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Abstract 

 

This thesis investigates the core difficulties in the tracking field of computer vision. The aim 

is to develop a suitable tuning free optimisation strategy so that a real time tracking could be 

achieved. The population and multi-solution based approaches have been applied first to 

analyse the convergence behaviours in the evolutionary test cases. The aim is to identify the 

core misconceptions in the manner the search characteristics of particles are defined in the 

literature. A general perception in the scientific community is that the particle based methods 

are not suitable for the real time applications. This thesis improves the convergence 

properties of particles by a novel scale free correlation approach. By altering the fundamental 

definition of a particle and by avoiding the nostalgic operations the tracking was expedited to 

a rate of 250 FPS. 

 There is a reasonable amount of similarity between the tracking landscapes and the ones 

generated by three dimensional evolutionary test cases. Several experimental studies are 

conducted that compares the performances of the novel optimisation to the ones observed 

with the swarming methods. It is therefore concluded that the modified particle behaviour 

outclassed the traditional approaches by huge margins in almost every test scenario.     
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Chapter 1 

Introduction  

The post millennium era has witnessed some of the most remarkable inventions in the 

modern human history. We are now living in an age that has transformed this world into a 

global village. The digital revolution is predominantly due to the advances in the integrated 

circuit technology, and this ongoing technological research has resulted in the mass 

production of economical memory devices, compact ultra high resolution photometric 

sensors, and multi-core embedded processing capabilities that have since targeted the 

demands of diverse consumers. Vision based applications are therefore becoming much more 

common in the domestic consumer market due to the reduced manufacturing costs. 

“A picture is worth a thousand words”, perhaps when Fredrick. F. Bernard had written this 

famous quote [1], he might not have fully contemplated the technological unpredictability 

being experienced by the people of all ages in the 21st century. After the internet revolution, 

the human race is now entering into a phase of distributed intelligence, and imaging based 

automation. This thesis identifies the fundamental problems encountered during the object 

tracking phases in the digital moving imagery, and also proposes several remedies. 

The system on chip (SoC) [2] and mobile processing technology interconnected with the high 

speed information gateways could be utilized to recollect diverse experiences, much needed 

in the safety critical processes and applications (e.g., driverless technology). Similar to the 

data mining processes that are applied in the computer science to understand data relevancies 

and dependencies, the iterative learning of the semantic knowledge (retrieved from the time 

evolving images) grants a robotic system with an alternative to the natural vision (which is 



normally taken as granted by the majority of us). But a compelling question in this regard is 

that why someone would program and train a computer to perceive surroundings by using 

visual influxes, and to act like a biological entity.     

The answer to the above question could spark an ethical debate (which is not the subject 

matter of this thesis [3]). With the depleting of world resources, and rising inflation and 

living costs, it would be rather irrational for us to designate human jobs to the machines. 

However, computers could prove much more efficient in performing certain repetitive tasks 

without suffering from the boredom and fatigue frequently observed in humans. The field of 

computer vision is an evolving science that is attempting to pursue answers to the common 

paradoxes being experienced in the robotic vision (and particularly noticed during the diverse 

task assignments). However, it is usually a very rare occurrence for an artificial vision to 

work as effectively as a biological creation in the natural cluttered environments. 

 The nature of the tasks in the computer vision field is manifold; it could range from accurate 

and timely detection of various objects constituting an imaging frame to the recognition 

phases needed in the automatic resource allocations. A digital image is constituted of a 

gigantic arrangement of data values which are commonly referred to as pixels, the colour 

intensity of these minute pieces of information are therefore used to identify various objects 

in a scene. Hence, a region of interest (ROI) is a collection of pixels with varying colours and 

intensity values. Furthermore, the shape versatilities are also applied sometimes to establish 

identities of objects in a video frame.  In computer vision, object tracking is referred to as a 

higher level task that identifies viable dynamic and moving clusters in a digital video. In 

practical terms, the object tracking is more than a simple pixel to pixel exhaustive search 

process. Therefore, some kind of hierarchy is generally needed to predict the object 

movements, so that a specific region of an image could be designated in time to conduct area 

confined searches, and to divert resources towards other lower level processes.  
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The main objective of developing an artificial eye for the scientific purposes is to deduce 

visual inferences that could be applied to prescribe accurate and meaningful system responses 

and behaviours in time. A navigating robot utilises tracking modules to plan its trajectory, 

and to avoid collisions in a cluttered environment. In medical sciences, both detection and 

tracking algorithms are executed (along with image processing routines) to outline shapes of 

diseased areas, and to trace the irregular movements of vital organs to aid physicians. Despite 

of the presence of some pessimistic views, an artificial vision is generally a cost effective and 

environmentally friendly way to monitor remote applications. 

The natural world (in most cases) is much more dynamic than the majority of man made 

process controllers; this is mainly due to the fact that the operating environment and the 

configuration space of the system could deviate (in the course of a few frames) in a non-

linear and unpredictable fashion. The observed volatility could be due to the changes in the 

lighting, reflections and shadows from other dynamic objects, and partial occlusions that 

usually invalidate structural information content of an object [4]. Furthermore, complications 

in the pattern matching algorithms usually make the simplistic detections much more 

cumbersome to be handled in a real time frame [5]; this non-differentiability gives rise to the 

false detections and causes instability. The core theme of this thesis is that the surge in 

improbable identifications could be contemplated by using non-deterministic and 

evolutionary mathematical routines. In contrast, the precision modelling within an analytical 

framework is generally much more prone to errors [6]. 

 

 

 

 

Figure 1.1: The Quantum Cloud by Antoney Gromley near Millennium Dome source [7]. 
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An alternative to the common deterministic dynamics is portrayed in Figure 1.1; it delineates 

the importance of an organised random walk, and is a valid demonstration of the fact that 

many aesthetically impressive structures could be created by alternating roles, and through 

undergoing designated movements along various subsections of a solution space. The 

information content of the scene (Figure 1.1) has been perfectly preserved by selecting 

versatile step lengths and turning angles, and at the same time a range of organised random 

walk is also carried out to render the important background information. Similarly, it would 

be fascinating to study the consequences of implementing general evolutionary behaviours 

(in which transitions are composed of both social and randomised search velocities) in a 

visual tracking environment. This chapter emphasizes the need for adapting evolutionary 

trends in the object tracking algorithms, the aims and objectives of this research are identified 

along with the contributions and structure of this thesis. The key theoretical concepts are also 

ntroduced that contributed in the reduction of the algorithmic complexity in this thesis. i
 
1.1   Aims & Objectives 

The aim of this thesis is to develop self reliant, portable and light weight real time tracking 

and detection algorithms inspired by the natural expositions. A self reliant tracking/detection 

facilitates timely recovery (e.g., if an object track is temporarily lost in a sequence of frames) 

without elaborative initialization steps. The reinstatement of a tracker is of paramount 

importance for remedial actions required in the safety critical applications and in surveillance 

tasks. In order to addresses the video tracking problem, a bifold strategy has been adapted in 

this thesis. First the major disparities in the evolutionary literature are highlighted and 

explored with experiments, and a novel tuning free optimisation strategy is therefore 

proposed. Later on, the newly developed algorithms are applied to both natural and indoor 

scenes to expedite the tracking process. Hence after methodological testing, it is 

strongly/passionately concluded that some loose ends (in the evolutionary science) are 
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accurately resolved in this report.  

1.2   Background. 

Image denoising, segmentation and tracking are all classed as inverse problems [8]. In 

inverse problems, only corrupted data (due to the sensor and medium imperfections) is 

available to develop an accurate model of the underline dynamics, and to get rid of the 

unwanted interferences. To define spatial transitions between frames, the observed velocity, 

acceleration and positional coordinates are all commonly used as state variables. The hidden 

information that we may need to retrieve could be composed of any other electronic signal 

(e.g., utterances at a microphone). Removing interferences from an image that has travelled 

through the communication technology is a further example of an inverse problem.  

Non-linear transformations and related abnormalities (e.g., the changing position of light 

sources) further complicate the process of developing an accurate model of the dynamics, and 

therefore object recovery within two subsequent imaging frames becomes more problematic 

[9]. To address an inverse problem, and in order to discover a promising solution one has to 

deal with high data sensitivity causing illpossdness [10], and have to perform relative 

verifications that the solution is indeed unique in all sense [11]. Direct inversion has been 

studied in classical mathematics, but its applicability is limited to only a handful of 

pplications [12], indirect inversion on the other hand is more costly and subtle procedure.  a

 
 
 

Model Data 

Inverse Problem 

DI=Direct Inversion 

DI

Estimated 
Model 

Estimation Process 

Appraisal Process 

Inversion = Estimation + Appraisal 

Forward Problem 

 
 
 
 
 
 
 

Figure 1.2:  Graphical depiction and division into forward and inverse problems. 
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One rectification (to tackle the mentioned problems) is to smooth observed datasets by 

applying regularization techniques [13]. The unnecessary variations and inconsistencies in a 

digital image (and in other electronic signals) are significantly reduced during a 

regularization stage, and after performing direct inversions (Figure 1.2) true information is 

finally retrieved. The direct inversion is generally impractical in the computer vision 

algorithms because of the large datasets and due to the large variety of information.  

The irrationality involved with direct inversion is dealt with by bringing in a notion of an 

appraisal mechanism [14], and therefore inversions are carried out in a more implicit manner. 

The inverse problems are therefore systematically tackled by a collaborative mechanism 

which breaks down the problem into two stages as represented in Figure 1.2. The estimation 

stage predicts a possible solution to the problem (using a plant model or a system dynamics), 

whereas the appraisal stage investigates this problem further and much deeper by evaluating 

the likelihood of the observed/measured densities against the vague projections made at an 

estimation stage. The underline aim is to establish the missing link by anticipating the 

discrepancy margins between the projected hypothesis or predictions and the objective 

conditions of optimality. Estimation-appraisal processes are more commonly recalled as data 

fusion filters (Kalman filter is a major example of this approach [28]). Such highly analytical 

schemes have celebrated huge successes in the industrial plant modelling, and abundantly 

applied in the manufacturing industry. However an amicable research question (remain 

unanswered) is to analyse with experimentation that whether precision controllers are in fact 

the optimal methodologies to handle visual disparity within images (in the first place), or are 

here better alternatives to perform these vision tasks outside the control science.  t

 
1.3   Environment mapping and computational intelligence. 

Estimation process (as mentioned in Section 1.2) performs linear projections in the solution 

space. This modified shape of the search space is therefore expected to be much more 
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confined and regular, so that appropriate local searches (e.g., Newton Method [15]) or 

gradient techniques (like the steepest descent and ascend [16]) could be applied for an 

optimal convergence. This iterative minimization or maximization process theoretically 

seems reasonably straightforward, but practical imaging scenarios are contaminated with non 

differentiability issues as shown in Figure 1.3. 

 

X

F(x) F(x) 

Optimal 

Gradient Direction=? 

a
b

X 

Initial Guess

Gradient Ascend

Iterations 
1…n

Optimal 

Gradient Descent

 

 

 

 

Figure 1.3:  The importance of proper initialization in iterative solution searches.  

 Such problems have been reported in the leading computer vision literature, e.g., in the Level 

Set curve tracking [17], Meanshift and Camshift approaches [18] [19], sequential Monte-

Carlo and particle filters [20], and also have been noticed in the recursive Bayesian 

Estimations [21]. The instability issue has been identified in Figure 1.3. Seeking optimal in 

this simple one dimensional problem appears totally circumstantial as distinct initializations 

(at points a, b) in the search space could lead to the discovery of only local best values. The 

convergence timing (to a feasible solution) is also very sensitive to this initialization and 

varies accordingly. In the gradient ascend scenario, the solution has minimal chance of 

escaping the valley (where the direction of the gradient could not be established), unless 

some kind of meta-heuristic is used to guide the solution into a feasible region. 

 Through employing more meaningful initialization stages, the number of steps required in 

the gradient descent scenario (Figure 1.3) could also be significantly reduced. By providing 

more realistic and multiple initial guesses, the prospects of finding an acceptable solution are 

generally increased. As diversity is an inherent part of the evolutionary trends, it therefore 
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could also improve stability in the visual tracking procedures. The computational techniques 

address inverse problems by iteratively seeking better solutions; an alternative option to the 

traditional deterministic methodologies. The essence of which is in the underlying ability to 

conduct global optimisation, it therefore has much better potential to penalise the unwanted 

local traps (e.g., by using guided searches to escape local minima in a multi-modal cluttered 

environment). This comprehensive environment mapping is in principle very similar to the 

other well known scanning methods (e.g., conducted by the Doppler weather radars, laser 

scanners and in the modelling of submerged terrains using sonar).  

The individual photons of electromagnetic pulses (in those cases) are replaced by the discrete 

elements which are known as particles. The relationship between the strength of population 

and convergence timings are important factors to solve computational problems; therefore, a 

significant portion of this thesis is dedicated to answer these questions. The movement of 

particles in the search space could be completely autonomous, or the trajectories may be 

imposed by the gravitational forces (a usual form of exertion by the peer particles). In the 

particle swarm optimisation (PSO) [22], the particle positions are therefore calculated using a 

linear combination of random and social perturbations, and the magnitude of velocity vectors 

are induced by employing tuning variables.  

Some recent optimisation methods work on the principle of hierarchical division using 

elitism, which separates population into foragers and workers [23]. It is the role of the 

foragers to predict initial solutions, which are then iteratively refined by collating opinions of 

the rest of the population. In an ant colony optimisation (ACO) [24], the best solutions 

compete against each other by calculating strengths of the pheromone trails [25]. In bee 

hives, waggle dances are performed by the foraging insects to solicit, and the sole perspective 

of this act is to gather wider audiences and recruits [26], this environment is commonly 

referred to as combinatorial optimisation schematics in the leading scientific literature.  
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1.4   Thesis contributions 

I. The deep-seated problems in the vision applications are discussed in this thesis. It is 

explained (by investigating 3 prominent tracking methods) that why tracking is an 

entirely different class of problem than the control theory (Section 2.5). This novel 

understanding of the vision problems could help to devise more feasible methodologies 

in the science of computer vision. 

  

II. The partial function evaluation has proven a superior approach (in terms of both 

convergence accuracy and timing) than the traditional Bhattacharyya measure between 

two discrete colour probability densities (Section 4.2 and Figures 5.1-5.14) in tracking 

applications. By avoiding complicated data structures (matrices and associated linear 

algebraic operations), and portraying knowledge using simplistic constructs addresses 

the curse of dimensionality problem. Therefore, simpler and effective binary flags are 

used in the particle detections, and to associate measured data with the predictions. 

 

III. Several weaknesses of the evolutionary and swarming methods are identified in this 

thesis (Sections 3.3-3.4).  There is a significant amount of flaw and misconceptions 

when the role of an elementary search agent (particle) is defined in the evolutionary 

literature. In the view of this thesis, particles must be free in their searches and spatial 

correlations in order to compete efficiently against each other in a solution space (like 

real life hunters, and foragers). When the element of immortality is removed from the 

particle definitions, a much faster task oriented convergence is experienced. Several 

new particle paradigms were introduced in order to rectify the common misconceptions 

in the evolutionary literature (Sections 3.1-3.4).  
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IV. A novel stochastic particle swarm optimization (PSO) algorithm was implemented, and 

analytical comparisons are performed between the nostalgic and concurrent variants of 

PSO using evolutionary test cases. From these experiments, it was learnt that the best 

technique to solve the optimal trajectory problem is definitely a memory free approach 

(Figures 3.42-3.66). 

 

V. A novel scale free method (radical search optimisation-RSO) was introduced in this 

thesis that efficiently solved a lot of complex evolutionary test cases with ease. Better 

convergence timing (compared to both PSO and Bat algorithm [27]) are witnessed 

using RSO, and in some cases the convergence time was decreased to psot25.0  (where 

PSOt  is the time the PSO algorithm has taken to converge with similar accumulation of 

errors), therefore the prospects of real time tracking are significantly increased (Figures 

3.45-3.51). 

 

VI. Heuristic and guided searches are applied in both detections and tracking of the objects 

of interest. By rectifying the unnecessary memory operations (a new technique was 

implemented that does not store the intermittent particle positions (Section 6.3 and 

Section 3.4) in the search space, a significant performance boost was observed in both 

particle swarm optimisation and Bat algorithm when the searches were motivated by the 

RSO. The evolutionary based tracking also worked much better than the Kalman 

filtering based approaches [28] 

VII. Artificial BAT is a newly developed meta-heuristic optimisation technique, which in 

many cases has performed the standard PSO [29]. Both BAT and PSO methods are 

implemented to track a range of objects in Chapter 6. Later on, radical searches are 

applied to direct BAT and PSO algorithms towards an optimal region of interest (with 
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an objective to reduce the algorithmic complexity). By applying the novel variants of 

PSO, RSO-VGS, and the scale free correlations, a frame rate of as high as 250FPs are 

observed in some of the most difficult test conditions (Sections 6.5-6.10). 

 

1.5 Thesis Structure 

Chapter 1 

Readers are introduced to the significance of the computer vision algorithms, and the aims 

and objectives of this research are explored. After establishing a research background, the 

novelty of the adapted framework is presented. The major contributions and the structure of 

this thesis are also discussed. 

Chapter 2 

The research background is presented in this chapter. The tracking problem is formulated in 

an optimisation framework, and relevant discussions are presented for adapting a nature 

inspired methodology. Three historical tracking schemes are discussed, and the ramifications 

of using analytical mathematics to solve frame tracking problems (in the past) are 

highlighted. 

Chapter 3 

This is the methodology section, and constitutes an important section of this thesis due to the 

scientific and comparative analysis performed that also lead us to the development of a  novel 

methodology The limitations of the gradient based methods are experimented using test 

cases, and later on strategic initializations have been strongly emphasised. The optimisation 

redundancies (e.g., in both PSO and evolutionary strategies (ES)) are mentioned, and 

computational bottlenecks (e.g., social calling) are highlighted for developing an expedited 

tracking scheme.   
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Chapter 4 

The procedural flowcharts of various algorithms are developed and presented in this chapter. 

Detailed discussions are presented that establishes tracking within a dynamic optimisation 

framework. 

 Chapter 5 

Several test benches are introduced in this chapter. The diversity of test cases is established 

by drawing movement graphs and corresponding patterns in the feature space.  

Chapter 6 

This chapter implements the previously developed novel ideas in Chapters 3 and 4, and 

experiments are performed using a wide variety of detection and tracking scenarios. A 

detailed analysis is conducted which first modifies the optimisation search basin using a 

nested radical approach, and later on, the penalising guided searches are applied to 

distinguish an object from the background clutter. A range of meta-heuristic algorithms 

(BAT, PSO and RSO-VGS) are programmed in Matlab, and applied to frame tracking 

problems, and the convergence characteristics are plotted in the graphical formats. 

Chapter 7 

This is the concluding chapter, and the results of our research are presented and discussed. 

Moreover some conspicuous research directions have also been proposed for a keen reader.  
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Chapter 2  

Principles of Video Tracking  

Kinematics is a branch in mathematics that explicitly deals with the geometry of motion [30]. 

In the historical computer vision applications, the three leading principles of kinematics have 

been extensively applied in the motion modelling of various objects of interest [31]. In 

contrast to the general mechanics, the applied forces causing spatial displacements are not 

explicitly calculated in the vision applications. Several branches of classical physics (e.g., 

kinetics and analytical dynamics) shed more light and focus on the evaluation of applied 

forces to prescribe desired movements. In engineering environment kinematics is applied in 

the precision modelling of electromechanical systems, which basically rely on a number of 

interconnected modules to perform a designated task. The coordinated and precision 

movements required in the manoeuvring and navigating robots [32], calculating the 

efficiency of high speed turbines and modern internal combustion engines are all prime 

applications of kinematics [33]. 

On the other hand, the Newton laws of motion are classical examples of the analytical 

dynamics [35], and are the main building blocks of many reconnaissance machines ranging 

from sea and land to the enduring designs needed in the space exploratory capsules [34]. 

Choosing a suitable coordinate system is a crucial first step in the subject of motion analysis. 

The newly formulated Hamiltonian and Langrangian frameworks are prominent attempts that 

try to reduce the dimensionality of problems for more robust designs [36] [37]. Whereby, 

many branches of classical physics explicitly apply Newtonian dynamics to define the 

trajectories of particles and matter undergoing transitions, a video tracking application is 

somewhat different class of motion problem. A change in dimensionality takes place when 
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motion is captured onto a camera plane, regardless of whether it is mounted on a static or a 

moving platform. The transformation from a 3D coordinate system of the world to an 

imaging plane is a complicated and a delicate process, that generally results in the loss of 

information embedded in the real dynamical objects (Figure 2.1). Therefore in applications 

where reverse projections (2D-3D) are needed (e.g., to generate motion using electrical 

motors in robotics), the study of structural variations within a camera plane are mandatory. 

The vertical motion of an object moving in world coordinates using a static camera platform 

could only be analysed by studying the size of a moving object (shown in Figure 2.1). Real 

life objects often exhibit versatility in their motion trajectories, the movements could be 

confined to a specific plane in a Euclidean search space (e.g., traffic on an open stretch of 

road), or the patterns of motions could be completely randomised as observed in sports, and 

also when the behaviour of wildlife is studied under lab conditions. Therefore, a truly 

portable tracking algorithm is not context sensitive, and must be applicable in all scenarios. 

. 

 

 

 

 

 

 

Figure 2.1: Projection of a 3d motion from the world onto (  camera plane.  )XY

Once a suitable image is captured onto an imaging plane and photometric sensor, the 

computer vision algorithms are then applied to pursue knowledge needed to facilitate a 

reverse projection (to generate the required effects as mentioned earlier). The timely selection 

of a closed and confined solution space is important for a tracking algorithm to produce a real 
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time response. For a human observer, the video has to be presented at around 25 frames per 

second (FPS) in order to appear continuous and smooth. The real time convergences (to 

process frames at more than 25FPS) could be facilitated if the search variables (a design 

choice generally made by a computer analyst) are effectively reduced to address the curse of 

dimensionality problem [38]. Both video tracking in computer vision and classical Newtonian 

dynamics use vector formulations to represent motions. 

 In the evolutionary branch of mathematics, the search characteristics of agents are also 

defined by manipulating vectors in an algebraic formulation [40]. In cases where the 

capturing device (camera) is dynamic and jittering defining motions becomes much more 

cumbersome, as it is not normally possible to build a generic model addressing all possible 

displacements. The applications of video tracking are versatile and ranges from the trajectory 

planning in robotic application to predicting motions in the collision avoidance systems. The 

Mars rover is a mobile platform, and applies both binocularity and visual disparity to take 

advantage of the mounted robotic arm, and to plan its motion in the rugged terrain (see Figure 

2.2). The rover therefore exhibits classical transformations in both forward (3D-2D) and in 

the reverse (2D-3D) directions. 

 

 

 

 

 

 

Figure 2.2: Disparity in trajectory planning through Boulders. Mars Rover Missions [39] 

The real time response of a computer vision task is of paramount importance when the safety 

is a critical issue. An automatic driving assistance applies tracking to detect the symptoms of 

fatigue in drivers, and takes remedial actions to deal with the developing hazards [41]. The 
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artificial learning environments apply both eye and body language tracking to develop an 

optimised lesson plan [42]. The Tesla automotive self driving technology utilizes radar and 

camera inputs to detect stationary and dynamic objects, and for mapping their surrounding 

landscape [43]. The tracking of microscopic organisms provides the biologists with vital 

visual clues to understand complex behaviours [44]. Tracking the movements of insects and 

reptiles in scientific labs is a useful technique that helps to reduce the harmful impacts of 

parasites to boost crop productions [45]. The flow of traffic could be automatically controlled 

if blobs of vehicles are detected and analysed using computer vision technology. Modern 

remote surveillance systems also apply visual detectors to identify intrusions [46].  

 

2.1. Aims and Objectives. 

The aim of Chapter 2 is to introduce to the readers the fundamental building blocks of visual 

tracking systems. The three most prominent principles of tracking are discussed in Section 

2.5, and the prospects for further improvements will also be discussed. The scope of research 

will be briefly discussed, and the tracking problem is established within an optimization 

framework. The discussions presented in this chapter also pave the way towards developing a 

new evolutionary computational tracking methodology.   
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2.2. Scope of research in imaging. 

The scientific research in the context of image science is perpetually vast, and the scope of 

this horizon span from the clean fabrication labs that help to develop the latest sensor 

technology (CCD, CMOS and CIS etc. [47]) to the understanding of semantics and structural 

information contents of a digital image. The storage and transportation using information 

retaining compression, digital filtering and the identification of dynamical structures are some 

other related perspectives of the image based science [48]. The removal of interferences using 

structure preserving denoising and image editing/enhancement routines have been the main 

focal points for many researches in this subject. Images and three dimensional graphics are 

extensively applied in prototype developments in manufacturing engineering using CAD 

software, and imaging information is also applied to guide modern CNC machines [49].  

The image enhancing routines facilitate retrieval of the structural information content needed 

in the forensic labs and to allocate resources. The optimal segmentation process is 

scientifically learnt in medical sciences by examining a large database of images to facilitate 

radiologists [50]. The expert medical imaging systems use advanced data mining techniques 

to analyse hundreds of thousands of patient records and images, and therefore assist 

physicians in their diagnostics. The tracking or sequential object segmentation is a higher 

level task, and the aim therefore is to identify feasible regions in an image to conduct further 

lower level analysis. The dynamical structures are used in the broadcast technology to save 

the bandwidth of a communication medium (e.g., by broadcasting only the dynamical areas 

of an image) [51]. In this age of cybernetic intelligence, the human race is entering into a new 

era of distributed and biomimetic robotics which apply visual inferences in a collaborative 

fashion to perceive the surrounding environments [52]. 
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2.3. Tracking as a both space and time problem. 

Tracking an object of interest in moving imagery is a spatio temporal problem, hence; 

suitable measures in both space and time are needed to increase the algorithmic efficiency. 

The observed displacements are then further analysed along the discrete time dimensions  

and in order to perceive motion patterns.  The video refresh rate of the capturing device is 

a relevant issue in determining motions, as intuitively larger displacements  are 

predicted in low speed cameras (where are positional coordinates of an object of 

interest (OOI) in a dimension space at times 

nt

nt

tt ssd  

tt ss ,

nR t  and t ) between frames. High speed 

cameras are rarely deployed in general tracking applications, and are usually reserved for the 

precision industrial and military applications. 

 An important step in developing an automated detection and tracking system is to create an 

object identifier in a feature space (e.g., RGB colour space). The interconnected object 

regions  are therefore identified using stored patterns expressed in a mathematical format 

(Figure 2.3). It is possible for the region based features to be described as parametric 

Gaussian or through non-parametric histograms. The illumination impacts are generally 

reduced by allocating fewer weights to the boundary pixels of an object. The object clusters 

in an object may occupy distinct positions in the RGB feature space (as shown in the middle 

section of Figure 2.3), but as they are associated with the similar object, they are all encoded 

mathematically as parts of an objective pattern.  

n..1

 

 

 

 

Figure 2.3: Various connected sub regions n  of OOI with distinctive clusters in the feature space.  

A non-parametric colour density also stores cluster centroid and relative spread of 
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measurements using data histograms. In Figure 2.4, a general tracking and detection scenario 

is presented. Detection and tracking often work in collaboration, and are associated processes 

in vision technology. In some literature detection and tracking phases are also referred to as 

unique and distinct phases. In video tracking detection is usually carried out during an 

initialization stage.  

Tracking is performed on a confined and narrowed down space (with an objective to reduce 

the associated computational costs). Whereas, detection explores all relevant areas of an 

image and conduct much broader attempts to match stored templates with the candidate 

model. At a tracking stage where the required condition of optimality (e.g., colour pattern 

matching within a tracking window) has not been observed, a detection phase normally takes 

over to reinstate tracking algorithm back into a feasible search space (shown in Figure 2.4.). 

The anticipated line of research in this thesis is based on the fact that if detections are robust 

and timely, there is no particular need to confine tracking  (also known as limiting the search 

basin), and could supplement difficult tracking phases by dynamically adjusting the current 

basin for a robust recovery. The detections performed by particle centred approaches are 

multiple solution techniques that are inherently designed to conduct diversified detections. 
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Figure 2.4: A generic object tracking and detection scenario used in the computer vision. 

 

                                                                                        
 

19



                                                                                        
 

20

2.4. Tracking as an optimization process. 

The objective of video tracking is to identify a dynamical object, and to consequently reveal 

its positional coordinates as it drifts away from an initial known position in an image. 

Therefore various dynamical objects are also identified sometimes through trajectory 

classifications in a search space.  At any moment in time, the state vector of an object could 

comprise of its movement components, that usually consists of previous known position ( ), 

velocity ( ) and acceleration ( ). The future positions of objects in the Euclidean space are 

therefore represented by the positional derivatives with respect to time as shown in Equations 

(2.1) and (2.2).  
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 Here  are the associated Cartesian coordinates, and i, j, k are the unit vectors of 

this coordinate system. The components of velocities  are then calculated, and are 

applied to refresh the object coordinates along time using Equations (2.1)-(2.2). 
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Figure 2.5: Tracking problem in the presence of missing data (occlusion) in a video sequence. 



The path of one translating object is represented in Figure 2.5. The trajectory comprises of 

various movement phases, including linear displacements, and also some curvilinear motion 

phases are present in this particular case. At points of manoeuvrability (POM), it suddenly 

accelerates away, and changes its direction of travel. Therefore, no patterns are immediately 

observable within the bounding box (representing an object of interest), hence the tracker 

diverges away from the true solution. It could be seen in Figure 2.5 that the tracked object 

may undergo complete occlusion (where the trajectory information is missing); the 

dimensions of the bounding box define the basin of searches in this particular experiment. 

During non-linear phases, the tracking problem is more challenging, as it becomes very 

difficult to mathematically describe all associated motions using a linear Gaussian model. 

Other problems include partial and complete occlusions, and estimating the next point in their 

trajectories essentially becomes a black-box problem (due to the missing information for a 

length of time), these scenarios have been identified in the relevant research literature [53], 

and broadly speaking, different strategic variations in tracking are attempts to address these 

issues. 
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Figure 2.6: Landscape of an optimisation problem [54]. 

Figure 2.6 is a multi-modal landscape that constitutes of many local minimisers, and the main 

optimization objective is to identify the optimal peak, and to facilitate conditions so that the 

solution is guided towards the optimal region of interest. The underline task of an 

optimisation algorithm could therefore also constitute of timely identification and ranking of 
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all admissible local solutions as well along with revealing the global optimiser. 

 Evolutionary optimization is an emerging branch of applied mathematics that is proving 

much more effective in addressing black-box problems [55]. Mathematical optimization is 

the science of minimizing or maximizing a function value over a finite space in which the 

problem is defined. Optimization problems could be befitting application of the proverb 

‘courses for horses’, therefore, the optimisation techniques are frequently varied in both space 

and time dimensions, and an optimal strategy depends on the shape and terrain of the 

problematic landscape. The landscapes of optimization problem are the functional variations 

over the domain of operation. Therefore, the aim of an optimization run is to select a 

particular set of independent variables (coordinate selections in the tracking applications), 

that yields the maximum objective values (a maximization process). 

 The objective task in the computer vision applications could range from segmenting contours 

to shape alignment routines required to establish identities. The ‘minimizing or maximizing’ 

of an energy function refers to an optimisation stage in which the detected features are 

matched to the stored values in a spatio-temporal domain. In minimization problems (for 

example), it refers to a situation when an evolving curve encapsulates an area of an image, so 

that all pixels falling within are probabilistically more relevant to the region under 

observation. In Figure 2.7, the minimum energy state is achieved when evolving curve breaks 

and merges and formulates a closed boundary around the bacterial organisms, hence the total 

length of the segmenting curve is reduced in the optimal state. 

 

 

 

Figure 2.7: Energy minimization process used in curve segmentation [56]. 

  Whilst segmentation is the process that differentiates an object from the background in static 
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imagery, tracking is the prolongation of this knowledge into the temporal domain. Therefore, 

the strategic know-how of the landscape is seemingly crucial for domain reductions in order 

to converge in a real time. The determination of a pixel neighbourhood is also a domain 

related problem (as shown in Figure 2.8), many tracking and segmentation implementations 

use a variety of pixel connection schemes (e.g., 4 or 8 connected pixels to identify the 

intensity variations) to analyse changes at an observation position (  as shown in Figure 

2.8. In image denoising, the intensity value of a pixel at position  could be selected as an 

average of the local neighbourhood. 

), yx





y

x





 

 

 

 

 

 

Figure 2.8: Two connected pixel schemes commonly used in the imaging literature [57]. 

Evolutionary mathematics addresses the issues discussed earlier by iterative selections of the 

neighbourhood regions. The variable searches could prove particularly effective during the 

occlusion phases (Figure 2.5), where classical methods usually fail to converge. In general 

analytical optimization techniques, when no valid measurements are observed the algorithm 

predominantly relies on the deterministic models (in a hope) to find an optimal. The 

analytical framework sometimes generates an unwanted complexity as the stored plant 

dynamics may not be applicable when sudden velocity changes are observed. To compensate 

in the difficult tracking scenarios, this thesis applies parallel tracking hypothesis using 

multiple solution techniques (also known as combinatorial optimization scheme). 
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  2.4.1. Optimisation-An act of steering. 

Norbert Weiner was a well known cyberneticist and a renowned scientist for his work in the 

fields of control and communication technologies, his publications and quotes (‘optimisation 

is an act of steering’) provide a common platform for both neurophysiologists and engineers 

to understand generic automatic control problems [58]. The goal of Norbert’s research was to 

gather natural inferences from the complex motor solutions in a human body, and to apply 

those later on in other complicated engineering scenarios. Following Norbert’s guidelines, 

Nikolan Bernstein also concluded in his experimental studies that the artistic motor perfection 

and control (in the biological systems) is not entirely based on the precision and tighter 

control laws (as previously thought), but the key is in the precise application of the motor 

variability that applies diversity to perform the same task in many different ways [59].  

 This diverse control (for similar end results) is due to the multiple moto-neurons synopsing 

on the same muscle, a conceptual portrayal is shown in Figure 2.9. The control policy 

consists of free-scale motions (isotropic regions) as well as correlated and tighter stages of 

control policy. A human body performs similar sequence of precision-tighter-loose-tighter-

precision controls by flexing and tightening of muscles. 
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Phases
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 Figure 2.9: Control variability in repetitive assignments of a task in a human body. 

The Bersteinian theory in general and the degree of freedom (DOF) problem [60] in 

particular are the foundation stones for the strategic particle behaviour in this thesis. 
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According to the DOF problem, there are multiple ways in which humans and animals 

conduct their bodily movements to reach to a similar goal and objective (i.e., an element of 

repetition without repetitions is actually present in these situations). Thus, by implying a 

loose optimization stage with diversified particle motions, the search space could be more 

effectively sampled than the frequent application of much tighter deterministic drifts (e.g., 

used in the historical particle filtering methods).  

There could be all sorts of related reasons/justifications to adapt a nature inspired approach in 

this thesis. Dr Wayne Dyer (1942-2015), a renowned spiritualist, naturalist and a modern day 

philosopher has mentioned in his book “Inspiration: Your Ultimate Calling” [61] the 

mysterious and magical journeys of the monarch butterflies, and their prevailing navigational 

intelligence during migration trips are remarkable events. The round journey from Brazil to 

Nova Scotia (Canada) of the fragile monarch butterfly (through varying gusts of wind and 

atmospheric fluctuations) is fascinating for both evolutionary mathematicians and engineers 

alike. 

 Despite the volatile physical capacity, and the density of brain not much wider than a normal 

pin head, the Monarch’s journey is an ultimate call from the nature (in the view of Dr Dyer’s 

book) and an explicit demonstration of a natural distributed intelligence. Many evolutionary 

optimisation methods also rely on the distributed intelligences in order to minimise or 

maximise rewards [62]. The collaboration among social insect boost their chances of survival 

in the natural world. A lot more caution however is needed when social gestures are applied 

in the computational grids. It would be interesting to understand the role of social calling in 

this thesis, and to analyse the corresponding impacts (in terms of convergence 

timing/accuracy) for several test functions. One main reason for dealing optimisation in 

slightly differently context is due to the fact that the natural conditions are generally more 

detrimental than the artificially simulated environments. 
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2.4.2. Essential properties and categorization of tracking algorithms. 

Sections 2.3 and 2.4 focused on some fundamental characteristics of a video tracking 

problem, and one possible resolution is to address tracking issue within a combinatorial 

optimization framework. Therefore, the most relevant path of objects is chosen from a list of 

discrete choices, and this selection is done by establishing relationships using strategically 

spread particles in a solution space. The aim of tracking is to match the dynamics of a 

bounding box (an operational basin, or a contour) to the kinematics of an object undergoing 

transitions in a world coordinate system. The motion of objects could be of predictable nature 

and type, as some movements are cyclic and more recurrent in nature. On the other hand, 

many observed movements are relatively randomised in nature, and thus are rather difficult to 

be described in an appropriate mathematical format. The moving objects also have varying 

degrees of freedom impacting the efficacies of the tracker.  
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Algorithmic 
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Strategy 
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Figure 2.10: The strategic controller’s responsibility in order to assign a balanced tracking policy. 

In order to achieve a real time solution, a basic necessity however for any tracking algorithm 

is to possess the inherent ability to alter the algorithmic complexity (as shown in Figure 

2.10). The selection of a right balance between accuracy and the speed of convergence is 

pivotal for many tracking problems. The scheme shown in Figure 2.10 is a centralised control 

method, and a strategy control module is responsible for declaring the desired control policy. 

During stages of manoeuvrability, it may therefore be more efficient technique to put more 

emphasis on the speed of convergence rather than calculating precise boundaries of an object 

of interest.  
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The background subtraction formulates clusters of knowledge [63], and performing analysis 

using scale space is relevantly less complicated localization method, and could also help to 

escape local traps [64]. As a matter of fact, in most type of linear motions with limited degree 

of freedom such methods could generate a real time response. In curve based tracking, the 

aim is to adapt the shape and length of an evolving contour to address the translational 

movements and relevant scale changes of a region [65]. The shape of an object is also 

matched sometimes with the stored priors for an identification purpose [66]. 

 In many tracking situations, the mean and spread of the object like clusters are deemed 

sufficient to analyse a basic imaging frame. An ideal tracking algorithm must be well aware 

of the degree of freedom of an object, and must have recovery techniques in place to adapt to 

a changing environment. The reactivity of tracker incorporates both spatial and feature based 

changes. Therefore, to attain the desired level of stability in complex search domains, a 

pattern prediction and updating algorithm could rectify clutter. Some brief definitions of 

essential properties of a tracking algorithm have been presented here, and would be explored 

further in Chapters 4 and 6.   

A. Predictability: To incorporate balance between predictions and measurements. 

B. Cyclicity: To save computational costs by learning underlying motions. 

C. Reactivity: Alters the models in cases of changes due to reflection and refraction. 

D. Accuracy: Dynamically adjust precision and computational complexity (Fig 2.10). 

E. Stability: To handle varying conditions, e.g., occlusion handling. 

F. Recovery: In cases of lost frames, the ability to successfully detect the region. 

 

There are several distinguishing merits that could be used to classify the object tracking 

algorithms. It is important to establish the core differences among various tracking 

approaches so that a better understanding of the problem could be developed. Several authors 
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have simply used nomenclature to categorise (without establishing the similarity/uniqueness 

observed at the operational level).  

Colour is an excellent tracking feature due to the underlying properties of invariance to both 

rotation and scaling [67]. Object represented through primitive shapes has also been studied 

extensively, but are considered as stable features only if the structure is rigid [66]. 

Categorizing shapes in an image involves studying the inflection points, e.g., the calculation 

of corners and gradients. Therefore, in subsequent frames, the tracking simply becomes a 

frame correspondence problem. Relating a set of point to can be an extremely 

difficult task to be handled in a real time, e.g., in the optical flow method the proximity 

information is applied to allocate weights using the Euclidean distances calculated  at various 

points in the search space [68].  

1)( tpS tpS )(

Several frame correspondences (along the time dimensions) are used in the multiple 

hypothesis trackers [69]. The aim of the multiple region tracking is to generate a connected 

graph of movements; this is achieved by associating various trajectories to the corresponding 

objects in video frames. To rectify the correspondence relating issues, smaller structure like 

edgelets and primitive shapes are used to analyse motion in related configuration space [70]. 

Shapes could also be represented through silhouettes and closed contours; the level set 

representations of evolving shapes are higher dimensional surfaces used to make the curve 

tracking (merging and splitting processes) processes much easier to handle [71].  

The process of shape matching could be very extensive due to the affine transformational 

routines needed to match with the stored templates [72]. These enhanced shapes are then used 

in the automatic recognition of the objects (e.g., face recognition). One possible appearance 

based categorization will be briefly mentioned in this section. Rather than based on the 

principle or a particular methodology, the appearance based classification uses the colour 

density and shape orientations as parameters for the tracker classifications, such 
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distinguishing merits are portrayed in Figure 2.11. To distinguish among different objects, 

both shape and colour densities are therefore encoded in a feature space. In contrast to the 

global density models (e.g., in an optical flow technique) a local method only formulates and 

stores the colour variation of a region of interest. Similarly, the shape of an object could be 

represented by higher dimension techniques using level sets or by storing the corners and 

edges based information using gradient vector field.  

Furthermore, as the shape of an object is variant to different affine transformations (in 

contrast to the colour representations); it is also a common practise to use both colour and 

shape of an object as a penalising force. However, as mentioned earlier in this section, there 

are many possibilities in which a distinguishing criterion could be established. Any keen 

reader is strongly advised to review these literatures to gain further insight into this 

categorization problem [73] [74].  

 

Figure 2.11: Classification of tracking algorithms based on appropriate feature selections. 
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2.5 Principles of video tracking 

In this section three main tracking methodologies will be discussed. The first two approaches 

apply temporal propagation of conditional densities to identify the most probabilistic object 

position in a digital image. The third technique exploits gradient information to climb to the 

peak of the density. 

2.5.1 Recursive Bayesian estimation (RBE) in tracking applications 

Life is full of uncertainty and unpredictable happenings. According to the frequentists, the 

probability or likelihood of an event ‘E’ taking place could be established using the past 

observations and history. As an example, let’s imagine a group of mountaineers are planning 

to climb a tropical peak; they want to depart with the appropriate climbing gear for the dry 

conditions. A frequentist usually prefers to utilise historical data to deduce that whether a 

particular day would be a rainy day. The frequentist’s approach is a good prediction tool, but 

in not sufficient on its own to accurately solve this problem at hand. Using advanced 

measurement tool like altimeter, atmospheric pressure gauges and isobars the problem could 

be more precisely addressed. This is the core concept of the recursive Bayesian estimation 

(RBE) [75]; the belief is updated on the arrival of latest information. In Bayesian inferences, 

the likelihood of an event (e.g., a rainy day) is represented by , where)|( keP P is the 

probability of an event taking place in the light of a specific body of knowledge and 

observations k.  
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The Bayes’s theorem [76] in Equation (2.3) was proposed by the Rev. Thomas Bayes (1701-

1761). It is used to calculate the conditional probabilities without explicitly knowing the joint 

probability distributions . In Equation (2.3),  and  are the independent 

probabilities of the events , whereas,  and  are the conditional probability 
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density functions. We are interested in calculating the probability of an event A  taking place 

when is also true using the reverse conditional probability  (which relates past 

observations of taking place when

B )|( ABP

B A  is found to be true as well). With slight modification, 

a more practical format (suitable using a measurement context) could be written as in 

Equation (2.4).  

                                                      
)(

)()|(
)| ZX(

ZP

XPXZP
P                                           (2.4) 

Equation (2.4) reorganises the Bayes theorem in terms of a hypothesis in a 

multi-dimensional space . In tracking, 

n
n Rxx  ),{ 1 x ,...2X

nR '' X (a state vector) is composed of n dimensional 

positional coordinates, velocity and acceleration of a moving object at time t ,  is 

normalization constant (the probability of an observation in an image space which is a 

constant), and is the prior probability calculated by applying Newtonian dynamics using 

previously assigned state vector and the known position at time ,  is the 

measurement density which is used to link observations with a particular event. 
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Figure 2.12: Graphical depiction of a recursive Bayesian estimation process. 

 

 If Equation (2.4) is recursively applied (as in Figure 2.12) over a discrete time period 

(assuming that all future and past states are drawn from a normal distribution), then such 

RBE is equivalent to the standard Kalman filter [77].  Thus, posterior or conditional 
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probability distribution of a future state  largely depends on the current state, the state 

transition and the observation model, and is usually independent of any previous state. In 

Figure 2.12, a state at time instant 

)|( ABP
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Figure 2.13: Reshaping of a Gaussian pulse in recursive linear Bayesian estimation processes. 

 

Under uncertainty, the covariance of posterior is enlarged, this is the theoretical 

reasoning of the introduction of the Kalman gain, which uses the residual covariance 

(error/distance between predicted and measurement state vectors) in order to update the 

posterior covariance model. Generally, any recursive linear estimation filter could be 

represented by the stages shown in Figure 2.13. On the arrival of a new video frame , the 

previous posterior density becomes a prior. 
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 A recursive linear estimation filter is generally comprised of three distinct processes as 

shown in Figure 2.13. During the first stage, the density  drifts bodily, and translates under 

the effects of a deterministic component composed of its own dynamics. Later on, the 

stochastic component of this transition spreads the Gaussian pulse increasing its uncertainty, 

and finally the density goes through a fine tuning stage known as a reactive reinforcement 

tx
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(where the distribution is convolved with another obtained through the measurement process, 

and generates a new density.  Mathematically, the process is normally written as [see 78]. 
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The above Equations (2.5)-(2.6) represent the two step estimation process. Equation (2.5) 

states that the prediction density is the integral sum of the products of state transition models 

and the prior posterior calculated during the time step )1( t . During the next stage, the 

posterior density is calculated by normalizing the product of the current likelihood and the 

prediction density as expressed in Equation (2.6). 
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2.5.2 Critical Analysis of RBE. 

 RBE is intensively used in many video tracking applications, and suffers from both stability 

and convergence timing problems. RBE could also be anticipated from the viewpoint of the 

Bernsteinian theory (Section 2.4.1). The control sequence in RBE is rather confined, and 

relies heavily on the plant dynamics which is difficult to be validated in the tracking 

applications. Similarly, the stochastic diffusive component has its own limitations (due to the 

reason that a Gaussian pulse has to remain a Gaussian) during the state transition in the 

standard Kalman Filter. One interesting thought in the course of this analysis is that the 

tracking applications do not require stringent control of dynamics as no safety fears are 

generally involved (e.g., required in dynamical control of an aircraft using ailerons or tail 

fins). Hence, in the opinion of this report, the deterministic components, and therefore the 

motion modelling is less crucial in tracking applications. 

 

 

 

 

 

Figure 2.14: Various diversity models which could be employed in tracking scenarios.  

 

Therefore, a more feasible approach is to use a whole variety of bodily drifts to sample the 

search space. As a single solution based approach, the standard Kalman filter/ RBE is limited 

in its applications. Alternatively, as shown in Figure 2.14, the multiple solution approach is 

much more recommended methodology to address unpredictable and larger variety of 

motions (of a region of interest).  In Section 2.5.3, the limitations of recursive Bayesian 

estimations are overcome by initiating a multiple solution approach, known as the Monte 

Carlo sampling. 
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2.5.3 Monte Carlo Sampling (MCS). 

According to historians, the name Monte Carlo initially emerged from a course of leisure 

testing conducted by a statistician at a famous casino in Monte-Carlo/Monaco [79]. It is 

believed that he took a series of repetitive measurements on several roulette machines to 

discover any possible hidden bias and a concealed probabilistic selective mechanism. During 

a fair trial, chances of winning and loosing games are equivalent, and therefore gathering 

repetitive samples for a reasonably longer period of time could reveal the shape of its 

underlying distribution (e.g., if it has a Gaussian hump, or is uniform etc).  Alternatively, if 

the shape of a PDF is known, then the weighted samples drawn from it could be used as its 

representatives, and underline changes in distribution are reflected by using such samples in 

both space and time. 
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 Figure 2.15: A set of sample points are used to represent a complex multimodal distribution.  

 

In Figure 2.15, the blob sizes are used to allocate the importance and weights to various 

samples j , which are then used to construct the observation density  by integrating 

the measurements of several individual elements . In the factored sampling, an unknown 

probability density function is approximated by mathematical convoluting the two known 

distributions  and as shown in Equation (2.9), and the process could be represented 
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graphically as in Figure 2.16. 

                                                         )().()( 21 xgxgxf                                                      (2.9) 

  

 

 

 

 

 

 

 

 

Figure 2.16: Factored sampling using two separate density functions [80] 

 

If ‘ ’ are the space parameters where a sample distribution  x  is defined, then in the first 

instance, a set  is sampled randomly (  times) from the density shown on the top left 

of Figure 2.16.  During the second phase the weights of the samples are calculated according 

to the following formula [81]. 
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Equation (2.10) states that the weight of any particle is determined after normalizing its 

fitness likelihood measurement (shown on the top) with the overall observation density  

of  particles in the population. Generally, particles are represented by multi-dimensional 

vectors, which is also used to stipulate their individual state vectors (positional coordinates, 

velocities and accelerations in a coordinate space), and associated importance weight 

i.e.{ .  Here the subscript ' is used to indicate the particle’s own state in relevance to 

)( j

)(2 xg

n

n
ks }, n

k 'k

                                                                                        
 

36



the state of the system.                           

                                                                                                         (2.11) 11][   k
n
k

n
k BSAS 

In Equation (2.11), a particle undergoes a state transition based on a known deterministic 

component '' A  representing the system/plant dynamical model, and  is a multiplicative 

factor that is used to adjust the noise covariance. 

'' B

 The effects of this dynamics have been portrayed in Figure 2.17. The blob sizes are used to 

represent the relativity of the individual measurements. A state vector of any particle is 

composed of its position in the search space, and the associate weight matrices . The 

bodily shift of the particles is shown in the middle section (with a broken line), where the 

particles are translated in the search space by implementing Equation (2.11). Finally, the re-

sampling process is applied in which less important particles are pruned out of the system and 

new ones are generated in the feasible areas (the bottom row in Figure 2.17). 
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Figure 2.17: The sequential importance sampling in the prediction based systems [82].  

 

In order to improve particles effective rate )( e , only those particles with appropriate weights 

progress into the next prediction stages. In the spatial-temporal domains, particles need to be 

deployed at strategic location in both space and time with a prospect for a rapid convergence 

to a global optimal solution. During the transitional or bodily shift, some particles diverge 
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further away from the feasible areas, and therefore become computationally ineffective. 

These particles are also phased out during the next stage of simulations as shown in Figure 

2.17.  
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Figure 2.18: An initial concept of the virtual/sleeping particles (which do not need memory).  

 

The main concerns (flaw in the view of author) in MCS are the associated computational 

overheads in determining the transitional energies of the particles. This idea can be conveyed 

as in Figure 2.18, where accumulating errors drift a solution away from the true dynamics, 

and even applying a stochastic velocity component (shown on the left of Figure 2.18) has 

failed to locate the true coordinates of an object. Instead of selective or rejection samplings, 

which are contradictory phases in the view of the author, a more indulging scheme could be 

based on the autonomous particle behaviours. The free-scale behaviour of particles would be 

studied in Chapters 3-6. 

 The swarming behaviour is an alternative nature inspired particle characteristic, which has 

been gaining popularity in recent years. There is a factor of emotional intelligence in the 

swarming particle characteristics, which makes them to alter their trajectories without any re-

sampling requisites. Moreover, the nature based particle formulations do not generally 

require complicated data structures to store dynamical models in the system memory, and 

instead of being phased out, they evolve their trajectories towards an optimal region.  
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2.5.4 Mode seeking algorithms. 

In contrast to the projective transformations explained in Section 2.5.1 and Section 2.5.3, a 

mode seeking (MS) algorithm does not utilise predictive tools as such, but instead exploits 

the differentiability of an objective function to gain an insight into the possible locations of 

an optimal region [83]. Therefore, a prime focus in the MS is to develop a sense of direction 

that guides the solution towards convergence. The term ‘mode’ explicitly refers to the highest 

possible altitude (peak) of the density, usually sought in an iterative manner. Similar to 

experienced mountaineers, who have to reach many rational decisions along various points in 

a summit, a mode seeking algorithm analyses local information to anticipate the best 

direction of ascend (where the objective function seems to be changing fastest towards a 

possible solution). Some simplistic but effective mode seekers are standard hill climbing [84] 

and the steepest descent minimization [85]. 
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Figure 2.19: Iterative climbing process encountered in mode seeking algorithms.  

 

To develop further insight into these techniques, a methodological example is portrayed in 

Figure 2.19; it shows four possible climbing routes, and all potentially leads to the global 

solution. The climbers would experience slope variability, encounter diverse hardships 

demanding mental and physical consistencies and agilities during any such ascending 

journey. Particular, in the presence of a poor visibility, climber ‘A’ may misinterpret a local 
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peak as the global or highest altitude point, especially if they are not equipped with the 

appropriate instruments (e.g., altitude meters), and are oblivious of the peak due to poor 

visibility at this time. In the analytical terms, at each step during this ascend the algorithm 

calculates the gradient  of function . A condition of optimality is that at the peak of 

density, the gradient vanishes to zero i.e. . Here, 

)(xf )(xf

(f 0)* x *x nR  is a point in space where 

the vector  had yielded the best change in the function value, and no further 

incremental modifications could be observed in any close neighbourhood or closer vicinities 

of . The angle of this optimising vector 

V is called the gradient ascent/descent direction (in 

case of minimization). On the other hand, the determination of the magnitude of the gradient 

vector is relatively complicated, and a great deal of research has been particularly dedicated 

(e.g., exact line search, variable line search and the conjugate search direction [86]) to 

expedite the convergence. For the gradient descent scenario we can write the expression as                        

.                                and                                 (2.12) 
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Figure 2.20: Contour plot of variable step gradient method to reach an optimum.  

 

The descent process is drawn in Figure 2.20, but the convergences in the gradient based cases 

does not always yield the optimal solutions, as the solution is not able to differentiate 

between a global and a relative best solution. In Equation (2.12) is the step size mentioned k
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earlier, if it is selected too large then the solution may overshoot and fall into the non feasible 

area. The calculations to determine these step lengths play a significant role in the tracking 

applications, as very small convergent steps mean greater computational complexities (which 

could deter a real time approach). A real time solution needs optimal selection of jumps in the 

search space, and usually it is not possible for a single solution based approach to deal with 

such issues. There are two main aspects of standard mean shift tracking algorithm as 

mentioned underneath [87].  

 

(A)-Operational basin (OB) 

In MS tracking, the operational basin refers to the depth of the measurements in the search 

space, it refers to an area in space, in which various competing clusters are analysed, matched 

using density comparison tools [88], and therefore a gradient vector (mean shift vector) is 

calculated which sees the whole operational basin shifting to a new location. A selection 

mechanism is also programmed into the process, and more weights are allocated to the pixels 

lying at the centre of the regions. 

 

Meanshift Vectors Too small OB 

Search Space 

 

 

 

 

Figure 2.21: Iterative climbing to the peak of density using Mean Shift vectors.    

 

This process is shown in Figure 2.21. At the far right, the operational basin is relatively small 

compared to the spread of the cluster under analysis, therefore calculating MS vector is based 

on local information only and hence will cause the tracking window to slowly diverge away 

from the true solution (in the subsequent frames). Alternatively if OB is too large and 
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elaborative, the convergence would restrict a real time tracking application as usually an 

exhaustive search is conducted within the basin. Therefore, in order to find a best 

compromise between the speed of convergence and algorithmic accuracy (see Figure 2.10), 

the window size and relevant operational basins are dynamically allocated (in an ideal 

environment) as an object moves towards or away from the camera. 

 

(B)-Kernel weighting. 

To formulate a confidence map within an operational basin, the mean shift algorithm uses 

principles of kernel weighting to identify the modes of density. The most popular kernel in 

this respect is the parametric multivariate isotropic Gaussian [89]. The main idea of allocating 

preferences in this manner is to rectify noisy observations and to eliminate the effects of 

reflections from other static or moving objects in a scene.  
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Figure 2.22: Effects of convolution of a discrete probability density function with Gaussian Kernel.     

 

This confidence mapping process can be shown as in Figure 2.22. In contrast to the uniform 

kernel (a step function switching between two states), the weighting of the pixel values using 

Gaussian Kernels is more discriminatory, and for a clear understanding, it could be seen as a 

shadowing process displayed in Figure 2.22.  To build a reliable map, some training could 

also be used to assign more accurate labels to the pixels under question, as shown in Figure 

2.23. The overall accuracy of the confidence map on the left side is much higher than the one 

                                                                                        
 

42



on the right. The fundamental objective of this process is to distinguish the background 

clutter. A detailed study of the background subtraction methods are presented in this 

publication [90].  

 

 

 

 

Figure 2.23: Confidence mapping in order to track a pedestrian [91].     

 

Particularly, in the outdoor environments, addressing the ramifications of the changing light 

and other weather related conditions poses treacherous tracking conditions; hence, timely 

updates of models (background or foreground) may become obligatory. On the other hand, it 

is also possible to model a linear deterministic drift (in the feature space) as well after 

conducting a detailed examination of the lighting conditions overtime. 
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Figure 2.24: Three main parts of the Mean-shift tracking algorithm. 

The Mean shift clustering algorithm is composed of three main stages as shown in Figure 

2.24. The mathematical background in the context of these three stages will be described in 

this section. In Equation (2.13), the object model/representation is constructed in terms of its 

discrete density estimate ’ ’, this is accomplished by first calculating corresponding bin 

indexes of individual pixels , each contributing one delta to the feature histogram. All 

uq

(b )*
ix

                                                                                        
 

43



delta functionalities are then summed up, and weighted in accordance to a Gaussian kernel 

definition . (.)k

                                                                                   (2.13) 



n

i
iiu uxbxkCq

1

*2^ ])([)||(|| 

This process is repeated for all pixels ):1( ni  , and the weights are then normalised as shown 

in Equation (2.13) by the coefficient .  These object models are then stored in forms of 

arrays, and in upcoming frames are statistically matched to the candidate models constructed 

during live tracking phases (also discrete distributions). The most common metric used to 

determine the overlap of densities is the Bhattacharyya similarity measure [92] as shown in 

Equation (2.14). Therefore the distance between two densities is calculated by using Equation 

(2.15). 

''C

                                               dxxqxpqpDB  )().(),(                                                   (2.14) 
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)},(1{ qpDd bH                                                       (2.15) 

 

 If  and  are any two such vectors in an n-dimensional Euclidean 

space, then Equation (2.14) could also be interpreted as the dot (scalar) product between these 

two vectors, and the resultant measure is a real number

)( nppp  ,..., 21 p ),....,( 21 nqqqq 

1:0R . In the context of MS tracking, 

the Bhattacharyya coefficient is the objective criterion calculated during each frame, and acts 

as a surface mapping where the tracking window is drifted towards the more dominant mode 

of the density (a spatial location where the distance in Equation (2.15) is minimised).  

 

The landscape of this objective function (BC) could be smooth and subtle or highly rippled, 

and therefore, seeking modes of density using single solution based approaches is somewhat 

difficult to achieve in the practical real life applications. Hence, MS works perfectly well in 
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the linear and uni-modal environments, as it does not possess an inherent capacity (in the 

original format) to address the multiple modes in the local landscape (as shown in Figure 

2.25). In the simplistic one dominant modal case, the density climbing is much smoother and 

accurate compared to the one on the right hand side of Figure 2.25. 

 

 

 

 

 

 

Figure 2.25: Landscape generated by Bhattacharyya coefficients in tracking [93].  

 

The initial location of the solution is represented by a small circle along with the convergence 

point which is marked using a triangle in Figure 2.25a. The standard meanshift tracking is a 

single solution based approach, and in its original format is unable to address multi-modal 

environments as represented in Figure 2.25b. The iterative localization procedure in Figure 

2.25 is accomplished by calculating the gradient (represented by the mean shift vector), and 

then it shifts the kernel towards this newly determined position in the search space.  For an n 

data points in a d-dimensional space , we can write this multivariate kernel density 

estimate as in Equation (2.16). 
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 where  are n data points, is a normalisation constant to take into account the 

effects of window sizes .Thus the convergence steps using a circular symmetric kernel 

profile(isotropic Gaussian) could be written in the format  shown in Equations (2.17) and 

nixi ,...,1,,  dnh

h



(2.18) [93]. The first term in Equation (2.18) is the position of the mode in newly perceived 

likelihood map obtained through matching the densities, and  refers to the previously 

calculated position of the region of interest.  

0x

  

Therefore, the new window position is calculated through an iterative shifting of the 

previously known coordinates of an object by applying the mean shift vector translations 

as calculated by the expression shown in Equation (2.18).  The meanshift is a very efficient 

algorithm, and only the object based features and characteristics are required to track an 

object of interest. In Equation (2.17), ‘C’ is the normalization constant, so that the kernel 

weights add up to unity. All observations in time are weighted by the kernel , and the 

distance metric  stipulates the fact that the kernel preferences depend on the standard 

Euclidean  norm [94]. Finally, the mean shift vector is calculated using Equations (2.18) 

and (2.19). 
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2.6 Critical analysis of the tracking principles. 

In Section 2.5 three dominant techniques are presented that almost constitute the bulk of 

modern tracking methodologies in computer vision applications. However, the main focus of 

this thesis is to adapt an objective orientated method that manifests simplistic and 

dynamically altering solutions to the tracking problem that could be implemented in an 
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embedded processing environment. This could mean finding and discovering solutions using 

a scale-space of problem (e.g., using Gaussian pyramids [95], and then clustering using frame 

differences [96]). Restricting the domain of measurements analytically might not be the most 

effective or feasible approach in this regard.   

Alternatively, rather than viewing the tracking problem through an analytical eye, it might 

also help to overcome some of the most common misconceptions, and to avoid configuring 

frame tracking problems in the light of the general control theory devised particularly for 

process design applications. Therefore, it would be much more interesting to study the 

tracking problem in a hybrid framework (evolutionary factored sampling/MCS and mode 

seeking algorithms). This problem is also identified in Figure 2.25, where the landscape 

proposes a multiple solution approach, and due to the reason that such kind of problems are 

highly sensitive to an accurate declaration of initial conditions.  

 

2.7 Conclusions. 

Some of the most prominent tracking methodologies are discussed in Chapter 2. The 

fundamental flaws of the recursive Bayesian estimation (RBE) are discussed in Section 2.5.2. 

The Monte-Carlo sampling (MCS) in Section 2.5.3 addresses some of the inherent 

weaknesses/flaws of the RBE technique but even the most popular MCS method (a particle 

filter [97]) is self contradictory in the view of this report. The fundamental reason of the 

contradictory behaviour is due to the possibility of accumulation of errors in the state 

transition models; a re-sampling stage therefore is usually required to compensate the 

detrimental effects of the discrepancies in the plant models, which usually restrict a real time 

and fast convergence.  
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Chapter 3 

Natural Experiential Learning 

The evolutionary branch of mathematics is a fast developing science primarily based on the 

theories of learning and swarming among social insects, birds flocking behaviour, and is 

deeply inspired by both microscopic and macroscopic world. In order to achieve collective 

goals, a two phase inter species phenomenon of competition and collaboration has been 

frequently observed in the biological life forms, and is also extensively studied in the 

scientific literature [98]. Our planet earth is a typical example of a multiple agent system, 

where members of certain species not only race against each other to gain peer attention, but 

at the same time provide navigational aids to the colony that helps to reach significant food 

reserves. The competitive and collaborative mechanisms in natural colonies are therefore 

leading research directions in the modern optimisation literature.  

 

 

 

 

 

 

Figure 3.1: A sensational murmuring phase observed in a group of starlings [101].  

 

One specific example worth mentioning in this context are the research findings of a group of 

mathematicians working on the Starflag project, its research goal is to understand the 

flocking and murmuring phases observed during starling flypasts (within the boundaries of 
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the cosmopolitan city of Rome [99]), an intriguing murmuring phase of starlings is shown in 

Figure 3.1. The fascinating formations of starlings are due to the marvellous achievements at 

both individual and collective levels, and are not only aesthetically admirable but are also 

remarkable displays of strength [100]. During murmuring phases, starlings tend to split and 

merge into intriguing group formats and at a blink of an eye. The effective scanning of 

environment at both individual and combined level therefore caught the attention of scientists 

and engineers alike to solve complex processes. 

 Another profound scenario of the natural optimisation sequence (a chain of events) has been 

noticed in the ant colonies, where foragers compete among each other to reach most 

admissible food resources [102]. The waggling of a forager bee at the hive dance floor is 

another fascinating phenomenon which has baffled researches for many decades. As a matter 

of fact, it was later learnt that the waggle dances of honey bees are social techniques that 

convince other members of the hive to investigate prominent food resources [103]. The 

second most important issue to be addressed in this thesis is to introduce the radical particle 

behaviours that could help to resolve the fundamental flaw in standard optimisation 

algorithms. Modern evolutionary algorithms, e.g., ant colony (ACO) [104] and particle 

swarm optimisation (PSO) rely on one major assumption that all agents of population have to 

be physically transported and shifted [105] (e.g., from a nest position A to the newly 

discovered location B).  

The aim of this chapter is to explore the applicability by programming foraging 

characteristics within particles to solve complex mathematical test functions.  After studying 

the inherent weaknesses of general gradient based methods, a new optimisation scheme is 

proposed that grants a lot better vision to the agents. The underline freedom in choosing 

motion trajectories in exploring complicated multi-modal state space relies on a novel 

revolutionary dynamics described in Section 3.4. 
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3.1 David Kolb’s Learning Model (KLM) in the tracking applications. 

During 1984, David Kolb presented his profoundly famous learning model [106] that ever 

since has been applied to a wide variety of educational programs to facilitate learning. The 

fundamental aim of the Kolb model is to deliver tailor made lesson plans for both individuals 

and groups of learners alike. The possible domain of KLM could range from artificial 

computation to devising effective lesson plans in both primary and higher level educational 

and training institutes. According to Kolb, “learning is a process, whereby knowledge is a 

transformation of experience gained through phases of active experimentations [107]”. The 

Kolb’s theory initially tries to address the learner’s internal cognitive processes through 

experiential observations, and once such information is suitably inferred, it is reflected back 

into delivering more appropriate sequences of information, hence maximising the chances of 

gaining a far reaching body of knowledge (as mentioned above). 

 
 

Experience 

 
Reflect 

 
Conceptualise 

 
Test 

 

 

 

 

 

Figure 3.2: David Kolb learning model. 

In Figure 3.2, the four typical stages of KLM are presented, the iterative application of self 

reflections and conceptualisation help in devising more meaningful experiences. The title of 

this chapter (experiential learning) also implies this core idea (presented in the Kolb’s theory 

of learning), and the main differentiation of this technique revolves around embedding 

broader experimental variations in tests in order to acquire knowledge and expertise to 

perform a task in the best possible manner. In short, an experiential learning is a process in 
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which a mass or body of knowledge is gained through active experimentations rather than 

solely based on the theoretical expositions and models. This experimental form of learning is 

also very close in nature to the naturally occurring processes seen in early year children and 

infants, and is witnessed in both human and natural populations. Based on such 

considerations, the tracking problem in computer vision could be effectively solved by 

granting searching particles the experiential freedom to plan their personal expeditions.  

3.2 Towards developing a faster Global convergence methodology. 

This section prepares the readers to gain further insight into various mathematical 

optimization processes. The Fermat theorem (FT) [108] is a basic optimisation strategy that 

proposes an initial search direction (e.g., along the gradient) to find a solution. The first order 

condition in FT imposes a necessary condition (to be satisfied) before a point in a search 

domain could be further tested to establish if it is indeed a local extremum.  

If  is a feasible subset of a Euclidean search space of dimension , and (  is the 

real line) are the function values over the defined set , then according to FT, at a relative 

minimum or maximum point  the gradient of the objective function vanishes and becomes 

zero (i.e., ). In order to distinguish other possible stationary points (e.g., inflection 

points [109]) from the local optimal solutions, it is a common practice to carry out a second 

order derivative test. The second derivative test imposes sufficient conditions, and a point 

satisfying both first and second order derivative tests is finally classified as a relative critical 

point [110]. 
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 In the simplistic words, sufficient conditions theorem (second derivative test) implies that if 

the function’s first derivative vanishes at some point, and its second order derivative is 

greater than zero at that point , then the point x is a local maximizer of the 

function . On the other hand, a point  is a local minimum if the value of the function 
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second derivative at this point is less than zero . The third interesting but rather 

confusing scenario takes place when the second derivative tests prove inconclusive, and in 

those circumstances, further higher order derivative tests are imposed (e.g., Taylor series 

expansions [111]) in order to locate further critical points, and to investigate the general trend 

of changes in its domain. 

0)( *'' xf
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Local convex hulls 

Global Optimiser x  x

B 
A

Figure 3.3: Examples of a non-convex and a strictly convex function on the right. 

 

In Figure 3.3, two function plots are presented. In the monotonic case (on the right), the 

functions values either increase or decrease over its domain (and gradient information could 

be used as a guidance), and therefore is simpler to analyse and investigate in comparison to 

the non-monotonic case. Furthermore, the function on the right in Figure 3.3 is a uni-modal 

test case, because it is monotonically decreasing to a certain point, and then function value 

starts increasing in its domain.  

In contrast  in Figure 3.3 is multi-modal, and the monotonic properties (changes in 

function values) could only guide to a local solution. There is a wide range of competing 

regions and convex hulls in this test case, but only one leads to the global best or an optimal 

solution. If the solution gets trapped into a local ridge and valley, there is no guarantee that 

the optimal solution will be discovered, such problematic situation has been discussed in 

literature previously and any interested reader is referred to the following literature to gain 

further insight into this mathematical problem [112] [113].  
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3.2.1 Greedy optimization strategies. 

The fundamental weakness encountered in the monotonic object tracking techniques is due 

the factual possibility that these methods could get short sighted very quickly, and may 

converge only to maximise the immediately available rewards at any moment in time. This is 

the main reason of failure of mode seeking algorithms [114], the contour methods also suffer 

from similar setbacks due to the non differentiable stationary points developing on the 

surface of a contour [115]. Many high curvature points generated on the curve surfaces are 

the consequence of a reduced visibility after following the steepest descent directions for a 

number of iterative steps.  
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Figure 3.4: A short sighted solution tends to converge towards local mode (node B). 

The diagram presented in Figure 3.4 shows how a short sighted and greedy algorithm tend to 

converge to a locally optimal solution (node-B), and generally would remain oblivious of the 

position of the global best solution (node-A). We will conduct a range of tests to clarify the 

effects of the above mentioned adversities in the evolutionary test cases in this chapter. In 

order to expedite the convergence timing and to provide a real time response, a correct locus 

to the optimal solution is needed within a allowable time limit.  

 To increase the prospects of locating the correct node, one possible resolution is to introduce 

the jump irregularities as shown in Figure 3.4. An intuitional heuristic shortcut and jump 

could also result in the reduction of the convergence timing (however, the optimality is not 

                                                                                        
 

53



always guaranteed), which becomes more apparent if the depth and breadth of the searches 

are vast (e.g., there are  data points in an image of resolution . On the other hand, 

if all the data nodes are revisited in order to understand their relevance in the feasibility 

space, then such a search resembles a brute force search, and is a gigantic computational 

overhead. A one dimensional graph is plotted in Figure 3.5a to elaborate this further using a 

simplistic test polynomial. 
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Figure 3.5a: Graph of polynomial . 6108)( 35  xxxxh

 

 

 

 

 

Figure 3.5b:  First derivative test of function . 6108)( 35  xxxxh

 

 

 

 

 

Figure 3.5c:  Second order derivative test of function . )(xh
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Suppose the optimisation task is to find the absolute minimum of the function  which 

is defined in the intervals  to

)( *x )(xh

2x 3x . But in reality, many practical optimisation problems 

have no detailed knowledge of the graph of a function. After analysing the graphs of the 1st 

order derivative test (necessary conditions) in Figure 3.5b, it becomes apparent that the 

relative minimums are located in the vicinity )68.0( x / )083.2( x . 

 The second derivative further tests the projected hypothesis by implying a sufficient 

condition test and the position of the absolute minimum of  are analysed using higher 

order tests (Figure 3.5c). It is evident from the function plots, that, in order to use the local 

convexity to reach a solution, we have to initiate the searches at diverse points in the search 

space. There are two competing troughs in the domain of this function (Figure 3.5), and when 

the minimization process was initiated at

)(xh

)0( x , and the function monotonic characteristics 

are applied, it resulted in reaching to a local solution )5701.1).0( (&68  xx

2586.6

h . However when 

two competing solutions were initialized in the search regions, it enabled the same algorithm 

to detect the absolute and the global optimiser )( xh  is observed at ( ). 083.2x

                                                        

 

 

 

 

Figure 3.6: The landscape of a non-convex and convex three dimensional problems. 

 

The test scenario discussed above is a clear demonstration of the importance of initialization 

in the multi-modal landscapes, and is one of the most rigorous issues to be tackled in the 

global optimization branch of mathematics. The minimization procedure in higher 

dimensional problems is similar to the 1-dimensional case presented earlier; the only 

                                                                                        
 

55



exception is that search directions are established using negative gradients. The landscapes of 

both convex and non-convex functions are plotted in Figure 3.6. These  cases resemble 

camera generated images (as both are functions of two variables); therefore, it seems 

reasonable to study convergences using such artificial landscapes. The decaying graphs in 

Figure 3.6 are plotted using Equations (3.1) and (3.2) respectively. The exponential function 

defined in Equation (3.1) is strictly convex and a trough at

D3

)0,0(  yx is prominent to notice, 

whereas in Equation (3.2), two competing convex regions are present with a non-convex 

overall response. 

                                                                                                            3.1 )( 22

1),( yxeyxG 

                                                                               3.2 )2(1),(
2222 )7.1()7.1(   yxyx eeyxZ

Algorithm 2.1 

1.  Compute                                 )( )(k
R xf

2.  Choose     ))}(({minarg k
R

kk xfxf  


3.  Update                   )(1 k
R

kkk xfxx  

4.  Repeat (Go to 1) until  )( k
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Figure 3.7: A generalised pseudo code of the gradient descent (GD) convergence algorithm.  
 

In this section we will try to understand the convergence properties using gradient descent 

optimisation (gradient testing is also common in contour tracking methods [116] [117]). The 

pseudo code for a generic minimization problem is portrayed in Figure 3.7. In Algorithm 2.1, 

the fastest change in the function values is calculated using a negative gradient first (step 1), 

the selection of an appropriate scale of measurements R ( is the bandwidth in which 

changes are observed) is an important aspect in accomplishing this step. The second 

step/stage establishes how long it would be feasible to travel in the direction of the gradient to 

minimise the given function  within a neighbourhood, hence a vector/ray is projected 
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in that direction to answer this question. The factor ''  assigns a suitable magnitude to this 

vector/line search to calculate an optimal value of  (step 2), and finally the solution is 

updated by calculating in step 3. The iterative process shown in Figure 3.8 is repeated 

until the magnitudes of the changes fall below a predefined threshold

)( kxf

1kx

 )( k
R xf , gradient 

ascend works in a similar way with the exception that the optimum points are yielded 

using  direction. )( k
R xf
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Figure 3.8: The gradient descent convergence of 1 using different bandwidth values.   )2y
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In Figure 3.8, the number of iterations have been significantly reduced (from ‘ ’ steps at 

 to ‘ ’ when ) by choosing more appropriate scale. Similarly, some built in 

ray casting procedure and automatic selections of resolution may prove beneficial to detect 

intensity variations in a digital image, and the computational complexity could also be reduce 

as such technique requires less memory operations.  

200

0R 05.0R

The convergence timing graph (Figure 3.9) was plotted using a resolution sweep spanning 

from to  Figure 3.9 emphasizes that the convergence timing could be significantly 

reduced by systematically varying the solution starting points in the search space. In all 3  

cases key changes in characteristic are observed around  and further decrementing may 

prove detrimental in terms of converge timing, a threshold error of

.

,04 R

01.0 was used in this 
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experiment. 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Timing graph of a test function (defined in Equation 3.1 with distinctive starts).  

The experiment conducted in Figure 3.8 was repeated using fixed line searches (FLS) this 

time, and Figure 3.10 provides a graphical comparison when the gradient descent was applied 

without inbuilt line searches (NLS). The advantage of an imminent line search is clearly 

vident in Figure 3.10 as the solution converges in just 10 steps.  e
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Figure 3.10: The convergence of a test function using a fixed line search operation (FLS)  
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Figure 3.11: The comparison of the convergence timings (NLS vs. FLS)  

The convergence timing graph is presented in Figure 3.11. Although the time needed for the 

NLS to converge at each iterative step is far less than the FLS scenario (  

and seconds respectively), the overall descent time in the FLS case was recorded to be 

just seconds, which is significantly lower than NLS, and has taken seconds to 

converge to the global solution. The reasons for the individual FLS iterations to be 

computationally expensive than NLS is simply due to the fact that, a significant proportion of 

time is spent in determining the slope (ray casting process as shown in Equation 3.3) and in 

ew data points. 
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The general line equation is presented in Equation (3.3), where the values of x are stipulated 

using the history of movements (gradient directions), whereas, the value of the second 
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refers to the initial location of the data points in a solution space. In object tracking, we often 

experience similar situations (mentioned in the previous paragraphs) especially when 

deterministic techniques (e.g., Kalman Filter [118]) are applied in tracking, the historical 

movements are generally ignored in predicting better solutions (but could be utilised due to 

economical memory devices at this technological age).  Another relevant technique is Hill 

climbing [119] which is also a single solution based approach. 

The contour plot of the function  (Equation 3.2) is shown in Figure 3.12. The plot of 

the monotonic characteristics of  sheds a focus on the inherent weaknesses of the 

gradient oriented solutions. Particularly, in the multi-modal imaging landscapes the 

monotonic feature is not a stable approach due to the reasons explained earlier in this section. 

The arrows in Figure 3.12 indicate the direction of 

),( yxZ

),( yxZ

)(XfR  which are highly inconsistent at 

various point in the graph of function. 
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Figure 3.12: The combined (Level lines and direction of the gradients) plot of   ).,( yxZ

Figure 3.13 is a rotated graph of function  that was presented earlier in Figure 3.6, and 

only 90 data points are used to sample its unique camel hump characteristics using Matlab. 

The gradient inconsistencies in relation to both Figures 3.12 and 3.13 clearly demonstrate the 

),( yxZ
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need for an experiential variation type of approach as discussed earlier in Section 3.1. The 

prospects of converging to a global solution are therefore more circumstantial in the multi-

modal landscape. If the GD optimization is initiated in the valleys in Figure 3.12, there are 

minimal chances of recovery.  

 

 

 

 

 

 

 

 

 

Figure 3.13: 2D plot of the local and the global optimal solutions of .  ),( yxZ

 

Figure 3.13 indicates a relative minimum 0064)( XZ  at  and a global optimum 

at . Having mentioned the importance of the initialization stages 

previously (Figure 3.4), we will now try to study the initialisation problem in more detail by 

performing a gradient descent test on a multi-modal test case. In this section 500 test runs are 

conducted in order to understand the convergence issues, and therefore the accumulated 

errors are analysed using pseudo random sampling from two Normal distributions in Figure 

3.14.   
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In this experiment, the aim is to guide the solution into the correct convex hull (as was 

emphasized in Figure 3.3) by perturbing searches using two unique Gaussian seeds. In 
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comparison to the function in Equation 3.1 (where optimality is guaranteed), the aim of these 

tests (using highly rippled landscape with a lot more local distracters) is to analyse if 

randomization could facilitate in discovering dominant modes (Section 2.5.4). 

 

 

 

 

 

 

 

Figure 3.14: Random sampling from 2 Gaussian distributions (with distinct means).  
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Figure 3.15: A stochastic meta-heuristic based gradient descent algorithm.    
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The flow diagram of the tests conducted in Figure 3.16 is drawn in Figure 3.15; the main 

focal point of this novel stochastic gradient based descent test (beside other key points 

mentioned earlier) is the random seed generator which diversifies the searches in order to 

evelop several parallel hypotheses in the search domain.   d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Error graphs generated by stochastic process defined in Figure 3.15.    
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In comparison to the gradient descent process in Algorithm 2.1, the downhill walk in the 

direction of the negative gradient is repeated here until the convergence conditions are met 

for a variety of starting points (500 iterations/seed). Along with the NLS/LS processes 

(explained earlier in Figure 3.10), it is generally assumed that an additional meta-heuristic 

stage (if inserted onto the top of tracking and optimization algorithms) could introduce 

considerable improvements in all key stages during the descent walks.  However at this stage 

of Chapter 3, only the results of the randomization processes are shown in Figure 3.16.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: The zoomed in version of the graphs drawn in Figure 3.16.    

 

From the graphs of the convergence errors (Figure 3.16), it is clear that the convergence 

errors are significantly reduced when the perturbations are generated using a Gaussian with a 

mean . Figure 3.17 is a zoomed version of the graphs presented in Figure 3.16, which 

also confirms the suggested proposition that suitable initialization is mandatory for accuracy.  
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In Figure 3.17 the ratio of accumulated error was observed to be 39:15 which is a significant 

improvement compared to when . The probability of iterative random solutions 

correctly identifying the global best were observed to be 0.82 when  and in the order 

of 0.3034 when . Therefore, it could be safely concluded that by increasing the level of 

diversity (a kind of pseudo number seeding used earlier) would also facilitate significant 

improvements in exploring the dominant modes in the detection algorithms in computer 

vision (due to close resemblances of landscapes).   
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3.2.2 The simulated annealing as an optimization process. 

A controlled annealing is a technique in the Metallurgical engineering that removes the 

molecular level defects in machine parts constructed from versatile alloys. In the first stage of 

the annealing process, metallic components are subjected to very high temperatures which 

facilitate the removal of existing bonds between atoms and alter the molecular properties of a 

material. During the next phases, a temperature schedule is maintained by a slow cooling 

mechanism resulting in re-crystallization, hence the desired characteristics (e.g., better 

stress/strain capacities) are forged which are required for a particular design scenario.  The 

heart of the annealing process is a molecular diffusion process. The simulated annealing (SA) 

algorithm is a relatively new state space exploration methodology (compared to the 

deterministic analytical methods) in which a solution is perturbed to escape the local traps 

using controlled cooling schedules [120].  

 

    

 

 

 

 

Figure 3.18: The temperature controlled selection of neighbourhood nodes in SA.       

In contrast to the solution ascending/descending towards the immediately best solutions in the 

gradient based methods, in SA algorithms some worse solutions are also selected depending 

on the current temperature schedules. In Figure 3.18, the temperature changes were simulated 

from in order to study the selection probability of non optimum nodes. The 

exponentially decaying temperature schedule is usually implemented [121] in accordance 

with Equation (3.4).                                                             
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Figure 3.19: The function gets out of local minimum by selecting node with .       ).()( mfnf 

Suppose we are stuck at a particular node  (Figure 3.19), and have relevant information 

that the current point in space is not a local optimal solution, also the function values within 

the local neighbourhood set of nodes are all worse than the current position in the search 

space i.e., . To incorporate diversity, the selection of a new evaluation point in 

the search space is made based on a decaying function
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 (as defined in Equation 3.4) and a 

multiplicative factor  governing the temperature decay (where  are the 

available rewards at nodes) and the cooling schedule. The graph of temperature and selection 

based probability is shown in Figure 3.18 which reduces exponentially as the temperature is 

decreased (interpreting the graph from right to left). The chances of finding the optimum 

therefore increases significantly in this temperature controlled selection mechanism (shown 

in Figure 3.19).  

)]m()(,0max[ RnR  '' R

A further graphical interpretation of implementing the SA meta-heuristic in optimization 

applications could be established in the context of Figure 3.20. The intensity of the 

temperature and cooling schedule alters two relative simultaneous processes at any given 

moment in time. The first of the two properties of any SA converging solutions produces a 

similar effect as a variable amplitude modulated signal (AM) [122], where the modulating 
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waveform is produced by the devised heating and cooling mechanisms (e.g., Equation 3.4). 

The second factor of interest controls the frequency of observations carried out during a 

specific length of time, a period in which SA is being run to find a global optimal solution. At 

higher frequency a search particle could undergo many thousands of scheduled jumps in the 

relevant search space as shown by the zigzag lines in Figure 3.20. 
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Figure 3.20: A generic representation of an amplitude modulated (AM) signal.  

 

Figure 3.20 also demonstrates graphically how the movement of a particle/agent is governed 

by a number of simulated heating and cooling schedules along time dimension. The small 

circles represent local searches carried out by a particle after undergoing jump irregularities 

(represented by zigzag lines). As at high temperature, the dispersion and diffusion of 

molecules is much more intensive because the matter is in a more agitated state, therefore, at 

higher temperatures a search particle undergoes higher intensity jumps in the search space. 

Therefore at intensified temperature stages, the SA algorithm prefers frequent high amplitude 

jumps (Figure 3.20 shows several heating and cooling schedules) rather than conducting 

more intensified local searches (compared to a gradient method). The whole scenario 

involving both local and global searches therefore mimics a meta-heuristic environment. The 

meta-heuristic search processes would be further clarified in the upcoming sections of this 

report. 

 Despite the variations introduced by the annealing process, the SA algorithm suffers from a 
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variety of complexities. Generally, the switching of states between the local and global 

searches in the simulated annealing processes require considerable planning stages and are 

strongly dependent on the landscape of the optimization problem. We can also relate the SA 

process as a variable line search technique . A similar ray casting 

approach was applied in one of the author publication to track objects of interest [123].  
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Figure 3.21: The state machine adaptation in a general simulated annealing algorithm.  

Figure 3.21 is a state machine representation of the SA algorithm. Along with utilising a 

variety of combinations of local search methods, it must also provide parametric control 

(e.g., ) and introduce mechanism to define jumps (bold curves). MN ,

VALLEYS 

 

 

 

 

 

Figure 3.22: A multi-modal landscape generated by the Egg-Crate function (Matlab).  

In the presence of adversities, normally the solution strategically traverses between points 

and  (two such points in the search space are shown in Figure 3.21) in an optimistic 

attempt to find the global solution. Furthermore, a badly tuned algorithm (where the policies 

behind performing larger intuitive shifts or alternatively the continuation of the current local 

search modes  are not comprehensively defined) therefore has larger tendencies to 

1P nP

)/( MN

                                                                                        
 

69



drift towards non optimal regions. Generally, along the course of optimisation journey, if the 

solution diverges far from the locus (towards the minimum), then in reality, the prospects of 

finding optimal solutions vanish leading to the tracking window roaming around in non 

feasibility space. Figure 3.22 shows the landscape of a 2 dimensional Egg-crate function 

[124]. There are many relative/local solutions (in comparison to Equation 3.2) to this problem 

but one global best, the optimal solution is located at  where the function attains 

.  The contour plot in Figure 3.23 reveals the extent of the problem and 

maximization/minimization of the function is a difficult task due to the local ridges/valleys.  
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Figure 3.23: Contour plot of the Egg crate function i.e. .  )222 YSinXYX 

Figure 3.23 postulates an artefact which is created by the uncertainties. At the beginning, the 

chances to converge to any of the local optimal solution are equally probable, however, once 

the solution has descended or ascended much deeper into the regions (Figure 3.24 with a 

decision point ), there are minimal chances of recovery as the landscape (on its own) could 

not direct the solution towards the correct locus (path to the optimal  in contrast to 

relatively incorrect ). 
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Figure 3.24: A single solution based approach traps the solution into wrong regions. 

 

3.2.3 Case Study-Honey bird in a Meta-heuristic environment. 

Before concluding this section, a case study would be presented here that which would help 

to rectify some of the misconceptions in relation to the higher level guidance system, needed 

desperately in the object tracking applications. In Section 3.2.2, it was mentioned that the 

embedded Meta-heuristics in simulated annealing is generally weak, and therefore has an 

inability to scan the environment in an effective manner. The cooperative mutual recruitment 

of human hunters and honey-guide (Figure 3.25) is an excellent example of both a strong 

Meta-heuristics and the much required control variability (as was studied in relation to the 

Bersteinian theory and the DOF problem (Section 2.4.1).  

 

 

 

 

 

Figure 3.25: An artistic impression of the cooperative recruitment in honey guides [125]. 

The honey-bird guided hunting facilitates the much needed inclusiveness which could 

explicitly solve the terrain related problems. Due to the airborne characteristics of the honey 

bird (compared to the human hunters who get themselves trapped in the local landscape), it 

has better anticipation of the environment but due to its structural limits has an inability to 

subdue the stinging bees to reach the reward. David Attenborough (renowned for the natural 
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world programs) exclusively presented an episode (‘talking to strangers’) in which the 

honeyguide calls to solicit human partners [126]. An extra dimension to this already 

supercharged drama was that the birds also responded to the humans save our soul (SOS) 

calls. According to Dr Claire Spoottiswoode (behavioural Ecologist at the University of 

Cambridge), the most remarkable fact about this human-honey guide relationship is the 

cooperative evolution of free-living wild animals and humans which might have spanned 

over the course of thousand of years [127].  

To relate the honeyguide scenario to optimisation problems, we can see the experiments 

conducted using gradient based methods (Section 3.2.1) as the ability of human hunters, 

which therefore have higher sensitivity to the terrain and landscapes. The Meanshift 

algorithm (Section 2.54) is one further example where the absence of a meta-heuristics causes 

seizures of tracking windows. Therefore if a particle based guidance system is imposed over 

the mean shift tracking algorithm, the global convergence characteristics could be 

significantly improved.   

The answer to the adversities in the above paragraph are somewhat contained within the 

problem definitions itself. Sections 2.5.1 to 2.5.3 focused around these explicit issues, that 

preconceived deterministic drifts could possibly deteriorate both stability as well as 

convergence timing in many tracking applications. What we aim to portray in this thesis is to 

introduce much wider search experience based on experimental variations and broader 

learning experiences (Section 3.1). One way to incorporate the necessary meta-heuristics is 

through the information fusion techniques that are common in computer science [128]. The 

division of landscape into sub-regions by deployment of static and roaming particles is one 

possibility that mimics the SOS calls in a human-honey bird relationship. By dynamically 

altering the complexity level, and bringing in the norms of scale-space methods (sparse to 

denser datasets, as was implemented in another author’s publication [129]) has proven more 
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effective tracking schemes in a variety of situations (in contrast to the deterministic methods).   

 

3.3 Population based nature inspired algorithms. 

Since the start of the millennium, scientists and engineers have been focusing onto the 

possibilities to enhance the capabilities of nature inspired algorithms especially in the context 

of non-linear mathematical problems. In reality, some of the most pragmatic aspirations to 

tackle complex mathematical problems come from the very simplistic of the naturally 

occurring phenomenon. One of the most common urge for the people of almost every 

generation and cultures is to witness a snowfall, especially during the festive season. 

Furthermore, the formation of snowflakes introduces a superficial element to the otherwise 

unnoticeable tiny frozen water molecules, which when ride on the horizontal/ vertical gusts of 

winds and thermals, create a delightful weather extravaganza. 

 

 

 

 

 

Figure 3.26: A magnified depiction of a snowflake/ ice crystal. [130]. 

 In this whole rather artistic masterpieces of nature, the most interesting factor for scientists is 

to research/explore how smaller entities integrate in order to formulate larger influential 

structures and groups that assign them power to override the undesirable operational and 

atmospheric conditions. Although, the snowflakes or ice crystals are lifeless creations (the six 

sided snowflake/crystal is shown in Figure 3.26), but when sufficiently populated could 

whitewash the landscape in a matter of a few hours. There is no social element among non-

living objects like ice crystals, therefore, these are incapacitated to an extent and unable to 
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change the course of their destination (falling and ultimately to meltdown), and hence are 

solely dependent on the implication of external projection. The aim of population based 

nature inspired algorithms is however to bring in the element of a social life into an otherwise 

segregated particle. The snowflakes also create an emergent behaviour but without a much 

needed social element, which when is explicitly introduced into the landscape gives birth to a 

complete different dimension and search expeditions. Utilising the gifted imaginations and 

following the hierarchical discipline birds could create larger influential groups and versatile 

flocking behaviours (Figure 3.27), that could even baffle local authorities into spending 

treacherous resources and research time to deal with the problem [131]. 

 One example of the research of emergence phenomenon is the Strarflag project [132], which 

primarily aimed to deal with the nuisance (due to the ever growing population size to what 

Rome could dwell) and antisocial behaviour (human perspective) of starlings that could 

change the landscape of this modern city within a matter of seconds. There are other 

uncountable examples in terms of the swarming behaviours observed in the social insects 

including the travel journeys of Monarch butterflies, schooling fish, bee hives and ant 

colonies.   

 

 

 

 

 

Figure 3.27: The display of nuisance and spectacular starling formations and acrobatics [132]. 

Figure 3.27 shows some of the excerpts from one of the latest documentary presented by Sir 

David Attenborough (‘cities, planet earth 2’ [133]) filmed at Rome in Italy. The top row 

shows some of the landmarks and monuments that are being damaged by the growing 
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population of starling, and the bottom exhibits the extraordinary features involving the group 

disciplines which also vary in the population sizes and underlying structures. Each starling 

formations seem to be competing with rivals, and usually take place around the sunset, 

whereas, during day times most of the starlings fly around randomly producing an effect of a 

noise contaminated images. In the last few decades, many similar population based 

optimisation techniques have emerged that also aim to address these core issues [134] [135].  

 

3.3.1 The evolutionary and swarm based optimization methodologies. 

Since the start of the millennium, there has been an endeavour by scientific community to 

nurture the evolving branch of evolutionary mathematics [136]. The lack of coordination and 

contemptuous attempts have resulted in a paradox promoting a thinking that evolutionary 

[137] and swarm based optimization methods [138] are fundamentally distinct branches of 

evolutionary computation. An evolutionist (Godless thinking) believes that all living beings 

are constantly changing in order to adapt the trait that revamps them to compete against the 

threats imposed by the potent environment. Whereas, the elemental belief of a creative 

thinker comes from an idea that all creations are purposeful inventions, and are contraption 

free products of a supernatural force with no past genetic linkage whatsoever [139].  

Nevertheless, as this thesis is not about the ethical behaviours, in engineering the concept of 

evolution must not be confined to its natural counterpart.  

Moreover, an evolutionary algorithm is a progressive methodology, which when is least 

wilful, provides an environment that promotes to collate opinions from versatile school of 

thoughts. The closest association of coordinated behaviours in lifeless objects has been found 

in ferromagnetic materials [140], where particles (spinning electrons) align themselves (at 

critical temperatures) and form strong interconnections in order to enhance the fundamental 

properties of the matter [141]. One of the most mesmerizing applications of self learning 
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(prompting collective response) could be seen in the twisting and morphing cloud of 

flocking/swarming starlings.  

The swirling masses of clouds created by murmuring starlings is a partial revelation (similar 

to the automated mechanism design (AMD) [142]) integrating both distributed and 

centralised intelligence, and delineates that the strength is in the unification and disciplined 

rendering (see Figure 1.1). According to the findings of the Starflag research project (partly 

supervised by Giorgio Parisi, a physicist from the University of Rome), the abilities of 

starlings to form unique structures, that sometimes evolve from within an already existing 

cloud is the result of the scale free correlations, the possible physics and the mathematical 

findings of this group have also been published [143]. The murmuration of starling and the 

resultant intelligent cloud is certainly more than a freak show, and a critical thinker may infer 

that this marvel of collective genius could be in fact a deterrent to scare and to keep at bay 

powerful opponents like the Peregrine Falcons.  

A: Full Velocities B: Velocity Fluctuations

 

 

 

 

Figure 3.28: The two dimensional projection (velocity vectors) of the starling flypasts [144]. 

 

The possibility of territorial warfare among rival starling groups (resulting in such exhibitions 

of highly coordinated flight patterns) may not be completely ruled out, and one line of 

thought is that, it is merely a recruitment strategy in order to further grow in size. Through 

analysing hours of recording of swarming and flocking behaviours, we came to a similar 

conclusion that murmuration is just one of the modes of starlings in flight. One of several 

different occasions, the flying birds mimic swarming behaviour without any higher order 
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thoughts and need to create a disciplined flypast. In Figure 3.28, the two dimensional 

projection of 3D velocity vectors identifies two non-identical flight patterns, in the first case, 

the velocity vectors of the whole flock seems to be highly correlated and form a simple 

swarming effect, whereas scenario B shows the presence of a significant level of diversity 

and the birds appear to be in murmuring phases.  

Whether the aesthetic formations of flocking birds, schooling fish or even swarming Monarch 

butterflies are the products of scale free correlations, or of neighbourhood velocity 

adjustments [145], the computational charm lies in answering the question that how 

inferences from these natural agents could alleviate convergence to the trivial search areas in 

an optimization problem. It would be impartial to write that the most prudent and problem 

solving technique is still the original (1995) work of Kennedy and Eberhart in the context of 

particle swarm optimization (PSO) [146]. Apparently, the original authors were quite aware 

of a possible deluge, and therefore in order to set the sequel and scope of the problem have 

discussed several hypotheses and some were strengthened through benchmark testing.  

 

The original PSO method is highly intrigued by the development in human cognition by 

means of social interaction [147]. The work of Kennedy-Eberhart (KE) could also be seen as 

the continuation of the findings of sociobiologist E.O.Wilson [148]. According to Wilson, the 

collaboration of individual knowledge (in a school of fish) to discover new sparsely 

distributed food resources far outweighs the disadvantages of the competition in order to gain 

a fairer share from the hunt. A primitive conclusion from the work of KE is a short excerpt 

[149] “social sharing of information among conspeciates offers an evolutionary advantage”, 

which also suggests some grass-root level relationships among swarm and evolutionary 

approaches as predicted earlier in this section. 

 Furthermore, KE explicitly mentioned in their paper, that problem solving abilities in 
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physical space in human beings (e.g., the collision avoidance techniques) are learned at a 

very early age but form only trivial component of the overall psychological experiences, and 

PSO is thus only a simplistic coding of the social milieu of the flocking birds. The history of 

social development in humans goes much further than the unpredictable choreography of the 

murmuring birds [150]. On one side, the work of KE explored the repercussions of using the 

Cornfield vectors alone (when all the wandering birds are well informed about the location of 

a cornfield) introduced in the flocking simulations by Heppner [151], and then studies the 

aftermaths of introducing an element of craziness/madness which prohibits the particles to 

collapse in a short space of time (with a primary aim to enhance exploration). The insertion 

of the charged particles (magnetic fields to discriminate searches [152]) giving the exploring 

agents tendencies to be attracted by the opposite genders (e.g., negative charges) are (as a 

matter of fact) the same cornfield influences used by Heppner to formulate a tightly knitted 

group with genetic orders. Mathematically, we can write the PSO algorithm as shown in 

Equation (3.5) [146].         
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It is evident from Equation (3.5), that the velocity control of particles (represented by the 

index i at time instant ) is provided through the linear combination of the inertial, 

cognitive and social elements of the trajectories. The first term in Equation (3.5) is an inertial 

factor and when scaled by the variable , generates a variety of preferences in terms of how 

further any particle should travel along its present search direction. The second and third 

components of movement (cognitive and social factors) influence the particles to exhibit a 

tendency to converge towards their own personal best findings and an assimilative factor 

respectively, which influences the particles to exhibit the desired level of group empathy. The 

velocities could be amplified or dampened by 

1t

''a

1 and 2 (which are known as tuning 

parameters and usually range between 20  ) and are the stochastic components to 2/ r1r

                                                                                        
 

78



introduce variability. 

 The phenomenon of emergence and murmuration (unification of smaller entities to create 

larger structures) is inherently absent from the PSO (of course as the name implies) and is 

merely a swarm of particles. Furthermore, the dynamic environmental conditions impose a 

demand for versatility and are much harder to be controlled using static means (Equation 3.5 

and using and ).  The changing global best assignments further deteriorate the 

problem and a large population is needed to avoid convergence to sub-optimal regions. 

Moreover, the nostalgia in PSO (personal best position ) is memory intensive task and 

demand amendments.   

1 2 )(tgb

)(
^

tx i

Therefore in order to reduce convergence timing, a strategic control of tuning parameters is 

mandatory, otherwise the solution produces an oscillatory response (in trivial regions) 

prohibiting the particles to ever settle down. Along with definitions of allowed maximum 

velocities  (so that the particles do not jump out of the search space 

boundaries/limitations [153]), the strategic dampening of speed (and velocities) is crucial so 

that particles could evolve into the next phases (in an evolutionary sense). The next section is 

aimed to rectify the inherent flaws in general swarm based methodologies.   
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3.3.2 The role of mortality in the ecosystem of particles. 

Researchers have found evidences that many natural processes are designed to counterpoise 

detrimental effects (of one another) and generate timely medicaments to neutralise, therefore 

creating an atmosphere of harmony in which life flourishes [154]. Many man made 

machinery has also been influenced by these natural manifestations (e.g., the rear rotor of a 

flying helicopter counterbalances the rotational forces exerted by the main rotor [155]). One 

of the key demonstrations of this natural balancing lies deep down under our feet and into the 

molten outer core of our planet (Figure 3.29). The change in magnetic fields created by the 

structural variations of molten core and super-rotations (rotational speed changes) of solid 

core (which rotates in an opposite direction to earth layers) formulates a geodynamo, 

inducing billions of amperes of electrical current. The resultant magnetic field created by 

earth’s internal processes helps to keep earth’s orbit, and therefore preventing our thin 

atmosphere to dissolve into the space [156].  

 

 

 

 

 

Figure 3.29: The antidote created by the super-rotation of the earth solid inner core [157]. 

 The advantages of the introduction of an antidote in a solution space could be observed in 

many other circumstances as well [158], the eradication of wolves from the Yellowstone 

national park resulted in an unprecedented escalation of the Elk population which wreaked 

havocs on the surrounding ranches. Therefore, since 1995, eco-scientists and biologists are 

trying to reinforce the balance (in this particular ecosystem) by manual injections and 

monitoring of the wolf populations [159]. 
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 The essence of the earlier discussion (both natural and geological) is to understand the role 

of the convergence phenomenon and to investigate and develop a possible antidote in order to 

balance the ecosystem of particles. As any particle is the prevalence of a hypothesis/belief in 

a search space, hence the converging particles could result in a diversity loss, therefore 

without devising suitable techniques to address these ramifications would consequently lead 

the population into very confined search regions. With the beliefs collapsing onto narrow 

hypothetical areas in space, the universal impact of this crowding is similar to the 

gradient/analytical based methods (Section 2.5.1). 

 

The utilization of the particle based methodologies (inspired by natural entities) to solve 

complex mathematical problem requires a meticulous know-how of both the morphology 

(structure) and physiology (behaviour) of living entities. All living organisms have 

individualized genetic encodings (genome) which is the product of two complicated 

processes known as the crossovers and mutations. The genetic crossover is the transition of 

genetic material into the offspring [160] and culminates the morphological as well as 

physiological features of the child population. The appearances of certain characteristics also 

depend on the dominant and recessive alleles (e.g., blue eyes have a dominant allele, 

whereas, blue eyes need two signatures in order to appear [161]) and despite of the presence 

of a specific element in their genetic material might not prevail morphologically in the next 

generation.  

 The Heredity or passing of genetic information into the genome of a child is an error-prone 

procedure, the crossover defects (also known as mutations) are one of the consequences of 

this transformation. Some evolutionary computational techniques (e.g., genetic algorithm 

(GA) [162]) therefore introduce some forms of random mutations to reflect this natural 

process. Along with the microbiological imperfections that arise during crossovers, some 
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elements in the genome are environment perturbations which after going through micro and 

macro stages of evolution create the phenotype traits (behavioural and structural) of a species 

[163]. Along the course of the lives of living organisms, the interactions of individuals with 

their surroundings also affect their genotype (set of genes) in such a way that enhances their 

natural fitness abilities (similarly to an antidote). The depositional effects of mutation and the 

retentions of a simple crossover of genetic material are shown in Figure 3.30. Although the 

child inherited and retained some of the genes from both of its parents but the effects of 

mutation have created a different genetic structure.  
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Figure 3.30: The effects of crossovers and mutations in a child population 

 

 Most particle based methods (e.g., PSO, Evolutionary Strategies (ES) [164]) address only 

limited physiological trends and starkly overlook the important morphological features 

commonly observed at both individual and social levels in both microscopic and macroscopic 

life forms. The changes in swarming starlings into murmuring also emphasize a transition in 

morphological structures, and this collective evolution could be the result of the radical roles 

within the population. It is pivotal to seemingly program and to implement the phenotype 

changes (in particle generations) in real vector space (e.g., camera plane and multivariate 

functions) and to diversify in a compelling but timely fashion after analysing all the tell-tale 

signs (e.g., data fusion [165] and applying scale space changes [166].  

One of the most fundamental computational techniques that apply the rules of natural 

variation and recombination is the Evolutionary Strategies (ES) [167]. The ES method does 
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not explicitly apply the natural selection but relies heavily on the random Gaussian processes 

[168]. Therefore, all particles in ES have a possibility to be selected as parents. In contrast, in 

EA, parents are chosen from a genetic pool based on their fitness levels (an example of 

fitness proportionate selection is roulette wheel selection (RWS) [169])  

 

 

 

 

 

 

 

Figure 3.31: The cyclic reproductive processes in the evolutionary computational algorithms. 

Figure 3.31 is an umbrella representation of the class of computational algorithms inspired by 

the natural evolution, and usually consists of three main processes commonly referenced in 

literature as the marriage, mutation and selection. Proscribing the initialization debate here 

(see Figure 3.16), a generation run of EA starts from the   parental population, the marriage 

operator reproduces offspring which after going through diversification and enhancements 

become mutated individuals (MI). The fitness of all MIs is retested and some are chosen to be 

married in order to generate next child generation. In ES all individuals (whether children or 

parents) are represented in the form of real vectors and controlled by the endogenous and 

exogenous processes [170].   

The endogenous parameters expedite mutations to increase the fitness level of an individual. 

The endogens also explicate the means, variances and correlations in Gaussian mutation (to 

grant the evolution a sense of direction), whereby, the exogens tend to proclaim the 

predominant reproductive characteristics (e.g., birth rates and selection techniques). One key 
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exogenous control is to define the genetic pool from which future parents are selected, the 

),(   type of selection restricts the gene pool to individuals from the offspring population   

only and the parents   are forgotten regardless of their fitness levels, whereas in the ( )   

reproduction both the parents and children have an equal probability to be chosen in virtual 

marriages. 

 

 

 

 

 

 

Figure 3.32: Two commonly used parental selection techniques in ES and EA. 

On the left of Figure 3.32, are  vectors in the dimensional search space and all have 

an associated fitness . All vectors are potential solutions to the optimisation problem 

and are stored in the memory in format
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)),(: kkk yyc  , where  are the endogenous 

strategy parameters associated with each solution in the search space.  

ks

Figure 3.33 display only four such Gaussian mutations (however in practice there could be a 

large variety of ) which are asserted using the endogenous strategic definitions affiliated 

with each vector . The relationship (to retain a Gaussian like hump) between standard 

deviation and the strength of mutations are presented in the graphs (Figure 3.33) using four 

unique mutation operators (a-d). To incorporate wider genetic diversity in tracking/vision 

algorithms, the mutation vector for particles could be randomly sampled from a variety of 

such normal shaped distributions. 
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 Furthermore, in order to diversify the searches for any specific agent/particle, each vector  

might also be prescribed with time contingent features. Therefore, the endogenous strategy 
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parameters are also varied in time (mutates the mutation strengths) to introduce the relevant 

transitions in space for each and every particle in population. Especially, for converging 

behaviours a purposeful and diminishing mutation becomes statutory, or else the particles 

would hop out of the feasible areas of the search space.  
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Figure 3.33: Defining four endogenous strategy parameters ),(1 N  to ),(4 N 4ky vectors.  
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The graphical depiction (on the left) in Figure 3.32 is expressed mathematically in Equation 

(3.6). The strength of a specific mutation is chosen by calculating the mean of  random 

mutation vectors . The   operator is used here to represent such linear combinations, and 

therefore the magnitude/strength of this newly created mutation is the average of all relevant 

vectors in Equation (3.6). Similarly, in multi-parent recombination (to generate a 

genetic crossover effect in the ES), a child vector is reproduced by calculating the mean 

(Equation 3.6) of all the parental vectors. After the addition of a random mutation, the mean 

of vectors (a child centroid ) would be shifted again in order to further enhance the 

exploration of the search space. 
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 The RWS on the other hand exerts in a more disparate fashion as the parental fitness levels 

are scaled on a virtual roulette wheel, hence the fitter individuals occupy a larger proportion 

of the space, and therefore have more chances of being selected in a spin. In Equation (3.7), 

the probability of selection of a parent is determined by dividing the fitness level of the 

individual with the compound fitness of the generation  . 
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There are untold variants in literature and largely differ in a manner in which the parental 

features are transplanted onto the future generations. In differential evolution (DE) of Storn 

and Price [171], the binary crossover of a particle X (current solution) with intermediate 

agents (calculated by linear projections of 3 randomly selected agents) is used to scrutinize 

the search space. Whereas in stochastic diffusion searches (SDS), the random experiences of 

particles/delegates are used to congregate around the best regions in the space and future 

trajectories are just opinionated decisions [172]. 

We have reached a climactic stage here postulating that a maverick particle physiology is 

possible using wider learning experiences. Furthermore, a detailed analysis is needed to 

determine whether forming particle log offer any optimization advantages at all. Most of the 

particle based methodologies (e.g., PSO [173], DE [174]) rely on registration of searches. 

The idea of non-nostalgic scale free explorations could be augmented with human 

experiences. Generally, as the confidence in acquisition of new skill increases we utilise 

fewer memory which also eases the cognitive pressure/overload. Similarly, it might be 

possible to reduce the complexity of particle methods using some radical, novel and record 

free phases.     

 



3.4 Radical Search Optimisation (RSO) 

In the earlier sections some key challenges in the optimisation of multi-modal problems are 

discussed. It was learnt through experiments that a higher order guidance sought through the 

monotonic information (embedded in the function domain) might only lead to the local 

optimal solutions. Hence, in highly rippled cases (e.g., imaging frames) a suitable emphasis 

on forming top order meta-heuristics is needed to resolve short sightedness problems (as in 

Figures 3.3 and 3.4). The adversity introduced by assuming that particles are immortal agents 

(similar to a natural colony) is previously discussed in reasonable details. Therefore, a more 

balanced ecosystem of particles could be created when particle rebirths (and a revolutionary 

dynamics) are introduced to overcome the crawling natural evolution. By building upon the 

already set foundations (established in Sections 3.1-3.3), we are in a better position to 

formally discuss the novel radical search optimisation (RSO) discovered in this research. The 

vital properties and key characteristics will be discussed (in this section) that could 

accomplish fastest and more efficient solutions than the conventional methods. 

Before going into further detail, it might be useful to gain some acquaintance with the word 

‘radical’, which is frequently mentioned in psychology and behaviourism science. The 

market based research carried out by Norman [175] associated the radical phenomenon with 

the introduction of more innovative approach in the product development (rather than the 

conventional incremental changes in an existing design). The radical social reforms are also 

more unconventional and thorough in nature, and exhibit far reaching effects in diversified 

human societies [176]. In the political arena, radicals and reformists are two widely debated 

groups (and political sympathizers) that try to improve governance styles for the benefits of 

general public [177]. In Cambridge English Dictionary the term radical is defined as a trait 

that seeks greater, extreme and wide ranging changes in a variety of disciplines [178]. 

 In the context of the optimisation procedures to track an object of interest, the radical search 
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optimisation (RSO) refers to the strategic grouping and deployments of radical particles. A 

radical particle is an autonomous computational agent, and it does not believe in social 

captivity induced within colonised group of particles, and generally follows its personal 

intuition and judgements to explore a search space. Moreover, unlike conventional particles 

in PSO; the radical particles are not governed by any hard-wired logic, and hence, all radical 

particles perform scale free searches without any neighbourhood confinements shown in 

Figure 2.8. Any keen reader is referred back to Figure 3.28, and to the discussion (presented 

on pages 79-80) using Giorgio Parisi research work regarding spatial correlations of 

murmuring starlings. A RSO is therefore a collective characteristic of a population of radical 

particles undergoing broader and innovative movements in a solution space.   

We have reached a pinnacle stage, and the optimisation benefits using RSO will be 

methodologically tested using evolutionary test bench problems. To achieve a real time goal 

set in this research, and in order to process visual data at 25+ FPS, we need to clampdown on 

the computational overheads in the evolutionary approaches, and therefore a more functional 

contingency (forward looking) plan is needed in the computer vision algorithm. 

 The selection-variation antagonist (applied in the computational evolution) although drafts in 

some of the leading features present in Darwin’s theory, but an impeccable question is that 

whether these processes are the real and factual antidotes we witness in the naturally 

engineered projects seen in nature. In a visual dimension the bulk of computational time 

should be focused towards discovering macro changes observed in the manoeuvring and 

translating objects, and therefore biological evolution in particles has limited applicability 

(e.g., to analyse a linear dynamics only) and may not be a goal oriented and practical 

approach. A case study is presented in Section 3.4.1 that could enable us to understand scale 

free searches (using RSO) in a practical computer vision environment, and to understand the 

problem within an optimisation framework. 
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3.4.1 A case study involving radical and scale-free searches. 

A common approach in both Lagrangian [179] and Eulerian [180] formulations in contour 

based tracking is to assemble data points in such a manner that tracking flaunts the distinctive 

properties of a moving front (e.g., the flame propagation in thermodynamics [181] as shown 

in Figure 3.34). A fundamental question that may surface (within the natural comprehensions 

of a critical thinker and scientist) is to challenge the restrictive calculations enumerated as 

narrowband along the curve’s surface.  

Whereas, we can facilitate scale free searches using computational agents to immediately 

reveal the boundaries of an object (shown through arrows and RSO particles in Figure 3.34b). 

One key focal point in this discussion is that the curvature reduction measures [182], and the 

computational lethargy introduced by generating the coordinated movement styles are not 

mandatory during intermittent searches (of an evolving contour). Therefore in order to 

segment a moving object in time, such denser datasets should only be introduced in the closer 

vicinities, and only during the final evolution stages (see Figure 2.10).   
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Figure 3.34: Scale free searches in contour tracking to reduce evolution time.  

 

In Figure 3.34a, the region of interest is quite distant and further away from an evolving 

contour (shown by using an analogy of the metallic rings). The ring structures (created by 

imposing conditions in terms of curvature of the curve) generally prohibit the contour to 
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evolve (as a whole) in the direction of the object. A scale free search (on the other hand) is 

not bounded in a confined domain, as there is no real benefit in selecting a neighbourhood in 

the first place (shown by a number of small circles and dotted lines). The scale free searches 

in this detection mode do not restrict particles using narrowband (similar to foraging bees 

departing from a hive in search of more suitable sites), and this concept is portrayed in 

Figures 3.34a and 3.34b. Hence, the domain of applying precision oriented segmentation 

within a narrowband is limited (e.g., in medical imaging), and in the view of the author is a 

major misconception requiring calculations of explicit and contradictive energy terms (e.g., 

smoothing movements to reduce curvature and curve length, and feature based energies that 

drive a contour towards an object of interest), and this issue has been starkly overlooked in 

the past. One fascinating idea is to incorporate visual diversity using RSO as a (separate) 

meta-heuristics over an evolving contour to attract it (in a more meaningful fashion) towards 

an object boundary.     

 

3.4.2 Basic characteristics of a radical particle (RP). 

As the title of this thesis suggests, the natural inspirations are at the core of the tracking 

methodology in this report. One of the main focal points therefore is to understand and 

investigate the behaviour of many natural world foragers (bees, ants, fireflies, monarch 

butterflies etc) from everyday occurrences.  All natural foragers and hunters possess an 

extraordinary ability to integrate measurements (e.g., using visual and olfactory senses) and 

commonly apply those in trajectory planning, these paths may be composed of completely 

different walks and flight patterns than their peers. 

Figure 3.35 portrays graphically the main features of an elementary radical particle proposed 

in this thesis. Similar to the dances performed by foragers at hive dance floor after conducting 

independent walks and flights, a radical particle only registers its searches after a significant 
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breakthrough in their hunts. Therefore majority of the searches performed by radical particles 

are in fact processed in virtual modes, and therefore these agents are termed as virtual 

particles (VP) in this thesis. Some promising search strategies in this context could be 

uniformly distributed random walks or flights sampled from parametric Gaussian (or Levy 

distributions mentioned earlier). Several anthropological studies also concluded that 21st 

century hunter-gatherers exhibit levy characteristics in their search patterns for bush-meat 

(like their natural counterparts [183] [184]). 

 On several occasions, the searches appear to be signal modulated meaning that the search 

parameters are altered using an information fusion process (e.g., honey bird scenario). Hence, 

versatility in searches during hunting phases is the backbone of any successful run as 

depicted in Figure 3.35. The penalising ability is the prime characteristic of a RP; it integrates 

a wide variety of opinions in order to accept/reject object detections. Such hypothesis pruning 

is fundamentally similar to the nest site selections (NSS) in medium sized ant colonies [185]. 

All radical particles can glance beyond their physical position by taking virtual 

measurements, and could undergo spatial transitions based on a variety of sampling 

techniques. The nested behaviour is based on a rebirth phenomenon where inner searches are 

guided by an external process.  
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Figure 3.35: The characteristics of a basic radical particle.  
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The guided search [186] is a novel technique that has never been applied in the computer 

vision algorithms before (and further explored in Chapters 4-6), it formulates several 

discriminatory criterions to accept a hypothesis that a region belongs to an object. Only those 

regions that pass the penalising test undergo further investigations in order to establish them 

as legitimate targets. A radical particle is a hybrid technique in the sense that it applies both 

registered and undocumented phases to attract peer attention.  

 

3.4.3 Nested operations in RSO. 

A brief synopsis of the developments presented in the earlier sections of this thesis is 

presented here (for the benefit of the readers). The radical search optimization is developed 

on the particle sovereignty, and neither is controlled by the velocity models (which demand 

extensive memory operations), nor any deterministic drifts are used to scrutinize the search 

space (Sections 2.5.1. 2.5.2). The RSO does not require parametric tuning; therefore it has an 

overwhelming advantage over the PSO due to their higher algorithmic efficiency and stability 

in unknown test cases (increasing portability of a solution), as usually minor perturbations in 

the values of tuning parameters 1 / 2  in Equation (3.5) could forge substandard 

convergences. 

 Furthermore, there are no social elements in the RSO, and it does not rely on the empathetic 

social calling of agents, where all individualised solutions are mortal in nature (meaning that 

all particles are eliminated while testing a projected hypothesis). Due to the higher search 

motivations and capacities, RSO could also be formulated as a meta-heuristics (see Section 

3.2.3) over the traditional swarm methodologies (this axiom would be explored in Chapter 6). 

One key property of RSO is that the particles do not converge themselves, but in practice, the 

search space narrows down itself using successive approximations provided by the scale-free 

radicals. These successive approximations and discoveries are nested explorations (we called 
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scanning phases) which help to guide the inner solutions towards a more feasible space 

(Figure 3.36).  The outer loop generally formulates a meta-heuristics to guide the inner loops 

to reduce the convergence timings.  

 Figure 3:36: Two nested RSO phases used to detect a global optimal solution. 

 

Table 3.1 

Scanning 
Phase 

 
Convergence 

Phase 

 
Convergence 

Phase 

Scanning 
Phase 

N-Nested Loops 

PSO RSO

       Nested          No Yes

Particle Vision    None Yes

       Social At all times       No

     Mortality          No Yes

      Rebirths        Never After each iteration 

 

 

 

 

 

 

 

 

Therefore, RSO only require the declarations of the counter variables rather than extensive 

tuning mechanism applied in PSO. In complex multi-modal mathematical problems, a higher 

counter value generally enables more rigorous and thorough outer searches. The successive 

particle placements and rebirths after rigorous scanning phases therefore tend to solve the 

usual premature stagnation problem (witnessed in the traditional particle based 

methodologies).  Moreover, at an instance in time, the counter variables and identification of 

a feasible space (using mean and variance) are generally adequate to find a global optimal 

solution.  
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Based on the discussions presented in this section, we are in a position to present the feature 

based comparisons between PSO and RSO (as shown in Table 3.1). All particles in RSO have 

a visionary radius and therefore unlike PSO could glance much further than their current 

positions in the search space. Each particle is subjected to mortality in RSO, and further 

exploitation of a projected hypothesis is performed through intelligent placements and 

rebirths (to avoid the costly translations in PSO). To find out whether there is any social 

advantage in PSO is the goal of the experimentation part (Section 3.5) in this chapter. The 

nested convergence process is discussed earlier with the aid of Figure 3.36, and could 

facilitate in guiding the solutions out of local traps. Further tests would be conducted in 

Chapter 6 where radical particles are deployed in video frames to guide PSO towards an 

object of interest.  
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3.4.4 Assigning search policies in RSO. 

The vision characteristic in RSO enables particles to work in non tactile modes; therefore 

particles are well aware of the surrounding landscape. As this maverick particle psychology 

(in RSO) is based on the natural hunting patterns (observed in the biological life) it is much 

simplistic and a common sense approach (e.g., in comparison to the particle filters). The 

particles are strategically placed in the key areas exerted by a meta-heuristic process, and 

after going through several diffusion phases nominate particular areas in solution space for 

further testing as shown in Figure 3.37, and after several independent diffusion phases, 

particles are directed immediately within these regeneration areas (rather than evolving the 

entire population in the search space). 

 Figure 3:37: One specific schematics/arrangement of placements and diffusion phases in RSO.  

 

The RSO algorithm (in a pseudo-code format) is shown in Algorithm 3.1. The prime focal 

 
 1:   [Placements] -  Distribute n-particles in the search space using meta-heuristics. npx ..1

 2:   [Olfactory State (a)]-Assign each particle with a local/visionary search radius    .nR

 3:   for each particle in the Search Space ‘S’  
 4:   [Designation]-Allocate their unique search strategies  nP ..1 nsP ..1

 5:   [Local Searches]-Conduct local searches in visual proximities defined in lines 3-4. 
 6:   [Current Best Solution] - Choose the current best solution   .bC

 7:   [Local Perturbations]-Apply k perturbation to discover the best solution. kL

 8:   [Hypothesis Selection] - If matching condition met then deactivate rest of particles.  
 9:   [Inner Searches] - Modify search space parameters to define new feasible space. 
10: [Regeneration] - Apply particle rebirths in the regeneration region found in line-9. 
11: [Olfactory State (b)] - Modify in order to apply inner searches. nR

12: [Convergence] - if bb cg  <   then gT

13: [Break] - Export the best solution as the global optimal solution and terminate 
13: [Re-Selections] – else if convergence conditions failed at line 12 then  
14: [Reinitialization] - GOTO line-1, re-organise particles using higher level heuristics.       
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Placements 

npX ,..1:  

Algorithm 3.1: RSO



point that makes this approach quite unique is the designation of local search radiuses (Line-

2), and usually undocumented searches (like natural foragers) are carried out in a virtual 

mode. In the tracking algorithms, particles are particularly placed using intelligent meta-

heuristics (using frame subtractions and scale space methods). Instead of an 

inherent/hardwired social structure as seen in PSO, all computational agents in RSO hop 

around (in feasible space) using pre-allocated strategies, e.g., levy flights and using a mixture 

of Gaussians and random perturbations (Lines 4-7). A list of best hypothesis (usually<5) are 

meticulously analysed (Steps 8-13), and the search is terminated when a specified threshold 

condition is met (Line-12). Another differentiating aspect (of RSO) is that instead of particle 

convergences (in PSO), a rebirth phenomenon is applied here (Lines 9-10). Moreover, only 

activated particles are used within inner searches (Line-8) which also saves a lot of 

computational complexity.    

                

3.4.5 Individual and global properties of RSO. 

In this section the three main properties of novel RSO algorithm/technique would be 

discussed. The idea of a revolutionary dynamics (instead of slowly incurring changes through 

an evolutionary process) is of pivotal importance in radical behaviours explained in the 

earlier section. The overall approach is primarily deduced from the murmuring phases 

observed in a starling population (and explained earlier in the context of Figures 3.27 and 

3.28). 

 

A-Zero transitional energy during converging/dispersing phases 

In many optimisation scenarios, the painstaking exposition (requirement of a strategic control 

by the parametric tuning) of converging particles towards a potential solution is purely a 

simulative gesture (in the view of this thesis is a redundant optimisation feature), and is based 
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on one weak assumption that computational particles are indispensable family members of a 

natural colony (e.g., bee ant ant). On the other hand (although less empathetic towards the 

collective well being of any natural colony) if particles are treated as mortal elements, the 

relocation expenditures of thousands and thousands of particles could be eradicated which 

could expedite tracking. Therefore, the decimation of such tenacious features mainly arising 

from the presumption of the permanent and generational particles (in both evolutionary and 

swarm based methods), and employing the provisional or task oriented computational agents 

instead is a more resolute option in the view of this thesis.  

Figure 3.38: Dynamics of immortal particles in both ES and PSO.  

 

The time lapsing trajectories of some of the particles are drawn in Figure 3.38. On the left is 

the typical particle dynamics scenario inspired by ES, it illustrates the fact that out of three 

particles only one has ever managed to find the optimal solution, and this has been possible 

only in their 5th generation (after undergoing extensive transitional phases involving mutation 

and selection processes). Whereas in the PSO case, the position of particle (after 

consolidating the effects of the inertial, nostalgic and social components) is still much further 

away, and is in a transitional state (at position from the current global best solution and 

moving with a net velocity of ).  
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The integrated aftermaths of these behaviours of all particles  in the whole population 

could be very time demanding and deteriorates further with changing global best 

assignments. What we are trying to emphasize here is to utilise particles in an expeditionary 

manner, and save the transitional energies by halting the unsuccessful explorations and 

missions. The dormant particles could be aroused (although rebirth is also a suitable option, 

as described in the context of Algorithm 3.1) once the potential regions are comprehensively 

searched. 

)( :1 NiP 

A virtual particle (VP) using radical search approach does not have to divert attention 

towards the collision avoidance, and intentionally avoids the formalities of calculating the 

magnetic attractions and repulsive forces. Therefore due to the very nature of VP, it could be 

anywhere at any time and has better prospects to detect changes due to its foraging behaviour. 

One selection of such a direct path is shown in Figure 3.39. The potential region is 

scrutinized immediately by flying the particles directly (which is not possible in real life 

environment) into the regeneration areas (around potential global best). In contrast, the 

computational strategies used in standard swarm based methods are elaborative and complex 

as shown by the dotted line. 

 

 

 

 

 

 

 

Figure 3.39: Direct path VS indirect trajectories calculated in swarm based methods.  
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B-Collective Vision of a moving Swarm. 

 The intrinsic objective of a population of particles is predominantly to take ample 

measurements in a solution space. The ultimate goal of tens of thousands of particles (when 

evenly spread in the space of function variables) is to discover data correlations, and if 

befitting conditions (imposed by the objective function) are detected then those are instantly 

broadcasted (e.g., GB) using social networking of particles (any keen reader is referred to the 

Firefly algorithm [187], where a much clearer networking criterion has been developed).  

Therefore, in contrast to general analytical models (Section 2.5.1, where much rigid control is 

impelled), this intended spread and collation of measurements captivate the recoverability of 

the algorithm (especially when a large discrepancy among true and assumed dynamics is 

present). As discussed in Section 2.6, object tracking in a virtual space does not demand such 

compacted control and provisions (e.g., imposed through the gain in the standard Kalman 

filter [28]) as there are no rigorous safety implications as such (e.g., to reduce current 

transients, copper losses and heat generation).  

 

 

 

 

 

 

 

Figure 3.40: A new form of evolution which is based on the revolutionary dynamics.  

 

The virtual swarms are strategically arranged in key areas discerned by the higher-order 

cognitive processes (e.g., scale space methods and using motion detectors and frame 
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differencing). The mean position of swarm at time instant t  is represented by and shape 

and covariance are controlled by endogenous factors (e.g., the spread ) as shown in Figure 

3.40.  To reduce the deployment of a large number of computational agents, we instigate two 

novel properties in our method i.e. a particle’s personal vision (PV) and a group quality 

imputed by the swarm vision (SV) which is a collective PV characteristic. 

ts

'' R

In Figure 3.40, instead of deploying evolutionary trends in individual particles, the specific 

portions of the swarms are displaced using a mean velocity component. Figure 3.40 also 

reciprocates that the resulting swarm format could acquire any shape and form like 

murmuring starlings using a strategic control element.  

 

 

 

 

 

Figure 3.41: The antagonistic processes in controlling the particle visionary radiuses.  

 

This scenario portrayed in Figure 3.41 uses both personal particle vision and also of the 

surrounding particles forming a network like structure. However, unlike real time foragers 

they do not have to conduct an expensive journey (in computational terms) to the origin. 

Generally, raising a flag (could be a binary number) would suffice in such artificial 

environments. In virtual reality mode (zero transitional energy assumption), we therefore 

require fewer particles to conduct a wide-ranging analysis of the search space, an idea that 

fixates on the illusion of swarms of virtual particles rather than pledging for a physical one.  

 

To eliminate/rectify the problems discussed in the previous discussion, in our novel 
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methodology every virtual particle has substantial circle of influence usually orchestrated by 

the information integration methodologies (as mentioned earlier), this culminates the particles 

to glance much further into their search space and without explicit data calculations and 

maintenance. Using the concept of the PV, the tracked region (shown as a rectangular block) 

is readily recovered (Figure 3.41) despite it was initially beyond the particle’s tactile capacity 

(and normally it is only a pixel wide if standard PSO is used in tracking) but using 

visionary/olfactory radiuses the problem is rectified without incurring expensive translational 

costs.  

 Taking aspirations from the biological life forms, each individual member of a colony (e.g., 

a forager bee) has its personal visual radius and forecasts its own behaviour by integrating 

olfactory senses with vibrations or social alerts. In standard PSO, the visions of particles are 

cramped in the search space (size of a pixel in computer vision) therefore, despite being in 

close proximity to an optimal solution at times could still remain oblivious of its location.  

To remedy this, in our novel methodology every virtual particle has substantial circle of 

influence usually orchestrated by the information integration methodologies as mentioned 

earlier, this culminates the particles to glance much further into their search space and 

without explicit data calculations and maintenance. Using the concept of the PV, the tracked 

region is readily recovered (Figure 3.38) despite it was initially beyond the particle’s 

visionary/olfactory radius.  

The dynamical allocations of the complexity levels and covariance assignments are exerted 

through an iterative search algorithm (ILS) [188] as shown in Figure 3.41. By establishing the 

comprehensive swarm visions, the tracking in subsequent frames (like murmuring starlings) 

demands only a mean velocity control (Figure 3.40). This fractal like movement of swarms is 

based on a faster revolutionary dynamics (in contrast to the crawling evolutionary changes) 

and has been found to be much more functional in achieving real time tracking, and further 
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tests would be carried out at later stages of Chapter 3 and in Chapter 6. 

The revolutionary dynamics and sweeping movements of swarming structures (in feasibility 

space) could question the legitimacy of the traditional swarm based models (in the first place, 

as was discussed critically in reference to Figures 3.38, 3.39, 3.40 and 3.41). Instead of plying 

with the concentrated converging and dispersion mechanisms, these swarming delusions are 

virtual manifestations where faster movements are fabricated using coordinated (fixated) 

particle clouds. There are ample supplements available in the nature inspired literature (e.g., 

heuristic searches by the Levy walks/flights [189], Brownian motion [190], organised random 

walks etc.) that could wield such autonomous expeditions (within and beyond the olfactory 

radiuses).   

The virtual murmuring could be simulated by only tens of particles, whereby in PSO we need 

hundreds and thousands of particles in order to facilitate the same level of search. According 

to the no free lunch theorem (NFLT) of Wolpert and Macready [191], a particular 

optimization strategy is likely to be biased in a particular scenario, and when algorithmic 

instances are averaged out they appear to be almost equivalent. The bias within the PSO and 

Bat algorithm could also be analysed in the context of the NFLT as described in the following 

paragraph, and in terms of the elevated data processing requirements.  

 

A particle conducing autonomous scale-free searches must acclimatize with the changing 

conditions imposed by the objective function. A significant improvement in the speed of 

convergence could also be achieved by allocating computational agents with simple binary 

objectives (e.g., by using only relevant bin numbers in Equation 2.13). The evolutionary 

literature is abundant in such penalising methods and two relevant techniques are guided 

search (GS) [192] and Tabu search (TS) [193]. 
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C- Locus to the optimal solution and a new reproduction paradigm. 

Finally, the most important axiom would be developed in this section which comprises the 

bulk of the evolutionary literature in mathematics, and in its entirety is dedicated to granting 

an evolution a ‘sense of direction’. The selection of the evolution path and prescribing the 

appropriate dosage of the mutation strengths in time are two admissible characteristics in this 

regard. In general, what we are aiming is to mutate the mutation strength itself in order to 

acquire the conditions impelled by the objective function. 

 

 

 

 

 

Figure 3.42: The affects of the path length control and correlated mutations over G generations.  

 

The convergence and its antagonist mechanism (dispersions of solutions) are usually 

implemented in ES by partially inducing the future genetic perturbations in the direction of 

the historical transitions (spanning over the course of hundreds of generations) . The 

evolutionary path for seven such generations is shown in Figure 3.42. The core idea of 

keeping an essential control through computationally cumbersome covariance matrices and 

adaptations is mainly to define a locus towards a potential optimal solution (Figure 3.42).  
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 In cumulative matrix adaptation evolutionary strategy (CMA-ES [194]), these resolute 

indulgences (weighted sum) of both anisotropic and isotropic factors facilitate a futuristic but 

task oriented evolution. The prime aim of integrating the evolutionary paths is to impulse the 

productivity of any generation and to cut algorithmic complexity. Assigning the mean 

(after testing the fitness levels of a population) is only the start to embark on this nRm
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relentless journey, and future mutations are therefore carefully dispersed using the favourite 

solutions (as shown in Equation 3.8).   

However, the aim of the iterative macro-evolutionary stage is to divert the solution towards 

the optimal regions in the landscape. Sometimes, additional enterprising steps are enumerated 

by impeding the isotropic quality, and therefore mutation preferences ( )  are 

incorporated using extra measures. Such penalising ellipsoids (mutation directions) are 

projected by manipulating the covariance matrices along time as shown in Figure 

3.39. This process is mathematically depicted underneath [194]. 
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In Equations (3.8) and (3.9) could be generally interpreted as a mean update procedure 

(shown in Figure 3.39). Furthermore, in Equation (3.8),  random mutations  are sampled 

from a zero mean Gaussian distribution  specified by its covariance matrix C  (if C=I 

or identity matrix, then all genetic variations are isotropic Gaussian in nature). During the 

next phase

i )( iy

),0( CN

 parents are chosen from the  offspring population (using fitness levels as a 

selection criterion), and the mean is updated as shown in Equation (3.9). 

 

 In more sophisticated evolutionary approaches (e.g., cumulative step-size adaptation 

evolutionary strategies (CSA-ES]) additional control is emphasized by a finely tuned 

mechanism which reactively diffuses future mutations by taking the historical changes 

into consideration as well (normally implied by  distribution during each 

generational step). Therefore the covariance matrix in generation g and the updated parental 

centroid are both taken into considerations to determine the new genetic correlations 

(Equation 3.10). If  is one such adapted path in current generation, then Beyer [195] 
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imposes evolutionary control as shown in Equation (3.10).  

                                                 g
g

gg zccvcv



)2()1(:1                                      (3.10) 

The cumulative control of evolution is therefore subjected by determining the weighted sum 

of (using cumulative time parametergv )10(  c ) and the newly calculated vector specified 

by g
g

z



(for detailed proof please consult [195]).  The exogenous control is therefore 

introduced by mutating the mutation strength and inducing the path control usingg   

parental importance towards gz direction (as shown in Equation (3.10) [195]). 

 

                                                      




























n

n

g

gg

XD

Xv 1

1 exp                                          (3.11) 

 

Finally the mutation strength is updated by comparing the intensity of 1gv  with the 

expected path  as shown in Equation (3.11), where


n
X ND   is a damping factor and is the 

dimension of the search space. 

N

 

One reason for this eccentric control (of the shapes of distributions) is to increase the 

efficiency of the mutations (in relevance to the fitness landscape), and to discourage the 

proliferation of particles in non optimal regions. In essence, we need to entail viable path 

control strategy without complicated matrix manipulations and storage requirements (suitable 

for platforms with limited computational powers). In tracking such correlations (of solutions) 

could be determined by studying the history of movements, where the mean of the converged 

particles specifies the positional coordinates of any dynamic object.  
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The exogenous and endogenous controls are usually directed to entertain the peculiarities 

introduced by the immortality assumption (of particles) as explained earlier in this chapter. 

Alternatively, the path control could be nurtured by the strategic deployment of particles with 

varying olfactory circles as shown in Figures 3.41 and 3.43. Eventually, as mortal entities, 

there are no strict requisites for documenting the parental explorations (shown on the bottom 

left of Figure 3.43).  

 

 

 

 

 

 

 

 

 

Figure 3.43: The correlation effects could be achieved using strategic placement of particles.  

 

To detect and track a dynamic object (e.g., a moving automobile) we only create 

observational dispositions by cleverly deploying search particles with diversified scope of 

measurements. A typical object detection scenario has been presented at the bottom right 

(Figure 3.40) where an otherwise foist exogenous strategy is exerted simplistically using the 

observation radiuses ' and mean position of the particles . 'R 








x

y

s

s

In Figure 3.44, two such searches are explored, on the left the searches appear to be familiar 

to a Levy distribution, whereby the coordinated movement styles are used on the right to 

detect an object.  The main objective of the next section is to conduct detailed experimental 
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analysis (using a variety of cases) to test the convergence features of RSO. This would enable 

us to find out that whether radical searches offer any computational advantages over the 

inherently complex social systems. 

 

 
Coordinated Levy Walk 

and Movements 

 Flights 

Figure 3.44: Utilizing two established techniques in searching within olfactory radiuses.  

 In Chapter 6 we will perform further experimentation in order to research into the most 

practical autonomous search techniques. The virtual measurements taken within olfactory 

circles does not require endogenous controls as such (e.g., mutation strengths and path length 

control) but conducive responses of self-centred heuristic searches may suffice (e.g., Levy 

flights and walks which are still utilized in the 21st century by the African hunter-gatherers in 

search of bush meat, and the foraging patterns of honey bees during nest site selections.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                        
 

107



3.5 Experimental Analysis. 

The principal goal of the fact-finding analysis performed earlier in Chapter 3 (and graphically 

portrayed in Figures 3.5-3.17) was to identify some possible flaws in commonly used 

gradient based techniques in the context of computer vision applications. From these 

experiments we reached to the conclusion that the optimization success probabilities are 

acutely conditioned by the problematic landscapes (Figure 3.12). Therefore in order to attain 

an optimal solution in space-time dimensions and to increase the success likelihood, we have 

to commence searches at multiple locations (feasible portions) in the landscape. A variety of 

experiments were conducted in this regard and some were recollected in Figure 3.15. The 

novel stochastic perturbations (in the bi-modal test problem) facilitated reductions in the 

convergence error.  

In this second episode of demonstrations, we aim to minimise the test functions described by 

Equations (3.1) and (3.2), the focal point is to identify several algorithmic peculiarities in 

regards to the population based formulations. The comparative analysis among three distinct 

swarm based methodologies and RSO variants (Figure 3.45) would help the readers to 

explicate the ideas developed in Chapter-3. 

 
Solving 

 

 

 

 

 

Figure 3.45: The comparative test structure of the forthcoming experiments.   

 

 One of the most prestigious particle swarm technique relies heavily on the nostalgic and 

historical trajectories (stored in memory) in order to select a current global best solution. 
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Alternatively, it is also possible to assign GB during each generational run by only using the 

current best solutions. The stochastic particle swarm optimization (SPSO) is a novel 

algorithm introduced in this context to increase the exploration of agents. Instead of the 

nostalgic (PB) tendencies, stochastically defined velocities are inaugurated as shown in the 

mathematical expressions underneath. 
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In Equation (3.12), and are the tuning parameters which tend to modulate the velocities 

in accordance to the problem landscapes (so that particle do not jump out of feasible space), 

1 2

),( N are the multivariate Gaussian distributions defined by their means   and variances , 

whereas  represent the coordinates of any particle  during the time step  The 

positions of all particles in the  population are therefore updated as shown in Equation (3.13). 

During the next stage, the fitness of a particle is tested and both personal best and global best 

vectors are promptly updated.  

1t
iS i .1t

The flowdiagram in Figure 3.46 clearly indicates the generic nostalgic phenomenon (for a 

particular iteration) that takes place in the standard PSO. If the newly anticipated objective 

function values (at a recent position of a computational agent/particle) are not improved from 

the historical searches, then the future trajectories (of particles) are calculated through a 

vector summation which takes into consideration the previously best known position .  The 

nostalgic velocity components are shown in Equation (3.5) using vector, 
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is a dampening factor that allocates preferences/weight we allocate to the nostalgic features in 

order to update particles positions  (Figure 3.46).  t
iS

Therefore, NPSO is a form of PSO which considers nostalgic/historical velocities at each and 

every transitional stage.   In contrast, concurrent or CPSO only depends on the current 
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iterations without recording previously best achievements of all particles in the search space.  
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Figure 3.46: A generic PSO flow diagram used to solve test problems in Chapter-3.   
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3.5.1 Solving uni-modal test case. 

All three variants of PSO are applied to solve the convex uni-modal test case introduced in 

Figure 3.6. The results of this analysis are presented in Figures 3.47-3.49. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.47: Behaviour of CPSO to solve the uni-modal test problem defined in Figure 3.6    

Meantime=0.0439 seconds 

Mean Error=5.0043e-004 

Meantime=0.0439s 
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Figure 3.48: Applying NPSO to solve the uni-modal test problem.   

Mean Error=5.400e-004 

Meantime=0.1228s 

                                                                                        
 

112



Mean Error=4.13e-004 

 

 

 
Meantime=0.0541s 

 

 

 

 

 

 

 

 

 

 

Figure 3.49: Applying SPSO in minimization case defined in Equation (3.1). 

It is evident from Figures 3.47-3.49 that in terms of convergence timings, NPSO (nostalgic 

variant of PSO) behaved much worse than the CPSO (concurrent-PSO) and SPSO 
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(stochastic-PSO) implementations of the algorithm. The mean convergence time for 100 

serial runs of this minimization algorithm has been recorded to be around 0.1228 seconds, 

which is considerably higher than both CPSO and SPSO. The errors plots also confirmed that 

all the variants of PSO descended to an acceptable solution in their search space. The 

algorithmic parameters used in this analysis have been selected to 

be 50_  sizepopulationn 8.0i 09.02  . 
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3.5.2 Optimising bi-modal test problem. 

During course of the next experiments, we applied all three PSO variants to solve the bi-

modal test problem (as shown in Figure 3.6). Although the search space in both 

unimodal/bimodal cases are identical, but it appears, that the convergence timings has been 

adversely affected by the inherent complexity of the landscape (e.g., the convergence time for 

CPSO have been recorded to be 0.0439 and 1.3831 seconds for uni-modal and bi-modal test 

cases respectively).  

The prime reason for this higher complexity (in view of the author) is mainly due to the 

changing assignments of the global best (see Figure 3.23), and is in accordance with the text 

descriptions (Section 3.2.2). In particular, and with references to Figures 3.50-3.53, we have 

analysed that SPSO (see Equations 3.12 and 3.13) has the lowest recorded mean convergence 

timing in all 100 algorithmic instances. The relevant error plots confirmed that all PSO 

variants successfully converged to the global optimum. The algorithmic errors were 

significantly lower than the single solution based approaches (Figures 3.16, 3.17).  

 

Further investigations would be carried out (in the next series of experiments) in order to 

study the effects of the landscapes onto the convergence timings (with a view of real time 

tracking in mind). As it was proclaimed earlier that the social hierarchy created by the 

swarming particles is mainly a simulative gesture, and scale free search experiences (inline 

with the David Kolb learning experiences) are relevantly better strategies, to confirm this, we 

will also implement and administer the three fundamental characteristic/properties developed 

(in contrast to the immortality assumption in a general PSO algorithm) earlier in Section 3.3 

to these test cases.  
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Figure 3.50: Using CPSO to solve a bimodal test case as shown in Equation (3.2).   
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Figure 3.51: Hundred iterations of the NPSO algorithm to solve the bimodal test case.  
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Figure 3.52: The application of SPSO in 100 algorithmic runs to solve bimodal test case. 
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3.5.3 Optimising the Egg-Crate Function. 

In the next experiment PSO variants are applied to minimize the Egg-Crate function as 

presented earlier in Figures 3.22 and 3.33.  The results are presented in this section. 

 

 

 

 

 

 

 

 

 

Figure 3.53: Solving the Egg-Crate minimization problem using SPSO (50 serial runs).   

Mean_time=2.6398 seconds 
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Figure 3.54: Solving the Egg-Crate minimization problem using Nostalgic PSO.   
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Mean_time=0.998 seconds 
 

 

 

 

 

 

 

Figure 3.55: Solving the Egg-Crate minimization problem using CPSO.   

 

Despite of a rather difficult landscape, all PSO variants (we implemented using Matlab) 

successfully converged to the global optimal solution as depicted in the 50 algorithmic runs 

(Figures 3.53-3.55). Both the Nostalgic and Stochastic variants of PSO were transcended by 

the CPSO version in this test case, which took only 0.998 sec mean time to converge to the 

global optimal solution. Although the convergence tests conducted here have shown the 

dominance of particle based methods, but still there are profound challenges to be addressed 

in order to develop a faster tracking system. 
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3.5.4 Solving the highly oscillatory Rastrigin function. 

The Rastrigin function (RF) creates another challenging landscape and is commonly used to 

analyse the convergence characteristics of the nature inspired algorithms [210]. The 

behaviour of RF is highly rippled and induces an inordinately multimodal scenario with a 

very narrow locus to the optimal solution (refer to Section 3.2 and Figure 3.3). Therefore the 

mode seeking algorithms (Section 2.5.4) would not be successfully if are applied in such 

highly oscillatory problems (as explained earlier in the context of Figures 2.19 and 2.25).  

The subtle landscape of RF has been plotted in Figure 3.56.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:56: The landscape of the Rastrigin Function (RF).   
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Figure 3:57: The contour plot of the RF.   

 

The contour plot of the Rastrigin functionality is drawn in Figure 3.57; it shows the locus of 

abundant local distracters along with only a single global solution. The RF is implemented in 

Matlab here, and the parameters (shown in Equation 3.14) are selected to 

be . The initial aim is to optimise the RF using CPSO and SPSO 

alone by completely avoiding the nostalgic criterion (which has been deemed ineffective and 

an overhead in the previous analysis) in the standard PSO. It is also a prerequisite to define 

the tuning parameter for both these PSO methodologies (as discussed earlier) in order for the 

subsequent convergences to be meaningful due to the highly rippled landscape (and also 

within allowable time and computational iterations). 
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The optimization of RF was initiated by choosing a highly populated solution, and 

subsequently, we experimented with the tuning parameters 1 and 2 (in Equation 3.5) in 

order to understand the convergence phenomenon in this specific problem. Figures 3.58 and 

3.59 demonstrate the significance of choosing appropriate tuning parameters in particle 
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swarm optimization. According to the results displayed in the graphical format underneath, 

the most consistent and error free solutions were observed in the ranges 63.035.0 1 

2

 

and , the peaks in the graphs exhibit that beyond these specified regions, the 

intensity of errors grows resulting in the failure of the minimization objective (the location of 

GB in RF is  at ). 
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Figure 3:58: A number of experiments were conducted (91) to determine the best value.   1

 

 

 

 

 

 

 

Figure 3:59: A wide variety of tests used to choose the most suitable parametric value for    

 

The graph in Figure 3.60 shows that the best convergence time is observed 

when . Hence, a suitable choice (after studying the responses in both Figures 45.035.0 1 
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3.58 and 3.60) could obviously be 40.01 

028.0

1

. Whereas, by analysing Figures 3.59 and 361, we 

reached to a conclusion that would also be a wiser selection for  reducing both 

execution time and convergence errors in the minimization of the RF. 

2

 

 

 

 

 

 

 

 

Figure 3:60: The convergence parameter and the timing graph in the CPSO method. 

 

 

 

 

 

 

 

 

Figure 3:61: The effects of the convergence parameter 2 onto the algorithmic timing. 

 

As explained earlier in this section, the appropriate choice of population strength  is 

another key criterion to be met in the tracking systems. The three dimensional landscape of 

the RF is (as a matter of fact) remarkably identical to the video camera frames in the object 

)(n
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tracking scenarios. The translational movement of an object under observation (similar to  

independent parameters of selection in RF) takes place in a two dimensional grid as well, 

where the successful determination of the locus (to the minimum in vision tasks) depends on 

the size of a region. As the feasible space in RF is narrow, therefore if RSO successfully 

detects the global optimal solution, it certainly would prove useful to solve vision problems.   
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Figure 3:62: The population sweep is employed to analyse the effects on execution timing. 

 

In Figure 3.62, the minimization of the Rastrigin problem was initiated with a population of 

n=50. During next iterations, the population was increased by 5 and particles were 

repositioned in the solution space to conduct searches. It is evident from the timing graph 

(Figure 3.62), that the solution failed to converge initially (where the peaks represent that the 

maximum permissible time has lapsed). Once a suitable population size (n=350) was reached, 

the minimization gained momentum, and further increments have resulted in higher execution 

times (without any optimization benefits) reaching to 0.9 second at N=2050. 
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Having considered the idealistic tuning parameters )028.0,42.0,350( 21 n , we executed 

the minimization algorithm, and the error trajectories for both CPSO and SPSO are displayed 

in Figure 3.63. For the CPSO, the mean convergence time (Figure 3.63a) was recorded to be 

0.2911 second, whereby in SPSO, the mean convergence time (Figure 3.63b) was 0.2500, 

which is slightly better than CPSO. Also the trajectory/slope of the errors in SPSO is steeper 

and aggressive compared to that of CPSO. Hence, we can safely conclude that both SPSO 

and CPSO performed competitively in solving the RF, which is an example of a highly 

oscillatory and multimodal test function.  

       

A B

Figure 3:63: The CPSO algorithm generally converged in 6th but SPSO in the 5th iterations. 

 

3.5.5 Solving complex mathematical test problems using radical searches. 

We have reached to a pinnacle phase in Chapter-3, where with the aid of the 

experimentations we would analyse the efficacy of the radical/virtual particles in a variety of 

test problems as implemented earlier. The Rastrigin function (as shown in Figure 3.56) is a 

highly multimodal three dimensional test function, where the search space (in our 

demonstrations) spans between the regions 6),(6  yx , this problem is also reckoned to be 
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befitting test bench for the tracking applications due to its narrow feasible space, and hence 

illustrates a classic detection scenario. The location of the optimal solution has been shown in 

the search space, the presence of nearby competing peaks pose a huge optimization risk, as a 

slight drift in the function variables could translate the solution in its entirety to the local 

optimal areas (Figure 3.64). The RSO (see Algorithm 3.1) is applied to solve the Rastrigin 

problem, and the results are displayed in Figures 3.65 and 3.66. 
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Figure 3:64: A rotated zoomed in mesh plot of the RF. 

 

 

 

 

 

 

 

 

 

 

Figure 3:65: Solving the RF using RSO and the relevant convergence timing graph. 
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Figure 3:66: The error graph showing 100 optimisation runs in order to solve the RF with RSO. 

 

The mean convergence time for 100 optimization runs (Figure 3.67) was recorded to be 

0.0661seconds which is significantly lower than both the CPSO and SPSO algorithms (which 

were 0.2911 and 0.2500 respectively in the Figures 3.58 and 3.59). The convergence errors 

(mean=7.65e-005) in Figure 3.66 are also very competitive and significantly lower than the 

ones observed using the PSO methods. We also applied the RSO to the Egg-Crate function 

and the results are presented in the Figure 3.67. 

 

 

 

 

 

 

 

 

 

 

                                                                                        
 

128



 

 

 

 

 

 

 

 

 

Figure 3:67: The timing and the error graphs for minimizing the Egg-crate function using RSO. 

The mean convergence time for 100 optimization runs was recorded to be 0.0319 seconds, 

whereby CPSO took almost 2.31 seconds (Figure 3.49), and when SPSO was applied (Figure 

3.51), a mean convergence time of 0.99 seconds was recorded, and the convergence errors are 

also notably lower than the threshold set in our experiments. The results of implying the 

radical searches to solve the bimodal and unimodal cases are shown in Figure 3.68.  

 

 

 

 

 

 

 

Figure 3:68: Applying RSO to bimodal and unimodal functions  

The time consumed by 100 optimisation runs to solve the bimodal test problem using RSO 

was 63 and 51 times faster than CPSO and SPSO respectively (as were analysed in Figures 

3.46-3.48). By comparing the graphs in Figures 3.43-3.45, we reached to a similar conclusion 

that the unimodal convergence timings using RSO are 2.8, 3.5 times faster than CPSO and 
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SPSO respectively.   

 

3.6 Conclusions. 

Chapter 3 started with a discussion which emphasized on the importance of the experiential 

learning (David Kolb’s model). The wider search experiences have also been witnessed in 

many natural and biological life forms, the findings of the Starflag project also confirmed that 

the marvellous flight displays of starlings are due to their scale free correlations. The 

optimisation problems encountered in the gradient based methods were discussed, and it was 

analysed through experiments, that in the absence of reliable gradient vector field the 

minimization processes usually converges to the non-optimal solutions. A major prospect to 

resolve convergence issues is to initialise the solutions at multiple points in the search space 

(Figure 3.15). However, significantly better results were achieved using the population based 

methods (e.g., CPSO and SPSO). 

In view of the author, there are a number of design flaws and misconceptions in multiple 

agent based systems, and readers were introduced to a novel RSO method which is based on 

three key characteristics and deemed suitable in artificial environment (Section 3.3). Later on 

in Section 3.4, we demonstrated using evolutionary test cases that scale free search 

experiences could indeed outperform social swarming methods by huge margins. We also 

highlighted a tuning free optimisation paradigm that could be used as a meta-heuristics over 

traditional swarms to improve convergence errors. No evidences were found in our tests that 

the social calling and nostalgic memory helps convergence. Instead in the view of the 

experiments social elements are computational overheads. 
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Chapter 4 

Tracking in the Context of Dynamic 
Optimization 

Many real world problems are dynamic in nature, and the convergence at any moment in time 

could not assert that the same solution would be applicable during the future instances. The 

goal of any static optimization problem (analysed in Chapter 3) is to find a value for 

(  is the optimal solution from a feasible set  in the n-dimensional Euclidean 

space ) in order to maximize (or minimize) the objective function i.e.  

(or ). The detection of the object of interest in a distinct video frame is a static 

optimization problem, and once the solution has converged to the optimal, we would 

generally require some mechanism to address the dynamicity introduced in the next frame. In 

brief, the convergence was a desired property from static optimization point of view but 

could become problematic with a dynamical perspective in mind [196].  

nSx *

n

()( * xfxf 

*x

)

S

)()( * xfxf 

Therefore to address a dynamic optimisation problem (DOP), some kind of diversity is 

needed to be artificially introduced in the search space, so that the particles hypotheses do not 

collapse onto the restricted areas in the search space. The landscape of a visionary 

optimization problem (a pedestrian tracking problem from a computer vision repository) is 

shown in Figure 4.1. At each frame, the peak of the density (optimal) drifts randomly, and 

therefore a particle splitting mechanism (anti convergence order) is required to detect the 

object like features in the subsequent video frames. In general, computer vision systems often 

see a deluge of such time varying parameters, this may include changes in the size of the 

object during incoming frames, the abrupt translational and rotational movements along with 
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unprecedented changes in the object models (in feature space) which could invalidate 

racking results. t

 
 
 

 Object Peaks 

 

 

 

 

Figure 4.1:  The tracking of a pedestrian is a dynamic optimization problem (DOP). 

 

4.1   Diversity indulgence techniques 

A range of propositions have been suggested in the evolutionary branch of mathematics to 

address the catastrophes related to the dynamically changing environments [197] [198]. Some 

of the most extensively researched themes in this regard involve increasing the diversity of 

the population by artificial injections [199], and the particles are also restricted from an 

absolute collapse using anti-convergent measures [200] [201]. Alternatively, it is also 

possible to exploit an auxiliary agent population (e.g., RSO which serves as an antidote, see 

Section 3.3.2) to retain a suitable level of diversity, which as a matter of fact, could also 

decrease the computational complexity for a real time convergence. The scale free 

experiences (described in Chapter 3) have an inherent feature to address the changing 

environmental conditions.  In multimodal landscapes, another dominant methodology is to 

watch the competing peaks with random scouts [202], which are arbitrarily solutions 

introduced to pertain aspirations about the changing objective functions.  

                                                            ),,( txfF                                                          4.1 
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A general DOP problem is usually described mathematically as shown in Equation (4.1) (  

is a set of strategy control parameters, which stipulates the spread of the particles in the 

fitness landscape at any time instant, and x is a solution from a feasible set i.e. . A 

rather simplistic strategic control parameter is the multi-variate measure of the relevant 

Euclidean distance (from the last known mean of a converged population).  If the changes in 

the strategy parameter are represented by

nSx

 , then at time instant , the dynamic 

optimization problem is expressed as in Equation (4.2), the fusions of the strategy control 

variables 

1t

 t  may also have much broader implications on the future convergence 

instances of the algorithm [203].    

                                                    ),,()1,,( txftxf t                                               4.2 

 

 
Random Scouts 

 

 

 

Figure 4.2: Watching multi-modal landscape along time using Random Scout Population 

The most fascinating resolution to the changing goal post problem, which is also valid in 

many tracking scenarios, is applied with the introduction of the scout populations in the 

search space (with an aim to watch competing regions of interest as mentioned earlier). An 

optimization scenario is shown in Figure 4.2, where contending peaks are watched by scouts, 

therefore when the peaks move in time the changes are readily detected and addressed 

accordingly. The standard iterative optimization methodologies (e.g., the Newton method 

[204] shown in Equation 4.3) would certainly had failed in such circumstances (especially in 

the regions of the valleys) where it is extremely difficult to establish the gradient 

direction . )(' nxf
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Similarly, a reactive-proactive tracking algorithm adapts a futuristic kind of metaphor to 

comprehend challenging tracking scenes. The non-linearity of the landscape is resolved using 

a knowledgeable approach that also identifies other relative optimum around the region of 

interest. The diversified artificial injections could also facilitate the restoration and recovery 

of the lost tracks. Furthermore populations are also systematically prioritised using elitism 

approaches [205] primarily with a prospective to detect the non-linear movement patterns 

during the manoeuvrability phases. A tracking algorithm built on the DOP perspectives 

herefore has the following key potentials. t

 
 A set of anti convergence features of the population are defined for each video 

frame nf  which generally are used for scene specific recovery phases. 

 To actively learn the motion model of the object of interest. This would strongly 

affect the mutation strengths and other relative parametric control measures that 

define the population behaviours for a robust and expedited convergence. 

 To implement an effective change detection procedure, however if the change 

detection principle and corresponding decision making process are too slow (e.g., it 

require collating opinions from all agents before making a decision), then this would 

deter the real time convergence properties of the algorithm. 

 It is fundamentally important to declare the correct level of population diversity.  

 

If the diversifying elements/agents have trapped themselves into the local minima, then the 

solution would have no alternate means to come out of these local traps. The severity of 

changes in the past could be used to determine the next set of strategy parameters. The 

projections using the motion history is one way to learn the required diversity levels. 
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However, to answer completely randomised motions, extra steps and many elaborative 

diversification phases are needed so that the underlying non-linear movements could be 

tackled in the video frames. The tracking failure could also result from the noisy environment 

(e.g., due to the sensor noise, camera resolution and background clutter [206]), it may also be 

due to consequence of the objects going under occlusion for a length of period. In recursive 

and repetitive object movement patterns memory based techniques (e.g., Tabu search [207]) 

could also be utilised in the timely detection during occlusion phases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Anti-convergent parameters help timely convergence in subsequent frames. 

Figure 4.3 shows a generic problematic condition in the particle based systems, after the 

discovery of a global optimal solution the particles rush towards the surrounding landscapes 

with an intention to exploit the nearby space. However, the ramifications of the converged 

population is devastating for tracking in the next video frame (bottom right of Figure 4.3), 

and need remedial velocity declarations to define their splitting behaviours. A resolute 

technique to address the dynamic environment is to prohibit the particles from convergences 

using repulsive forces (as mentioned earlier) and is explored further using Figure 4.3 (bottom 
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left). In natural unforeseen tracking cases, where there are more chances of frame corruptions 

due to the noise, it is much more feasible to facilitate and develop a restart strategy with 

strategic placements of agents to reduce the tracking time. Therefore, the tactical initialization 

of particles plays a significant role in both static (Section 3.2) and DOP scenarios. 

Figure 4.4: Artificially created DOP landmark using Moving Peak benchmark problem. 

The mathematical description of the evolutionary dynamic optimisation test bench problems 

(EDOP) would go beyond the scope of this thesis. However, a typical scenario is portrayed in 

the context of Figure 4.4. The height and width of the peaks are controlled in this moving 

peak benchmark test problem (MPBP) [208] using time changing assignments of the global 

best solution (ranging from a much cluttered environment on the left to a rather simplistic 

landscape on the right). Figure 4.5 is also presented here in order to relate the EDOP and a 

general tracking scenario, a cluttered tracking scenario is presented, where, the foundation 

rules of a combinatorial optimisation are applied to differentiate among various moving 

objects (in order to differentiate a white car enclosed within a tracking window). 

 

   

 

 

Figure 4.5:  Tracking of a white Car using EDOP and its corresponding contour landscape plot.    

The tracking terrain could also be more rugged as shown in Figures 4.6 and 4.7. A frame 

from the ant tracking sequence has been presented, which exhibit the severity of the task due 
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to the resultant shadows from the maze boundaries. The histogram ball plot of the ant (on the 

right of Figure 4.6) shows the colour distribution of the object in the RGB feature space. One 

major differentiating criterion that could also be applied to ensure optimal convergence is 

related to the observation of the individual histogram balls within a confined area (suspected 

of harbouring an optimal region, this would also be explored further using penalising guided 

search). In Figure 4.7, the landscape of a video frame stipulates the similarity of tracking 

frames and the MPBP.  

By studying the contents of Figures 4.6 and 4.7 we may reach to a vital analysis that a task 

igure 4.6: Ant tracking sequence with corresponding feature Histogram plot in the inset. 

igure 4.7: Feature Space diversification with multiple scout population in Ant sequence. 

oriented computer vision algorithm is generally composed of two parallel operations. The 

first stage deals with the feature based characteristics to create a unique identity of a region. 

In contrast, a second stage relies on parallel detections (ideally through the scale free searches 

explained in Chapter 3), to discriminate among the potential global optimal.  If the scene 

conditions are dynamic in nature than the profile updates are also mandatory.  
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4.2   Properties of a proactive tracking system 

ed approaches in tracking applications 

igure 4.8: Elements of an intelligent reactive-proactive tracking algorithm. 

The fundamental reason behind adapting nature inspir

(in this thesis) is mainly due to the significance of their natural abilities to address the 

dynamically changing environment. Biological life forms have to rigorously tackle the 

environmental peculiarities on a daily basis in order to survive in harsh conditions. The 

challenges imposed on the natural colonies and inhabitants of wilderness are enormous, it 

could range from the daily hunt for food [209], fending off predators, and to devise suitable 

action plans to tackle natural threats and selection of secure nests [210]. The RSO method in 

Chapter 3 is an autonomous search strategy motivated by the movements of natural foragers, 

and several search models are explored in Chapter 4 with an aim to apply those in tracking 

applications. The most important characteristics of our novel reactive-proactive tracking 

algorithm are displayed in Figure 4.8. RSO is also inherently a strategically better dynamical 

optimisation strategy compared to standard particle swarm optimisation. 
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4.2.1 Actions for optimal convergence timing 

mp is attributed to exactly the same 

ed at times to 

igure 4.9: The distance modulated parametric control in the agent based systems. 

In a discrete computer grid a larger parametric ju

computational complexity as an alternative shorter flight between two points P and R (Figure 

4.9). The course of actions needed to apply the RSO as a meta-heuristics over the swarm 

based methods are specified in Algorithm 4.1. Once the feasibility of a specific optimal 

solution has been established, Algorithm 4.1 devises a distance modulated convergence 

strategy (steps 3-4). The relatively larger jumps are introduced to reach the feasibility space 

(distance ABd  in Figure 4.9) and steps are repeated for the whole population.  

The random perturbations (e.g., using Gaussian models) are also introduc

enhance the exploration of the algorithm (steps 5, 8). The distance modulation scheme 

(represented in Figure 4.9 and Algorithm 4.1) does not rely on the tuning parameters 21, as 

shown in Equation (3.5). Therefore, instead of several small convergence steps ( ),1a a 

larger exploratory jump is preferred to speed up the convergence process (lines 3-7); both 

Iterative local searches (ILS) and local search methods would also be discussed in Chapter 4. 

 

,...2 naa
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Algorithm 4.1 

1-       Repeat   
2-        For all Agents in Population do     
3-            Calculate Distance (…) to local optimal solutions 
4-            Devise Distance Modulated Search Scheme 
5-            Add random covariance in search paths for exploration 
6-            If solution not discovered yet 
7-                  Define appropriate search regions around potential solutions 
8-                  Use exploitation algorithms to adaptively search optimal e.g., Using ILS-LS [11] 
9-            End if; 
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10-         Evolve Population in accordance with the above rules 
11-       End For; 
12-    Until Converged; 

 

4.2.2 Recovery of the lost tracks. 

 3 are broader attempts to find the optimal solutions 

igure 4.10: A hybrid robust MS variant resulting from integrating particles and density mode. 

to the 

The experiments conducted in Chapter

through detection algorithms, as there is an absence of a propitious scheme in which the 

gradient information would have been exerted. A similar detection mode could also be 

implemented in the object tracking, and if it is prompt enough, it might also facilitate a real 

time tracking (a prime objective). When the particle population is colossal, every agent 

occupies a place in space, and then such situations are conventionally referred to as brute 

force searches (BFS) [211]. One of the traditional BFS techniques is the standard mean shift 

algorithm (MS) (Section 2.5.4). One of the repercussions of the absence of a recovery stage 

in MS is the absolute search fiasco, such MS adversities are frequently observed in the 

circumstances when no objects like features are detected within an observational window. To 

incorporate robustness, hybrid methods could be applied (to both expedite the MS 

convergence and to rectify errors), static and dynamic particles could be utilised in this 

context [212] (as shown in Figure 4.10).  
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By incorporating both static and dynamic sensors [213], a recovery phase is induced on

standard MS algorithm. The task of the static particles (which are strategically placed around 
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the MS window) is to act as gatekeepers, and develop a Meta-heuristics by granting a sense 

of direction to the tracking window (arrows in Figure 4.10). The role of the dynamic particles 

is to assert the dominant modes within the MS window (Figure 4.10). The flow diagram of 

the recovery procedure is shown in Figure 4.11. 

 

Figure 4.11: A detection and tracking cycle of a hybrid MS algorithm. 

 Figure 4.11, a recuperative process (over the MS algorithm) ensures that the algorithm 

 

In

robustly catches up with the dynamic object, and therefore the lost window is timely 

recovered in a video frame. First, the mean shift vector msV is calculated using Equations 

(2.17)-(2.19), and in case no object like feature are detected then the opinions of static 

particles are collated. The tracking window could also be shifted in Auxiliary mode to gather 

better local information of the hypothesis projected by the static particles. Furthermore, 

another remarkable characteristic of particle based methods is that both dynamic and static 

particles could be employed as computational agents. Static particles (similar to random 

scouts in Figure 4.2) are computationally more effective methods in order to anticipate 
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motion in complex vision applications. The objective function (e.g., matching RGB colour 

histograms in tracking) values in the vicinities of the static particles are also calculated. The 

detection window normally hovers around the potential optimal regions until a dominant 

density mode is detected in an image frame. Theoretically speaking, the widened dynamical 

searches are homogeneous to the covariance matrix adaptations in the standard Kalman 

filters. However, due to the hybrid nature of the tracking window, and because of its auxiliary 

or flexible nature, it is more diverse and robustly adjusts its scale of measurements without 

complicated matrix operations.  

4.2.3 Learning the motion model. 

lose heterogeneity in their movement sequences. An 

s therefore could take place in a specific 

Many real world tracking problems disc

automatic surveillance system [214] has to extensively entail both detection as well as 

tracking phases (due to the nature of the operation, where the tracked body might change its 

shape, disappears in several frames, and re-emerge at an entirely different search area). In 

contrast, tracking the flow of traffic on the motorways has a certain degree of linearity, and 

the direction of travel could be predicted to an extent as the movements are generally in 

compliance with the local traffic laws. An airborne object on the other hand might not be 

reprimanded by a stringent course of actions, and due to an extra degree of freedom may be 

allowed to move in a non-linear manner. In Biology, trackers are used in labs to understand 

the behavioural pattern of reptiles and insects, and their motions appear to be predominantly 

random with no deterministic components [215].  

The inter-frame displacements in video sequence

Euclidean plane (the motions due to the gravity alone) or might enumerate linearity as well as 

the projectile like characteristics [216]. The tracking essence therefore is in conceiving the 

motion peculiarities of the relevant situation (projectile/linear). Generally, the efficacy of 

tracking algorithms could be significantly improved if the larger dynamics are already known 
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to the analyst programmer. In the computer vision systems, historical motions could 

effectuate the crucial task of narrowing down the search space. In contrast to the Markov 

assumption [217] (where the current state of the system tS  is independent of the ones 

observed during 1tS , 2tS ,…. ntS  ), the previously discerned measurements and models (in 

feature space) could also be applied to prioritise the search phases in the object tracking 

modules. 

Due to the exuberant motions observed in the world objects, both deterministic and stochastic 

igure 4.12: Two different characteristic shows randomness and predictable motion models.  

19] and 

trackers are needed to promote a balance between an area specific and to develop diversified 

search rapports. Therefore, a more concerning tracking strategy is to indulge all possible 

rectifying measures to scrutinize the search space (see Section 2.5.2). One major research 

question that was undertaken in this thesis was to analyse the roles of the motion models onto 

the tracking efficiency. An inherent flaw in the Monte-Carlo particle methods [218] (in the 

view of the author) is that the particles are dispersed in space-time  using pre-determined 

models (Section 2.6), which in majority of the cases prove counter productive (because of the 

re-sampling and allocation of preferences).  
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The RSO tracking (on the other hand) is entirely based on the foraging behaviours [2

therefore no explicit models are generally required to track an object (in a generic scenario). 

Furthermore, the nested searches in RSO cooperate in discovering the dominant modes of 

motions and guide the optimising process. However, as it was analysed in Sections 3.3 and 
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3.4 that the search correlations reduce the computation complexity, the historical motion are 

seemingly beneficial for achieving a real time tracking. The anticipated motion vectors are 

stored in our algorithm to prioritize searches as shown in Figure 4.12. The determination of 

the motions in the ant tracker (on the left) displays a randomised pattern of movements, 

whereby, in a pedestrian tracker (right) displacement logic could be emphasised to correlate 

search. The historical motion trajectories are stored in memory arrays (using Matlab) and are 

validated as the tracking progresses in time.  

 

4.2.4 Environmental knowledge for the optimal particle convergences. 

nforce the 

mor

Figure 4.13: The network of n-knowledgeable particles.  

 

 

Figure 4.14: The partial information about the histogram distribution of the colour model.  

There are several important paradigms that must be entertained in order to rei

particle awareness in their search space. The partial evaluation of the objective is one such 

possible technique to boost the environmental know-how of the sparsely distributed agents. 

The detection of a dynamic body through its bin identification function alone )( *
ixb (Equation 

2.13) is an example of the partial evaluation of its colour density model. Further e, the size 

of the object of interest could also be utilised to differentiate between targets and distracters.  

 

The swarm based methodologies (in their typical format) generally lack an inbuilt feature to 

penalise distracters, therefore at times, converge to the local solutions (until an agent 
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specifically reaches to a target area). Therefore, the optimal may remain oblivious (for a 

length of time), and a badly tuned algorithm with ineffective population strength further 

exacerbates the situation (Section 3.3). As shown in Figure 4.13, a particle’s environmental 

knowledge could be profoundly heightened by the random walks conducted in its immediate 

neighbourhoods, and the objective is to integrate the landscape data with an underlying aim 

to translate its own position in the search space.  

The allocation of partial objectives (e.g., the relevant histogram balls in Figure 4.14 are all 

igure 4.15: The ridges and valleys are easier to be sampled using line of sight trajectories. 

 rather conflicting optimization scenario in PSO [220] is portrayed in Figure 4.16 (the 

represented by the arrows). However (as evident in Figure 4.16) the size of the optimal 

essential components of the overall information) enhances the environmental scanning 

abilities of the particles, and such knowledge is exploited to determine the depth of the field 

(tracked object). By composing a circumstantial particle network (Figure 4.13), the 

algorithmic complexity of the algorithm is substantially reduced, as the non-sampled areas 

(e.g., ridges and valleys) in the search space could be identified using this knowledge (e.g., 

line of sight) in Figure 4.15.  
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bottom equations replicate the velocity/positional updates in the PSO). The optimum 

trajectory for one particular particle (from its initial position) is represented by the bold arrow 
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(larger circle) is remarkably different than the rest of the objects (triangle, square etc), 

therefore if the shape information is encoded into the tracking algorithm at an earlier stage, 

the unnecessary iterations could be avoided for an optimal tracking time.  

 

 

 

 

 

 

 

Figure 4.16: The divergence of particles away from optimal due to vary ments 

o incorporate the penalising models, we researched along the directions imposed by the 

ing global assign

 

T

Guided local search algorithm (GLS) [221]. As explained in Chapter 3, the radical searches 
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important factor in these spectacular natural agents is that, they appear to have a genetic 
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More thorough searches are conducted around regions where object like features are detected, 

whereby ‘a’ is a problem specific constant in Equation (4.1). The penalising costs calculated 

by weighing the indicator functions using the ip  models (and summation is carried out along 

all dimensions as in Equation 4.1) is one manner through which the non-optimal convergence 

are rectified in agent centred tracking. In this thesis, we have successfully programmed the 

bin strengths (as an indicator function) using the object model, ib  as an indicator function 

to penalise clutter.  

Figure 4.17 ing using a hybrid .14. 

Further test benches would be presented to e readers in 5, which would also 
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facilitate to understand the roles of the partial function evaluation (PFE) and GLS. The 

simultaneously applied). 

 The tracking window is updated once a required GS score is achieved; otherwise, this 

ejected, and parameters of search are altered to incorporate more 

 the particle based methods. 

ong population agents plays a crucial role in the success 

s, a 

flowchart in Figure 4.17 deploys n initial agents in the search space (RSO could be used in 

this context to narrow down the region of interest). During the next phase, particles conduct 

local searches and collate neighbourhood information (Figure 4.13). The mean positions of 

agents are updated using the local information, and the particles which do not meet the fitness 

criterion (the candidate/detected RGB models do not match the stored priors) are deactivated. 

Only the winning particles therefore enter into the next phases in our algorithm. The 

penalising GS approach is then applied to compare the identity of the object with the stored 

memory models (the object size and the observations of relevant bins  ib )(  are 

proposed hypothesis is r

n

diversified searches (as shown in Figure 4.17). The tracking algorithm (Figure 4.17) relies on 

all three fundamental characteristics devised in Section 3.3. The underlying logic (in this real 

time system) is that the computational cost is significantly lessened due to the deactivated 

particles as majority of searches are non-nostalgic in nature. The tracking algorithm finally 

terminates when the end of sequence is detected. 

 

4.2.5-The communication channels in

The communicational line am

probabilities of a converging evolutionary algorithm. Through these communication

computational agent deduces a kind of emotional intelligence [223] about its role in particle 

societies, and of its peers [224]. However the communication in computational environments 

(e.g., in the Cartesian space) does not have to deal with the usual perks and challenges 
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experienced by alive natural environment agents. The search behaviour of the natural world 

foragers would be analysed in the next sections, and some implicit communication channels 

(e.g., trail pheromone [225]) are critically discussed. Similarly, the waggle dances of the 

forager bees are redundant phenomenon (in our view) and impractical approach. Once a 

suitable food resource is detected, a forager does not have to return to its base (to solicit) in 

artificial landscapes. Furthermore, in contrast to a direct channel, an implicit form of 

communication may also exist by a third party channel (e.g., the entity c could be a trail path) 

as in Figure 4.18.  

  

 

 

 

 

 

Figure 4.18: The direct (explicit) and implicit communication between particles. 

 

 

igure 4.19: The communication radiuses in the firefly algorithm (FA)

o establish a further insight into the communication methods, the readers are encouraged (a 

te the operational principle 

 

F . 

T

detailed discussion is beyond the scope of this thesis) to investiga

behind the Firefly algorithm (FA) [226]. The core theme in the FA is to spread the particles in 

the search space, and the fitness level of each and every firefly is calculated using their 

current positional coordinates. In the context of 3D test functions described earlier in Chapter 
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3 (e.g., see Figures 3.6, 3.22 and 3.52), the fitness indicators are the function 

calculations ),( YXG at each positional coordinate of a translating firefly in the predefined search 

space. However, in object tracking algorithms the corresponding objective is to match the 

object colour density in 3D (RGB) colour space. Once all the fitness values of fireflies are 

analysed, then similar to the real world insects the best ones are illuminated at higher/brighter 

intensities than the worst ones. During the next stage, implicit channels are established using 

the natural light attenuation characteristics, and therefore, only neighbouring fireflies are 

attracted towards the highly glowing insects (an optimal is drawn in Figure 4.19). The type of 

competitiveness is usually referred to (in the evolutionary literature) as a combinatorial 

optimisation methodology/framework. 

 

4.3   Heuristic searches in video tracking problems. 

he engineering problems are riddled with unprecedented levels of uncertainties, and often a 

where solving a problem with 

T

unique solution to the problem is unattainable. In cases 

precision mathematical techniques is a valid option, the dimensionality of the space and 

complex inter-correlations among data variables complicate the problem to an extent that the 

real time solutions are challenging . The removal of outliers using regularization is a 

possibility to smooth out the noisy measurements. However, finding an exact analytical 

solution with a conditioned data field is still gigantically complex to commence in safety 

specific applications. To tackle high dependencies, sometimes it is feasible to use alternative 

shortcuts to detect acceptable solutions to the problem. The heuristic shortcuts (HS) [227] are 

intuitive decisions which could facilitate problem solving in complicated visual systems. 

Similar to the intuitional decisions made by human beings (where an inner guidance is sought 

to replace complex cognitive processes [228]), heuristic searches reduce the dimensionality 

issues through intuitional adjustments of the independent variables. It would be appropriate to 
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write that, heuristics object tracking applies trial-error rules to find an acceptable solution to 

this computer vision task. 

Figure 4.20: The framework of heuristic searches in RSO. 

Figure 4.20 is a general HS framework where n parallel/serial heuristics are applied to secure 

s to identify appropriate search areas to 

igure 4.21: Top order stages in the combinato ised tracking systems. 

s of the honey-bird human scenario, we could also refer the hyper stages as an 

he body language of 

a solution. The role of the meta-heuristic (MH) stage i

apply the inner heuristic searches. The readers are referred to Section 3.2.3, where the honey-

bird and human relationship is discussed, which in our view could be attributed as a strong 

meta-heuristics. Similarly hyper-heuristics (HH) [229] is a top order rule that supervises the 

heuristics based solutions, with an aim to supplement the probabilities of success. 
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the experimentation in Chapter 3, we reached a conclusion that the RSO heuristics generates 

a superior directional sense in particle systems (verified in solving complex test problems, 

Section 3.5). In computer vision applications, similar methods have been applied (in this 

thesis) to track an object in real time.  

In Figure 4.21, both standard frame differencing and the ones using time differed Gaussian 

convolved images are applied in order to identify the suspected object movements. Once 

igure 4.22: Some of the mo inent he  searche

he quantum cloud by Antoney Gromley (Figure 1.1) is a delineation of the organised 

divided into multiple subspaces, and 

suitable regions are identified by the top order information fusion stage, the particles are 

deployed in those competing areas and the result of this combinatorial optimisation process is 

analysed, and the best solution is chosen as an object of interest. Therefore, despite of an 

absence of particular dynamical models, objects are tracked with high precision and frame 

rates in this thesis. Many resolute evolutionary methodologies (as shown in Figure 4.22) also 

act in an iterative undaunted manner to address dimensionality issues by exploiting the deep-

seated heuristics.   
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The foraging strategies deployed through the Gaussian cored heuristics are (on the other 
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(Figure 4.23) uses non-linear projections (using variability in step sizes and turning angles) to 

detect translational motions in tracking, and could increase the tracking robustness when 

applied as a heuristics over the short sighted algorithms. 

 

 

 

 

 

Figure 4.23: An iterative local search al  local search method. 

igure 4.24: A Levy distribution (model) with heavy-tail characteristics. 

ome recent studies have also unveiled the fact that many 21st century North African hunter 

ble food resources [232]. 
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more diversified searches in comparison to the Gaussian probability distributions.  
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native seed species. Spatial analysis of foraging movements showed a highly oriented travel 

path while running, and an area-restricted path while searching. Searching ants moved in a 

manner consistent with a correlated random walk. The deterministic component of path 

fidelity and the stochastic component of search may override energetic foraging decision in 

individuals P.Ooccidentalis ants”. 

 The forager bees also apply local and randomised heuristics to collect nectar from 

sporadically distributed food resources. It has been observed that only insects (from  )%52( 

an overall population) depart their hives at any one time to search for food, and on their 

returns perform Waggle dances to convince remaining foragers to fly towards the competitive 

directions [237]. Therefore, the bee colonies reciprocate a natural inclination towards 

competitive-cooperative population structures. The RSO (Chapter 3) could make explicit use 

of the distributions represented in Figure 4.22, with an objective to improve the convergence 

timing. The recruitment processes in the natural colonies could be one-to-one (e.g., the 

tandem runs, in which a forager ant guides a single novice recruit towards a food resource 

[238]), or a group of recruits are led by the successful forager ants.  
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4.4 Novel propositions. 

aving considered the fundamental drawbacks in the general video tracking (Sections 2.1-

ndations for a new particle oriented theory (RSO) in Chapters 3 

e 

object tracking scenarios. The proliferated errors during the predictive phases augment 

 during 

H

2.5), and after laying the fou

(see Sections 4.1, 4.2 as well), we are now in a privileged position to present our key 

propositions in this report. The characteristics defined in Section 4.3 are also the main paving 

stones/building blocks that may lead to a better understanding of our adapted approach. 

Furthermore, this section also acts as a framework for forthcoming discussion of the tracking 

flowcharts, and provides a general guidance about the experiments conducted in Chapter 6. 

 

I. Prediction dynamics and state transition models are not crucial / mandatory in th

the algorithmic complexity, and are usually counter-productive gestures. The plant 

dynamics are therefore replaced (in this report) by competing particle swarms and 

through random trials (e.g., based on the iterative and guided local searches).  

II. The partial function evaluation using the bin identification numbers are expedited 

objective functionalities, and more insightful than the procrastinations witnessed

the explicit similarity determinations (among two densities). A voting strategy based on 

a multivariate density evaluation at data points, and a Euclidean measure in 2L  norm 

(e.g., 22 )()( byax  ) in colour-space could prove equally effective in the tracking 

applications. 

III. Projection of belief space using information fusion and dynamic optimisation 

techniques, e.g., using nested RSO and parallel populations, random scouts, artificial 

injections and memory based methods are novel affectations to detect an object of 

interest in a computerised vision. The .fusion schemes (e.g., of colour and motion 

models) reduces the search space effectively, hence explorative swarms could be 
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initialised in those search regions to increase the particle effectiveness. 

IV. Hybrid methods e.g., using the particle assisted calculation of meanshift vectors 

outclassed the standard meanshift in both space and time. Therefore, the meanshift 

ound potential regions of interest as circular level sets or spherical 

) that enables agents to alter their 

s in 

lution timing could be significantly reduced due to the fact that such methods 

operational basin is automatically adjusted based on the iterative projections of the 

belief space. 

V. Simple but competitive heuristics that converges to the local optimal solutions (e.g., 

formulated ar

structures in higher dimensions) are effective methodologies to address both 

translational and scale changes between two frames. 

VI. Standard particle swarm method does not incorporate the local intelligence, e.g., in 

natural world, all entities have an olfactory sense (OS

search trajectories, and when OS is not taken into account, lead the solutions to relative 

best regions. The well aware particles have an ability to hop around and autonomously 

decide their own trajectories, and serve a resolute alternative to the predetermined 

movements applied in the particle swarm optimization. Therefore the search (in our 

approach) becomes a distance modulated scheme utilizing a collective intelligence. 

VII. It is of paramount importance to emphasize that the iterative evolution of agents is not 

mandatory to resolve complex multimodal problems. Instead, the particle rebirth

projected areas through RSO are more logical approaches to address convergence 

timing.  

VIII. The heuristic searches could also be applied in the segmentation applications. The 

curve evo

do not require explicit calculations of the curvature (or normal vector field using re-

initialisations using signed distance transforms). 
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4.5   System Diagrams. 

The core theme of this thesis is described along various sections in this report, and it revolves 

uter vision is not a precision oriented science.  Perhaps, as 

igure 4.25: A layout of a control problem facilitated with an artificial vision. 

embedded within the 

stem dynamics for a robotic application to prove more robust. Although modelling of the 

around the fact that comp

emphasised in Sections 2.4.1, a significant portion of the tracking procedure constitutes of 

integrating tighter and flexible phases (Section 2.5.2). Furthermore, it is more feasible to 

monitor different phases using a strategy controller so that a correct balance between the 

speed of convergence and algorithmic accuracy could be achieved (Figure 2.10).  One way to 

achieve this balance is to use experiential variations (embedded in RSO) in accordance with 

the Kolb model to achieve better convergences. 
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sy

deterministic components is essential to generate precise movements (e.g., to achieve traction 

control in the electrical motors under various load conditions), a computer vision analysis 

must be an autonomous entity and should not be part of the overall dynamical model. 

Tracking as well as many other computer vision task (e.g., segmentation) is therefore a scale 

free search process (that is successfully applied in Chapter 3 to solve related 3D problems), 
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Especially on the mobile platform, a distributed process using roaming particles overcome 

many inherent drawbacks of the single solution based approaches (which usually need 

extensive modelling in matrix formats).  The main characteristics of a multiple agent based 

tracking are shown in Figure 4.26. 

 

 

 

 

 

 

 

 

Figure 4.26:  Properties of particle based visual tracking applied in Chapter 6. 

he timely identification of a relev  space is important to cut algorithmic 

odel in Figure 4.27. 

T ant search

complexity, and the underline motive a pre-processing step is to eliminate the unnecessary 

noisy observations in an image to accomplish faster convergences in Figure 4.26, therefore 

these two processes work in close conjunction. The most fundamental part of the algorithm is 

to apply the relevant perturbation models (RSO, PSO and other heuristic techniques are 

appropriate exemplifications in this context). In a computational environment we need a 

pattern matching stage (such process are extremely efficient in a biological visual system and 

equally hard to understand) to establish identities as reflected in Figures 3.58-3.68.An overall 

picture of the complete algorithm could be portrayed as in Figure 4.27.  

Instead of using tighter and precise deterministic components of the dynamics (Sections 

2.5.1, 2.5.2), the visual tracking (in this approach) resembles a state m

This section is devoted to describe the major sections in diagram 4.27; however a brief detail 
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is presented here. As experimented in Section 3.5, the best perturbation model is generally 

the one which employs least memory operations (Figure 4.27) as it has been established that 

there is no algorithmic advantage in recording trajectory changes (e.g., a virtual particle has 

been found more efficient than all PSO variants in difficult test cases). The strategic 

controller indulges the required flexibility in tracking (case based software constructs are 

applied to introduce diversified tracking), and performance based measures could be selected 

for more meaningful convergences.  

 

 

Figure 4.27:  Structure of the proposed tracking algorithm. 

The identification stage uses top order/meta-heuristics (frame differencing and clustering 

sters/regions, which are later analysed 
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particle filter based tracking), the system still facilitate superior and automatic recovery of the 

tracking window. The metaphorical and systematic measurements only prioritise particles 

that matched the core features of a stored pattern.  

 

 

 

 

 

 

 

 

Figure 4.28:  Dynamic control policy in the mobile tracking applications. 

igure 4.28 is a simplistic controller strategy; the eccentric control introduced by using a 

voided by allowing more 

F

supervisory scheme (S) ensures that unnecessary calculations are a

flexibility in the state jumps. Therefore, the preference to stay at a particular state (e.g., gS ) is 

dynamically altered using a centralised controller, and depends on the scene conditions (e.g., 

by manipulating variables ),( in and ),( ji ). The nested searches are implemented using local and 

global perturbations, and the search parameters (e.g., particle population pn ) are also 

strategically allocated along with the number of frames needed to impose a higher order 

heuristics.   
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4.5.1 Identification of a feasible search space    

he task of creating computationally effective tokens is of momentous nature in the field of 

blished by describing patterns in a 

igure 4.29:  A flowchart to formulate a top order clustering and metaheuristics. 

itially two subsequent frames  are utilised to identify suitable clusters (of pixels) 

could be chosen to 

a 

T

computer vision. The uniqueness of a region is esta

mathematical format, and such identifiers are generally stored in memory. Colour, texture 

and shapes are common criteria to group pixels (into specific objects), which are then used to 

penalise video frames and to track objects. Despite of occupying distinct areas in a feature 

space, tokens belonging to the similar object (under observation) are unified (Figure 2.3). 

However, the static analysis of an image (e.g., pixel to pixel searches) is generally a very 

costly process, and an initial frame portioning could be done by exploiting the time 

dimensionality by comparing two (or more) sequentially generated images in a digital video.  
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information and relevant subtractions to observe changes in a current frame.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30:  The generic flow sequence applied in the frame clustering.  
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may prove much very time consuming to eliminate the static objects through a sequential or 

brute force search. However, by using just 2 threshold levels (stage 3 in Figure 4.30); the 

prioritised particle initialisation generates a meta-heuristics to scrutinize the image space in 

real time.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31:  Particle initialisations using frame difference and priority clustering.  
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4.5.2 Pre-Processing. 

 order to highlight the role of this thesis, the scope of research in the field of digital imaging 

. Generally, the image enhancement and pre-processing techniques 

In

is discussed in Section 2.2

are computationally intense, and could contradict with our prime objective of tracking in real 

time.  However, some cost effective image processing (IP) techniques are discussed here for a 

self contained reading. The main IP routines used in this thesis revolve around the non-

penalising approach of pixel diffusions using isotropic Gaussian functionalities. The term 

‘diffusion’ in imaging refers to the flow (as a general mathematical diffusive process ) in 

which a specific pixel neighbourhood is applied to assign values to a central pixel, and this 

produces a blurring effect is used to define the scale of information and to remove 

discontinuities. Equation (4.2) assigns average intensity (in a neighbourhood N ) to a pixel x          
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igure 4.32:  The role of image processing ro mputer vision literature. 
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stages applied to track objects in Chapter 6 age denoising could be (Sections 6.1-6.13). Im

broadly classified into two categories, and five common filters are categorised into isotropic 

different Gaussian kernels of changing variances

and anisotropic filters (in this respect) as shown in Figure 4.33.  In traditional mean image 

filtering and denoising (Equation 4.2), each pixel RGB channel data is replaced with a mean 

intensity level which is calculated using a mask (Figure 2.8) of N  neighbouring pixels.  

A median filter (on the other hand) reorganises pixel data into a list of ascending values, and 

the median intensity level is used to replace noisy pixel value. Whereas in Gaussian 

smoothing (applied in Equation 4.3), an original noisy image ),( yx  produces a family of 0I

digital images ),,( tyxI  after applying mathematical convolution to itself with several 

);,( yxG  . Due to the isotropic nature of 

this particular kernel, the resulting images exhibit a blurring effect which generally reduces 

the information content of an image (generating a scale-space image pyramid). The wide-

ranging imaging information contents (finer to much coarser level) are then used to locate a 

region of interest using secondary foraging/perturbing particles as mentioned earlier. 

                                                   );,(),(),,( 0  yxGyxItyxI                                            4.3 

Figure 4.33:  denoising algorithms in image processing applications.

Figure 4.34 depicts the effects of introducing Gaussian blurs i  on-

Webb, University of Birm ). The f eters (mask d standard deviation) 

nsists of only 

  Classification of  

nto a campus image (Ast

ingham ilter param sizes an

are identified at the bottom (Figure 4.34). The image pyramid (in this case) co

three subsequent scale-space images. However, in practical recognition systems (e.g., scale 

invariant feature transform (SIFT) [239]), it usually consists of tens of sequentially blurred 

images which facilitate prominent feature matching process of an object. In Section 6.1, a 
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range of similar scale-space images are applied to detect top order object movements.   

 

 

Figure 4.34:  Applying different Gaussian blurring operators (means and variances). 

 Figure 4.35: Effects of applying various denoising filters on a library image of Lena. 

In Figure 4.35, a Gaussian white noise ( 005.0,0   ) was introduced into an original image 

of Len  the respo ious f ed ea eplicat ight. 

rary image of 

a, and nses of var ilte tion

iciently, altho

rs (men rlier) are r ed on the r

All linear denoising filters (when applied on this typ cal computer vision libi

resolution 14400 pixels) worked very eff ugh, more blurring is introduced by the 

isotropic Gaussian filter (mask size= 25 pixels, 5.1 ). Furthermore, all three linear filters 

introduced in this section are remarkably efficient in terms of algorithmic timings (as shown 

in Figure 4.35), and could be applied in the context of real time tracking applications.     

One possible layout of a scale-space frame differe SSD) scheme is shown in Figure 4.36. 

There are '' N number of filters in this bank, and both an incoming frame (at time instant

nce (
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forms a feasible space for particle based searches). A data fusion module )( collates opinions 

of SSDN   modules (Section 4.4.1). A possible fusion strategy is the simplistic majority 

voting or consensus (e.g., if total votes in favour of a current hypothesis >
2

N  hybrid 

tracking particles are therefore initialised using the proposed state vector at this stage and 

further refined by applying perturbation models.  

). In

Fig atics to apply SSD fi nks in hybrid (particle and mo  

Imposing meta-heuristics (similar to the honeybird-hum  

otion estimations is a very strong tool at our disposal; it helps to cut down 

ing in a significant manner. On the other hand, anisotropic diffusion (Figure 

of non-

ure

by integrating m

convergence tim

 4.36:  Schem lter-ba tion) tracking.

an scenario described in Figure 3.25)

4.33) is more suitable for off-line segmentation. One dominant advantage 

linear/discriminatory diffusions is that the object boundaries are perfectly preserved.  
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(prescribed in Equation 4.3); clearly, all edge information has been lost in the process

Figure 4.37: Most of the high contrast (edges) information is lost in the linear image diffusions. 

Any keen readers are briefly introduced here to an active research area related to anisotropic 

diffusion. The pioneering research work in this regard was carried out by Perona-Malik

. 

 [241] 

dient 

.Figure 4.38:  Result of applying Perona-Malik diffusion usin  unique conduction coefficients. 

 

 

endeavouring non-linear diffusivity into digital images, the intensity of gradients and gra

vector field are applied as conduction coefficients (in their approach) to retain edges. Rudin-

Fatemi applied calculus of variations to reduce noisy variations from digital images whilst 

preserving image information/fidelity [242]. Mumford-Shah performed contour based 

tracking and non-linear denoising within a single operation [243]. The processing timing and 

frame rates achieved (using anisotropic diffusion) in our experiments (Figure 4.38) are found 

to be inadequate for real time convergences. However, the extraordinary feature of preserving 

edges could be pivotal for segmentation purposes in computer vision (evident in Figure 4.38). 
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4.5.3 Pattern Matching using partial function evaluations. 

ed to investigate the advantages of sequentially populating 

puter vision routines. In RSO, sparsely distributed 

er searches at later 

l (using kernel estimations) is matched against stored 

igure 4.39: Pictorial comparison of brute force searches and agent cored pattern matching.  

A significant research is need

observational densities in com

measurements are systematically integrated (along time) to conduct dens

stages. Practical vision systems encounter a number of bottlenecks when comprehensive 

discrete density estimations (described in Sections 2.5.1 and 2.5.4) are implemented in an 

iterative computer program. The fundamental aim of particle hierarchy (in this thesis) is 

therefore to highlight the advantage of collating measurements of sparse agents (similar to 

murmuring starlings in Figure 3.1), and to prove their superiority (in all major aspects) over 

single solution based video tracking.  

Section 2.5.4 presented relative drawbacks of applying such costly measurement procedures 

(right from start) in a typical dominant mode seeking tracking stage. In MS, a weighted 

discrete density and a candidate mode

patterns. Generally, Bhattacharyya measure (dot product of two density vectors) is 

implemented to discover a missing link by applying Equations (2.13)-(2.19). The search 

processes in both Kalman filter and MS are in fact brute force searches (conducted within an 

operational basin) which hinder timely convergences as mentioned earlier. 
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Figure 4.39 shows how minute and tiny/partial bits of information (gathered by hopping 

articles hierarchy) could be iteratively employed to predict overall spatial density transitions 

optimal 

p

(shown using block arrows).  The fundamental objective is therefore to allocate 

magnitudes to the velocity components 








x

y

V

V
that also expedites window translations between 

frames jf  and kf . At steady state, a tracking window aligns itself perfectly with the newly 

discovered peak at spatial location )1,1( baI ''



, where X  and ''Y  are image resolutions in Figure 

are implemented as exemplified in Figure 4.40.   

4.39. The costs associated with sequential memory access and calculating Bhattacharyya 

dissimilarity are therefore significantly reduced in cases where virtual foraging behaviours 

Figure 4.40: Tree prominent partial function evaluations in colour feature matching.  
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Temporal/sequential segmentation is a feature matching process in which every pixel of a 

digital image is grouped into their ons (foregrou  as shown at 

the bottom left of Figure 4.40. Equations (4.4)-(4.6) represent how only partial function 

evaluations could be utilised to detect a variety of objects in videos. Equation (4.4) is 

reproduced from Section 2.5.4; here only bin identifications are allocated as objectives 

to exploring particles (shown on the top left of Figure 4.40).  

The kernel weights  in this approach are stored in the form of look-up tables (which 

is more cost effective than performing calculations in Equation 4.4). Therefore, denser 

ose core bins. 

 Euclidean distance betw s (either grey 

own in Figure 4.40 ), a Gaussian 

 object (calculated on), and are used as 

cles with the dynam gh of Figure 4.40). 

 preferred implementing as an objective for foraging 

integer objectives which 

res gipective re nd or und) backgro

)( *
ixb

)||(|| 2
ik x

searches are conducted in the vicinity of particles that have discovered th

Equation (4.5) calculates the een two feature vector

ua ion (4.6levels or RGB colour vectors sh ). Whereas in Eq t

distribution is used to identify an at each particle positi

probabilistic associations of parti ic objects (top ri t 

 In our experiments (Chapter 6) we )( *
ixb

particles, as in this case, only integer tags are required (compared to the other two partial 

evaluation cases represented in Figure 4.40) to detect a specific object of interest in an 

imaging frame. The particle based pattern matching process starts by randomly allocating 

objective bins ),....,,( 21 nbbb to a particle population. During the next phase, particles are 

initialised within regeneration areas (identified in Section 4.4.1), and then hop (using 

perturbation models described in Section 4.4.4) to match designated 

is also displayed pictorially in Figure 4.40. The flow diagram of this algorithm is drawn in 
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Figure 4.41. 

Figure 4.41: A nested tracking algorithm based on bin function evaluations.   

A possible layout of this novel tracking algorithm is shown in Figure 4.41 (to portray a 

complete picture readers are also referred to Figure 4.17 and Algorithm 3.1), and this is the 

basis of the detection experiments in Chapter 6. The process starts by loading appropriate 

number of frames into working memory, and once a feasible search space is identified using 

top order clustering (explained in earlier sections), particles are generated into such regions 

(for a relevant sampling/initialisation strategy see Figure 3.14). However, if no relevant bins 

are detected at n-particle positions , suitable velocity perturbations (as explained in 

Section 4.4.4) are applied to particles until more meaningful patterns are discovered. The 

algorithm is constituted of two lo es; this includes a Guided local search (shown in 

Equation 4.1) stage in which feature strength  is analysed (within a closed neighbourhood 
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region  formulated around a particle positions ). A suitable choice for colour based 

features and patterns is 

sN nps

2
n

s
B

F 

dulations are applied). Finally, th

, hence, if more than half of relevant integer bins (stored as 

feature Identities) are discovered (in predefined neighbourhoods), the region under question 

is labelled as a legitimate target (otherwise the hypothesis is rejected and further outer 

velocity mo ked object is refined using 

ents (explained in Section 4.4.4 and Figure 3.44), and the target position is 

updated using the newly calculated mean positional vector . The algorithm is repeated for 

all frames as shown in Figure 4.4.1. 

4.5.4 Perturbation Models 

‘Pertu n theory’ has been historically applied to a num  si

athematical problem) is possible [244]. The particle dynamics 

(e.g., applied in PSO and DE) are complementar putational rhetoric (introduced in an 

analogues context) to address inversion (inverse problem computerised visual system 

(please refer to Sections 1.1-1.3). A significant portion of this thesis has already been 

dedicated to the cause and effects of indulging velocity variations, which are predominantly 

driven by social factors (abundant in natural agents). Sections 3.1-3.4 are structured to devise 

an alterna e that nullifies the overh

Later on in Section 3.4, a newly improved pert odel was introduced (to the readers 

based on virtual dynamics observed in foraging agents) that has proven more effective during 

experim  conducted along the course of S  3.4.5.The concept of ‘mortality of 

particles’ introduced in Section 3.3.2, and co ented using relevant 

ecological and geological disturbances (a possible synonym for the word ‘perturbation’) 

paved the way to understand how vital balances are kept in natural systems. Some further 

perturb  models are introduced in this section f ore detailed analytical comparisons to 

e position of

next to im

y com

eads in swarm cored analytics.  
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be performed in Chapter 6.  A case study will be presented (using bee nest site 

During 2010, Yang proposed a novel meta-heuristic algorithm inspired by the urban living 

micro bats [245]. Bat algorithm is mainly built around the echo localization behaviour of 

micro bats. The bat algorithm tries to conduct much wider range of searches compared to the 

selection/BNSS algorithm [246]) for relating natural and computational worlds. 

(a)-Search Strategies in the Virtual Bats 

PSO algorithm, with an inherent/key advantage that it has to deal with less strategic control 

parameters compared to the PSO technique. Echolocation is a type of sonar ranging between 

25 kHz to 100 kHz which lasts for only a few milliseconds, during this time, short bursts of 

pulses are discharged by the bat which could be as high as 20-30 bursts per second.  

Bats also have good vision, and rely on their sense of smell to plan their trajectories. 

Therefore, both auditory and olfactory senses are applied by the bats to effectively scan their 

environments. In the original bat algorithm, bats deploy echolocation techniques to sense the 

distances to the food and prey, and use the reflected pulses to differentiate between preys and 

to plan their paths through the complex terrains. The virtual bats therefore also apply 

loudness and a variable pulse rate to explore the search space. The velocity and the frequency 

of pulses at any moment in time are determined by the following Equations (4.7)-(4.9). 

                                                         )( minmaxmin ffffi                                               4.7 

                                                                                                             4.8 iiii *

                                                                   iii vxx                                                       4.9 

In Equation (4.7),

ttt fxxvv )(1  

ttt 1

 ]1,0[  is a random variable drawn from a uniform distribution. The 

frequency of pulses is adjusted by a randomization process which assigns values by taking 

into consideration the maximum and the minimum allowable frequencies in a specific search 

space (Equation 4.7). The velocities of the virtual bats are calculated through Equation (4.8). 

Finally the newly calculated velocities are used to update bat positions in Equation (4.9). In 
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order to get a right balance between the exploration and the exploitation phases, the loudness 

and pulse rates are varied in accordance with Equations (4.10) and (4.11). All bats explore the 

search space using variable loudness values which could range between minA - maxA as shown in 

Equation (4.10).  

                                                             t
i

t
i AA 1  And ]1,0[                                             4.10 

                                                           ))exp(1(01 trr i
t

i      1                                        4.11 

When micro bats get closer to their assigned objectives (e.g., bin identities or other pattern 

matching objectives in Figure 4.40), they vary rates of emitted pulses in order to perform 

nding 

ted at each ba

nate best matche  a 

low (or is ue 

localized searches (using exponential function in Equation 4.11). In contrast, the loudness 

decreases towards zero at a near optimal point (where a bat gets almost stationary). The 

loudness and pulse rates are indulged for local searches, whereas, the variable frequency 

assignments are embedded meta-heuristics which broaden searches, and provides opportunity 

for a bat population to be attracted towards promising regions (within space boundaries). 

The flowchart of micro bats based optimisation algorithm is shown in Figure 4.42. The 

algorithm starts by implanting n-micro bats in the search area. Next, the correspo

objective function values are evalua t location, moreover, solutions are ranked in 

ascending/descending orders to nomi s. If the function value )(xf  at

proposed global optimal position is be  equal to) a pre set threshold val

(i.e., )( *xf ), then, 2 parallel search phases are initiated (as shown in Figure 4.42).  

The aim of these two simultaneous processes is to further refine the newly projected global 

optimal solution )( *xf  using Equations (4.10)-(4.11), and at the same time, global searches 

continue searching for alternative solutions using Equations (4.7)-(4.9). Once a bat 

accomplishes its designated task (or gets nearer to achieve its allocated task), the pulse rate is 

incremented, and bat search frequencies are more smoothly varied (in a linear fashion, similar 

to the simulated annealing stages described in Section 3.2.2) which enables all bats to search 
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within local proximities (and restricts them jumping beyond the current s rc ace). As the 

pulse rate is the 

ea h sp

confidence measure of a particular bat (that it has find its objective), 

local sea terminated and the algorithm enters into 

ally, the process in  

therefore, in searches where t
ir , the rch is 

an initial global search phase.  Fin term ates if the error discrepancy

(between objective and calculated values) is  )()( *xFpF .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42: Flow chart of the original micro bat algorithm applied in Chapter 6.   
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(b)-Correlated Walks 

Correlated walks (CW) are one further type of particle perturbations (beside PSO, BAT and 

RSO and guided searches) that will be ap andplied to track  detect object boundaries in 

hapter 6. The correlated walks could prove particularly useful in parallel hypothesis pruning 

 the combinatorial optimisation te described in Figure 4.19. Once the top order 

lustering (mentioned in Section 4.4.1) has been performed, the particles are regenerated 

round the vicinities of those clusters, and both inwards and outwards correlated walks 

epicted through  in Equation 4.12) are performed to detect object boundaries, where is 

e current choice the global optimal, and is the position of a particle at time instant t.

                                                          =                                       4.12 

Figure 4.43: New correlated movements in particles 

The velocity of a particle 4.43) at tim is calculated by the distance modulation 

e (also proposed earlier in Algorithm 4.1), in this approach the particle velocities 

t an instant of time) are non-linear function of their respective distances 

 prospective global optimal (as shown in Equation 4.12, and through the 
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regions (see Figure 4.40).  

(c)-Case Study using Bee Nest Site Selection (BNSS) 

In BNSS [246], only a smaller proportion of population is activated at any time in contrast to 

the PSO. The search strategies of the forager bees could be versatile and a range of local and 

global searches (e.g., isotropic and correlated Gaussians, signal modulated Levy or pure 

randomisation) could be employed in this context as shown in Figure 4.44. All scouts keep 

looking for the nest site (four correlated walks from swarm position SWARMp  are shown in the 

ss  potential nest scouts 

cruit a number of followers to investigate further (e.g., by deploying CW in Figure 4.43).   
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Figure 4.44: Tracking algorithm motivated by the bee nest site selectio
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The ray castings are however tighter and precision line searches that could also be used in 

this regard. The fitness scores of scouts are ranked according to






k
k

s
s

fit

fit
p

1

,  and more 

followers are recruited if higher fitness score is achieved by a particular scout. In the standard 

BNSS algorithm, two additional guided stages are also performed during the optimisation 

process, here successively increasing populations and group fitness are evaluated (e.g., by 

controlling follower population) to establish if a potential site meets all the necessary

scoutn

 

onditions (e.g.,  object size and range of colour distributions in tracking-similar to the 

atural hives). The systematic evaluation at both individual and group levels is therefore used 

 select nests in BNSS. Therefore BNSS is a more advanced approach ces the 

ssociated computational costs and is an excellent example of a dynamical controlled 

nvironment. The RSO very much resembles to the BNSS due to the inbuilt guided search 

age. The main fitness score in RSO is however based on the observations of a variety of 

olour bins within a candidate region (Figure 1),  r ant multivariate colour 

istributions (Figure 4.40) are used as a pattern matching process.  Fi arm position 

r tracking window in an image) is updated upon a successful match. 

.6 Conclusions 

The purpose of this chapter is to introduce to the readers the key characteristics ic 

ization environment. The dynamic optimization rules are applied to expedite a tracking 

ducting more diversified searches in the feasib region. 
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Chapter 5 

Test cases-image sequences 

This chapter introduces several challenging detection and tracking scenarios that would be 

later applied in Chapter 6; the aim is to select a wide variety of scenes so that the response of 

proposed methods could be analysed. Several plots are presented in this Chapter that defines 

each problem in the search space. The spatial search space in tracking and detection 

algorithms is the corresponding image dimension in which objects undergo translations 

(Figures 2.1-2.5), whereby, a feature space is used in matching the unique patterns of an 

object of interest (e.g., using colour, texture and shape based features).   

It is established through a variety of experiments that formulating an efficacious 

communication between social expatriates (similar to foraging hierarchy in bee hives), and a 

converging population (e.g., PSO) could address the common challenges in the deterministic 

stems [247]. The effectuated diversity introduced by the scale free correlations could 

movements in heterogeneous applications (hence results in increased 

 

Figure 5.1: Tracking scenarios to be applied in our experiments (taken from vision repository [248]). 

sy

culminate accurate 

portability mentioned in Section 1.1). Figure 5.1 shows a range of visual challenges in this 

context where various detection and tracking experiments would be conducted in Chapter 6. 
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5.1   Frame Rates in video tracking applications 

The frame rate of a capturing device is an important characteristic in the tracking 

 underline motions, the 

ilm. The 

motions appear quite smooth and jitter free (to a human observer) if visual information is 

digital image is , and the bottom right is a corresponding pixel at cation 

applications. When high speed cameras are deployed to capture the

precise and minute movement details are perfectly preserved onto a capturing plate/f

sampled and presented at 25+ FPS. However, the tracking rate achieved in a tracking 

algorithm is an entirely different aspect, and this scenario is presented in Figure 5.2 to clarify.  

There could be nf number of frames that have been used to sample the motion of a dynamic 

object during one second of time interval. However, the tracking frame rate explicitly depicts 

the processing speed (in FPS) at which motion trajectories has been derived from a stored 

video sequence. Hence, if the tracking is observed to be effectively working at FPS250 , then it 

means that such number of frames are being processed at a tracking stage, and could be 

 spatial lo

utilised in situations with the respective camera speeds (e.g., in a live monitoring). Generally, 

the underline displacements are described in terms of the pixel space (the top left pixel of a 
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5.2   Test Benches 

Several computer vision test problems will be specified in this section. The displacements 

patterns in the form of generalized motion trends are presented along with the corresponding 

quantitative characteristics in both spatial (ground truth of motions) and feature space 

(histogram ball plots) formats. Several related factors including the sampling frame rates, 

average and maximum displacements (in Euclidean pixel distances) are highlighted for each 

test scenario. Therefore, the selected patterns exhibit a great deal of versatility and diversified 

styles of movem ts (to be further tested in Chapter 6). 

 

5.2.1 Ant Sequence 

In this sequence an ant randomly traverses the maze, and occasionally slips and falls off the 

maze walls, and generally alters its direction of travel in a non-deterministic fashion. The 

shadows from the boundary walls and the illumination changes further exacerbate the 

volatility of this scene. The models stored in the memory therefore frequently become 

invalidated and (during adverse stages) could not be applied to diffe iate between the 

order to regain control of the window. An a

en

rent

object and the background clutter. Hence, an alternative fusion methodology is needed in 

mple tracking system could be built using the 

nested heuristic sea , 4.2), and by treating e arallel 

hypothesis with only the top order solution being accepted as an object of interest.  

 

 

 

 

 

epository [249]). 

rches (Sections 3.3 ach potential region as p

Figure 5.3: Tracking a randomly moving insect under lab condition (taken from r

Varying Lighting Conditions 
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Figure 5.4 shows the surface plot of a particular tracking frame (shown in Figure 5.3), the 

ied as well. In contrast to the density 

lated comparisons in the mode seeking algorithms (Section 2.5.3), particles will be assigned 

 (to detect dominant modes using the respective bins), the frequency 

landscape of this sequence is highly rippled, and for comparative analysis, the terrain 

generated by the Egg-crate function is also plotted [250]. Due to the similarity of the 

landscapes, the previously implied test processes (Section 3.5) are generally applicable in the 

tracking domain as well. The ground truth (movement coordinates) of the ant movement 

history has been shown in the Figure 5.5 along with its feature plot in a RGB colour space. 

The respective histogram bins in the feature domain (799, 1073, and 1421 etc and marked with 

the arrows), and the distracter features have been identif

re

shorter binary objectives

of the respective bins is indicated by the radius of the balls. All histogram ball plot diagrams 

presented in Chapter 5 are interpreted in a similar manner.  

 

 

 

 

 

 

Figure 5.4: The similarity between an image tracking and a 3D evolutionary test case. 

Figure 5.5: Plot of the ground truth in the ant test case (sequence consists of 774 image frames). 

Optimal 
Region 
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The quantitative characteristics of the ant sequence are presented in Table 5.1. The sequence 

is composed of 773 images captured at a frame rate (camera speed) of 25.8 FPS. The total 

displacement in Table 5.1 refers to the pixel distance this object has traversed within its 

spatial space during 30 seconds. The displacement refers to the Euclidean distance it has 

traversed during its trajectory, whereas the maximum displacement observed between any 

two frames is around 12 pixels. The diversified and random style of movement is evident in 

the Matlab plot drawn in Figure 5.6; the plotted vectors show both magnitude and direction of 

the movements between all video frames (in an image space XY ). Tables 5.1-5.4 could also 

be interpreted as described in the above paragraph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: The vector plot of motions observed between frames in the ant sequence. 

 

Sequence Length 

Sampling Frame Rate 

Sequence Time

Total Displacement (Pixels) 

Maximum Displacement 

773 frames

25.8 FPS

30 Seconds

1.5057e+003 Pixels

12.53 Pixels

Table 5.1
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5.2.2   PETS Pedestrian Sequence-1. 

This pedestrian test scenario has been adapted from the PETS video repository [251], and is a 

standard problem to detect the tracking efficiency, and its speed of convergence. The profiles 

of the tracked people are manually formulated using the discrete density histogram models 

[252]. The Bhattacharyya similarity measure will be used to match the estimated density to 

the ones stored in the memory. The movement trajectory of the pedestrian-3 has been plotted 

on the right in Figure 5.7, which shows a near-linear translational during the entire 195 video 

frames.  This clip constitutes of 195 frame captured at a Frame rate of 24FPS (Table 5.2). 

 

Figure 5.7: Tracking of pe ponding mov tory (pedestrian-3) 

 The histogram ball plot of the colour profile of the pedestrian-3. 

destrians and the corres ement trajec

 

 

 

 

 

 

 

Figure 5.8:

Bin Numbers 
Blue-Shirt 
Sequence 
Object-2 
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The histogram ball diagram for the pedestrian-3 has been plotted in the Figure 5.8. The 

 

 

 

 

 

 

 

 Plot of the colour characteristics of object 3 in Figure 5.5. 

                                       

 

 

 

numerical data in the plot stipulates a variety of histograms components. Therefore, the aim is 

to match these numerical values with the ones detected during the online tracking stage. The 

3d plot (Figure 5.9) shows the general data trend in profiling the pedestrian in normalised 

RGB-space. Larger variance has been observed along the vertical dimension and therefore 

the changes are accordingly reflected into the objective function. 

 

 

Figure 5.9:

                                  

  

 

 

 

 

 

Sequence Length 

Sampling Frame Rate 

Sequence Time

Total D ent (Pixels) isplacem

Maximum Displacement  

       195 Frames        

        24 FPS

       8 Seconds

     587.89 Pixels

      8.361 Pixels

Table 5.2 
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5.2.3   Highway Sequences. 

Some highway videos have also been selected as test benches, and four particular images 

from this sequence are shown in Figure 5.10 [253].  In this sequence a variety of motor 

vehicles are tracked, and the trajectory of a green van has been identified with the arrows. 

The histogram ball plot (where the radius of a ball show the frequency of observations) of the 

object has also been presented in Figure 5.11. The movement of this motor vehicle during 

45 frames are plotted in Figure 5.12, and the overall motion appears to be of a curvilinear in 

ature compared to the pedestrian sequence, and the tracking data in a quantitative format is 

resented in Table 5.3. This particular sequence is captured with a high speed camera, 

erefore, a smaller (maximum) movement of 1.89 is observed between frames.  

 

 

 

 

igure 5.10: Four frames of the highway tracking sequence. 

 

 

igure 5.11: The histogram
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F  ball diagram of a green vehicle in the RGB colour space. 
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Figure 5.12: The curvilinear movement and path of the object of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

Sequence Length 

Sampling Frame Rate 

Sequence Time

Total Displacement (Pixels) 

Maximum Displacement  

       145 Frames

        36.25 FPS

      4 Seconds

  0.545e+003 Pixels

        1.89 Pixels

Table 5.3 
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5.2.4 Quads-Copter/Drone Sequence. 

his video sequence was created at a local park in Edgbaston, Birmingham. The underlying 

im is to investigate the applicability of the RSO in objects subjected to the scale, 

anslational and rotational movements. This platform is an idealistic test bench to determine 

e penalising strength of the guided local searches (Figure 4.17). Due to being an airborne 

vehicle, the quad-copter frequently blends with the clutter, and therefore is a challenging 

tracking problem. As the drone drifts away from the dynamic camera, it undergoes sudden 

changes in its scale, and at its furthest distance, it dramatically reduces to only a few imaging 

itions demand an update in the feature space 

 increase the tracker stability and its robustness. 

igure 5.13: The histogra orne vehicle shown in the Figure 5.14  

igure 5.13 shows the changes in the object histogram model. The deviations in the 

ircumferences of the balls indicate the scale of the observed discrepancies between two 

es. Along with the changes in the freq rements, a significant 

reduction in the histog served within a very short time period. In cases 

where larger model invalidation is observed, it is often more feasible to narrow down the 

search space using the data fusion techniques (e.g., using motion and feature detection sub-

 number of frames from the drone tracking problem (the tracking test case is 

onstituted of 879 image frames) are presented in Figure 5.14, the airborne vehicle often 
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merges with the low and fast moving cloud, and therefore tracking window is dynamically 

igure 5.14: The scale changes in eight video frames taken from the drone sequence.   

 

 

 

altered in order to diversify the measurements.  The footage was captured on a Nokia mobile 

phone with a maximum sampling rate of 7FPS. Therefore, this particular sequence is 

especially challenging due to the jittering platform (held in hand) and low sampling 

frequency and higher displacements between all frames as expressed in Table 5.4. 
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Sequence Length 

Sampling Frame Rate 

Sequence Time

Total Displacement (Pixels) 

Maximum Displacement 

    879 Frames

       7 FPS

      125 Seconds

 9.879e+003 Pixels 

      35.8 Pixels

Table 5.4 
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5.3   Conclusions. 

This chapter was written with an aim to introduce readers to some most common and 

challenging test cases utilised in the computer vision community. Several difficult video 

tracking and detection problems have been identified in this chapter. The ground truth values 

are plotted along each test case, and would be used in the next chapter to determine the 

ccuracies of our detection/tracking algorithms.  a
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Chapter 6 

Natural Detection and Tracking   

It has been a fervent desire of human beings to learn from the nature’s artistic designs [254]. 

We apply our biological vision to accomplish almost every task that frequently incorporates 

visual tracking of bodies in order to enhance our anticipation of the environment. The salient 

features are derived and availed to promptly recognize a dynamical object in our vision [255]. 

A partial inspiration in this report came from our visual references and consequently the 

realization of a denser semantic knowledge to handle complex situations. Solving the visual 

jigsaw in machine vision is more elaborate and decades of scientific research is needed to 

gain the proficiencies of the natural vision. 

Figure 6.1: Strategic differences in general optimisation and methodologies applied in this thesis. 

Some inferences about a biological vision could be deduced from self analysis. The 

association of the computer vision systems and our visionary perspectives could be a key to 

implement the fundamental aspects effectuating our visual prolepsis during highly cluttered 

scenes. One of the major components of a biological vision is the presence of a systematic 

hierarchy (similar to the RSO we applied to solve test problems) in which sparse observations 
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are generally imputed to perpetuate lower and denser solutions. It is not much deviation from 

the reality to write that it seemingly appears that we apply dominant scene characteristics (in 

an brain 

th of an 

object.   

x social interactions are analysed as redundant 

features in this thesis. 

 Therefore, a search driven optimisation on nested par cl haviours is a novel 

technique which first integrates observations of the virtual swarms , and later 

applies guided searches (Section 4.3) to solve complicated vis lems. The two 

optimization processes shown in Figure 6.1 are unique within themselves in the sense that 

instead of converging or dispersing particles, the priority is on particle proliferations using 

rebirths (in our approaches) around the feasible area in a search space. The exploration and 

m 

our vision) to detect a top order movement. After further visual refinements, a hum

conjectures a belief and reaches to a specific conclusion regarding the visual dep

We would like to conclude the main theoretical expositions presented in this thesis before 

conducting further experimentation. Some complicated evolutionary test cases were 

successfully solved in Chapter 3 by applying RSO and stochastic variations (Section 3.4). 

The novel system (RSO/VGS) stipulated the preferences of space based convergences 

(Section 3.1-3.3) over the traditional calls in the social particles. A major source of the 

misconceptions in the evolutionary algorithms (RHS of Figure 6.1) is due to wrongfully 

considering particles as immortal agents. Furthermore, storing intermediate states of particles, 

and mathematically calculating the comple

based ti e be

 (Section 3.4)

ion prob

exploitation (EAE) phases in a particle system are shown in Figure 6.2. In traditional swar

methods (e.g., PSO [256]) both EAE are simultaneously carried out in all iterations (top right 

side of the Figure 6.2). The incorporation of EAE based on social calling is the main source 

of complexity in many nature inspired algorithm (as verified using experiments in Section 

3.5). Therefore the priority in this thesis is to decouple EAE into separate phases to increase 
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search efficiency. Such kind of optimisation process is theoretically identical to the searches 

carried out by the independent foragers in the solution space as shown in Figure 6.3.  

 

 

 

 

 

 

 

 

Figure 6.2: Selection of tuning parameters in swarm based approaches. 

 

 

 

 

 

 

Figure 6.3: Foraging and iterative search strategies without activating the population.  

Figure 6.3 replicates the hunting pattern of independent agents which depart from converged 

colonies (bee-hives/ant nests) in order to find suitable food resources. The larger circles are 

drawn to display the local olfactory radiuses of the foragers during their flight paths. The 

scale free searches carried out by autonomous particles therefore are analogous to the 

artificial injections in dynamic optimisation methodologies [257]. Similar to determining the 

optimal population size (Figure 3.57), it would also be interesting to analyse the forager 

particles needed to detect an object. 
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To supplement the earlier arguments (especially regarding the particle rebirth phenomenon), 

we have portrayed a pictorial representation of the ant colony optimisation method [258] in 

igure 6.4. The path of a wining forager ant is drawn along with those of the unsuccessful 

nes. The major obstruction in the route (river and mud) enforces the search agents to seek 

lternative shortest permissible paths to a potential nest site. The larger pheromone trails are 

erefore deposited (due to the collated opinions of a large number of recruited ants) along 

e optimal trajectory to the new nest site. The implicit communication method uses 

heromone trails to guide the nervous ants (at the nest site) towards a solution. However, one 

ajor research question to answer is t r suc it methodologies are absolutely 

andatory in artificial vision based tracking. 

igure 6.4: The competitive and collaborative environment of ACO.  
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6.1   Experimental Setting 

The aim of Chapter 6 is to demonstrate with experiments that the RSO and virtual agents 

(memory-less particles) are capable of tracking objects in diversified scenarios. This chapter 

is organised as follows, the scale space methods (Gaussian blurred images) are applied in 

Section 6.1 to track a pedestrian in a video sequence. Then in Section 6.2 we will apply the 

foraging patterns (organised random walks) to track the movements of the same pedestrian. 

In Sections 6.1-6.13 several detection and tracking experiments are performed on randomly 

moving objects. First we have applied PSO and BAT algorithms in order to detect and track 

motions, and later on the same objects are tracked using RSO and VGS to analyse the 

tracking efficiencies in the space-time dimensions. Finally, the process is repeated for a 

umber of other dynamical objects. 

igure 6.5: The properties of the platform on which the experiments are conducted. 

he aim of this tracking project is to devise tuning free real time tracking for the embedded 

latforms (e.g., smart phones). A mobile Intel device (N270-798/1600 MHz) with 1GB of 

emory was used in our analysis (Figure 6.5) [259]. The tracking does not take into 

onsideration the display characteristics. Therefore experiments are independent of the 

raphical renderings, accelerations and storage capabilities of the graphic cards.  
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6.2: Tracking experiment using Motion Estimations. 

The detection of the pedestrians and culminating their trajectories is an important task in the 

emerging vision technologies (e.g., driverless cars [260]). The main ideology (industrial 

perspective) of any engineering system is to invent a jargon free design that guarantees an 

optimal performance within the economical constraints (speed and budget) A higher level 

corroborative module in embedded platforms could be based on analysing movements using 

the Gaussian convolved image differences. The identification and associations of the relevant 

information clusters obtained through the frame subtractions ntt ff  ( 11  tn ) is a cost 

effective technique to solve complex tracking landscapes.  

Figure 6.6: The pyramid of information by fusing Gaussian smoothed images [261]. 

Figure 6.6 shows an information pyramid generated by subtracting two images taken from the 

pedestrian sequence introduced in Section 5.2.2. The clusters reciprocate the suspected 

movements and could be further exploited at various scale-space (by convolving with 

aussian models) to analyse motions.  The translational movements of the pedestrian-3 in 

.6. Furthermore, 

cope in this 

esis). The tracking relies on the state-space model (shown by numerical data in brackets) 

G

Figure 5.5 are identified by narrowing down the relative pyramids in Figure 6

it is quite straightforward to relate contextually different visual problems (e.g., Figure 6.6) to 

combinatorial optimisation methods applied in the test cases (Figures 3.6, 3.22 and 3.52). 

Many historical trackers applied inter-connected sub modules to track movements of people 

[262]. We have presented one typical solution where a Kalman filter was used to track the 

movements (detailed discussion could be found in [263] and are out of the s

th
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which utilizes the general equations of motion (kinematics) to analyse movements as shown 

o a Kalman filter stage.  

To analyse the applicability of a proposed scheme (based on information pyramids shown in 

Figure 6.6) we used Gaussian convolved frames to deduce frame information and the 

consequent tracking results (pedestrian-3 in Figure 5.5) have been drawn underneath. The 

trajectory of the tracking window (using cluster analysis) is presented in Figure 6.8 alongside 

ation fusion by 

in Figure 6.7. The results of the tracker have been shown in the top right hand corner of 

Figure 6.7.       

Figure 6.7: Estimating Motion by applying SSD and MS phases t

the ground truth (in Figure 5.5). The overlapping graphs prove that the inform

Gaussian convolutions is a valid higher order tracking technique. 

 

 

 

 

 

 

 

 

Figure 6.8: Tracking a pedestrian using Gaussian convolved images.  

Figure 6.10 shows the timing plot of the Gaussian scale-space based tracking method. The 
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overall convergence time (for a sequence containing 143 images) using frame differences 

(FD) was observed to be around 5.775 seconds in this experiment. Therefore tracking of a 

pedestrian was performed at 25 frames per second (FPS), this is quite remarkable finding in 

itself that could also be applied in narrowing down the search space in more complex frames 

(we used a window of size 10x10 pixels around the last known position of pedestrian as 

shown in Figure 6.9). Therefore, in the pedestrian tracking cases, the FD cluster analysis 

appears to be an effective approach (as apparent from the graphs). The mean pixel distance 

error  for 143 frames (in Figure 6.8) was observed to be , which is quite remarkable 

 

 

Figure 6.9: Information deductions from a variety of video frames using scale space methods. 

 

 










e

e

x

y








37.2

86.1

for a tracker based on FD alone. However, there is a significant margin for further improving 

the frame rates as in Section 6.2.  

 

 

 

 

 

 

 

 

 

Figure 6.10: Timing efficiency graph in a pedestrian sequence. 
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6.3: The Motion Estimations using Foraging Patterns. 

The real time tracking approach in this thesis predominantly relies on a fact that the search 

space could be narrowed down using information fusion (IF) techniques [264] (as learnt in 

Sections 6.1 and 3.4). The deep-seated reason for the success of the nested RSO (proposed in 

the Section 3.1-3.3) is that it applies various IF stages to select a best hypothesis. The frame 

subtraction method is an exemplification of an elitism [265] based meta-heuristics (similar to 

the honey-bird human relationship in Section 3.2.3) that could also be applied in the real time 

applic ns. In the coming demonstrations, we will analys h experiments the fact that atio e wit

how IF in visual tracking could conjecture search reductions. The partial function evaluation 

of the colour distribution (introduced in Section 4.1.4) will be used as an objective criterion 

for the foraging particles in this case.  

        

 

 

 

 

 

 

 

 

igure 6.11: Tracking an ROI in video sequence using only a few foraging-particles. 

n alternative to usual analytical deterministic drifts is presented in Figure 6.11. There are n-

ace which form a cluster around a potential region of interest (ROI), 

and perform iterative local searches within the olfactory radius (determined by a higher level 

process, e.g., clusters formulated by frame subtractions) to detect the object. The radiuses of 

the olfactory senses are learnt along time by taking into consideration the historical motions 
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(Section 4.1.3), and the initial position of particles 



y

 are c
x

alculated by implementing a 

circular symmetric model (in this scenario) as drawn in Figure 6.11. At a point in time, n 

foragers leave the nest and are represented by arrows. However by exploiting the properties 

1-3 (Section 3.3.2), all intermittent and transitional velocity updates are avoided to achieve a 

real time convergence.  

 

 

 

 

 

 

 

Figure 6.12: The partial function evalu ing multivariate Gaussian PDF. 

Once main foragers have presented their hypothesis about the validity of a potential nest-site 

(similar to foraging bees) further evaluations are carried out using a small group of recruits. 
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belonging to the object. All forging particle use partial function evaluations of the colour 

distributions (as described in Section 4.4.3) in Figure 6.12. Similar to the probabilistic 

associations established by using grey level or intensity changes in Figure 4.40, the 

corresponding RGB variations are modelled using a multivariate Gaussian distribution [266]. 
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vicinities where object like features are detected (refer to Figure 4.44). Due to the simplicity 

values to each pixel in the search space (as shown in Figure 6.12). Figure 6.13 shows how the 

movements in this video. 

of this feature matching process, only the encoded values of mean and covariance matrix of 

the colour variations (within a region using RGB space) are required to assign probability 

particles search space are manipulated over the course of time to calculate the underline 

 

Figure 6.13: Six t olfactory radiuses. 

 

 

racking frames from the pedestrian sequence using 

 

 

 

 

 

 

 

 

 

Figure 6.14: Tracking errors in the x-dimension using 4 scouting particles. 

The tracking results in the graphical formats are presented in Figure 6.14. In the first 

scenario, particles are deployed using pyramid structures (obtained through FD as a top order 

heuristic) to narrow searches. The results in XY search space dimensions are compared to the 

ground truth (GT) in Figure 6.14, and the corresponding accumulated errors are presented in 

Figure 6.15. The errors in the XY dimensions (when FD and foraging behaviour [267] were 

applied together) are observed to be -1.78 and -2 pixels respectively. The discrepancies are 

further reduced to a mean of 0.92 and 0.2 when only 4-scout (RSO) particles are initiated in 
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the relevant space without analysing any top level clusters through the Gaussian pyramids 

[268].    

 

 

 

 

       

 

 

 

 

 

 

Figure 6.15: Tracking errors in the y-dimension using only 4 scouting particles. 

 

 

 

 

 

 

Figure 6.16: Tracking results of 4 particles using FD and when only scouts were deployed. 
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In Figure 6.16, the ground truth positions of the pedestrian are plotted alongside two further 

scenarios when the ROI was being tracked using foraging behaviours alone, and with frame 

ubtraction as a higher order heuristics. The results are convincing and stipulate an earlier 

ypothesis that the nested RSO could significantly outperform single solution based 

nalytical methods (e.g., Figure 6.7).  

he timing graphs are also presented in Figures 6.17 and 6.18. When the mobile processor is 

6.5), we achieved a mean tracking speed of 

100 frames per second (FPS), which is significantly higher than the system implemented in 

Figure 6.7. The dominating performance of a simplistic natured inspired approach (foraging 

behaviours) is therefore very conclusive in this application. 

 

 

 

 

 

Figure 6.17: The graph of the convergence timing at a processor speed of 1595 MHz. 

g results for 15 frames are shown in Figure 6.19. The position of the tracking 

ean pedestrian location detected in a frame. The pictorial data also 

confirms that this tracker works remarkably well (at impressive frame rates) in detecting the 

pedestrian movements during the entire length of this sequence. 
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Figure 6.18: The convergence timing graph for a processor running at 798 MHz. 

he tracking results for 15 frames are shown in Figure 6.19. The position of the tracking 

indows represents the mean pedestrian location detected in a frame. The pictorial data also 

onfirms that this tracker works remarkably well (at impressive frame rates) in detecting the 

edestrian movements during the entire length of this sequence. 
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Figure 6.19: Tracking results using only 4-foragers at an FPS of around
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The analysis in Figure 6.17 was repeated for a range of other particle populations, and the 

acking results are provided in Figures 6.20 and 6.21. By comparing Figure 6.20 with Figure 

.17, we reached to a conclusion that no significant improvements (in the tracker accuracy) 

re observed by increasing the population size of the foraging particles in this particular 

edestrian tracking problem.  

igure 6.20: Tracking results using 8, 16, and 32 numbers of foragers. 

igure 6.21: Pedestrian tracking using 64, 128, and 256 numbers of foragers. 
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The effects of the particle population strengths on the convergence timings of the tracking 

algorithm are drawn in Figure 6.22. The mean convergence time for 8 particles was recorded 

to be around 0.147 sec, and by increasing the particle size to 32, the convergence time 

jumped to 0.88 second (Figure 6.22). The timing graphs for 64, 128 and 256 particles are also 

plotted in Figure 6.23 (with worsening convergence timings). Hence, no particular 

provement in terms of the convergence accuracy is ever recorded in this test by 

crementing the foraging population sizes (Figures 6.20 and 6.21). 

igure 6.22: The convergence timing graph for 8, 16 particles. 
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Figure 6.23: The convergence timing graph for 32, 64, 128 and 256 foragers. 
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6.4: Solving the detection problem using virtual guided searches (VGS). 

The detection of an object in an image often becomes a challenging multi-modal problem. 

The underline idea of this section is to apply RSO proposed in Chapter 3 to find an object of 

interest. The inherent philosophy of the devised RSO method is to highlight the fact that 

learning of dynamics using scale free experiences is a preferable optimization method than 

the deterministic drifts employed in both standard Kalman and particle filters. It was 

demonstrated earlier (Figures 3.63-3.66) that the nostalgic factors (e.g., previous best 

ositions) do not contribute as much as it was previously thought in the optimisation of 

volutionary test cases.  Other major sources of functional discrepancies in the agent based 

ethods are the memory operations needed to update the particle’s positions [269].     

 

Figure 6.24: Understanding the notion of particle positioning and recording in memory. 

A predominant source of the computational complexity in particle centred schemes (e.g., 

PSO, BAT and Firefly algorithm) is that the agent’s positions are stored in complex data 

records (Figure 6.24) which are not mandatory at all in the view of the author. In particle 

swarm optimisation, the velocity modelling relies on the personal best (PB) and global best 

(GB) positions, and particle positions are updated by applying newly calculated velocities to 

the stored positions. A virtual particle on the other hand does not require such complicated 

data structures, and no particular velocity models are kept in the record to specify their search 
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 The virtual particles (similar to foraging insects) fly around intermittently (e.g., based on 

e 6.25. 

The detection challenges are exacerbated in the drone sequence due to the variations in scale 

and background clutter. Furthermore, the illumination and shadows complicate the process of 

identifying the ant positions within allowable time in Figure 6.25. Both ant and drone 

sequences would be extensively used in the coming sections to analyse the most plausible 

tracking method. 

stochastic Gaussian models) without broadcasting their positions to the rest of the population. 

Once a suitable region is identified using broader searches, a virtual agent utilises the 

available communicational method to advertise its findings. The denser guided searches 

(Equation 4.1) are then applied in order to accept or reject a hypothesis. The idea therefore 

revolves around devising an effective recovery phase to regain control of the tracking 

windows (as was explained in Sections 4.1, 4.2). The virtual guided search (VGS) is hence a 

novel idea presented here to solve the vision based problems. We aim to apply both VGS and 

the RSO in the coming sections. 

The operational environments for the visual detection problems are presented in Figur

 

Figure 6.25: Detection of object of interest becomes a blind search in case the trail is lost. 
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6.4.1 Detection Experiment (the ant in a maze sequence). 








30

30

aim here is to analyse the effectiveness of the exploratory features of both PSO and Bat 

algorithms. The virtually guided particle behaviours are then applied in order to research into 

the most suitable tracking methodology for a real time performance. A complicated frame 

was chosen from the video (introduced in Section 5.2.1) for the detection runs. The surface 

plot of the problem is shown in Figure 6.26, and it is evident that this problem is highly 

rippled with similar peaks presen

In this experiment we kept the window size to  pixels in both x-y dimensions, and the 

t in the surroundings. 

Figure 6.26: The surface plot of the search space shows peaks of matching densities. 

 

 

 

 

 

 

igure 6.27: The visual detection of ant is carried out by using a particle sweep in PSO. 
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Figure 6.27 shows the detection results when the newly devised PSO format (based on the 

stochastic variations defined in Equations 3.12-3.13) is applied to the ant trapped in a maze 

image sequence. A population sweep (similar to Figure 3.57, where a particle population is 

8:  The convergence behaviour of a modified PSO without using for-loops. 

A code optimisation (CO) procedure [270] was carried out onto the PSO program (applied in 

Figure 6.27). The main idea of CO is to avoid the conventional ‘for loops’ (a type of 

programming construct) which are extensively applied during particle translations in a search 

space (Figure 6.29). The code in Figure 6.29 consists of five major sections, an initialization 

phase (particles are spread in the space), an outer loop to sequentially increment the 

ace, a PSO 

sequentially increased to study the consequences on an optimisation process) was conducted, 

and the detection behaviour is plotted for 5-1000 particles. The general trend that could be 

observed in Figure 6.28 is that the computational complexity increases almost exponentially 

with the proliferating agent population. The best detection speeds are however observed 

when the particle population is ranging between the limits 50-150, and within this population 

span, a mean detection rate of 41 fps are recorded.   

Figure 6.2

population sizes, and the calculation of the objective values in the RGB sp
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behavioural implementation (Equations 3.5, 3.12 and 3.13), and finally calculating the 

Euclidean distances between the observed positions and the ground truth value of 



160

. The 

detection results after applying CO are shown in Figure 6.28, the detection rates were 

 

175

increased to a mean of 52.31 fps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.29: A section of the detection code written in Matlab (image processing toolbox). 
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Figure 6.30 shows the positions of the particles with respect to the object of interest for 

various tuning parameter selections (Equations 3.12-3.13). The video frames are taken after 

virtual particles could be observed in Figure 6.30d. On the other hand particles collapsed at a 

the maximum allowable time lapses during the runs. The non-convergent characteristic of the 

point in the situation c (where the parametric values are chosen as and8.01  2.02 

1. . Higher 

eter

). 

Figure 6.31 shows the convergence timing for a detection experime

convergence rate (129.7 FPS) is observed in the range where the tuning param  

was , whereby selecting its values between 

nt with 2 

8.0

0

45.001.0 1  45.0 1 resulted in the 

detection rates dropping to a mean of 53 FPS. Therefore the experiment (in Figure 6.31) also 

verified that visual detections are highly sensitive to the parametric choices in the swarm 

based methods (as suspected). 

 

 

 

 

Figure 6.30: (a) Phi1=0.6, Phi2=0.2 (b) phi1=0.6, phi2=0.3 (c) phi1=0.8, phi2=0.2 (d) Virtual-particles           

 

Figure 6.31: A modified PSO without using for-loops in the velocity and positional updates. 
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Similar to Figure 6.27, the bat algorithm was implemented to detect the object in the relevant 

landscape (Figure 6.26), and the results are presented in Figure 6.32. The mean convergence 

timing for a population size of 50-150 particles was observed to be around 143 fps, which is 

significantly higher than both PSO variants. Finally the detection was repeated for the virtual 

particle behaviours, and the results (Figure 6.33) are remarkably higher (as expected) 

compared to both Bat and PSO algorithms. The detection rate of 200 fps using virtual 

particles also verifies the earlier proposition (Section 6.3) that the memory operations in PSO 

and s are computational overheads with no optimisation impacts whatsoever. 

 

 

Bat algorithm

 

 

 

 

 

 

 

Figure 6.32: The detection timing when Bat algorithm was used to find the ant in a maze. 

 

 

 

 

 

 

 

 

Figure 6.33: Frame rate/ detection time using only virtual-particles (VPs). 
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6.5: Solving the Detection problem in the widened Search Space. 

hout the 

6.35 has been specifically drawn to relate the above mentioned problem in a typical detection 

case. As the tracking window widens, more surface abnormalities corrupt the measurements, 

and calculation of the correct MS vector is difficult to achieve. 

 

 

 

 

 

 

Figure 6.34: Search space selection and incorporation of local clutter in the measurements. 

 

 

 

 

 

 

 

Figure 6.35:  (a) ROI in frame. (b) Surface Plot. (c) A depiction of discrete density model. 

The operational basin in the meanshift (MS) visual detections remains static throug

tracking (Section 2.5.4). One way to rectify the inherent weakness of the MS algorithm is to 

automatically alter the window sizes to incorporate more diversified measurements. However 

widening of the search space gives birth to an expedited accumulation of errors, as more 

clutter is usually introduced into the measurements as shown in Figure 6.34 (when the search 

space widens from to , a lot more distracters enter into the tracking window). Figure 
1 n

Local distracters 
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In this section we will conduct further experimentations to check that whether the Guided 

cal search (GLS) could be used to identify local clutter and the changing histogram profiles 

 shown in Figure 6.35(a) 

4.1). In the first 

 

 

 

 

 

Figure 6.36: The detection using PSO failed drastically after 80th frame. 

 

 

 

 

 

 

 

 

Figure 6.37: The guided search maintained the position of object as the window is enlarged. 

lo

in Figure 6.35 (c). We will iteratively increase the window sizes as

to penalise the distracters (using the guided local searches as in Equation 

case, detections are carried out by widening the tracking window (







10

10
-








210

210
) without the 

GLS module, and the results are presented in Figure 6.36.  
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The guided search was then applied in Figure 6.37 exploiting two optimisation paradigms. 

irst virtual guided search (VGS) was used as a meta-heuristic over the PSO, and in the 

igure 6.37 

 

 

 

igure 6.38: The error plot of detection using Bat algorithm in Figure 6.35. 

igure 6.39: Errors are significantly reduced by introducing the guided searches. 

F

second case, the experiments were repeated using VGS on its own. The results in F

show that both algorithms worked competitively well and errors are significantly reduced. 

The tests are repeated for the Bat algorithm and VGS algorithm in Figures 6.38-6.39 (two 

plots exhibit VGS assisted Bat and the VGS tracking on its own). The plot in Figure 6.39 

shows how GLS facilitated the recovery of the Bat detections carried out in Figure 6.38. 
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Figures 6.36-6.39 were generated by programming a meta-heuristics (VGS) over the standard 

at and PSO algorithms. The core idea of these hybrid tests was to analyse if swarming 

6.39), it 

maximum permissible window size- ), and the results are presented underneath. It 

runs 

espite of the clutter) at an average rate of 0.2-0.3 seconds. 

Figure 6.40: The graph of the detection time versus the population size using VGS. 

B

phenomenon increases the precision. However from the experimental data (Figure 

was affirmed that the virtual particles (with a guided local heuristic) are capable within 

themselves to precisely detect and track an OOI (overlapping results in Figure 6.39). Further 

timing experiments were conducted by varying the population sizes in the VGS algorithm (to 








320

240

appears that the convergence timings of the VGS algorithm are less prone to the population 

strengths as displayed in Figure 6.40. The ant was successfully detected in all 205 



(d
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The program structure used in the virtual assisted Bat experiment is partly shown in Figure 

.41. The outer loop-1 is used to increase the windows size, whereas loop-2 strategically 

 the corresponding 

 

 

Figure 6.41: The VGS assisted Bat detection algorithm. 

 

 

6

places the required number of particles in the search space and calculates

objective function values. The guided local search is then implemented in the construct-3, 

whereby, further refinements (nested searches) are sought by reproducing a swarm of Bats in 

closer vicinity projected by the VGS. 
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6.6: Applying RSO and VGS in the Ant tracking sequence. 

s (e.g., 

model, the tracking algorithm is normally unable 

tion. Similarly, when the object travels outside the search 

basin, the tracking algorithm fails to match the known patterns, and therefore, the window 

generally keeps roaming around in the sub-optimal regions. 

 

 

 

 

 

 

Figure 6.42: The feature space plots of an object of interest during lighting change. 

Figure 6.42 shows the effects of lighting on the object model during two different frames

the sequence (Section 5.2.1). The 3d surface plots of the normalised colour intensities show 

the extent of the non-linear shifts which render the objects to an extent that they beco

undetectable in frames. One solution to the problem displayed in Figure 6.42 is to provid

motion assistances using scale space differences (see Figure 6.6) until the original conditions 

have returned. 

 In cases of permanent shifts the only resilient solution (to address the dynamic problem) is to 

Two predominantly common problems in the sequential pattern matching algorithm

vision tracking) are the changes in the object profiles in the feature space, and the exhibition 

of non-linear dynamics during the video tracking stages, which often translates an object 

outside the scope of an observational window or operational basin. The aim of the 

forthcoming sections is to analyse the applicability of both RSO and VGS algorithms in order 

to regain control of the tracker in challenging scene conditions. If the feature space changes 

are not timely incorporated into the object 

to detect the object under observa

 of 

me 

e 

Surface Plot Frame-10 Surface Plot Frame-335 
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remodel the objects in the feature space. Optimistically speaking, the VGS and RSO 

 sequence of the tracking experimentations in coming sections. 

(Sections 3.4, 4.1, 6.4) based detections would enable us to address any unpredictable 

movement (due to a scale free approach) during manoeuvrability phases, and these scenarios 

will be further tested in the coming experiments. Figure 6.43 shows the sequence of these 

demonstrations. The experiments start by allocating the dynamical windows in Section 6.6, 

and a final conclusive stage (Section 6.10) would help to stipulate the applicability of the 

tuning free approach (adapted in this thesis), and the aim is to test the performance of the 

novel RSO-VGS algorithm.  
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6.7: Tracking using the dynamically changing window size. 

In this experiment we applied the standard Bat algorithm to track an object of interest. The 

core idea in this approach is to alter the window sizes in order to regain control of the 








10

10

is selected to track an ant in a maze as shown in Figure 6.44. Figure 6.44 reveals that once the 

tracking window was lost in the frame (205

tracking window during the lost frames. In the first experiment, a window size of  pixels 

d in the search space. The errors  (Figure 6.45) are plotted 

r this video sequence in Figure 6.44. 

igure 6.44: The errors and are plotted f 4 frames. 

igure 6.45: The calculation of the Euclidean error distance VS the errors and
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th frame), the tracker was never able to recover, 
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Figure 6.46: The pictorial view of the tracking errors and in four imaging frames. 

have altered the swarm population size from

xE yE

Some frames from the tracking sequence are presented in Figure 6.46. The larger squares are 

used to identify the true positions (ground truth) of the ROI, whereas, the smaller window 

replicate a tracked positions along the 2 dimensional (XY) space. In the next experiment, we 

 50sp to 100sp , and the tracking results are 

e tracking window successfully recovered after 417th 

ame in this sequence. The 2 dominant error phases are plotted in Figures 6.47-6.48. In case 

of a window size , the error plots in Fi display a robust recovery.  

 B . 

plotted in Figure 6.47. Remarkably, th

fr











20

20
sW gure 6.47 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.47: The object tracking with a window size 




20
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 and swarm of 50 ATS
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Finally, the tracking window was adjusted to  with 









50

50
sw 100sp bats, and Figure 6.48 

shows the tracking errors observed in this particular detection situation. This experiment 

shows the scale of the errors when a tracking window is widened in order to recover a lost 

n ti ich exhibits 

successful in locating a ROI (as in Figure 6.49). 

 

 

 

igure 6.49: The object tracking with a window size and a swarm of 100 BATS. 

 

position (Section 6.4). The problem has also bee  iden fied in Figure 6.48, wh

that the tracker converged to the non-optimal regions/shadows. The tracker has never been 

 

 

Figure 6.48: The pictorial/graphical view 3-tracking frames. 
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6.8 Tracking using state vector fusions. 

One way to resolve the model related problem (exemplified in Figure 6.42) is to fuse the state 

vectors of parallel processes with an aim to increase the tracker robustness. The 

undeterminable changes in the object models could be addressed by collating the motion and 

density vectors. The opinion polling mechanism [271] was used in this experiment to 

integrate location based information. Both Euclidean and x-y errors are plotted in Figure 

6.51. The performance enhancement is evident when the results are compared to Figure 6.49. 

The performance of the tracker is somewhat marginalised by a low mean frame rate of 21.73 

FPS. The stability of the tracker during adverse lighting phases could be confirmed in Figure 

6.50 as well. 

igure 6.50: ROI was successfully tracked in the region of large illumination changes. 

 

igure 6.51: The fusion of colour and motion models increases stability in the ant tracking. 

F

 

 

 

 

 

 

 

 

F



                                                                                        
 

226

6.9 Tracking using penalising approaches. 

 

 

 

 

igure 6.52: The performance of the virtual assisted PSO in the ant tracking sequence. 

 

 

ze. 

The virtual assisted PSO (PSO-VA) and the virtually assisted Bat (Bat-VA) are novel meta-

heuristic algorithms devised to entail optimal convergence of particles. The RSO performs 

random searches in the search space, and the guided search (Sections 4.2-4.3) is applied once 

the object characteristics are discovered. During the next stages, particle rebirths (see Figure 

3.36) take place and both PSO and Bat convergences are used to refine the object locations. 

The x-y tracking errors are plotted in Figures 6.51 and 6.52. Both Bat and virtually assisted 

PSO recovered from seven major illumination changes as plotted in Figures 6.52 and 6.53. 
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Figure 6.53: The performance of the virtual assisted Bats in detecting an ant trapped in a ma
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6.10   Tracking using Model-Updates and VGS as a metaheuristic. 

ce 

xperienced in two consecutive frames. The underline theme behind the model updates is to 

construct the feature profiles at the moment an adversity is found in a video frame. In this 

ction, the profile updates will be applied using PSO-VA and Bat-VA. 

igure 6.54: The discrepancies in the RGB colour channels of the object profile. 

he results of the tracking by subjecting the PSO-VA and Bat-VA along with the feature 

pdates are shown in Figures 6.55 and 6.56. Both algorithms maintained good tracks of the 

oving object, and the resulting plots show that the convergence timing was also 

gnificantly increased from 21.73fps (Figure 6.51) to 50fps in the PSO-VA case with  

MSE=6.9pixels. The Bat-VA was comparatively more effective and frames were tracked at 

 rate of 66fps (Figure 6.56) with reduction in the errors (RMSE=4.42 pixels). 

The population based methods generally lack an ability to penalise clutter, and therefore due 

to an absence of a guiding procedure, the process suffers from a tendency to converge 

towards local optimal regions. The radical search optimization (RSO) (Section 3.4) is a novel 

scale free optimization methodology which is more effective than the particle swarms 

(Section 3.3). Moreover, the virtual guided search (VGS) is a memory free particle hierarchy 

(Figure 6.24) that enables the agents (conducting RSO) to perform detailed local searches and 

penalise the non-optimal regions. Figure 6.54 exhibits the scale of changes in the RGB spa
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Figure 6.55: Frame rate of 50fps and a RMSE of 6.9 pixels were observed in ant sequence. 

 

 

 

 

Figure 6.56: BAT algorithm using virtual guided search as meta-heuristics and bin updates. 
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6.11   Tracking using only VGS with Model-Update. 

The aim of this experiment is to analyse both the tracking accuracy and the convergence 

timing using VGS and RSO routines without swarm deployments. The performance plots in 

Figure 6.57 highlights the fact that the errors in both x-y dimensions are significantly reduced 

with a mean error vector . The illumination variations have been compensated by 

rebuilding the feature profile during adverse frames. Compared to Figure 6.55, the errors 

peaks between 335-373 frames are therefore less significant. A mean convergence time of 

0.004 seconds was recorded in Figure 6.58. Therefore the RSA-VGS produced significantly 

accurate results at 250fps in this vision tracking sequence. The performance of RSO is also in 

line with the results obtained in optimising the evolutionary test cases (Figures 3.63-3.66). A 

number of frames (32) have been selected and the tracking results are displayed in pictorial 

formats in Figure 6.59.     
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Figure 6.57: VGS tracking was performed with fewer errors than the PSO-VA and Bat-VA. 
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Figure 6.58: The VGS algorithm managed to attain a mean FPS=250, VGS/RSO has outclassed both 

BAT and PSO (inline with the findings presented in Section 3.5) by huge margins. This is partl ue 

to the fact that no record of velocity and positions is kept as explained in Section 6.3. 
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Figure 6.59: Tracking ant sequence at a frame rate of between 200-250 using VGS alone, the 

algorithm quickly regained control after the lost frames using RSO heuristics. 
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6.12   Scale free searches in the Drone Sequence. 

otion modelling using kinematics (Sections 2.1-2.4) has been a popular methodology 

any years in the video tracking problems. However, one of the key adversities (that 

standard tracking algorithms based on motion modelling have been unable to address) is the 

partial and complete occlusions of an object of interest. When an object becomes 

veral frames, the tracking algorithm generally 

gs behind the true position and the detection fails. Figure 6.60 shows this problem 

raphically, the state of any tracking application comprises of the window size 

arameter , and its mean position . Therefore the aim of tracking is to minimise the 

istance  between the me  and the object centroid. The role of the RSO 

articles is to provide the required loose control based on the Bernsteinian control theory 

Figure 2.9), and later on, the strict disciplinary nature of the VGS projects a much tighter 

ontrol to efficiently detect and track an object. 

 

 

 

igure 6.60: The scale free searches using RSO 

e applied the scale free searches based on RSO and VGS to the drone sequence, the 

everity of the problem with dynamical windows have been identified in Figure 6.61. The 
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enlargement of the tracking window (in this test) provides an ideal platform to study the 

between the low cloud and drone. 

 

detection efficiency of the RSO-VGS duo. In these experiments the window size will be 

varied from 



10

 to 



300

, and the penalising VGS approach will be applied to distinguish 
10 300

 

Figure 6.61:  The scale of the search windows in these experiments compared to the ROI. 
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The tracking window size is varied as shown in Figures 6.59 and 6.60, both the detection 

errors and the convergence timings are plotted for each case. 

 

 

 

 

 

Figure 6.62: Effects of the window size selection  to  onto the frame/detection rates and the 

time needed to converge. 
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Figure 6.63: Effects of window size selections  onto the detection errors and the 
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In Figures 6.62 and 6.63 the mean convergence rate is recorded to be between 0.01-3.65 

seconds when the window size was varied between 100-90k pixels. The detection efficiency 

of 0.94 with a window size of  shows the stability of the proposed RSO-VGS 

methodology. The detection (after occlusion) in the largest window (Figure 6.63) took only 

3.65 seconds to converge to the optim l. A real time convergence rate of 98fps was observed 

with a  window size. Further fascinating factor in these tests was that the experiments 

ed with only  par les that simulated virtual swarms in the search space  

 

To analyse the effects of particle strengths in VGS tracking, a population sweep test was 

conducted  with a window size of , and the convergence results are presented 

in Figure 6.64. From the shape of error plots we can conclude that the accuracy of the RSO-

VGS trackers is also less dependent on the population strengths. However the frame rate 

peaked when 150-203 particles are deployed in this experiment.  

igure 6.64: Effects of the particle sizes implying the VGS-RSO tracking in the drone Sequence. 

he tracking results with variable window selections are drawn in Figure 6.62. The algorithm 

dynamically changes complexity by evaluating the scene using the VGS. If the pattern 
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matching fails in an image, the algorithm dynamically alters the windows size to incorporate 

wider RSO searches. The drone was successfully tracked at an average rate of 35fps, and 

some tracking frames are presented igure 6.65. On a particular occasion the drone got 

 

 

 

 in F

occluded during several frames by a low cloud, and it recovered from this complete occlusion 

in less than 2.44 seconds at a later stage by using the RSO. 

 

 

 

 

 

 

 

 

 

Figure 6.65: Tracking of the drone sequence using auto-varying window sizes. 

 

 

 

 

 

 

 

 



                                                                                        
 

238

6.13   Comparison with Mean Shift Tracking. 

In this section the meanshift (MS) tracking was implemented to track a pedestrian as shown 

in Figure 6.66. Due to the intensive nature of the meanshift searches (which usually takes 

place in a fixed operational basin) it only managed a maximum tracking rate of only 21FPS  

in pedestrian tracking sequence at a mean convergence error of 1.34 pixels. 

 

 

 

 

 

 

Figure 6.66: Tracking in pedestrian sequence using uniform meanshift kernel. 

he application of MS in the ant tracking sequence (Figure 6.67) managed a frame rate of 

nly 17FPS in Figure 6.66, and the convergence errors are averaged out and found to be in 

e vicinity of 1.23 pixels (using the Euclidean distance norm). When both MS and motion 

stimation were utilised, the convergence timing improved to a mean value of 23FPS (Figure 

.67) which is still way less than what we achieved using the RSO-VGS algorithm in earlier 

nalysis performed in Chapter 6. 

igure 6.67: Tracking ant using MS at a frame rate of 17 and RMSE of 1.2 pixels. 
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6.14 Tracking Highway Sequence. 

e RSO-VGS methodology proposed in 

nthetic motorway 

quence (Figure 6.68). 

 

 

 

8: Real time tracking in Highway Sequences at frame rates of 57-70. 

 

Several vehicles were also accurately tracked using th

Chapters 3-6. The results approved that our tracking methodology is suitable for a variety of 

detection and tracking scenarios. In the top sequence various motor vehicles were correctly 

identified and tracked, whereby a green van was tracked at a rate of 60FPS with a mean pixel 

discrepancy of 2.13. The RSO tracking was also successfully applied to a sy

se

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6
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6.15 Results of some further Experiments. 

cts. Detection test precisely located various balls in 

ticle method is widely applicable.  

igure 6.69: Multiple object tracking in synthetic sequences using bat and virtual particles. 

igure 6.70: Applying visual detection to various cartoon images (converged particles drawn). 

Detection of Walking Man after phases of occlusion was robust and accurate direction.  

To establish further applicability of the VGS-RSO, several experiments were conducted in 

order to track and detect a variety of obje

the juggling sequence. Tracking algorithms were applied to a video game sequence (in Figure 

6.69) achieving real time performances of 17-31fps. The detection experiments (50 runs) 

were carried out to identify various regions in the cartoon images (Figure 6.70) achieving 

detection times of between 0.013-0.023 seconds. Finally, the partial occlusion was 

successfully resolved in the walking man video (Figure 6.71). Hence we conclude safely that 

our novel tuning free par
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.Figure 6.71: 
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Chapter 7 

 [28]) generally tend to ignore the 

istorical inferences (as integrated memory was reckoned to be a luxury during that time) in 

in an insight into the future behaviour of a dynamic system. Today, the human 

generation is rocketing towards a new technological phase, and the role of self evolving 

s and collaborative intelligence (among entities) is becoming much more apparent, 

therefore paving further a path to self correction and towards an embedded reconfiguration. 

7.1 Research Background 

ents (birds, humans, wild animals and insects)

t that is deployed to solve computational problems arising when an exact 

olution does not exist in reality (Sections 1.1-1.3). Scientists are intrigued to designate 

ersatile behaviours to the basic search element, and the particle roles are generally depicted 

om the natural life observations. The literature survey conducted in this thesis spanned from 

the correlative and mesmerising flypasts of the murmuring starlings to the bioluminescence 

among mating fireflies. However, one key aspect that captivated our attention (we may call it 

Conclusions  

Automatic tracking is a fundamental branch of vision science and it deals with the 

identification of a region of interest, and inferences are made to determine the concealed 

knowledge (e.g., motion patterns) on the sequential arrivals of digital images. To meet the 

challenges and demands of developing a real time tracking algorithm, author had to deal with 

a number of misconceptions basically stemming from the technological limitations of the past 

century. Many common linear estimation processes and relative stochastic controllers (an era 

beginning from the renowned work of Rudolf Emil Kalman

h

order to ga

system

Like many real world ag , a particle is a basic 

computational agen

s

v

fr
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a discrepancy), and comes after the realization that a lot of (so called) optimisation scenarios 

are in fact just simulations of the natural agents, and exhibit their changing social behaviours 

in a natural world in order to deal with the calamities. In view of this research, a futuristic 

strategy and approach should rectify the core misconceptions in order to develop faster and 

efficient optimisation routines. For a new generation of scientists and engineers, a clearer 

insight into this problem is important, and there is an imperative need to differentiate among 

the particle roles in both simulative and optimisation scenarios.  

This thesis developed a practical approach to devise some novel optimisation strategies that 

are tested in both evolutionary and imaging test cases. From a broad range of 

experimentations conducted in this thesis, it has come to our attention that tracking 

applications are extremely sensitive to the parametric selections in regards to the discovery of 

solutions that satisfy both space and time constraints. Particularly, in the work of Kennedy 

and Eberhart [146], the right parametric settings in Equation (3.5) are extremely difficult to 

be handled in live real time video scenarios; this effect is studied in detail and demonstrated 

in relation to Figures 3.55, 6.31 for solving rigorous evolutionary test cases. 

7.2 Methodology 

Along with the functional level difficulties witnessed in general optimisation algorithms, 

many optimisation contingencies arise particularly from a grass root level in the evolutionary 

branch of mathematics. During the course of this research, a meticulous comparative analysis 

is performed in Chapter 3 (Figures 3.3-3.17), and the underline aim was to alleviate the 

convergence issues resulting from the empathetic social velocity vectors in multi-dimensional 

test bench problems. It is later learnt through experiments that the pragmatic initializations 

(e.g., by using multiple solutions) could address the elementary challenges encountered when 

unfamiliar/online optimisation scenarios are being handled. Furthermore, for an optimal and 

timely convergence, a broader diversity is needed in the imaging algorithms. The gradient 
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based approaches (despite of their inbuilt reassurance to find at least a local optimal solution) 

are unreliable techniques that usually prohibit timely discovery of a correct locus in multi-

.3 and 3.23). The particle injections into discerned image 

lication of systematic perturbations (within search space 

boundaries) have much greater tendency to solve vision problems in a robust fashion. Hence, 

e 

 way collateral artefacts of colonies (of agents) are declared 

modal visual systems (Figures 1

areas, and consequently, the app

the deterministic shifts using proliferating modelling in analytical mathematics has very 

limited role in the computer vision applications, as the problem at hand is more of a non-

linear in nature. In order to further reduce the computational complexity, the swarming 

characteristic is impersonated by deployments of a limited particle population.  An optimal 

particle based technique therefore is embedded through the virtual swarming illusion in 

which particles flew repeatedly (in the feasible space) reducing a population size. 

 The computational equivalence could be established by investigating the search problem in 

the light of no free lunch theorem of Macready and Wolpert [191]. Moreover, as a virtual 

agent can be anywhere anytime, we are not bounded to explicitly calculate relative 

transitional energies (of a migrating population unlike natural entities) between search areas. 

Two fundamentally important enhancements (needed to make particle searches more 

efficient) are related to the manner in which a particle establishes its correlations with th

surrounding landscape, and the

within global environmental variables. Unlike social convergence of particle in PSO 

(invented by Kennedy and pictorially drawn in Figure 3.28), a scale free correlation (termed 

as RSO or RSA in Chapter 3) of particles is an autonomous and foraging strategy inspired by 

natural agents (as mentioned earlier). Therefore, unlike mandatory hierarchy in social agents, 

the detachment could be the key in an artificial visual tracking (e.g., in robotic vision, and in 

accordance with the experimental findings of Chapter 3 and 6), in which nostalgic operations 

and social gestures are bypassed for reduced optimisation timings.    
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7.3 Convergence Issues in Tracking Applications 

The pre-mature stagnation (convergence to sub-optimal regions which restricts explorations 

of the search space) is one such unwanted feature that usually occurs in the swarm based 

approaches. The convergence issues (in the view of this thesis) occur due to the changing 

assignments of the global best solutions, as once the particles have converged to confined 

areas in the solution space; their diversity levels falls treacherously, and finally their vision is 

limited to an extent that they remain oblivious of even the surrounding landscape. Therefore, 

ds. Some rigours 

i-modal test problem (e.g., Rastrigin) are solved in Section 3.5 by first 

the core policy in RSO is to ensure that all feasible regions are explored using parallel search 

strategies, and afterwards, only prominent regions are exploited in a nested fashion (for the 

detection of a global optimal solution). The core building blocks of the evolutionary dynamic 

optimisation theory are discussed in Chapter 4 with a prospective to expedite frame rates in 

Chapter 6. By indulging the core feature discussed earlier, we experienced a tracking rate of 

as high as 200-250 frames per second during the tracking assignments. 

 The resultant intelligent particle roaming and emergent behaviour are significantly better 

optimisation methodologies compared to the traditional swarm based metho

and challenging mult

using the standard PSO and then by applying its variants, later on, the problems are tackled 

by applying RSO. The results presented in Figures 3.45-3.66 are quite intriguing/shocking 

(with some prediction, as we anticipated that the social components among particles are not 

contributable optimisation factors) for the author as well.  

The new particle roles and the search space expeditions relied on the novel agent features that 

are prescribed in accordance with the properties defined in Section 3.4. By analysing the 

convergence graphs in Section 3.5, we reached to a conclusion that the RSO algorithm 

transcended all main variants of the particle swarm optimisation in both time and space, 

Figures 3.63-3.66 delineates both the novelty and applicability of RSO in key test cases.  



                                                                                        
 

245

7.4 Registration of Searches 

The second problem is merely a function level attribute which sees every particle position to 

be stored in the working memory, and Figure 6.24 was particularly drawn to highlight this 

fundamental flaw. In reality, we discovered that the storing of particle positions is not 

required (at all), and instead, a better focus must be on the rebirth phenomenon which 

facilitates particles proliferating in only specified regions of interest, thus saving valuable 

computational time. The virtual particle (VP) therefore does not store intermittent positions 

(Section 3.4), and it bypasses slow memory operations which helped us to attain a real time 

objective in almost every tracking problem (see Figure 6.58). The detections based on the 

virtual guided searches (VGS) also entailed timely recovery of the object of interest (a core 

problem in the vision applications). The penalising ability introduced by the VGS and RSO 

t, and is built to escape 

helped identification of the background clutter (low fast moving cloud) in the drone sequence 

(Section 6.11). 

Finally, we would like to conclude the discussions presented in Chapter 7 in more simplistic 

wordings. It would help to recap the contributions of this thesis. We altered the definition and 

role of particles (using RSO-VGS), which sees a tracking problem in the light of pure 

optimisation without any unwanted simulative gesture. A radical particle (RP) is therefore an 

autonomous agent (responsible for its own behaviour) which scrutinizes the search space by 

using both olfactory and visual senses. As a RP can glance much further into a search space, 

a nominal population of particles could scrutinize a broader search space eliminating the need 

to employ hundreds and thousands of nostalgic particles. The virtual particles are mortal 

elements of a colony (unlike real life agents), and therefore as they do not require the 

convergent or dispersion energies, and thus saving these high computational resources a more 

task oriented feature was seen in our experiments. The tuning free method of RSO-VGS is 

applicable in almost every test scenario, and is not scene dependen
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local traps. The issue of pre-mature stagnation is inherently addressed in our novel strategy, 

n’s research findings. 

tion of flexibility, which creates a 

as usually, it is the space which converges rather than the particles.     

7.5 Future Research 

The changing roles of particles could be utilised in many other computer vision applications 

(e.g., establishing shape identities and contour based matching/segmentation). The most 

common problems in the curve based recognition could be rectified by granting data points a 

sense of evolution (Figure 3.34). Therefore, the curvature reducing measures (portrayed in 

Figure 3.34 as tighter metallic rings) are not required (in the opinion of this research) for an 

evolving contour aiming to identify a region of interest. Hence by implementing radical 

searches in Figure 3.34b, the evolution time could be reduced significantly. It was highlighted 

in the categorization part of this thesis (Section 2.4) that an evolving contour is nothing more 

than an ensemble of particles (data points), hence, by enforcing tighter control policies (at all 

times), we are in a conflicting situation against Norbert’s and Bernstei

A meaningful optimal control is nothing more than “an act of steering” (a Norbert Weiner 

quote-Section 2.4.1).  

I witnessed my drone enthusiast peer spending ludicrous amount of time and finances to 

modify its impulse response to achieve the level of stability in its flights like a humming bird 

(but in vain, as natural designs are more reinventing). The findings of this thesis could be 

utilised to address many automatic control problems as well. The ramifications of tighter 

deterministic drifts could be avoided by bringing in the no

better distributed learning environment. The high speed tracking (achieved through the 

techniques developed in this thesis) could be applied in many automatic resource allocation 

problems. The faster detection phases (based on VGS) could be deployed for better camera 

focus, and general video capturing devices could also benefit from this technique. However, a 

great deal of learning is possible from the natural expositions of life around us. 



                                                                                        
 

247

References 
 

 
[1]-F. Barnard 1913. Advertising Trade Journal Printers Ink. New York USA. 

[2]-Badawy, Wael; Jullien, Graham A., eds. (2003). System-on-Chip for Real-Time          
Applications. Kluwer international series in engineering and computer science, SECS 
711.  

[3]-Hurlburt,  Miller, Voas An Ethical Analysis of Automation, Risk, and the Financial 

 

Survey," 2015 International Conference on Computational Intelligence and 

 

motion prediction in complex urban scenarios," 2010 IEEE Intelligent Vehicles 

 

motion prediction," [1990] Proceedings. 10th International Conference on Pattern 

 

[7]-https://en

 

Crises of 2008, IEEE Reliability Society 2008 Annual Technology Report 

[4]-K. R. Reddy, K. H. Priya and N. Neelima, "Object Detection and Tracking -- A 

Communication Networks (CICN), Jabalpur, 2015, pp. 418-421. 

[5]-C. Hermes, J. Einhaus, M. Hahn, C. Wöhler and F. Kummert, "Vehicle tracking and 

Symposium, San Diego, CA, 2010, pp. 26-33. 

[6]-K. P. Karmann, "Time-recursive motion estimation using dynamical models for 

Recognition, Atlantic City, NJ, 1990, pp. 268-270 vol.1. 

.wikipedia.org/wiki/Quantum_Cloud 

 

theory for inverse problems in signal processing," in Communications, Radar and Signal 

 

Affine Transformations," 2006 IEEE International Conference on Acoustics Speech and 

 

Problems: Optimality of Curvelet FramesDepartment of Statistics Stanford University 

 

[8]-E. R. Pike, J. G. McWhirter, M. Bertero and C. de Mol, "Generalised information 

Processing, IEE Proceedings F, vol. 131, no. 6, pp. 660-667, October 1984. 

[9]-R. Hagege and J. M. Francos, "Linear Estimation of Sequences of Multi-Dimensional 

Signal Processing Proceedings, Toulouse, 2006, pp. II-II. 

[10]-Emmanuel J. Cand`es & David L. Donoho, Recovering Edges in Ill-Posed Inverse 

March, 2000 

[11]-Aster, Richard; Borchers, Brian, and Thurber, Clifford (2012). Parameter Estimation 
and Inverse Problems, Second Edition, Elsevier. ISBN 0123850487, ISBN 978- 

[12]-S. Ambikasaran, “A fast direct solver for dense linear systems,” 

 

Discontinuities," in IEEE Transactions on Pattern Analysis and Machine Intelligence, 

 

https://github.com/sivaramambikasaran/HODLR, 2013.  

[13]-D. Terzopoulos, "Regularization of Inverse Visual Problems Involving 

vol.PAMI-8,no.4,pp.413-424,July1986.doi: 10.1109/TPAMI.1986.4767807 
[14]-Walter, E.; Pronzato, L. (1997). Identification of Parametric Models from 
Experimental Data. London, UK: Springer-Verlag. 
 



                                                                                        
 

248

[15]-Nocedal, Jorge; Wright, Stephen J. (1999). Numerical Optimization. Springer-
Verlag. ISBN 0-387-98793-2. 

[16]-Jan A. Snyman (2005). Practical Mathematical Optimization: An Introduction to   
Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer 
Publishing. ISBN 0-387-24348-8 

 

In IEEE Conf. Computer vision and Pattern Recognition, 750 – 755, 1997 

[19]-Z. Han, R. Zhang, L. Wen, X. Xie and Z. Li, "Moving Object Tracking Method 

Informatics - Computing Technology, Intelligent Technology, Industrial Information 

 
[17]-S. Besson, M. Barlaud, and G. Aubert, “Detection and tracking of moving objects 
using a new level set based method,” Proc. ICPR, vol. 3, pp. 1100 – 1105, Sept 2000. 

[18]-D. Comaniciu, P. Meer. Robust analysis of feature space: Color image segmentation. 

 

Based on Improved Camshift Algorithm," 2016 International Conference on Industrial 

Integration (ICIICII), Wuhan, 2016, pp. 91-95. 
 
[20]-Blanco, J.L.; Gonzalez, J.; Fernandez-Madrigal, J.A. (2008). An Optimal Filtering 
Algorithm for Non-Parametric Observation Models in Robot Localization. IEEE 
International Conference on Robotics and Automation (ICRA'08). pp. 461–466 

[21]-Särkkä, Simo (2013). Bayesian Filtering and Smoothing (PDF). Cambridge 
University Press. 

[22]-Trelea, I.C. (2003). "The Particle Swarm Optimization Algorithm: convergence 
analysis and parameter selection". Information Processing Letters. 85 (6): 317–325. 

[23]-Pham, D.T., Castellani, M. (2009), The Bees Algorithm – Modelling Foraging 
Behaviour to Solve Continuous Optimisation Problems. Proc. ImechE, Part C, 223(12), 
2919-2938. 

[24]-M. Dorigo, Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico 
di Milano, Italy, 1992. 
 
[25]-R. S. Parpinelli, H. S. Lopes and A. A Freitas, "Data mining with an ant colony 
optimization algorithm," IEEE Transaction on Evolutionary Computation, vol.6, no.4, 
pp.321-332, 2002. 
 
[26]-Abbott, K. R.; Dukas, R. (2009). "Honeybees consider flower danger in their waggle 
dance". AnimalBehaviour. 78 (3): 633–635. 
 
[27]-Tsai, P. W.; Pan, J. S.; Liao, B. Y.; Tsai, M. J.; Istanda, V. (2012). "Bat algorithm 
inspired algorithm for solving numerical optimization problems". Applied 
MechanicsandMaterials.148-149:  
 
[28]-D.E. Catlin. Estimation, Control and the Discrete Kalman Filter. Springer Verlag, 
1984. 
 
[29]-P. W. Tsai, J. S. Pan, B. Y. Liao, M. J. Tsai, V. Istanda, Bat algorithm inspired 



                                                                                        
 

249

algorithm for solving numerical optim s, Applied Mechanics and ization problem
Materials, Vo.. 148-149, pp.134-137 (2012) 

[30]-Wilson, C. E. (2003). Kinematics and dynamics of machinery. Pearson 
Education. ISBN 978-0-201-35099-9. 
 
[31]-Bar-Shalom, Yaakov; Li, X. Rong; Kirubarajan, Thiagalingam (July 
2001). Estimation with Applications to Tracking and Navigation. New York: John Wiley 
& Sons. pp. 308–317.  
 
[32]-C. Fernandes, L. Gurvits, and Z. Li. Near optimal nonholonomic motion planning for 
a system of coupled rigid bodies. IEEE Transactions on Automatic Control, March 1994.  
 
[33]-G. F. Franklin, J. D.Çengel, Yunus A., and Michael A. Boles. "9-8." 
Thermodynamics: An Engineering Approach. 7th ed. New York: McGraw-Hill, 2011. 
510. 

[34]-Davim, J. Paulo, editor (2011) Mechatronics, John Wiley & Sons ISBN 978-1-
84821-308-1 . 

[35]-Kleppner, D.; Kolenkow, R. J. (1973). An Introduction to Mechanics. McGraw-
Hill. ISBN 0-07-035048-5. 

[36]-Galley, Chad R. (2013). "Classical Mechanics of Nonconservative 
Systems". Physical Review Letters. 110 (17): 174301. arXiv:1210.2745 .  

[37]-Arnol'd, V. I.; Kozlov, V. V.; Neĩshtadt, A. I. (1988), Mathematical aspects of 
classical and celestial mechanics, 3, Springer-Verlag 

[38]-Zimek, A.; Schubert, E.; Kriegel, H.-P. (2012). "A survey on unsupervised outlier 
detection in high-dimensional numerical data". Statistical Analysis and Data 
Mining. 5 (5): 363–387. doi:10.1002/sam.11161. 

    

      [39]- mars.nasa.gov/mer/home/ 

[40]-D. Simon. Evolutionary Optimization Algorithms. Wiley, 2013. 

[41]-http://www.mobileye.com 
 

  C.  Conati, K.  McCoy & G.  

[42]- S, Bull, N, Cooke & A, Mabbott. (2007). Visual Attention in  Open  Learner   

Model  Presentations  An  Eye-Tracking Investigation,  in

Paliouras (Eds), User Modeling 2007:11th International Conference, Springer-Verlag, 

Berlin Heidelberg, 187-196. 

[43]-European Roadmap Smart Systems for Automated Driving, European Technology 

Platform on Smart Systems Integration (EPoSS), 2015. 

https://books.google.com/books?id=Ha76NqrqPVIC
https://books.google.com/books?id=Ha76NqrqPVIC
https://books.google.com/books?id=Ha76NqrqPVIC
https://books.google.com/books?id=Ha76NqrqPVIC
https://en.wikipedia.org/wiki/Special:BookSources/0123850487


                                                                                        
 

250

 

[44]-http://microbetracker.org/help/helpMicrobeTracker.htm 

[45]-Shen,C.Galazia (2015): Automated tracking and analysis of behavior in restrained 
insects, Journal of Neuroscience Methods, Volume 239, 15 January 2015, Pages 194–205 

[46]-T. E. Boult, R. J. Micheals and X. Gao, “Into the Woods: Visual surveillance of 
noncooperative and camouflaged targets in complex outdoor settings,” Proc. IEEE, vol. 
89, no. 10,pp 1382-1402,2001 

[47]-Joubert, J. and Sharma, D. Using CMOS Cameras for Light Microscopy. 
Microscopy Today 19(4):22-29, 2011. 

[48]-Gérard Medioni; Sing Bing Kang (2004). Emerging Topics in Computer Vision. 
Prentice Hall. ISBN 0-13-101366-1. 

[49]-Autodesk, Inventor® : CAD program, computer software, 2013. 
http://www.autodesk.com/products/autodesk-inventorfamily/overview [12] Rippmann 
M.,  

[50]-Norman, G.R., Brooks, L.R., Coblentz, C.L and Babcock, C. J. “The correlation of 
feature identification and category judgments in diagnostic radiology,” Mem Cognit, 
20,344-355(1992) 

[51]-Le Dinh, Phuc-Tue; Patry, Jacques (February 24, 2006). "Video compression 
artifacts and MPEG noise reduction". Video Imaging DesignLine. Retrieved April 
30, 2010. 

[52]-Alessi, A. Sudano, D. Accoto, E. Guglielmelli, "Development of an autonomous 
robotic fish," In Biomedical Robotics and Biomechatronics (BioRob), 2012 4  IEE RAS th

& EMBS International Conference on Robotics(pp. 1032-1037).IEEE 

[53]-Bunge, Mario; "A general black-box theory", Philosophy of Science, Vol. 30, No. 4, 
1963, pp. 346-358. jstor/186066 

[54]-Hendrik Richter; Andries P. Engelbrecht (2014). Recent Advances in the Theory and 
Application of Fitness Landscapes. ISBN 978-3-642-41888-4. 

[55]-Pacheco, J. M., Traulsen, A. & Nowak, M. A. 2006 Coevolution of strategy and 
structure in complex networks with dynamical linking Phys. Rev. Lett. 97, 258103. 
(doi:10. 1103/PhysRevLett.97.258103)  

[56]-http://www.aylward.org/notes/open-access-medical-image-repositories 

[57]-Rosenfeld , A. C. Kak (1982), Digital Picture Processing, Academic Press, 
Inc., ISBN 0-12-597302-0 

[58]-W,Norbert; Cybernetics  or control and communication in the animal and the 
machine,professor of mathematics, the Massachusetts institute of technology,second 
edition. 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0387243488


                                                                                        
 

251

[59]-Latash, Mark L. (ed.) Progress in Motor Control: Bernstein's Traditions in 
Movement Studies, Vol. 1 

[60]-Bernstein, Nikolai (1967). The Coordination and Regulation of Movements. Oxford: 
Pergamon Press. 
 

[61]- W.E.Dyer. Inspiration your ultimate calling, Hay House Publications 2/28/06. ISBN 

1-4019-0721-0 

[62]-Stone, P., and Veloso, M. 1999. Task decomposition, dynamic role assignemnt, and 
low-bandwidth communicaiton for real-time strategic teamwork. Artificial Intelligence 
110(2):241–273. 

[63]-C. Stauffer and W. E. L. Grimson, "Adaptive background mixture models for real-
time tracking," Proceedings. 1999 IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, 1999, pp. 252 Vol. 
2. 

[64]-O. D. Escoda, A. Petrovic and P. Vandergheynst, "Segmentation of natural images 
using Scale-Space representations: A linear and a non-linear approach," 2002 11th 
European Signal Processing Conference, Toulouse, 2002, pp. 1-4. 

[65]-Y. Shi and W. C. Karl, "Real-time tracking using level sets," 2005 IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition (CV R'P 05), 2005, pp. 
34-41 vol. 2. 

[66]-Xue Zhou, Xi Li and Weiming Hu, "Level set tracking with dynamical shape 
priors," 2008 15th IEEE International Conference on Image Processing, San Diego, CA, 
2008, pp. 1540-1543. 

[67]-Tse Min Chen, R.C. Luo, Tsu Hung Hsiao. Visual tracking using adaptive color 
histogram model. IECON '99, Vol. 3: 1336 -1341, 1999. 

[68]-David J. Fleet & Yair Weiss (2006). "Optical Flow Estimation". In Paragios; et 
al. Handbook of Mathematical Models in Computer Vision (PDF). Springer. ISBN 0-387-
26371-3. 

[69]-J. Cox and S. L. Hingorani. An efficient implementation of Reid’s multiple 
hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. PAMI 

[70]-Mikolajczyk, C., Schmid, C., and Zisserman, A. 2004. Human detection based on a 
probabilistic assembly of robust part detectors. ECCV, vol. I, pp. 69–82 

[71]-R. Malladi, J. A. Sethian, and B. C. Vemuri, \Shape modeling with front 
propagation: A level set approach," Center for Pure and Applied Mathematics, Report 
PAM-589, Univ. of California, Berkeley, August 1993. 

http://academic.csuohio.edu/simond/EvolutionaryOptimization
http://academic.csuohio.edu/simond/EvolutionaryOptimization


                                                                                        
 

252

[72]-R.Bowden and M.Sarhadi “A non-linear Model of Shape and Motion for Tracking 
Finger Spelt American Sign Language” Image and Vision Computing,2002 

[73]-K. R. Reddy, K. H. Priya and N. Neelima, "Object Detection and Tracking -- A 
Survey," 2015 International Conference on Computational Intelligence and 
Communication Networks (CICN), Jabalpur, 2015, pp. 418-421. 

[74]-Yilmaz, “Object tracking a survey” Ohio State University.  

[75]- Masreliez, C. Johan; Martin, R D (1977). "Robust Bayesian estimation for the linear 
model and robustifying the Kalman filter". IEEE Transactions on Automatic 
Control. 22 (3): 361–371. doi:10.1109/TAC.1977.1101538 

[76]-Lee, Peter M. (2012). "Chapter 1". Bayesian Statistics. Wiley. ISBN 978-1-1183-
3257-3. 

[77]-Kalman, R. E. (1960). "A New Approach to Linear Filtering and Prediction 
Problems". Journal of Basic Engineering. 82: 35. doi:10.1115/1.3662552 

[78]-Masreliez, C. Johan; Martin, R D (1977). "Robust Bayesian estimation for the linear 
model and robustifying the Kalman filter". IEEE Transactions on Automatic 
Control. 22 (3): 361–371. doi:10.1109/TAC.1977.1101538 

[79]-Kroese, D. P.; Taimre, T.; Botev, Z. I. (2011). Handbook of Monte Carlo Methods. 
John Wiley & Sons. 
 
[80]-http://nmarkou.blogspot.co.uk/2011/11/particle-filter-snippet.html 
 
[81]-Anderson and Moore 1979. Optimal Filtering. Prentice Hall. 

[82]-M. Isard and A. Blake. CONDENSATION: conditional density propagation for 
visual tracking. International Journal of Computer Vision, 29(1), 1998. 

 seeking, and clustering. PAMI, 17(8), 1995. 
 

 
[83]-Y. Cheng. Mean shift, mode

[84]-Fast Gradient Methods, lecture notes by Prof. Lieven Vandenberghe for EE236C at 
UCLA 
 
[85]-Sutton, R. S. (1986). Two problems with backpropagation and other steepest-descent 
learning procedures for networks. Proc. 8th Annual Conf. Cognitive Science society 

[86]-Atkinson, Kendell A. (1988). "Section 8.9". An introduction to numerical 
analysis (2nd ed.). John Wiley and Sons. ISBN 0-471-50023-2. 
 
[87]-Comaniciu, Dorin; Peter Meer (May 2002). "Mean Shift: A Robust Approach 
Toward Feature Space Analysis". IEEE Transactions on Pattern Analysis and Machine 
Intelligence. IEEE. 24 (5): 603–619. doi:10.1109/34.1000236. 
 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-13-101366-1
https://en.wikipedia.org/wiki/Special:BookSources/0-13-101366-1
http://www.videsignline.com/howto/180207350
http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-41887-7
http://www.aylward.org/notes/open-access-medical-image-repositories


                                                                                        
 

253

[88]-Epanechnikov, V.A. (1969). "Non-parametric estimation of a multivariate 
probability density". Theory of Probability and its Applications. 14: 153–
158. doi:10.1137/1114019. 
 
[89]-Gut, Allan (2009) An Intermediate Course in Probability, Springer. ISBN 
9781441901613 (Chapter 5) 

uman detection. International Conference on Image and Graphics, pages 
661–666, 2007. 

an, China, 2010, pp. 1332–1335. 

 
[90]-Y. Benezeth , B. Emile, C. Rosenberger. Comparative study on foreground detection 
algorithms for h

 
[91]-H. Tong, H. Zhang, H. Meng, X. Wang, Multitarget tracking before detection via 
probability hypothesis density filter, in: Int. Conference on Electrical and Control 
Engineering, Wuh
 
[92]-Bhattacharyya, A. (1943). "On a measure of divergence between two statistical 
populations defined by their probability distributions". Bulletin of the Calcutta 
Mathematical Society. 35: 99–109. MR 0010358 
 
[93]-D. Comaniciu, V. Ramesh, P. Meer, Kernel-based object tracking. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 25(5), pp564-575, 2003 

[94]-Deza, Elena; Deza, Michel Marie (2009). Encyclopedia of Distances. Springer. 
p. 94. 

[95]-Lindeberg, Tony, "Scale-space for discrete signals," PAMI(12), No. 3, March 1990, 
pp. 234-254. 

[96]-B. Tamersoy (September 29, 2009). "Background Subtraction – Lecture 
Notes" (PDF). University of Texas at Austin. 

[97]-Gordon, N. J.; Salmond, D. J.; Smith, A. F. M. (1993). "Novel approach to 
nonlinear/non-Gaussian Bayesian state estimation". IEE Proceedings F on Radar and 
Signal Processing. 140 (2): 107–113. doi:10.1049/ip-f-2.1993.0015. Retrieved 2009-09-1 

 

ternational Conference on Multi-AgentSystems (ICMAS96)M. Tokoro (ed.), 

iversity Press). 

[102]-Couzin I, Krause J, Franks N, Levin S (2005) Effective leadership and decision-
making in animal groups on the move. Nature 433: 513–516 

[98]-Cetnarowicz, K., Kisiel-Dorohinicki, M. & Nawarecki, E. 1996. The application of 
evolution process in multi-agentworld (MAW) to the prediction system. InProceedings of 
the 2nd In
2632.AAI Press. 
 
[99]-Cavagna, A., & Giardina, I. (n.d.). The seventh starling. Significance, 5(2), 62-66. 
doi:10.1111/j.1740-9713.2008.00288.x 
 
[100]-Sumpter, D.J.T. (2010). Collective Animal Behavior (Princeton Un
 
[101]http://www.princeton.edu/main/news/archive/S36/02/56I00/index.xml?section=topst
ories 
 



                                                                                        
 

254

 
[103]-Erber J, Kierzek S, Sander E, Grandy K (1998) Tactile learning in the honeybee. J 
Comp Physiol A: 737±744 

rkshop on evolutionary 
computation. Lecture Notes in Comput Sci, vol. 993. Berlin: Springer; 1995. p. 25–39. 

[105]-Ostermeyer, G.-P. Many particle systems. German Polish Workshop, IPPT 

 
earch on experiential learning 

theory and the Learning Style Inventory Department ofOrganizational Behavior, 

[107]-Schunk, D. (2004). Learning theories: An educational perspective (4th ed.). Upper 

[108]-Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation:    

[109]-Hazewinkel, Michiel, ed. (2001), "Point of inflection", Encyclopedia of 

10]-Adams, A. Adams; Essex, Christopher (2009). Calculus: A Complete Course. 

der in Taylor's Series." 
§5.41 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge 

12]-Bertsekas, Dimitri P. (2009). Convex Optimization Theory. Belmont, MA.: Athena 

. Fukunaga and L.D. Hostetler, “The estimation of the gradient of a density 

171-180.  

 
[104]-Bilchev B, Parmee IC. The ant colony metaphor for searching continuous design 
spaces. In: Fogarty TC, editor. Proceedings of the AISB wo

 

PAN,Warszawa, (1995). 

[106]-Kolb, A., & Kolb, D. A. (1999). Bibliography of res

Weatherhead School of Management, Case Western Reserve, University, Cleveland, OH.  
 

Saddle River, NJ, USA: Pearson, p. 220, ISBN 0130384968. 
 

Decision Procedures with Applications to Verification. Springer-Verlag New York, Inc., 
Secaucus, NJ, USA.  
 

Mathematics, Springer, ISBN 978-1-55608-010-4 
 
[1
Pearson Prentice Hall. p. 744. ISBN 978-0-321-54928-0. 
 
[111]-Whittaker, E. T. and Watson, G. N. "Forms of the Remain

University Press, pp. 95-96, 1990. 
 
[1
Scientific. ISBN 978-1-886529-31-1. 
 
[113]-S. Bubeck. Introduction to online optimization. Lecture Notes, 2011. 
 

14]-K[1
function, with applications in pattern cognition,” IEEE Truns. Infi,rmution Theory, 
vol.21, pp. 32-40, 1975.  
 
[115]-T. McInerney, D. Terzopoulos. (1996) Deformable models in medical image 
analysis. Proceedings of the Workshop on Mathematical Methods in Biomedical Image 

nalysis, A
 
[116]-C. Xu and J.L. Prince, "Gradient Vector Flow: A New External Force for Snakes," 
Proc. IEEE Conf. on Comp. Vis. Patt. Recog. (CVPR), Los Alamitos: Comp. Soc. Press, 
p. 66–71, June 1997 p

 

https://en.wikipedia.org/wiki/Digital_object_identifier
http://nmarkou.blogspot.co.uk/2011/11/particle-filter-snippet.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-471-50023-2


                                                                                        
 

255

[117]-Osher, S., and Sethian, J.A.,Fronts Propagating with Curvature Dependent speed: 
Algorihms Based on Hamilton-Jacobi Formulation, Journal of Computational Physics, 
Vol. 79, pp. 12-49,1988. 
 
[118]-M.R.Rajamani.Data-based Techniques to Improve State Estimationin Model 
Predictive Control. University of Wisconson Press, 2007, ppii-ii 

n; Edwards, Bruce H. (2009). Calculus (9th ed.). Brooks/Cole. ISBN 0-
47-16702-4. 

ization Theory and Applications. 45: 
1–51. doi:10.1007/BF00940812. 

     
ative 

Computing Technology (INTECH 2013), London, 2013, pp. 23-28.doi: 

[124]-Carter, J. J. Mor ́e, “The MINIPACK-2 Test Problem Collection,”Mathematics and 

. Averick, R. G.  
 

[126]-

[127]-Spottiswoode, C.N., Begg, K.S. & Begg, C.M. 2016 Reciprocal communication in 

29]- Alam,I "Object tracking in video sequences using information fusion principles.  

(CEEC), Colchester, 2013, pp. 146-151.doi: 
0.1109/CEEC.2013.6659462 

30]-http://www.snowcrystals.com/science/science.html 

Cavagna, A., Giardina,V. (2008) The STARFLAG handbook on collective animal 
ehaviour: Part I, empirical methods. Animal Behaviour, to be published. 

 
[119]-A.Jameson, “Gradient Based Optimization Methods”,MAE TechnicalReport No. 
2057, Princeton University, 1995. 
[120]-Larson, Ro
5
 
[121]-Černý, V. (1985). "Thermodynamical approach to the traveling salesman problem: 
An efficient simulation algorithm". Journal of Optim
4
 
[122]-A.P.Godse and U.A.Bakshi (2009). Communication Engineering. Technical 
Publications. p. 36. ISBN 978-81-8431-089-4. 
 

 [123]- Alam,I "Biologically inspired object tracking: A modular approach with 
distributed particle like sensors," Third International Conference on Innov

10.1109/INTECH.2013.6653720 
 

Computer Science Division, Agronne National Laboratory, TechnicalMemorandum No. 
150, 1991.B. M

[125]-http://imgur.com/ 
 

https://www.youtube.com/watch?v=SN5igku_kGk&list=PL2MyffdNOEsCdbJ2crWNk1
MtTcULe_PJX&index=2 

human-honeyguide mutualism. Science 353: 387-389. 

[128]-Springer, Information Fusion in Data Mining (2003), ISBN 3-540-00676-1 
 
[1
Meanshift kernel implementation using fuzzy rules," 2013 5th Computer Science and 
Electronic Engineering Conference 
1
 
[1
 
[131]-
b
Availablefromhttp://arxiv.org/abs/0802.1668.) 
 

https://en.wikipedia.org/wiki/Calcutta_Mathematical_Society
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=0010358
http://www.cs.utexas.edu/%7Egrauman/courses/fall2009/slides/lecture9_background.pdf
http://www.cs.utexas.edu/%7Egrauman/courses/fall2009/slides/lecture9_background.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=210672
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=210672


                                                                                        
 

256

[132]-Ballerini, M., Cabibbo, (2008) Interaction ruling collective animal behaviour 

Academy of Sciences of the USA105, 1232–1237. 

by 
roup hunting of animals: Hunting search, 60, 2087–2098. 

, Tuza Z. (2010), Bin Packing/Covering with Delivery, Solved 
with the Evolution of Algorithms, Proc. 2010 IEEE 5th International Conference on Bio-

pringer, ISBN 0-387-22196-4. 

y and Practice: Evolution 
trategies, Evolutionary Programming, Genetic Algorithms, Oxford Univ. Press. 

45/2598394.2609841. 

ss. 

3): 6. 

esign without payments. In IJCAI-03 workshop on 
istributed Constraint Reasoning (DCR), Acapulco, Mexico, 2003. 

43]-Cavagna.A, Parasi.G,”The scale free correlations in starling flocks”(2010) PNAS 

erli.com/classes/images/4/4e/AmSci2011Hayes.pdf 

46]-Kennedy, J.; Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kaufmann. 

On the role of social interaction in social cognition: a mechanistic 
lternative to enactivism. Phenomenol. Cogn. Sci. 11, 467–486 (2012). 

 

depends on topological rather than metric distance: evidence from a field study. 
Proceedings of the National 
 
[133]-http://www.bbc.co.uk/programmes/b0861m8b 
 
[134]-R. Oftadeh et al. (2010), A novel meta-heuristic optimization algorithm inspired 
g
 
[135]-Benkő A., Dósa G.

Inspired Computing: Theories and Applications, BIC-TA 2010, pp. 298–302. 
 
[136]-Ashlock, D. (2006), Evolutionary Computation for Modeling and Optimization, 
S
 
[137]-Bäck, T. (1996), Evolutionary Algorithms in Theor
S
 
[138]-Lones, Michael A. (2014). "Metaheuristics in Nature-Inspired Algorithms" (PDF). 
GECCO '14. doi:10.11
 
[139]-Feldman, D. H. (1999). "The Development of Creativity". In Sternberg, R.J. 
Handbook of Creativity. Cambridge University Pre
 
[140]-Jackson, Mike (2000). "Wherefore Gadolinium? Magnetism of the Rare Earths" 
(PDF). IRM Quarterly. Institute for Rock Magnetism. 10 (
 
[141]-Feynman, Richard P.; Robert B. Leighton; Matthew Sands (1963). The Feynman 
Lectures on Physics, Vol. I. USA: California Inst. of Technology. pp. 37.5–37.6. 
ISBN 0465024939. 
 
[142]-Vincent Conitzer and Tuomas Sandholm. An algorithm for single-agent 
deterministic automated mechanism d
D

[1
Alerts, vol. 107 no. 26 11865–11870, doi:10.1073/pnas.1005766107  

[144]-http://www.peterbe
 
[145]-Holland J. (1975), “Adaptation in Natural and Artificial Systems”, Ann Arbor: 
University of Michigan Press. 
 
[1
ISBN 1-55860-595-9. 
 
[147]-Herschbach, M. 
a

https://en.wikipedia.org/wiki/Pearson_Prentice_Hall
http://www.amazon.com/exec/obidos/ASIN/0521091896/ref=nosim/ericstreasuretro
http://www.amazon.com/exec/obidos/ASIN/0521091896/ref=nosim/ericstreasuretro
http://www.amazon.com/exec/obidos/ASIN/0521091896/ref=nosim/ericstreasuretro
http://www.worldscientific.com/author/Mcinerney%2C+T
http://www.worldscientific.com/author/Terzopoulos%2C+D


                                                                                        
 

257

[148]-Wilson and B.F. Skinner, Developments in Primatology: Human Sociobiology: The 
Essential E.O. Wilson, Progress and Prospects, DOI 10.1007/978-0-387-89462-1 2, C 
Springer Science+Business Media, LLC 2009 
 
[149]-Kennedy, J.; Eberhart, R. (1995). "Particle Swarm Optimization". Proceedings of 
IEEE International Conference on Neural Networks. IV. pp. 1942–
1948. doi:10.1109/ICNN.1995.488968 
 
[150]-Cleveland, Harlan and Jacobs, Garry, The Genetic Code for Social Development". 
In: Human Choice, World Academy of Art & Science, USA, 1999, p. 7. 
 
[151]-Heppner, F. and Grenander, U. (1990). A stochastic nonlinear model for 

Engelbrecht, "Cooperative charged particle swarm 
ptimiser," 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on 

53]-C. V. García-Mendoza, M. G. Villarreal-Cervantes, O. Peñaloza-Mejía and G. 

40-343. 

ota, M. Garratt and H. Teimoori, "Robust control for longitudinal 
nd lateral dynamics of small scale helicopter," Proceedings of the 31st Chinese Control 

ence, Hefei, 2012, pp. 2607-2612. 

coordinated birdflocks.The Ubiquity of chaos,pages 233–238 
 
[152]-Rakitianskaia and A. P. 
o
Computational Intelligence), Hong Kong, 2008, pp. 933-939. 
 
[1
Sepúlveda-Cervantes, "Adaptive Control of a DC Motor Based on Swarm 
Intelligence," 2015 International Conference on Computational Science and 
Computational Intelligence (CSCI), Las Vegas, NV, 2015, pp. 192-197. 
doi: 10.1109/CSCI.2015.50 
 
[154]-S. Banerjee, K. Da Zhao, W. Rao and M. Žefran, "Decentralized self-balancing 
systems," 2013 IFIP/IEEE 21st International Conference on Very Large Scale Integration 
(VLSI-SoC), Istanbul, 2013, pp. 3
 
[155]-T. K. Roy, H. R. P
a
Confer
 
[156]-Glatzmaier, Gary. "The Geodynamo". University of California Santa Cruz. 
Retrieved 20 October 2013. 

 
usiness 

eview, 72:4 pp.96-108 

 
[157]-http://www.sciencephoto.com 

[158]-Kanter, R. (1994) Collaborative Advantage: The Art of Alliances Harvard B
R
 
[159]-Fischer, Hank (1995). "From Varmints to Rock Stars".Wolf Wars—The 
Remarkable Inside Story of the Restoration of Wolves to Yellowstone. Helena, MT: 
Falcon Press Publishing Co. Inc. pp. 35–43. ISBN 1-56044-352-9. 

c Algorithms. Cambridge, MA: 
IT Press. ISBN 9780585030944. 

 
[160]-Mitchell, Melanie (1996). An Introduction to Geneti
M
 
[161]-Holmes, S. J., and H. M. Loomis. 1909. The heredity of eye color and hair color in 
man. Biological Bulletin 18: 50Ð65. 

https://en.wikipedia.org/wiki/Ron_Larson_%28mathematician%29
https://www.youtube.com/watch?v=SN5igku_kGk&list=PL2MyffdNOEsCdbJ2crWNk1MtTcULe_PJX&index=2


                                                                                        
 

258

[162]-Eiben, A. E. et al (1994). "Genetic algorithms with multi-parent recombination". 
PPSN III: Proceedings of the International Conference on Evolutionary Computation. The 
Third Conference on Parallel Problem Solving from Nature: 78–87. ISBN 3-540-58484-6. 
 
[163]-Lawrence, Eleanor (2005) Henderson's Dictionary of Biology. Pearson, Prentice 
Hall. ISBN 0-13-127384-1 

[164]-J. R. Koza. Genetic Programming: On the Programming of Computers by means of 

Natural Evolution. MIT Press, Massachusetts, 1992. 

[165]-Hall, Dave L.; Llinas, James (1997). "Introduction to Multisensor Data 

Fusion". Proceedings of IEEE. 85 (1): 6–23. 

[166]-Crowley, J. L. and Sanderson, A. C. "Multiple resolution representation and 

probabilistic matching of 2-D gray-scale shape", IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 9(1), pp 113-121, 1987 
 

[167]-Schwefel H-P and Rudolph G (1995) Contemporary evolution strategies. In: 
Morana F, 
 
[168]-Bernardo, J.M., Smith, A.F.M. (2000) Bayesian Theory'.' Wiley. ISBN 0-471-
49464-X (pages 209, 366) 
 
[169]-Lipowski, Roulette-wheel selection via stochastic acceptance (arXiv:1109.3627) 
 
[170]-De Jong, K. (2006). Evolutionary Computation:A Unified Approach. MIT 
Press. ISBN 9780262041942. 
 
[171]-Kenneth Price, M. Storn, Differential Evolution: A Practical Approach to Global 

ptimization, SpringeO r-Verlag New York, Inc. Secaucus, NJ, USA ©2005  

tems Conference 

ISBN:3540209506 
 
[172]-M. M. al-Rifaie, D. Joyce, S. Shergill and M. Bishop, "Investigating stochastic 
diffusion search in data clustering," 2015 SAI Intelligent Sys
(IntelliSys), London, 2015, pp. 187-194.doi: 10.1109/IntelliSys.2015.7361143 
 
[173]-Zhan, Z-H.; Zhang, J.; Li, Y; Chung, H.S-H. (2009). "Adaptive Particle Swarm 
Optimization"  (PDF). IEEE Transactions on Systems, Man, and Cybernetics. 39 (6): 
1362–1381. doi:10.1109/TSMCB.2009.201595 

 

uous spaces". Journal of Global Optimization. 11: 
[174]-Storn, R.; Price, K. (1997). "Differential evolution - a simple and efficient heuristic 

r global optimization over continfo
341–359. doi:10.1023/A:1008202821328 
 
[175]  orman, Donald & Verganti, Roberto. (2014). Incremental and Radical Innovation: 
Design Research vs.  
Technology and Meaning Change. Design Issues. 30. 78-96. 10.1162/DESI_a_00250.  
 

https://en.wikipedia.org/wiki/Special:BookSources/0387221964
https://books.google.com/books?id=bDF-uoUmttUC&pg=SA4-PA4
https://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.peterbeerli.com/classes/images/4/4e/AmSci2011Hayes.pdf
http://www.peterbeerli.com/classes/images/4/4e/AmSci2011Hayes.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-55860-595-9
https://en.wikipedia.org/wiki/Special:BookSources/1-55860-595-9
https://en.wikipedia.org/wiki/Special:BookSources/1-55860-595-9


                                                                                        
 

259

 
[176] Bailey, R., Brake, M. (Eds.) (1981), Radical Social Work and Practice. London: 
Sage 
 
[177] BECKER, G. (1983): A Theory of Competition among Pressure 
Groups for Political Influence. In: Quarterly Journal 
of Economics 98 (3): 371-400.  
 
[178]   https://dictionary.cambridge.org/dictionary/english/radical 
 
[179]-M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Internat. J. 

80]-A.-R. Mansouri. Region tracking via level set pdes without motion computation. 

ace dimensions,” UCLA Computational and Applied Mathematics Report (06-15), 

83]-Boyer D, Miramontes O, Ramos-Fernández G (2008) Evidence for biological Levy 

MJ, Nolet BA, van de Koppel J (2011) Lévy 
alks evolve through interaction between movement and environmental complexity. 

ect of prior experience on nest site 
valuation by the ant Temnothorax curvispinosus. Animal Behaviour 76:893–899 

uided Search 3.0: A model of visual search catches up with 
y Enoch 40years later. In V. Lakshminarayanan (Ed.), Basic and clinical applications of 

cht, Netherlands: Kluwer Academic. 

rations Research & 
anagement Science. 57: 321–353. 

 V.; Buldyrev, S.; Havlin, S.; Daluz, M.; Raposo, E.; 
tanley, H. (2000).  

0)00071-6 
 

Comput. Vision 1 (4) (1988) 321–331. 
 
[1
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):947– 961, 2002 
 
[181]-L.-T. Cheng, “An Efficient level set method for constructing wavefronts in three 
sp
April 2006. 
 
[182]-S. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: 
Algorithms based in Hamilton-Jacobi formulations. Journal of Computational Physics, 
79:12–49, 1988. 
[1
flights stands. arXiv:0802.1762. 
 
[184]-De Jager M, Weissing FJ, Herman P
w
Science 332(6037):1551–1553. 
 
[185]Healey CIM, Pratt SC (2008) The eff
e
 
[186]  Gancarz, G. (1996). G
Ja
vision science (pp. 189–192). Dordre
 
[187]Yang, X. S. (2008). Nature-Inspired Metaheuristic Algorithms. Luniver Press. ISBN 
1-905986-10-6. 
 
[188] Lourenço, H.R.; Martin O.; Stützle T. (2003). "Iterated Local Search". Handbook of 
Metaheuristics. 
 Kluwer Academic Publishers, International Series in Ope
M
 
[189] Viswanathan, G.; Afanasyev,
S
"Lévy flights in random searches". Physica A: Statistical Mechanics and its Applications. 
282: 1–12. doi:10.1016/S0378-4371(0

https://en.wikipedia.org/wiki/World_Academy_of_Art_%26_Science
https://en.wikipedia.org/wiki/World_Academy_of_Art_%26_Science


                                                                                        
 

260

[190] Ben-Avraham, D.; Havlin, S. (2000). Diffusion and reaction in disordered systems. 
Cambridge University Press. 
 
[191] Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for 

[192] Wolfe, J.M. (2014). Approaches to visual search: feature integration theory and 

780199675111. 

 

duction, HANS-GEORG BEYER and 

 

he 

esearch in Artificial Intelligence. 

 

Optimization", IEEE Transactions on Evolutionary Computation 1, 67. 
 

guided search. The Oxford handbook of attention. 
 Oxford: Oxford University Press. pp. 11–50. ISBN 9
 
[193]M. Malek; M. Huruswamy; H. Owens; M. Pandya (1989). Serial and parallel search 
techniques for the traveling salesman problem. Annals of OR: Linkages with Artificial 
Intelligence. 

[194]  C. Igel. Evolutionary kernel learning. In Encyclopedia of Machine Learning. 
Springer-Verlag, 2010 
 
[195]Evolution strategies, A comprehensive intro
HANS-PAUL SCHWEFEL, Department of Computer Science XI, University of 
Dortmund, Joseph-von-Fraunhoferstr. 20,D-44221 Dortmund, Germany 
 
[196]-Collard, P., Escazut, C., & Gaspar, A. (1997). An evolutionary approach for time
dependant optimization. International Journal on Artificial IntelligenceTools,6(4), 665–
695. 
 
[197]-Branke, J., & Mattfeld, D. (2000). Anticipation in dynamic optimization: T
scheduling case. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. LuttonJ. J. Merelo, & 
H.-P. Schwefel (Eds.)  
 
[198]-Cobb, H. G. (1990).An investigation into the use of hypermutation as an adaptive 
operator in genetic algorithms having continuous, time-dependent non stationary 
environments(Tech. Rep. No. 6760 (NLR Memorandum)). Wash-ington, D.C.: Navy 
Center for Applied R
 
[199]-Zheng, H. Liu, A different topology multi-swarm PSO in dynamic environment, in: 
IEEE International Symposium on IT in Medicine Education, 2009 ITIME ’09, vol. 1, 
2009, pp. 790–795. 

[200]-Branke, A Evolutionary approaches to dynamic environments updated survey, in: 
GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, 
2001, pp. 27–30. 
 
[201]-K. Weicker, An analysis of dynamic severity and population size, in International 
Conference on Parallel Problem Solving from Nature, PPSN, Vol. 1917 of Lecture Notes 
in Computer Science, Springer, 2000. 
 
[202]-W. Tang, Q. Wu, J. Saunders, Bacterial foraging algorithm for dynamic 
environments, in: IEEE Congress on Evolutionary Computation CEC2006, 2006, pp. 
1324–1330 
 



                                                                                        
 

261

[203]-J. Mehnen, G. Rudolph, T. Wagner, Evolutionary optimization of dynamic multi 

alysis, Cambridge 

05]-S. Yang, "Genetic Algorithms with Memory- and Elitism-Based Immigrants in 
. 3, pp. 385-416, Sept. 

008. 

o object extraction based on adaptive background 
nd statistical change detection. In Proceedings of SPIE Electronic Imaging - Visual 

07]-F. Glover; M. Laguna (1997). Tabu Search. Kluwer Academic Publishers. 

etaheuristics for Dynamic Optimization, SCI 433, pp. 35–
.springerlink.comcSpringer-Verlag Berlin Heidelberg 2013 

eybees Apis mellifera. Apidologie 36, 301–311. 

94): Lifetime learning by foraging honey bees. Animal 
ehaviour 48, 1007–1012 

n Shift and 
g and 

ommunication Technologies, Da Nang, 2009, pp. 1-4. 

ybernetics for 
omputational Social Systems (ICCSS), Jinzhou, 2016, pp. 331-335. 

l., “A Survey on Visual Surveillance of Object Motion and Behaviors,” 
EE Trans. Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 34, 

 

amming and Markov Processes (PDF). 
he M.I.T. Press. 

objective functions, Technical Report FI-204/06, Universitat Dortmund, Dortmund, 
Germany, 2006 
 
[204]-Endre Süli and David Mayers, An Introduction to Numerical An
University Press, 2003. ISBN 0-521-00794-1. 
 
[2
Dynamic Environments," in Evolutionary Computation, vol. 16, no
2
 
[206]-Cavallaro and T. Ebrahimi. Vide
a
Communications and Image Processing, pages 465–475, San Jose, California, USA,2001 
 
[2
 
[208]-I.Moser , R.Chiong; Dynamic Function Optimization: The Moving Peaks 
BenchmarkM
9
 
[209]-Fernandez PC, Farina WM (2005): Collective nectar foraging at low reward 
conditions in hon
 
[210]-Dukas R, Visscher PK (19
B
 
[211] http://intelligence.worldofcomputing/brute-force-search Brute Force Search, 
December 14th, 2009. 
 
[212]-P. Le, A. D. Duong, H. Q. Vu and N. T. Pham, "Adaptive Hybrid Mea
Particle Filter," 2009 IEEE-RIVF International Conference on Computin
C
 
[213]-Jingxin Du, Jun Zhou, Chang Li and Lin Yang, "An overview of dynamic data 
mining," 2016 3rd International Conference on Informative and C
C
 
[214]-W. Hu et a
IE
no. 3, 2004, pp. 334-352. 

[215]-X. Xue, “Video-Based Animal Behavior Analysis,” Ph.D., The University of Utah, 
United States -- Utah, 2009. 
 
[216]-https://www.aapt.org/Conferences/newfaculty/upload/Coop-Problem-Solving-
Guide.pdf 
 
[217]Howard, Ronald A. (1960). Dynamic Progr
T



                                                                                        
 

262

 
 [218]-Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. 

hapman & Hall/CRC Press. p. 626. Monographs on Statistics & Applied Probability 

phylogenetic and 
cological explanation". Proceedings of the National Academy of Sciences. 102 (21): 

20]-Qianying Pi and Hongtao Ye, "Survey of particle swarm optimization algorithm 

21]-C. Voudouris and E. P. K. Tsang, "Guided local search joins the elite in discrete 

timisation, 1998. 

24]-Engelbrecht, "Heterogeneous Particle Swarm Optimisation," in ANTS 2010, 

. The chemical basis of insect society. In Chemicals controlling 
sect Behavior. M. Beroza, Ed Academic, New York, pp. 61-94 

mulation of Behaviour. London: 
utchinson & Co. p. 83. 

C
 
[219]-Wilson EO, Hölldobler B (2005). "The rise of the ants: A 
e
7411–7414. Bibcode:2005PNAS..102.7411W. doi:10.1073/pnas.0502264102. 
PMC 1140440. PMID 15899976. 
 
[2
and its applications in antenna circuit," 2015 IEEE International Conference on 
Communication Problem-Solving (ICCP), Guilin, 2015, pp. 492-495. 
 
[2
optimisation", in Proceedings, DIMACS Workshop on Constraint Programming and 
Large Scale Discrete Op
 
[222]-Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species 
formation in genetic function optimization. In Schaer, J. D., editor, Proc. Third Int. Conf. 
on Genetic Algorithms, pp. 42{ 50. Morgan Kaufmann. 
 
[223]-Dixon, B. (2001). "Animal emotions. Ethics and the Environment". Ethics. 6 (2): 
22–30. doi:10.2979/ete.2001.6.2.22. 
 
[2
Brussels, 2010. 
 
[225]-M.S. Blum 1970 
In
[226]-X. S. Yang, "Firefly Algorithms for Multimodal Optimization," in Stochastic 
algorithms: foundations and applications, 2009 
 
[227]-Apter, Michael J. (1970). The Computer Si
H
 
[228]-Kahneman, Daniel (1982). Judgment under uncertainty: heuristics and biases. 
Cambridge New York: Cambridge University Press. ISBN 0521284147. 
 
[229]-E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg, Hyper-
heuristics: An emerging direction in modern search technology, Handbook of 
Metaheuristics (F. Glover and G. Kochenberger, eds.), Kluwer, 2003, pp. 457–474. 
 
[230]-Weiss, George H. (1994). Aspects and Applications of the Random Walk. Random 
Materials and Processes. North-Holland Publishing Co., Amsterdam. ISBN 0-444-81606-
2. MR 1280031. 
 
[231]-Lourenço, H.R.; Martin O.; Stützle T. (2003). "Iterated Local Search". Handbook 
of Metaheuristics. Kluwer Academic Publishers, International Series in Operations 
Research & Management Science. 57: 321–353. 



                                                                                        
 

263

[232]-Panter-Brick, C.; R. H. Layton; eds. (2001). Hunter-gatherers: an interdisciplinary 
perspective. Cambridge University Press. ISBN 0-521-77672-4. 

[233]-Sims, David W.; Humphries, Nicolas E.; Bradford, Russell W.; Bruce, Barry D. 
"Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey 
field characteristics". Journal of Animal Ecology. 81: 432–442. doi:10.1111/j.1365-
2656.2011.01914.x. 

[234]-Viswanathan, G.M.; Raposo, E.P.; da Luz, M.G.E. (September 2008). "Lévy flights 
and superdiffusion in the context of biological encounters and random searches". Physics 
of Life Reviews. 5 (3): 133–150. doi:10.1016/j.plrev.2008.03.002 

[235]-STAUFFER, D. F., AND L. B. BEST. 1982. Nest-site selection by cavity-nesting 
birds of riparian habitats in Iowa. Wilson Bull. 94~329-337. 

 

      [236]- T. O. Crist J. A. Mac-Mahon Individual foraging components of harvester ants: 

movement patterns and seed patch fidelity Journal Volume 38, Issue 4, 1991ISSN: 0020-

812 (Print) 1420-9098 1

[237]-R Schürch, MJ Couvillon, D Burns, K Tiasman, D Waxman, & FLW Ratnieks 
(2013). Incorporating variability in honey bee waggle dance decoding improves the 
mapping of communicated resource locations Journal of Comparative Physiology A 199, 
1143-1152. 

[238]-Schultheiss, P., Raderschall, C. A., & Narendra, A. (2015). Follower ants in a 
tandem pair are not always naïve. Scientific Reports, 5. 

 Computer Vision. 2. pp. 1150–
157. doi:10.1109/ICCV.1999.790410. 

ondon–Don Mills–
idney–Tokyo/ Cambridge–New York–New Rochelle–Melbourne–Sidney: Addison-

[241] Pietro Perona and Jitendra Malik (November 1987). "Scale-space and edge 

22. 

oise 
orithms". Physica D. 60: 259–268. doi:10.1016/0167-2789(92)90242-f. 

and Associated Variational Problems", Communications on Pure and 

 
[239]Lowe, David G. (1999). "Object recognition from local scale-invariant features" 
(PDF). Proceedings of the International Conference on
1
 
[240]Cannon, John Rozier (1984), The One–Dimensional Heat Equation, Encyclopedia of 
Mathematics and Its Applications, 23 (1st ed.), Reading-Menlo Park–L
S
Wesley Publishing Company/Cambridge University Press, pp. XXV+483, ISBN 978-0-
521-30243-2, MR 0747979, Zbl 0567.35001. 
 

detection using anisotropic diffusion". Proceedings of IEEE Computer Society Workshop 
on Computer Vision,. pp. 16–
 
[242] Rudin, L. I.; Osher, S.; Fatemi, E. (1992). "Nonlinear total variation based n
removal alg
 
[243] Mumford, David; Shah, Jayant (1989), "Optimal Approximations by Piecewise 
Smooth Functions 



                                                                                        
 

264

Applied Mathematics, XLII (5): 577–685, doi:10.1002/cpa.3160420503, MR 0997568, 

44] Y. Peleg, R. Pnini, E. Zaarur, Shaum’s Outline of Theory and Problems of 

Zbl 0691.49036 
 
[2
Quantum Mechanics, McGraw-Hill, 1998. 

[245]-Yang, X. S. (2010). "A New Metaheuristic Bat-Inspired Algorithm, in: Nature 
Inspired Cooperative Strategies for Optimization (NISCO 2010)". Studies in 
Computational Intelligence. 284: 65–74. arXiv:1004.4170 

[246]-Seeley, T. and Buhrman, S. (2001). Nest–site selection in honey bees: how well do 
swarms implement the”best-of-n” decision rule. Behavioural Ecology and Socio-biology, 
49:416–427. 
 
[247]-G. Rudolph, Convergence Properties of Evolutionary Algorithms, Verlag Dr. 

ovac, Hamburg (1997) K
 

 [248]- http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm 
 

http://www.vision.ee.ethz.ch/datasets/ 

     

      [249]- 
 
      [250]- http://benchmarkfcns.xyz/benchmarkfcns/eggcratefcn.html 

     
     
      [252]- Michael Swain and Dana Ballard. Color indexing. International Journal of   
ggg
     
     
     

   [254]-Vincent, JFV, Bogatyreva, OA, Bogatyreva, NR (2006)- Biomimetics- its practice 

   
  55]-Purves D, Lotto B (2011) Why We See What We Do Redux: A Wholly Empirical    

   
   [256]-S. Kannan, M. R. Slochanal, P. Subbaraj, and N. P. Padhy, “Application of particle 

    

 [251]- http://www.cvg.reading.ac.uk/slides/pets.html 
  

Computer Vision, 7(1):11–32, 1991. 
    
 [253]- http://www.computervisiononline.com/datasets 
   

and theory. Journal of the Royal Society Interface 3 471-482. 

 [2
Theory of Vision (Sinauer Associates, Sunderland, MA) 

swarm optimization technique and its variants to generation expansion planning 
problem,” Elect. Power Syst. Res., vol. 70, no. 3, pp. 203–210, 2004. 

      [257]-Nguyen, Trung Thanh, Yang, Shengxiang and Branke, Jürgen. (2012) Evolutionary 
dynamic optimization : a survey of the state of the art. Swarm and Evolutionary 
Computation, Volume 6 . pp. 1-24. ISSN 2210-6502 
       

      [258]-M. Dorigo, ANTS’ 98, From Ant Colonies to Artificial Ants : First International 
Workshop on Ant Colony Optimization, ANTS 98, Bruxelles, Belgique, octobre 1998. 
 
 [259]-

      
     l/NP-N130-KA01UK 
       

http://www.samsung.com/uk/support/mode

http://muse.jhu.edu/cgi-bin/access.cgi?uri=/journals/ethics_and_the_environment/v006/6.2dixon.html
http://www.springer.com/mathematics/book/978-1-4020-7263-5


                                                                                        
 

265

     

Report, 24(1), 27-31. 
     

 [260]-Reimer, B. (2014). Driver Assistance Systems and the Transition to Automated 
Vehicles: A Path to Increase Older Adult Safety and Mobility? Public Policy & Aging 

  
      [261]-Lindeberg, T. and Bretzner, L. Real-time scale selection in hybrid multi-scale 

representations, Proc. Scale-Space'03, Isle of Skye, Scotland, Springer Lecture Notes in 
Computer Science, volume 2695, pages 148-163, 2003. 
       

      [262]-Davies, 

     
     with motion estimation 

and kernel-based colour modelling’. IRISA/INRIA Campus de Beaulieu 35042 Rennes 

     

A., Yin, J. and Velastin, S., 1995. Crowd monitoring using image 
processing. IEEE Electronic and Communications Engineering Journal 7 (1), pp. 37–47. 
  
 [263]-Venkatesh.B., Perez,P,Bouthemy.P.,2003’ Robust tracking 

Cedex, France 
  

      [264]-Klein, Lawrence A. (2004). Sensor and data fusion: A tool for information 
assessment and decision making. SPIE Press. p. 51. ISBN 0-8194-5435-4. 

      
 [265]-K.Kavitha, A.Tejaswini, Background Detection and Subtraction for Image
Sequences in Video, International Journa
Technologies, vol.3, Issu

       
l of Computer Science and Information 

e 5, pp. 5223-5226, 2012 
      
      [266]-Genz, Alan (2009). Computation of Multivariate Normal and t Probabilities. 

Springer. ISBN 978-3-642-01689-9. 

 [267]-Bertram BCR (1979) Serengeti predators and their social systems. In: Sinclair 
ARE, Norto

      
     

n-Griffiths M (eds) Serengeti: dynamics of an ecosystem. University of 

     
     presentation for shape based on 

eaks and ridges in the difference of lowpass transform,” IEEE Trans. on Pattern 

      
     8). Comparison between genetic algorithms and 

article swarm optimization. In Porto, V. W., Saravanan, N., Waagen, D., and Eibe, A., 

      

Chicago Press, Chicago, pp 221-248 
  
 [268]-Crowley, James L., and Alice C. Parker, “A re
p
Analysis and Machine Intelligence, 6, 2 (1984), pp. 156–170. 
 
 [269]-Eberhart, R. C. and Shi, Y. (199
p
editors, Proceedings of the Seventh Annual Conference on Evolutionary Programming, 
pages 611–619. SpringerVerla 

      [270]-R.Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan 
and Kaufman, 2002. 

      
     

 
 

 [271]-David Culler, J.P. Singh, and Anoop Gupta, Parallel Computer Architecture : A 
Hardware/Software Approach, Morgan Kaufmann, 1998. 

https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/Digital_object_identifier

	[44]-http://microbetracker.org/help/helpMicrobeTracker.htm
	[45]-Shen,C.Galazia (2015): Automated tracking and analysis of behavior in restrained insects, Journal of Neuroscience Methods, Volume 239, 15 January 2015, Pages 194–205

