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Abstract

This thesis describes work on fusing data from multiple sources of infor-
mation, and focusses on two main areas: adaptive detection and adaptive
object tracking in automated vision scenarios. The work on adaptive ob-
ject detection explores a new paradigm in dynamic parameter selection, by
selecting thresholds for object detection to maximise agreement between
pairs of sources. Object tracking, a complementary technique to object de-
tection, is also explored in a multi-source context and an efficient framework
for robust tracking, termed the Spatiogram Bank tracker, is proposed as a
means to overcome the difficulties of traditional histogram tracking. As well
as performing theoretical analysis of the proposed methods, specific exam-
ple applications are given for both the detection and the tracking aspects,
using thermal infrared and visible spectrum video data, as well as other

multi-modal information sources.
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Chapter 1

Introduction

Detection and tracking are two essential components of automated vision systems in
many application areas, specifically in scenarios involving people. These areas of appli-
cation include automated surveillance, human-computer interfaces, human body track-
ing, automated monitoring of the elderly and meeting activity analysis. Traditional
approaches, using only a single visible spectrum camera as an input device, face many
difficult problems such as ambiguities due to occlusion, camouflage due to similar prop-
erties of the objects and the background and changing lighting conditions.

Thermal infrared cameras are very powerful devices for monitoring people and can
overcome many of these problems. Due to advances in technology, these devices have
become cheaper and more widespread in recent years, a trend that is expected to con-
tinue. Firstly, they detect emitted thermal radiation, so are robust to fast lighting
changes. Secondly, people are easily distinguished from the surrounding background
clutter due to their large temperature differences. However, they have their own draw-
backs, including an inability to distinguish similar temperature objects and a low image
quality due to high noise, as well as technology-specific problems such as the halo-effect
and periodic shuttering.

In recent years, research efforts have focussed on using multiple input devices to
mitigate the problems associated with traditional methods of visual analysis. In this
vein, the combination of thermal infrared video data with traditional visible spectrum
data would seem like a worthwhile endeavor for a number of reasons. Firstly, these
sources are inherently complementary, as visible imagery is generated primarily from
reflected radiation, whereas thermal infrared images are mainly caused by emitted
radiation. Secondly, using multiple sources of data allows better discrimination of target

objects from the background clutter. For example, while an object may resemble the
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background in one data source, it is unlikely to resemble it in all other sources. And
thirdly, a suitably formulated combination of these sources allows their strengths to be
exploited and their weaknesses overcome. The properties of thermal infrared can make
a visual analysis system robust to fast lighting changes, while its use of visible spectrum
information allows it to exploit the richness of multi-band colour information.

The main contributions of this thesis are to develop general-purpose techniques for
fusing information from multiple sources of data, specifically targetting the fusion of
visual data with data from thermal infrared video imagery. This work’s contribution is
twofold. Firstly, a new paradigm in dynamic thresholding is proposed that is termed
mutual information thresholding. This technique is a general method of selecting para-
meters for multiple detection modules in order to maximise their agreement. Numerous
applications using real-world data are demonstrated, including foreground object de-
tection in multimodal video, event detection using audio-visual data and skin detection
in thermo-visual video.

Secondly, the recently proposed spatiogram-based tracker is extended in order to
efficiently handle multiple data sources. This tracking framework is shown to out-
perform traditional trackers in a variety of difficult tracking scenarios. As well as
extending it to handle multiple data sources, an architecture is proposed for dynamically
weighting the various sources, so as to best distinguish the object from the background

clutter, providing robust tracking.

1.1 Thesis overview

In chapter 2, a literature review is conducted on a broad range of topics relevant to
the work in this thesis. As this work focusses on combining information from multiple
sources, specifically visual and thermal infrared sources, prior work in using thermal
infrared in automated visual applications is reviewed. Next, previously described uses
of combined visual and thermal infrared imagery are explored, as well as a general dis-
cussion on the broad families of techniques that have been widely used for data fusion.
To set the context for this thesis’ contribution to object and event detection, detailed in
chapter 3, previous research on scene background modelling and unsupervised dynamic
thresholding is described. Finally, with regard to the work described in chapter 5 and
chapter 6, a review of relevant prior work in object tracking is conducted, along with a
discussion of the open issues in the field.

The next two chapters concern the contribution of this work to dynamic object and

event detection. In chapter 3, the proposed approach of mutual information thresh-
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olding for automated detection of events and objects is described and evaluated using
synthetic data and compared to the leading dynamic thresholding algorithms. Chapter
4 continues this evaluation using real data from publicly available datasets, as well
as data captured privately using the developed thermo-visual camera rig. Numerous
applications of this technique are demonstrated.

Next, chapters 5 and 6 describe the work’s contribution to general object tracking.
Chapter 5 introduces the concept of a Spatiogram, which generalises the commonly-
used histogram, and then details the proposed extension of the spatiogram for efficient
multi-modal tracking. Chapter 6 details the work on adaptive tracking, which uses
the spatiogram bank tracking framework presented in chapter 5. The experiments on
adaptively combining features to best separate the object from the clutter demonstrate
robust tracking on a variety of difficult thermo-visual tracking sequences.

In the final chapter, the contents of the thesis is summarised and a detailed discus-
sion of the work is conducted, providing a roadmap for future work leading on from

the experiments conducted here.



Chapter 2

Related Research

2.1 Introduction

This chapter covers a broad range of computer vision topics, giving an overview of the
methods related to the core work in this thesis. Firstly, thermal infrared technology
and research are explored, illustrating its advantages over visible spectrum analysis.
The discussion is then expanded to multi-modal analysis by examining research on
data fusion, particularly in fusing visible spectrum and thermal infrared. Background
modelling and automatic threshold selection approaches are reviewed, with a view
to prepare the groundwork for developing our new technique for mutual information
thresholding. Similarly, a broad review of the extensive literature on object tracking is
conducted as a precursor to this thesis’ contribution to work in this field using adaptive
banks of spatiograms. Each section concludes with an overview of research in the field
and discusses open problems, future research directions, as well as how the work in this

thesis makes a contribution to the research goals.

2.2 Thermal Infrared

Infrared (IR) radiation covers a large span of the electromagnetic spectrum, begin-
ning just beyond the red portion of the visible spectrum. The visible spectrum region
lies only between 400 and 780nm, whereas the infrared region spans 780nm up to
100,000nm. As this region is so large, infrared radiation can have different properties
depending on the section in which it lies. It is also often subdivided into smaller ranges.
The exact names for these sub-bands vary in the literature. The most common clas-

sification is as follows: The portion just outside the visible region (780nm to 1.3um)
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is referred to as near-IR (NIR) or short-wave infrared (SWIR). Other region classifi-
cations are mid-wave IR (MWIR; 3 to 5um), long-wave IR (LWIR; 8 to 14um), and
very-long-wave IR (30um and above). The term thermal infrared is generally used to
refer to LWIR, but may also apply to MWIR. Why these particular sub-band regions
are used is due to atmospheric absorption and is discussed further below in reference to
figure 2.2. Forward-looking infrared (FLIR) is another term used, primarily in North
America, to refer to imagers of thermal infrared radiation.

Most of the visible light that is seen by human eyes is reflected light. The primary
source of visible light is the sun or artificial lighting. The complex array of colours we
can see comes from the reflection of some subbands of the white light that falls on ob-
jects, while the rest is absorbed. Thermal infrared on the other hand is mostly emitted
radiation and as such is inherently complementary to the visible spectrum. Planck’s
law of black-body radiation approximates the emitted electromagnetic radiation from

an object at a given temperature, T'. His law is given by:

2hc? 1
o e(he)/(KTX) _ |

I(\T) = (2.1)
where \ is the radiation wavelength and h,c and k are physical constants, namely
Planck’s constant, the speed of light and Boltzmann’s constant respectively. Figure 2.1
demonstrates some emission spectra for black-body objects of various temperatures.
The peak radiation emission occurs in the thermal infrared band for objects at room
temperature.

In terms of its transmission through air, figure 2.2 shows the fraction of thermal
radiation that passes through the atmosphere at sea-level over a distance of 1km. Cer-
tain wavelengths are absorbed by chemicals in the air, such as water and CO». As can
be seen from the graph, there are two spectral windows that transmit radiation with
low absorption: 3-5um and 8-14pm. This accounts for the sub-band classification into
MWIR and LWIR, as they account for distinctly separate wavelength bands.

2.2.1 Thermal imaging technology

History of IR technology Research into thermal imaging began in the military
domain, with potential to improve combat performance in many areas. Firstly, thermal
imaging works in total darkness, therefore giving the ability to literally see in the
dark. It also has the ability to penetrate smoke, which is useful on the battlefield.
Secondly, military vehicles and aeroplanes, when operating, as well as combat personnel,

usually have a significantly different temperature to their surroundings, allowing them
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Figure 2.1: Planck’s law of blackbody radiation, which governs the emission spectrum
of a black-body object at a fixed temperature, T.

to be detected, despite the use of camouflage, which only conceals them in the visible
spectrum.

In the late 1950s and 1960s, three companies, Texas Instruments, Hughes Aircraft,
and Honeywell developed single element detectors that produced thermal line images
by scanning scenes. The technology was not commercialised until decades later due to
the high costs and because it was classified due to the sensitive military nature of its
applications. However, these basic detectors led to the development of modern thermal
imaging devices [14].

In the late 1980s the United States federal government awarded large classified con-
tracts, known as HIDAD (HIgh-Density Array Development) contracts, to two compa-
nies, Texas Instruments and Honeywell. Their purpose was the development of uncooled
infrared sensor technology with a very short turn-on time, which would make thermal
imaging useful for practical military applications, unlike the earlier cooled systems and

line-scanning devices. Both companies produced successful devices: the pyroelectric
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Figure 2.2: Transmittance of infrared radiation through air at sea-level. Various
chemical compounds in the atmosphere absorb significant amounts of infrared in cer-
tain bands, making these wavelengths impractical for long-range imaging (Source:
Wikipedia; a similar graph appears in [64] pg. 23).

sensor using using barium strontium titanate (BST) by Texas Instruments [43] and the
microbolometer using vanadium oxide (VOx) by Honeywell [14] [134].

In 1994 Honeywell was granted a patent on their microbolometer technology. Hon-
eywell licensed their microbolometer sensor technology to other companies. Origi-
nally, four companies bought licenses for VOx technology from Honeywell but these
licences have since changed hands and other companies have since purchased licences.
Companies that are (or were) involved in thermal imaging include Raytheon, Boeing,
Lockheed-Martin, British Aerospace (BAE), Lorcal, Rockwell, Santa Barbara Research,
DRS Technologies, Indigo Systems, Infrared Vision Technologies Corporation, NEC, and
Institut National dOptique [14] [134].

In 1992 the US Government de-classified the use of Infrared Technology for commer-
cial products but maintained control of the technology [134]. Large thermal-imaging

manufacturers, such as Raytheon and Lockheed-Martin, are allowed to sell their devices
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to foreign countries but not however to divulge their manufacturing techniques. The
current ban applies to two of the three uncooled IR technologies, microbolometer and

pyroelectric/ferroelectric, but exempts thermoelectric devices [44].

Modern uncooled technology Thermal images are inherently very noisy. This is
due to the fact that every object above absolute zero temperature emits thermal ra-
diation, including the camera itself! Early thermal imagers (as well as some modern
systems) require cryogenic cooling systems to prevent the capture device from interfer-
ing with the imaging process. A thorough review of cooled infrared imaging systems
can be found in [120].

Technological advances have made it possible to capture thermal imagery without
cooling systems. These cameras are known as uncooled detectors and the two dom-
inant imaging technologies in this field are pyro/ferro-electric and micro-bolometer.
Both technologies rely on the thermal radiation to produce a measurable change in
a property of each element of the focal plane arrays; a change in capacitance, in the
case of the ferroelectric sensor, and a change in resistance, in the microbolometer. The
images produced by both technologies are visually quite different. As well as this, there
are a number of other differences that should be taken into account when choosing a
technology to use in a real application.

Microbolometer sensors have the advantage that they can measure the absolute
temperature of pixels in a scene. Ferroelectric sensors suffer from pixel crosstalk causing
a halo-effect so cannot measure absolute temperature. This halo appears as a bright
glow around dark objects and a dark glow around bright objects. This is explained
further below. Disadvantages of microbolometer sensors are that they must perform
periodic shuttering of the system, which may last from a few seconds to a few minutes,
and results in the image freezing during shuttering. Also, fixed-pattern noise may
appear on the imagery due to DC-drift. The ferroelectric technology does not have this
problem because AC-coupling is used.

The halo effect (also known as pixel cross-talk) is caused by the chopper, a spinning
blade within the camera housing, that acts as a reference temperature source for each
pixel. The pixels will measure the difference in temperature between the scene and the
chopper and will return this value. The assumption is that the chopper is of uniform
temperature. The assumption is often violated when there are hot objects in the scene
that emit radiation onto the chopper, causing it to heat up and this heat diffuses through
the chopper. The end result is that pixels beside hotter pixels will appear colder and

pixels beside colder pixels will appear hotter, producing the halo-effect. Two examples
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of this effect are shown in figure 2.3.

(b)

Figure 2.3: Examples of the halo-effect that occurs with hot and cold objects in images
captured by pyrolectric thermal imagers.

2.2.2 Real-world applications

Thermal infrared technology has found a diverse range of real-world applications. These
include governmental uses (for military, law-enforcement and anti-terrorism), industrial
applications (predictive maintenance for early-failure-warning on mechanical and elec-
trical equipment, process monitoring, evaluation of insulation) and medical applications
(patient diagnosis, thermal abnormality detection), as well as in a host of other fields
such as aerial archaeology and pollution effluent detection.

In [84], applications of thermal imaging are detailed, such as non-destructive test-
ing (NDT) of products, buildings and structures maintenance (heating networks, sewer
systems, waste-water pipes, water canals), quality control of insulation, moisture dam-
age detection, detection of cracks in exterior walls, air-tightness testing, wastewater
pipe damage detection, detection of road surface deterioration, printed-circuit board
(PCB) testing, anomaly detection in the electric utilities and nuclear power industry,
real-time weld control, military applications of automatic target recognition (ATR)
systems, guided ordinance, weapon sights and thermal imagers on the AH-64A Apache
helicopter, many applications in the aerospace industry, and forest fire detection.

More applications are given in [15], such as the detection of vapour and gas leaks, oil
pollution control, inspection of machinery in chemical, petrochemical and steel indus-
tries, inspection of electronics, inspection of vehicle tyres, testing of buildings (thermal

losses), land survey applications using specialised satellites (Landsat, ERTS, HCMM,
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SPOT), medical (identification of varicosities, assessment of arterial disease, therapy
monitoring) and stress analysis in structures.

Further details are given in [64] of applications such as electrical monitoring (de-
tecting inductive currents, energised grounds and open circuits), identifying excessive
friction, pipe blockage, moisture detection in buildings, and industrial process monitor-

ing and control.

2.2.3 Thermal infrared research

The various research directions of infrared imaging are now briefly reviewed. The dom-
inant areas of research are in the military, medical and security (surveillance) domains.

Since the technology for thermal imaging originated in military research labs, many
of the uses of thermal technology are for defence related applications. Especially useful
for battlefield scenarios, thermal radiation penetrates smoke and fog, thereby providing
the ability to locate opposing units. Its lighting independence allows it to be used to
total darkness, where visible spectrum-based methods are ineffective. The main advan-
tage of thermal technology is that is allows objects to be detected by their temperature
difference from their surroundings. This is ideally suited to detecting people and mov-
ing vehicles, as they are usually have significantly different thermal properties than the
environment. In [90], a system is described for recognising military vehicles in thermal
imagery. Forward-looking infrared (FLIR) is used in heat-seeking missiles, such as the
AIM-9 Sidewinder missile that is carried on fighter aircraft for air-to-air combat. It is
named after the Sidewinder snake which has the ability to detect thermal radiation in
its pit organ [93].

In the medical field, thermal imaging has been cited as a useful and non-invasive
diagnostic tool [61]. Usually, uncooled cameras are not effective enough to be used
in medical applications where precise temperature measurement is required, so more
expensive cryogenic cooling systems are needed. Thermal imagery can be used by
medical personnel to identify abnormal heat patterns that may indicate maladies. These
maladies include the identification of varicosities, assessment of arterial disease and
therapy monitoring [15].

However, the usefulness of thermal infrared for medical applications has been ques-
tioned [84]. While it is stated that there is renewed interest in using infrared imaging to
detect breast tumors [61], in a thorough review of the effectiveness of infrared thermal
imaging for breast cancer screening and testing, [68] Kerr concludes that “The evidence

that is currently available does not provide enough support for the role of infrared ther-
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mography for either the population screening or adjuvant diagnostic testing of breast
cancer”. Her conclusions are consistent with recommendations of the Royal Australian
and New Zealand College of Radiologists Breast Imaging Reference Group who do not
recommend the use of thermography for the early detection of breast cancer in their
2001 policy.

In considering the use of image processing techniques for thermal images of human
skin [61], Jones and Plassmann state that “Care is needed in interpreting thermograms
since they are nonspecific and may reveal past traumas as well as current problems”
and that “Standard protocols are necessary to produce repeatable and meaningful
thermograms”. Jones [60] also states that thermal imagery “is nonspecific” and that
“patterns of temperature need to be interpreted by a trained eye. A hot or cold spot in
the temperature distribution may be an indicator of the presence of a tumor forming
within the body, or of inflammation as in the case of arthritic joints, of infection, of
loss or over-activity of sympathetic nerve function, or of a host of other dysfunctions”.
These kind of statements do not add much credibility to the use of thermal imagery
for widespread use in medical diagnosis.

As people are usually of significantly different temperature to their surroundings,
thermal imaging is an ideal technology for surveillance of people and their activities. In
[28], Davis and Sharma present a new background-subtraction algorithm for thermal
imagery that uses contour information to overcome to problem of the halo-effect. A
contour saliency map is formed using foreground and background gradients. This map
is then thinned and broken contour segments are completed by combining the watershed
algorithm with a path-constrained search. People silhouettes are produced by flood-
filling the contour image. In [29] a template-based method is presented for detecting
people in thermal imagery from different seasons. First, a fast screening procedure
is used, using a generalized template to locate potential person locations. Finally, an
AdaBoosted ensemble classifier tests the hypotheses to determine if people are present
in the scene.

One particular application of person detection that has inspired much research is in
the area of pedestrian safety. Given the high number of night-time road fatalities due to
vehicles colliding with pedestrians, efforts have been underway to use thermal imaging
to automatically detect people and warn drivers of their presence [10, 34, 91, 156].

Of the many other applications of thermal imaging, a few are mentioned here.
Thermal imagery has been used for automatic face detection [136], as well as face
tracking [32]. Face recognition is also found to be improved by using additional spectral

information from near-IR bands [100]. Another important piece of research to mention
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is the work of Lin on extending the current computer vision techniques, that were

designed with the visible spectrum in mind, to infrared band images [79].

2.2.4 Discussion: the future of thermal imaging

Widespread adoption of thermal infrared technology may not be as fast as many predict.
The adoption by Deville of Raytheon’s NIGHTDRIVER thermal vision system in their
2000 model is often cited as evidence of its commercial viability. The sales of this
model fell quickly however, with only 600 systems sold in 2004 and it was finally
dropped in 2005. Some believe the next step in thermal technology development is the
mass-production of low-cost, low-resolution thermal imagers, for wide-area distributed
sensing and efforts are already underway in this direction [44].

The introduction of a workshop on Object Tracking and Classification in and Be-
yond the Visible Spectrum (OTCBVS) in 2004 at the IEEE Conference on Computer
Vision and Pattern Recognition is a sign of the increased levels of research on thermal
imaging. The workshop has continued each year and is now in its 4*" year.

Thermal infrared imaging has been shown to be a very useful modality in many
areas of computer vision research. As thermal radiation comes primarily from emitted
radiation, it is very robust to adverse lighting condition that plague many visible spec-
trum vision systems. It is also very useful for distinguishing people and vehicles from
complex backgrounds.

The drawbacks of thermal imaging, such as the high levels of image noise, the
halo effect in ferroelectric cameras and its inability to distinguish objects of similar
temperature, such as people, may limit its applicability in many application areas.
It would seem plausible therefore to try to leverage the advantages of both thermal
imagers and traditional visible spectrum cameras, to act as complementary sources of
data and to overcome the limitations of both these data sources simultaneously, thereby
improving the performance of vision systems by using multi-modal input, instead of
opting for one or the other. In the next section, the various research directions on

combining these two modalities are reviewed.

2.3 Combining infrared and visible

This section reviews research on combining thermal infrared and visible spectrum infor-
mation to improve the performance of computer vision systems. The capturing of this

multi-modal data is first examined, then the discussion proceeds to how it is aligned
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and finally exploring the uses to which this rich data has been put. Also detailed is the

hardware and the procedure used to capture thermal and visual data for this work.

2.3.1 Capture rigs

In order to jointly capture thermal infrared and visible spectrum imagery, most ap-
proaches use two separate cameras. A single camera that provides capture and align-
ment of both modalities is commercially available from Equinox Sensors, although it
may be prohibitively expensive for some projects. When two separate cameras are used,
they can either be in a beam-splitter (BS) configuration or a semi-parallel (SP) setup.
The BS configuration is where the cameras are positioned at ninety degrees to each
other with a semi-reflective medium placed between them so that they appear to have
the same optical axis. This medium will reflect one type of radiation (e.g. infrared)
and will be transparent to the other (e.g. visible light). The SP configuration is where
both cameras are pointing in roughly the same direction and see a similar scene, but
due to parallax effects, there may be some parts only seen by one camera. The BS
configuration is superior to the SP setup, but is more difficult to construct, as it re-
quires a beam-splitter medium that will transmit visible radiation but reflects thermal
(or vice versa). The SP setup is most useful when the scene is far enough away from
the cameras so that it can be assumed to be planar. BS configurations have been used
in [159] and in this work. A SP configuration was used in [28].

In the thermo-visible capture rig used for this work a Raytheon Control-IR 2000B
thermal imaging video camera was used, along with a Panasonic WV-CP470 colour
video camera. The thermal camera is sensitive to wavelengths in the range 7pm-14pm.
The frame capture times of both cameras were synchronised using a gen-lock signal
to ensure that they captured images simultaneously. Both channels of analogue video
output are captured and digitised by a Falcon Quattro multi-channel frame-grabber. A
pane of thermally-reflective glass was used to act as a beam-splitter. Figure 2.4 shows

the configuration of the visible and thermal cameras.

2.3.2 Data Alignment

A number of different methods have been proposed in the research literature on how
to automatically align multimodal imagery, many of which are based on maximising
the mutual information between the two sources [104, 150]. This is especially useful
for medical imagery taken from two different scanners. It is usually the case that there

are a small number of dominant pixel classes in the data (corresponding to different
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Figure 2.4: Thermal and visible capture rig

skin tissues) and therefore there is strong statistical correlation between the brightness
values in both modalities. For general thermal and visible imagery, this is not usually
the case. In [54], a more general method to align multimodal data is described which
uses a block-based cross correlation approach to maximise edge orientation similarity
between the modalities, since this is one feature that is common to both modalities.
In this work, to align pixels in the thermal and visible spectrum, an appropriate
planar homography [46] is determined and this image warping is applied to all ther-
mal infrared frames in order to align their pixels with the corresponding pixels in the
visible spectrum image. This homography is determined by manually selecting many
corresponding points in both modalities and computing the homography with least-
squared-error. There is no correlation between visible spectrum brightness and thermal
infrared brightness values, so many of the automatic mutual-information based align-
ment methods would not be appropriate. With enough edge information in the scene,
the unsupervised alignment method of [54] using edge orientation similarity could be

used. However, as only one warping needs to be computed for a fixed camera rig, no
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automatic method is required, but automating the process using such a method could

be useful and is a direction for future work.

2.3.3 Image fusion

By capturing images of a scene using different spectral bands, features that may be
undetectable in one band can be seen in another. This seems like an obvious benefit
of jointly capturing thermal infrared and visible spectrum imagery. However, in order
to present multimodal imagery or video to humans, the amount of information must
be reduced in order for it to be processable by the human visual system. Image fusion
refers to the reduction of a hyper-spectral (multi-band) image to a single band (or
three-band colour) image for visual inspection. The goal of image fusion is to retain,
in the fused image, the useful information contained in all bands. The success of an
image fusion procedure can be assessed using perceptual tests; for example, by gauging
the speed or accuracy at which a user can locate objects in the scene presented in the
fused imagery. Multi-scale decomposition-based image fusion schemes have been shown
to perform well for image fusion [160]. A method for the fusion of multimodal video
frames is proposed and evaluated in [114].

In this thesis, the targetted applications involve automated vision data processing,
so the techniques of image fusion are not considered since they must, by necessity,
discard potentially useful information. Any practical system for displaying complex
data to humans must reduce the information burden on the user by discarding some of

the data. Automated systems, on the other hand, have no such restriction.

2.3.4 Surveillance

The use of multispectral data for automated surveillance is another area that has re-
ceived much attention. In a review of video surveillance and sensor networks research
[25], Cucchiara argues that the integration of video technology with sensors and other
media streams will constitute the fundamental infrastructure for new generations of
multimedia surveillance systems. Also reviewing surveillance research [50], Hu et al.
conclude in their section on Future Developments in Surveillance that “Surveillance us-
ing multiple different sensors seems to be a very interesting subject. The main problem
1s how to make use of their respective merits and fuse information from such kinds of
sensors”.

Using low-resolution thermal images, Jones et al propose a Bayesian approach for

combining them with high-resolution visual information for the surveillance of sterile
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zones where an alarm is required should a person enter the zone [62]. Their aim is
to reduce the high false alarm rate present when using the visual images only, due to
changing environmental conditions. They show how the low-resolution thermal images
can suggest an area of analysis and then Markov Random Fields are used to segment
the highlighted object.

A surveillance system that detects foreground regions in infrared and visual im-
agery is described in [141]. Object regions are detected and tracked separately in each
modality and then a series of merging rules are used associate regions between the
modalities.

In [40], Goubet et al. illustrate quite well the advantages and disadvantages of
thermal and visible images for daytime pedestrian detection and tracking. However
their very simple fusion method does not improve performance over using infrared
alone.

In [27], Davis and Sharma build on their earlier work which extracted person con-
tours from infrared images only and investigate how the addition of visible spectrum
information improves the person segmentation performance. Using regions of interest
obtained from background modelling, contour segments are extracted from these regions
in each modality using a thinned contour saliency map. The contour segments in each
modality are aligned and completed by performing a path-constrained search on the
watershed boundaries. Person silhouettes are produced by flood-filling the completed
contour image.

Sharma and Davis [124] continue their work in this vein, but use a mutual informa-
tion based approach to choose the contour segments in one modality (visual) in such a
way as to maximise a mutual-information-based measure between these contours and
detected contours in the thermal image. The contour selection is based on a heuristic
selection scheme. Results on segmenting people from the background are quantitatively
evaluated using manually segmented ground truth and shown to outperform either vi-

sual or infrared analysis alone.

2.3.5 Face recognition

Face recognition research is another area of computer vision that has benefitted from
research that combined thermal infrared and visible spectrum imagery.

Heo et al. use thermal images of faces to detect, and subsequently remove, eyeglasses
from the visual images [49]. This is shown to improve face recognition performance.

In a similar study of face recognition, Chen et al. compare visible only, infrared
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only and combined face recognition results, using both principal component analysis
(PCA) and a commercial face recognition system [18]. They conclude that “multimodal
IR and wvisible recognition has the potential to improve performance over the current
commercially available state of the art.”

Also in work related to multispectral face recognition, Selenger and Socolinsky [121]
conclude from their experiments that “It becomes clear from our analysis, that LWIR
imagery of human faces is not only a valid biometric, but almost surely a superior one
to comparable visible imagery.” Though they add a note of caution that perhaps their

thermal images were not challenging enough for the recognition task.

2.3.6 Discussion

The combination of thermal infrared and visual data has shown to be useful in a wide
variety of application areas, usually out-performing single modality analysis. Future
directions for the fusion of visible and thermal infrared information lie in providing
automatic mechanisms of adaptation for these systems to cater for changes in the
multi-modal data due to situational or environment changes.

We will examine, in the next section, the main schools of thought with regard to

fusing the data from multiple sources of information.

2.4 Data fusion

The exact definition of term data fusion is often debated. On a website dedicated
to the subject (http://www.data-fusion.org/), in an article discussing the search for
a concise meaning of data-fusion, the author admits “t is very difficult to provide a
precise definition of data fusion” and that “If one looks for a definition, one will be
stunned by the poverty of the few definitions, the lack of clarity and consensus, and
by the battle of words. The exact meaning of data fusion [varies| from one scientist
to another”. Fusion could, for example, refer to image fusion as mentioned in section
2.3.3. Generally, the acid-test for a desired fusion system is that it should ensure that
no single data source provides better information than the fused combination of all
data sources. In this thesis, the term fusion, or data fusion, is used to refer to the
combination of evidence from multiple sources of data in an attempt to improve the
accuracy of decisions made on the basis of this evidence.

In this section, the two most mature approaches for evidence fusion are briefly
reviewed; namely, Bayesian fusion and fusion using the Transferable Belief Model. We

also review other commonly used ad-hoc approaches to data fusion.
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2.4.1 Bayesian fusion

Bayesian fusion refers to the use of Bayes theory, which is strongly founded classical
probability. In Bayesian decision making, probability distributions are used to make
decisions on the most likely possibility. These distributions must be known beforehand
and are usually computed from training data, which is a large collection of previously
annotated examples.

To provide a more concrete understanding of the Bayes approach, we look at a simple
classification example. We have uncovered a rib bone from some animal, but are unsure
of which species it belongs to. However, it has been narrowed down to three possibilities:
C = {Rat, Squirrel, Possum}. We can further evaluate how likely each species is using
some features of the bone. These features are F' = {length, density, smoothness}. We

the use Bayes’ rule, which is stated as

P(fICy)P(Ck) _  P(fICk)P(Cy)
P(f) > P(fIC:) P(Cy)

P(CyIf) = (2.2)
where f represents the measured values of the feature set and Cj is the object class.
Intuitively, this equation provides a probability of the bone belonging to species CY ,
given the three measurements of the bone features, f. The values of P(C}) are known
as the priors and are the probabilities of each species before measurements are taken.
In this example, the priors would be computed from the relative population sizes of
each species, with Prqt + Psquirrel + Ppossum = 1. For example, possums are quite rare in
Ireland, so if the bone were found in Ireland, then Ppossum << Psquirrer- In the absence
of other information, priors are often assumed to be equal. Annotated training data is
required in order to have the probability distributions from which the values of P(f|Cf)
are obtained. In this example, a large number of rib bones from all three species would
have already been collected and their features measured. Using such training samples,
the probability distributions can be estimated using histograms or neural networks [41].

In order to avoid high dimensional density estimation in fusing multiple features, it
is sometimes valid to assume that the features are independent. If the feature set F' has
three distinct features such that F' = {F}, Fy, F3}, then the assumption of independence

leads to

P(fICk) = P(f1|Cy)P(f2|Cr)P(f3|Ck)- (2.3)

This simplifies the training stage, since much less samples are required to estimate

one-dimensional distributions accurately compared to higher-dimensional distributions.
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2.4.2 Transferable Belief Model based fusion

Over a decade ago, Luo and Kay [83] reviewed the many approaches to multi-sensor in-
tegration. They concluded that the methods used for modeling the error or uncertainty
are central to formulating a general methodology for multisensor integration.

The Transferable Belief Model (TBM) concept introduced by Smets [129] explic-
itly models the error, or uncertainly, associated with data fusion. Specifically, the
uncertainty is catered for by dividing it into two classes: imprecision and ignorance.
Imprecision refers to the data returned from sensors and fuzzy-set theory can be used
to account for sensor imprecision. Ignorance refers to missing information, a lack of
knowledge or ambiguity between alternative hypotheses. As an example, if Bayes the-
ory assigns probabilities to the two possible propositions (outcomes), the TBM assigns
a belief mass to the same propositions, but also to the “unknown” proposition, which
represents total ignorance of the true outcome.

The TBM defines A as the set of possible outcomes and 2 as the power set, which
contains sets of all the combinations of items in A, therefore  has 2/2! elements. A

belief mass function m is defined such that

> m(A)=1. (2.4)

AeQ)

To fuse the belief masses of two sensors, or sources of information, Dempsters rule

of combination gives the fused belief mass function as

m(C)= Y mi(A)my(B) (2.5)
ANB=C

The TBM concept is derived from Dempster-Shafer theory and the two terms are
sometimes used inter-changeably. The main difference is that no normalisation takes
place in the TBM. In the Dempster-Shafer theory, the belief masses are normalised,
so that the belief mass of the null proposition m()) = 0 . The normalised version
of the fusion equation is shown in equation (2.6). This normalization corresponds to
the closed-world assumption, that the evidence may support only propositions from
Q. A discussion of the problems associated with normalisation is given in [129], where
he argues that the belief mass of the null proposition, m((), should be interpreted as

evidence of a possible outcome outside of Q (the open-world assumption).

_ 2anp=c M1 (A)ma(B)
OIS g (A)ma(B) 20
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In terms of how sensor data is mapped onto the belief masses, this is usually done
using fuzzy sets. These fuzzy sets are created using statistical or expert knowledge and
can be an intuitive representation of the belief given the sensor’s value.

A comparison between the TBM and Bayes theory for fusion is presented in [16],
along with a literature review of work in data fusion applications such as target detec-

tion and tracking, and robot navigation.

2.4.3 Ad-hoc fusion schemes

In the absence of previously trained probability distributions or fuzzy belief sets, other
fusion approaches have been found to be useful. These approaches include linear com-
binations of evidence and democratic integration.

Linearly combining the sources of evidence has been used in many works, where each
source is given a weighting. In order to robustly detect people in cluttered images,
segmentation and edge-based information from chamfer matching scores are linearly
combined in [74] using a fixed weighting of the features. A linear combination of shape
and appearance is used for person tracking in [78], also using fixed weights. The feature
weights are adaptively updated in [125] to improve object tracking using colour and
edge histograms.

Democratic integration is proposed in [144] as a framework for combining evidence
from multiple sources by adaptively weighting the sum of saliency maps from each
source. In the experiments, a face is tracked using information from colour, motion,
prediction, contrast and shape cues. Sudden changes in the testing videos cause some
of the cues to fail, but as long as the changes disrupt only a small number of the
cues simultaneously, the tracking can survive failure of each cue at different times. A
number of methods for valuing a source’s information quality are proposed, including
uniform quality for all cues, quality based on the correlation between the cue’s saliency
map and the fused map, and quality based on the source’s saliency at the correct face
location, compared to the average saliency over the entire map. This quality measure

is then used in updating the fusion weights.

2.4.4 Discussion

Both the Bayesian method and the TBM use pre-learned probability distributions or
pre-computed fuzzy belief sets in order to provide a good judgement of the most likely
outcome given the present data. There are cases where it is not possible to pre-learn

this information, either because of a lack of resources, such as time or memory, or
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because the environment in which the system will operate is unknown. There are also
cases in which it is possible to pre-learn this information but whereby the environment
may change such that the learned knowledge no longer represents a useful likelihood
model for the system. The core ideas in this thesis tackle these issues focussing on the
idea of adaptation to different and unknown environments, specifically in the areas of

parameter selection for object detection and in adaptive object tracking.

2.5 Background modelling

Many captured scenes, especially for visual surveillance, involve static camera settings
where the camera is in a fixed position relative to the scene. In some moving cam-
era sequences, such as some unmanned aerial vehicle (UAV) data, the scene may be
considered planar and when the motion is compensated, the camera can be considered
static. In these static camera settings, the object detection problem is made much
simpler than in the general case, as most of the scene remains relatively fixed for long
periods of time. A background model is a model of these static scene elements. In its
simplest form, a background model is an image of the scene when no moving objects
are present. At each time step, the new data can be compared to the background
model. Anything that is considered significantly different from the background model
is said to be detected as foreground. The rest of the scene is unimportant. This notion
of change is a vague one and is difficult to accurately define in any broad sense. As
Radke et al. [110] note, “The notions of ‘significantly different’ and ‘unimportant’ vary
by application, which sometimes makes it difficult to directly compare algorithms”.

For example, if the application targets the detection of people, it is not desirable
to detect trees moving in the breeze. However, another target application may be to
visually determine the weather conditions, and it would therefore be desirable to detect
this motion. Most background modelling approaches in the literature usually have a
target application in mind (such as surveillance), and therefore define “significantly
different” in that context.

Modelling the background in static camera scenarios remains a very active research
topic. To review the work in this area, we begin by describing a simple approach and
discussing its drawbacks, then build upon this discussion to consider more complex

systems designed to deal with its limitations.
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2.5.1 Simple approaches and their problems

The simplest approach to background modelling is to capture an image of the scene
when no moving objects are present. To then detect moving objects, the background
image is subtracted from the current image and the absolute difference between the two
images is computed (hence the term background subtraction is often used interchange-
ably with background modelling and foreground detection). This difference image is
then thresholded. The threshold can simply be fixed at a value relative to the camera
pixel noise (e.g. a brightness difference value of 10). Pixels whose absolute difference
is greater than this threshold are considered foreground. These foreground pixels are
then clustered into blobs, using a connected components algorithm, for further analysis
(such as tracking or classification).

Although this method may work in certain scenes, there are numerous drawbacks
to this simplistic approach. Firstly, a fixed image is usually not a good model for scenes
that change over time or which contain moving background objects, such as flags, trees,
leaves, CRT monitors etc. Secondly, slow lighting changes (especially in outdoor scenes)
and abrupt lighting changes (usually in indoor scenes) can cause the background image
to be an insufficient model for the background of the scene. Thirdly, objects that should
be considered part of the background (such as chairs) may be moved and again, would
render this simplistic model insufficient.

Other challenges that pose difficulties for background modelling include: scenes of
high traffic in which moving objects are always present, reflections from smooth surfaces
(such as glass) and camouflage, where foreground objects are similar to the background.

The literature on how the above issues should be tackled for background modelling
is extensive. Most methods initially model each pixel independently, so we review the
approaches to pixel-based background modelling in the next subsection and proceed to

describe more complex models later.

2.5.2 Pixel-based models

To model the background of a scene, the vast majority of approaches begin by modelling
each pixel separately. Pixels are usually either monochrome (single-valued) or colour,
with three values to represent the colour; usually red, green and blue (RGB) are used,
but these can easily be transposed to other colour spaces such as YUV or HSV.

An incremental improvement on the simple value-based pixel models of the last
subsection is to use a Gaussian distribution to model the pixel’s colour. This model

has two parameters: mean and (co-)variance. For monochrome data, the variance is
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a scalar. For colour images, the co-variance is a 3 x 3 matrix. For simplicity, this
matrix is often assumed to be diagonal or even a scalar multiple of the identity matrix.
These parameters can be learned during a training period when no moving objects are
present and then they remain fixed while the system is operating. Alternatively, to
account for changes in the background, the parameters can be updated continuously in
an online manner. However, care must be taken not to allow moving objects to corrupt
the background model. The Pfinder system described in [154] uses a Gaussian model
per pixel with a full covariance matrix in the YUV colour-space.

In their seminal work, Stauffer and Grimson [137] demonstrate the limitations of us-
ing single Gaussians to model pixels. For many scenes, both indoor and outdoor, back-
ground pixel values have multi-modal distributions and cannot be accurately modelled
using unimodal distributions. Examples of multi-modal distributions include water,
computer screens and outdoor foliage. They propose to model each pixel using a mix-
ture of Gaussian distributions and to update them in an online manner.

Many later works improved upon their approach, making the model updating faster
and accounting for moving shadows [63] as well as catering for moved background
objects [140].

Finding distributions that use mixtures of Gaussians limiting, a data-driven non-
parametric distribution for background modelling is proposed in [30]. This is cited as
a better performing algorithm than the mixture of Gaussians in a small benchmarking
test [148]. An alternative approach to using distributions is given in the WallFlower
system [143], where a Wiener filter is used as a linear predictor to determine a pixel’s
background value, based on a recent history of values. Exploiting the temporal peri-
odicity of pixel values, a frequency-based representation is used to model each pixel
in [155]. This is shown to perform well in natural scenes with water or trees, but the
model has the side-effect of leaving a trail after foreground objects. In the W4 surveil-
lance system [53], each monochrome pixel is modelled as a minimum and maximum
brightness value, along with a value of maximum temporal change between frames. If
the pixel value goes outside these limits, it is considered foreground.

A novel method of background modelling is proposed in [77] where temporal differ-
encing is used to classify each pixel into either a moving pizel or a static pizel. Moving
pixels are analysed using colour co-occurrence statistics in order to determine whether
it belongs to a foreground object or is part of some moving background, such as an
escalator, water fountain or moving curtains. Static pixels are classified as foreground
or background using colour distribution statistics. The results show improved perfor-

mance on complex videos when compared to two widely-cited algorithms. Additionally,
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learning strategies are proposed to cater for sudden and gradual changes in the scene
and to adaptively select the learning rate.

Lighting changes frequently plague background models for outdoor scenes that are
based on colour alone. The use of gradient based models is the most frequently used
method to overcome this difficulty.

Li and Leung propose a background model that integrates both intensity and tex-
ture differences [76]. Two methods of integration are described: one method is adaptive,
based on the weighting of texture evidence and the other method attempts to minimise
an energy function that encourages the final result to be spatially smooth. Mathe-
matical analysis and tests with real world data demonstrate the effectiveness of their
approach with respect to noise and illumination changes.

Also motivated by the need for robust background modelling even in the presence
of non-stationary scenes with sudden lighting changes or periodic background motion,
Matsuyama et al. [85] propose to use pixel-block-comparison measures based on the
normalised vector distance (NVD). Using such a measure is robust to illumination
changes but can be unstable in homogenous image areas, so they propose a more robust
alternative which they term spatially modulated NVD. To cater for periodic background
motion, a temporal co-occurrence NVD matrix is used.

The BRAMBLE system [56] is quite different from most other background modelling
approaches in that it also models the foreground. During a training phase, foreground
and background colour and edge distributions are learnt. These distributions are sub-
sequently used to determine the likelihood of foreground of each image block, and these
likelihoods are then used in a particle filter to assess the likelihoods of each particle,
which represent possible system states. The system state describes how many objects
(people) are in the scene, their size, position and velocity.

In [126], non-parametric densities are used to model both the background and the
foreground. The dependencies between pixels are exploited by modelling the density
in colour-position space. Foreground is first identified using temporal persistence is
used as a detection criteria. Subsequently foreground pixels are detected using the
graph-cuts algorithm.

In order to decide when to update the background model for a pixel, the EM-
SWITCH model [153] use the Expectation Maximisation (EM) algorithm, comparing
foreground and background probabilities to make the update decision. They show how
the commonly used updating rule, that only updates when the current pixel is within k

standard deviations from the mean, results in the variance decreasing at every iteration.
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Shadow Detection Shadows caused by moving objects change pixel colours and are
often detected as foreground but it is generally desired that shadows not be included
in the foreground detection process. This has led to much research in the detection of
moving shadows. Shadow detection is often a post-processing step. After foreground
detection, each foreground pixel is evaluated to determine if it could actually be part
of a moving shadow. This is difficult to do reliably in monochrome images. In colour
sequences, shadow pixels are distinguished by observing a decrease in the pixel’s lumi-
nance (brightness) component and a negligible change in its chrominance component.
The colour saturation has also been found to be decreased by a cast shadow. A good

evaluation of various algorithms for shadow detection can be found in [108].

2.5.3 More than just pixels (Hierarchical models)

Many of the more difficult scenarios in background modelling cannot be handled at
the pixel-level alone and benefit from using feedback from higher-level reasoning in
the system [52] or using multi-modal data, such as stereo [39, 48] or infrared. In this
subsection, we examine hierarchical background models that build upon the pixel level
background modelling methods of the last subsection. In the next subsection, we will
discuss the use of multi-modal information in background modelling.

The WallFlower system [143] performs processing at region level and at a frame level,
as well as the basic pixel level. The region level processing helps fill in camouflaged
pixels in the interior of an object, while the frame level analysis determines if a global
change has occurred, such as a light being turned on, causing the algorithm to switch
to another background model.

To cater for quick illumination changes, relocation of background objects and ini-
tialization with moving objects, Javed et al [57] also use a hierarchical approach. Back-
ground pixels are modelled using both a colour and a gradient model. The colour
model is used to detect foreground regions, which are then validated using the gradi-
ent foreground at the boundary of the region. Quick illumination changes and ghosts
(moved background objects) cause foreground regions to appear but they are do not
have a strong gradient on the boundary, which allows them to be distinguished from
true foreground regions. If the colour model results in more than 50% of the image
being classified as foreground, the frame level processing will ignore the colour model
and will use gradient only.

In [140], using a mixture of Gaussians model, texture is integrated with colour to

detect false foreground regions caused by lighting changes, as in [57], but it is done
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in a local pixel neighbourhood, instead of at region level. Additionally, they detect
static objects and push the whole object into the background, avoiding the foreground
fragmentation problem which occurs when updating is done at a pixel level, since
different parts of the static object will update faster than others.

In order to cater for difficult high-traffic situations, such as in a busy shopping
district, where the background is never fully visible, the approach described in [35]
is to process the video sequence offline and first identify periods of motion. These
motion block areas are discarded and the remaining blocks are clustered by correlated
them with all other blocks in the same position. The largest cluster is the dominant
block in the video and becomes the background for that area. Their method performs
favourably against the standard median filter. However, the output of their algorithm
is an image for the background, which will not take multimodal pixel distributions into
account, as mentioned previously.

In order to discount moving background, such as water, trees and flags, [148] use
motion consistency as a measure of object detection, discarding objects whose motion
does not have a consistent direction.

When foreground objects enter the scene then stop moving, they should not be ex-
pected to remain as foreground forever, but eventually become part of the background.
For example, a car entering the scene and parking. This causes ghosting problems when
the object again begins to move. A relatively recent approach to this problem is to use
a layered background, where the different layers correspond to background at different
times. The lowest layers correspond to the most stable background, and higher layers

correspond to more recent objects that entered the scene and became static [151].

2.5.4 Multimodal background modelling

The problem of camouflage is one that cannot be easily solved. If the background is
black in colour and a person wearing black clothing walks over it, the person will more
than likely not be detected. When one feature, such as colour, cannot separate two
classes, such as background and foreground, then introducing new features that can
discriminate between them is a useful way to proceed. Thermal infrared is one such
feature that is very helpful in discriminating between people and the background when
colour fails.

Davis and Sharma describe their approach to foreground object detection using
thermal and visual imagery in [27]. While lighting changes and shadows affect the visual

domain, the halo-effect can cause unwanted detections in the thermal imagery that is

26



2.5 Background modelling

captured with a BST (ferroelectric) thermal camera. Using a contour-based approach,
they overcome these difficulties in both modalities, since lighting changes and the halo-
effect usually cause only weak changes in gradient magnitude and are uncorrelated in the
two modalities. Salient contour pixels are detected in both modalities and then fused
using a binary OR operation, followed by contour thinning using gradient information
from both images. A contour-completion algorithm is run on the fused output and then
the contours are flood-filled to provide the final silhouette.

As well as infrared, information from a second visible spectrum camera has been
found to aid in foreground detection. By building a depth model of the background
using stereo vision techniques, many of the difficult problems in single camera analysis
become tractable. For example, stereo analysis is robust to sudden illumination changes
and shadows [45]. Depth alone can have its own problems however, as the range data
is prone to high noise [47] causing people who are at a similar depth to the background
to be ignored. Standard colour cues can be combined with stereo depth to overcome
this limitation. Krumm et al. use a depth and colour based background model to
robustly detect foreground pixels [70]. These pixels are then clustered into blob regions
within discrete disparity bounds. The blobs are grouped into people-shaped regions
by searching through the space of possible clusterings. A similar approach is described
by Zhao and Thorpe [161] where adjacent foreground pixels are grouped if they have
similar depth values and the region size does not exceed that of a person. Darrell et al.
combine colour, stereo and face detection in their person tracking system [26].

Our early work in the domain of multimodal background modelling is detailed in
two prior publications. The works in these publications are not directly related to this
thesis, but we briefly review their contents here.

In [96], we modelled the backgrounds separately in the thermal infrared and visible
domains. The thresholds for foreground detection in both modalities are adaptively
computed based on maximising agreement measures between the foreground of both
modalities. This early work led to our work in mutual information thresholding in
chapter 3. Fusion of the detected foreground regions was achieved using a region-based
method. First the foregrounds from both modalities are merged using a simple binary
OR operation. Then any region that does not include foreground pixels from both
modalities is discarded. Failure of the visible modality, such as when the light is turned
off, was detected by measuring if a large part of the visible image was returned as
foreground and switching to an infrared-only mode. In this mode, IR foreground was
detected using hysteresis segmentation.

In [95], the non-parametric background model of Elgammal et al. [30] was adapted
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for multimodal background modelling by using 4 bands instead of 3, modelling each
pixel’s distribution in 4-dimensional RGB-IR space. Further, the model was extended to
handle occluded background pixels by allowing model pixels to be marked as unknown
when they are believed to be occluded. This belief comes from a person detection
module which is used in infrared to pre-detect people in the scene and prevent them
from being stored in the background model. A rule-based background-update scheme
is used to encourage the updating of regions that are static, cold, small or have low
gradient values, suggesting a lighting change. Shadow detection is performed using
an object based approach, detecting only those shadow regions that overlap with a

detected foreground object.

2.5.5 Discussion: open issues and future directions

In this section, a thorough review of the state-of-the-art research in background mod-
elling was presented, covering the wide array of approaches to pixel modelling and how
these models can be combined in hierarchical systems to cater for problems that cannot
be accounted for at pixel level. Implementation details of many of the most common
background models are given in Mclvor’s survey of background modelling techniques
[87].

The problem of camouflage is not one that can be easily remedied. When the
distributions of two classes, such as background and foreground, significantly overlap
in the feature space, there is no way to accurately distinguish between them. The
introduction of additional discriminative features, such as thermal infrared data, is a
viable solution, especially since the objects of interest, usually people and vehicles, are
sufficiently different from most backgrounds in the thermal modality.

Regardless of the background model used, the detection of foreground can be ad-
versely affected by the incorrect detection threshold. In this context, the next section

examines the extensive literature on adaptive threshold selection.

2.6 Thresholding

In the previous section, approaches to background modelling were examined, in order
to disregard the commonplace appearance and motion in the scene and to detect salient
objects. The background model allows us to compute the difference or distance between
what is in the current scene and the background. To actually determine if something
significant appears in the scene, this distance must be thresholded. This is sometimes

referred to as change detection in the literature.
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The selection of an appropriate threshold can dramatically effect the vision system’s
performance. A threshold set too high will result in many missed detections; set too
low, there will be many false positives. A fixed threshold, even if carefully selected,
may not perform well if there is a change in the properties of the scene, environment
or objects of interest. A change in brightness or contrast is an example of this. By
dynamically adapting the threshold to cater for different scenarios, these limitations
can be addressed.

There is a wide range of research on the subject of dynamic (or adaptive) thresh-
olding. The majority of approaches observe some signal property and determine the
best threshold to suit this property. In an extensive survey of image thresholding tech-
niques [123], where 40 different thresholding approaches are evaluated, six categories
of thresholding algorithm are identified, each using a different measure to determine
the optimal threshold. The measures used in each of the thresholding categories were:
(i) histogram shape information, (ii) measurement space clustering, (iii) histogram en-
tropy information, (iv) image attribute information, (v) spatial information and (vi)
local characteristics. One major difference between change detection and the appli-
cations that were evaluated in this study (thresholding nondestructive testing (NDT)
images and document binarisation) is that the majority of pixels will belong to the
“no change” class. This can cause problems for thresholding algorithms that try to fit
models to the data, as the ‘change’ class has a low number of samples, hence leading
to a poor fit of the model.

The change detection problem was specifically addressed in [118], where a number
of methods were tested on real data. It was possible for the ground truth to be auto-
matically generated since the object of interest was a spherical ball that was easy to
track. Of the eight methods tested, Kapur’s method [65] showed the best performance.
Kapur’s method also performed very well in [6] and was ranked highly for NDT image
thresholding in [123]. Kapur’s method is an entropy-based algorithm that selects the
threshold in order to maximise the sum of entropies of the two classes (change and
no-change).

The Euler number of a binary image is the number of regions minus the number
of holes. This feature was found to be useful in determining a good threshold using
an image’s spatial information [115]. The initial implementation was inefficient but a
real-time implementation is described in [133].

Noting the difficulty in fitting a model to the change class, Rosin proposes to treat
the histogram as uni-modal [116]. Since there are usually very few samples in the change

class, this is a valid assumption. The algorithm is based on an intuitive geometric
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analysis of the difference image histogram. First, a line connecting the histogram peak
and the last non-empty bin is drawn. The threshold is selected as the bin whose point
on the histogram curve is furthest from this line.

Otsu proposed to select the optimum threshold such that it would minimise the
weighted sum of within-class variances of the foreground and background pixels, which
is equivalent to the maximisation of between-class scatter. This method performs
best when the numbers of pixels in each class are roughly equal. Otsu’s method [99]
performed well in [123]. In change detection, as expected, Otsu was found to perform
poorly [118].

Kittler and lllingworth treat threshold-selection as a minimum error Gaussian density-
fitting on the histogram [69]. Their method was ranked first in [123] for both NDT
images and document binarisation. It also performed well in [6], where is was con-
cluded to conform very closely to the ideal equal-error case, where equal amounts of
background and foreground pixels are mis-classified.

Ridler and Calvard [113] use an iterative clustering approach to threshold selec-
tion. The mean image intensity serves as an initial estimate. Pixels are classified as
foreground and background using this threshold and the threshold is iteratively re-
estimated as the average of the two class means. In the conclusion of thresholding tests
using synthetic data [6], it is noted that the methods of Ridler and Calvard, as well
as Otsu’s method, fail when the number of background pixels is more than 10 times
greater than the number of foreground pixels.

Tsai [145] models the difference image as a blurred version of the ideal thresholded
binary image. The best threshold is selected so that the first three gray-level moments
are equal to the first three moments of the thresholded image.

In recent work, an interesting approach to thresholding is described by Rahna-
mayan et al. [112] where instead of defining a new thresholding criteria, a combination
of thresholding algorithms are used in order to improve performance. Using the most
successful thresholding algorithms, including Kapur, Kittler and Otsu’s methods, the
threshold for each method is computed. A weight is assigned to each method, based on
their performance in previous tests [123]. Finally, to fuse their results, the weighted me-
dian of all thresholds is selected. This is found to outperform any individual algorithm

on average using a small collection of 15 test images.
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2.6.1 Local thresholding

While most studies of thresholding focus on selecting a single threshold for the entire
image, it may be beneficial to adapt the threshold spatially, as well as temporally. In
fact, if the spatial and temporal indices of the data elements are ignored, the data
becomes one dimensional, and the issue now is to choose an appropriate window size
to use for performing the thresholding.

In [3], Adamek et al. use thresholding as a first step in extracting words from hand-
written documents for use in a word-matching retrieval system. A local thresholding
approach is used to account for variations in the pressure used to apply ink to the
page. The method used is a variation of Niblack’s algorithm [94], using the threshold
selection method proposed by Sauvola et al. [119]

Thresholds selected locally were used to aid global threshold selection in [139]. The
image is first split into K blocks; K = 9 was used in the paper. A region of change
scatter-algorithm is then applied to each block to determine if it contains a regions of
change. Two algorithms are used to select each block’s threshold: one for regions of
change blocks, based on histogram partitioning, and one for background blocks, based
on a Gaussian noise assumption. Finally the global threshold is an average of all local
block thresholds. The proposed method seems overly complex however, and includes a
number of parameters, at least one of which is set empirically, while some others are

selected adaptively.

2.6.2 Discussion

By thresholding a signal, some information in the signal is lost. It would be desirable to
retain all the information input to a system. However, it is unfeasible to maintain the
likelihood of every possible outcome and without thresholding, some sacrifices must be
made. For example, the BRAMBLE system, mentioned earlier in the previous section
on background modelling, does not explicitly detect foreground and hence, does not
require thresholding. Instead the likelihoods of foreground for each pixel are used.
The drawback is that, since no explicit foreground detection is performed, the colour
distributions of all objects must be merged into one foreground distribution and this
makes it difficult to distinguish different people. Their sizes and velocities are the only
way in which they may be distinguished, which are not very discriminative features
given typical image resolution, the similarity of people in size and the high likelihood
that their velocities can suddenly become zero, if two people were to stop and talk to

each other, for example.
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Thresholding is useful for reducing the numerous possibilities a system must remain
aware of and is a necessary step when a decision needs to be taken, such as when to
initiate a tracker. The goal in thresholding therefore is to reduce the amount of useful
information that is lost due to the thresholding process. The current methods for
dynamic threshold selection cannot exploit the redundancy present in multiple data
sources to aid their analysis. Analysis is performed on individual data sources without
consideration for how they relate to the information in other sources of data. Having
knowledge of how the sources relate can help determine whether or not an event or pixel
is relevant. In chapter 3, the concept of mutual information thresholding is introduced,
whereby data sources can assist each other in optimal threshold selection. This is shown

in many cases to outperform existing dynamic thresholding algorithms.

2.7 Object tracking

Object tracking is important for many applications in computer vision, such as traffic
monitoring, human-computer interfaces and remote surveillance. The term “tracking”
can refer to either two or three dimensional object tracking.

In three-dimensional tracking, the purpose of tracking is to estimate the 3D position
and pose parameters of the tracked object. Unless multiple cameras are used, there
can often be ambiguity in the estimation process due to the limited nature of the 2D
input images [89]. Also, for complex deformable objects, such as people, the number
of parameters to estimate is quite large, further exacerbating the problem.

Two-dimensional tracking aims to identify pixels that are part of the object of
interest, often fitting either a bounding box (quadrilateral) or an ellipse to the tracked
object.

In order to perform accurate tracking, some features of the object are selected to
be tracked. Ideally, these features should be stable (relatively constant for that object)
and also discriminative (help in separating it from the background and other objects).

In general, tracking can be considered an ill-posed problem, as in certain situations
it is not clear what exactly should be tracked. For example, while tracking a caterpillar’s
cocoon, it changes into a butterfly; should the cocoon or the butterfly be tracked? If a
tracked object splits in two, which half should be followed? While it is true that what
should be tracked it not always clear in the general case, for particular applications
the problem is more well-posed. Similarly, while the background modelling problem
may be considered ill-posed in general, since it is not always clear which parts of a

moving scene should be considered as background, in specific applications, such as site
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surveillance, the distinction between background and relevant objects is clearer.

2.7.1 Traditional approaches

The vast majority of object tracking approaches in the literature follow a similar struc-
ture. Firstly, a method to model the object is selected. Next, a similarity measure
is chosen to compare the model to candidate objects. Finally, a method to search for
the best match to this model in consecutive frames is needed. This general approach
is used here to broadly categorise the tracking literature. In the next two subsections,
we review the various approaches to object modelling and matching and model locating
for object tracking. There follows a discussion on the main problems in object tracking
and an examination of the extensive range of approaches in the literature to tackle

these issues.

Object modelling and matching In order to track an object, some kind of rep-
resentation (or model) of the object is required. This model should ideally be stable
enough to capture the different appearances of the object, and it should be discrimi-
native, allowing the object to be distinguished from other features in the visual scene.
The chosen similarity measure, used to compare the model to object hypotheses, can
also affect how discriminative the model is. Here we briefly discuss the main approaches
to object modelling and matching.

Feature histograms have been shown to be robust and efficient for object modelling
for use in surveillance tracking, as they capture stable object properties that are resilient
to changes in object pose due to local object motion (e.g. walking) and small changes
in perspective. In their seminal work, Comaniciu and Ramesh [22] [23] derived a mean-
shift formulation for histogram tracking allowing real-time tracking that requires only a
few iterations per frame to converge on the correct target. Adaptation to scale changes
is performed by examining windows that are 10% larger and smaller than the current
size. Collins [19] improved upon this scale selection heuristic, deriving a two-stage
mean-shift procedure that interleaves spatial and scale mode-seeking using differential
scale-space filters. In [163], scale adaptation is formulated as an EM-based approach. A
method to perform very fast exhaustive histogram matching to locate the tracked object
position is proposed in [105], where integral histograms are computed using a dynamic
programming approach, allowing it to search the entire image efficiently instead of
just a small search window. The drawback to this method is that it may require
a large memory overhead. Birchfield and Rangarajan [11] generalise the histogram

formulation by introducing spatial histograms, or spatiograms, that are histograms with
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higher-order moments. Like histograms, spatiograms allow comparisons between image
regions without explicitly computing any explicit geometric transformation between
them. However, unlike histograms, spatiograms retain some information about the
geometry of object feature distributions, allowing them to remain more tightly locked
onto their targets and less likely to be distracted.

The Bhattacharyya coefficient is the most frequently used similarity measure to
compare histograms in tracking. Huet and Hancock found that the Bhattacharyya
distance outperformed the standard L; and Lo distance measures between histograms
for the task of aerial image retrieval [51]. In [80], Ling and Okada introduce the diffusion
distance measure for histograms, comparing it to 8 other standard measures. High
performance and efficiency is demonstrated in shape and feature matching applications.
Meaures such as Bhattacharyya and the L; and Lo distance measures perform only a
bin-wise comparison, whereas the diffusion distance and earth-mover’s distance take
adjacent bin similarity into account. This means that they are more robust to small
histogram changes, but are computationally more expensive.

Instead of modelling the object’s appearance, the object boundary is another useful
feature, especially for textureless objects or for medical applications. Active contours,
or snakes, have frequently been used to track the boundary of an object [2, 24, 101].
The similarity measure used to match the active contour in consecutive frames uses
a formulation that applies a tradeoff between having a smooth boundary and the im-
portance of the boundary corresponding to real image edges. The CONDENSATION
algorithm (CONditional DENSity propogATION) [55] proposed by Isard and Blake is
another contour-based tracking algorithm. Instead of using the energy-minimisation
strategy of standard snakes, however, particle filtering is used to efficiently search the
high-dimensional parameter space of the object’s contour and to perform tracking using
a probabilistic model of its shape.

Appearance models [59, 98, 122, 162] try to model the visual appearance of the
tracked object are also popular for object modelling for tracking. In [162], Zhou et al.
introduce an adaptive appearance model for robust tracking. Using image brightness
values in their appearance model, results are shown on tracking a car, a frontal face
and an aerial view of a tank. The objects they tracked do not alter significantly in
appearance, although the pose does change.

Image templates have also been used as object models [86], where an image of the
object is used as a model. The sum of squared differences (SSD) is a very common
similarity measure used for comparing templates to potential object locations.

In fixed camera scenarios, a background model can be estimated and subtracted
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so that moving objects are modelled as foreground blobs. In this case, the model is
usually just the bounding box surrounding the object in the previous frame. Matching
a blob in consecutive frames can be done by simply finding the blob that overlaps it
in the next frame. For more complex scenarios, where the blobs split and merge, such
as during an occlusion, rule-based procedures are needed to determine the identity of
each blob.

Model Locating In subsequent frames, tracking proceeds by matching the model
to the most likely position in the image. In order to efficiently search for this optimal
position, a number of different strategies have been proposed.

A brute-force exhaustive search can be used in a search range around a predicted
object position. This search range can be fixed or dynamic based on the object’s
velocity or on how well the model matches.

Since most similarity measure surfaces are smooth, gradient ascent type methods
can be used [86] to efficiently ascend the surface and find the local maximum. If the
method is initialised close to where the object is expected to be, the local maximum
will correspond to where the object is located.

Mean-shift [19, 23, 157] is another widely used model locating strategy in object
tracking. Similar in some ways to gradient ascent, the model is initialised close to
where the object is expected to be, and the pixels in that area vote to move the model
towards a solution with a higher similarity score.

In high-dimensional tracking problems, or where there are many potential model
distractors, particle filters [162] are a useful tool for tracking. Each particle can be
thought of as representing a possible object position or state. Each time step, new par-
ticles are generated close to particles with high likelihood scores. In this way, multiple
hypotheses can be maintained and the search space can be more efficiently covered.
The CONDENSATION algorithm is another example of tracking using a particle filter
[55].

Open problems in tracking There are three main reasons for tracking failure.
Firstly, partial occlusion of the object may cause the tracking to fail. In cases of
complete occlusion, higher-level reasoning is usually needed to hypothesise the unseen
object’s position. Secondly, model failure can occur due to some change in the object or
in the environment, making the object model used for tracking unsuitable for accurate
object localisation. An example of this is when a colour histogram model is used after

a change in lighting. Thirdly, feature failure is when the features used for tracking

35



2.7 Object tracking

are insufficient to distinguish the tracked object from the background (or from another
passing object). For example, using colour features to track a green object in a forest
environment. These three causes of tracking failure are now discussed in detail.

During the tracking of an object, it may become partially occluded, either by
another object, or by self-occlusion (common in deformable objects such as people).
Therefore, a robust tracking system should account for this, either by explicitly de-
tecting occlusion and adapting its search strategy, or by using an object model that is
robust to partial occlusion. A review of occlusion handling is conducted in the next
subsection.

As discussed in the beginning of this section, it is necessary to use stable (relatively
constant) features for tracking. When features violate this assumption, it can cause
model failure, as defined above. Usually, the stability of features cannot always be
guaranteed, therefore many papers make the assumption that the change in features is
gradual. That is, the change is small between consecutive frames, therefore adaptation
to these slow changes is possible by updating the object model. In a later subsection,
the various approaches to model updating are reviewed.

Feature failure results from an inability to distinguish the object from its surround-
ings. The use of multiple features somewhat reduces the likelihood of ambiguity between
the object and potential distractors. In the subsection on multi-modal tracking, a re-
view of methods for combining multiple features in the context of tracking is conducted.
Another method, related to multi-modal tracking, is to selectively adapt (or choose)
the features that will be used for tracking, in order to best discriminate between the
tracked object and other distractions. These approaches have much in common with
feature selection approaches from the data classification literature. A review of these
methods is conducted in the subsection titled feature adaptation.

The following subsection examines the more advanced tracking approaches that
have been proposed to handle the above mentioned scenarios. These approaches include
occlusion handling, object model updating, multi-feature tracking, feature adaptation

and fusing multiple trackers.

2.7.2 Robust tracking

Occlusion handling Occlusion can be handled indirectly, by noting when objects
become occluded and then assigning identities after the occlusion, or it can be handled
directly, by attempting to track the object during the partial occlusion.

In [122], all objects in the camera’s field of view are tracked; appearance models

36



2.7 Object tracking

and linear velocity prediction are used to cater for situations where objects occlude one
another. In [162], occlusion is handled using robust statistics and occlusion is declared

when over 15% of pixels are determined to be outliers.

Model Updating No feature is so stable that it can provide perfect tracking in all
circumstances. For example, while colour histograms are usually quite stable features
for object tracking and insensitive to pose changes, this assumption of stability is
violated during lighting changes, where the pixel colour features may change abruptly.
Lighting changes are caused by a number of factors: changes in the ambient lighting
(the sun setting, rising or going behind a cloud, a light switch turned on/off), camera
auto-iris adaptation (the video capture device allows more/less light onto the sensor),
cast shadows (a shadow from another object). Similarly, edge-based features are usually
more robust to lighting changes, but can be affected by changes in object pose. Because
a given feature used for tracking can change over time, it is important to update the
model of the tracked object to account for this.

No tracking system can be expected to track a target whose features all change
completely in one frame to an unseen configuration. Some assumptions need to be
made in order for model updating to be practical in successful tracking. Examples of
assumptions for model updating could be that any change should happen gradually
over a number of frames or that when sudden changes occur, only a subset of features
will be affected. These assumptions allow model updating to be a viable solution to
tracking complex objects.

The extreme alternative to using a fixed object model, is to update the model for
each frame to the best match found in that frame. A solution that lies in between these
two extreme cases is to use a gradual updating scheme with an update parameter a.
The updated model at time ¢ 4+ 1 is computed from the current model and the best

match in the current frame, as follows:
Mt+1 = OéMt + (1 - Oé)Bt. (27)

It can be seen that the two extreme cases, of ‘no update’ and ‘instant update’, are
specific cases of using this model, with &« = 1 and a = 0, respectively. The extreme
update strategies, along with a more reasonable o = 0.95, were used in [162] where three
separate appearance models were updated using these three strategies and combined
using an adaptive weighting scheme.

The main problem associated with model updating is known as the drift problem.
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Although the initial model for the object may be a very good representation of it
for a number of frames, by updating the model using imperfect knowledge of its true
location, the model is gradually corrupted, eventually deviating completely from the
true object’s appearance. One proposed soution to overcoming drift is to combine the
initial object model, along with the updated model in the matching stage [86]. This

prevents the updated model from drifting too far from the initial model [20].

Multimodal Tracking It is generally accepted that “no single visual cue will be
robust and general enough to deal successfully with the wide variety of conditions
occurring in real-world scenarios” [135]. Therefore, to create robust systems, multiple
features (or cues) need to be used in such a way that they can, together, compensate for
their individual weaknesses. The use of feature combination for tracking is an active
research area and many approaches have been proposed to combine the information
from multiple sources in order to provide more accurate and robust detection and
tracking.

Probabilistic methods are commonly used to fuse information sources for tracking.
In [82], Bayesian probability theory is used to fuse the tracking information available
from a suite of cues to track a person in 3D space. A Bayesian tracking framework
using particle filters is described in [103] for fusing colour cues with stereo or motion
information. A Bayesian multi-object tracker is described in [130] that fuses binary
information from foreground detection with colour tracking cues. Linear combinations
of sources have also been widely used to fuse information from multiple sources. Lim
and Kriegman [78] use a linear combination of shape and appearance to track people
in an indoor environment. In [74], information from image segmentation is fused with
chamfer matching scores to robustly detect people in cluttered images. Both [74] and
[78] use fixed weighting for the data sources. In [125], the weightings for each track-
ing cue (colour and edge histograms) are adaptively updated using the Bhattacharyya
coefficients in order to robustly track moving vehicles. Fumera and Roli [38] consider
linear combinations of classifiers and conduct a theoretical analysis, as well as per-
forming experiments on real data sets. Their conclusions were that weighted average
combinations usually only provide a marginal improvement over simple averaging, even
with optimal weights. In [141], Torresan et al. describe a surveillance system that fuses
standard visible spectrum and thermal infrared video to detect and track pedestrians.
Foreground regions in consecutive frames are linked using ad-hoc rules to account for
splitting and merging. In [27], the benefits of fusing colour and thermal infrared in-

formation are demonstrated using a contour based approach. They compute a contour
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saliency map in each modality and from these maps, binary contour fragments are ob-
tained and then fused. Silhouettes of the detected people are obtained by completing
and closing the fused contour segments. In [135], the democratic integration scheme is
used to fuse tracking cues from intensity, motion, skin-colour, shape and contrast for
robust face tracking in changing environments.

As mentioned previously, feature histograms are commonly used for tracking stable
features of objects. In the context of combining object features however, the main
drawback of using histograms or spatiograms is that their memory requirements (and
hence their computational load) increase exponentially as more features are added
and they do not scale well to higher dimensions [8]. For example, an RGB colour
histogram with 32 bins per channel requires a total of 323 = 32768 bins. If an extra
channel, such as thermal infrared, is added, this increases to 32* = 1048576, which
increases the memory requirements and decreases the tracking speed due to increased
computation. There is also the issue of the curse of dimensionality [9] which states that
it is more difficult to accurately estimate feature distributions for higher dimensional
spaces, since exponentially more samples are required. It has also been shown in [157]
that the Bhattacharyya coefficient, a similarity measure for histograms often used in

tracking, is not very discriminative in higher dimensions.

Feature adaptation While the use of multiple features can help in tracking, the
case may arise where some of the features being used are redundant or even harmful
to tracking. Redundant features are those that provide no separability between the
object and non-object classes. For example, thermal infrared might be redundant if
both the object and background were at the same temperature. Using thermal features
here would produce a uniform similarity surface, providing no tracking information.
Harmful features, on the other hand, provide a similarity surface with multiple peaks.
One peak corresponds to the tracked object, which the other peaks are background
distractors. Avoiding redundant features makes tracking more efficient and avoiding
harmful features makes it more robust.

Loy et al. describe a multi-cue tracking system that dynamically allocates com-
puting resources by measuring cue performance [82]. In their chosen application, a
Bayesian particle filter is used to fuse the cues and track a person in 3D space. The
fused probability density function (PDF) computed from all cues to assumed to give
the best estimate of the true PDF and the quality of each cue is measured on how well
their individual PDFs match the fused PDF, in terms of the Kullback-Leibler distance.

In [125], vehicles are tracking using an adaptive fusion of colour and edge features.
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Using a histogram to describe the object in each feature-space, the position of the
vehicle in the current frame is computed as a weighted average of the positions returned
by each feature. The weighting are derived from the Bhattacharyya coefficient returned
after matching each histogram to candidate positions.

Stern and Efros used five colour space models for face tracking and switched between
them adaptively [138]. The switching is based on a colour space quality measure that
indicates how well each colour space separates the face from its immediate surroundings.

Object tracking is formulated as a classification problem in Avidan’s work on En-
semble tracking [8]. The bounding box of the tracked object contains the pixel samples
of the object class and a larger outer rectangle surrounding the object contains the
background samples. Using the AdaBoost framework, an ensemble of linear classifiers
are trained on the pixel samples in a least-squares manner in order to efficiently sepa-
rate the object and background classes. Training takes place each frame, so the features
used for tracking adapt to changes in the object and in the background clutter. Track-
ing is performed by creating a weighting image using the classifier margin and using
the mean-shift algorithm on this weighting image. Avidan’s framework is very efficient
and can easily incorporate multiple pixel-based features, such as local edge orientation
histograms.

Similar to the work of Avidan is the work of Collins et al. in the online selection
of discriminative tracking features [20]. Given any single feature, a methodology is de-
vised, similar to that of Stern and Efros [138], that allows the feature’s tracking quality
to be measured in accordance with how well it separates the object’s true location from
other potential background distractors. Collins et al. use a set of seed features that
comprise of features obtained using linear combinations of R,G,B pixel values. These
features are ranked according to their tracking quality and then the top N feature
are used for tracking. Tracking is done by forming a new set of candidate features
tailored to the local object/background discrimination task using the log likelihood ra-
tios of class conditional sample densities from object and background. The mean-shift
algorithm is then run on the log likelihood image to locate the object.

While the method of Avidan is quite fast, since it selects the weights for each feature
in one pass, the method of Collins et al. requires that each feature must be assessed
separately in order to rank it. However, the new set of candidate features computed by
Collins et al. are more flexible than the linear combinations used by Avidan. Secondly,
Collins et al. specifically target distractors, the main cause of tracking failure, whereas
Avidan selects features that best separate the two classes on average.

The general approache of Avidan and of Collins et al. to adaptively selecting the
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feature used for tracking is a relatively new approach in this field. However, the selection
of features for classification has been studied in detail. A good introduction to variable
and feature selection can be found in the thorough review of Guyon and Elisseeff [42].
Mutual information is often used as a criteria for feature selection [102]. Recent work

in that area tackles the problem of rapid feature selection from huge collections [73].

Tracker fusion As well as combining features to robustify tracking, it has been
proposed to combine trackers to assist in this task as well. A probabilistic framework for
combining tracking algorithms is described by Leichter [75]. They make the assumption
that the algorithms are conditionally independent, and that each one outputs a PDF of
the target’s likely state or position. In this case, they show that simply multiplying the
PDFs produces an analytically justified PDF of the combined tracker. Robust results
are shown using their method for tracking a person, a ball, human eyes and human
heads.

Toyama and Hager [142] examine the problem of how to fuse multiple different sim-
ple trackers to produce a more robust fused tracker. They first outline the different
causes of failure of simple trackers, including poor localisation, fast motion, distraction,
occlusion, brightness changes and the aperture effect. Using a rule-based fusion, track-
ers based on intensity, edge, hue and motion are combined. They conclude that by using
a variety of simple trackers, and designing fusion algorithms that take into account the
potential causes of failure of each tracker, significant gains in tracking robustness can

be made with minor computational cost.

2.7.3 Future directions in automated object tracking

Both the adaptive tracking methods of Avidan [8] and Collins et al. [20] exclude spatial
information, and treat objects simply as bags of pizels. Therefore when the background
resembles the object in some fashion, such as when it has similar colours, their methods
can easily concentrate only on one part of the tracked object (the most distinctive part)
therefore mistaking the object’s scale. In this thesis, spatial information is retained in
the tracking framework we outline in chapter 5 using banks of spatiograms for multi-
feature tracking. By focussing on distractors, Collins et al. target the most significant
threats to robustly tracking the object. We adopt a similar approach in chapter 6 where
we detail how the tracking features can be adaptively weighted within the spatiogram

bank framework of chapter 5.
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Chapter 3

Mutual Information Thresholding

3.1 Introduction

The unifying thread that runs throughout this thesis is the combined use of multiple
sources of information. In this chapter, the use of two data sources in adaptive para-
meter selection is investigated; specifically in the application of dynamic thresholding.

Thresholding means throwing away information and discarding the rich continuous-
valued signal in favour of a discrete (usually binary) representation, but there are many
cases when thresholding is a necessary operation. Firstly, in cases when a decision must
be made, to determine whether an alarm should be sounded or whether a tracker should
be initialised, for example. Secondly, due to memory constraints or real-time considera-
tions, thresholding is required to reduce the size of the solution search space. As Sezgin
and Sankur remark in their conclusion of their extensive evaluation of thresholding
algorithms [123]

One should keep an eye on the fact that thresholding should be opted for
[in] two-class segmentation problems due to their simplicity whenever they
achieve performance similar to more sophisticated methods, like Bayesian

schemes and random Markov models.

The selection of an appropriate threshold is an important aspect in many computer
vision systems. In the many processing steps (or subsystems) in a vision system, it
is often too costly to maintain the likelihoods for every possible correct output of the
subsystem. Thresholding must be performed to prune the search tree and reduce the
total number of possibilities. Thresholding is often an end in itself, in applications such

as event and object detection where it is important to immediately raise an alarm or
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initiate tracking. The precise value of this threshold can strongly effect the system’s
performance.

A threshold set too high will result in many missed detections; set too low, there will
be many false positives. A fixed threshold may not perform well if there is a change
in the properties of the scene, environment or objects of interest. For example, the
same threshold is unlikely to be optimised for both daytime and night time scenes. By
dynamically adapting the threshold to cater for different scenarios, these limitations
can be addressed.

In this chapter, the work primarily targets change detection and will use related
terminology in describing the proposed approach. However, the proposed method is a
generic method and is not limited to this single application, as the numerous examples in
the next chapter shall demonstrate. A brief review of related research is now conducted,

followed by an overview of this chapter’s contribution.

3.1.1 Related research

Dynamic thresholding In the literature, dynamic (or adaptive) thresholding re-
search focusses on three main applications areas: (i) non-destructive testing (NDT),
(ii) document binariation and (iii) change detection in satellite/aerial imagery and
surveillance images. Our main focus in this chapter is on the last category: change de-
tection. In change detection we must threshold a distance (or difference) image, where
values close to zero indicate that no change has occurred, with higher values indicating
a higher likelihood of change.

One major difference between change detection and the first two applications (NDT
and document binariation) is that the majority of pixels will belong to the no change
class. This can cause problems for thresholding algorithms that try to fit models to
the data, as the change class may have a low number of samples, leading to a poor fit
of the model.

In the previous chapter, the review of thresholding research covered the wide range
of attributes that were used in the various algorithms in order to determine the optimal
value; Histogram entropy, as used by Kapur [65], histogram shape used in [116], image
moments in [145], spatial information using the Euler number in [115] etc. Regardless
of the approach, the structure common to all methods is that some optimality measure
is defined based on some signal feature and then the threshold that maximises this
measure is selected. In this work, our approach is different in that we do not use a

measure based on the properties of a single signal. Instead we observe how the choice
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of thresholds for two signals will affect their relationship with each other. Specifically,
we try to maximise agreement between the resulting binary signals and use mutual

information as a robust measure of agreement.

Maximising mutual information Mutual information has been used in computer
vision and machine learning for various applications, including data alignment [150],
particularly in medical imaging [104]. In medical images, such as MRI scans of brain
tissue, there are usually a small number of dominant pixel classes in the data (corre-
sponding to different tissues) and therefore there is strong statistical correlation be-
tween the brightness values in multiple modalities. Mutual information can be used to
measure the strength of this correlation and therefore maximising it leads to accurate
alignment. Feature selection for classifier training [102] is also an application where
mutual information has proven useful. In feature selection however, the features that
should be selected are those with the minimum mutual information between them, as
complementary features are needed for good classification.

The work of Kruppa and Schiele [71, 72] in maximising mutual information is most
similar to the work described in this thesis. Their work primarily concerns the reliable
detection of elliptical areas, representing skin or face regions. These regions are detected
iteratively using a greedy algorithm by finding configurations that maximise the mutual
information between detection modules. The work in this thesis on mutual information
thresholding seeks a single parameter-set that will maximise the mutual information,
instead of finding multiple such sets, and thereby avoids the use of an ad-hoc stopping
rule. Additionally, this work specifically targets the selection of thresholds, which makes
the search through parameter-space highly efficient.

3.1.2 Chapter overview

The following sections of this chapter describe this work’s contribution to dynamic
thresholding, termed mutual information thresholding. The three assumptions that
underlie the algorithm are examined and its tolerance to deviations from these as-
sumptions is investigated. The approach is evaluated using synthetic data and shown
to outperform the leading dynamic thresholding algorithms that take into account only
single signal information. Next, following an examination of the assumptions of the
method, an extended version of the algorithm is presented to cater more robustly for
correlated noise in the input sources. An online version of the mutual information
thresholding algorithm is then described and shown to be suitable for wireless sensor

networks. The chapter concludes with a discussion of the approach and some ideas for
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future research in this area. Numerous applications of the method are demonstrated

on real data in the next chapter.

3.2 Mutual Information Thresholding

This section contains the algorithmic and implementation details of the proposed mu-
tual information thresholding algorithm. The algorithm is described, along with two
efficient implementations that avoid a brute force search for the best thresholds, using
the integral image technique [149] and gradient ascent respectively. This work was first
described in [97].

In the approach adopted here, two thresholds, not one, are selected for two separate
data sources such that the mutual information between the two binary thresholded
signals is maximised. This encourages high agreement between detectors, as well as
high information content.

As an illustrative example, figure 3.1(a) and (e) shows two synthetic difference im-
ages and alongside them, a series of thresholding results using three methods. The
Kapur method [65], shown in the second column, is a histogram-based method and
chooses the dynamic threshold based on histogram properties of a single image. Simi-
larly, the Euler method [115], shown in the third column, chooses the threshold based on
spatial layout properties of a single image. By exploiting the relationship between the
two difference images, the proposed mutual information thresholding method, shown
in the rightmost column, removes almost all of the false positives.

The assumptions made when performing mutual information thresholding are, firstly,
that the noise in the sources is uncorrelated, secondly, that both sources are aligned
(spatially and temporally) and thirdly, that the sources have some common information
relating to some event (or object) detected in both sources. The proposed algorithm
is now described, but in the following section, these assumptions will be further in-
vestigated, specifically how performance is affected when these assumptions are not

met.

3.2.1 Algorithmic details

Formally, we describe the algorithm as follows. We define a detection score as a con-
fidence measure indicating the presence of an event. Similar to the distance measure
defined by Smits and Annoni [131], the detection score is such that values close to zero
are evidence for no event and higher values indicate a possible event. For example,

a detection score could be (i) a difference image (detecting foreground), (ii) a change
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(a) Difference Image 1  (b) Kapur result 1 (¢) Euler result 1 (d) MI result 1

(e) Difference Image 2 (f) Kapur result 2 (g) Euler result 2 (h) MI result 2

Figure 3.1: Tllustration of thresholding approach. Shown in (a) and (e) are two synthetic
difference images of the same scene. The true change has occurred in the centre of the
image, but there are many potential false positives. Standard thresholding methods
apply some model to the data histogram (e.g. the Kapur method shown in (b) and (f))
or the spatial layout (e.g. the Euler method shown in (c) and (g)) of single images.
By exploiting the information from both images, the proposed method (d)/(h) selects
superior thresholds.

detection mask or any signal that is expected to have high values in the presence of
events/objects of interest or (iii) a likelihood image with high values indicating high
likelihood of the presence of the sought event/object.

Given two sets of detection scores, X and Y, with X = {z1,29,...,2x} and ¥ =
{y1,v2,...,yn}, that are aligned (spatially and temporally), we can choose thresholds,
Tx and Ty, to decide whether the event was present at a particular point, according
to each set. By thresholding each set, we obtain the binary event detection sets, X'

and V', with X' = {:v/l,a:/z, ,a;/N} and Y' = {y/l,y/g, ...,y;\,}, given by

/ 1 ifx; >T
v = Hs X (3.1)
0 otherwise
Yi = ' . (3~2)
0 otherwise

These thresholds, Tx and Ty, are chosen so as to maximise the mutual information
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between the distributions of X' and Y, expressed as

Y = u,v)lo pxy(wv)

where pxy (u,v) is the probability that x; = u and y; = v, px(u) is probability that
m; = u and py (v) is the probability that y; = v. These probabilities are easily estimated
by counting occurrences and dividing by N. We compute pxy (u,v) = 05,3/ /N, where
Cad = #{i; z; = u,y; = v}. Similarly, px(u) = CX/N, where C.X = #{i;x; = u} and
py(v) = CY /N, where C) = #{i;y; = v}.

Choosing the thresholds in this way leads to two desirable benefits. Firstly, it
encourages agreement between the two detection sets, so that they often agree on
whether the event has been detected or not. Secondly, it leads to high information
content (or entropy). Without this consideration, agreement could be maximised by
setting both thresholds very high (or very low) but the detectors would always return
the same answer, regardless of the data they are analysing. The entropy of a single-
valued image is zero, so the use of mutual information as a measure of agreement avoids
this extreme case.

Given the detection scores, X and Y, and a pair of thresholds, Tx and Ty, a mutual
information score can be computed. By testing every possible pair of thresholds from a
discrete set, each resulting in a different mutual information score, a mutual information
surface is created, with the height at point (T'x,7y) equal to the mutual information
score. These surfaces were found to be smooth and often convex and unimodal when
the assumptions made earlier about noise independence and common information were
valid.

The appropriate thresholds can be selected using an exhaustive search of all thresh-
old pairs, but this is inefficient. Two much faster algorithms have been developed: one
based on efficiently performing a full search using the integral image technique [149]
and the other performing gradient ascent on the mutual information surface to locate

the peak value.

3.2.2 Fast exhaustive search

Every pair of thresholds used for thresholding two signals will provide a corresponding
mutual information (MI) value. By exhaustively computing the MI value for every pair
of thresholds, a M1 surface is obtained. In this section, how the integral image technique

can be used to compute the entire MI surface using all pairs of thresholds (chosen from
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two discrete sets) is shown. The second method is to use the simplex algorithm and
perform gradient ascent to find the maximum MI value, under the assumption of surface
convexity.

A brute-force approach to computing the MI surface involves iterating over all pairs
of thresholds (chosen from two discrete sets), using them to threshold both signals, then
computing the MI between the thresholded signals. If T, thresholds are tried for each
signal, this results in T pairs and a computation in the order of O(T2N), where N is
signal size (e.g. the number of pixels in an image). The proposed integral-image-based
algorithm achieves the same results in time O(T2 + N).

Firstly, we denote A = {aq,aq,...,ap} as the set of thresholds we wish to evaluate
for the first signal and B = {b1,bs,...,bg} as the set of thresholds we wish to evaluate
for the second signal. These sets are ordered in ascending order, with a; and by set to a
value lower or equal to the smallest value in X and Y respectively. The value of ap and
bg are set larger than any value in X and Y respectively. Next, we note that equation
(3.3) requires the four values for pxy (u,v), with u,v € {0,1}. px(u) and py (v) can be
obtained from these values (e.g. px(1) = pxy(1,0) + pxy(1,1)). Each of these four
values are computed by counting the number of occurrences where a:; = u and y;- =,
then dividing by the total number of values, N. Therefore, we wish to compute these
four counts for each pair of thresholds we wish to evaluate. We denote the counts as
Cuw(i,j), which equals the number of occurrences where x;ﬁ =wu and y;c = v, when the
thresholds are set at T'x = a; and Ty = b;. Initially the counts are all set to zero.
For each data point we have the values xj and y;. From these values, we can deduce
that Coo(i,j) will be increased by one when both a; > zj and b; > y;. Similarly,
Co,1(¢,7) will be increased by one when both a; > x; and b; < y;. Count maps Ci
and (1, have similar rules. For each data point, we could increase the counters in
each map by iterating over all thresholds that should be increased. A faster method
is to store markers at the positions in the map where the count increases or decreases,
and integrate afterwards. This is a similar, complementary technique to the standard
integral image method used in [149] to quickly find the sum of all pixels in a rectangular
area of an image. The pseudo-code describing how to update the count map markers
for a data-point is shown in figure 3.2. Finally, we integrate all the counts horizontally,

as follows:
Cu,v(ivj) — Cu,v(i7j) + Cuﬂ)(i - 17]) (34)
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3.2 Mutual Information Thresholding

Init: Cy(i,7) = 0 for all u,v,1,j

For all data points (xg, yx)
Find largest threshold a; such that a; < xj
Find largest threshold b; such that b; < y
0171 (1, 1) + +
Cia(i+1,1) — —
Cl,l(Lj + 1) -
Cra(i+1,54+1)++

Cl,o(l,j + 1) + +
CL()(’L' + 1,5+ 1) - —

Coi(i+1,1)++
Coa(i+1,j+1)——

Co7o(i+1,j+1)++

Figure 3.2: Pseudocode for algorithm in subsection 3.2.2 to effciently compute the
entire MI surface, relating mutual information to selected thresholds.

and then afterwards, we integrate vertically,
Cup(t,7) < Cup(isj) + Cupli, j — 1) (3.5)

This array now stores, at location Cy, (1, ), the number of occurrences where x;ﬁ =u
and y;c = v, when the thresholds are set at T'x = a; and Ty = b;. Using the obtained

values, the entire MI surface can then be computed using equation (3.3).

3.2.3 Gradient-ascent search

Any gradient ascent method will be very computationally efficient, compared to a full
search, as its complexity is of order O(IN), where I is the average number of iterations
and N is the number of signal samples, as before. Using a gradient ascent approach
(such as the Simplex algorithm) also has the advantage that the thresholds do not
need to be quantised into discrete values. Any full-search approach will require a
finite set of pairs of thresholds, therefore demanding a quantisation of the values. This
means that the Simplex search finds a more precise optimum solution. Simplex (or
another gradient ascent method) can also be used efficiently for higher dimensional

thresholding. For example, if we wished to choose P thresholds that would maximise
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3.2 Mutual Information Thresholding

the mutual information between P thresholded signals, a full-search would usually be

unfeasible for large values of P.

Simplex initialisation and Scale In order to use Simplex, the initial position and
simplex size needs to be specified. The choice of these parameters may depend on the
application. One proposed approach to initialising Simplex for video processing is to
do the following. In the first two video frames, a full search is performed, using as fine a
quantisation as is possible within the time constraints. The thresholds found using the
full search can be used to initialise the Simplex search in subsequent frames (i.e. the
thresholds found in the previous frame are used as the starting position for the current
frame). The simplex size can be determined by setting it to be a fraction (e.g. 10%)
of the change in thresholds between the first two frames. This size can be left fixed or
adapted to minimise convergence time. Alternatively, multiple initialisation positions

and scales can be evaluated to choose the one that provides the greatest MI value.

Convexity Assumption If there are multiple peaks in the MI surface, simplex will
not be guaranteed to find the global maximum. However, by initialising the simplex
using the thresholds of the previous frame, the temporal coherence of the thresholds
is enforced, rather than tolerating the thresholds jumping between two similarly MI
valued peaks. It was also found that multiple peaks were only likely to occur in two
scenarios: either there was a correlation between the detectors false positives/negatives
or the signals did not share much mutual information, in which case the peaks were
caused by random noise. This is discussed further in the next section when violations

of the assumptions underpinning the MI thresholding approach are examined.

Efficiency Analysis In order to gauge how efficient the gradient ascent approach is
compared to the full-search, the number of iterations required to converge to the correct
foreground-detection thresholds was calculated for each of 200 frames in a multimodal
(thermal infrared and visible spectrum) video sequence. A median background image
was used for both the visible and infrared sequences. The simplex was initialised at
10 simplex sizes, from 1 to 10. In only two tests (out of 2000) did it converge to a
sub-optimum solution. This occurred at the two smallest sizes. It was found that
larger sizes, in general, required more iterations to converge, but were more likely to
converge to a more precise solution. The average number of iterations to convergence
was 26.72. When compared to a full-search, using 256 thresholds for each signal, the

Simplex method is over 2400 times faster.
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3.2 Mutual Information Thresholding

3.2.4 Quality Measure

The value of mutual information at the peak gives some indication as to how well the
method worked and the strength of agreement between the sources. However, despite
strong agreement between sources, the peak MI value may be low because there is not
much common information present. For example, a very small foreground object may
be detected strongly in both modalities (high agreement) but because the size of the
object is small, the MI value will be low.

A potentially better way to measure performance is to compare the resulting MI
score to the maximum MI score that would be achieve if there was no disagreement.
This perfect agreement map is constructed by setting all pixels that do not have the
same binary value in both map to zero. This is a simple binary AND operation on
the two maps. The MI between two identical perfect agreement maps is computed as
Iaz(X;Y). The quality score measure is the ratio of observed MI to maximum MI,
given this level of agreed foreground pixels, C7 ;. In the practical implementation of
this measure, no new maps need to be created, and the maximum MI can simply be

computed using:

C C C C
Tnaa(X;Y) = ——F log(—5) — (1 — —2) log(1 — ). (3.6)
The quality score is then given by:
I(X:Y
Q= # (3.7)
Imaa:(Xa Y)
The quality measure, @, will lie between 0 and 1 when (C]if’l + C](\’;l )(C]i;1 + C]{;O) < C]i]’l :

A proof is given in Appendix A. As well as providing a good indicator for when the
method has failed, it can also be used when the MI surface contains multiple peaks, for

peak evaluation and selection, as we shall see later in section 3.3.3.

3.2.5 Discussion

As stated earlier, three things are assumed in the mutual information thresholding
process. Firstly, the sources should have some common information relating to some
event or object detected in both sources. Secondly, it is assumed that that both sources
are aligned (spatially and temporally). Thirdly, it is assumed that the noise in the
sources is uncorrelated. In the following experiments, the sensitivity of the proposed

approach to these assumptions is investigated.
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3.3 Synthetic analysis of assumptions

The first assumption is broken in the case of the Null hypothesis. The Null hy-
pothesis is the case where the sensors have no common information, either because no
object/event is present or because no common object/event can be detected, and any
correlation is due to random noise. Experiments are performed on synthetic data to
ascertain the distribution of the maximum MI value in the null hypothesis case. This
permits reasoned judgements to be made about the validity of the results on real data,
and whether any common information is actually present. Essentially, this allows the
method to detect a violation of this assumption and thereby indicate that the conditions
for successful operation are not present.

The second assumption, of aligned data, is a stronger one. Without aligned data,
any detection in the first source cannot be corresponded to a detection in the second
source. However, given that objects and events are usually spatially and temporally
broad, MI thresholding can handle small mis-alignments of the data sources. The effects
of mis-alignment on performance is evaluated, as well as developing a spatial smoothing
procedure to best reduce these effects.

In some scenarios it may be the case that only one source of data is available and it
must be split, somehow, to provide two sources for our method to work. An example of
this scenario is if the data is a colour image, it could be split into a red and green band,
or split into luminance and gradient values. Then it is likely that the third assumption
of noise independence is invalid. The effects of violating this assumption are evaluated

in later experiments.

3.3 Synthetic analysis of assumptions

In this section, the assumptions of mutual information threholding are examined to
determine the method’s behaviour when these assumptions are not met. Synthetic
data is used to investigate the effects of having no common information, mis-alignment

and correlated noise.

3.3.1 No common information

It may be the case that there is no common information detected in both sources. This
could commonly be the case if there was no object/event to detect, for example. It is
important to detect if this happens, as the method relies on common information being
present. In this subsection, we examine the mutual information values produced in the

case of mo common information and we show that their distribution is well separated
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3.3 Synthetic analysis of assumptions

from the case when common information is present. This shows that it is possible to

detect when no common information is present in the data sources.
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Figure 3.3: An example of two synthetic data sources (a) and (b) with no common
information. The resulting mutual information surface is shown in (c).
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Figure 3.4: Distributions of peak MI value in the case of the two sources having no
common information, for two different numbers of samples (a)N=100, (b)N=500000.

To determine the distribution of mutual information scores when no common in-
formation is present, we generate two synthetic data sources composed of uncorrelated
Gaussian noise. Over a large number of tests, we vary the sample size and examine
how the distribution of MI values changes.

In this experiment, the detection scores of both sources were computed as the
absolute value of a normally distributed variable with zero mean. The variance is
not relevant, as 256 thresholds were selected for each source at equally spaced inter-

vals up to the maximum value of the detection score. The absolute value is taken
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Figure 3.5: This plot shows the relationship between the logarithm (base 10) of the
number of samples to (a) the mean and (b) the standard deviation of the peak MI
distribution

to simulate a typical detection signal where most values are low. An example of
the two input signals and the corresponding mutual information surface is shown
in figure 3.3. It can be seen that the surface is multi-peaked due to the lack of
common information. Signals of different numbers of samples were used, with N &
{100, 316, 1000, 3160, 10000, 31600, 100000, 220000, 500000} and 10,000 trials were per-
formed per N value.

For a particular value of N, it was found that the peak mutual information values
had a Gaussian-like distribution with a heavy tail, shown in figure 3.4. It was also found
that the mean and variance of this distribution are related to the number of samples,
N. In the log-log plot in figure 3.5, the logarithm of the mean and standard deviation
were found to be linearly related to the logarithm of V. Therefore, using the number
of samples, NV, the mean and standard deviation of the distribution of MI values in the
null hypothesis case of no common information between the sources are approximated
by:

1= 4.5964N ~0-9693 (3.8)

o = 1.4959 N ~1:0003 (3.9)

It is likely that these formulae can be derived mathematically, without the need to
resort to large amounts of empirical data. However, this derivation is left for future

work.
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3.3 Synthetic analysis of assumptions

Common information present We now simulate the case where there is a small
amount of information common to both sources. The model we use for this is given in
figure 3.6. Data source 1 and 2 agree on a small number of correct foreground pixels,
denoted A. They also each contain foreground not found in the other source, with 2B
disagreed pixels in total. We examine two cases: (i) when there is a reasonable amount
of common information present in the data, and (ii) when there is only a very low level
of common information present. In both cases, we use an image size of 256 x 256,
therefore N = 65536 and the brightness of all foreground pixels is 100 (before the
addition of noise).

In the first case, we set A = 802, B = 572 and added Gaussian Noise with a standard
deviation of 50. This means that the data is made up of approximately 10% agreed
foreground pixels, 10% disagreed foreground pixels and a signal-to-noise-ratio (SNR)
of 2. An example of the data sources are shown in figure 3.7.

In the second case, we set A = 252, B = 352 and added Gaussian Noise with a
standard deviation of 50. In this case, the data is made up of approximately 1% agreed
foreground pixels, 4% disagreed foreground pixels and a signal-to-noise-ratio (SNR) of
2. An example of the data sources are shown in figure 3.8.

For both cases, we performed mutual information thresholding on the sources and
computed the peak value of mutual information surface, m. We then computed a
separation value, S, that measured how close m was to the distribution of no common

information.
m—pu

S = (3.10)

o
This was done 100,000 times for each of the two cases, and the distributions of the
separation values are shown in figure 3.9. Since the distributions in figure 3.4 are
Gaussian-like, a separability value of about 4 would place the MI value far outside the
distribution of no common information. It can be clearly seen that, even when there
is only a very small amount of common information shared by the sources, as in figure
3.9(b), the separation values are greater than 10. This suggests that detecting the

presence or absence of common information should be possible.

Conclusions From these synthetic tests, we have shown that, the distributions of no
common information and some common information are well separated. Even when
there is very little common information, the mutual information values returned by the
algorithm are more than sufficient to separate it from the case of having no common

information.
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3.3 Synthetic analysis of assumptions

(a) Data source 1 (b) Data source 2

Figure 3.6: Model for sources with common information present: block A’ represents
agreement, and 'B’ represents disagreement.

(a) Data source 1 (b) Data source 2 (c) MI

Figure 3.7: Examples of the two synthetically generated data sources when there is a
reasonable amount of common information shared by the sources

(a) Data source 1 (b) Data source 2 (c) MI

Figure 3.8: Examples of the two synthetically generated data sources when there is a
very small amount of common information shared by the sources
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Figure 3.9: Distributions of separation values for (a)some common information and
(b)low levels of common information between data sources

3.3.2 Poor alignment

The method of MI thresholding relies on the data sources being aligned to detect com-
mon information. Small misalignments may not affect the performance considerably,
since objects/events are usually spatially /temporally broad and would still overlap in
the two data sources. We now investigate how misalignment affects the performance of
MI thresholding.

Figure 3.10(a) shows the model we used for this experiment. A simulated square
foreground object, 50 pixels on its side, with a brightness of 100, is placed in the
centre of both data sources. The square is then shifted horizontally in data source 2
and Gaussian noise is added to both sources with a standard deviation of 50. Figures
3.10(b) and 3.10(c) show examples of the data sources.

The peak MI surface value is computed for different amounts of horizontal shift.
Figure 3.11 shows how the peak MI value decreases as the misalignment shift is in-
creased. When the shift is greater than 80% of the width of the foreground object, the
peak MI value cannot distinguish any common information in the data sources. Any
misalignment of less than 80% reduces the MI score but the method still performs well
and selects acceptable thresholds. This can also been seen by observing the returned
thresholds, as shown in figure 3.12. The figure of “80% of the width” is not general to all
cases and smaller foreground objects would not be expected to tolerate misalignments

up to this fraction of their width, at similar noise levels to this example.
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3.3 Synthetic analysis of assumptions

(a) Model (b) Srcl (c) Src2

(d) MI (e) Overlap

Figure 3.10: Misalignment Experiment: (a) Model image used, (b) and (c¢) show exam-
ples of two synthetic misaligned data sources with a shift of 10 pixels between them,
(d) MI surface, (e) Overlap of images in (b) and (c).
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(a) Linear Scale (b) Log Scale (c) Separation

Figure 3.11: Plot of peak MI value versus the misalignment shift in (a)linear and (b)log
scale. Subfigure (c¢) shows the separation value for the MI score. The x-axis represents
the horizontal shift in pixels.
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Figure 3.12: Plot of threshold values (mean and one standard deviation) for (a) source
1 and (b) source 2.

Data smoothing effects In order to cater for data sources that are not perfectly
aligned, one may wish to perform data smoothing on the two sources before computing
their mutual information thresholds, in order to better compensate for the spatial mis-
registration. Figure 3.13 shows an example of the effects of smoothing on a signal. The
original signal in 3.13(a) becomes the smoothed signal 3.13(b). Visually, the smoothing
operation can be seen to increase the correlation between neighbouring samples and
to reduce the information content of the signal. Reducing the information content is
similar to reducing the number of samples, N.

As can be seen from equation (3.8), a lower number of samples (N) means a higher
average value of MI in this case where there is no common information. Experiments
on synthetic data showed this to be true. Using two synthetically-generated absolute
Gaussian noise signals, as used previously, with N = 100 samples each, both signals
were filtered using a Gaussian filter of width o. By varying the value of o, and repeat-
ing this procedure on 250,000 signal pairs, one can obtain an understanding of how
smoothing affected the results of MI thresholding. For this experiment, ¢ was varied
from 0 to 6 in increments of 0.25, and 10,000 tests were run for each o value.

Figure 3.14 shows how the average maximum MI value obtained between two sources
changes when both sources are filtered with a Gaussian filter of width, o, as ¢ increases.
It can be seen that at o < 0.5, the average MI value is almost constant. However, when

o > 0.5, the average MI value increases linearly with increasing o.
Optimal data smoothing Since smoothing seems to increase the MI score, regard-

less of whether of not there is any common information present, an important consider-

ation is if there is a way to determine the optimal o value when common information is
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Figure 3.13: (a) Raw data signal with N=100 samples, (b) Signal smoothed with
Gaussian filter of 0 = 2.5

present. Imagine a scenario whereby an event is detected using a motion sensor and an
audio sensor. The event could be people entering a room and talking. The event may
last a few minutes, but neither motion nor talking would be present in every sample,
so those samples would be interpreted as disagreement. We simulate such a scenario
using the sources in figure 3.15(a) where the event is represented by a square that is
punctured by random holes to represent that motion and audio do not always happen
together. The experimental parameters were as follows: The image size was 250 x 250
pixels, the square event was 50 x 50 pixels in size and the holes were created by setting
the event’s pixels to zero with a probability of 0.5. The event pixels’ brightness was
set to 5 and random noise of standard deviation 1 was then added. For various values
of o between 0 and 10, the two sources were convolved with a Gaussian kernel of this
width, as shown in figure 3.15 (b) and (c). The resulting plots of MI score and quality,
shown in figure 3.16, distinctly identify a unique o value. This value is approximately
o = 1.5 and produces the maximum quality score, as well as a sharp corner in the MI
score plot. In this experiment, the smoothing is exploiting the spatial information due
to the close proximity of detections. The MI score rises sharply when there are spatial
correlations between the detections. At the graph’s corner, the spatial correlations have

been exhausted and the MI rises only slowly.

3.3.3 Correlated noise in sources

In this section, the effects of correlated noise on the algorithm are investigated. We
examine the case of when the variance in some of the pixels is correlated and see how the
MI surface is affected. This could be the case when both data sources are derived from

the same sensor, or it could also be present in the pixels corresponding to fluctuating
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Figure 3.14: Plot of average MI value returned using MI thresholding when two noise
signals with no common information are Gaussian filtered using a width of o. Vertical
bars indicate one standard deviation. The signals used has N = 100 samples.

background objects such as trees or water. The synthetic model we use for this is made
up of three parts; two parts background (A,B) and one part constant foreground (C).
Part A models normal background, part B models highly variant background and part
C models the foreground. Gaussian noise of variance Ny is superimposed on A and C.
Gaussian noise of variance Ny is superimposed on part B. The absolute value of the
signal is then computed. Initially we set Ny = Ns. Figure 3.17(a) shows examples of
the synthetic data used at various levels of noise. With low noise, there is a strong peak
in the MI surface at the correct thresholds. As N is increased, another peak emerges
in the surface, eventually overtaking the correct peak as the maximum. In part (b) of
Figure 3.17 the MI surfaces corresponding to the signals in (a) are shown.

By selecting the thresholds corresponding to the peak, figure 3.18(a) shows the
thresholds that will be selected. It is clear from this plot that, at a certain level of
noise (approximately No = 125), the incorrect peak will be selected when it becomes
higher than the correct one. This is indicated by the sharp drop in threshold value.
However, it was found that by examining multiple peaks and choosing the one with the
greatest quality score, the correct peak can be identified. In this experiment, the surface
was smoothed with a Gaussian filter with o = 2.0 to eliminate spurious maxima. Figure
3.18(b) shows the thresholds selected at the second highest peak. The corresponding
quality scores for the top 2 peaks are shown in figures 3.18(c) and 3.18(d). The highest
quality score is a strong indicator of the correct peak and this will be used later in this

chapter, in section 3.4, to develop an extended version of our algorithm that is more
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(a)

Figure 3.15: Optimal smoothing experiment: (a) shows the two input data sources
without noise, (b) and (c) show these sources at various degrees of smoothing (o €
{0,1.5,5,10}), (d) the corresponding MI surface and (e) the resulting thresholded sig-

nals superimposed.
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Figure 3.16: These graphs show (a) the MI score and (b) the quality measure resulting
from using the smoothed sources at various different values of o.
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Figure 3.17: The left column shows examples of input signal pairs and the right col-
umn shows their corresponding mutual information surfaces. As the variance of the
correlated noise increases, a new peak can be seen to rise in MI surface.

robust to multiple peaks caused by correlated noise. As the graphs in figure 3.18(c)
and (d) show however, beyond a certain high level of noise, the quality value will not

be able to distinguish the peaks.

3.3.4 Discussion

This section questioned the assumptions of MI thresholding and examined the effects
of using data that did not comply with these assumptions.

Firstly, the distribution of the MI score in the case of no common information was
approximated and shown to be well separated from the case where common information
is present.

Secondly, the method’s robustness to misalignment was investigated. It was shown
that if the size of the misalignment is smaller than the typical object width, then this

is usually tolerated and acceptable thresholds are produced. A technique for optimally
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Figure 3.18: The threshold selected (for source 1) using the first and second highest
peaks in the MI surface is shown in (a) and (b) respectively. The corresponding quality
score plots are shown in (c¢) and (d). On the x-axis is shown o, the amount of correlated
noise in part B of the signal.

smoothing the data sources was also developed, in order to exploit the spatial proximity
of detections.

Thirdly, it was shown that if correlated noise was present in the sources of data, it
was manifested as an additional peak in the MI surface. If this peak is greater than
the correct peak, the synthetic data indicated that it is usually possible to distinguish
the peaks using the performance quality measure.

Real data might contain small violations of all three assumptions and this could
lead to additional problems that are difficult to fully analyse with synthetic data. For
example, there may be nothing in the scene, and hence no common information to
exploit, but if correlated noise were present, this could be very difficult to distinguish
from common information. The next chapter more fully explores how closely real data

complies with these assumptions.
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3.4 Extended algorithm

3.4 Extended algorithm

As shown in section 3.3.3, the use of the quality measure to evaluate multiple peaks in
the MI surface can make the algorithm robust to correlated noise in the sources. The
extended version of the algorithm that we term extended mutual information thresh-
olding (EMIT) is now described in detail.

First, the MI surface is computed as normal. All local peaks on this surface are
detected and stored as Pprjy. The surface is then smoothed with a Gaussian filter of
width o. All peaks on this smoothed surface are then extracted as P, and then each
peak in Py, is replaced by its nearest neighbour in P,.;4. Next, any threshold pairs in

C C C C C . .
Prew that do not have (=g+ + =3+ ) (=~ + —x~) < — are removed from consideration,

as this could cause the quality score to fall outside the 0..1 range. Low scoring peaks
are then removed by computing the Rosin threshold of a histogram of the MI values of
the entire surface and retaining only those peaks with MI scores above this threshold.
Finally, of the remaining peaks, the peak with the highest quality score is used to
determine the final thresholds.

The EMIT algorithm is essentially a heuristic to counter the problem of multiple
peaks in the MI surface. With regards to the o smoothing parameter, it was found that
values of 1 and above produced similar results, whereas values less than this often led
to the selection of high thresholds, with high precision but low recall. Values between

1 and 2 were found to be sufficient to remove spurious peaks causes by surface noise.

3.5 Method comparisons using synthetic data

In this section, experiments are conducted to compare mutual information thresholding

to the other most frequently cited and most common dynamic thresholding methods.

3.5.1 Selected non-parametric thresholding approaches

To evaluate the MI thresholding algorithm, experiments comparing this algorithm to
other dynamic thresholding algorithms are now described. Four of the most frequently
cited thresholding methods were chosen and they are briefly described below. The
methods used are those of Kapur, Kittler and Illingworth, Rosin and Otsu.

Kapur’s method [65] chooses a threshold to maximise the sum of entropies in a two
class system (the change and no-change classes). It was ranked first in an evaluation of
change detection methods on both synthetic and real data [118]. Additionally, it was
also ranked highly in other thresholding studies [6, 123]. A minimum error thresholding
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method was proposed by Kittler and Illingworth [69]. It was ranked first in an extensive
image thresholding survey [123]. The unimodal thresholding method of Rosin [116]
specifically targets the change detection task by noting that most pixels come from the
no-change class. Otsu’s thresholding method [99] chooses a threshold to maximise the
between-class scatter between the background and foreground classes. Otsu’s method
performed well in [123], though not explicitly for change detection. Otsu’s method is
also a standard function in MATLAB, under the function name graythresh.

These 4 methods are compared to the MI thresholding algorithm using synthetically
generated data in this chapter. The next chapter compares their performance on real

data applications.

3.5.2 Evaluation measures

Any particular detection score can be thresholded using all possible thresholds and this,
along with the ground truth data, can produce a Precision-Recall (PR) curve. This PR
curve relates to the tradeoff between false positives and missed detections depending
on the chosen threshold. Each dynamic thresholding algorithm will essentially position
the system at a particular point on the curve. Although there is no consensus on what
the absolute optimum threshold is, there are a number of approaches in the literature
proposing optimality measures that are useful for this task.

As an intuitive example, position A in figure 3.19 is not a good result, as we can
lower the threshold to achieve a higher recall with a negligible decrease in precision.
Position B would seem to be closer to the optimum choice.

In order to ascertain whether the algorithms have performed well, five different opti-
mality measures are considered. The optimality measures used are (i) the minimisation
of a cost function, relating the probabilities of false positives and missed detections, (ii)
the F-1 measure that balances the precision and recall trade-off, (iii) equalising false
positive and missed detection rates, (iv) minimising the distance between the ideal solu-
tion and the chosen point on the precision-recall curve and (v) maximising the Jaccard

coefficient. These five measures are described in the following paragraphs.

Cost function minimisation If we illustrate our two-class discrimination problem
as in figure 3.20, we see that any threshold will cause some portion of each distribution
X and Y to fall on the incorrect side of the threshold divide. For a given application,

the optimal threshold will be one which minimises a cost function relating the cost of

66



3.5 Method comparisons using synthetic data

RECALL

Figure 3.19: Precision-Recall (PR) curve example with two possible operating points
marked, A and B.

false positives with the cost of missed detections. This cost function can be written as:
K =C1(bP(Y)) + Ca(cP(X)) (3.11)

where 7 and (5 are the costs associated with missed detections and false positives
respectively. The two terms b and c¢ fractions of the distributions that fall on the
incorrect side of the threshold. P(X) and P(Y') are the a priori probabilities of a
sample coming from X and Y.

For a given threshold, the precision is defined as the fraction of detections that are
correct. The recall is defined as the fraction of the total number of events that are

detected. The precision and recall can be computed as follows:

dP(Y)
= A2
P=aP) + cP(X) (3.12)
dP(Y)
= 1
" T AP(Y) + bP(Y) (3.13)
Noting that each probability distribution’s area is equal to 1, we get
a+c=1 (3.14)
d+b=1 (3.15)
We can rewrite equations 3.13 and 3.12 as
d
=——=d=1-10 3.16
"Tdx (3.16)
dP(Y) —dpP(Y P(Y)(1—
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Figure 3.20: Illustration of thresholding to distinguish two distributions: The cyan
distribution represents the no-change class, whereas the magenta distribution represents
the change class. The areas b and ¢ indicate the probability of obtaining a false negative
and a false positive respectively.

These equations can be inserted into our original cost equation as follows:

K = Ci(1-r)PY)+ Czw (3.18)
S~ K = P(Y) [01(1 S 02@] (3.19)
S K = PY)Gy [(1 S 0"”(%”] (3.20)

where C' = (C3/C} is the ratio of the cost of false positives to the cost of missed
detections. A more compact form of the cost function can then be obtained by noting
that the optimal choice of threshold is not affected by dividing the cost function by

a positive constant. Dividing by P(Y)C} gives our final cost equation in terms of
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precision, p, recall, r, and trade-off cost ratio, C"

C
K=r(—-C-1)+1 (3.21)
p
This cost has its minimum value of zero when p = r = 1. In the experiments conducted,

C was set equal to one, giving the cost function to minimise as:

1
Ki=r(--2)+1 (3.22)

p
F-1 measure A measure used frequently in information retrieval to measure per-
formance is the Fj-measure. According to Yang and Liu [158], this measure was first
introduced by C. J. van Rijsbergen [147]. This measure equally weights precision, p,

and recall, r, in the following form:

2pr

=

= 3.23
p+r ( )

This can be interpreted as the harmonic mean of precision and recall. Relating to figure
3.20, if the X distribution is considered background and the Y distribution foreground,

then using equations (3.12) and (3.13) the Fj-measure can be expressed as

24P(Y)

F1= P(Y)+dP(Y) + cP(X)

(3.24)

with P(X) and P(Y') being the a priori probabilities of background and foreground.

Equal Error Rates Another approach commonly used in threshold selection is to
equalise the error rates. That is, to choose the threshold such that the probability of
getting a false positive (FP) is equal to the probability of getting a missed detection

(MD). These rates can be written as follows:

Prp = P(X)- i - = P(X)c (3.25)
Pup = P(Y)berd = P(Y)b. (3.26)

Using equations (3.12), (3.13) and (3.15), the condition of equal error rates can be

expressed in a much simpler form with some simple manipulation.

P(X)e=P(Y)b=P(Y)(1 - d) (3.27)

69



3.5 Method comparisons using synthetic data

= P(X)e+ P(Y)d = P(Y) (3.28)
_ P(Y)

== B Xt PV (3.29)
P

= 4= BX)e+ POV (3:30)

=r=p (3.31)

Therefore by selecting the threshold that sets the operating point on the PR curve to

where it crosses the line connecting (0,0) to (1,1), the equal error criterion is achieved.

Optimal distance The final measure we used in optimal threshold selection is to
minimise the distance between the point (p,r) and the ideal solution of (1,1), where
precision and recall are perfect. So the optimal threshold, according to this measure,
is the one that selects the position on the p-r curve closest to (1,1), thus minimising D,

given by:

D(p,r) =+/(p—1)* + (r — 1)2 (3.32)

The Jaccard coefficient The Jaccard coefficient is a performance measure proposed
in [132]. In terms of true-positives, false positives and false negatives (missed detec-
tions), the Jaccard coefficient, J, is written as TP/(TP + FP + FN). In terms of the

variables in figure 3.20, we write it as:

P(Y)d
J = 3.33
P(Y)d+ P(X)c+ P(Y)b (3:33)
Using equations (3.12) and (3.13), it can be rewritten simply as:
o (3.34)

:p+r—pr

Measure visualisation To summarise, the five measures used to assess the quality
of the selected thresholds are : (i) minimising a cost function, (ii) Maximising the F-1
measure, (iii) Equalising the error rates, (iv) minimising the distance to the optimal
point and (v) Maximising the Jaccard coefficient. These five criteria can easily be

reformulated into the maximisation of one of five score measures:

p
=— .
Milpr) = s (3.35)
2pr
M. = 3.36
2(pa T) p +r ( )
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p+r

Ms(p,r) = Ymax (p,7) (3.37)
_ _1)\2 _ r— 2
My(p,r) = 2-(p 1)2 (r=1) (3.38)
_ pr
Ms(p,r) = — (3.39)

each of which is bounded between 0 and 1, and takes on its maximum value when
p =r = 1. Indeterminate values (0/0) are mapped to zero.

In figure 3.21, a visualisation of the five measures is shown as a more intuitive aid
to how they assess precision and recall quality. Subfigures 3.21 (b), (d) and (e) have
the most obvious interpretation, since they give higher scores to points with higher
precision or recall. The first measure, in 3.21(a) seems counter-intuitive, since at low
values of precision, higher values of recall are actually punished. This is because when
recall increases, it means that more true positives are found but because precision is
kept constant is means that the number of false positives also increases. For example,
if 5 more true positives are found by lowering the threshold, recall will increase, but
if p = 0.1 then it will mean that we get 45 more false positives. Figure 3.21(c) is also
counter-intuitive, since it gives the same score to point(0.2, 0.2) and to point (1,1). This
can be countered by the fact that any PR curve will only pass through the equal-error

line once, so that kind of ambiguity would not arise.

3.5.3 Synthetic data experiments

Synthetic data are useful for quantitative comparison of algorithms, since the ground
truth can be computed without manual annotation. Synthetic difference images were
generated of similar form to figure 3.22(a). Two foreground regions of different sizes
and different constant signal strengths (brightnesses) were used. Pairs of these images
were created with identical size and signal parameters but with independent Gaussian
noise super-imposed. Each pair was fed into the MI thresholding algorithm to compute
appropriate thresholds. Only one of the images was used for the other methods, since
they cannot take advantage of multiple sources of information.

The parameters for the experiment were as follows. Each image was of size 100 x 100
pixels. Gaussian noise with standard deviation 5 was added to all images and the
absolute value of each pixel was computed. The sizes of the two square foreground
regions were varied from a side of 5 pixels to 40 pixels, in increments of 5 pixels. The
brightness, or signal strength, of the regions varies from 10 to 25 in increments of 1. In

total, 16, 384 tests were run (8 sizes and 16 brightnesses for 2 regions — 8 x8x 16 x 16 =
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: Cost ) Ms: Equal error

(d) Ms: Optimal dist (e) Ms: Jaccard

Figure 3.21: Visualisation of threshold score measures: (a) cost function minimisation,
(b) F-1 measure maximisation, (c) error rate equalisation, (d) distance minimisation
and (e) Jaccard coefficient. Precision and recall are on the x-axis and y-axis respectively.

16, 384). The results of this experiment are shown in table 3.1. The mutual information
thresholding method was found, on average, to outperform all other methods using any
of the five optimality criteria. The Kapur and Kittler methods both performed well

also.

Measure Rosin  Kapur Otsu Kittler MI

My 0.6676 0.7241 0.6058 0.7046 0.7505
Mo 0.7502 0.7792 0.6901 0.7807 0.8077
Ms 0.8876 0.9059 0.8426 0.9208 0.9469
M, 0.9166 0.9311 0.8790 0.9333 0.9444
Ms 0.7770 0.7975 0.7675 0.7920 0.8155

Table 3.1: Mean results for each method for all five measures.

Gradient as second data source If a second data source were not available, it could
be created by taking the gradient magnitude of the first data source. We investigate
the performance of this approach by rerunning the previous experiment, except this
time replacing source 2 with the magnitude of the gradient of source 1. The gradient

was computed using the Sobel operator. Results are shown in table 3.2 and show that
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(a)

Figure 3.22: (a)An example of synthetic input image before noise addition, and (b)after
noise is added

MI thresholding again outperformed all other methods.

Measure Rosin  Kapur Otsu Kittler MI

My 0.6667 0.7241 0.6059 0.7046 0.7496
Mo 0.7498 0.7794 0.6902 0.7806 0.8071
M3 0.8877 0.9065 0.8426 0.9205 0.9462
My 0.9164 0.9312 0.8791 0.9332 0.9448
Ms 0.7766 0.7974 0.7675 0.7919 0.8142

Table 3.2: Mean results for each method for all five measures using gradient as a second
data source.

3.6 Online MI thresholding

As previously mentioned, the use of MI thresholding is not confined to foreground
detection. We can examine the realm of wireless sensor networks, where the goal is to
reduce the cost of individual processing units by reducing its hardware capabilities, and
to improve performance by distributing the sensing capabilities over a large area [5].
Therefore in order to reduce sensor node costs, the processing power of each distributed
sensor is limited in terms of speed and storage capacity. Additionally, most sensor nodes
are not connected to a power supply, thus have limited battery life which must be used
sparingly [111]. Thresholding is a process that fits well into this scheme.

For example, in an audio event detection scenario, where each wireless sensor has a
microphone, it is impractical for every node to broadcast the audio is receives back to
a central hub for processing. The power consumption would be too great. Ideally, the
node should only transmit when an important event occurs, such as when the audio

volume exceeds a threshold, indicating that some event is taking place [128].
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In this scenario, it would seem that mutual information thresholding is impractical,
since the algorithm requires both signals in order to produce the mutual information
surface. This is not the case however. In fact, it is possible for two sensors to adjust
their respective thresholds to maximise the mutual information between their detected
events, without knowledge of the signal data of the other, but simply by observing the
binary detection results of each other. In this section, this procedure is demonstrated,
along with an example of it in operation.

A sensor node receives only the binary detection signal from another node. It can
choose its threshold by performing the exact same MI thresholding algorithm as before,
but this time only using a single threshold for the second source (e.g. 0.5). It need not
store its entire data signal, but only two histograms: one for its data when the other
node outputted 0 and the other for its data when the other node outputted 1. The
number of bins can be dictated by the memory available to the node. Each node adapts
it own threshold to maximise the mutual information between its own output and the
other node. In terms of movement across the MI surface, this is either a horizontal or
vertical movement to the highest point along that line.

Figure 3.23 demonstrates how the procedure works. The system begins at operating
point (115, 140), shown by the green circle. This corresponds to a threshold of 115 for
sensor 1 and a threshold of 140 for sensor 2. Each sensor adapts their own threshold
by observing the binary output of the other, and computing the MI for each possible
threshold it could use. For sensor 1, it wishes to know how to vary its threshold (the
x-coordinate), and this means computing the plot of the horizontal line through the
operating point, shown in figure 3.23(c). Similarly, sensor 2 computes the plot shown
in figure 3.23(b), which is the vertical line through the operating point. The magenta
bars indicate where the maxima are located on each linear plot. The new operating

point becomes (80, 73), indicated by the red circle.

3.6.1 Experiment

Using synthetic data, we simulate the procedure of online MI thresholding for two
nodes. A separate data stream is created for both nodes. Each stream consists of 95%
zeros (representing no event) and 5% ones (representing events). Gaussian noise of
standard deviation opneise is added to the data signal.

Both node thresholds are initialised at value 1. Each node will utilise the MI
thresholding algorithm, using its own data signal and the binary signal of the other

node as input to the algorithm. The threshold list for the other data source will be
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Figure 3.23: Online MI: illustration of the algorithm. (a) Entire MI surface, (b) and
(c) show the vertical and horizontal cross-sections, respectively, through the operating
point. By choosing thresholds to maximise MI separately along each dimension, the
new operating point (shown in red) lies closer to the optimum.

A = {0,1}. In terms of storage requirements, each node can simply maintain two
histograms. The first histogram counts occurrences of its own values when the other
node outputted zero. The second histogram counts occurrences of its own values when
the other node outputted one. After N samples have been received, each node will
execute the MI thresholding algorithm and adapt its threshold to maximise MI. If
either histogram is empty, the algorithm is not executed, since there is no information
present to exploit. An empty histogram could result from there being no events to
detect, or if the other node has set its threshold very high or very low.

Two experiments were performed to evaluate the performance of online MI and to
investigate the correct choice of N. As we show, the correct choice of window size, IV,
can be crucial in optimising performance. The first experiment uses static noise and

the second uses variable noise. For example, the case of variable noise might arise when
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using audio sensors within a building whose air-conditioning is scheduled to turn on and
off automatically, causing a periodic change in the noise variance. Both experiments
were performed using a set of values for NV, each set using the exact same pairs of input
data. The values of N used were {10, 20, 50, 100, 250, 500, 1000, 2500, 5000}. A total of

250, 000 samples were used in both the static noise and the variable noise experiment.

Static Noise In this test, we set onpise = 0.25. The precision and recall for each
different value of window size, IV, were combined using the F; measure and the results
are shown in figure 3.24. As expected, since the noise level is static, more accurate
results are obtained using a greater number of samples (larger window size). The
dashed line indicates the F; value if both signals were received at a single node and

processed using the full MI thresholding algorithm.
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Figure 3.24: Performance of Online MI Thresholding on static noise, plotted using the
F} measure. Dashed red line indicates the performance of MI thresholding.

Variable Noise In this test, the noise standard deviation would alternate every 5000
samples, from oneise = 0.25 t0 O noise = 0.45 and back. Again, the precision and recall
for each different value of window size were combined using the F} measure and the
results are shown in figure 3.25. Here, we have more interesting results where the best
performing nodes use a window size of N = 1000. Smaller windows sizes are more

easily affected by noise, and it is difficult for them to remain close to the peak of the
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MI surface. In this case, larger window sizes, such as N = 5000 perform badly also.
The case of N = 5000 specifically, as it gathers 5000 samples then chooses a threshold
based on these samples. However, the noise then alternates to a different state, so the
thresholds will always be suboptimal. Adapting the thresholds every 1000 samples even
out-performs the MI thresholding algorithm’s thresholds computed using all values of

both signals.
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Figure 3.25: Performance of Online MI Thresholding on variable noise, plotted using
the F1 measure. Dashed red line indicates the performance of MI thresholding.

Discussion The online MI thresholding method described is essentially a peak climb-
ing algorithm, and as such, it is important to initialise the procedure close to the slope
of the peak. Using a small window size is susceptible to noise and can deviate the oper-
ating point away from the peak, hence requiring a number of adaptations to re-acquire
the peak.

In our experiments, both nodes were set to update their thresholds simultaneously,
but this might not be optimal for some MI surfaces. It might be better for nodes to
alternate, with one node optimising while the other agrees to keep a fixed threshold. It
is probably not optimal to perform asynchronous threshold adaptation, where neither
node is aware that the other has adapted. In this case, one node (node A) will be
gathering data on the other node (node B), but the properties of this data will change
when node B alters threshold, and A will later attempt to adapt its threshold to
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maximise agreement with a mixture of old and new data.

One additional feature that might improve performance on real data would be to do
selective updating of the thresholds. For example, if during the sample collection period
no events occur, adapting the thresholds would dramatically reduce performance. A
minimum quality score might be defined, such that no adaptation occurs unless this
level of quality is reached. Alternatively, the adaptation might only occur if the current

thresholds were deemed to be poor; such as if their quality score was deemed too low.

3.7 Summary and Discussion

In this chapter, mutual information thresholding was introduced and shown to explore a
new paradigm in thresholding and fusion. The method was analysed theoretically using
synthetic data and it exceeded the performance of the leading thresholding algorithms,
along with providing a quality measure, indicating how well it performed. In the next
chapter, the method of mutual information thresholding is further examined, looking
at a variety of applications on real data.

In examining the assumptions underlying our method, it was shown that the method
is quite flexible in some respects to the validity of these assumptions. Firstly, it was
demonstrated that there is a significant disparity in the mutual information scores
returned when there is common information present between sources, and when there
is not. This indicates that failure of the method might be detected by examining the
separation score. Secondly, the method has been shown to be quite robust to small
mis-alignments when they are smaller than the typical object size. Finally, it was shown
that correlated noise in the sources causes another peak to appear in the MI surface.
In high noise conditions, this peak can be greater than the correct peak but the correct
peaks can be found by examining the peak quality scores. An extended version of our
algorithm, named EMIT, was described in section 3.4 to exploit this feature of the MI

surface.

3.7.1 Fusion

A new paradigm There are generally two ways in which different data sources are
combined. One approach is to create a new data representation, providing a better
platform from which to perform analysis. Examples of this include linear combinations
of the data, fusion using the max or min operator, or other non-linear combinations.
The other common approach is that the analysis (such as thresholding) is performed

separately on both sources of data and results are subsequently combined (using a
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binary operator, such as AND or OR, for example). Our novel method is a different
paradigm for fusion. By performing the analysis on both sources of data simultaneously
and using information from each source to assist the analysis of the other, we obtain

results from two separate sources, but enhanced by each other.

Fusion After thresholding, one is left with two binary maps. If a single map is
required, these results need to be fused in some way to obtain the final decision for
each event.

One method is to use a binary operator, such as AND or OR, to combine the
maps. An approach which is more robust against noise is to use the spatial information
to determine the local support of each event. Support can be defined, for example,
as the number of neighbouring events that have the same value as the central event.
If the maps disagree on a detection result, the result with the greater support can
be used. This is very effective at removing isolated noise. If the support values are
equal, this could be an example of an object which is undetectable in one modality,
such as a room-temperature bag using thermal infrared. Depending on the application,
this disagreement could provide additional semantic knowledge. Using a 3 x 3 neigh-
bourhood, this approach is similar to an OR fusion, followed by simple morphological
erosion/dilation operations. Another approach, adopted in some early work [96] is to
examine the support at a region level. Regions can be constructed by combining the
maps using the binary OR operator. If a region has support in both modalities, it is
retained, otherwise it is discarded as noise. Here support can be defined as a minimum

fraction of its pixels belonging to foreground in each modality (e.g. 10%).

3.7.2 Relationship to other agreement measures

Besides mutual information, there are other measures to compute similarity and agree-
ment between signals. One such measure is Kendall’s 7 [67][109]. The Kendall 7 rank
correlation coefficient (or simply the Kendall tau coefficient or Kendall’s 7) is used to
measure the degree of correspondence between two rankings and to assess the signifi-
cance of this correspondence.

The integral-image based approach developed in this chapter allows the efficient
counting of occurrence of pairs of binary values between two thresholded data sources
(see the C,,, array in subsection 3.2.1). For a given pair of thresholds, the number of
occurrences of each of the four binary pairings, {00,01, 10,11}, can be counted. While

these counts were used, in this chapter, to compute the mutual information between
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the thresholded sources, they might equally be used to compute many other measures
of similarity.

Some directions for future work would be in examining the benefits of using another
binary-signal agreement-measure besides mutual information. Examples of potential
methods to test include Spearman’s rank correlation coefficient and Pearson product-
moment correlation coefficient, as well as Kendall’s 7.

In terms of the binary pairings counts and the total number of samples, N, Kendall’s
T can be expressed as:

Gy (0.0)Cuy (1, 1) = Gy (0,1)Cry (1,0) (3.40)

VC:(0)Cy (0)C(1)Cy (1)

Another potentially useful measure is obtained by taking the numerator of Kendall’s

T:
1
Ml = N(Cm,y(oa O)Cz7y(1, 1) — Cx,y(o, 1)Cm,y(1, 0)) (341)
or simply
1
My = ch,y(O,O)(Cx7y(l, 1). (3.42)

Some other combinations that stress agreement are

ny(O 0)0 w11

RRRVGR ) TeR (DToREVTON Y
_ xy(O 0)Cyy(1,1)
My =17+ Cry(0,1)Cyy(1,0)

(3.43)

(3.44)

To briefly investigate the potential of these four measures, as well as Kendall’s 7
and to compare them to the use of mutual information, a preliminary experiment is
described. In figure 3.26, examples of synthetically-generated difference images are
shown. Using these two images as data sources, the corresponding surface for each of
the six measures was computed, shown in figure 3.27, along with the corresponding
thresholded images. In this test, measure M; and M3 seem to perform acceptably,
as well as the MI measure and Kendall’s 7. Unfortunately, further tests on real data

revealed that M; and M3 were not robust measures of agreement.

80



3.7 Summary and Discussion

Figure 3.26: Synthetic difference images used to investigate the usefulness of other
agreement measures.

(a) (b) () (d)

Figure 3.27: Measure surfaces for the difference images for all six measures and their
corresponding thresholded images: (a)MI, (b)Kendall’s 7, (c¢)Mj, (d)Mas, (e)Ms3 and
(£) My

3.7.3 Future work

Our thresholding method works on aligned data so can be used for local, as well as
global thresholding. It can also be used to threshold space-time slices, such as groups of
video frames. In these scenarios, the window size is an important parameter: too small
and it may be sensitive to noise, too large and there is a chance the signal properties
have changed and a global threshold would not be appropriate. This was shown clearly
in the experiments on online MI thresholding. Investigating how the window sizes
should be set automatically is an interesting area of further work.

Currently, the method does not consider spatial information or the proximity of
pixels when choosing the thresholds. Incorporating this information into the method
is another avenue of research to consider. For example, the two parameters (low and
high thresholds) for hysteresis segmentation could be selected by maximising the MI
between the resulting segmentation and another source of data. The experiment on
selecting the optimal smoothing o value touched on the use of spatial information to
improve performance. Spatial information might also be included by counting binary

pairings of larger neighbourhoods.
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It is still unclear exactly what kinds of data sources are appropriate for use with MI
thresholding. The gradient of a signal would seem to be strongly correlated with the
original signal but performed excellently as a second data sources in the synthetic data
experiments. In terms of real world visual data, the separate colour channels, such as
{R,G,B} or {H,S,V} might be used as inputs to the proposed method, but whether
they are too correlated to perform well, since they are derived from the same sensor, is
another issue worth investigating and in fact is explored in the next chapter.

Finally, using this method on three or more sources of data is another area for
future investigation. The quality measure developed gives a estimate of the reliability
of the results and hence, this might be used to make a system more robust against the
failure of one or more components, if it can quickly detect unreliability between the data
sources. The combination of three or more sources provides many interesting challenges,
such as whether they should all be combined simultaneously, or whether a pair-wise
combination, using the quality values returned, provides better performance. To use
the framework of [71], the sources could first be used pairwise and all thresholds for
each source are saved where a peak of the MI surface occurs. Then to fuse three sources,
triplets of thresholds are evaluated. All thresholds for each source that belong to a peak
of the hypersurface are saved and the process continues, adding more sources. Another
way would be to combine all sources simultaneously. An agreement measure, such as
mutual information, might be defined for three or more signals and some optimisation
procedure could be used to maximise this agreement measure between the multiple
sources. For any multi-source method, care must be taken to robustify the approach,
so that the addition of a single poor-quality source does not adversely affect the results.

In the next chapter, numerous applications that use MI thresholding and related

techniques on real-world data are examined.
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Chapter 4

Applications of Maximal

Agreement Thresholding

4.1 Introduction

In the previous chapter, using synthetic data, it was shown that choosing thresholds
to maximise agreement between two data sources outperforms traditional automatic
threshold-selection algorithms. Mutual information was used to measure agreement
between binary signals in the synthetic tests, but other agreement measures are also
possible as was discussed.

In this chapter, real-data applications of agreement-based thresholding are inves-
tigated, exploring the use of both mutual information and the Kendall’s 7 agreement
measure. These applications include the automatic learning of parameters for shadow
detection, online dynamic skin model learning, foreground detection in thermo-visual
data, feature selection for event detection in audio-visual surveillance scenarios and
person detection in thermal imagery.

The applications are divided into two classes: Applications using weakly indepen-
dent sources and applications using strongly independent sources. The distinction is the
degree to which the data sources used can be considered independent. Specifically, if
the sources come from separate sensors of different modalities, then they are considered
strongly independent. In each class, 3 applications are presented.

In class A, using weakly independent sources, the detection of people in thermal
imagery from the OTCBVS dataset [29] is examined. Using a silhouette-based and
contour-based template in the context of MI thresholding, people are accurately de-

tected. Next, extensive tests on foreground detection are performed using visible spec-
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trum imagery from many publicly available datasets [1, 58, 108, 143]. The visible data
is split into data sources, such as the individual components of R, G, B and H, S,V , and
all pairs of sources are combined using MI thresholding and evaluated using ground-
truthed foreground. Finally, the algorithm of MI thresholding is extended to handle
bounded ranges instead of simple thresholds, and this allows the automatic selection of
parameters for the detection of shadow pixels.

In class B, the benefits of MI thresholding for detecting foreground by combining
thermal infrared and visible spectrum video are investigated. Next, visual informa-
tion is combined with non-visual audio data to detect people in a surveillance context.
It is shown that MI thresholding can be used to select the best features for detec-
tion by choosing those features that produce strong agreement between modalities.
Finally, the bounded-range algorithm, introduced for shadow detection, is shown to
efficiently choose parameters for skin detection in thermo-visual data and outperforms

non-adaptive skin classifiers.

4.2 Applications using weakly independent sources

4.2.1 Foreground detection

The use of MI thresholding for foreground detection on real data is now investigated.
The data used comes from publicly available datasets, as well as self-captured video
sequences. Manually annotated ground truth is used to verify the accuracy of the
resulting foreground. Since the goal is to evaluate the thresholding component of a
foreground-detection system, the background model used is as simplistic as possible.
Specifically, a background image is used as the model, which is computed by taking
the median of a large number of frames. Frames are chosen with no moving objects
present if possible, to attain the best possible background image.

As the method requires two data sources as input, the image data is split into
multiple parts, and each pair of sources is evaluated. The initial data is an RGB current
image, Iy, and an RGB background image, Ipg. The first three sources are obtained
by subtracting each colour band separately, giving a red-difference, green-difference
and blue-difference image. Next, both I.,.. and Ipg are transformed to the HSV
colour-space and then subtracted. This gives 3 additional sources: difference images
from H (hue), S(Saturation) and V' (Value/Luminance). For all difference images, the
absolute value is taken, since it is only the magnitude of change that is important, not

its sign.
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4.2 Applications using weakly independent sources

In the previous chapter, the gradient of a data source was shown to provide an
excellent second source of data for the MI thresholding method. In order to use gradient
here, the gradient magnitude of both I.,.. and Ipg are computed, using the Sobel

operator, and they are subtracted to obtain the gradient-difference for R, G and B.

IHSV

oureand ggv to obtain the gradient-difference

The same operation is performed on
for H, S and V. This provides a total of 12 sources of data: absolute difference of
pixel values of R,G,B,H,S and V, and the gradient difference of R,G,B,H,S and V.
We will refer to the absolute difference images as {R, G, B, H, S, V'}, and the gradient
difference images as {r, g,b, h, s, v}.

The experiment was conducted as follows. A total of 492 images were gathered
from 16 sequences. Each image was split into 12 data sources, as described above, and
each of the sources was thresholded using the same four methods used for the synthetic
data experiments in the previous chapter, namely: the Kapur, Otsu, Kittler and Rosin
methods. This gives 48 binary masks for this image. Next, every pair of sources from
the 12 are used as input to the MI thresholding algorithm. We differentiate between
using data sources {R, h} and using {h, R}, since the output of the former is the binary
mask for R and the latter outputs a binary mask for h. The first source will be referred
to as the primary source, as it is this image that will be thresholded and evaluated; the
secondary source merely helps to find the threshold. This stage gives 132 binary masks,
since the 12 pairs that have identical primary and secondary sources are not used, as
this would simply use a median threshold. Additionally, the same tests are performed
using the EMIT algorithm, to counter the potential effects of having multiple peaks in
the MI surface. All binary masks were evaluated using the five evaluation measures
described in the previous chapter. For each image, a total of 312 (132+132+-48) binary
masks are generated and evaluated. Images from the datasets, along with ground-truth
examples, are shown in figures 4.1 and 4.2. Table 4.1 lists the datasets from which the
data for these experiments was obtained. A o value of 1.5 was used for the EMIT

algorithm which was hand-tuned on a small number of images not used in testing.

EMIT vs. MI thresholding Since the data sources used in this experiment may
have correlated noise, the EMIT algorithm’s heuristic for peak selection is expected
to give better performance than selecting the maximum peak in the MI surface. This
was found to be the case. Table 4.2 compares the EMIT algorithm to the standard
peak selection MI thresholding. In all five performance measures, the EMIT algorithm
out-performs the standard algorithm.

In table 4.3, the top five MI-based thresholding methods are given for each measure.
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Figure 4.1: Sample images from the testing datasets: (a) Background image, (b) Cur-
rent image, (c¢) RGB difference image and (d) Ground-truth.

Table 4.1: Datasets used in this experiment

Name Source Ground-truthed images

DCU Own data 3
Terrascope [58] 4
Wallflower [143] 7
Laboratory [108] 7
Highway I [108] 6
Highway 1T [108] 5
Campus [108] 6

Intelligent Room [108] 112

VSSN 1] 342
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Figure 4.2: Sample images from the testing datasets: (a) Background image, (b) Cur-
rent image, (c¢) RGB difference image and (d) Ground-truth.

Table 4.2: Comparing the EMIT algorithm to standard MI thresholding.
Measure | EMIT worse Equal EMIT better

frames | % | frames | % | frames | %

M, 5799 | 8.93 | 8450 | 13.01 | 50695 | 78.06
Moy 14719 | 22.66 | 8439 | 12.99 | 41786 | 64.34
Ms 12602 | 19.40 | 8439 | 12.99 | 43903 | 67.60
My 24872 | 38.30 | 8439 | 12,99 | 31633 | 48.71
Ms 14719 | 22.66 | 8439 | 12.99 | 41786 | 64.34
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4.2 Applications using weakly independent sources

For example, in column 1, row 1, Ey, 5 (0.563) refers to the EMIT algorithm using the V'
and H difference images as the primary and secondard source, respectively. The value
0.563 is the average score of the M; (cost) measure over the entire series of images.
Similarly, in column 1, row 3, Mg (0.769) refers to the MI thresholding algorithm
using the G and H difference images as the primary and secondard source, respectively,
whilst the value 0.769 is the average score of the M3 (equal error) measure over all tested
images. The EMIT algorithm performs very well overall using four of the performance
measures. Interestingly, the EMIT algorithm is not the top performer in measure Mjs
(the equal error criterion), where standard MI thresholding does best. This suggests
that the equal error measure weights precision and recall differently from the other
measures, and this can be seen in the visualisations of the measures in the previous
chapter. Also of interest, the secondary sources for the standard MI thresholding
methods are all Hue-based, suggesting that the hue difference is the most independent
of the sources, since if the noise was heavily correlated the standard MI thresholding

method would select the noise peak.

Table 4.3: Top 5 performing MI-based thresholding methods according to each measure:
E refers to the EMIT algorithm and M refers to standard MI thresholding. Average
measure values are given for each method.

Measure | #1 #2 #3 #4 #5

My Ey 1(0.563) | Eq u(0.560) | Er g(0.555) | Eq(0.555) | Ep p(0.553)
Mo Ey 4(0.509) Eqy(0.508) | Eq,(0.507) | Eq4(0.505) | Eg.(0.505)

Ms Mea 1 (0.769) | My g (0.762) | Mp g (0.756) | Mpp(0.751) | My (0.747)
My Ey4(0.771) Eqp(0.771) | Eyv(0.768) Eq4(0.768) | Er4(0.767)

Ms Eqy(0.384) | Eq,(0.383) | Eq,(0.381) | Eqq(0.379) | Ey4(0.379)

Best sources for foreground detection Using the EMIT algorithm for foreground
detection, the choice of the best sources to use is investigated. Due to the large volume
of tests in this section, it is unfeasible to give tables of figures relating to the scores of
all pairs of sources for all evaluation measures. However, figure 4.3 attempts to visually
illustrate the overall performance of all pairs, using a brighter grid square for a higher
score. In figure 4.3(f), the results of all measures are combined by first computing the
rank of each pair, according to each measure, and then taking the median rank from the
5 measures. A brightness is then assigned to each rank, from 1 (white) to 132 (black).
On the y-axis of each subfigure is the primary source and the x-axis is the secondary

source. As previously mentioned, primary refers to the fact that the scores comes from
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the result of applying the chosen threshold to this source, with the secondary source
merely helping to find that threshold.

The top 10 performing pairs are shown in table 4.4. The sources are sorted by the
median of their five ranks according to all five measures. As well as using the full set
of 492 images, a smaller subset of 38 images was also used and the results shown in
the three rightmost columns in the table. This subset was selected by removing the
Intelligent Room and VSSN sequences, since they are the two largest sequences and
heavily bias results due to their relatively large number of images.

It is clear from both sets of results that the most useful primary sources are
{R,G, B,V}. Edge-based sources do not appear as good primary sources, nor do the
hue or saturation differences. This is to be expected as gradient-based sources primarily
emphasise the foreground on object boundaries only, and hue and saturation difference
are prone to high noise. The gradient-based images provide excellent secondary sources,
as evident in the results on the full set. In the partial set, sources H and s appear as
the most useful secondary sources, but interestingly so do R, G and B. This suggests
that the EMIT algorithm is able to avoid the strong correlation in the noise between

these sources and find good thresholds.

Table 4.4: Top performing pairs of sources for the EMIT algorithm: Full Set refers
to all 492 images and Partial Set refers to the full set with the VSSN and Intelligent
Room sequences removed (38 images).

Full Set Partial Set
Primary | Secondary | Median | Primary | Secondary | Median
source source rank source source rank

G b 2 R S 1
G T 4 A% S 2
G g 4 G B 3
A% g 5 G H 5
G v 5 G s 5
R g 7 R B 6
\Y b 7 B G 7
B g 8 B R 8
R b 9 B H 11
B v 11 v H 11

Results Table 4.5 shows the top 5 best performing methods overall, according to

each measure. The method names are abbreviated for clarity. For example, Kpg refers
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Figure 4.3: Evaluation scores of fusing all 12 pairs of sources: An illustration of the
merits of fusing various combinations of sources, according to the 5 different measures.
Brighter points represent better scores. Shown in (f) is a combination of all measures
using each pair’s median rank.
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to Kapur’s method using the R difference image. The values shown in brackets are
the average value of each performance measure. Clearly, the Kapur method dominates
the table, with the Otsu method following behind (e.g. Oty refers to Otsu’s method
using the V' difference image). By combining the measures, taking the median rank of
each method, the top 20 methods are shown in table 4.6. Again, the results of two sets
are shown: the full set of 492 images, and the partial set of 38 images, obtained by
excluding the Intelligent Room and VSSN sequences.

The MI-based algorithms are adversely affected by the noise in the Intelligent room
sequence. Very low noise is present in the corners of the image, due to the pixels being
overexposed, but the rest of the image has high noise. This corresponds to the synthetic
data of the previous chapter where the noise peak has grown so large it swamps the
true peak. Figure 4.4 shows a failure of the EMIT algorithm on an image from the
Intelligent Room sequence.

On the other hand, table 4.7 shows some positive results in favour of the MI-based
methods. For every image (of the 492) and each of the five performance measures,
the best ranking method was established. The table indicates how frequently the
best method was one of the 132 MI-based methods, instead of one of the other 48
standard methods. On average, the top performing method is based on MI in 75.57%
of the images. Since there are more MI-based methods being evaluated, they have
an advantage, but this is still an interesting result. When we further examine this
finding, and compute how often each method is ranked first for a tested image, the
My i method is the top performer more often than any other method, including the
Kapur methods. Table 4.8 illustrates this fact. It shows how often a method was
ranked first of all methods for an image/measure test. A total of 492 images were
used, with 5 performance measures, giving a total of 2,460 image/measure tests. The
MI thresholding method using V' as a primary source and H as a secondary source
(Mv, i) was ranked first in 226 tests, more than any other method. However, due to
the correlated noise in the Intelligent Room sequence, its average was severly affected.
However, these results show that, given favourable conditions, the MI-based methods

can sometimes outperform traditional approaches.

Quality-performance correlation In trying to automatically ascertain whether the
EMIT algorithm was successful, the correlation between the quality measure returned
and the performance measures was investigated. It was found that a weak correlation
existed between the quality and most of the performance indicators.

Table 4.9 shows Pearson’s correlation coefficient relating quality to the 5 perfor-
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Table 4.5: Top 5 performing methods overall, according to each measure: Kp is Kapur
and Ot is Otsu’s method, average measure values shown.

Measure | #1 #2 #3 #4 #5

M, Kpgr(0.595) | Kpy(0.593) | Kpc(0.590) | Kpp(0.588) | Oty (0.566)
Mo Kpr(0.621) | Kpy(0.617) | Kpc(0.613) | Kpp(0.609) | Ot:(0.589)
Ms Kpp(0.836) | Kpr(0.829) | Kpy(0.826) | Kpc(0.824) | Otp(0.786)
My Kpr(0.833) | Kpy(0.830) | Kpc(0.828) | Oty(0.821) | Ot(0.820)
Ms Kpr(0.487) | Kpy(0.484) | Kpe(0.479) | Kpp(0.477) | Otp(0.450)

Table 4.6: Top performing methods overall sorted by median rank of all 5 measures:
Kapur (Kp), Otsu (Ot), Rosin (Rs), EMIT (E) and MI thresholding (M).

Full Set Partial Set
Method | Median Method Median

# | source(s) | rank | and source(s) | rank
1 KpR 1 KpR 1
2 Kpy 2 Otpr 4
3 Kpa 3 Otg 4
4 Kpp 4 Kpp 6
5 Ota 6 Otp 7
6 Oty 6 Oty 7
7 Otgr 7 ERs 7
8 Otp 7 Rsa 8
9 Eqy 10 Rspg 9
10 Eg g4 13 Mg s 10
11| By, 13 Rsp 11
12|  Eg, 15 Kpc 12
13| Ey, 15 Rsy 12
14| Egq, 16 Mg.s 14
15| Egyp 17 By, 15
16 | Eq, 20 Kpy 17
17 ERry 21 Mg u 18
18| Ep, 21 Ecp 21
19 Eg, 22 My s 21
20 |  Eg, 23 My.g 23
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Table 4.7: Number of images in which a MI-based method out-performs other algo-
rithms

Measure | # frames | % total
M, 380 77.24%
Moy 365 74.19%
Ms 416 84.55%
My 333 67.68%
M 365 74.19%

Table 4.8: Ranked list of methods in order of the number of times they were ranked
first for a frame/measure evaluation. Of a total of 2,460 (492 x 5) frame/measure tests,
the MI thresholding algorithm using the V' and H sources was ranked first in 226 of
them.

Method | # Top scoring | % Top scoring
type images images
My g 226 9.19
Mg H 138 5.61
My p, 138 5.61
Kpa 130 5.28
Kppr 115 4.67
Mg n 109 4.43
Kpy 96 3.90
Kpp 88 3.58
Mg p, 86 3.50
Ev u 58 2.36
Eg., 43 1.75
Ec u 42 1.71
Eru 37 1.50
Oty 31 1.26
Egq4 30 1.22
Mg,s 28 1.14
Mg s 27 1.10
Es R 26 1.06
My 25 1.02
Mg, 24 0.98
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(a) Image (b) Ground truth (c) Kpr (d) Ecu

Figure 4.4: Example failure of the EMIT algorithm: due to the very low noise at the
boundary, and the high noise in the centre, the sources have strongly correlated noise,
causing the method to fail.

mance measures. The top five rows are the values for some of the highest performing
sources using the median rank metric of table 4.4. The last line shows the values for
all 132 pairs of sources over the 492 images.

Figure 4.5 shows some graphs illustrating these weak correlations. The mean value
of the performance measures tend upwards as the quality score increases. However,
the variance is very large in comparison, so any kind of practical exploitation of this
correlation would need to use a large number of tests in order to use quality as a reliable

measure of performance.

Table 4.9: Correlation coefficients between quality and performance measures
Sources M, Moy Ms My Ms
G, b 0.494342 | 0.295082 | 0.415945 | 0.178785 | 0.205603
0.512387 | 0.295198 | 0.427084 | 0.183760 | 0.215294
0.519210 | 0.283399 | 0.425815 | 0.171710 | 0.204506
0.509556 | 0.264159 | 0.396021 | 0.136299 | 0.163691
0.514160 | 0.300826 | 0.421541 | 0.177638 | 0.205225
0.209598 | 0.262382 | 0.094052 | 0.256596 | 0.323423

)

)

)

a0
Hoe = 09 09

Discussion From the experiments, it has been shown that the EMIT version of the
algorithm performs much better than the standard maximum peak selection method,
in the presence of correlated noise in the sources. The Kapur method of thresholding
was shown to perform very well across different datasets. It consistently chose a higher
threshold than most other methods and avoided noise, giving high precision. There
were cases however when the EMIT algorithm performed better. Figure 4.6 shows a
number of such examples.

An interesting result of these tests was the discovery that the My p method was

ranked first more often than any other method for a given image from the test collection.
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Figure 4.5: Graphs illustrating the weak correlation between quality and performance.
Error bars indicate one standard deviation.

Its poor performance in the Intelligent-Room images, resulting from correlated noise
due to overexposure of some pixels, can be corrected by rerunning the method on those
pixels that were not classed as background by both sources. This approach gives results
comparable to Kapur on these images, but it is left to future work to determine when to
automatically exclude pixels in this way and thereby avoid this problem. The results in
table 4.7, showing that MI-based methods are very often the top-performers, give hope
to the use of these methods in foreground detection, despite the obvious correlated
nature of the sources. The challenge is therefore to create automatic methods for
choosing the best performing sources. For this goal, the correlation between quality
and performance might be a profitable line of inquiry.

This experiment focussed only on using a primary source and selecting the threshold
for this source by using its relationship with a secondary source. An interesing area of
future work could examine the various ways in which the binary images produced for
both sources could be fused for improved foreground detection. Some preliminary work
in this direction is reported in a later section which focusses on skin pixel detection

using thermal infrared and colour visual information.
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Figure 4.6: Example results of foreground detection
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4.2.2 Person detection

(i) §)) (k) (1)

Figure 4.7: Person-detection example: (a) Current image, (b) Background image, (c)
Background difference, (d) Image edges, (e) Silhouette detection map, (f) Contour
detection map, (g) Histogram of (e), (h) Histogram of (f), (i) Kapur thresholded result,
(j) the proposed method, (k) Mutual information surface, (1) Detected People

To further test the MI thresholding algorithm, it was incorporated into a person de-
tection system and used the OSU Thermal Pedestrian Database from the OTCBVS
Benchmark Dataset [29] to evaluate performance. The database contains sequences
of pedestrian images taken with a thermal infrared camera in different seasons and
features wide variation in the appearance of pedestrians. Since the goal is to evaluate
the thresholding component of the system, the other components are chosen to be as
simplistic as possible.

The system worked as follows. First, the median background image was computed
for each sequence. Then for each image, two detection signals were created: one based
on pedestrian contour and the other based on pedestrian silhouette. The contour
detection map was obtained by convolving a pedestrian contour template, shown in
figure 4.9(a), with the Sobel edges of the image. The silhouette detection map was
obtained by convolving a pedestrian silhouette template, shown in figure 4.9(b), with

the absolute difference image between the current image and the background image.
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The pedestrian silhouette template is simply a representative person shape taken from
the data and binarised. The contour template is simply its boundary pixels. The
assumption that all people appear at a similar scale can be made, since the camera
is mounted at a high angle. Thresholds for these maps were then obtained using the
EMIT algorithm with o = 1.5 (the same o value as used in the foreground detection
application). Pedestrian regions were determined as all pixels that had above threshold
values in both maps (binary AND fusion). Next, each local maxima in the contour
detection map within these regions was paired with the closest local maxima in the
silhouette detection map within these regions. Maxima in the silhouette detection
map were then paired with the closest maxima in the contour detection map. Person
candidates corresponded to each pair of maxima, from the two separate maps, that
were both paired to each other (i.e. they were both closest to each other). Candidates
were then evaluated according to the minimum description length principle, in respect
to how much of the pedestrian regions they could explain. A pedestrian candidate
template (shown in figure 4.10) is used to evaluate the fitness of each candidate by
calculating the maximum number of pedestrian-region pixels it overlaps with, when
centred on either maxima of the candidate. The best candidate is considered a ‘true’
person and the pedestrian region pixels it overlaps are removed. This process continues
until there are no remaining candidates, or no candidate can explain more than a pre-
defined number of pixels. This lower limit was set at 15% of the template size. The
EMIT algorithm was modified slightly to handle the appearance of an extra (non-noise)
peak in the MI surface; an example of which is shown in figure 4.8(g). Instead of using
Rosin thresholding, only peaks that were greater in height than 25% of the highest peak
were considered. In figure 4.8(f), a very small peak is seen in the MI surface at position
(154,154) of height 0.0043. This peak, although it is very small, is not eliminated by
the Rosin threshold in the first stage of the EMIT algorithm, and actually returns the
highest quality score of 0.6025. Using its thresholds results in figure 4.8(h), missing
most of the people. The modification of the first stage of the EMIT algorithm was
necessary to remove peaks such as this. The correct peak has a MI value of 0.0412 and
a quality of 0.2634.

The proposed algorithm was compared to the Kapur method, which has shown
excellent performance in the foreground detection tests and also in previous work [118].
Since there are two sources of information (the silhouette and contour detection maps),
either source could be used, or Kapur thresholding could be applied to both maps and
their binary results fused in some way. It was found that the use of the silhouette map

performed best, when compared to the contour map or to a binary AND/OR fusion of
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both maps. The results of running the system on the OTCBVS person database are
shown in table 4.10. The rest of the system used was identical to the EMIT system,
only the thresholding component had changed.

An example of person detection is shown in figure 4.7. The images are from sequence
8, where Kapur performs poorly, with a very low person recall. In this difficult example,
the two people, in the bottom left of the image, have been standing in the same spot for
the entire sequence, so have been included in the background image. However, the two
people do not remain completely stationary and therefore their slight motion leaves an
impression on the difference image and hence, on the silhouette based detector map.
The MI thresholding method causes the silhouette threshold to drop so that it agrees
with the strong detection in the contour-based detection map. Kapur, on the other
hand, sets the two thresholds independently and therefore fails to detect all the people.

For the results shown in table 4.10 a value of 0.15 was used as the lower limit (min-
imum fraction) of the candidate mask that a valid person should take into account. To
ensure that this ad-hoc figure did not bias results, the experiment was run multiple
times with difference values of this limit. Figure 4.11 shows the relative overall perfor-
mance of both systems, measured using the F; measure. Figure 4.12 shows the same
results plotted on a precision-recall curve for both systems. The plots show that the
EMIT system clearly outperforms the Kapur-based system.

Experiments in the previous chapter, using synthetic data, showed that one data
source and its gradient could be used together as data sources for the MI thresholding
algorithm, producing excellent results. Here, real-world data was used and it was shown
that a spatial-gradient-based signal (the contour filtered image) can be combined with
a temporal-gradient-based signal (the background difference) to produce good results,

outperforming thresholding using individual signals alone.

4.2.3 Shadow detection

In this subsection, the detection of shadow pixels is targetted and we examine how
the algorithm for MI thresholding can be adapted for this purpose. Specifically, the
algorithm is extended to select, instead of a pair of thresholds, a pair of bounds that
maximise agreement between sources.

Shadow detection is a useful component in background modelling algorithms, as it
eliminates foreground pixel errors caused by colour changes due to shadows cast by
moving objects. Other interesting work has been done by Finlayson et al. on removing

shadows from still images [37], given some assumptions about the scene lighting. In
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Figure 4.8: Example of additional high-quality-value peak in MI surface: (a) current
image, (b) background image, (c) silhouette detection map (source 1), (d) contour
detection map (source 2), (e) MI surface, (f) MI surface with peak locations super-
imposed, (g) plot of main diagonal of MI surface showing the peak at (154,154), (h)
result of using the peak with highest quality, (i) result of using the peak with highest
MI value. Results in (h) and (i) are colour-coded as follows: cyan indicates a detection
in (c), yellow indicates a detection in (d) and red indicates a detection in both maps,
navy blue indicates no detection in either source for that pixel.
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(a) (b)

Figure 4.9: Pedestrian models used for experiments: (a) contour template and (b)
silhouette template

Figure 4.10: Pedestrian foreground model obtained by convolving the silhouette tem-
plate with a unit impulse response and binarised using a threshold of zero.
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Figure 4.11: Performance of the EMIT system vs. the Kapur system using the F}
measure to combine precision and recall. The x-axis is the lower limit for the fraction
of pixels a person should account for (set to 0.15 in table 4.10): EMIT (Blue circles)
and Kapur (Red crosses).
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Figure 4.12: Precision-recall curve for the EMIT system vs. the Kapur system as the
limit value changes: EMIT (Blue circles) and Kapur (Red crosses).
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Table 4.10: The results of using the EMIT algorithm and Kapur thesholding in the
pedestrian detection system on the OTCBVS database are shown below

Sequence | People | EMIT Kapur
Precision | Recall Precision | Recall

1 91 0.977778 | 0.967033 | 1.000000 | 0.868132
2 100 0.969072 | 0.940000 | 0.989899 | 0.980000
3 101 0.989899 | 0.970297 | 0.952381 | 0.990099
4 109 0.981818 | 0.990826 | 0.981982 | 1.000000
5 101 0.950980 | 0.960396 | 0.941176 | 0.950495
6 97 1.000000 | 0.958763 | 0.989247 | 0.948454
7 94 0.978947 | 0.989362 | 0.948980 | 0.989362
8 99 0.988235 | 0.848485 | 0.965517 | 0.565657
9 95 1.000000 | 0.989474 | 1.000000 | 1.000000
10 97 0.978495 | 0.938144 | 0.946809 | 0.917526
Total 984 0.981211 | 0.955285 | 0.971092 | 0.921748

this application, shadow pixels can be modelled as a bounded decrease in brightness:

>

I3<V,<ly (4.1)

where V; is the relative change in luminance of pixel ¢ compared to the background
pixel, and is given by V; = V; /max {V;PE 1}. V; is the current luminance of pixel i
and ViBG is the luminance of background pixel ¢. The selection of appropriate values
for bounds I3 and I4 can be done empirically, or can be trained on pre-annotated data.
However, if the assumption is made that shadows also cause a decrease in the pixel’s
colour saturation [108], then a second source of data is available that can assist in
parameter selection. This assumption may not be true in general, but may be expected
to be true on backgrounds with strong colour saturation. The shadow-pixel is modelled

in saturation space as a bounded range given by
I <8 <ly (4.2)

where S; is the relative change in saturation, and is given by S; = S;/ max {SPE 1}.
Given an image containing a cast shadow, applying equation (4.1) to the luminance
change image produces a binary image. A binary image is similarly obtained by ap-
plying equation (4.2) to the associated saturation change image. If the parameters
{l1,12,13,14} are selected correctly, then a strong agreement between the two binary

masks is expected, which is the same assumption made for MI thresholding. Mutual
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information can be used as an agreement measure, as was used in the experiments
of the previous chapter, but as examined in the discussion of the last chapter, there
are other agreement measures that can be computed in a similar manner. We now
briefly recap the basis for measuring binary agreement and then describe the proposed
dynamic bounding algorithm that chooses a lower and upper bound for a single data
source, such that the binary image it generates will be maximally in agreement with a
second binary source.

Since only binary images are considered, a 4-value co-occurrence histogram is all
that is needed to compute agreement. Given 2 binary images, X and Y, with N pixels
each, we let v and v be binary-valued variables, with (', equal to the number of pixels
whose classification is v in image X and v in image Y. The mutual information, uxy,

between the pair of binary images, X and Y, is computed as follows:

pxy (u,v) = C;\Lf’v (4.3)

px (u) = pxy(u,0) + pxy(u, 1) (4.4)

py (v) = pxy(0,v) + pxy(1,0) (4.5)

HXY = Z Z pxy(u,v)logpi)g)(g;(}q)j) (4.6)

uef{0,1} ve{0,1}
As well as mutual information, another measure, mentioned in the last chapter, that

has been frequently used to determine correlation between signals is Kendall’s 7 [67].

This measure can be computed using the same histogram counts:

S pXY(07 0)pXY(17 1) - pXY(O, 1)pxy(1, O)
VPx (0)py (0)px (1)py (1) '

(4.7)

Alternative agreement measures, other than the two given here, are also possible, as
discussed in the final section of the previous chapter, and are all functions of the four
values of (' ,. Regardless of the choice of agreement measure, maximising this mea-
sure requires finding the optimum parameters in high-dimensional space, 4-dimensions
in the case of shadow detection. As with most complex high-dimensional problems,
finding a global maximum cannot be guaranteed. However, the Simplex algorithm [92]
or some other gradient ascent method could be used to find a good local maximum. It
is proposed instead to use a dynamic programming-based solution, similar to the algo-
rithm for choosing thresholds for maximising mutual information, to optimise two of

the parameters at a time, iterating between data sources until converging on a solution.
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Input: Threshold list A and signals X and Y
with X = {x1, 29, ...}, Y ={y1,92, .., yr}
Initialise count maps to zero: Cy . (*,%) =0
co = #{k;xr, =0} // count zeros in binary signal
¢1 = #{k;xr, =1} // count ones in binary signal
For all data points (xg, yx)
Find largest a; € A such that a; < Yk
Find smallest a; € A such that yr < aj
ka:U(l’ 1) ++
if (a; and a; exist)
C{I?k,0(17j) -
ka,o(i +1,7+1)++
end
Co,0 = integrallmage(Cy ) // integrate markers
Ci o = integralImage(Ct o) // integrate markers
Co1 = co — Coyp
01,1 = C1 — 01,0

Figure 4.13: Pseudocode for dynamic bounding algorithm
In the next section, the proposed dynamic bounding algorithm is explained in detail.

Dynamic bounding algorithm In order to choose the optimum pair of bounds
that will maximise the agreement between the bounded image and the binary source,
a brute-force search could be employed. Trying all pairs of thresholds from a discrete
set of K elements has complexity in the order of O(NK?), where N is the number of
pixels in the image. The dynamic programming algorithm described here is of order
O(K? + N) and evaluates all possible pairs of bounds in a discrete set.

The input to the algorithm is a discrete set of thresholds, A= {a1,a9,...,ax}, a
binary signal, X, and a real-valued signal, Y, of the same size as X. The goal is to
select bounds for signal Y, such that when a binary signal, Y*, is created using these
bounds, its agreement with signal X is maximised. The output is a mapping array,
Chp,q(i,7), which gives the number of binary pairings of x;, = p and y; = ¢ when the
bounds selected are a; and a;, with ¢ < j. These counts can then be normalised and
used in equation (4.6) or (4.7) to create an agreement surface, providing the agreement
score for all possible bounding parameter selections. The bounds a; and a; that give
the maximum agreement can then be selected. The pseudocode for the algorithm is
given in figure 4.13. The integrallmage() function refers to the standard dynamic
programming method that efficiently replaces each pixel with the sum of all pixels in

the rectangle whose opposite corners are this pixel and the pixel in (1, 1) [149].
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A

(a) background/image (b) bounded S (¢) bounded V

Figure 4.14: Shadow parameter selection example 1: (a) the background image and the
testing image, (b) detected shadow pixels in saturation-change images and (c) detected
shadow pixels in brightness-change images. The top rows of (b) and (c) resulted from
using Kendall’s 7 as an agreement measure. The bottom rows corresponds to the use
of mutual information.

Results Figures 4.14 and 4.15 show the results of shadow detection on two images,
with results shown from using Kendall’s 7 and MI as the agreement measure. The
testing images came from the Terrascope dataset [58]. For the experiments, a median
background image was used, and 256 equally spaced thresholds between 1/255 and 1.
The four parameters are selected so as to maximise the agreement between the binary
images obtained by bounding the saturation and luminance images, as in equations
(4.1) and (4.2). For all tests, the initial parameters were set at {0.3,0.97,0.3,0.97},
though other reasonable initialisations produced similar results. Parameters {l1,l2}
were optimised first, and then {l3,14}. This continued until convergence.

Using mutual information as the agreement measure, image 1 (Gupta) converged
to {0.3686,0.9529,0.4120,0.9654} in 4 iterations with a MI score of 0.0556. Image 2
(Crasto) converged to {0.4314,0.9373,0.5725,0.9490} in 6 iterations with a MI score of
0.0450. Using Kendall’s 7 as the agreement measure the method converges differently.
Using the same initial parameters, Gupta converges in 7 iterations to {0.3686,0.9294,
0.3889,0.9500} with 7 = 0.3680. The Crasto image converges in 5 iterations to
{0.4549,0.9333,0.5725,0.9490} with 7 = 0.3088. Both agreement measures provide
reasonable results for images in this dataset. Additionally, the proposed method is

much more efficient than a Simplex search, which required over 150 iterations.
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(a) background/image (b) bounded S (¢) bounded V

Figure 4.15: Shadow parameter selection example 2: (a) the background image and the
testing image, (b) detected shadow pixels in saturation-change images and (c) detected
shadow pixels in brightness-change images. The top rows of (b) and (c) resulted from
using Kendall’s 7 as an agreement measure. The bottom rows corresponds to the use
of mutual information.

Overall, shadow detection using this method did not perform well on other data
that was investigated, such as the ground-truthed shadow data provided by [108]. The
assumption that saturation decreases is often not true as many backgrounds do not
have strong colour content. Additionally, the two sources (luminance and saturation)
cannot really be considered independent, as they come from the same sensor. In sce-
narios where the assumption is true, the method might be improved by first removing
‘true foreground pixels’, such as those whose hue has changed significantly. Later in
this chapter, in section 4.3.3, a more practical application of the dynamic bounding

algorithm is described, using thermo-visual information for adaptive skin detection.

4.3 Applications using strongly independent sources

4.3.1 Thermal and visible analysis

In this subsection, the use of thermal infrared and visual information is examined in
a surveillance context, particularly in the detection of foreground objects of interest.
Two experiments in this area are conducted.

In the previous chapter results were given on synthetic data, where it was shown
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that if common information is present, the MI values are much greater than those when
no common information is present. Following on from this analysis, the first experiment
in this subsection demonstrates how the MI value can be used to determine if common
information is present in the scene, and this allows the detection of empty frames where
no moving objects are present, and therefore no common information for the algorithm
to exploit.

In the second experiment, the MI thresholding algorithm is used for detecting fore-
ground in thermo-visual video data. This approach is compared to standard back-
ground modelling techniques, and also to more advanced models that contain shadow
suppression modules. The proposed algorithm is shown to perform very well, using the
common information shared by the thermal and visible signals to avoid the uncorrelted
noise, but retain important object pixels.

Finally, a brief experiment is conducted, investigating the optimal smoothing pro-
cedure that was demonstrated synthetically in the last section. The distinct corner and
peak of the MI and quality value graphs respectively are shown to be present in real
data, as was the case with the synthetically generated data. However, the smoothing
parameter selected at the appropriate scale is shown not to be optimal for the extraction

of separate objects.

Empty-frame detection As the synthetic tests revealed in the last chapter, there is
a good separation between the distributions of MI values when common information is
present and when it is not. The experiment described here shows that it is possible to
exploit the lack of common information to robustly detect when nothing is happening
in the scene.

For 5 sequences, and a total of 22,225 frames, those frames which contained no
moving objects were manually annotated. Next, using a median background image
for each sequence, in the visible and infrared spectra, the MI thresholding algorithm
was used to detect appropriate thresholds. The MI value returned, m, was used to
determine whether any common information was present. Specifically, the separation
value, S, was computed using S = (m — p)/o, with p and o given by equations 3.8
and 3.9, as before. This indicates how far outside the distribution of no-common-
information the m value is placed. A threshold for the separation values was chosen
as 3.5 to ensure that the vast majority of empty-frames were correctly detected. All
frames whose separation value was below this threshold were determined to be empty
frames. Since empty frames would occur together in periods, misclassified frames could

be reduced using simple morphological operations. An erosion, followed by a dilation
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was carried out on the resulting binary results, using a 5 x 1 structuring element. Figure
4.16 shows examples of the images in the sequences used in this experiment. The last
sequence is from the publicly available OTCBVS dataset, and the others were privately
captured using the thermo-visual camera rig described in chapter 2. A graph of the
separation values of sequence 2004 is shown in figure 4.17.

Using the ground-truthed annotation of the 5 sequences, the detection of empty
frames was evaluated. An empty frame was declared if the separation value was less
than 3.5. In the evaluations, a leeway of +/—5 frames was given at the boundaries of the
annotated empty-frame periods to account for annotation error, and the uncertainty of
determining exactly when an object has entered/left the scene. These boundary frames
were ignored. Table 4.11 shows the results of the experiment on the 5 sequences. In
sequence 3 for example, of the 1,409 empty frames, all were detected except 4 (False
negatives, FN). 146 false positives (declared as empty, but in fact contained a person)
appeared but these were reduced to just 27 with the morphological postprocessing. The
results appear quite positive, but some misclassifications occurred and they are now
discussed.

In sequence 3, a thermally-weak person appears quite small in the scene, leading to
the false positives detected. The empty frame detector believes there is nothing there
because of the weak signal in both modalities, in terms of its size and its signal strength.
More agressive morphological processing could remove these errors, since the separation
value fluctuates around the threhold in this part of the sequence. In sequence 4, the
false positives are caused by the presence of a man standing in the bike-rack, with
a weak detection strength in both modalities. In the visible spectrum, he is mostly
camouflagued by his black clothing and in the thermal infrared, his heavily insulated
leather motorcycle clothing masks his temperature difference. In sequence 2004, the
false positives are caused by a tree which heavily occluded the person entering the
scene, giving them a weak signal in both modalities. On sequences 1020 and 1021
perfect classification is achieved, even without an post-processing. Over all sequences,
it was found that when false negatives appeared, they occurred on the boundary of
empty-frame periods, and would disappear if a leeway greater than 5 frames was used.

Instead of the simple morphological filtering that was used here, a better strategy
might be to use a hysteresis approach, or the more complex Viterbi algorithm, to smooth
the output and reduce misclassified frames. However, this simple post-processing op-
eration achieves good results.

This detection of nothing is important to demonstrate, as it illustrates that the MI

thresholding algorithm can, in a way, detect when it has failed, or when unfavourable
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conditions exist for it to operate optimally. The separation value itself can be inter-
preted as a confidence measure, indicating whether the algorithm may have produced

good results.

(c) Seq 1020

(d) Seq 1021

(e) Seq 2004

Figure 4.16: Example backgrounds and sample images from the sequences used for
empty-frame detection.

110



4.3 Applications using strongly independent sources

Sequence | Frames | Empty frames | Raw values | Post processed
FP | FN | FP FN
3 11778 1409 146 4 27 4
4 5076 0 39 0 5 0
1020 1566 178 0 0 0 0
1021 792 111 0 0 0 0
2004 3013 1618 38 10 5 16

Table 4.11: Detecting empty frames by thresholding the MI separation value at 3.5:
The FP and FN columns refer to false positives and false negatives respectively, where
an epty frame was falsely detected or falsely missed.

-
o
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Frame number

Figure 4.17: Separation values for sequence 2004: the two periods where no common
information is present can be clearly seen between frames 550 and 1150, and between
frames 2050 and 3000. Values below zero were clipped at zero for display purposes.

Thermo-visual foreground detection The background model used in this exper-
iment is described in [63], which is an improved version of the seminal work of Stauf-
fer and Grimson [137] on using mixtures of Gaussians to represent each pixel. The
improvement over the traditional mixture of Gaussians approach was to introduce a
faster initialisation method and to propose a single-parameter method of detecting
shadows. In addition, the updating mechanism for the background model uses a trun-
cated Gaussian, which causes the variance to slowly shrink. A minimum variance limit,
not discussed in either paper, was needed to stop the variance of the models shrinking
to zero. The parameters used for the background model are given in table 4.12. Where
possible, the values given in the original paper [63] were used. Some values, such as

oinit Were not specified so the values used were taken from a turorial paper on the
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mixture of Gaussians approach [107].

The algorithm outputs binary values for foreground and background, as well as
marking some foreground pixels as shadows, when the shadow detection module is used.
In order to make the background model suitable for MI thresholding, it was modified to
output distance values as follows. Each new pixel is compared to all Gaussian models
that formed its background model. Its absolute difference from the model mean was
divided by the model standard deviation to obtain a distance value. Ordinarily, if this
value is less than 2.5, a match is declared and the pixel is assumed to be a background
pixel. Here, the minimum distance from the pixel to any of the background Gaussian
models is used as the distance value for that pixel. Therefore, a distance map is obtained
for the EMIT algorithm.

For this experiment two background models were used: One for RGB colour pix-
els and one for thermal infrared brightness. The visual model uses a 3-dimensional
Gaussian per-pixel, whereas the thermal model uses one dimension. The video se-
quence used here was captured using the thermo-visual rig described in chapter 2 and
contains 5,076 frames. The scene is a busy pedestrian intersection in Dublin City Uni-
versity. A bike-rack is in the centre of the scene and a roadway is also included so cars
can been seen passing by. To evaluate the algorithms, 29 images were selected from the
sequence, approximately spaced over the entire duration. These images were manually
annotated to mark foreground object pixels.

The difference images from both background models were fed into the MI thresh-
olding algorithm, which produces two foreground results. The models also individually
produce foreground results using the standard approach of thresholding at 2.50. A
third improved foreground mask is created by taking the output of the visible spec-
trum model and removing pixels detected as shadows [63]. This shadow suppression
module uses chrominance information not available to the MI thresholding algorithm.
Since both the MI thresholding approach and the background model are pixel-based
algorithms, no region-based filtering or morphological operations were performed on
the resulting foreground images of any method.

The performance of each method of foreground pixel detection was determined
using a manually annotated ground truth and observing the pixel classifications of
each method. Table 4.13 gives the total precision and recall figures for all algorithms
on the 29 ground-truthed foreground images. The F; measure, computed from the
precision and recall values, shows that the MI thresholding algorithm out-performs the
other algorithms in both the visible and infrared imagery. For a small decrease in recall,

the precision of the foreground results are dramatically improved. The MI thresholding
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Var | Val Comment
A 2.5 Distance (in os) from mean value
Standard foreground threshold value
K 5 Number of Gaussians
value used in [63]
oinit | 30.0 initial Gaussian variance
value used in [107]
Winit | 0.05 initial Gaussian weighting
value used in [107]
Omin | 3.0 Minimum standard deviation
L 500 Update rate parameter
value used in [63]
T 0.6 | Fraction of observed samples to model as background
value used in [63]
T 0.7 shadow threshold
value used in [63]

Table 4.12: Parameters used in the background model.

Method Precision | Recall Fy
Stauffer Vis 0.035 0.887 | 0.068
Stauffer Vis (shadow removal) 0.168 0.793 | 0.278
MI Vis 0.653 0.743 | 0.695
Stauffer IR 0.242 0.502 | 0.326
MI IR 0.674 0.415 | 0.514

Table 4.13: Results of foreground pixel detection using standard background modelling
vs. Mutual information thresholding.
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algorithm exploits the fact that the objects appear in both modalities but false positives
such as noise, infrared halos and visible shadows are uncorrelated in the sources, and
therefore they are minimised in the foreground output. In figure 4.18 a number of
example results are given of foreground returned by the tested algorithms. The shadow
suppression does well to remove incorrect foreground pixels but still contains high noise.
The proposed method clearly avoids noise by exploiting common information between

modalities.

Optimal smoothing In the previous chapter, it was shown that spatial information
could be exploited by smoothing the difference images before using the MI thresholding
algorithm. Using synthetic data, the optimal scale for smoothing was found to produce
a peak in the quality plot and a corner in the MI graph. This approach is now briefly
investigated for real data.

A median background image was computed in the visible and infrared domains. The
difference image in the visible spectrum was computed using the Euclidian distance in
RGB space from the image pixel to the background image pixel. The infrared difference
image was simply the absolute difference between the current image and the background
image. The images and difference images are shown in figures 4.19(a), (b), (e) and (f).

By smoothing both difference images with a Gaussian kernel of width ¢ and using
the smoothened signals as input to the MI thresholding algorithm, an MI value and a
quality value are returned. Plotting these values on two graphs as o is varied results
in the plots of figure 4.19(c) and (g), for MI and quality respectively. The peak quality
value occurs at ¢ = 13.6. A corner appears at a similar location on the MI graph. Using
the value of o, the resulting thresholded images are shown in figure 4.19(h). Here the
thresholded visible and infrared images are shown together, fused colourwise to show
foreground of visible only (blue), infrared only (yellow) and both (white). This can
be compared to the unsmoothed case in figure 4.19(d). It is evident that although the
graphs match the synthetic results and clearly indicate a value for o, this value causes
objects to be merged together due to their close proximity. In the next section, we
revisit optimal smoothing, but in the context of event detection using audio and visual

features.

4.3.2 Audio and video surveillance

In most of the preceding discussion, the word pizels was used to refer to the samples
of data from the two detection signals. Although this word suggests that the input

must be some form of visual data, any type of detection signal can be used. In this
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(o) Shad-Vis

(u) Vis (v) SG-Vis (w) Shad-Vis (x) MI-Vis

Figure 4.18: Example results comparing Stauffer and Grimson background modelling to
MI thresholding: Images show the visible (Vis) and infrared (IR) frames, the annotated
ground-truth (GT), infrared foreground detected using Stauffer and Grimson method
(SG-IR) and MI thresholding (MI-IR), and visible foreground detected using Stauffer
and Grimson method (SG-Vis), shadow-suppressed Stauffer and Grimson (Shad-Vis)
and MI thresholding (MI-Vis). No filtering or morphological processing was performed
on any of the images.
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(f) IR Dif (g) Quality (h) Filtered at o =
13.6

Figure 4.19: Optimal smoothing of thermo-visual images. The MI and quality value
plots in (c) and (g) indicate optimal smoothing at o = 13.6, but this results in objects
losing their separate identities, seen by comparing the unsmoothed (d) and smoothed
results (h).

section, another application of using mutual information thresholding is given, this time
to robustly detect surveillance events, namely people passing through a corridor, using
noisy visual and audio detection signals.

Figure 4.20 shows the view of the corridor from a surveillance camera. The corridor
has windows along one side, which cause frequent changes in the corridor light levels.
An omni-directional audio microphone was placed directly beside the camera. Since
it is not directional, it picks up sounds from behind the camera, as well as outside
noise through the windows. The alignment of the detection sources is not perfect,
since the camera has a narrow, but long field of view, looking down the corridor,
whereas the microphone detects sound in a spherical area around it. However, since
their area of detection overlap is in the near-field, the location where people are to be
detected, sounds or visual detections outside this area should appear as uncorrelated
false positives to the other modality.

Video and audio were recorded for a period of 1 hour. The frame-rate was 1 frame
per second and the audio was sampled as 44kHz. From the visual data, 9 different
detection features were extracted. We now examine how MI thresholding can be used
to determine which features are best suited for the detection task, by exploiting the
redundant information shared by the audio detection signal. The 9 features are as

follows:
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(a) Brightness difference Consecutive frames are subtracted and the sum of ab-
solute differences between each pixel is computed. This feature can be affected by

sudden brightness changes due to sunlight.

(b) Thresholded Brightness difference using the Kapur method This feature
is the same as (a) above but the absolute difference of each pixel is thresholded using the

Kapur method before summing them. Therefore the result is a sum of binary values.

(c) Thresholded Brightness difference using the Rosin method This feature

is the same as (b), but uses the Rosin method instead of Kapur.

(d) Gradient Difference The gradient of each image is computed and consecu-
tive gradient images are subtracted. The minimum of the gradient and the gradient

difference is computed for each pixel as follows:

Fa= \/ (min((Vedy)? + (Vyl)?, (Vodyo1 = Vely)2 + (Vyly o1 — Vy1)?));  (4.8)

The sum of F; values of all pixels is the image gradient difference. This feature should be

more robust to lighting changes than the previous three which are based on brightness.

(e) Gradient difference using the Kapur method This feature is the same as (d)
above, but the absolute difference of each pixel is thresholded using the Kapur method

before summing them. Therefore the result is a sum of binary edge-change values.

(f) Gradient difference using the Rosin method This feature is the same as

(e), but uses the Rosin method instead of Kapur.

(g) Normalised Cross-correlation between consecutive images A block-based
normalised cross-correlation (NCC) is computed between consecutive images. A non-
overlapping block size of 64 x 64 pixels is used. This size block was chosen so that no
block contained only an untextured region, which could cause false jumps in the value
due to noise. The NCC value for all blocks are added, and then this total is subtracted
from the maximum possible sum. This gives a value of zero for two identical images

and larger values for different images.
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(h) Normalised Cross-correlation with background image This feature is the
same as (g), except that a median background image is used instead of the previous

frame.

(i) Background brightness difference This feature is the same as (a), except that
a median background image is used instead of the previous frame. The background
image does not change, so this feature is not robust to gradual changes in the scene
brightness.

An audio-detection signal was created by computing the audio RMS value over 5
second windows, giving a total of 899 samples. Each of the visual feature was resized
to this length by taking its maximum value over a 5-sample sliding window. The
windows for the audio and visual feature filtering were partially overlapping, shifting
by 4-samples each time. Figure 4.21 shows plots of these 9 features, as well as a plot
of the audio detection signal. MI thresholding was performed using each of the visual

features with the audio detection signal.

(a) Background image (b) Sample image

Figure 4.20: The camera’s view of the corridor.

Optimal Smoothing Figure 4.22 shows the changes in peak MI score and quality
that occur as both sources are smoothed using a Gaussian filter of increasing scale.
Four of the nine features are shown as representative examples. Three of these graphs
parallel very strongly the results of using synthetic data to determine the optimal
filtering scale, as shown in the previous chapter in figure 3.16. There is a sharp, linear
rise in the MI value up to the optimal scale, then the MI values rise more slowly. Using
the corner-finding method on which the Rosin thresholding method [116] is based can
help automatically determine the optimal scale from the MI plot. Similarly, in the

quality value plot, the maximum quality value occurs around the optimal scale. As
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seen from the graphs, the peak quality for feature (g) occurs around 1.7 and around
1.8 for feature (h). A similar optimal smoothing value occurs for most of the other
features also. Table 4.14 shows the selected o values for each feature, using both the
corner of the MI graph and the peak quality value. The notable exceptions are the
Rosin-thresholding based features, and the background brightness difference (feature
(i)). While table 4.14 indicates a peak quality for the brightness difference feature
(feature (a)) at o = 3.9, the plot in figure 4.22(b) shows that it also has a peak at
around o = 1.8. Therefore, this feature does agree with the majority of features that

the optimal smoothing parameter lies close to o = 1.8.

Feature | Corner | Peak Quality
2.0000 | 3.9000
1.8000 | 1.8000
5.8000 | 2.2000
2.7000 | 1.7000
1.7000 | 1.8000
5.9000 | 0.7000
1.8000 | 1.8000
1.8000 | 1.8000
1.5000 | 4.4000

=S SOl o e I o

Table 4.14: Selected o values for each feature, using the corner of the MI curve and the
peak quality value.

The Rosin-thresholding based features, as shown in figure 4.21(c) and 4.21(f), have
distinctive peaks and troughs. The peak/troughs in the Rosin-thresholding based fea-
tures are caused by the camera setup and how people approach the camera. The peak is
caused by the foreground object. At the far end of the corridor is a dark-gray coloured
door, against which people are not very distinct. In the histogram, this appears as if
the background distribution has widened, therefore increasing the threshold and low-
ering the number of changed pixels detected, causing a visible ‘dip’ in the graph. It
is in fact possible to determine whether a person is walking away-from or towards the
camera by whether the dip occurs before or after the trough. This property of the
Rosin-based features makes them unsuitable for smoothing, since Gaussian smoothing
would excessively reduce the peaks’ heights due to their proximity to the troughs. It
was found that the occurance of peaks/troughs was not a general feature of Rosin’s
method, but related directly to the experimental setup, as explained.

The background brightness difference, feature (i), is a weak feature for event detec-
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4.3 Applications using strongly independent sources

tion in this application. Although the background image is largely free of noise, as it
was computed using a median of many images, it is not robust to the gradual change in
lighting level, therefore its value has gradually increased as seen in figure 4.21(i), mak-
ing it unsuitable for thresholding with a single threshold. Its MI value graph does not
increase monotonically, as most others do, but has a peak, close to 0 = 1.8 interestingly
enough.

The rest of features, excluding (c), (f) and (i), indicate 0 = 1.8 as a good smoothing
parameter. Even feature (a), although 3.9 is selected, the graph in figure 4.22(a) shows
a similar peak at 1.8. The corner finding method did not always select 1.8, but visual
inspection of the graph showed that a range of o values around this point seemed
suitable. Therefore, the smoothing value was set at ¢ = 1.8 and filtering was done on
all signals using a Gaussian filter of this width. The affects of smoothing on performance

are now examined.

Feature Selection In trying to determine which visual features are most useful for
this event detection task, each one can be plotted as a point on the quality-MI plane.
Figure 4.23(a) shows this plot. It seems that there is a divide between good features
(a,d,e,g,h) and poorer features (b,c,f,i). However, it is difficult to distinguish between
(d) and (e), for example, since (d) has a higher mutual information value and (e) has
a higher quality.

By smoothing the feature signals, using o = 1.8, our ability to discriminate between
the features can be improved. Previously, it was discovered that ¢ = 1.8 appeared as
the optimal scale at which to perform smoothing of the data. Figure 4.23(b) shows how
the smoothing affects the positions of each of the visual features on the plane. The plot
appears far more linear, and therefore easier to distinguish how well features should
perform. Now features (d,g,h) appear to be the top performers.

This is verified in figure 4.24, where the performance of each feature is measured
using a manually annotated ground truth (GT). The Haussdorff distance is used to
measure performance, with smaller values indicating a better result. The GT annota-
tion was done by noting whether a person is present in each of the 899 data samples.
This ground truth is shown in figure 4.25, marked as GT. The ground truth, along
with the thresholded visual signals are shown in figure 4.25. Signals are shown for the
smoothed and unsmoothed cases.

Comparing figures 4.23(b) and 4.24(b), a very strong connection is seen between
signal agreement (mutual information and quality) and signal performance in event

detection. Features (d,g,h) show the highest agreement with the audio signal, and also
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Figure 4.22: Plots of the MI peak value (a)(c)(e)(g) and the quality score (b)(d)(f)(h) as
smoothing increases. The rows correspond, from top to bottom, to the visual features
in figure 4.21(a), (c), (g) and (h). The normalised cross-correlation (NCC) feature plots
comply strongly with the results of the synthetic data smoothing tests.
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perform best. These are followed by features (e) and (a), then (b) and finally, the worst
performers, (c), (i) and (f). The smoothing is necessary to take the spatial relations
of the samples into account. The MI-quality plot of figure 4.23(a) does not clearly
indicate which feature is better. After smoothing, feature (a) performs well and (c)
performs very poorly, and the MI-quality plot is clear on which provides the best signal
agreement.

Interestingly, without the smoothing, feature (a) is the worst performer, with many
false positives and feature (c) performs very well. After smoothing, feature (a) performs
well and (c) performs very poorly.

It is clear from this application that MI thresholding can not only assist in multi-
modal systems with disparate data sources, but can also be used to guide the selection
of features for object/event detection, in order to optimise system accuracy. In this
section, the selection of visual features was examined, using an audio detection signal
as a reference. It was shown that it is possible to determine which features are most
useful, without using any ground-truth or manual annotation, but simply by observing
the position of the features on the quality-MI plane. Observing the changes in MI
value and quality can also assist in feature selection. Features whose MI values do not
generally increase are usually poorly performing features. Also, the procedure for the
selection of an appropriate scale for signal smoothing, justified synthetically in the last

chapter, has been shown to perform well on real data here.

4.3.3 Skin-colour model learning

In this section, the dynamic bounding algorithm, introduced for shadow detection in
section 4.2.3 to extend the MI thresholding algorithm, is used to dynamically choose
colour and thermal bounds for automatic skin detection in thermo-visual imagery. Us-
ing two separate skin detectors, one based on colour, the other on infrared, the detectors
negotiate to find the best parameters to model skin. This proposed approach has some
conceptual similarities to the co-training method of Blum and Mitchell [12] where two

independent classifiers are used to train each other.

Skin pixel modelling Figure 4.26 shows a colour image and its corresponding ther-
mal infrared image. Skin pixels lie in a particular subspace in both the thermal and
visible domains. Similar to the shadow detection application in section 4.2.3, simple
bounds are used to model skin in both the colour and infrared domains, and the shared
information between the modalities can be exploited to compute the parameters for

both these subspaces. In the visible domain, a certain bounded subspace of the HSV
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Figure 4.23: Effects of optimal smoothing on signal agreement: MI-quality plot of
features before (a) and after (b) smoothing with o = 1.8.
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Figure 4.25: Comparison of thresholding raw data and smoothed data. The ground
truth (GT) is shown at the bottom of each figure and the nine visual features are shown

above it, labeled on the right (a) to (i). These feature labels correspond to the visual
features in figure 4.21
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Figure 4.26: Examples of (a)visible and (b)infrared input images

space is selected to indicate a possible skin pixel. Using {l1,l2,!3,l4,15,ls} as the bound-
aries of the subspace, a pixel ¢ belongs to this subspace if its colour components in HSV

space, (H;, S;, V;) conform to:

I <H; <l 4.9)
s < S; <ly (4.10)
Is <V; <lg. (4.11)

Since the hue component can be considered circular, the hue wheel is rotated using
H; «— (H;+ 128) mod 256, so that red, the dominant hue in skin pixels, is in the centre
of the band. In the thermal infrared images, a similar model is used for the appearance

of skin pixels, with pixel I; being a potential skin pixel if
I < I < g (4.12)

where {l7,lg} are the thermal brightness boundaries. Therefore, the parameters for the
models are fully represented by L = {Ly1s, Lir} = {{l1,l2, .., l6}, {l7,l3}}.

In figure 4.27, examples of the use of these models are shown in relation to fig-
ure 4.26. Setting L = {{78,159, 60,255, 3,139}, {67,137} } maximises the Kendall’s 7
agreement measure. Pixels within the hue, saturation and value boundaries are shown
in figure 4.27(a)-(c). Figure 4.27(e) combines (a)-(c), showing pixels that are within all
the colour boundaries, and are considered possible skin pixels. Figure 4.27(d) shows
infrared pixels that fall within the thermal boundary, and are therefore considered

possible skin pixels.
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Ideally, if there are skin regions present in the scene, and there are not many skin-like
distractors present in visible or infrared, then there should be a high level of agreement
between the binary images in figure 4.27(d) and (e). By selecting pixels that appear as
skin in both modalities (binary AND fusion), figure 4.27(f) is produced.

(a) Bounded H. (c) Bounded V.

&

(d) Bounded IR. (e) Bounded HSV. (f) Likely skin pixels.

Figure 4.27: Examples of bounded (a)hue, (b)saturation, (c)value, (d)infrared and
(e)HSV. Binary AND fusion of (d) and (e) produce the skin pixels in (f).

System overview The input to the system is a colour image, the corresponding
thermal infrared image and an initialisation method. The initialisation method provides
a binary image either from the colour or thermal image. The other modality’s bounds
will be optimised to maximise agreement. Bounds are then alternatively optimised
iteratively until convergence.

Figure 4.29 shows the two initialisation methods used in this work. The first method
applies a dynamic threshold to the IR image using Rosin’s method [116]. The second
method uses predefined colour bounds to provide the initial binary image. In the ex-
periments, the M parameter is set as M = 255/5, which sets quite a broad range, so
almost all skin-like pixels will be included. After initialisation, the system will itera-
tively optimise all the parameters until it converges, as illustrated in figure 4.28. The
flag variable indicates whether the IR bounds should be optimised first. When opti-

mising pairs of colour bounds, such as hue bounds {l1,l2}, some pixels may already be
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excluded since they are outside the other colour bounds. For example, if the saturation
bounds are set at [l3 = 10,14 = 100], then HSV pixel (50,150, 100) is already classified
as non-skin, regardless of any changes to the hue bounds. These pixels are catered for
by excluding them from processing and adding them on to the appropriate counts at
the end (either to Cy g or C ). The final outputs are (i) the set of 8 parameters, L,
(ii) 2 binary maps (one for each modality) and (iii) an agreement value score. While
mutual information performs well overall, it produces incorrect skin in some instances,
since the MI value does not change if one of the binary images is inverted. When
using bounds, and not simply a threshold, this can cause ambiguity over the correct
parameters to choose. For example, using bounds {0, 128} could give the same amount
of agreement as using {129,255}. As this is not a desirable property, Kendall’s 7 is

chosen as the agreement measure.

NO *
IR: H: I S: I V:
ITERATE __ Optimize Optimize Optimize Optimize Converged?
flag==1 YES—P»
(L. flag) ¢ (i7lg) (111 (1310 (Islg) |

YES

NO l

Figure 4.28: Iteration function

IR Image DROS'”_ ITERATE
yhamic (L, flag=0)
Thresholding

Set H Params: Set S Params: Set V Params:
l1=128-M l3=M l5=M ITERATE

o= 128+M |4 =255 | = 255

(L, flag=1)

(b)

Figure 4.29: Initialisation Methods: (a)Infrared-based and (b)Colour-based initialisa-
tion
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Initialisation evaluation In order to compare the initialisation methods of figure
4.29, the proposed algorithm was run on 6,697 images from 7 thermo-visual video
sequences. The experiment investigated which method would cause convergence to the
highest agreement value. The results are given in table 5.1. Both methods converged
in a similar number of iterations on average, as shown in columns 3 and 5. Neither
method showed superiority, with both methods having roughly equal performance on
average, and converging to the same parameters about one-third of the time. Sequence
D contains a lot of skin-like pixels, due to the colour of the floor, causing the colour-
based initialisation to perform poorly in this sequence. An example frame from this
sequence is shown in the top row of figure 4.31. On the other hand, sequence E contains
many people and therefore a lot of ‘hot’ pixels, causing the infrared-based initialisation
to perform poorly in this sequence. Similarly, an example frame from this sequence is
shown in the third row of figure 4.31.

Using 16 ground-truthed images of skin pixels, an objective evaluation of the ini-
tialisation methods was conducted. Figure 4.30 shows how a change in agreement value
(Kendall’s 7) affects the detector performance, measured using the F; measure. The
x-axis shows the increase in agreement when initialisation method 1 (figure 4.29(a)) is
used instead of initialisation method 2 (figure 4.29(b)). The y-axis shows the change
in performance. Blue circles indicate the detected colour skin images and red crosses
indicate the infrared detected skin images. Six circles and six crosses are plotted on
the origin, since the two methods converged to the same set of parameters in 6 of the
16 images. Because all points lie in the upper-right or lower-left quadrants, this shows
that an increase in agreement is strongly correlated with an increase in performance.
By running the algorithm twice, once with each method, and selecting the set of pa-
rameters with greater agreement, high quality skin detection is obtained. Examples of

detected skin are shown in figure 4.31.

Bound adaptation To investigate the adaptivity of the bound selection, changes
in the appearance of skin were introduced in the video data. As skin usually appears
brighter than other objects in infrared, a kettle full of hot water is introduced to the
scene to act as a significant distractor. This causes the thermal camera to gradually
adjust its contrast to adapt to the new high-temperature object. The proposed method
dynamically adapts to this, as shown in figure 4.32, by decreasing the IR bounds for
skin accordingly, as the contrast decreased.

For the colour bounds, figure 4.33 demonstrates a similar case of adaptation. At

the beginning, the scene contains two people with similar skin tones. When a third
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Figure 4.30: Objective comparison of initialisation methods: The x-axis shows the
increase in agreement from using init method (a) instead of init method (b) from figure
4.29. The y-axis shows the increase in performance, measure with the F; measure. The
plot clearly shows that increased agreement leads to increased performance and shows
that both init methods have approximately equal performance, with init method (a),
based on infrared initialisation, having a slight advantage on this small testing set.
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(d) Infrared skin

(a) Colour (b) Colour skin (c) Infrared

Figure 4.31: Examples of detected skin in each modality, using both initialisation
methods and selecting the parameters with higher agreement.
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Frame | Method 1 Method 2 Both
Seq | count | Iter. % Tter. % %
235 | 3.42 | 14.89 | 3.91 | 16.60 | 68.51
406 | 3.63 | 19.46 | 4.43 | 3.20 | 77.34
615 | 4.05 | 9.27 | 4.16 | 79.67 | 11.06
2984 | 4.33 | 83.88 | 3.86 | 16.09 | 0.03
306 | 3.39 | 0.00 | 3.61 | 100.00 | 0.00
997 | 4.10 | 47.14 | 4.09 | 29.19 | 23.67
1154 | 3.91 | 24.78 | 4.10 | 12.65 | 62.57
ALL | 6697 | 3.83 | 28.49 | 4.02 | 36.77 | 34.74

QmEmoaQw e

Table 4.15: Table above indicates the percentage of frames for which each initialisation
method converged to the highest agreement score, for all seven sequences tested. The
rightmost column indicates that both methods converged to very similar configurations,
within a small tolerance.

person, with different skin tone, enters the scene, the lower bound for Hue decreases
to adapt the skin model to cater for this. The luminance lower bound is also shown to

decrease.

Fusion evaluation After selecting appropriate parameters for the skin models, the
resulting output is a pair of binary images, from visible and from infrared, as sources
of evidence as to whether or not a pixel is a skin-pixel. These binary masks can be
fused for a final classification decision. Five simple fusion schemes were evaluated on
16 ground-truthed skin-detection images. The fusion schemes were (i) binary AND, (ii)
binary OR, (iii) Visible only, (iv) IR only and (v) region-based fusion. The region-based
scheme examined all the connected-component regions in the binary OR image. If a
region had 10% or more of its pixels also belonging to the binary AND image, then it
was included. Otherwise, only the pixels in that region from the AND image were used.
Although the threshold of 10% is ad-hoc, a range of thresholds were found to perform
similarly. The results are given in table 4.16. As expected, the AND fusion achieves
very high precision and the OR fusion achieves high recall. Using IR only performs
well, compared to visible only, as there were fewer distractors at a similar brightness
to skin in the dataset, compared to skin-colour-like distractors in the visual domain.
Using the F} measure [147] to combine precision and recall, the region based fusion

performed best overall.
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Figure 4.32: Adaptation of the IR bounds to a hot kettle entering the scene: Visible
images (top row), Infrared images (2"¢ row), Detected Skin using Region-based fusion
(37 row) and a plot of the IR bounds {I7,ls} adapting to the camera’s contrast change.
Frame numbers shown beneath images.

AND OR | VIS IR | REG
Precision | 0.976 | 0.605 | 0.641 | 0.776 | 0.849
Recall | 0.516 | 0.878 | 0.664 | 0.731 | 0.838

Fy | 0.675 | 0.717 | 0.652 | 0.753 | 0.843

Table 4.16: Binary fusion methods evaluation.
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Figure 4.33: Adaptation of the colour bounds to a person with darker skin entering the
scene: Visible images (top row), Infrared images (2"¢ row), Detected Skin using binary
AND fusion (3" row) and a plot of the changing Hue bounds {l1,/} and luminance
lower bound {lg}. Frame numbers shown beneath images.
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Adaptive probabilistic model The method described does not exploit any tempo-
ral information available in video sequences, but works on individual frames. We now
examine how the proposed method can be used to automatically create probabilistic
models of skin and background colour appearance and this is compared to a pre-learned
human-annotated colour model. Manually annotated skin and background images are
available online as part of Sigal et al.’s work on skin segmentation [127]. Using a similar
approach to the original work, these samples were used to create 32 x 32 x 32 RGB
colour histograms for both skin and background appearance, and these histograms were
normalised and used as probabilistic models of the skin and background. For a given
colour image, Bayes’ rule can be applied and these models create a log-likelihood im-
age, giving each pixel a skin-likelihood value. The pre-trained model was created using
723 images which contained 8, 929, 954 skin pixel samples and 129, 642, 003 background
pixel samples.

The proposed skin and background models were created in a similar fashion but the
samples they are trained with were all automatically selected by the adaptive bounding
algorithm. For each image in the video sequence, skin pixels are detected by maximising
agreement and then performing binary AND fusion to achieve high precision. All these
pixels are inserted into the skin model. All pixels which are classified as background
by both IR and visible are inserted into the background model (NAND fusion). All
other pixels are ambiguous, so are ignored. For each video image tested, 100 of the
previous frames are used for training the skin and background models. Figure 4.34
shows examples of the log-likelihood image created by the proposed method versus the
pre-trained model. Figure 4.35 shows the ROC curve that indicates the improvement

of using adaptive skin modelling over a pre-trained model.

Detection on OTCBVS data Figure 4.36 illustrates the results of using the pro-
posed method on data from the OTCBVS dataset. An approximate manual alignment
of the visible and thermal images was performed using a planar homography, but since
the cameras are so close to the subject, this model is not always a good fit. The method
performs well here. The thermal image shows a few of the disadvantages of thermal
images from a BST (ferroelectric) camera, such as the ears appearing colder than the

background and hence not being detected.
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( )Pre—trained model (b) Proposed model

Figure 4.34: Examples of log-likelihood images created by (a) the Pre-Trained model
and (b) the proposed method
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Figure 4.35: ROC curve for the automatically learned probabilistic model (red stars)
vs. the pre-trained model (blue circles)

(d) Bounded HSV. (e) Bounded IR. (f) Detected skin

Figure 4.36: Sample results on aligned data from the OTCBVS dataset.
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4.4 Discussion

In this chapter, a wide range of applications of the MI thresholding method were

demonstrated, using both weakly and strongly independent sources.

4.4.1 Weakly independent sources

In the first three applications that were examined, the assumption of source indepen-
dence may not have been true in the data. The extended version of the algorithm
(EMIT) was tested to see if it could cater for cases where correlated noise caused
multiple peaks to appear in the MI surface.

In detecting foreground, it was shown that the EMIT algorithm fared much better
than the standard peak selection approach. The Kapur method was the top perform-
ing thresholding algorithm overall, but there were cases when the Kapur method would
perform poorly, selecting very high thresholds and missing important foreground ob-
jects.

In detecting shadow pixels, not only was the assumption made that the sources were
independent, but also that shadows caused a decrease in saturation in the background
pixels. Despite these ambitious assumptions, the shadow parameters converged to
reasonable bounds on images from the Terrascope dataset. In other shadow datasets,
the assumption did not hold and there was not enough common information to exploit
in the saturation and brightness difference images.

In detecting people in the OTU database of thermal imagery, an additional peak
would often appear in the MI surface and the EMIT algorithm performed well in se-
lecting the correct peak. A further modification was required to the EMIT heuristic
for peak selection: thresholding the MI surface at 25% of the peak, instead of using
Rosin’s method. This was required in order to avoid selecting thresholds that were too
high. Given this modification, the person detection system based on EMIT outper-
formed Kapur’s method. The proposed algorithm was able to lower its threshold to
adapt to people who left only a slight impression on the silhouette map, by exploiting
the common information in the contour detection map.

Overall, the use of MI thresholding and related techniques to weakly independent
data appeared moderately successful. In shadow detection, successful operation was
only demonstrated on one dataset. In other datasets, the assumption of background
saturation did not always hold.

The selection of the correct peaks in the MI surface, when multiple peaks occur,

is a difficult task. Figure 4.37 illustrates a synthetic example of data sources that
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have an MI surface with multiple peaks. The data is made up of a series of objects
(squares) of progressively greater signal-to-noise ratio (SNR). Selecting the peak in
the MI surface results in figure 4.37(e). On the other hand, by selecting the peak
with highest quality, as the EMIT algorithm does, the lowest SNR object is dropped,
producing figure 4.37(f).

Using maximal mutual information as the threshold selection criterion encourages
high recall, since it is based on entropy. Using the quality value, on the other hand,
encourages high precision. The Kapur method, as shown in the extensive tests of
this chapter, produces high thresholds, and therefore has a high precision. The EMIT
algorithm, by using the quality of the peak, usually sets a high threshold, achieving
higher precision than the standard MI thresholding algorithm, so is more like the Kapur

algorithm.

4.4.2 Strongly independent sources

In the second set of applications, the sources used came from disparate sensors, and
therefore could be considered strongly independent. The various applications examined
how visual information could be fused with audio data and with thermal infrared data,
targetting event detection, foreground object detection and skin pixel detection.

Using thermal infrared and visible spectrum background models, it was shown that
detection of empty frames was possible using only the MI value between the detected
foreground images of both sources. This followed on from the synthetic test of the pre-
vious chapter that showed a clear separation between cases of no common information
and that of common information being present.

In order to detect foreground pixels, the background models in the thermal infrared
and visible spectrum domains were modelled using standard background modelling
techniques. The use of MI thresholding in this context was shown to outperform the
standard approaches, even when a shadow suppression module was used to counter
false positives due to decreases in lighting.

In the penultimate application, nine different visual features were combined with
an audio detection signal to detect surveillance events in a corridor. Using the method
derived for synthetic data in the previous chapter, the optimal smoothing parameter
was determined to exploit the close proximity of correct detections. Before optimal
smoothing, the ranking of the nine features from the MI-quality plot was unclear,
as the relative ordering of some features was ambiguous. However, after smoothing

using the optimal o value, the MI thresholding method provided a very clear ranking
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Figure 4.37: Sythetic data with multiple peaks in the MI surface: (a) source 1, (b)
source 2, (¢) MI surface showing multiple peaks, (d) Quality surface, (e) thresholded
result using maximum MI, (f) thresholded result using maximum quality peak.
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of the useful visual features for event detection. This was confirmed using a manually
annotated ground-truth, indicating a clear correlation between detection usefulness and
feature agreement.

Thermal and visual modalities appear well suited to the task of skin detection, as
ideal complentary sources of data for this task. A dynamic bounding algorithm was
described that allows the efficient search of a high dimensional space to find the optimal
agreement parameters for both modalities. By examining two methods of initialisation,
it was shown that both methods perform well under different circumstances and by
performing the optimisation twice, once with each method, the best parameters can
be selected using the set with maximal agreement. A number of simple fusion schemes
were evaluated and it was shown that a region-based fusion out-performs either the
visible or infrared modality alone. It was further shown that building a skin-colour

model adaptively significantly out-performed a pre-trained skin model.

4.4.3 Future work

While this chapter covered numerous applications of MI thresholding, there are many
other areas of investigation that could provide worthwhile topics for future research. A
number of practical applications where MI thresholding could be of use are mentioned
here, as well as some more theoretical aspects that may provide possible extensions to
the algorithm.

Edge detection was one area where Rosin’s method of thresholding was found to
provide good edges by thresholding the gradient magnitude. Another paper by Rosin
[117] investigated the use of other edge saliency measures besides the magnitude, such
as the edge’s lifetime through scale-space, its wiggliness and its local contrast. An
interesting area of future work lies in using these saliency measures as input to the MI
thresholding algorithm and investigating how well the use of these sources helps in edge
detection.

Shot boundary detection in digital video is another area where the use of MI thresh-
olding might result in gains in performance. Multiple features, such as colour his-
tograms, MPEG-1 motion vectors and edge-based descriptors have been shown to be
useful indicators of a shot change. The adaptation of thresholds and the combination
of multiple feature have been shown to be beneficial [13], so the use of the proposed
method could be an interesting area of future research.

A single threshold may be too blunt an output for some applications. For example,

in [33], using mouth-motion cues to determine if an actor is speaking, high and low
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thresholds are used. Values above the high threshold and below the low threshold indi-
cate that the actor is speaking and not speaking, respectively, but values between these
thresholds are determined to be ambiguous and the detector refuses to give a positive
or negative answer. If a pair of thresholds were chosen for each source (4 thresholds
in total), so that each ‘thresholded’ image had three values, {yes, no, unknown}, then
the thresholds could be chosen to maximise MI between the sources. This would be
a higher dimensional problem, but might have a dynamic-programming solution that
would make the search more efficient.

One may go further, and instead of mapping the sources to 3-value images, they
could be mapped to confidence values using a 2-parameter sigmoid model. This model
is given by:

Se)= (4.13)
1+e o
The use of a sigmoid is similar to thresholding with a threshold of p, but it includes a
slope parameter, o, and assigns values between 0 and 1 to samples that are close to the
threshold. The parameters of the sigmoid could be selected automatically to maximise
agreement between the signals, using the correlation coefficient or rank correlation.

In combining visual and infrared data for skin detection, Kendall’s 7 was used as
an agreement measure instead of mutual information. The similarities and differences
between MI surfaces and the Kendall’s 7 surfaces has not been extensively investigated
in this work and could provide insights into which measure is best for different appli-
cations. Additionally, a method of combining the two measures could add robustness
to system performance, as the correct threshold would be expected to be present as
nearby peaks in both surfaces.

In selecting an appropriate scale for signal smoothing, the method proposed in
this work used the same smoothing parameter o for both sources. The value for this
parameter could be deduced from the MI and quality value graphs. If a separate o
value were to be used for each source, this would result in a surface, relating a pair of
smoothing parameters to the resulting MI and quality values. A question for future
research is how appropriate smoothing parameters should be selected by using these
surfaces.

While the use of data source smoothing did, to some extent, exploit the spatial
relations between samples, there is more work to be done in this regard. The smooth-
ing of thermal and visual images in section 4.3.1 lost the individual identities of the
objects and this is not desirable. By creating a parametric model for each source that

incorporates spatial and brightness information, the parameters for this model could
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be set by maximising agreement: either mutual information or another agreement mea-
sure. A simple approach might be to use hysteresis thresholding, as mentioned in the
conclusion of the previous chapter, where the low and high thresholds are selected by
maximising the agreement between the resulting segmentations. While the proposed
method examines single pixels, using their values in both sources, spatial information
might also be included by looking at pairs of neighbouring pixels and using their val-
ues in both sources. There might easily be a dynamic-programming solution for this
paradigm that would efficiently select thresholds to maximise this spatial agreement
between the data sources.

Having extensively investigated the use of agreement-based threshold selection for
combining multiple data sources, the remainder of this thesis now examines a different
but related issue, namely that of visual tracking using multiple sources of informa-
tion. Similarly to the work described in the previous and current chapters, a general
framework for fusion is proposed and extensively evaluated. While the proposed frame-
work is general in nature, the main focus of the described work is on fusing visual and
thermal infrared data. Unlike the current chapter where a series of varied application
for the MI thresholding method were studied, the next two chapters exclusively target
the application of visual tracking. The next chapter introduces the proposed tracking
framework, which uses a bank of spatiograms, and compares its performance to tradi-
tional tracking approaches. The following chapter builds on this work and extends the

tracker, allowing it to adapt its tracking approach in difficult scenarios.
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Chapter 5

Spatiogram Fusion

5.1 Introduction

In the two previous chapters, we examined how measures of agreement between sources
could be used to aid in detecting events and objects that were common to both sources,
by adaptively adjusting their parameters to maximise agreement. Traditionally, the
object detection phase of a vision system is complemented by a tracking phase. Once
an object has been detected, it is passed to the tracker to update the object’s position
from frame-to-frame. While the object detection step could be run in each frame, it
may be computationally expensive and therefore may only be executed sporadically. In
fact, the object detection step may not be guaranteed to find the object every time, so
would generate a fragmented track. The object detector is typically tuned to detect a
wide range of objects. The tracker, on the other hand, maintains a model of one specific
object’s appearance, so should rapidly and accurately locate that specific object in the

next frame.

5.1.1 Overview

In this chapter, the contribution of this thesis to object tracking using spatiograms
to fuse information from multimodal sources is described. Firstly, a brief review of
object descriptors that have commonly been used for tracking is conducted. Next,
histogram-based tracking is discussed, in order to introduce the concept of spatiograms
and their use in tracking. The limitations of histogram- and spatiogram-based tracking
are discussed and a new framework for tracking, termed a Spatiogram Bank Tracker, is
proposed to overcome these limitations. In this framework, the features used for track-

ing are split over multiple Spatiograms. The validity of the assumptions that underpin
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this approach are discussed. We derive a mean-shift algorithm for this framework, al-
lowing efficient object localisation. Finally, a number of experiments illustrating the

advantages of this tracking framework are described.

5.2 Related research

Many descriptors have been proposed for object modelling in order to provide robust
tracking in video sequences. Histograms [19, 22, 105, 106, 163] have commonly been
used for tracking, as they discard spatial information and are therefore insensitive to
changes in pose of deformable objects. At the other extreme, image templates [86],
which impose rigid spatial constraints on feature layouts, have also been used. In [31],
Elgammal et al. provide a parametric feature-spatial distribution model for object
modelling. A spatial kernel bandwidth parameter must be supplied, to tradeoff between
rigid spatial constraints and no spatial constraints. Another object descriptor that has
been proposed is the Spatiogram [11], which generalises the histogram to include spatial
information by allowing higher-order spatial moments to be part of the descriptor. The
spatiogram can be thought of as lying somewhere along the axis connecting histograms
and templates. This axis also contains descriptors such as the aforementioned feature-
spatial distribution model [31] and SIFT models [81]. The spatiogram’s geometric
model bridges the gap between histograms, which allow for arbitrary transformations,
and more specific models of feature position deformation, such as affine, projective
and B-splines. Like histograms, spatiograms enable comparison between image patches
without specifically computing a geometric transformation between them, but like the
more specific models, spatiograms retain some information about the geometry of the
patches.

The work of [31] is most similar to the work described in this chapter but differs in a
number of ways. Firstly, to compare two spatial-feature distributions as they propose,
all pairs of samples must be compared which will considerably reduce tracking speed.
The use of the fast Gauss transform has been proposed to address this but it is expected
that the Spatiogram-bank tracker, proposed in this work, will still have a computational
advantage. Secondly, a parameter that controls the importance of spatial information
must be tuned. Finally, there is no obvious extension to the work described in [31] that
would allow the dynamic weighting of features to adapt to different tracking scenarios.

Adaptive tracking is shown in the next chapter to be beneficial for robust tracking.

146



5.3 Review of spatiograms

5.3 Review of spatiograms

In this section, the concept of a spatiogram is explained intuitively and mathematically,
and its usefulness in object tracking is discussed. Spatiograms were first introduced in
2005 in [11] as a generalisation of the common histogram, which has frequently been
used in tracking applications [22, 105, 106]. We first examine the use of histograms in

object tracking and then proceed to discuss spatiograms.

5.3.1 Histograms

A histogram is a normalised count of the number of times a feature falls into a specified
range of values. The normalised count of bin b for the target object can be computed

as follows:

N
ny=CY_ k(||zil[*)d (5.1)
=1

where N is the number of pixels, §;, = 1 if the ¥ pixel falls in the b*" bin and
0;5 = 0 otherwise, C is a normalising constant that ensures the n; values sum to one,
z; = [x, y]T is the spatial position of the " pixel, k is a smoothing kernel, which
weights pixels that are closer to the centre, reducing the effect of background pixels.
It also has the effect of smoothing the similarity surface. Epanechnikov or Gaussian
kernels are commonly used [23].

To evaluate a matching candidate of size h, containing Ny pixels, at location y, its
histogram is computed as follows, with C}, performing a similar normalisation function
to C

Np
no(y) = Cn > k(I|(xi — y)/hl1*)di (5.2)
=1

A target and candidate histogram with B bins each can be compared using the Bhat-
tacharyya coefficient [23], which is the most commonly used measure in histogram-based

object tracking:

B
p(y) =D \/nu(y)m, (5.3)
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5.3.2 Spatiograms

Spatiograms [11] are a generalisation of the common histogram, capturing not only the
number of occurances of particular feature values, but also additional spatial moment
information. Formally, if f(z) describes the feature value at position z, where x € ¥,

the range of positions being evaluated, we let

h?) (v) = Z z'6(z,v) (5.4)

TEX

where 0(x,v) = 1 if the feature value, f(z), falls into the v** bin, and §(z,v) = 0
otherwise. Notice that when 7 = 0, the values of h}o) (v) are simple histogram bin-
counts. A kt'-order spatiogram is defined as a tuple of all the moments up to order
k: < h}o) (U),hgcl)(v),...,hgck)(v) >. In the work considered in this thesis, 2"?-order
spatiograms are used to model object feature distributions. This is equivalent to storing
a spatial mean and variance with each histogram bin. Investigating the use of higher-
order spatiogram is left for future work. The spatial mean and covariance of each bin

2nd

for a 2™%-order spatiogram are computed as follows:

Np

1
1 (y) e ;( y) (5.5)
1 &
DY) = =m—— Z(%‘ — ()" (@i — 1 (y))di (5.6)
Zj:l Ojb i=1

where, as before, IV is the number of pixels in the region, y is the position of the
region centre and x; is the spatial position of the i*" pixel. The spatial coordinates are
scaled to lie between —1 and +1 to normalise spatiograms to handle different region
sizes. The spatial distribution of each bin b is modelled as a Gaussian with the mean
and covariance given above. Figure 5.1 demonstrates the additional information that
spatiograms contain when compared to histograms.

To compare two spatiograms, the following Bhattacharyya-like similarity measure

is the one used in the original Spatiogram work [11]:

B
p(y) =D _ o)y nu(y)m, (5.7)
=1

where 1y (y) is the spatial similarity measure, given by:
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Figure 5.1: Ilustration of the information contained in a spatiogram versus a histogram:
Original image shown in (a), an approximation of (a) generated by randomly selecting
pixels from the probability distribution of its 8 x8x8 bin spatiogram (b) and histogram

()

Uy(y) = nexp {—%(ub(y) — )T, () (1 () — Mé)} (5.8)

where f];l(y) = (%, (y) + (Z,)71), so that the distance between the spatial means
is normalised to the average of the two Mahalanobis distances and 7 is the Gaussian
normalisation constant. In order to ensure that each Y, is invertible, they are assumed
to be diagonal, and a minimum variance value is set to one pixel. This measure gives
high similarity scores to spatiograms whose histogram bins counts are similar and whose

spatial means are aligned.

5.4 Spatiogram-Bank Tracker

5.4.1 Limitations of spatiograms

In the context of combining object features for tracking, there are two main drawbacks
to using histograms or spatiograms. Firstly, their memory requirements (and hence
their computational load) increase exponentially as more features are added and sec-
ondly, they do not scale well to higher dimensions due to the curse of dimensionality
[8].

As an example of the first drawback, an RGB colour histogram with 32 bins per
channel requires a total of 323 = 32768 bins. If an extra channel, such as thermal
infrared, is added, this increases to 32* = 1048576, which increases the memory re-
quirements and decreases the tracking speed due to increased computation. The second

drawback concerns the curse of dimensionality [9] which states that it is more difficult
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to accurately estimate feature distributions for higher dimensional spaces, since expo-
nentially more samples are required. It has also been shown that the Bhattacharyya
coefficient, often used in tracking to measure similarity between histogram distributions,
is not very discriminative in higher dimensions [157]. To overcome these difficulties,
tracking can be achieved by splitting the feature-set over several histogram trackers and
combining their outputs. For example, instead of using a K dimensional histogram,
K one-dimensional histograms could be used and their outputs combined, which is
equivalent to using K separate trackers. This substantially reduces the memory and
computational requirements, and also allows the use of parallel processing to further
speed up tracking. Unfortunately in the case of histograms, it is not theoretically justi-
fiable to separate features in this way, as the assumption of independence for marginal
histograms does not hold, as now illustrated.

The images in figure 5.2(a) are significantly different and can clearly be distinguished
by their joint red-green histograms, shown in (b). The drawback of joint-distributions,
as mentioned earlier, is that they require exponentially more memory as more features
are added, as well as suffering from the curse of dimensionality. Using marginal his-
tograms as an approximation for the joint-histogram is not a valid solution, since both
images have identical marginal distributions in both the red and green bands, therefore
cannot be distinguished if the features are separated (see figure 5.2(c)). In the next
subsection, instead of using marginal histograms for tracking, it is argued that the use

of marginal spatiograms is more valid for this propose.

5.4.2 Proposed framework

In [11], the spatiogram is proposed as a more accurate model for object tracking than
histograms. The work in this thesis proposes to make spatiogram tracking more efficient
and suitable for multimodal data fusion by splitting the features over multiple separate
spatiograms. The tracking framework proposed is illustrated in figure 5.3, where the
pixel-based features used to track the target object are split over N spatiogram model
trackers. All trackers evaluate a series of potential object position hypotheses and
return a similarity score for each one. The combined score for each hypothesis is com-
puted by multiplying the similarity scores from each tracker. Formally, the combined
score is written:

K
py) =TT r™ () (5.9)

k=1

150



5.4 Spatiogram-Bank Tracker
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Figure 5.2: Illustrating the invalidity of marginal histograms: (a) Synthetic images,
(b) their associated joint histograms shown in log scale that clearly allow the images
to be distinguished, and (c¢) the marginal histograms of their red and green bands
(both images have identical marginal histograms therefore cannot be distinguished if
the features are assumed to be independent)
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Figure 5.3: Bank of spatiograms framework
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where p(¥)(y) is the similarity score, returned by the k™ spatiogram tracker, between
the model and the candidate at position y. This tracking framework is adopted for
object feature fusion for a number of reasons.

Firstly, the increase in memory and processing requirements is linear with respect
to the number of features used (unlike the exponential increase associated with typical
histograms and spatiograms) and it does not suffer from the curse of dimensionality
in accurately estimating feature distributions. The framework allows features to be
arbitrarily divided between the K trackers. In our experiments, one tracker is used per
feature, but one could combine an RGB spatiogram tracker with an infrared brightness
tracker, for example. Unlike template matching, spatiograms trackers do not impose
rigid spatial constraints. Instead, the small amount of stored spatial information allows
more general object deformations. Also, the tracking framework used can incorporate
a mean-shift approach to object localisation, allowing rapid object tracking (described
in section 5.5).

Secondly, this framework draws on previously reported work in evaluating various
fusion schemes for object tracking [98], where it was found that multiplying similar-
ity scores outperformed simple addition, weighted sums and non-linear score fusion
schemes, such as min and maz. If one considers the similarity metric as a probability,
multiplying scores is equivalent to assuming the features used by the trackers are inde-
pendent. The metric used to compare spatiograms is very similar to the Bhattacharyya
coefficient, which itself is closely related to the probability of Bayes error [7]. In [75],
Leichter et al. propose a general framework for tracker fusion by computing a combined
probability density function (PDF) by multiplying the PDFs of all trackers (assuming
a uniform prior) and our framework can be interpreted as conforming to this general
framework. If all spatiogram trackers in our framework perform an exhaustive search
in a local search window by computing similarity scores for each location, these scores
can be multiplied by a constant without affecting the final combined tracking result.
If the constant is chosen so that the scores are normalised to sum to one, then the
similarity scores essentially form a PDF which is then multiplied to produce the final
combined PDF, hence the similarity to Leichter’s framework.

Thirdly, by separating the features, instead of integrating them into one tracker,
we provide a flexible architecture for feature addition, removal or weighting, allowing
the combined tracker to adapt under different circumstances. This has been shown to
benefit tracking in changing environments [8, 20] and is explored in the next chapter
on adaptive tracking. In terms of the limited spatial information stored, modelling of

each feature bin as a Gaussian may seem restrictive, but in fact captures some useful
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general spatial distribution properties, as discussed below.

5.4.3 Modelling marginal spatiograms

A model is now derived for the assumed feature distribution when marginal spatiograms

are used instead of the full spatiogram.

Spatial distribution probabilities Histograms and spatiograms imply probability
distributions of feature values. In the case of the histogram, there is no spatial depen-
dency, so p(x,b) = p(b) = ny. For spatiograms, we have p(x,b) = p(b)p(x[b) = nypp(x),
where ¢p(x) denotes the spatial Gaussian model of bin b. Given a particular location,

x, the probability of occurrence for each feature bin is computed as:

p(x[b)p(b)
p(x)
npPp(X)

Zi1 nipi(X)

Since ¢p(z) and each ¢;(x) are all Gaussians, this shows that the actual spatial distrib-

p(blx) =

ution of feature value v is a Gaussian divided by a sum of Gaussians. This distribution
can be multimodal and is therefore more flexible than the simple Gaussian distribution

model would imply.

Fusion of multiple spatiogram models When marginal histograms are used to
approximate the full joint-histogram distribution, in the two-band case we obtain
nap = pla,b) = pi(a)p2(b) = n((ll)nf). The approximation that is used when mar-
ginal spatiograms are used instead of the full joint-spatiogram is now derived. The case
where each pixel has two features (hue and saturation, for example) is examined and
it can then be generalised to multiple features. For a particular location, x, the spatial

distribution of pixels that belong to bin a of feature z; and b of feature z5 is given by:

p(a,blx) = plalx)p(blx) (5.10)
_ (mxla)pi(a) [ p2(x[b)pa(b)
‘( (%) )( Pa(x) ) 511

— p1(a)p2(b)p1(x|a)pa(x|b) (5.12)

s, 2101 0)] [, p2(x17)p2(0)]
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(5.13)

where p; and po refer to the probabilities obtained from the spatiogram model of the
first and second feature (z; and z3). This expression can be simplified by noting that
the product of two normalised Gaussians, with means ¢ and r, and covariances, ) and

R, is a normalised Gaussian multiplied by a constant term:

N(z;q,Q)N(z;7m, R) = zN(x;¢,C) (5.14)

with
C = (Q'+RrRH! (5.15)
c = C(Q'¢+R ) (5.16)

and the constant term, z, given by:

N _ 1 (~1(q=n)T(Q+R)~1(q—r))
=N(¢g;r,Q+R) = @n)" 20+ R el ™2 (5.17)

where m is the number of dimensions (2 in this case). Now equation (5.13) can be
rewritten as a Gaussian divided by a weighted sum of Gaussians, since all the ¢ terms

are Gaussians. If we write:

3D ()87 (%) = zapbap(x) (5.18)

And let 1@
, Zapni M
Fab T B, B 1) (2 (5.19)
>t j:21 Zi,j”z( )n§ )

Then we can rewrite equation (5.13) as

nIn? 24 b bap(x)

Zilel [Zle n( )n§2)z,7j¢i7j(x)]
2y pPa,b(X)

S [ 0]

pla,blx) =

Firstly, this shows that the spatial distribution of features, in the case of fusion multiple
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spatiograms, is a Gaussian divided by a weighted sum of B Gaussians, B = BjBo,
as is the case for a single spatiogram. Therefore, the approximation of the joint-
distribution obtained by using marginal spatiograms is itself a spatiogram. Secondly,
this spatiogram is given by ngp = zéhb, with fi,5 and imb given by equations (5.16)
and (5.15). It is similar to the histogram approximation, but adds more weight to

joint-feature bins whose marginals have significant overlap in their spatial layout.

5.4.4 Validity of separate spatiograms

In figure 5.2, it was clearly shown that the use of marginal histograms as an approxi-
mation for the full joint-histogram provides a poor object model, since the assumption
of independence does not hold. Using marginal spatiograms instead, a model of the re-
sulting joint histogram approximation was derived and it was found that it differs from
the marginal histogram approximation since it adds more weight to joint-feature bins
whose marginals have significant overlap in their spatial layout. Whether this leads to
a more valid model of a tracked object is now investigated using illustrative examples.

Using a spatiogram model as a probability distribution, object image approxima-
tions can be generated by sampling from the distribution. This illustrates the informa-
tion contained in these object model descriptors. Figure 5.4 shows examples comparing
the image approximations generated by histograms, marginal histograms, spatiograms
and marginal spatiograms. As can be seen by comparing rows (b) and (c) in the figure,
the approximation images generated from marginal histograms are significantly differ-
ent from those generated from the full histogram, creating many false pixel colours
that did not exist in the original. Due to the added spatial information, the marginal
spatiograms provide a good approximation to the full spatiograms, as evidenced by
comparing rows (d) and (e) of figure 5.4. Using a decorrelated colour-space, such as
YUV, the approximation is improved further, as shown in row (f).

The validity of this approach is not true in general of all objects, as a significant
amount of information is lost by using marginal spatiograms instead of the full joint-
spatiogram. As seen in figure 5.5, it is possible in some cases for marginal spatiograms
to produce approximations of the joint distribution that are just as bad as marginal
histograms. In both examples, the feature bins have very large (non-Gaussian) spatial
variances and therefore the marginal spatiograms cannot exploit any spatial correla-
tion between the bins. The second example might be better approximated if the full
covariance matrix was used, instead of making it diagonal. Clearly, marginal spa-

tiogram independence is not always well justified. However, it is argued in this thesis
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that the approximation of the tracked object by marginal spatiograms is a more valid
assumption than using marginal histograms, as the generated examples of figure 5.4
illustrate. Although there are cases when using marginal spatiograms performs just
as poorly as marginal histograms, the most important consideration in using marginal
spatiograms for tracking is not whether they provide a good approximation of the full
joint-spatiogram, but whether this approximation of the model allows robust discrimi-

nation of the tracked object from the background clutter and other objects.

5.5 Spatiogram Bank Mean-shift derivation

Mean-shift [21] is an iterative kernel-based procedure to locate the local mode in a
distribution. It has been successfully used in many tracking applications [20, 22, 163]
to efficiently locate objects in subsequent frames under the assumption that the object
overlaps itself in consecutive frames. For fast-moving objects and low frame-rate video,
where this assumption may not be valid, multiple kernels can be used [106].

The mean-shift derivation in this section is motivated by and follows the general
procedure presented in [11] where the mean-shift procedure was derived for a single
(possibly high-dimensional) spatiogram. The novel aspect of the work in this section is
to derive the procedure for a bank of (low-dimensional) spatiograms, thereby avoiding
the curse of dimensionality, lowering the computational cost and providing a convenient
framework for adaptive feature weighting.

To initiate the iterative mean-shift scheme using the proposed tracking framework,
each tracker is first given an object position hypothesis, which is generally equal to its
position in the previous frame or a prediction of its current location, based on a velocity
estimate, for example. Using the similarity measures returned by each tracker, along
with the pixel features and spatiogram models, mean-shift performs gradient ascent on
the similarity surface and computes a new object position hypothesis. This procedure
is iterated until convergence.

The combined similarity measure, p(y), is expressed as the product of all K indi-
vidual tracker similarities, first examining a simple two tracker system where p(y) =
pW(1)p?(y) and generalising later to handle K trackers. So assuming K = 2, we

perform a Taylor series expansion around p(y) at yo, and obtain

p(y) ~ plyo)  +In M (y) — n® (yo)]" 525 (y0)
+[n® (y) = n® (yo))* 525 (o)

156



5.5 Spatiogram Bank Mean-shift derivation

(f)

Figure 5.4: Example object model images generated by sampling the distributions of the
histogram and spatiogram models: (a) Original image, object model images generated
by (b) Full RGB histogram, (c¢) Marginal RGB histograms, (d) Full RGB Spatiogram,
(e) Marginal RGB Spatiograms, (f) Marginal YUV Spatiograms.
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(a) Example A (b) 2D Hist of A (c) Example B (d) 2D Hist of B

(e) Hist Approx A (f) 2D Hist of (e)

(h) 2D Hist of (g)

(j) 2D Hist of (i) (k) Spat Approx B (1) 2D Hist of (k)

Figure 5.5: Marginal spatiograms providing a poor object model: figures (a) and (c)
show two examples of images that are poorly approximated by marginal spatiograms.
The lack of distinguishing spatial information makes the approximations generated by

marginal spatiograms (third row) as bad as those produced by marginal histograms
(second row).
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where the superscript notation refers to the tracker number (for example, 12 refers to
the bin spatial means of the features used by tracker 2). Using the fact that the tracker

scores are independent with respect to the parameters of other trackers, we obtain

O __ 21,00 O _ @,00"
an® ~ 7 Wm0 g0 T ou™
dp B () ap(2) dp B () 8,0(2)
on@ p 877,(2) ’ 8/1,(2) =r 8#(2)

Inserting into the previous equation for p(y)

p(y) ~ p(yo) +
P2 (o) { ([ () — n (y0)]” 2205 (o) +
1O () — 1D (o))" %5 (w0) } +
P (o) ([ () — n® (y0)]T 225 (o) +
1@ () = 1 (o))" 2255 (o)}

Simplifying, and generalising to K trackers, we obtain

p(y) ~ p(yo) +
S 8 ([0 () — n®) (30)] T 205 (30) +

’I’L

(18 () = 1 ® (0)] " 2255 (o)}

We can simplify this expression by defining two new variables:

k)

dp!

(k) _ (k) _ (k) T

Ly = [n%(y) —n'"(yo)] 3n(k)(
apk)

k k k T

Pl = (1™ (y) — 1P (yo)] 9 W0)

Inserting them into the previous expression:
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5.5 Spatiogram Bank Mean-shift derivation

K
oy +Zpﬁc {r“f +r,g>} (5.20)
k=1

Taking the derivative of (5.20) with respect to y and setting this equal to zero, yields:

() 8F(k) = rlw) 3T(k)
= pM(yo) 0 = PP (yo) 0
where
8F$Lk) —
dy _Za g( H2>( ~ @)
ory (k)
oy - Z b
where g(x) = —dk(x)/dx is the negative derivative of the kernel profile, which is con-
stant if the Epanechnikov kernel (referred to in section 5.3.1) is used. agk) and vék) are
given by:
®) = (5.21)
k k "(k) (k k "(k k
v = 0 o)y my (o) (54 )(yo)) Y = " (o) (5.22)

(k)

The values o;"’ can be interpreted as pixel weights that vote strongly when the bin-

count of the bin they fall into is lower than the target bin-count, encouraging movement

towards areas similar to the target histogram. The zxék)

values are vectors that encour-
age the tracker to move so that bin spatial centres align with the target’s spatial means.
By moving all the terms that do not involve y to the right-hand side of the equation,

the mean-shifted position, y, can be written as

SN Aig(|| e |

where A; and V}, are defined as:
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K

A= a® p(yo) /0™ (o) (5.24)
k=1
K

Vi =3 0t o(w0) /0™ (0) (5.25)
k=1

The combined mean-shift algorithm for multiple spatiogram trackers thus derived
is used as follows: Given a starting image position yg near where the object is located,
equation (5.23) is used to compute the next mean-shifted position, which should move
towards the true object position. The new position y replaces g in the equation and
the procedure is iterated until convergence i.e. until y and yo are within the same
pixel. To use equation (5.23), we first compute the similarity scores for each tracker
using (5.7), then compute the combined score using (5.9). Using (5.21), the values of

agk) are computed for each 7" pixel and k" tracker. With (5.22), the 2-d vector values

(k)

of v, are computed for each bt" bin and k" tracker. Finally, A; and V} are computed

and inserted into the mean-shift equation.

5.6 Tracking experiments

Three sets of experiments are shown in this section. The first experiment demonstrates
how multimodal tracking significantly outperforms tracking using any one single fea-
ture. The next experiment illustrates the efficiency of the derived mean-shift procedure
for tracking. Finally, quantitative tracking results are given, comparing the proposed
tracking framework to standard histogram- and template-based tracking methods.

In the first experiment, the use of single features is compared to the combined-
feature framework for tracking. Figure 5.6 shows the tracking results for two multi-
modal video sequences. The data used is aligned visible spectrum and thermal infrared
video, with each pixel represented by its colour components and infrared brightness. In
the experiments, five features were used: Y, U, V, thermal brightness and edge orien-
tation, with 8 bins per feature. An exhaustive search in an 11 x 11 window around the
previous object location was used, and varied the scale by +/-10%, choosing the scale
that returned the largest similarity score, as in [22] and [11]. The spatiogram models
for the object are extracted in the first frame and remain fixed for the duration of the
experiment. For the single-feature trackers, the object model used is a spatiogram. For
the multi-feature tracker, a bank of spatiograms is used. Figures 5.6(b) and (g) show

the luminance-based tracker, and (c) and (h) are the infrared-based tracker. Results
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L0 0g

(b) Luminance tracker

' m “

(c) Infrared tracker

(a) First frame (visible spec-
trum)

(d) First frame (infrared spec-
trum)

(g) Luminance tracker

(f) First frame (visible spec- (h) Infrared tracker
trum)

(i) First frame (infrared spec- (j) Combined tracker
trum)

Figure 5.6: Tracking results using single features versus combined tracking: pedestrian
and cyclist tracking. The left column shows the initial frame position of all trackers for
two sequences (visible spectrum and thermal images shown in each case). The smaller
images to the right show zoomed versions of the object tracked in subsequent frames
of each sequence: (b),(g): Luminance-based spatiogram tracking. (c),(h): Infrared
brightness spatiogram tracking. (e),(j): Combined tracking.
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Frame 1635 Frame 1680 Frame 1695 Frame 1710

Frame 1750 Frame 1790 Frame 1845 Frame 1900

mym

Frame 900 _Frame 930

Frame 940 Frame 980

Frame 1160

Frame 880 Frame 990 Frame 1010 Frame 1080

Figure 5.7: Illustrative tracking results using the mean-shift procedure for the combined
tracker, using Y, U and V features (first sequence) and YUV and infrared features
(second sequence).
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for the other three features are omitted for clarity of presentation, but were always
less effective than either luminance or infrared. The combined tracker, using all five
features, is shown in (e) and (j). In the first difficult tracking sequence, taken from
the OTCBVS benchmark dataset [27], the tracker attempts to follow a woman in dark
clothing through occlusion and distraction by crowds. In frame 812, the luminance
tracker fails as the woman walks into an area under shadow. In frame 1009, the in-
frared tracker fails and locks onto a passing person. There is little to distinguish people
in infrared since, due to the camera pixel saturation, hot bodies appear bright white.
The infrared tracker settles on a street-light until another person passes who it begins
to track in frame 1230. The combined tracker tracks the person throughout the entire
sequence, despite severe occlusion and background distraction. The second sequence in
figure 5.6 was captured with the multimodal camera rig, described in chapter 2 and in
[98], and shows similar results in tracking a cyclist. Both the luminance and infrared
tracker fail when the cyclist turns the corner. The luminance tracker locks onto an-
other bicycle in the bike-rack, while the infrared tracker locks onto another person who
is standing in the bike-rack. The combined tracker, however, successfully tracks the
cyclist for the entire duration of the sequence. Both sequences in figure 5.6 show that
combining features outperforms any single feature in tracking.

Our second experiment, shown in figure 5.7 illustrates tracking results using the
mean-shift procedure derived for the bank of spatiograms. In both sequences, 32 bins
per feature were used and the mean-shift kernel was initialised at the location where
the object was found in the previous frame. Mean-shift tracking was then performed
using the derived procedure at three different scales (the current object size and +/-
10%). The scale that gave the largest similarity score was selected as the correct scale.
YUV colour features were used in both experiments and infrared brightness was also
used in the second sequence. In the first sequence, which is taken from the PETS2001
video dataset, the tracking of a blue car with a moving background is shown during a
rapid change in scale. In the second sequence, which is a multimodal sequence (infrared
band is not shown), the tracking of a book over a complex background is shown. As
the book is at room temperature, the thermal features only add noise to the tracker
but it still successfully keeps a lock on the target. The sequences required, on average,
7.68 and 10.95 iterations per frame, respectively, to converge. This is about 40 times
faster than an exhaustive search in a 11 x 11 x 3 local scale window. Using standard
histogram or spatiogram mean-shift tracking would require over 340 times as many
bins (322 instead of 3 x 32). In an interpreted MATLAB implementation, the mean

tracking speed (over 36 different tracking tests) is just over 9 frames/second, which
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Source Type Temp Hist Hist Spat Spat Spat Spat

Bank 8 BPF 2 BPF 3 BPF Bank

DCU person | 100.0 | 29.1 29.0 | 29.1 34.4 100.0 | 100.0
PETS01 | venice | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
DCU person | D.3 90.9 | 100.0 | 72.6 | 30.0 | 100.0 | 100.0
PETS03 | person | 67.5 | 69.5 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
DCU person | 42.4 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
oTcBvs | person | 100.0 | 97.5 | 100.0 | 51.2 | 100.0 | 87.1 100.0

Table 5.1: This table indicates the percentage of frames in which the object was suc-
cessfully tracked by each tracker for 6 different sequences. The trackers are: a template
tracker (Temp), a histogram tracker (Hist), a histogram-bank tracker (Hist Bank), three
spatiogram trackers (Spat) using different numbers of bins-per-feature (BPF) and the
proposed spatiogram-bank tracker.

includes reading bitmap images from hard-drive. It is envisaged that an optimised
version would run comfortably in realtime.

In the third set of experiments, table 5.1 shows some quantitative tracking results
comparing the proposed tracking framework to histogram- and template-based tracking
methods. 6 sequences were used, taken from the public OTCBVS database, PETS’01,
PETS’03 and a self-captured multimodal collection (marked DCU in the table). All se-
quences (except the PETS sequences) include an infrared channel, along with the RGB
channels. Ground-truth was generated by manual annotation of bounding boxes on
the objects to be tracked. Tracking was judged to have failed if the tracker’s bounding
box no longer included any part of the object. The figures indicated are the percentage
of frames of successful tracking before failure. Histogram tracking (‘Hist’ column) was
based on [22] using exhaustive search. The bank of histograms tracker (‘Hist bank’ col-
umn) used the same approach but multiplied the matching scores of each channel. For
template tracking (‘Temp’ column) the standard sum-of-squared difference method was
used [86]. The tracker in the ‘Spat’ column is a tracker using the full joint-spatiogram.
All binned distribution models used 8-bins per feature. Object models were fixed at
the start of the sequence and were not updated. Histogram and template tracking were
chosen as they represent the two extremes of modelling feature spatial distribution.
Histograms contain no spatial information and, at the other extreme, templates encode
rigid spatial information. Spatiogram banks (‘Spat bank’ column), encoding a small
amount of coarse spatial information, did best in the trials. The hist-bank tracker,

although achieving a high success rate, often shrank in scale and tracked only part of
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the object. The full joint-spatiogram (‘Spat’ column), failed on a number of sequences
and these failures can be attributed to the curse of dimensionality. The Spatiogram
model contained 4096 bins (8 x 8 x 8 x 8) and was therefore quite sparse, as the tracked
objects generally contained less than 4096 pixels. Since, the spatiogram similarity mea-
sure performs a bin-wise comparison, it can return poor matches on sparse spatiograms.
To counter this, the experiments were also performed with spatiograms with a smaller
number of bins-per-feature (BPF). The columns marked Spat 2 BPF and Spat 3 BPF
in table 5.1 show the results of spatiogram tracking with 2 and 3 bins per feature re-
spectively. This gives a total of 16 (2%) and 81 (3%) bins in total, counteracting the
sparse representation, but due to the coarseness of the quantisation, neither tracker

performs as well as the spatiogram-bank.

5.7 Discussion and future work

In this chapter, the use of spatiograms for object tracking was reviewed and a spatiogram-
based tracking framework was proposed to address the problems associated with mul-
timodal data, specifically, the issue of exponential growth in memory and computation
requirements as more features are added. The proposed framework splits the features
over separate spatiograms, providing a compact and efficient object model. The valid-
ity of this framework was discussed and justified with illustrative examples and exper-
imental results showing robust object tracking on a variety of sequences. A mean-shift
procedure for efficient object localisation was derived for the proposed framework and
mean-shift tracking was demonstrated on two sequences. In the experiments, the use
of multi-feature tracking was shown to significantly out-perform single feature track-
ing and specifically, the proposed spatiogram-bank tracking framework was shown to
perform more robust tracking than traditional methods, including those based on his-

tograms and templates.

5.7.1 Spatiogram-bank feature splitting

The spatiogram banks used for the tracking in this thesis use one spatiogram per
feature. The framework does however allow features to be split arbitrarily over any
number of spatiograms. For example, thermal and HSV-colour features could be split
over H, S, V and I spatiograms, or they could be split over HS and VI spatiograms,
as well as other permutations. Future work may examine different methods of splitting
features over spatiogram banks, other than using one spatiogram per feature, as used

in this work.
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5.7.2 Adaptive tracking

Despite displaying successful tracking in many sequences, it was noted that the mean-
shift tracking would sometimes fail very quickly and lose track of the object. Addition-
ally, both the exhaustive search and mean-shift procedures would often choose too large
a scale for tracking the object when using either the spatiogram or spatiogram-bank ob-
ject model. Examples of failed tracking are shown in 6.5. The failures were discovered
to be due to the similarity measure used. In the next chapter, the drawbacks of the
original spatiogram similarity measure are detailed, including why mean-shift tracking
with this measure can suddenly fail and why it has difficulty with scale selection. A
new similarity measure is proposed, based on deriving the Bhattacharyya coefficient
for Spatiograms, and this measure is shown to overcome the original measure’s faults.

In most sequences where failure of the proposed method was observed, there were
three main reasons: (i) the object became occluded by the background or another ob-
ject, (ii) a distractor, similar to the target object, confused the tracker and caused it to
follow it instead, or (iii) the properties of the object changed so that the current object
model was invalid, such as when a lighting change occurred. These issues correspond
to the three open problems in tracking, detailed in chapter 2: occlusion, feature failure
and model failure. In this thesis, the problem of object tracking during occlusion is not
addressed, but the other two issues are tackled in the next chapter.

The most difficult tracking scenarios are those in which the environment or the
object appearance changes. The next chapter will deal with how adaptation can be
used within the spatiogram bank framework to robustify tracking in these difficult
cases. The issue of feature failure, when the model used does not distinguish the object
strongly from the background, can be tackled by adaptively weighting the features of
the model to best discriminate object from background. A dynamic feature weighting
architecture is investigated within the spatiogram-bank framework for this purpose.
Also, the issue of model failure - where the object’s appearance changes so that the
current model is no longer a valid depiction of it - is addressed in the next chapter by

adaptively updating the object model to cater for changes in pose or lighting.
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Chapter 6

Adaptive Spatiogram Tracking

6.1 Introduction

The previous chapter introduced the concept of the spatiogram-bank tracker and showed
that it provided both a compact object descriptor and outperformed standard methods
of object tracking. In this chapter, the tracking framework is improved upon in three
aspects. Firstly, an improved similarity measure for spatiograms is derived and evalu-
ated. Secondly, strategies for updating the spatiogram-bank object model are tested.
And thirdly, an adaptive weighting scheme for feature weighting is proposed for the

spatiogram-bank tracking framework that caters for difficult tracking scenarios.

6.1.1 Chapter overview

Noting that spatiogram based tracking can sometimes select too large a scale for track-
ing, and that it can often quickly lose the object lock when using the mean-shift ap-
proach, the original measure for Spatiogram comparison is examined and shown to
be deficient in a number of respects. A new similarity measure is derived from the
Bhattacharyya coefficient and shown to be a more robust measure for object tracking.

Next in this chapter, two of the common causes of tracking failure are tackled,
namely model failure and feature failure. Model failure, caused by changes in the
object’s appearance, is addressed by updating the object model to account for such
changes. A number of updating strategies are evaluated in an object tracking context.

The second common cause of tracking failure, termed feature failure, is when the
current model has difficulties separating the object and background. The spatiogram-
bank tracking framework is shown to provide a flexible framework for dynamic feature

weighting that allows the tracker to adaptively choose feature weights that best distin-
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guish the object from the background clutter. This approach is shown to outperform
the standard equally-weighted spatiogram-bank tracker and the state-of-the-art Collins
tracker [20].

6.2 Improved similarity measure

In the previous chapter, the similarity measure used to compare Spatiograms, based on
the average of the two Mahalanobis distance, was described. This measure, proposed
in the original work, gives high similarity scores to spatiograms whose histogram bins
counts are similar and whose spatial means are aligned. However, as now discussed,
this similarity measure has significant shortcomings and these limitations are addressed

in the next section by the derivation of an improved measure.

6.2.1 Disadvantages of the original measure

The originally proposed similarity measure, shown in equation (5.7), seemed to be
chosen arbitrarily and has two main disadvantages. Firstly, it is not tolerant of small
spatial changes in the feature bin centroids (i.e. changes in the p values). This is
clear from the % term, whose value is less than either of the individual variances.
This means that small spatial changes in bin spatial means are heavily punished by
the original measure. Secondly, a good similarity measure should have the property
that if an image region spatiogram is compared to itself, the measure should return its
maximal value. This is not true of the original measure. With N (x; i, X)) representing a
normalised Gaussian evaluated at x, we can write the similarity between a spatiogram

and itself as

B

p(S,8) = Z\/;%[N(ub;ub, (25,7
b=1
B

B
np np
This shows that comparing a spatiogram to itself does not equal a constant. Indeed,
with the original similarity measure, it is possible for a patch which is different from
the target patch to be a better match to the target, than the target itself! This is
because the normalisation constant of the original similarity measure adds more weight
to spatially-tighter feature clusters, and is the reason for the inaccurate scale selection

that was observed in a number of sequences. On uniform backgrounds, the size of
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the object’s bounding box will increase so that the object itself forms a spatially-tight
cluster, giving a large score with this measure. For example, when tracking a black blob
on a white background, the similarity will be increased if the tracker scale increases, as
the blob will appear smaller, hence giving a smaller value of ¥, for the black pixel bin.
This weighting also leads to a non-smooth similarity surface, which often has many
spiked peaks. This difficulty is overcome by deriving a new similarity measure in the

next section.

6.2.2 Derivation of new measure

To derive the new similarity measure, the 274

order spatiogram is converted back to a
histogram, by adding the extra dimension of space. Here, for simplicity, the derivation
is done using one spatial dimension. However, the generalisation to two dimensions is
straightforward. For bin b, its contents, ny, is divided over an infinite number of spatial

bins, 1y, where k is an integer ranging from —oo to +oo. This is expressed as:

npdp(kAW) Aw
n =
bk Foo op(IAW)Aw

1=—00

(6.1)

where Aw is the spatial size of each bin and ¢ is a normalised Gaussian with the mean
and covariance of bin b. Since it is now possible to (theoretically) create a histogram
from any spatiogram, spatiograms can be compared using the Bhattacharyya coefficient
[22]. This has a relationship with the probability of Bayes error [146], and therefore is
more similar to a probability than equation (5.7). Given two spatiograms (converted

to histograms), nyj and n;k, they are compared using the Bhattacharyya coefficient

as follows:
B +oo
pn,n) = D Y \/m
b=1 k=—o0
2 EAW)A
— Z Z npdp(kAW)Aw
b1 ke oo oo dy(iAw)Aw

o o, (iAW) Aw

1=—00

( n, ¢y (kAW)Aw )
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As Aw — 0, the denominators of both fractions disappear, since ¢, and qb;) are both

normalised Gaussians, therefore:

+o0o +00
> d(iAw)Aw ~ () dz = 1

1=—00 -

o) =3 Vi, | " Ja@an (6.2)
b=1 —o°

This can be simplified further by noting that the product of two Gaussians is Gaussian,

This gives:

and also that the square-root of a Gaussian is Gaussian. The resulting Gaussians are
not necessarily normalised, however, and therefore do not usually integrate to one.
What remains are constant terms which can be thought of as weights for each bin
comparison. Given that \/N(z;a, A) = ¢N(z;a,2A), with ¢ = 2(27)™/*|A|Y/* for m
dimensions, and N (z;a, A)N(x;b, B) = zN(z;¢,C) with z = N(a;b, A + B), equation

(6.2) can be simplified to produce the compact new measure:
B +00 .
pnn) = Y fu, [\ do

b=1 -
B too

= > \/nbn;\/%/ \ ¢o(z) dz
b=1 -
B ; +oo 4

= S\ [ wdla)de

B

= \ 1y, (a6 2]
b—1
\/meny, [%\/N(Mb; iy, X + 2;)}

M [QbeN<Mb§ 1y, 2(S + E;))}

I
M=

b=1

|
M=

o
I

1

where ¢, and ¢, are normalised Gaussians. Terms ¢, and Q) are given by

,11/4
qQ = 2V27T’Eb+zb

1/4

Q = 22|+ (=) 7)Y
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Noting that ¢,Qp = 87r\§]b§];|1/ 4 the final similarity measure becomes:

B
p =3\ [ SRS TN (s 1, 25 + 53) | (6.3)
b=1

6.2.3 Analysis of the new measure

Comparison to itself Firstly, comparing equations (5.7) and (6.3), of the old and
new measures respectively, it is clear that the new measure is more tolerant of small
spatial changes, as the covariance is equal to twice the sum of individual covariances.

Secondly, if two identical spatiograms are compared using the new measure, we obtain:

B
p = Z\/n§8ﬂ\2b|l/2N(ub;Mb,4Eb)
b—1

B
’2b|1/2 B B
ZSM”%M&] ay ~ 2™ =1

This shows that any spatiogram compared to itself will always receive a similarity score

of 1 using the new measure, which is its maximal value.

Noise effects on similarity scores The plot in figure 6.1 shows the effect of noise
on the proposed spatiogram similarity measure, compared to the original measure and
to histogram similarity. The original similarity score is normalised by dividing by its
maximum value so that it reaches a value of one at zero noise. The image used (top right
corner of figure 6.1) was selected as it contained pixel clusters with different variances.
Adding Gaussian noise causes a sharp decrease in the similarity score of the original
measure, due to its intolerance of small spatial changes. Histogram based matching is
quite insensitive to noise and even returns a relatively high matching score when the
original image is lost in the noise signal. The proposed measure has a linear response

within a large window of added noise.

Spatial effects on similarity scores Comparing equations 5.7 and 6.3, it is clear
that the new similarity measure is more tolerant to spatial movement of colours, since
it allows greater variance. This was also verified experimentally, as shown in figure 6.2.
Using the RGB colour-space and quantising pixels into 8 bins per colour channel, a
target image region was compared with other overlapping regions by shifting the region

left and right by 20%. Note that the previously used similarity measure is normalised
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Figure 6.1: The effects on the similarity measures of adding Gaussian noise to a target
image (top right): Histogram similarity (green, top curve), original spatiogram sim-
ilarity measure (blue circles), proposed measure (red). Added noise RMS shown on
X-axis.

so that its maximum value is one. As shown in the graph, the previously used similarity
measure is intolerant of small spatial changes, where a shift of only a few pixels causes
the measure to report a very significant difference between the target and the shifted
region. A histogram-based comparison is completely tolerant of spatial changes, since
it stores no spatial information. The new measure achieves a balance, as it is tolerant of
spatial changes but not oblivious to them. Therefore it is a more discriminative model

than a histogram.

Similarity surfaces Figure 6.3 shows the similarity surfaces generated by (c) the
original measure, (d) histogram matching and (e) the proposed measure for two tracking
examples, corresponding to localising a rigid highly-textured object (a book) and a non-
rigid human object (a football player). In the top row of fig 6.3(c) the original measure
produces a spiked similarity surface and finds the best match on the ball, instead of the
player. This is because it weights bins with low variances higher, such as the tightly

clustered white pixels of the ball. Its surface in fig 6.3(c), bottom row, is also not
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Figure 6.2: (a) Test image with target section highlighted, (b) Close-up of target sec-
tion, (c) Similarity scores between target patch and similar patch moved horizontally
from target position +£20%: Histogram similarity using Bhattacharya coefficient (blue
circles), Previous spatiogram similarity measure (dashed-red crosses), the proposed
measure (solid line).
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(a)

Figure 6.3: (a) Target objects, (b) Search areas with best matches shown: Original mea-
sure (blue), Histogram matching (red), Proposed measure (green). Similarity surfaces:
(c) Original measure, (d) Histogram matching and (e) Proposed spatiogram measure

"
]

(b)

very smooth, but it correctly localises the book. Figure 6.3(d) shows the histogram
similarity surfaces. Since it contains no spatial information, it provides poor object
localisation, as can be seen by its poor lock on the book in fig 6.3(b). The proposed
measure’s surfaces, shown in fig 6.3(e), are smooth, as in histogram matching, but also

have good object localisation, indicated by the tighter peaks.

Marginal spatiogram similarity surfaces The most important consideration in
using marginal spatiograms for tracking is whether this approximation of the model
allows robust discrimination of the tracked object from the background. In figure 6.4
some illustrative similarity surfaces are given, in order to discuss the differences between
tracking using a full joint-spatiogram model and the bank of spatiograms model that
uses marginal spatiograms. The newly derived measure is used for all surfaces.

Figure 6.4(a) and (b) show the initial position of the object to be tracked: a motor-
cyclist driving away from the camera. Object models are extracted from the rectangular
region surrounding the object. Figure 6.4(c) and (d) show the same object, but 100
frames later. The similarity surfaces for the four individual features, {H,S,V,IR}, are
shown in figures 6.4(e), (f), (g) and (h). These surfaces are generated using the four
marginal spatiograms of the object model extracted from the first frame. The scale was
adjusted to match the object size. Figure 6.4(i) shows the spatiogram bank similarity
surface, obtained by computing the product of four individual feature surfaces. Figure
6.4(j) shows the surface obtained using the full spatiogram

In the figure, 8 bins were used per component, giving 4096 (8 x 8 x 8 x 8) bins in
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the full spatiogram. Using more bins will exacerbate the curse of dimensionality, since
in the original frame the object is 66 x 104 pixels in size, giving a total of 6864 pixels.
For example, using 16 bins per component would mean that there are almost ten times
as many bins as there are pixels. Using less bins per component would be expected to
reduce tracking performance.

Comparing figures 6.4(i) and (j), the bank of spatiograms surface in (i) appears
more peaked, with very well defined distractors in the form of the person in the top left
and the motorbikes in the bottom right. The full spatiogram surface has broad areas
of potential distraction, and these areas seem to be present in the individual surfaces
of Hue (H) and Value (V). Distinct differences are certainly present, but it will be the
tracking performance that determines whether the bank of spatiograms model provides

a good tracking framework.

Object tracking using new measure The final experiment in figure 6.5 shows re-
sults from typical object-tracking scenarios. For this test, the multi-feature spatiogram-
bank mean-shift tracking framework described in the previous chapter is used. The
original measure is compared to the proposed measure for person tracking (top row)
and head tracking (bottom row) using thermal infrared and colour pixel features. The
mean-shift procedure for the new measure is very similar to the original procedure.

Firstly, the spatial similarity part 1 is rewritten as:
Wy = B[S 54| AN (113 415, 2(S + 5p) (6.4)

The (k) superscripts, indicating the feature number, have been omitted for clarity.

Secondly, the combined variance f)b is rewritten as:
S = 2(5 + 5) (6.5)

These alternate values are used in equations (5.21) and (5.22), and then the procedure
is exactly as before. The original measure mean-shift (shown in red) fails quickly
when the tracked object moves, due to its narrow similarity surface peak. The mean-
shift procedure generally fails when an object moves faster than the peak width. The

proposed measure (shown in yellow) successfully tracks both objects.
Discussion The newly derived similarity measure for spatiograms has been shown

to be superior to the original measure over a series of experiments. It has been shown

to be more robust to noise and spatial changes in feature position that the original
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(h) IR (i) Marginal Surf (j) Full Surf

Figure 6.4: Marginal spatiogram surfaces: (a) shows a target object at time ¢ and (c)
shows this object 100 frames later. The corresponding infrared frames are shown in (b)
and (d). Spatiograms are extracted in frame (a) and compared to all parts of frame (c).
Figures (e), (f), (g) and (h) show the similarity surfaces computed by comparing the
extracted models in each feature-space. Shown in (i) is the product of all four similarity
surfaces. Shown in (j) is the similarity surface using the joint-feature spatiogram. All
spatiograms used 8 bins per component.
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(b)

Figure 6.5: Multi-feature mean-shift tracking results using: (in red) Original measure,
(in yellow) Proposed Measure. (a) Visible images and (b) Infrared images.

measure. Like the original measure, it is more discriminative than histograms, since it
also considers spatial information as well as feature counts. In all further experiments

in this thesis, the new similarity measure will be used.

6.3 Adapting to model failure

As mentioned previously, the problem of model failure describes scenarios where the
object’s appearance changes (a change in lighting or pose, for example) so that the
current model is no longer an accurate depiction of the object. In this section an
approach to tackle this problem in the context of spatiogram-bank tracking is proposed

and evaluated.
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6.3.1 Related work

In the experiments of the previous chapter, the object model extracted in the first frame
was fixed as the object model for the entire tracking sequence. While this strategy was
successful for the sequences used, it is likely that an object will change its appearance
over longer sequences, due to gradual lighting changes or changes in object pose, causing
the original model to be a poor representation of the object. Noting this potential
problem, the object model can be updated continuously. For example, by using the
best match in the current frame and mixing it with the object model, thereby gradually
altering the model to cater for object changes.

However, by updating the model, there is problem that it may drift away from the
correct solution. Each time the model is updated, background pixels may be included
due to inaccurate object localisation and they will pollute the object representation,
eventually leading to tracking failure. A remedy for this problem, proposed in both [86]
and [20], is to assume the object model extracted in the first frame remains a reliable
object representation, and to use it to anchor the updated model, thereby constraining
potential drift from the original, good solution.

In [86], Matthews et al. use a template representation for the object. Two models
are retained: the original object model and the best match in the last frame. In each
frame, the object is tracked by performing a gradient ascent on the similarity surface,
first using the original model to find a local peak and then initialising the gradient
ascent procedure at this peak but using the other model to localise the object.

In [20], Collins et al. use a histogram representation for the object. The model used
for tracking is a straightforward average of the histograms of the last-best-match and
the initial object histogram.

In [88], objects are represented by Gaussian mixture models. These models are
updated by adapting the model parameters online in each new frame, using a recursive
estimate for the Gaussian model parameters obtained from the pixels sampled from
the current object position. The adaptation is selective however, and is stopped when
tracker failure is detected. This is determined to have happened if the data likelihood
drops below an adaptive threshold.

In [162], the tracked object is represented by three appearance models: the original
model, which remains fixed, the last best matching and a gradually updated template.
The matching scores returned by each model are adaptively weighted using weights
that depend on how well each model matches. The weights are slowly updated using

an « forgetting-factor.
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6.3.2 Spatiogram updating

In the context of using spatiograms for tracking, the strategies of Collins et al. [20]
and Matthews et al. [86] can be followed by mixing the original spatiogram model
with the best matching spatiogram in the current frame and using this model for
object localisation. While mixing histograms is simply a weighted sum of individual
histogram bins, mixing spatiograms requires the spatiograms to be converted back to
their moment form first, before mixing. We will refer to the mixing of spatiograms as
Beta-blending, in reference to the 8 parameter that controls the ratios of spatiograms

that are mixed. The blending procedure is detailed in the next section.

Beta-blending spatiogram models Given the current spatiogram model and the
best match in the current image, the update procedure is a blending of the two spa-
tiograms and simply involves adding the bin-counts and moments of the two spa-

tiograms. First we convert from spatial means and variances to moment sums:

M)b =  H(xz)b (6.6)
My, = Hy)blb (6.7)
Swo = (S)b + Hiwyp) (6.8)
s = (Sep + Hig e (6.9)

where m,), and m,); are the first-order moment sums of bin b in the z and y direc-
tions, $(;), and s, are the second-order moment sums, np, pp and Xy are the spa-
tiogram parameters. After both spatiograms have been converted to moments sums,
the updated model is computed as the weighted sum of the moments, using a weighting

parameter, 3, to control the update rate 0 < g < 1:

ny = Bl + (1 - pm? (6.10)
my = Ami + (1 - g)m (6.11)
sy, = BtV +(1—p)s? (6.12)

The moment sums are then converted back to spatiogram parameters to obtain the

updated spatiogram:

Payp = —7- (6.13)
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lu‘(y),b = n; (614)
2
p S(x myy
Yy = @b ( (/)’b) (6.15)
’ y, y,
2
/ _ Syb M(y),b
S = e ( y > (6.16)

6.3.3 Experimental setup

In the experiment in this section, a total of 15 objects from different sequences were
used to investigate tracking performance of the bank-of-spatiograms model, comparing
5 update strategies. All sequences are multi-modal containing both visible spectrum
and infrared imagery. Table 6.1 gives details of the objects used, their sizes and the
lengths of the sequences. The 5 different object model updating strategies that were

investigated are as follows:

No update The object model extracted in the first frame remains fixed for the entire

duration of tracking.

Instant update The best match to the object model in the current frame is used as

the object model for tracking in the next frame.

Gradual update The object model is gradually updated, using the best matching

spatiogram in the current frame. The updating procedure is illustrated by:
My1 = BM;+ (1 - 8)B; (6.17)

where M; is the object model at time ¢ and B; is the best matching spatiogram in
frame t. In the tests 8 = 0.95.

Mixture Two object models are retained: the original model and the best match in
the current frame. Tracking in the next frame is done using a model that is an average
of the two models, i.e. with G = 0.5.

Product Again in this strategy, two object models are retained: the original model
and the best match in the current frame. This time however, the models are not
blended, but kept separate. For each object position hypothesis, the scores from both

models are computed and multiplied to give the final score for that position.
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For each object to be tracked, the initial bounding box was supplied in the first frame
and the trackers attempt to locate the object in all subsequent frames. The object
model used is a bank of spatiograms, with one spatiograms for each of the 4 features:
H, S,V and I (IR brightness). To find the object in the next frame, an exhaustive
search method was adopted, using an 11 x 11 window and performing this search at
three scales: 90%, 100% and 110% of the previous object radius. The bounding box of
the area most similar to the current object model is selected as the object position in
the frame. Manually annotated ground truth was used to assess tracker performance.

Results of this experiment are given in the next section.

Object | # frames Size in Object
number | in sequence | Pixels type
1 19 22 x 13 white vehicle
2 29 59 x 20 red car
3 92 15 x 10 black car
4 97 39 x 212 human torso (scale change)
5 101 38 x 46 human face
6 113 16 x 23 human face (scale change)
7 115 15 x 17 white car
8 129 20 x 26 | human face (appearance changes)
9 141 14 x 31 human face
10 172 28 x b4 pedestrian
11 224 13 x 30 person (night-time)
12 234 27 x 51 human face
13 247 13 x 39 pedestrian (night-time)
14 201 33 x 37 | human face (nearby distractor)
15 288 12 x 29 pedestrian (crowded scene)

Table 6.1: Objects in tracking database for model updating experiment.

6.3.4 Experimental results

While many measures of tracking performance have been used, such as the number of
failed tracks and average centroid error, all results of this experiment are shown on
a single plot, similar to a precision-recall curve. Figure 6.6 illustrates how tracking
performance in a single frame is measured. For each sequence, and each frame, a
tracker’s precision and recall of the object pixels can be computed using hand-annotated
ground-truth bounding boxes. This is done simply by dividing the overlap area of the

bounding boxes by the ground-truth box area (for recall) or the tracker’s bounding
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Figure 6.6: Computation of tracking performance using ground-truth bounding-box:
The precision and recall of tracking can be written as p = A/T and r = A/G. Com-
bining them with the F; measure gives the tracking score, F; = 2A/(G+1T)

box area (for precision). Precision and recall can be combined using the F; measure,
giving Fy = 2pr/(p+r) =2A/(G+T), as shown in figure 6.6. Using the computed F}
measure, tracking failure can be judged to have occurred if this measure drops below
a failure threshold. For different failure thresholds, the average percentage of correctly
tracked object frames can be computed. Using this approach, figure 6.7 shows the
results of the tests on each of the four model updating strategies. At very low failure
thresholds, tracking is deemed to have failed only when the object is lost completely.
At higher failure thresholds, the tracker must be more accurate in order to be judged
successful and must not only remain on the object, but also be at the correct scale. In
order not to bias the results for longer tests, since the sequences are of different lengths,
the percentage of correctly tracked frames was computed for each sequence, then the
average percentage was computed over all sequences.

From figure 6.7 it is clear that the instant update strategy performs poorly. This
strategy can cause the tracker to drift quickly away from the object. The gradual
update strategy performs better, but also drifts away from the object, albeit more
slowly. Overall, the best updating strategy was the product update.

Due to the strong invariance of the infrared channel, the fixed object model (no
update) performs well. However, it can be seen in figure 6.8, when compared to the
product strategy, that the fixed model is too rigid to cater for changes in the pose of
tracked objects. Here, tracking results are shown for object number 8 in table 6.1, a

human face. The product strategy gives a better lock on the object since it adapts to
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Figure 6.7: Model updating results: mean percentage of frames in sequence where
successful tracking was achieved for a given failure tolerance
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changing object pose, whilst the fixed model returns inaccurate tracking.

The product strategy appears marginally more accurate than either the fixed model
or the mixture strategy, since it accounts for variations of the model by using both the
last match and the original spatiogram. While the mixture strategy also attempts
to do this, by blending the models some discriminating information may be lost. In
figure 6.9, the mixture strategy and the product strategy are compared in tracking a
pedestrian (object 15 in table 6.1). Due to the mixture’s blending of the original and
best-match models, it is severely affected by the partial occlusion and this leads to the
tracker’s incorrect scale lock. The product strategy, by retaining a separate copy of the
original object model, keeps a lock on the object despite occlusion and similar nearby

distractors.

a%k
ai

Figure 6.8: Example of comparing the no update and product strategies: because the
product strategy uses information from the previous best match, it can adapt to the
changing pose of the tracked object and provide a better lock on the object.

(b) Product strategy

Product strategy

Figure 6.9: Example of comparing the product- and mixture- strategies: because the
product strategy retains a separate copy of the original object model, it provides better
tracking through partial occlusion. Using the mixture strategy, the model is polluted
during occlusion.
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6.3.5 Discussion

There are many other updating strategies that were not considered in this experiment.
While the gradual model updating failed quickly, a selective update might be expected
to fare better. For example, only updating the model when its matching score falls
below a threshold. This strategy might perform well on some sequences, but selective
updating is not a robust solution and will only delay the drift problem [86]. When
an object’s appearance changes so significantly that the original model is no longer a
reasonable representation, then model updating is obviously necessary. However, it is
unrealistic to expect a simple tracker to recognise the difference between an occlusion
and a dramatic change in object appearance. Information from independent higher-
level modules, are needed to robustly make such decisions. For example, a global
lighting change might be detected by such a module and could inform trackers that
brightness features are unreliable. Similarly, a multi-object tracker might be called
upon to resolve possible occlusion scenarios. When drastic changes in object appearance
happen suddenly (within a single frame), and affect all features, a tracker should not be
expected to retain its lock. Instead, higher-level modules, such as an object-detector,
are needed to reinitialise the model in these circumstances.

The use of the initial object model as a reference distribution allows accurate track-
ing even while the appearance of the tracked object varies, and also avoids the problem
of model drift. By combining the original and best matching spatiogram, the object
model will stay anchored to the original, but will also adapt quickly to changes in ob-
ject appearance, leading to a tighter lock on the tracked object. However, the initial
object model cannot always be expected to well represent the object in longer tracking
sequences. As Collins et al. [20] conclude, “Ultimately, the approach of maintaining
a reference distribution needs to be discarded, as it limits the amount of variation that
can be tolerated as the object appearance evolves.” Future works in this area should un-
doubtedly address this problem, perhaps requesting feedback from a detection module

when the original model receives a poor matching score.

6.4 Adapting to feature failure

In tracking, the problem of feature failure occurs when the model used does not discrim-
inate strongly between the object and the background. In this section a dynamic fea-
ture weighting approach is proposed to tackle this problem using the spatiogram-bank

tracking framework. This proposed approach is compared to non-adaptive spatiogram-

186



6.4 Adapting to feature failure

bank tracking and to Collins adaptive tracking, a current state of the art approach to

adaptive tracking.

6.4.1 Related work

Two recent advances in adaptive tracking were proposed in [8] and [20]. The similarities
and differences between Avidan’s adaptive tracking [8] and Collins’ adaptive tracking
framework are discussed here.

In both [8] and [20], spatial information relating to the tracked object is discarded
and pixels are treated independently as samples coming from the object or the back-
ground distribution. Both methods create weight images by determining the best fea-
ture spaces for tracking, assigning higher weights to pixels that are more likely to belong
to the object distribution and then using the mean-shift algorithm on this weight image
for tracking in the next frame.

Collins” method evaluates a series of pre-defined features to see which of them
best allows the object to be tracked. Avidan’s method avoids having to evaluate many
features and instead trains classifiers to separate the object and background pixels using
a least-squares algorithm. Avidan’s method is therefore a more efficient framework if a
large number of features were to be used. Collins’ method, on the other hand, provides a
more flexible non-linear mapping of pixel features to pixel weights, with better handling
of multimodal distributions in both the object and background features.

The Collins’ adaptive tracking method is now described in order to provide context
for experiments later in this chapter where its tracking performance is compared to the

proposed adaptive spatiogram-bank tracker.

Collins’ adaptive tracking The Collins’ adaptive tracking method [20] is an algo-
rithm for feature selection that aims to select the best features for object tracking. Any
set of features can be used as a candidate set, but the original work targetted fast online
selection of features and therefore chose features that were easy to compute. The seed

features used were given by:
F = {w1 R+ weG + w3Blw, € [-2,-1,0,1,2]} (6.18)

which, after removing redundant features, leaves 49 candidate features. These include
raw R, G, and B values, as well as brightness (R+G+ B) and approximate chrominance
features such as R — B. Each feature is then evaluated as follows. First, histograms of

the object and the background are created. The background is a predefined rectangular
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area surrounding the object, but excluding the object’s pixels. For each feature-bin,

the log likelihood ratio of object to background probability is computed using:

max {p(i),d}

L(i) = log max {q().0}

(6.19)
where p and ¢ represent the normalised histograms of the object and background re-
spectively, and J is a small value (set to 0.001 in the original work) that prevents
dividing by zero or taking the log of zero. This function is then used to map the pixels
non-linearly to a new tuned feature space. The variance ratio is then used to evaluate
how well the new tuned feature separates the object and background classes. This ratio
is given by:
var(L; (p + q)/2)

VR(L;p,q) = var(Lop) + var(Lod) (6.20)

where the var function is computed as by:

var(Lyp) = > p(i)L2(i) = [ p(i)L(i)]? (6.21)
i=1 i=1

After ranking all evaluated features by their variance ratio, the top K tuned features
are then used for tracking in the next frame. Tracking is performed separately with
each of the K tuned features by using the mean-shift algorithm to find the nearest local
mode in their respective weight images. The K estimates of the object position are
combined using a naive median estimator, where the = position is given by the median
of the x positions of all estimates and similarly for the y position.

Figures 6.10 and 6.11 show examples of tuned features for six objects. For each
object, the feature used is the top ranking feature using the variance ratio. For the
face images, 2R — G — B is the best feature, as it emphasises the skin hue. Although
there is a strong red object near the face in figure 6.10(p), the tuned feature can handle
multimodal distributions in the background using the log-likelihood ratio and the red
t-shirt does not appear strongly in figure 6.10(t). On the other hand, while the tuned
feature of figure 6.10(k), in 6.10(0), strongly separates it from the average background,
the person on the right acts as a significant distractor. The tracker could easily jump to
the other person, since they are not strongly distinguished. Scenarios such as this, where
there is a spatial clustering of high likelihood pixels (a distractor) in the background,
led Collins et al. to propose an alternative to the variance ratio: the peak difference.
The peak difference is a feature quality measure, like the variance ratio, that attempts

to determine how good a feature is for tracking. Unlike the variance ratio, it does not
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o

a) Object ) 2R-G-2B

(@) 2R-G-B (1) p(i)g(i) () L(i) () Tuned

Figure 6.10: Collins adaptive tracking examples (1)

measure the difference between the object and the average background, but targets
the main distractor in the surrounding background. Specifically, feature performance
is measured as follows with the peak difference method: firstly, the weight image is
obtained from the tuned feature, as before with the variance ratio. Next, the weight
image is smoothed with a Gaussian kernel with its size comparable to the object size.
The peak difference is then computed by measuring the difference between the largest
peak inside the object bounding box and the largest peak outside it (the maximum
distractor). Choosing features in this way provides better tracking features in the
presence of non-uniform background and distractors, as shown in figure 6.12. Later in
this chapter, the Collins peak difference tracker is compared to the proposed adaptive

spatiogram-bank tracker.

6.4.2 Proposed approach

Weighting architecture While the Collins method provides a good architecture
for feature selection, it uses the chosen features separately for tracking, only combining

their results afterwards. In the proposed approach, the tracking procedure uses the fea-
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a) Object  (b) 2R-G-B (e) Tuned
f) Object (g) R-2G+B (j) Tuned

Figure 6.11: Collins adaptive tracking examples (2)

ﬁu:

(b) Vratiol ) Vratio2 ) Vratio3

(e) Pdiffl ) Pdiff2 ) Pdiff3

Figure 6.12: Collins peak difference vs. variance ratio: choosing features with the
best average separation between the inside and outside of the object bounding box, as
the variance ratio does, can result in poor tracking features if the background if not
uniform. The features chosen using the peak difference method, shown in (e), (f) and
(g), are superior to those chosen by the variance ratio, shown in (b), (¢) and (d).
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tures simultaneously, within the spatiogram-bank framework, but individually weights
each feature’s contribution to the process. When multiple features are used for tracking,
prior work has shown that assigning different weights to features can benefit tracking
[125, 135]. In the spatiogram-bank framework, once the weights for each feature have
been determined, these weights must then be used to combine the scores returned by
each feature for a given object position hypothesis. In this work, a weighting scheme
suggested by Solberg et al. in [4] is used. Given a set of weights, w;, for each tracker,

the following weighting formula computes the combined score:

ply) = T p ()™ (6.22)

where, as before, K is the number of spatiogram-banks (considered equal to the number
of features in this thesis) and y is the location of interest. Solberg et al. recommend
using this formulation, where each source is assigned a weight according to the reliability
of the information it provides. This formulation for combining features was also used
by Jones et al. [62] in their work on fusing data from disparate imaging systems for
surveillance for detecting people in a surveillance context. It may also be interpreted in
another way. If the log of this equation is computed, it is similar to the weighted sum
used in democratic integration [135] to fuse multiple cues. The next section describes

how these weights are selected adaptively.

Weight selection criteria As the aim of the tracker is to accurately locate the object
amongst the background clutter, the reliability the information from a source can be
gauged by how well it distinguishes the object from the background. Inspired by the
the work of Collins et al. [20], it is proposed to select the feature weights to maximise
the ratio of the object score to the most prominent background distractor. The object
score is defined as the score at the current object position. The distractor score is
defined as the maximum score of all locations that are outside the object bounds. The
object radius, which defines the object bounds, was set as half the object size.

In figure 6.13 a synthetic example of selecting weights for tracking is shown. Figure
6.13(a), (b) and (c) show the similarity surfaces for three features. The centre of each
surface is the true object position. When these 3 surfaces are fused using equal weights,
the resulting surface is shown in figure 6.13(e). By selecting the weights to optimise the
object-to-distractor ratio (OD ratio), figure 6.13(f) is obtained. This optimal surface
clearly allows the object to be more easily distinguished from the background distrac-

tors. Figure 6.13(d) shows the OD ratio surface. The x-axis is log(ws/wz) and the
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(a) Source 1 (b) Source 2 (c) Source 3
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(d) Weighting score surface (e) Equal weights (f) Optimal weights

Figure 6.13: Synthetic data example of optimal weighting. The sources in (a), (b) and
(c) are to be combined. Each source represents a similarity surface for one particular
feature, with the central peak representing the tracked object and the others are dis-
tractors. Optimum weights chosen were: w; = 0.43, wy = 0 and w3 = 0.57. All images
shown in log scale.

y-axis is log(wz/w1). The peak is located near the top right corner, with w; = 0.43,
wo = 0 and w3z = 0.57

Determining optimal weights To find the weights that maximise the object-to-
distractor ratio (OD ratio), a search must be conducted in a K-dimensional weight-
space, where K is the number of features used for tracking. In this work, the search
was conducted as follows.

The input required is (i) an initial set of weights, (ii) a set of candidate positions
and their corresponding scores from each feature and (iii) knowledge of which candidate
corresponds to the true object position. Firstly, the current distractor is located. This
is simply the background candidate that gives the highest score using the current set
of weights. The gradient vector, V', of the OD ratio in weight-space is then computed
(derivation given in Appendix A.2). The search continues by rescaling the gradient
vector, V', to length L = Ly and moving along this vector in the weight space. If the
OD ratio increases, the procedure is repeated, recomputing the gradient, etc. If the
OD ratio decreases, we return to the previous position in weight-space and the length

L is halfed. This continues until either the rescaled V leads to a higher OD ratio value,
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or L becomes smaller than L,,;,. In the experiments, the values used were Ly = 0.1
and Ly, = 0.001. When L becomes smaller than L,,;,, the procedure is determined
to have converged.

Since there is usually only a small set of candidate positions and scores, this pro-
cedure is quite fast. This allows the method to be run with multiple initialisations
whilst not adversely affecting the computational time for tracking. The initialisations
that were used were: (i) equal weights for all features (1 run), (ii) zero weights for all
features except one (K runs), (iii) equal weights for all features except one, which was
given weight zero (K runs). In addition, the weights used in the last frame are also
used to initialise a search. In total, this gives 2K + 2 different initialisations for the
optimal weight search procedure.

To find a set of background candidates, the area around the current object posi-
tion is sampled at 16 pre-defined location. These positions are shown in figure 6.14.
These position were selected so as to give a good overall coverage of potential areas of
distraction, without expending too much computation. All points are at a distance of
0.5w or 0.75w from the object centre in the horizontal direction (with w as the object
width) and 0.5k or 0.75h from the object centre in the vertical direction (with h as
the object height). Mean-shift trackers can also be initialised in similar areas to find
local distractors, but this simple method was found to give a good enough sampling of
background distractors to provide accurate weightings, as well as being faster.

Since the object must be well localised in scale, as well as in space, the current object
position is evaluated at various scales, obtaining K similarity scores per scale. The
scales used are the current object scale multiplied by S € {0.9%,0.9%,0.92,0.9,1.1,1.12,
1.13,1.1*}. These scales correspond to repeated decreasing or increasing the original
scale by 10%. These scores are not added to the candidate list, since they are very
close to the object score and would always be selected as distractors, dominating the
weight selection process. Instead these scores are used to screen the weights selected
by each of the 2K + 2 initialisations. For each set of weights returned, a scale change
value (SCV) is computed. If the maximum score, using the weights, is the object score
at the original scale then the SCV is zero. If the maximum score, using the weights,
occurs at scale 0.9 or 1.1 then the SCV is one. If the maximum score, using the weights,
occurs at scale 0.9 or 1.12 then the SCV is two, etc. For all the 2K + 2 weight sets, the
minimum scale change is computed. Of all weight sets that comply to this minimum
scale change, the one with the highest OD-ratio is chosen as the weights for this frame.
This heuristic ensures that the selected weights not only localise the object at the

correct spatial position, but also at the correct scale.
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Figure 6.14: Background sampling positions around the tracked object: the 16 circles
represent the nearby points that are evaluated in order to find feature weights that best
discriminate the object from these background samples.

The adaptive spatiogram tracker used in these experiments used the product update
strategy, as that was the best performer in the updating strategy tests in the section 6.3.
The object was therefore represented by two models: the original model and the last-
best-match model. At every evaluated position, 2K matching scores are returned, one
for each of the K features of the 2 models. To reduce this to K features for the weight
selection process, the corresponding scores for each feature are multiplied. Therefore,
as before, each feature is assigned a single weight. It is also possible to assign different
weights to the features of the two models. For example, instead of having a weight for
the infrared brightness feature, to assign a different weight to the infrared brightness of
the original model and the infrared brightness of the previous-best-match model. This
approach was found to favour the previous-best-match model, since it was more likely

to resemble the currently tracked object, and drift could quickly occur.

6.4.3 Adaptive versus non-adaptive tracking

In many instances, tracking tests using thermo-visual sequences are trivial for simple
trackers, as the infrared causes people to appear as bright (hot) objects against a dark
(cold) background. In order to investigate the benefits of adaptive feature weighting

and to challenge the trackers, colour sequences alone are used in this batch of tests,
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without an infrared component. The standard spatiogram-bank tracker is compared
to the adaptive model, each using a set of seven features. The first three features
are standard H, S and V pixel colour values. The next 4 features are local edge
orientation gradient histogram counts, similar to those used in [8] for multi-feature
tracking. Specifically, in a 5 x 5 window around each pixel a histogram of gradient
orientation is computed using 4 bins (0°, 45°, 90°, 135°). Each pixel casts a weighted
vote for its orientation using its gradient magnitude as a weighting. Each pixel therefore
has a 4 bin histogram of the gradient orientation in its local area. These histograms
are normalised to sum to 1 and then multiplied by 255 to scale them to standard pixel
values. These 4 new bands make up the 4 features in addition to HSV. Both trackers
use a coarse-to-fine search in a 13 x 13 area in each frame, then select the best match
from 3 scales (£10% of the object radius).

The results of four tracking tests are shown in figures 6.15, 6.16, 6.17 and 6.18 and
illustrate the tracking performance of the adaptive method compared to the standard

spatiogram-bank. These figures are now described in detail.

Background distraction Figure 6.15 illustrates a tracking scenario where the back-
ground is complex and causes significant distraction to the non-adaptive tracker. A
person in a white jacket is to be tracked, walking in front of a highly textured bike
rack. The non-adaptive tracker has a poor scale lock due to the movement of the
person and the complexity of the background. By frame 430, the tracker has locked
onto the background and tracking is lost. The adaptive tracker chooses to use only
the V (brightness) feature and achieves perfect tracking. Since the person and the
background are made of black and white pixels, neither hue nor saturation can assist

in tracking. Similarly, the edge information is distracting due to the background.

Occlusion In figure 6.16, a person in black, walking towards the camera, is occluded
by other similarly-dressed people. Both trackers succeed to track the person until the
occlusion. The adaptive tracker increases the weights of the edge features during the
occlusion to help discriminate the person from the others, indicated by the spike in the
blue line with crosses in the graph around frame 2790. The non-adaptive tracker loses

track and instead begins to track the other person.
Noise A noisy night-time scene is shown in figure 6.17, where the trackers attempt

to track a darkly coloured car. The adaptive tracker quickly down-weights unhelpful

features such as hue and saturation, using primarily the brightness feature, occasionally
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with some edge information. The saturation of surrounding pixels are similar to the
object, so using this feature, as the non-adaptive tracker does, might not reduce the OD-
ratio. However, the hue and saturation features do cause significant scale distraction
causing the non-adaptive tracker to increase in size. The weight selection method of

the adaptive tracker avoids the scale distraction by removing these features from use.

Lighting changes Figure 6.18 shows the tracking of a man during a strong lighting
change. This sequence is from the publicly available OTCBVS dataset. During the
most severe cloud cover, the object darkens causing the non-adaptive tracker size to
increase, starting in frame 181. The adaptive tracker manages to keep a good lock on

the object by increasing the contribution of the edge features.

These sequences strongly support the use of adaptive weighting in selecting the best
features for object tracking. Additionally, the choice of selected features seems to be
in accordance with the intuitive expectation of which features would be helpful in the
scenarios shown.

Despite the results of figure 6.16, the adaptive method should not be particularly
robust to large occlusions, since it will try to choose features that emphasise what
is currently contained within the tracking window, whether that is the object or the
occluder. However, the fact that the original model is retained will cause features that

also help discriminate the original model to be selected, and could explain its success.

6.4.4 Comparison to the Collins adaptive tracker

In this section, the adaptive spatiogram-bank tracker is compared to the Collins adap-
tive tracker. The Collins tracker worked as follows: To select background samples,
a bounding box of 2.5 times the object width/height was centred on the object, and
pixels which did not correspond to the object were considered background pixels. A
total of 52 features were evaluated in each frame; the original 49 linear combinations of
R, G and B, as well as 3 infrared based features: I, 3/ - R—G— B and I + R+ G+ B.
The maximum distractor method (peak-difference) was used, as described in section
6.4.1, and the number of features for tracking was set at K = 3. For each feature,
the meanshift procedure was run at three scales (£10% of object radius) and the scale
returning the highest sum of weights from the weight-image was selected as the correct
scale.

The adaptive spatiogram-bank tracker uses H, S and V features in the second test,

shown in figure 6.21, for colour face tracking. In all other tests, it used 4 features: R,
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Figure 6.15: Handling background distraction: Tracking results comparing the standard
and the adaptive Spatiogram-Bank tracker. Unweighted tracker (top row), adaptive
spatiogram-bank (next row). Both trackers used 7 features (H, S, V and 4 gradient
histogram features). Weighting for each feature shown in the bottom graph: Hue (red
solid line), Saturation (green dashed line), Brightness (black dotted line), Edge features
(combined weight shown in blue solid line with crosses). Note that the brightness
feature dominates the tracking, so the other features are not seen in this graph.
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Figure 6.16: Handling occlusion: Tracking results comparing the standard and
the adaptive Spatiogram-Bank tracker. Unweighted tracker (top row), adaptive
spatiogram-bank (next row). Both trackers use 7 features (H, S, V and 4 gradient
histogram features). Weighting for each feature shown in the bottom graph: Hue (red
solid line), Saturation (green dashed line), Brightness (black dotted line), Edge features
(combined weight shown in blue solid line with crosses).
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Figure 6.17: Noise handling: Tracking results comparing the standard and the adaptive
Spatiogram-Bank tracker. Unweighted tracker (top row), adaptive spatiogram-bank
(next row). Both trackers use 7 features (H, S, V and 4 gradient histogram features).
Weighting for each feature shown in the bottom graph: Hue (red solid line), Saturation
(green dashed line), Brightness (black dotted line), Edge features (combined weight
shown in blue solid line with crosses).
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Figure 6.18: Changing lighting: Tracking results comparing the standard and the adap-
tive Spatiogram-Bank tracker. Unweighted tracker (top row), adaptive spatiogram-
bank (next row). Both trackers use 7 features (H, S, V and 4 gradient histogram
features). Weighting for each feature shown in the bottom graph: Hue (red solid line),
Saturation (green dashed line), Brightness (black dotted line), Edge features (combined
weight shown in blue solid line with crosses).
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G, B and IR. The search method was the same as in the previous section.

Pedestrian in black Figure 6.20 shows the Collins tracker failing to track a girl
wearing a black coat, as she walks in front of a bike rack, while the proposed adaptive
tracker successfully tracks her movement. The girl is easily tracked in infrared, and
as such, the proposed adaptive tracker assigns all the weight to I R until frame 1450,
when a gradual hand-off to the colour RGB features occurs. After this point, the colour
features perform robust tracking since the background is uniformly coloured (see frame
1519).

Up until frame 1429, of the K = 3 features it uses, the Collins tracker consistently
chooses 2 features: I and 3] — R — G — B. As the girl nears the end of the bike-rack,
there is a person standing in it, acting as a distractor. As a result, the peak-difference
of the I R-based features decreases, leading to colour features to be chosen instead. The
3 features chosen in frame 1429 are I, R— G —2B and R—2G — B. The peak-difference
of IR drops from a previous average of about 0.75 to 0.23. The peak-difference of the
visual features is only 0.055. The Collins tracker is forced to choose K = 3 features,
even if some of these feature degrade tracking. The tracker loses the girl and remains
tightly fixed to the bike-rack. This drawback of the Collins approach was overcome
by replacing the last two IR features (31 — R — G — B and I + R+ G + B) with I
and I. This meant that if I was the highest-ranked feature, then only I would be used
for tracking and this allowed Collins to succeed on this sequence. For the remaining

examples that use infrared, this modification to the Collins method was used.

Colour face tracking In this test, no infrared features were used for either tracker,
only colour features. Figure 6.21 shows tracking results of the Collins tracker and the
proposed adaptive tracker. All subfigures are close-ups of the current tracker bounding-
box, cropped from the full frame. Since the colours of the face are individually to be
found outside the bounding box, it is difficult for the Collins method to discriminate
the object and background. Black pixels make up a significant part of the face, but
only a small fraction of the lower background, so the tracker enlarges the bounding box
scale. Eventually, the nearby person turns their head, essentially causing an occlusion,
which causes further expansion of the tracking box. The Collins method takes into
account only distractors at the object scale. Figure 6.19 illustrates why this approach
can miss potential distraction from the object itself at different scales. In general, when
the Collins tracker is initialised on a face, it will expand to track the entire head, since

pixel information alone is not enough to discriminate the face from the surrounding
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area.

The adaptive tracker has no trouble keeping a good lock, since it exploits spatial
information and not just pixel information. It uses primarily the brightness feature,
but uses also the hue feature around frame 185 when the other person turns away, and

is thereby no longer a distractor.

(a) (b)

Figure 6.19: Illustration of Collins scale distraction: in figure (a) is shown a weight
image generated by a tuned-feature using the Collins method. By comparing the central
peak to the peak outside the bounding box, it is clear that the object-to-distractor
ratio is large and it is likely that the Collins method would select it as a viable tracking
feature. (b) shows the same weight image (only without the bounding box). It is clear
that although there are no nearby distractor peaks, the object peak itself has essentially
widened which will lead to an increase in tracking scale. Here, the distractor is a larger
scale version of the object itself and the Collins method does not account for this,
examining only spatial distractors.

Cyclist tracking In figure 6.22 a cyclist is tracked as they move towards the camera,
then veering to the left past the bikerack. Just where the cyclist turns, another person
is standing in the bikerack. Due to their strong IR features, the Collins tracker jumps
to this person instead of the cyclist, as colour pixel feature alone are not enough to
distinguish the cyclist from the bikerack; both are composed of primarily black and
white pixels. The adaptive spatiogram-bank tracker uses a combination of colour and
IR features to distinguish them. This is indicated by the mixture of weights used
between frame 1690 and 1705. Between frames 1580 and 1650, colour features are
heavily weighted, since the object is on an untextured uniform background, making it
easy to track. When cycling over the bike-rack, only the infrared feature is used, due

to the complexity of the background.
Car tracking In a sequence from the VACE dataset, a car is seen from an aerial

perspective in figure 6.23. The individual features used by the Collins tracker are

not sufficient to distinguish the object from the very similar background. The weight
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images used by the Collins tracker for the first frame in this sequence are shown later
in this chapter, in figure 6.34(g). The adaptive tracker uses a combination of multiple
features to differentiate the object and background, illustrated by the early part of the
weighting graph, where both IR and colour features are weighted. The Collins tracker
quickly fails, whereas the adaptive spatiogram-bank tracker succeeds in tracking the

car until it parks.

T-shirt logo In the final illustrative tracking comparison, shown in figure 6.24, a
t-shirt logo is tracked. As the surrounding area is also part of the person’s body, there
is no temperature difference and therefore IR features do not aid in tracking. The
complex logo is made up of dark and bright pixels, but without spatial information,
it is difficult for the Collins tracker to keep a lock and gradually slides off the logo.
It eventually locks onto an area of the shoulder and wall, containing bright and dark
pixels. The adaptive tracker performs excellently, using primarily blue colour features,
but also using IR to discriminate the logo from the hands during the partial occlusion

around frame 559.

6.4.5 Comparison to histogram- and template-tracking

In this section, the adaptive spatiogram-bank tracker is compared briefly to histogram-
based tracking and template-based tracking. The histogram-based tracker is the stan-
dard mean-shift tracker [22] and uses an 8 x 8 x 8 x 8 histogram in RGBI space. The
template tracker represents the object as a 4-band image and finds the best match in
subsequent frames by minimising the sum-of-squared-difference (SSD). To cater for ob-
ject pose changes, both trackers used the mizture update strategy. That is, the model
used in each frame is an equal-parts mixture of the original model and the last best
match. Here, mizture refers to averaging the histograms or templates. Full details of
the trackers are given in section 6.4.6, where the full set of extensive tests are described.

Ilustrative results are shown in figure 6.25 for the tracking of a vehicle. This
sequences is from the VACE dataset and was captured from an unmanned aerial vehicle
(UAV). In the top row, the mean-shift histogram tracker is shown to fail quickly. Since
it encodes no spatial information, it is attracted to the roadside which is of similar
colour to the car. It expands in scale and quickly fails. The template tracker does well
until the car reaches a junction, just before frame 202. Since the right bank of the
roadside is ‘missing’, it slides off to the left, losing track in frame 210. The proposed

adaptive tracker successfully tracks the vehicle through the junction.
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Figure 6.20: Person tracking comparison: Collins tracker (top 2 rows), adaptive
spatiogram-bank using R, G, B and IR features (next 2 rows). Weighting for each

feature shown in the graph: Red (red solid line), Green (green dashed line), Blue (blue
dotted line), IR (solid black line with crosses).
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Figure 6.21: Colour tracking comparison: Collins tracker (top row), adaptive

spatiogram-bank using H, S and V features (next row).

No IR features were used

by either tracker. Weighting for each feature shown in the graph: Hue (red solid line),
Saturation (green dashed line), Brightness (black dotted line).
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Figure 6.22: Cyclist tracking comparison: Collins tracker (top 2 rows), adaptive
spatiogram-bank using R, G, B and IR features (next 2 rows). Weighting for each
feature shown in the graph: Red (red solid line), Green (green dashed line), Blue (blue
dotted line), IR (solid black line with crosses).
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Figure 6.23: Vehicle tracking comparison: Collins tracker (top 2 rows), adaptive
spatiogram-bank using R, G, B and IR features (next 2 rows). Weighting for each
feature shown in the graph: Red (red solid line), Green (green dashed line), Blue (blue
dotted line), IR (solid black line with crosses).
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Figure 6.24: Logo tracking comparison: Collins tracker (top 2 rows), adaptive
spatiogram-bank using R, G, B and IR features (next 2 rows). Weighting for each
feature shown in the graph: Red (red solid line), Green (green dashed line), Blue (blue
dotted line), IR (solid black line with crosses).
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Figure 6.25: Tracking results comparing the adaptive Spatiogram-Bank tracker to
mean-shift and template tracking: Mean-shift tracker (top 2 rows), Template tracker
(rows 3 and 4), adaptive spatiogram-bank using R, G, B and IR features (rows 5 and
6). Weighting for each feature shown in the graph: Red (red solid line), Green (green
dashed line), Blue (blue dotted line), IR (solid black line with crosses).
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6.4.6 Tracker comparison

In the final experiment, an extensive comparison of various trackers is conducted on
multiple thermo-visual video sequences. The proposed adaptive tracker is compared to
a number of other trackers, namely (i) a template tracker, (ii) a mean-shift histogram
tracker, (iii) the Collins adaptive tracker and (iv) the spatiogram-bank tracker with
fixed weights. Examples of the objects used in the experiment are shown in figure
6.26. A total of 41 tracking sequences are used, with an average sequence length of
290 frames and a maximum length of 707 frames. The average object width and height
are 33 pixels and 44 pixels respectively. The sequences were primarily captured using
the thermo-visual capture rig that was built as part of this work, but the dataset also
includes objects from the OTCBVS [27] and VACE [66] datasets. The operation of
each tracker is now described.

The template tracker object representation is simply a 4-band image of the object,
composed of 3 colour bands (RGB) and a thermal infrared band. The template is
compared to candidate regions using the standard sum-of-squared-differences (SSD)
measure. An exhaustive search in a 13 x 13 window is conducted at three scales (£10%)
in each frame. The rectangle with the lowest SSD is selected as the correct match. To
give the tracker some flexibility to adapt to pose changes, the template used for tracking
in each frame is a straight-forward average of initial template and the best match in
the last frame.

The mean-shift histogram tracker used is based on the seminal paper of Comaniciu
et al. [22] where the object is represented by a histogram. Here, an 8 x 8 x 8 x 8
histogram is used for the 3 colour channels (RGB) and the infrared channel. It was
necessary to coarsely quantise the colour values to reduce computational time, but
primarily to prevent the histogram being too sparse and hence causing the tracker to
fail due to the curse of dimensionality. The mean-shift procedure is repeated at three
scales (original scale £10%) in each frame, and the scale with highest similarity to
the histogram model (using the Bhattacharyya coefficient) is selected. Similarly to
the template tracker, the histogram model is allowed to adapt. The model used for
tracking in each frame is an average of the original histogram and the best match in
the previous frame. The use of HSV features for mean-shift and template tracking
was also investigated, but these features proved detrimental to tracking performance
overall.

The Collins adaptive tracker worked as described earlier. To select background

samples, a bounding box of 2.5 times the object width/height was centred on the object,
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and pixels which did not correspond to the object were considered background pixels.
A total of 52 features were evaluated in each frame; the original 49 linear combinations
of R, G and B, as well as 3 infrared based features. In initial tests, these features were
set as I, 3] — R— G — B and I + R+ G+ B, which seemed reasonable, but this resulted
in very poor performance. Instead, the 3 infrared-based features used are I, I and I.
As explained in section 6.4.4, it is important to add the infrared brightness 3 times.
In night-time sequences for example, the Collins method would choose K = 3 features
and if only one infrared feature was available, then 2 useless visual features would
cause tracking failure. The maximum distractor method was used and the number of
features for tracking was set at K = 3. For each feature, the mean-shift procedure was
run at three scales (£10% of object radius) and the scale returning the highest sum
of weights from the weight-image was selected as the correct scale. Another possible
scale selection criteria used in [19] was not implemented. 32 bins were used for feature
binning. The original work does not explicitly discuss how the object scales returned
by tracking features should be fused. In these experiments, the naive median was used
to fuse the returned widths and heights, as was already done with the x and y position.

The adaptive spatiogram-bank tracker is composed of 4 spatiograms, using the R,
G, B and I pixel features. 32 bins were used for each spatiogram. To locate the object,
a coarse-to-fine search in a 13 x 13 window is conducted spatially, then at three scales
(£10% of the object radius) in each frame. The product updating strategy was used to
cater for gradual changes in the object appearance. The bounding box with the greatest
similarity is selected as the correct match. Weights are updated in each frame using
the proposed weight selection strategy. The non-adaptive spatiogram-bank tracker is
identical, except that all weights are fixed at 0.25.

For every tracking experiment, each tracker is initialised by supplying a manually
annotated bounding box on the object to be tracked. In a practical system, this bound-
ing box would be supplied by a detection algorithm, or by some other means. Ground
truth tracking was manually annotated for each sequence using a Matlab-based annota-
tion tool. For all trackers, simple linear prediction is used to centre the search window
on a probable location of the object. This is done by fitting a line to the plot of the
last four values of each parameter (z, y, width, height) using a least-squares fitting.
Figure 6.27 shows the results of the evaluation, using a similar plot to the one used in
section 6.3.2 to display multiple tracking results. To robustly measure model stability,
a tracker was deemed to have failed if its I} score dropped below the failure threshold
for 25 consecutive frames. The failure threshold is shown on the z-axis, and on the

y-axis is shown the average percentage of a sequence that is tracked before failure.
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Figure 6.26: Examples of the thermo-visual objects used in the tracking experiment.
Each object is shown in the visible spectrum and in thermal infrared.
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Thermo-visual tracking Discussion As figure 6.27 demonstrates, the adaptive
spatiogram-bank tracker outperforms the non-adaptive tracker, as it can robustly select
the best features for tracking, avoiding features that might cause distraction. Both
methods outperform the standard mean-shift and template tracking approaches. The
Collins method performs slightly worse than the mean-shift tracker. Some of the causes

of its failure, discussed in earlier sections, are examined in more detail later.
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Figure 6.27: Thermo-visual tracking evaluation results graph: using 41 thermo-visual
sequences

The mixture update strategy was used for both the mean-shift and the template
tracker in figure 6.27. Figure 6.28 compares the results of using no update and the
mixture update strategy. While there is no clear winning strategy, it appears that the

updating gives a slight improvement in tracking precision for both trackers.

Visual spectrum tracking In some sequences, the use of infrared alone is enough to
provide good tracking. This is because of the strong brightness difference than exists
between some objects and the background, due to their temperature difference. In
the tests described above on the 41 thermo-visual sequences, the proposed adaptive
tracker used a mean weight for IR of 0.4716 (median = 0.5071) over the whole set of
tests. Similarly, the fraction of all features chosen by the Collins method that were
infrared-based is 0.4995 (median = 0.5045) over the whole set of tests.

Since the infrared features performed so well, the use of visual features without

infrared are investigated. Making the tracking more difficult, by removing infrared, also
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Figure 6.28: Updating strategies for Mean-shift and Template tracking: the curves
show the slight improvement in tracking that is achieved using the mixture update
strategy, instead of not updating the model. Results shown over the 41 thermo-visual
tracking sequences.

allows better discrimination between the trackers’ performances. The same sequences
were used for these tests, but the infrared data was removed. The trackers had the
same parameters and configurations as before, except for the following changes.

The Collins tracker used only the original 49 colour seed features. The mean-shift
tracker used an 8 x 8 x 8 RGB colour histogram. The template-tracker used a 3-band
RGB template to represent the object. The proposed adaptive tracker used 10 features:
R, G, B, H, S, V and the 4 edge orientation histogram features. The non-adaptive
tracker was identical, but used equal weights for all features.

Figure 6.29 compares the adaptive and non-adaptive spatiogram-bank trackers.
Clearly, the adaptive approach gives superior tracking. The largest increase in per-
formance is seen when failure-limits of between 0.4 and 0.6 are used. These limits are
the most reasonable, as lower limits can be achieved when the tracker has changed to a
large scale and high limits (> 0.8) are not reliable since they depend on the imperfect
manual annotation of the ground-truth. Figure 6.30 shows the tracking results of oth-
ers trackers, compared to the proposed approach, over the 41 sequences using visual
features only. In this plot, the performance benefit of the proposed adaptive tracker is
much more clear than in the previous experiment which used thermo-visual sequences.

The mean-shift tracker performs badly in these tests without the use of infrared. The
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Figure 6.29: Visual spectrum tracking evaluation : comparing non-adaptive and adap-
tive spatiogram-bank tracking. Both trackers use only visual features in all 41 tracking
sequences.

Collins method performs slightly better. Some of the causes of Collins failure are now
examined.

Both the Collins and Avidan tracking methods create weight images for tracking in
each frame. These weight images emphasise the most trackable features and cause any
pixels that might resemble the background, including other parts of the object, to be
down-weighted. This leads to a difficulty in determining the correct object scale.

As a practical example of the Collins tracker’s drawbacks, if the tracker is initialised
on a human face, without spatial information the tracker can fluctuate its position or
slide downwards, since the neck and forehead are similar uniform skin colour regions.
This makes the tracker more vulnerable to added distraction, as a hand placed under
the chin may be tracked instead. Figure 6.31 shows such an example, where pixel
information is not sufficient to distinguish the object that is to be tracked from the
surroundings. In scenarios where the light source is above the subject, faces appear to
be very bright at the top and dark near the chin. In these cases, it was found that the
Collins tracker would slide upwards or downwards, depending on whether the bright
or dark pixels were more heavily weighted in the weight image. Spatiogram-based
tracking was found to remain in a fixed position on the object. This finding agrees
with the original findings of Birchfield and Rangarajan [11] that spatiograms provide

more accurate object tracking than using histograms and ignoring the spatial layout of
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Figure 6.30: Visual spectrum tracking evaluation results graph: using the same 41
sequences as before, but without the thermal infrared channel.

the pixels.

The adaptive spatiogram-bank tracker performs remarkably well, given its limited
feature set, when compared to the Collins method. In cases where the features it uses
are not appropriate for tracking, the spatiogram-bank tracker may benefit from being
embedded in a Collins-like feature selection mechanism. Some directions for future
work in this direction are given later in this chapter.

Some examples of failure of the proposed adaptive tracker are now examined, with

a view to providing insights into its drawbacks and potential for further improvement.

Failures Figure 6.32 shows an example of tracking failure. HSV Colour and edge
features were used in this test. There is an occlusion of the object by a lamppost, but
this is not the primary cause of failure. The failure is caused by the large weighting
assigned to a single edge feature, namely the 45° edge feature. In frame 1132, this
feature is given a weight of 1, since the person’s leg is at a diagonal angle, similar to
their pose in the first frame, resulting in the feature being a good object/background
discriminator for this frame. As the leg changes angle, and the person is occluded,
tracking is eventually lost. Failure might be avoided by using a tighter bounding box
in the original frame, since more than half the pixels are part of the background. Other
suggestions for improvement are given after the next example.

In figure 6.33 another tracking failure example is given. Similarly to the last ex-
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(b) Feature 1 (c) Feature 2

(a) Target object (d) Feature 3

Figure 6.31: Ilustrating the poor scale selection of the Collins tracker: the target object
is shown in (a) and the top 3 weight images are shown in (b), (c¢) and (d). Depending
on the scale selection mechanism, the use of these weight images will either lead to (i)
expansion of the tracker to merge with the other face, (ii) the tracker shrinking to lose
the chin or (ii) the tracker shrinking towards the forehead. Each case leads to a higher
potential for distraction from the nearby face. Without spatial context, the face cannot
be accurately tracked using the Collins method.

ample, HSV colour and edge features were used for tracking. This time the brightness
feature is the culprit. Initially, vertical edges are given a high weight, between frames
50 — 60 and 80 — 100. This causes slight distraction due to a lamppost in frame 95.
During occlusion by another person, all features are used, leading to the tracking re-
gaining a good lock in frame 185. In frame 230 however, the tracker begins to lose its
lock due to the change in colour of the ground. The tracker gradually slides off the
object and loses track. Interestingly, if R, G and B features are added, the tracking
of this objects works, using a mixture of features (dominated by R and vertical edges)
during the transition to a different coloured background. This indicates perhaps that
the HSV and edge features are not discriminative enough in this example.

Failures also occurred in thermo-visual sequences, but these failures were caused
by either severe occlusion, or an inability to distinguish the object from the back-
ground with the given features. For example, a darkly coloured car entering a dark
shaded region of the road. The sample failures shown in figures 6.32 and 6.33 demon-
strate objects that might be tracked if weights were better selected. The non-adaptive
spatiogram-bank tracker, weighting the features equally, also fails on these sequences
however.

Two of the potential limitations of the proposed adaptive method are due to the
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feature selection approach, which only uses knowledge from the previous frame. These
limitations might become apparent, firstly, during occlusions or secondly, during sudden
appearance changes in one or more features.

If the object is occluded, the weights may adapt to emphasise features of the oc-
cluding object, causing a tracking loss. Equally weighting features might give some
advantage here, as the holistic properties of the object might allow better discrimina-
tion from the occluder.

Also, during a sudden appearance change in one feature-space, equal weighting
might be advantageous, since the democratic voting helps counter the ‘outlier feature’
that has been affected by the change. It was found that when no strong distractors
were present, the proposed approach will usually select a very high weight for the best
feature. Were this feature to change dramatically in the next frame, tracking could be
lost.

To counter these potential drawbacks of the adaptive spatiogram-bank tracker, fur-
ther work might incorporate more temporal information into the object model, such
as examining the stability of tracking features over time. This might be done by in-
cluding a third spatiogram-bank model, along with using the original model and the
last-best-match. This model would be gradually updated (see gradual update strategy
in section 6.3.2), hence keeping a kind of short-term memory of the object appearance.

This use of three models would be similar to the approach of [162].

6.5 Conclusion

6.5.1 Chapter summary

This chapter contains three main contributions. Firstly, an improved similarity measure
for spatiograms is derived from the Bhattacharyya coefficient. Secondly, a series of
object tracking tests are conducted to investigate object model updating strategies.
And thirdly, an adaptive spatiogram-bank tracker is proposed that dynamically weights
tracking features to improve tracking performance.

In section 6.2, an improved spatiogram similarity measure is derived from the Bhat-
tacharyya coefficient. This similarity measure is shown to provide accurate object lo-
calisation and to produce smooth similarity surfaces. Some drawbacks of the original
measure are demonstrated analytically and on real data. These drawbacks are shown
to be overcome by the new measure, such as the original measure’s low tolerance to

spatial changes. The new measure is shown to be superior to the original measure
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Figure 6.32: Sample tracking failure using adaptive tracker: the 45° diagonal edge
feature becomes dominant in frame 1132 due to its ability to distinguish the current
object and the original object from the surrounding area. Notice the similarity between
the leg angle in frame 1122 and 1132. At 1145, the features change, since the 45° edge
feature is no longer distinguishing the object, but by then tracking has failed.
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Figure 6.33: Sample tracking failure using adaptive tracker:
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for mean-shift tracking and to provide more accurate localisation than a histogram
descriptor.

Tracking tests are conducted in section 6.3.2 investigating strategies for updating
the object model during tracking. It was shown that by anchoring the tracking model
to the original model from the first frame, object drift can be avoided.

A method for adaptively weighting the tracking features is proposed in section 6.4.
By coarsely sampling the area around the object, background samples are obtained.
Feature weights are selected to maximise the ratio of the object’s score to the score of
the maximum distractor. The optimisation in weight-space is achieved using a gradi-
ent ascent approach with multiple initialisations. The multiple weight-sets that are re-
turned by the initialisations are pruned by selecting only those that cause minimal scale
change. Numerous illustrative examples demonstrate the advantages of the dynamic
weight selection approach, compared to the non-adaptive spatiogram-bank tracker, as
well as the Collins tracker. Finally, an extensive series of tracking experiments were
conducted using 41 thermo-visual tracking sequences comparing the proposed adaptive

approach to multiple alternative tracking methods.

6.5.2 Future work

The work in this chapter, as well as providing an insight into the usefulness of the
spatiogram-bank tracker, has opened other potential avenues of investigation. A num-

ber of interesting directions for future work are now discussed.

Handling unknown data When thermal and visual images are aligned, there are
usually some boundary pixels that do not have corresponding pixels in one of the
modalities. The homographic warping to align the images will leave some pixels that
are not overlapping. An interesting direction for future work will be to examine how to
cater for this unknown data during tracking. Should infrared be ignored if it is missing
from some part of the search window? Are there ways to estimate the missing values?

These are both valid questions for later work.

Particle filtering While the experiments in this chapter used a fixed window size
in which to search for the tracked object, other more efficient methods of searching
the parameter space may be used. For example, in [152], Wang et al. embed the
feature selection process in a particle filter. Particles that do not correspond to the
object are used as background particles and features are selected in an online manner

to best distinguish object and background particles. Haar-wavelet features are used in
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their work. The adaptive spatiogram-bank tracker could similarly be used in a particle
filter to more widely explore the search space. If object orientation was included as
a parameter, it would increase the parameter space and such a search strategy would
be required. Also, if the current object becomes occluded, the noise variance can be
increased to allow the particles to cover a wider area in searching for the object, as was
done in [162].

Spatial layout matching A fascinating area of future work lies in performing spa-
tiogram similarity matching using only the spatial information and discarding, or down-
weighting, the feature information. For example, in image matching it might be de-
sirable to find images that have a similarly layout of colours, but not necessarily the
same colours. Landscape scenes would usually be composed of sky in the top half
of the image and grass or mountains in the bottom half. The colour of the sky and
landscape might change but the spatial layout may turn out to be a robust descriptor.
One method of comparing two N-bin spatiograms in this manner would be to compute
the volume of overlap between the Gaussian models in each pair of bins, generating
an N x N matrix. When normalised, the mutual information in this joint distribution

might be a good spatial layout descriptor.

Adaptive quantisation In binning pixels for histograms or spatiograms, equal width
bins were used to quantise pixel values. To discriminate between two classes, such as
the object and background, non-linear value binning can improve this discrimination
without the need to increase the number of bins. One such example is the method
of Fayyad and Irani [36] that iteratively selects bin boundaries by minimising a class-
based entropy function. A minimum description length principle is used as a stopping
criteria. This use of non-linear quantisation for bin-based tracking is another possible

direction for future work.

Other similarity measures In this chapter, the Bhattacharyya coefficient was de-
rived for Spatiograms and was used as a measure of comparison between Spatiograms.
Other measures of similarity are also possible and we discuss some of them here. A
possible direction for future work might be to investigate which measures provide the
best trade-off between tracking robustness and computational efficiency.

In comparing two distributions, the histogram intersection has frequently been used.
It can be shown that this measure is equivalent to the probability of mistaking a pixel

coming from one distribution as coming from another, given equal priors. In the one-
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dimensional case, two normalised histograms, hx and hy, can be compared as follows:

B
H(X,Y)=> min{hx(b), hy(b)} (6.23)
b=1

Since the min function is used, the first derivative is not continuous, so may not have
a smooth similarity surface suitable for efficient search. Other measures of distribution
similarity (or dissimilarity) include the KL-divergence, the chi-squared measure, as well
as the L,, norms. Examples of such norms include the Ly norm, which is the Euclidian
distance, and the L; norm, known as the Manhattan (or city-block) distance.

As briefly mentioned in chapter 2, there are other measure that take adjacent bin
similarity into consideration. This property is important in gracefully reducing similar-
ity during lighting changes, for example. The earth-mover’s distance and the diffusion
distance are two examples of such measures. These measures are more computation-
ally challenging for tracking, since they must examine bin-pairs, although the diffusion
distance has been shown to be less challenged in this respect compared to the earth-
mover’s distance. Both methods have been shown to outperform bin-wise similarity

measures, such as the Bhattacharyya measure, in certain cases [80].

Choosing complementary features As Collins et al. state in their conclusion:
“Weight images produced by two high-ranking features are often highly correlated and,
therefore, not much new information is introduced by adding the second feature.” This
is not a major concern in the Collins tracking framework, since the features are used
independently for tracking, and their results combined using a naive median. If the
features were to be used together, such as in a spatiogram, it then becomes important
to choose complementary features, since the addition of redundant features would not
increase tracking performance. A new method of feature selection is required that
selects features that are complementary, in order for them to be used in a spatiogram-
bank tracker. One possible method is suggested here for future evaluation.

The problem of efficient feature selection is of importance in constructing classi-
fiers in order to reduce the dimensionality of the classifier, but to retain maximum
classification performance [42, 73, 102]. In tracking, the object and background are to
be discriminated, and the first stage of the Collins method provides a good method
for quickly evaluating how well each feature can separate the object and background,
creating weight images from tuned features.

Using the weight images, one method to choose complementary features is to select
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K features in order to approximate the perfect weight image using a linear combination
of their feature weight images. This is akin to sparse linear regression [17], where
a subset of signals are to be chosen such that a linear combination of these signals
best approximates the target signal. The desired ideal weight image has the value 1
inside the object area and value —1 in the background area. This is designated as the
target image. Features are chosen incrementally in order to minimise the squared error
between the target image and its approximation, generated using a linear combination
of the features selected so far.

The target image, T, and all weight images, W;, are first shifted to have a zero
mean value, by adding a constant. The target approximation, A, is initialised to an
empty image (all zeros). To choose the next more useful feature, a multiplier, m;, is
first computed for each feature as follows:

Sy ROWilp) 620

’ ZpEP Wi<p)2

where p is the pixel position, P is set of position of the entire image and R is the
residual image, with R = T — A. This multiplier is optimal to best approximate the
residual. Next, the best feature, f, is selected as the one that minimises the squared
error:

f = argmin ) _(R(p) — miWi(p))? (6.25)

peEP

The approximation is then updated, A < A +m Wy, and the residual is recomputed,
R = T — A. The process continues, incrementally selecting features, progressively
improving its approximation of the ideal weight image.

To compare this feature selection method to the Collins methods, some illustrative
examples are used. Figure 6.34 compares features selected by three methods: the
variance ratio, the peak-difference method and this new approach of complementary
feature selection.

Figure 6.34(a) shows an example where the tracking of a person might be distracted
by a nearby person walking alongside them. The features selected by the Collins meth-
ods appear useful for tracking but they do not adequately deal with the potential
distractor. The complementary features seem to perform better here, down-weighting
the distractor in the second and third features in figure 6.34(d).

Figure 6.34(e) shows a very difficult tracking example, where a car enters a shad-
owed region and strongly resembles the building and the grass in the lower part of the

image. Features selected using the variance ratio and peak-difference appear highly cor-
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related and do not provide good object/background discrimination. By combining the
complementary features selected by the proposed method, the grass is down-weighted
in feature 2 and the building is down-weighted in feature 3, potentially providing better
tracking.

Figure 6.34(i) shows a car to be tracked. The complementary features selected
appear to highlight parts of the car that the other features miss, such as the side of the
car and the windows.

Collins improved upon the variance ratio by proposing the peak-difference that
examined spatial correlations in pixels that could lead to distraction. Choosing com-
plementary features as proposed examines correlations across the spatial and feature
domains. However, future work will be required to investigate whether complemen-
tary feature selection helps tracking and how it should best be incorporated into a

multi-feature tracker, such as the spatiogram-bank tracker.
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Figure 6.34: Examples comparing three feature selection approaches: variance ratio,
peak difference and the proposed complementary feature selection approach.
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Chapter 7

Conclusions

7.1 Thesis overview

The work in this thesis examined the use of multiple sources of information in two main
areas of computer vision: dynamic parameter selection for object and event detection,
and the adaptive tracking of objects. The primary focus was the fusion of visual
information with thermal infrared imagery, but the general techniques developed here
have been shown to be of general use for multi-source fusion, such as in using visual
and audio detection signals for event detection.

Chapters 3 and 4 concern the use of mutual information thresholding on synthetic
and real data, respectively. In chapter 3, mutual information thresholding is introduced
as a method to automatically select thresholds for two data sources by maximising
the mutual information between the thresholded signals. Synthetic tests show that
this paradigm outperforms traditional adaptive thresholding techniques. In the closing
remarks of chapter 3 and in chapter 4, this idea is extended to encompass other measures
of signal agreement, such as Kendall’s 7.

Chapter 4 covers six individual applications of maximal agreement thresholding on
real data. The first three applications use pairs of sources that are not strongly indepen-
dent, such as colour-band background differences. These applications examine the use
of the proposed technique in foreground pixel detection, person detection and shadow
pixel detection. The obtained results show that maximal agreement thresholding of-
ten provides reasonable results, despite the weak independence of the data sources.
The final three applications examine the method’s use with strongly independent data
sources, such as visual and thermal data, or audio and visual data. Results obtained

on synthetic data in chapter 3 are shown to apply to real data, such as in choosing
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the optimal smoothing parameter to exploit spatial information and in automatically
detecting when no common information is present. The three examined applications
are foreground pixel detection in thermo-visual data, event detection using audio-visual
data and adaptive skin pixel modelling using colour-based and infrared-based detectors.

In chapters 5 and 6 the recently introduced spatiogram tracker is proposed as the
basis for a multi-feature tracking framework, termed a Bank of Spatiograms. The
framework splits the tracking features over multiple spatiograms, which benefits track-
ing performance in a number of ways: It bypasses the exponential growth in memory
and computational processing required when additional features are added to the ob-
ject model distribution; It also overcomes the curse of dimensionality that describes
the difficulty in estimating high-dimensional distributions. A mean-shift procedure is
derived for the new tracker, allowing rapid object localisation using a low number of
position-hypothesis evaluations. In the experiments of chapter 5, the proposed bank-
of-spatiograms tracker is shown to outperform traditional tracking approaches, such as
histogram-based or template-based tracking.

In chapter 6, some the limitations of the original spatiogram similarity measure are
described and a new measure of similarity is derived from the Bhattacharyya coefficient.
This new measure is shown to address these limitations and provide accurate object
localisation and smooth similarity surfaces. Next, an investigation into model updat-
ing strategies is conducted. Performing tracking on 15 thermo-visual sequences, the
performance of various model-updating approaches is measured. As reported in other
works, retaining the original object model is shown to be useful in avoiding model
drift. Also in chapter 6, an additional benefit of the bank of spatiograms tracker is
demonstrated, namely its flexibility to allow adaptive weighting of different features. A
feature weighting architecture and an adaptive weight selection scheme is proposed for
the spatiogram-bank tracker. By adaptively weighting features, high-quality tracking is
obtained, outperforming traditional tracking approaches, as well as the state-of-the-art

Collins tracker.

7.2 Summary of contributions

The thesis makes contributions in two main areas: adaptive thresholding and object
tracking.

In the first half of this thesis, a new paradigm in adaptive thresholding, termed
mutual information thresholding is developed. Unlike traditional thresholding meth-

ods, this approach examines the relationship between two input signals and chooses its
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parameters to maximise agreement between the resulting binary signals. The behav-
iour of the proposed method is explored using synthetically generated data, where it
outperforms four of the most common dynamic thresholding methods. In the following
chapter, numerous examples of its use are demonstrated using real multimodal data.
Its performance is compared to other top-performing thresholding algorithms. The re-
sults show that by selecting parameters to maximise agreement between independent
sources, these adaptive methods outperform pre-learned static models.

In the area of object tracking, a new tracker, termed the bank of spatiograms tracker
is proposed in this thesis. The core of the tracker is the recently proposed spatiogram,
which generalises the histogram descriptor by additionally storing coarse spatial in-
formation. The bank of spatiograms framework allows tracking features to be split
arbitrarily over multiple spatiograms, thereby reducing memory overhead and compu-
tational time, as well as avoiding the curse of dimensionality associated with using a
small number of samples compared to the dimensions of the distribution. Its tracking
performance is shown to be superior to traditional tracking approaches in multispectral
data.

Noting some significant drawbacks in the original spatiogram similarity measure,
a new measure of similarity is derived from the Bhattacharyya coefficient and shown
to overcome the limitations of the original approach. The proposed tracker is then
extended to allow dynamic weighting of the tracking features and a weight-selection
mechanism is proposed that attempts to best localise the tracked object in scale space,
as well as the spatial dimension. Extensive tracking experiments are conducted and they
demonstrate the tracker’s encouraging performance on difficult thermo-visual video
data, outperforming traditional tracking approaches, as well as the state-of-the-art in

adaptive tracking.

7.3 Future work

The experiments described in this thesis point to numerous avenues of potential in-
vestigation for future research. Here, some directions are suggested that may lead to
profitable lines of inquiry.

In the experiments of chapter 4, both Kendall’s 7 and mutual information were used
as agreement measures. One would imagine that if there existed a set of parameters
corresponding to some real common information, then it should appear as a peak in
the surfaces of both agreement measures. Investigating how the measures could be

combined, perhaps by examining peak proximity, might lead to improved performance.
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Chapter 3 showed a synthetic data example where the noise properties would change
over time. The Online-MI thresholding method was described and shown to outperform
standard MI thresholding in such fluctuating data, given the correct window size. The
automatic selection of optimal window size is an area that has not yet been thoroughly
examined but the quality value may be useful for this task.

The experiments in chapter 4 showed that maximising agreement led to improved
results. One of the most interesting avenues of future investigation lies in examining
how to extend the idea of agreement to more than two sources. If P sources are
used, the resulting binary maps have a joint histogram of size 2. There are two
main challenges to extending the work in this direction. Firstly, a P-source agreement
function (based on the joint histogram, or also on the spatial information) must be
composed, one that is robust to outliers so that a single noisy source does not spoil
the results. And secondly, since the parameter space becomes exponentially larger as
more sources are added, computationally efficient methods are needed to search this
space. A dynamic-programming approach, similar to the dynamic bounding algorithm
used for skin detection in chapter 4, could be a worthwhile line of inquiry, adapting
two parameters at a time to ascend the agreement surface iteratively.

Using only a small number of samples to compute the object’s spatiograms can lead
to problems. Even given the splitting of features to reduce dimensionality, the curse
of dimensionality can still strike if the object is very small. In such instances, the use
of adjacent-bin similarity would be very beneficial, instead of using the Bhattacharyya
coefficient, which compares each bin only to its corresponding-bin. In future, it might
be possible to extend the diffusion distance [80] to compare spatiograms, as this measure
has been shown to outperform Bhattacharyya and other bin-wise measures. It is also
computationally efficient, which is a key requirement for real-time tracking.

In the tracking experiments, each object was represented by a rectangular bounding
box in each frame. This was appropriate for most of the objects in this work, but the
addition of an orientation parameter would benefit the tracking of other types of object,
such as human arms. This additional parameter would increase the dimensions of the
search space, and smarter ways of searching this space would be required to maintain
efficiency. The particle filter, alluded to in the discussion of the previous chapter is one
such technique that seems useful in this regard. Additionally, any particles (position
hypotheses) that lie on background areas would not be wasted computation, as they
could provide valuable information on potential distractors for the adaptive tracker
[152].

Some initial work in complementary feature selection for tracking was shown in the
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closing discussion of the previous chapter. The correlated nature of the features selected
by the Collins method was demonstrated, but future work is required to investigate the
performance gain in tracking by using these complementary features. Additionally, it
will be interesting to know if the features should be updated in each frame or if there
are smarter ways to perform the updating, such as when a significant distractor is
detected.

7.4 Closing remarks

The work in this thesis examined the use of frameworks for fusing data from multi-
ple sources of information. While thermal infrared and visual spectrum video data
were used extensively in the thesis experiments, trends in current research and technol-
ogy point to many new sources of information that will soon become widely available.
Examples of such information sources are Global positioning (GPS) data, data from
wearable sensors, such as skin conductivity sensors and heartrate monitors, Radio Fre-
quency Identification tags (RFID), as well as video data from multiple spectral bands.
The fusion of these multiple sources of information to tackle previously difficult prob-

lems will lead to many exciting developments in the years ahead.
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Appendix A

A.1 Proof of quality score bounds

Let us begin by first simplifying the variable names as follows:

o= %cm (A1)
b= %CLO (A.2)
¢— %co,l (A3)
d= %Co,o (A4)

where we have a,b,c,d > 0 and a+b+c+d = 1. Recall that N is the number of samples
(pixels) and the values of C,,, are the number of pixels that have binary classification

u in data source 1 and binary classification v in data source 2. We have assumed that

a >  (a+b)(a+c)
2
= a > a*+alb+c)+be (A5)
= a’+albtc—1)+bc < 0
= K > 0
where K = —a? — a(b+ ¢ — 1) — bc is a non-negative number. We can express mutual
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information as a sum of four values:

. — b d
I(X;Y) = alog gjarg + Mg gmerg + o8 raeray T 4198 @@ (A.6)
I(X;Y) = T, + Ty + T. + Ty
with our normalising factor given by:
Iz = —aloga + —(1—a)log(l—a) (A7)
= Ty + 15

We now show that, using the assumption in equation(A.5), that the following in-

equalities are true:

T, <0 (A.8)
T, <0 (A.9)
T > T, (A.10)
T > T, (A.11)

and by proving these four inequalities, and noting equations (A.7) and (A.6), we prove
that

I(X;Y) < Ias (A.12)

which shows that the quality score, @), always lies between 0 and 1:

ogQZI(IX;Y)gl (A.13)
A.1.1 Proof of inequality (A.8)
Ty, = blog——FF—— A.14
b Bhra)b+d (A.14)
b
= blog brad—a—0 (A.15)
b
B blOgb—ab—bc+a—a2—ac (4.16)
= blog TR (A.17)
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Since K > 0, we have

b

wE S
= blogsg < (A.18)
= Ty <

A.1.2 Proof of inequality (A.9)

This proof is essentially the same as the previous one, where we show that T, can be

written as:

L= Al
T. = clog T K (A.19)
and therefore, since K > 0, this leaves
c-lfK S
= clog % < (A.20)
= T <
A.1.3 Proof of inequality (A.10)
—a ].Og((l) —a lOg m
a2
- —a(log gty (A.21)
a2
= _a(log a2+ab+ac+bc)

Since the denominator in the log expression is greater than the numerator, the log value

will be negative, giving

~a(108 prgpraerse) 2 0
= —alog(a) — alog m > 0 (A.22)
= —alog(a) > alog m
= T > 1,
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A.1.4 Proof of inequality (A.11)

First, we rewrite T, as

Ty =dlog = dlog

d
d+b)(d+c) d— K

Now, in order to show that T > Ty, we have to prove that

—(1— —a)>
(1 —a)log(1 a)_dlogd_K

1 _d
1-a d—K
ad—K
(1—ba)(d—K)
= maen 20

(A.23)

(A.24)

(A.25)

The last line follows from the fact that bc > 0, (1—a) > 0 and (d—K) = (d+b)(d+c) > 0.

This shows that

d

1 _d_
1—a d—K

0
1 d
= T—a K

AV

d—K

and since we also know that 1 —a > d from a + b+ ¢+ d = 1, therefore

d
(I-a)logr > dlogzg
= —(1-a)log(l—a) > dlog griarg
= T > 1y

That completes the proof.

A.2 Derivation of gradient of OD ratio

(A.26)

(A.27)

Before computing the object-to-distractor ratio (OD ratio), all scores are replaced by

their log values, which makes the derivation more straight-forward. Given a set of K

log-similarity surfaces, sk(p), k € {1,2,.., K}, with p being the candidate position, and
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K representing the number of features, the fused surface is given by
K
Fp) = wisi(p) (A.28)
i=1

where the weights sum to 1, so that Zfi 1 w; = 1. The weights, wy, are computed from
K independent variables, {Wq, Wy, ..., Wk }:

Wi

= A.29

wy,
Since subtraction in log-space is the same as division, the object-to-distractor ratio

(OD ratio) is computed as:
9= f(po) — f(m) (A.30)

where pg is the object position and p; is the position of the strongest distractor. The
goal is to change the independent W} variables in order to maximise the OD ratio, g.

We can see how the W}, variables affect the weights as follows:

dwe (TR, Wi) = Wy

— A.31
oW (o, Wi)2 (8.31)
And if a # k
Ow, —-W,
— A.32
oW ( ilil Wz’)2 ( )

Since the weights sum to one, they are not independent and influence each other. If we
have a, a # k, this gives:
8’11)@ o 8wa aWk _Wa,

= = A.33
owy, oWy, dwy, (Zfil M) - Wy ( )

Using this result, the partial derivative of the fused score with respect to the weights

is given by

e - g Si S A.34
o 1=1Z#k (Z]K:I Wj) — Wy i(p) + 51 (p) (A.34)

Now the partial derivative of the fused score with respect to the independent W), terms

is given by:
Ofp) _  Of Ouwy
oW, Ow, OW, (A.35)
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. ~Wi [(Zfil Wi) - Wk]

= S s = A.36
zzlzz:#k (Z]K:I Wj) — Wy (0)+ 1(2) (i, Wi)? (4:50)

= —W; (ZK1 W; _Wk>
= K S 5 2 A.37
z:lzz;ék (Z]K:1 Wj)2 ) o) (Z]K:1 Wj)2 ( )

If we now define

Sk = sk(po) — sk(p1) (A.38)

then we can write dg/0W}, as

K K
aag =Y 2SZ-+(Z]_1K ]W 2'“) Sk (A.39)
k i=1,ik (Zj:l”j) (Zj:l j)

This represents the effect each of the independent W)y, variables have on the OD ratio,
g. The gradient vector is then simply

dg Og dg
- A4
v [6Wl’ oWy BWK] (A-40)

This is used in a gradient ascent procedure, recomputing the distractor position, p;, at

each step.
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