cost

matrix path, and the one with the lowest value is selected. In this example subsequence

5 is selected, that is the one that corresponds to the washing dog paws activity.

The activity search algorithm was tested in a total of 41 days and the results are

represented in Table 4.4. As the selected activity is a common user’s routine activity, the

dataset is composed of much more days containing the activity than days without the

activity. Although the obtained results seem to be unsatisfactory, it is important to note

that regarding the 35 days containing the activity, in 31 days the correct activity was

detected. Each acquisition day is composed of approximately 40 minutes from which

approximately 5 subsequences are found and the correct activity is selected in 89% of the

times. In this scenario, the classic S-DTW only correctly detects the activity in 20 days.

On the other hand, the results for the 6 days without the activity were not satisfactory

since only 1 day was a false negative. However, due to the annotation issues, it is possible
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Table 4.4: Results of the activity search algorithm tested in 41 days. In 31 days the activity
was correctly detected, in 4 days the activity existed but it was not detected, in 5 days
there was no activity and a subsequence that did not match the searched activity was
returned and in 1 day there was no activity and any activity was detected.

Predicted
T F

T 31 4
True

F 5 1

that the 5 false-positive can actually contain the searched activity. Nevertheless, more

data is necessary to test the algorithm robustness considering days without the selected

activity and also create new S-DTW restrictions to avoid the false positive. Considering

the classic S-DTW, its absence of restrictions does not allow to exclude a subsequence.

4.2.2 Pattern Discovery

The extracted features from trajectory and activity recognition can have significant infor-

mation about the user’s behaviour. Hence, in this section regarding the extracted features

in all the recorded days, patterns including features modelled through KDE distribution

and clustering methods were addressed.

The human mobility on daily walks dataset comprises a large outdoor component,

from which almost all of the proposed features in section 3.1 were extracted. Features

from activities, DR, outdoor environment and HMM log-likelihood for a set of activity

sequences were modelled into a KDE distribution and clustering methods were addressed

for finding similar trajectories, POI and sensory signatures.

4.2.2.1 Motion patterns using KDE

KDE was used to model features extracted from an unsupervised and supervised man-

ner. In particular, duration of each recognised activity (Figure 4.11), locomotion time

percentage (Figure 4.12), walking features (walking time, walking distance, number of

steps, step length - Figure 4.13), velocity features (mean and maximum velocity - Figure

4.14), altitude features (mean and maximum altitude - Figure 4.14) and finally the HMM

log-likelihood for a set of activity sequences (Figure 4.15).

Regarding the recognition of three complex activities, namely washing dog paws, play-
ing with the dog and feeding the dog, Figure 4.11 shows the three activities duration distri-

butions using the true and predicted labels. The activities duration was calculated based

on consecutive predicted labels from the same activity. Individual predictions were dis-

carded, since each predicted label corresponds to a window size of 5 seconds, and the

complex activities have a duration longer than 5 seconds, as it can be confirmed by the

true labels from Figure 4.11. This way, the values constituting the blue distributions were

obtained.
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Figure 4.11: Representation of the feeding the dog, playing with dog and washing the dog
paws activities duration distribution. The green and blue distributions are generated
using the true and predicted activities labels.

In general, the predicted activities have lower duration compared to the true ones,

which can be explained by the following reasons. Firstly, the post-processing performed

to the classifier prediction results discard some predictions by a majority voting window,

if the discarded predictions belong to the beginning or end of the activity, correct pre-

dictions may be discarded reducing the activity duration. Furthermore, the user’s true

duration tends to be longer than the actual activity since the user first annotates the start

of the activity, then performs it and finally annotates the end of the activity. The time

between the annotation and the actual execution of the activity may lead to longer true

labels duration. The gap between true and predicted activities duration is not prejudicial

since the classifier behaviour is consistent between activities and for further predictions,

its behaviour will be similar. Focusing on the true labels, feeding the dog and washing dog
paws activities have less variability than playing with the dog, which is an activity that

follows a spread distribution that can take from 1 min to 3 min.

The modelled locomotion percentage time distribution is presented in Figure 4.12.

Through the analysis of these distributions, it is obvious that the user’s most common

locomotion mode is walking, although the user also stops during the daily walk. Even not

so likely, walking up and walking down also make part of this user routine, filling under

20% of the daily walking.

Focusing on Figure 4.13, it is possible to visualise that the user usually walks between

20 to 40 min, however, sometimes the user performs more challenging walks with a longer

distance (more than 4000 m) and consequently taking more time (more than 40 min), as

it can be seen on the top distributions of Figure 4.13. The number of steps follows the

same behaviour of the distance walked by the user, which makes a good validation for
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Figure 4.12: Percentage time distribution while standing, walking, walking up and walking
down coloured in green, blue, purple and brown respectively.

Figure 4.13: Illustration of the walk time, walk distance, number of steps and step length
distributions from human mobility on daily walks dataset.

the estimated distance values between GPS measurements and step detection algorithm.

The mean step length is in the range of 0.75 to 0.8 m.

Considering velocity features, it is possible to identify mainly two different behaviours

depicted by two peaks in the distributions (Figure 4.14).

The altitude distributions in Figure 4.14 shows that the most frequent mean altitude

variations conducted by the user are under 20 m and the maximum under 40 m, and it

can even exceed the 100 m in a few days.

For HMM sequence probability assessment, the most intuitive way is the use of the

returned log-likelihoods. However, as the returned likelihoods arise from summing all

possible state sequences for a given sequence of observations that involve the product

between all emission probabilities and all transition probabilities, including the start

state distribution, the larger the sequence, the smaller will be the log-likelihood. Thus, it

is difficult to infer about the likeliness of a given sequence since a small log-likelihood

can either be a not likely sequence or a too large sequence. To overcome this problem, the
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Figure 4.14: From the left to the right is represented the mean and maximum velocity
distributions and the mean and maximum altitude variation distributions from human
mobility on daily walks dataset. The mean and maximum distributions are coloured in
green and blue respectively.

Figure 4.15: Log-likelihood distributions for true and predicted activities sequences rep-
resented in green and blue, respectively.

resulting log-likelihood was also modelled into a distribution using KDE, this way it is

possible to infer about the probability of a given sequence considering the trained model,

regardless of the sequence length.

Figure 4.15 shows two KDE distributions of the resulting log-likelihood of a trained

HMM using a set of 31 activity sequences, the green and blue corresponds to the true

and predicted activity sequences, respectively. Through the analysis of the distribution

and the corresponding results in Table 4.5 it is verified that in both true and predicted

activity sequences the most likely sequence is 2, 0, followed by 2, 1, 0, corresponding to

the peak values in the true labels KDE distribution.

4.2.2.2 Motion patterns using clustering

Trajectory clusters: Trajectory clusters were found by first creating a distance matrix

using DTW distance between all trajectories. This distance matrix was fitted by HDB-

SCAN to find trajectory clusters with a minimum cluster size of 3. The trajectory clusters

results are shown in Figure 4.16. A total of 5 clusters were found in this dataset coloured

in blue, brown, orange, purple and green. The black trajectories correspond to the ones

that are not similar to any of the found trajectory clusters. Hence, the user presents a large

variability on the performed walks, resulting in 5 clusters of spatial similar trajectories.

Even inside the trajectory clusters, where trajectories are spatially similar, they do not
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Table 4.5: Results of HMM training with the true and predicted activities. The first
column indicates the day of acquisition, the second column the activity sequence, where
2 refers to washing the dog paws, 1 to play with dog and 0 feeding the dog, and the third
column the log-likelihood that derives from the trained HMM using the corresponding
sequences.

Day
Activity

Sequence
Log

Likelihood
1 2, 1, 0 -1.724
2 2, 0 -0.363
3 2, 0 -0.363
4 2, 0 -0.363
5 2, 0 -0.363
6 2, 1, 0 -1.724
7 2, 1, 0 -1.724
8 2, 0 -0.363
9 2, 1, 0 -1.724

10 2, 0 -0.363
11 2, 1, 0 -1.724
12 2, 0 -0.363
13 2, 0 -0.363
14 2, 0 -0.363
15 2, 0 -0.363
16 2, 1, 0 -1.724
17 0 -2.741
18 2, 1, 0 -1.724
19 2, 1, 0 -1.724
20 2, 0 -0.363
21 2, 0 -0.363
22 2, 0 -0.363
23 2, 1, 0 -1.724
24 2, 0 -0.363
25 0 -2.741
26 2, 0 -0.363
27 2, 1, 0 -1.724
28 2, 0 -0.363
29 2, 0 -0.363
30 2, 0 -0.363
31 2, 0 -0.363

(a) True activity results.

Day
Activity

Sequence
Log

Likelihood
1 2, 1, 0 -1.941
2 2, 0 -0.573
3 2 -0.177
4 2, 0 -0.573
5 2, 0 -0.573
6 2, 1, 0 -1.941
7 2, 1, 2, 1, 0 -4.564
8 2 -0.177
9 2, 1 -1.295

10 2, 0 -0.573
11 2, 1, 0 -1.941
12 2, 0 -0.573
13 2, 0 -0.573
14 1 -2.995
15 2, 0 -0.573
16 2, 1, 0 -1.941
17 0 -2.191
18 1, 2, 0 -4.997
19 2, 1 -1.295
20 2 -0.177
21 2, 0 -0.573
22 2, 0 -0.573
23 2, 1, 0 -1.941
24 2, 0 -0.573
25 0 -2.191
26 2, 0 -0.573
27 2, 1, 0 -1.941
28 2, 0 -0.573
29 2, 0 -0.573
30 0 -2.191
31 2, 0 -0.573

(b) Predicted activity results.

correspond exactly to the same path. This way, the behaviour of this user in terms of

trajectories does not follow a specific pattern, but instead it is represented by mainly 5

patterns containing some variability.

Points of Interest: The user’s points of interest were discovered by implementing a

DBSCAN clustering method that considers within a radius of 50 m all stand locations

that happened for at least 1 min. Thus, a total of four POI were found and their locations

can be visualised in Figure 4.17. Since these POI were not annotated, it was asked to the

user to validate the obtained POI. All POI represent meaningful locations to the user,

being the blue POI the user’s home, the orange POI the supermarket and the purple and

green POI two gardens where the user usually stops to speak with other dogs owners.

Hence, the found POIs are not just some locations where the user stops but are locations

of interest to the user.
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Figure 4.16: Representation of the trajectory clusters by spatial similarity. The found
clusters are coloured in blue, brown, orange, purple and green. The black trajectories the
ones that does not belong to any cluster.

Figure 4.17: Illustration of the locations that corresponds to the user POI. Four POI are
identified, coloured in blue is the user’s home, in green and purple, two gardens and in
orange the supermarket.

Sensory signatures: Sensory signatures clusters are found if the signals with an accel-

eration higher than 11 m/s2 occur within a radius of 50 m in at least 3 days. DBSCAN

clustering method was implemented for this search and the resulting clusters are shown

in Figure 4.18. Here two clusters can be observed, one corresponding to the user’s home

and the other to a garden that belongs to the trajectory patterns of this user. For validation

purposes, the user was wondered about the activities performed in those locations, turns

out that these two clusters correspond to locations where the user usually plays with the

dog. It makes perfect sense, as playing with the dog activity involves rapid movements

from the user, being characterised for having a high acceleration.
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Figure 4.18: Representation of the location where sensory signatures occur.

4.2.3 Anomaly Detection

The previous subsection describes how patterns are discovered considering all normal

days of a user’s daily routine. However, using the rules from Figure 3.6 a number of 14

days was set to the minimum learning period to learn each feature pattern (daylearn = 14)

and 5 consecutive days were used to predict an anomaly (dayanom = 5). For Dpattern all

feature weights were assigned to one, however, weight optimisation should be considered

in future work.

Depending on the user and on the selected features, the learned pattern can not

completely describe the real user behaviour, however, since the pattern model is updated

daily, the patterns will become more robust along the days. Thus, anomalies will be

detected considering the previous normal days.

The use case for anomalies detection, based on human mobility on daily walks dataset,

concerns a user that starts to face reduced mobility. The extracted patterns that make

sense for the detection of reduced mobility are the ones that are directly related to the

user’s mobility, namely the locomotion percentage time, the number of steps, mean step

length, walking time, walking distance, mean and maximum velocity and mean and

maximum altitude variation distributions.

In order to measure the distance to the pattern of each feature, according to the KDE

distributions, the distributions were normalised by its maximum density value. The

distance to the pattern is given by 1−KDEdistance, where the KDEdistance corresponds to

the intersection value of the feature and the normalised distribution.

As mentioned before, in this use case, a range of 5 days was considered to make

a decision about an anomaly, however, the developed framework is flexible enough to

change the range of days easily for testing other case studies that need a different range

of days.

The distance of each day to the pattern was obtained and the results are represented in
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Figure 4.19: Representation of the anomaly detection results. The x-axis corresponds to
the days of the user’s behaviour and the y-axis to the distance to the pattern. The green
and red stem correspond to normal and anomalous days, respectively. The streak line
defines the anomalous adaptive threshold. The green region corresponds to the distances
for first defining the pattern and the threshold, the blue region corresponds to the dayanom
and the red region is the ground truth of the anomalous days.

Figure 4.19. The anomalous threshold was defined by equation 3.12, and it was updated

daily according to normal behaviour.

As the behaviour is defined within a range of 5 days, each distance represented in

Figure 4.19 corresponds to the mean distance to the pattern regarding 5 days. The

anomalous threshold is only defined after the learned pattern, which occurs after 14 days.

On day 19 the behaviour starts to be evaluated, considering the behaviour of the last

5 days, according to the previous pattern and the defined threshold. The threshold is

continuously updated unless an anomaly is detected as well as the pattern. Comparing

the detected anomalies and the ground truth (red region), day 19 and 23 were incorrectly

assigned as an anomaly, perhaps the user had a distinct locomotion behaviour on the last

5 days that lead to a larger anomalous distance. For this specific user, the used daylearn (14

days) might be insufficient and more days should be considered for learning the correct

user pattern. Day 32 was not correctly detected as an anomaly, which is acceptable since

it considers the behaviour of the last 5 days that were normal, so the mean distance tends

to be reduced.

The overall results were satisfactory, however, we identified key points that can lead

to improvements in this framework and should be addressed in future work, namely:

• Dpattern weights optimisation for each feature.

• Weights parametrization based on the intrinsic characteristics of each feature, for

instance, to evaluate the reduced mobility on daily walks an increase on the mean

velocity should have a different weight than a decrease on the mean velocity.

• Automatically detection of the number of days needed to learn the pattern.

4.3 Morning daily living routine dataset

Morning daily living routine dataset aims to evaluate the behaviour motion patterns of

the User 2, focusing on the indoor environment. Thus, in this dataset, we are interested
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Figure 4.20: Making the bed, cooking, eating, washing the dishes and brushing teeth activities
acquisition time in minutes and repetitions inside the brackets.

in knowing the activities performed by the user comprising complex activities of his/her

daily living such as making the bed, cooking, eating, washing the dishes and brushing teeth,

and the user’s location in a room-level. Similar to human mobility on daily walks dataset

(see section 4.2), the user was asked to perform a set of complex activity repetitions and

to start data recording in each room separately for the room-level indoor location. The

activity acquisition time is described in Figure 4.20. The eating activity has more recorded

time than the remaining, since it is an activity with longer duration, however, the dataset

was balanced before training.

Room-level indoor location relies on data recordings of complex activity recognition,

separated by division. The bedroom used making the bed, the kitchen used eating and

cooking and the bathroom used brushing teeth data recordings.

Similar to human mobility on daily walks dataset 4.2, this dataset also covers normal

and anomalous days of the daily routine of this user over a period of 6 months. The

use case for the anomaly detection in this dataset was a simulation of an user that starts

to experience dementia impairment. For this purposes the anomalies planned on the

user’s routine are related to dementia behaviour [3], regarding absence of activities that

reflect the user’s difficulty or disinterest in performing the activity, activity sequences

that are not common on the normal behavior of the user and increased stay in certain

home divisions that may be indicative that the user is feeling depressive.

The dataset overall information is summarised in Table 4.6.

Considering the corrupted files and missing information, from 57 days of acquisition,

only 48 days were analysed on anomaly detection, from which 34 were normal and 14

anomalous.

4.3.1 Feature Extractor

In morning daily living routine dataset, the feature extractor step of the proposed frame-

work addressed the recognition of locomotion activities (previously described in subsec-

tion 4.2.1.1), the indoor location, location sequence, complex activities from the morning

daily living routine and the complex activities sequence.

Since the locomotion activity classifier is user-independent, the detailed description

of the training process was already explained in subsection 4.2.1.1.
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Table 4.6: Dataset information regarding the user ID, activities performed, activated
sensors, acquisition device, device position and recording days and hours.

Dataset Information
User ID 2

Simple Complex

Activities
Standing, Walking,

Walking up,
Walking down

Making the bed,
Cooking,

Eating breakfast,
Washing the dishes,

Brushing teeth

Sensors

Accelerometer (200Hz), Gyroscope (200 Hz),
Magnetometer (50 Hz), Barometer (30 Hz),

Sound (8000 Hz) , Location (0.05 Hz),
Wi-Fi (0.3 Hz)

Acquisition Device LG Nexus 5
Device Position Dominant Wrist

Normal Anomalous
Recording Days

40 17
Normal Anomalous

Recording Hours ∼32 hours ∼12 hours

4.3.1.1 Indoor location classifier

The activities of daily living occur in specific locations, therefore understanding the

location where the user is along the day can provide insights about the activities being

performed, or even help to find the user in an emergency. Moreover, location patterns

can also bring useful information to understanding the user’s behaviour. Therefore, a

room-level indoor location classifier was implemented.

The indoor location relying on room level recognition used data records from each

room of the user’s house. The implementation of a statistical classifier regarding the Wi-Fi

RSSI of the unique IDs from several AP lead to an accuracy of 93.6%. The corresponding

normalised confusion matrix is in Figure 4.21, where the None class corresponds to every

location where the classifier certainty is bellow 60%, this includes the outdoor, corridors

and the entrance hall.

4.3.1.2 Morning activities classifier

For the recognition of complex activities, namely making the bed, washing the dishes, cook-
ing, eating and brushing teeth, separated activities from routines were acquired for training

the classifier and the accuracy and F1-score of various machine learning classifiers were

evaluated. For the training process, the user was asked to record data while performing

each of the morning activities. The train set was composed of 15 repetitions, of each

activity, and the test set was composed by the annotated activities during 54 days of the

morning routine. For this recognition problem, a window size of 20 seconds was chosen.
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Figure 4.21: Normalised confusion matrix of a room-level indoor location recognition.

Table 4.7: Results of supervised learning classifiers tested in all days of the morning daily
living routine dataset in terms of accuracy and F1-score before and after post-processing.
The best results are in bold.

Classifier
Accuracy (%)

Before PP
F1-Score (%)

Before PP
Accuracy (%)

After PP
F1-Score (%)

After PP
DT 89.7% 90.0% 97.7% 97.7%

KNN 92.5% 92.4% 96.8% 96.9%
RF 90.6% 90.9% 98.1% 98.1%
NB 62.9% 49.2% 72.2% 61.0%

ADA 88.5% 87.9% 94.2% 93.9%

Additionally, an overlap of 30% is used between window sizes to enhance relevant fea-

tures of the activity that may be overshadowed by partitioning the signal into fixed size

windows. The features were extracted using TSFEL library, and a feed-forward feature

selection using 10-fold cross-validation was applied. The KNN classifier was the one that

achieved the highest accuracy (92.5%) comparing to DT, Random Forest (RF), NB and

AdaBoost (ADA) (see Table 4.7).

Similar to the previous dataset (section 4.2), a post-processing was applied to the

prediction labels. In this dataset, the post-processing was constituted by two stages.

Firstly, predictions were accepted based on activities location by using the indoor location

prediction from subsection 4.3.1.1 (see Figure 4.22). As some activities can only be

performed in certain home divisions, all predictions that did not match their location

are discarded. The second stage corrects predictions by majority voting as described in

4.2.1.2.

After the post-processing the RF classifier obtained the highest accuracy with a value

of 98.1% (see Table 4.7) using the following features: mean y-axis acceleration (Acc y
Mean), mean z-axis magnetometer value (Mag z Mean), and mean gyroscope magnitude

(Gyro mag Mean). The normalised confusion matrix using RF after post-processing is

presented in Figure 4.23.
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Bedroom Kitchen Bathroom

Making
the bed

Cooking Eating Washing
Dishes

Brushing
Teeth

Figure 4.22: Locations represented by squares with the corresponding activities within.

Figure 4.23: Normalised confusion matrix for morning activities classification, using RF
classifier, after post-processing.

From the interpretation of horizon plot (4.24), it is easy to see the contribution of

each feature for the recognition problem, for instance, making the bed activity can be

distinguished from the remaining because it has a great negative Acc y Mean and great

positive values of Mag z Mean and Gyro mag Mean. In contrast, eating activity has a

positive Acc y Mean and negative Mag z Mean and Gyro mag Mean.

Figure 4.24: Horizon plot with selected features represented from top to the bottom. The
x-axis contains the five activities, namely making the bed, cooking, eating, washing the dishes
and brushing teeth. The range of y-axis corresponds to a third of the maximum value of
each feature corresponding to the darkest values. The blue and green colours correspond
to positive and negative values, respectively.
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4.3.1.3 Morning activities and location sequence

HMM were implemented in this dataset to evaluate the probability of a given sequence

of activities and locations performed by the user. The sequence of activities is important

for the evaluation of the cognitive behaviour of the user, as a sequence that is too differ-

ent from the usual sequences performed by the user may be an alarm situation. All 5

activities from morning activities classifier were used to learn activities sequence. The

number of hidden states was estimated through BIC, resulting in 2 hidden states, since

it was the number of states that lead to a larger BIC value. Thus, the model was trained

using 2 hidden states and the activities sequences performed by the user during 34 days.

Regarding location sequence, the number of hidden states was also 2 and the HMM was

implemented from both true labels and predictions along 34 days.

4.3.2 Patterns Discovery

The morning daily living dataset was evaluated only on indoor environment. Thus, tra-

jectory clusters, POI and signal signatures were not applied in this dataset.

Figure 4.25: Five features modelled into a distribution using KDE, namely making the
bed, cooking, washing the dishes, eating and brushing teeth duration. The green and blue
distribution is generated using the true and predicted activities labels, respectively.
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Figure 4.26: Illustration of the distribution of the time spent in each location from true
and predicted labels, coloured in green and blue respectively.

The extracted features on this dataset include activities duration (Figure 4.25), time

spent in each location (Figure 4.26), the locomotion percentage time (Figure 4.27) and

walking features (Figure 4.28). These features were all modelled into a distribution using

KDE, this way it is possible to learn the user’s behaviour in terms of indoor environment.

Figure 4.25 represents five distributions including making the bed, cooking, washing the
dishes, eating and brushing teeth duration. Focusing on the activity duration distribution,

the predicted distributions present lower duration than true distributions, the reasons

for this behaviour can be explained by the post-processing and annotation process as

described in subsection 4.2.2.1.

Figure 4.26 contains the distributions corresponding to the time spent in each location,

namely kitchen, bedroom and bathroom, from the true and predicted labels. Regarding the

true labels, the location where more time was spent is in the kitchen, which makes senses

since it is the location where the user performs more complex activities such as cooking,
eating and washing the dishes.

Comparing both distributions, predicted distributions are in fact similar to the ones

that use true labels, except for the bathroom distribution that is shifted to the right, thus

with higher time spent in the bathroom.

Due to the type of complex activities performed in this dataset, it is expected that

standing activity is the one with highest % of duration, as it can be confirmed by Figure

4.27. Observing the number of steps and step length distribution, it is possible to note

that there are not much variability (see Figure 4.28).

The HMM activities in Figure 4.29 illustrates the log-likelihood of true and predicted

activity sequences modelled using a KDE. Table 4.8 contains the resulting log-likelihoods

of the trained HMM using activity sequences extracted from the classifier’s true labels
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Figure 4.27: Percentage time distribution while standing, walking, walking up and walking
down coloured in green, blue, purple and brown respectively.

Figure 4.28: From the left to the right is represented the distributions containing the
number of steps performed by the user and the mean step length distribution.

and prediction results. Activity 0 refers to making the bed, 1 to cooking, 2 to washing the
dishes, 3 to eating and 4 to brushing teeth. By the analysis of the true distribution, it is

noticeable two peaks with log-likelihood around -7 and -5 that correspond to sequences

0, 1, 3, 4, 2 and 0, 1, 3, 2, 4, respectively. Although the KDE using the true and predicted

labels are not exactly the same KDE distribution, the most probable likelihood of the

predicted distribution includes the same sequences. Therefore, the two most likely ac-

tivity sequences, according to the true sequences, are in fact probable according to both

models.

Focusing on the results of the true labels (Figure 4.29), the results of the HMM applied

to locations are not very informative since the user does not follow a specific sequence

pattern, there are some common sequences along the days, characterised by a higher

density points in x-axis, but the overall distribution is spread.

Thus, for finding patterns in sequences using HMM it is necessary that the outcome

distribution is well-defined, since a small variation in the log-likelihood refers to an

alteration on the performed sequence that may have a pathological meaning, so a pattern

in sequences modelled through HMM should follow a stable distribution.

4.3.3 Anomaly Detection

The morning daily living routine dataset aims to detect anomalies on users behaviour

that reflect the behaviour of someone starting to experience dementia behaviour. For

this purpose, only the features that may characterise this behaviour were accounted for,
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Figure 4.29: From the left to the right is represented the log-likelihood distributions for
true and predicted location sequences and the log-likelihood distributions for true and
predicted activities sequences represented in green and blue, respectively.

Table 4.8: Results of HMM training with the true (Table 4.8a) and predicted activities
(Table 4.8b). The first column indicates the day of acquisition, the second column the
activity sequence where activity 0 refers to making the bed, 1 to cooking, 2 to washing the
dishes, 3 to eating and 4 to brushing teeth. The third column contain the log likelihood
that derives from the trained HMM using the corresponding sequences.

Day
Activity

Sequence
Log

Likelihood
1 0, 1, 3, 4, 2 -7.272
2 0, 1, 3, 2, 4 -5.395
3 0, 1, 3, 2, 4 -5.395
4 0, 1, 3, 2, 4 -5.395
5 0, 1, 3, 2, 4 -5.395
6 0, 1, 3, 2, 4 -5.395
7 0, 1, 3, 2, 4 -5.395
8 0, 1, 3, 2, 4 -5.395
9 0, 1, 3, 4, 2 -7.272

10 0, 1, 3, 2, 4 -5.395
11 0, 1, 3, 2, 4 -5.395
12 0, 1, 3, 2, 4 -5.395
13 0, 1, 3, 2, 4 -5.395
14 0, 1, 3, 4, 2 -7.272
15 0, 1, 3, 4, 2 -7.272
16 0, 1, 3, 4, 2 -7.272
17 0, 1, 3, 4, 2 -7.272
18 0, 1, 3, 2 -3.876
19 0, 1, 3, 4, 2 -7.272
20 0, 1, 3, 4, 2 -7.272
21 0, 1, 3, 2, 4 -5.395
22 0, 1, 3, 2, 4 -5.395
23 0, 1, 3, 2, 4 -5.395
24 0, 1, 3, 2, 4 -5.395
25 0, 1, 3, 2, 4 -5.395
26 0, 1, 3, 2, 4 -5.395
27 0, 1, 3, 2, 4 -5.395
28 0, 1, 3, 2, 4 -5.395
29 0, 1, 3, 2, 4 -5.395
30 0, 1, 3, 4, 2 -7.272
31 0, 1, 3, 4, 2 -7.272
32 0, 1, 3, 4, 2 -7.272
33 0, 1, 3, 2, 4 -5.395
34 0, 1, 3, 2, 4 -5.395

(a) True activity results.

Day
Activity

Sequence
Log

Likelihood
1 0, 1, 3, 2 -2.432
2 0, 1, 3, 2, 4 -3.462
3 0, 1, 3, 2, 4 -3.462
4 0, 1, 3, 2, 4 -3.462
5 1, 3, 2, 4 -4.878
6 0, 1, 3, 2, 4 -3.462
7 1, 3, 2, 4 -4.878
8 0, 1, 3, 2, 4 -3.462
9 0, 1, 3, 4 -3.468

10 1, 3, 2, 4 -4.878
11 0, 1, 3, 2, 4 -3.462
12 0, 1, 3, 2, 4 -3.462
13 0, 1, 3, 2, 4 -3.462
14 0, 1, 3, 4, 2 -5.773
15 0, 1, 3, 4, 2 -5.773
16 0, 1, 3, 4, 2 -5.773
17 0, 1, 3, 4 -3.457
18 0, 1, 3, 2 -2.432
19 0, 1, 3, 4, 2 -5.773
20 0, 1, 3, 4, 2 -5.773
21 0, 1, 3, 2, 4 -3.462
22 0, 1, 3, 2, 4 -3.462
23 0, 1, 3, 2, 4 -3.462
24 0, 1, 3, 2, 4 -3.462
25 0, 1, 3, 2, 4 -3.462
26 0, 1, 3, 2, 4 -3.462
27 0, 1, 3, 2, 4 -3.462
28 0, 1, 3, 2, 4 -3.462
29 0, 1, 3, 2, 4 -3.462
30 0, 1, 3, 4, 2 -5.773
31 0, 1, 3, 4, 2 -5.773
32 0, 1, 3, 2, 4 -3.462
33 0, 1, 3, 2, 4 -3.462
34 0, 1, 3, 2, 4 -3.462

(b) Predicted activity results.

namely the activity sequence probability, duration of each activity, time spent in each

location, number of entries per location and inactivity percentage time.
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Figure 4.30: From the top to the bottom is represented the anomaly detection using the
true and the predicted labels. The x-axis corresponds to the days of the user’s behaviour
and the y-axis to the distance to the pattern. The green and red stem correspond to
normal and anomalous days, respectively. The streak line defines the anomalous adaptive
threshold. The green region the distances for first defining the pattern and the threshold,
the blue region corresponds to the dayanom and the red region is the ground truth of the
anomalous days.

Using the fluxogram from Figure 3.6, daylearn was set to 14 and a range of 5 days

(dayanom) for anomaly detection was used. The Dpattern weights were set to one.

Figure 4.30 illustrates the results for anomaly detection along 48 days of the user’s

behaviour. Comparing the results of the anomaly detection using the true and the pre-

dicted labels, despite the overall distances are different, the developed algorithm shows

promising results since it correctly predicts the anomalous days of the user behaviour

that starts in day 35, using both true and predicted labels.

4.4 Lunchtime routine dataset

Lunchtime routine dataset was recorded for the analysis of human trajectories behaviour

on the outdoor environment during the User 2 lunchtime. This dataset contains 47 normal

and 10 anomalous days of acquisition, over a period of 6 months, the dataset information

can be visualised in Table 4.9. The use case for anomaly detection on this dataset concerns

a human that starts to experience loss of memory episodes, getting confused and getting

lost when trying to reach a specific destination. The most important source of information

for this dataset is GPS measurements. Unfortunately, these acquisitions had serious issues

with GPS measurements due to missing GPS data and only 26 days were viable to be

evaluated, from which 19 were normal days and 7 were anomalous.

For the feature extractor step, features from the locomotion classifier (subsection

4.2.1.1), walking features (such as walking time, step length or mean velocity), trajectory

clusters and POI were extracted.
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Table 4.9: Dataset information regarding the user ID, activities performed, activated
sensors, acquisition device, device position and recording days and hours.

Dataset Information
User ID 2

Simple
Activities Standing, Walking,

Walking up, Walking down

Sensors

Accelerometer (200Hz), Gyroscope (200 Hz),
Magnetometer (50 Hz), Barometer (30 Hz),

Sound (8000 Hz) , Location (0.05 Hz),
Wi-Fi (0.3 Hz)

Acquisition Device LG Nexus 5
Device Position Dominant Wrist

mmm Normal mmm Anomalous
Recording Days

47 10
Normal Anomalous

Recording Hours ∼54 hours ∼13 hours

4.4.1 Pattern Discovery

Similar to the previous datasets, KDE and clustering methods were used to model features

from feature extractor step of the framework (section 3.1).

4.4.1.1 Motion patterns using KDE

The user’s locomotion modelled using KDE is shown in Figure 4.31. From the interpreta-

tion of this figure, it is possible to verify that the standing and walking activities took the

majority of the lunchtime. Additionally, the user walks are usually simple walks since

they do not have many climbs or declines.

Figure 4.31: Percentage time distribution while standing, walking, walking up and walking
down coloured in green, blue, purple and brown respectively.

Regarding walk features, the usual walks performed by the user takes around 25 min

in a range of 1000 m to 2000 m. Since this dataset also contains an indoor component,

the number of steps is usually higher compared to the walk distance outdoor. The user

step length is very characteristic in the range of 0.7 m to 0.75 m. This information can be
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Figure 4.32: Illustration of the walk time, walk distance, number of steps and step length
distributions from lunchtime routine dataset.

Figure 4.33: From the left to the right is represents the mean and maximum velocity
distributions and the mean and maximum altitude distributions from lunchtime routine
dataset. The mean and maximum distributions are coloured in green and blue respec-
tively.

verified in the distributions illustrated in Figure 4.32. Considering the user velocity in

Figure 4.33, the mean velocity of the user is very stable around 1 m/s.

As verified in the user’s locomotion, the walks performed by the user do not present

difficulty and this is in accordance with Figure 4.33, as the mean altitude variation is

under 20 m and the maximum can exceed the 40 m.

4.4.1.2 Motion patterns using clustering

For trajectory clusters, the same reasoning applied for the discovery of trajectories clusters

in subsection 4.2.2.2 was applied in this dataset. Hence, the resulting clusters are in

Figure 4.34. The user contains two specific patterns in the trajectory since two clusters

that correspond exactly to the same paths were found.

The discovery of POI of this user follows the same methods as in trajectory clusters
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Figure 4.34: Representation of two trajectory clusters coloured in green and blue.

Figure 4.35: Illustration of the three user’s POI, two coffees coloured in green and purple
and the working place coloured in blue.

of subsection 4.2.2.2. Three locations of interest of this user were obtained, which are

represented in Figure 4.35. The blue POI seems to be common to both trajectories and

the origin of the trajectory, if we look closer, the specified location, after validation with

the user, corresponds to its working place. The purple POI occupies a region containing

a coffee where the user usually goes, such as the green POI.

4.4.2 Anomaly Detection

The use case of this dataset aims to detect anomalies when a person starts to experience

loss of memory that leads to confusion to reach a specific destination, getting lost and

performing different trajectory paths.

Considering 26 days of the lunchtime routine dataset, the first 14 days were used to

train HDBSCAN clustering method, resulting in two clusters represented in Figure 4.36

by blue and green colour. By learning more days, the trajectories that were recognised

as noise by HDBSCAN clustering method were considered anomalous trajectories, since

they are spatially different from the user’s trajectories patterns. For the trajectories that
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were assigned to a cluster, the distances of each trajectory with all trajectories within the

assigned cluster were computed, as described in subsection 3.3.2, and the ones that had a

maximum distance higher than the threshold computed as explained in subsection 3.3.2

were considered anomalous trajectories. The anomalous trajectories are coloured in red

in Figures 4.36 and 4.37.

Figure 4.36: Anomaly trajectories detection from lunchtime routine dataset. The left
image represents the ground truth of the clusters coloured in green, and blue and the
anomalous trajectories in red, with the non detected anomalous trajectory pointed with a
black arrow. The right image illustrates the results of the anomaly detection algorithm.

Figure 4.37: Representation of the 6 anomalous trajectories coloured in red together with
the trajectory clusters coloured in green and blue.

Figure 4.36 represents the ground truth and overall results of the anomaly detection

algorithm by continuously learning the trajectory patterns. Comparing the two figures,

only one anomalous trajectory was incorrectly assigned to a cluster, this trajectory is

highlighted using a black arrow. In Figure 4.37 it is more clear the visualisation of the

anomalies, these are either characterised by trajectories that are spatially distinguishable
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(trajectories 2 and 3), or trajectories that although are spatially similar present a large

distance compared to the assigned cluster (trajectories 1, 4, 5, 6).

Even though, the algorithm did not properly recognise one of the anomalous trajecto-

ries, the results were still satisfactory.
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5
Conclusion and Future Work

5.1 Conclusions

The lack of routine screening of the ageing population, especially, for the people who live

home alone is a serious concern since routine alterations and difficulty on performing

certain daily activities are some of the common symptoms of cognitive impairments.

Furthermore, home accidents and disorientation are also common issues regarding the

elderly population that if it is not detected on time may lead to severe consequences. Thus,

the main contribution of this study was the development of a framework for learning

human pattern behaviour by trajectory analysis and activity recognition.

Smartphones and wearable sensors are an extraordinary useful source of information

about human behaviour, due to their sensing capabilities and their ubiquity. Concerning

the public available datasets regarding human behaviour, neither of the found datasets

contain suitable data for a long period to draw conclusions about human routines. There-

fore, a data collection deployment collecting multiple sources of smartphone’ sensors

data for over 6 months was performed, including location, inertial and environment data.

Additionally, for validation purposes, an annotation process was considered during data

recording and is also included in the database. During this long period, three datasets

were designed for addressing challenges ranging from unsupervised human mobility anal-

ysis to the recognition of complex activities and their sequence in an indoor or outdoor

environment.

The developed framework includes three main steps namely the human behaviour

feature extraction, pattern discovery methods and anomaly detection. Acknowledging

the machine learning classifiers implemented in this study the locomotion activities

classifier reached the best accuracy of 90.2% using DT classifier, the complex activities

classifiers implemented for human mobility on daily walks dataset and morning daily
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living routine dataset achieved, respectively, an accuracy of 94.0% using KNN classifier

and 98.1% using RF classifier. The indoor room-level location classifier for morning daily

living routine dataset accomplished an accuracy of 93.6%.

The second part investigates the usage of the extracted features for understanding

and discovery of human patterns. Similarly to the study conducted by Forkan [26], this

study uses statistical models for the estimation of human behaviour patterns. However,

instead of a Gaussian Distribution, this study uses a KDE to define the probability den-

sity function since behaviour features may not follow a Gaussian Distribution as it was

verified on the behaviour features acquired during this study. Clustering methods were

also used for learning human patterns based on spatial similarity.

Finally, an anomaly detection algorithm was introduced to detect abnormal behaviour,

whereas abnormal is recognised by an adaptive threshold according to the distances of

the current behaviour to the learned pattern. Experimental results demonstrate the effec-

tiveness of the proposed framework that revealed an increase potential to learn behaviour

patterns and detect anomalies considering different use cases. This study may be a key

insight for monitoring elderly daily routines as well as marketing analysis, security and

tourism management.

5.2 Future Work

Although the developed study revealed promising results there is still room for improve-

ment that can be addressed in the future.

Firstly, considering the current framework, in an online context, methods for the

activity spotting of the complex activity classifiers should be implemented.

Furthermore, signals from smartphone sensors present a huge potential and are sen-

sitive enough to perceive human motions and activities, the search for more complex

sensory signatures using a combination of different sources of information should be

addressed in an unsupervised manner.

For trajectory analysis, the used similarity measure considered the hole trajectory.

However, for a more detailed and robust trajectory analysis, the segmented trajectory

should be analysed instead.

The distance to the pattern used for anomaly detection can be improved by a weight

optimisation process, where more relevant features should have a higher weight. Depend-

ing on the type of feature, a weight parametrization should also be addressed. Moreover,

new approaches for defining the anomalous threshold may be considered.

Finally, the smartphone used for data acquisition should be replaced by a smartwatch

or bracelet containing the sensors embedded in a smartphone. On the end of each day,

data should be sent automatically to a server where the developed framework in this

study will receive as input the recorded data. Then, the user’s behaviour patterns should

be learned continuously and any deviation to the normal behaviour should be reported

by a notification or text message to the caregiver or the user’s doctor.
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TSFEL Features Description

Table A.1: Temporal domain features implemented in TSFEL.

Temporal Domain Features

Autocorrelation Computes the correlation of the signal with itself

shifted over successive time intervals.

Zero Crossing rate Number of times the signal changes from positive to

negative and vice-versa.

Mean absolute difference Computes the mean of the absolute difference be-

tween consecutive signal values.

Median absolute difference Computes the median of the absolute difference be-

tween consecutive signal values.

Sum of absolute differences Calculates the sum of the absolute differences.

Mean difference Calculates the mean difference of a signal between

consecutive signal values.

Median difference Calculates the median difference of a signal between

consecutive signal values.

Distance Computes the total distance travelled by the signal by

approximating the distance between two points to the

hipotenusa.

Centroid Calculates the arithmetic mean position of all signals

point positions.

Maximum peaks Returns the total number of positive peaks of a

dataset.

Minimum peaks Returns the total number of minimum peaks of a

dataset.
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Linear regression Computes the linear regression of a dataset.

Total Energy Computes the total power of a signal by the fraction

between sum of the powered signal and the signals

duration.

Table A.2: Spectral domain features implemented in TSFEL.

Spectral Domain Features

Curve distance Returns the distance of the signal’s cumulative sum

FFT magnitude elements to the respective linear re-

gression.

Fundamental Frequency Computes the fundamental frequency, which is the

frequency at 0 Hz.

Maximum Frequency Computes the maximum frequency of a signal.

Median Frequency Computes the median frequency of a signal.

Maximum power of the spec-

trum

Computes the maximum power spectrum density of

a signal.

MFCC Computes the MFCC.

Spectral centroid Calculates the weighted mean of the frequency values

positions of a signal.

Spectral decrease Computes the spectral decrease of a dataset through

linear regression.

Spectral kurtosis Computes the flatness of a spectral distribution

around the mean value.

Spectral maximum peaks Calculates the number positive spectral peaks of a

dataset.

Spectral roll-off Computes the frequency where 95% of the energy is

contained bellow this value.

Spectral roll-on Computes the frequency where 5% of the energy is

contained bellow this value.

Spectral skewness Measures the asymmetry of a spectral distribution

around its mean value.

Spectral slope Computes the linear regression of the spectral ampli-

tude.

Spectral spread Computes the spread of the spectrum around its

mean value.

Spectral variation Computes the amount of variation of the spectrum

along time through the normalized cross correlation

between two consecutive spectral amplitude values.

Total Energy Computes the total energy by the fraction between

sum of the powered spectrum and the signals length.
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Table A.3: Statistical domain features implemented in TSFEL.

Statistical Domain Features

Histogram Computes the histogram of a signal.

Interquartile range Computes the difference between the upper and lower

quartile.

Kurtosis Measures the flatness of the signal distribution

around the mean value.

Maximum Calculates the maximum value of a signal.

Mean Calculates the mean value of a signal.

Mean absolute deviation Computes the mean absolute deviation of a signal.

Median Calculates the median value of a signal.

Median absolute deviation Computes the mean absolute deviation of a signal.

Minimum Calculates the minimum value of a signal.

Root mean square Computes the square root of the arithmetic mean of

the squares of the original values.

Skewness Computes the asymmetry of the signal distribution.

Variance Computes the variance of the dataset.

Standard Deviation Computes the standard deviation of the dataset.
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Informed Consent to Participants

The following page comprises a portuguese version of the informed consent that was

filled by the participants that enroll in this study. The informed consent contains also

information about the collected data. The form was printed in duplicates so that one copy

is kept by the participant.
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