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Abstract

This thesis investigates the core difficulties in the tracking field of computer vision. The aim
is to develop a suitable tuning free optimisation strategy so that a real time tracking could be
achieved. The population and multi-solution based approaches have been applied first to
analyse the convergence behaviours in the evolutionary test cases. The aim is to identify the
core misconceptions in the manner the search characteristics of particles are defined in the
literature. A general perception in the scientific community is that the particle based methods
are not suitable for the real time applications. This thesis improves the convergence
properties of particles by a novel scale free correlation approach. By altering the fundamental
definition of a particle and by avoiding the nostalgic operations the tracking was expedited to
a rate of 250 FPS.

There is a reasonable amount of similarity between the tracking landscapes and the ones
generated by three dimensional evolutionary test cases. Several experimental studies are
conducted that compares the performances of the novel optimisation to the ones observed
with the swarming methods. It is therefore concluded that the modified particle behaviour

outclassed the traditional approaches by huge margins in almost every test scenario.
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Chapter 1

Introduction

The post millennium era has witnessed some of the most remarkable inventions in the
modern human history. We are now living in an age that has transformed this world into a
global village. The digital revolution is predominantly due to the advances in the integrated
circuit technology, and this ongoing technological research has resulted in the mass
production of economical memory devices, compact ultra high resolution photometric
sensors, and multi-core embedded processing capabilities that have since targeted the
demands of diverse consumers. Vision based applications are therefore becoming much more
common in the domestic consumer market due to the reduced manufacturing costs.

“A picture is worth a thousand words”, perhaps when Fredrick. F. Bernard had written this
famous quote [1], he might not have fully contemplated the technological unpredictability
being experienced by the people of all ages in the 21* century. After the internet revolution,
the human race is now entering into a phase of distributed intelligence, and imaging based
automation. This thesis identifies the fundamental problems encountered during the object
tracking phases in the digital moving imagery, and also proposes several remedies.

The system on chip (SoC) [2] and mobile processing technology interconnected with the high
speed information gateways could be utilized to recollect diverse experiences, much needed
in the safety critical processes and applications (e.g., driverless technology). Similar to the
data mining processes that are applied in the computer science to understand data relevancies
and dependencies, the iterative learning of the semantic knowledge (retrieved from the time

evolving images) grants a robotic system with an alternative to the natural vision (which is



normally taken as granted by the majority of us). But a compelling question in this regard is
that why someone would program and train a computer to perceive surroundings by using
visual influxes, and to act like a biological entity.

The answer to the above question could spark an ethical debate (which is not the subject
matter of this thesis [3]). With the depleting of world resources, and rising inflation and
living costs, it would be rather irrational for us to designate human jobs to the machines.
However, computers could prove much more efficient in performing certain repetitive tasks
without suffering from the boredom and fatigue frequently observed in humans. The field of
computer vision is an evolving science that is attempting to pursue answers to the common
paradoxes being experienced in the robotic vision (and particularly noticed during the diverse
task assignments). However, it is usually a very rare occurrence for an artificial vision to
work as effectively as a biological creation in the natural cluttered environments.

The nature of the tasks in the computer vision field is manifold; it could range from accurate
and timely detection of various objects constituting an imaging frame to the recognition
phases needed in the automatic resource allocations. A digital image is constituted of a
gigantic arrangement of data values which are commonly referred to as pixels, the colour
intensity of these minute pieces of information are therefore used to identify various objects
in a scene. Hence, a region of interest (ROI) is a collection of pixels with varying colours and
intensity values. Furthermore, the shape versatilities are also applied sometimes to establish
identities of objects in a video frame. In computer vision, object tracking is referred to as a
higher level task that identifies viable dynamic and moving clusters in a digital video. In
practical terms, the object tracking is more than a simple pixel to pixel exhaustive search
process. Therefore, some kind of hierarchy is generally needed to predict the object
movements, so that a specific region of an image could be designated in time to conduct area

confined searches, and to divert resources towards other lower level processes.



The main objective of developing an artificial eye for the scientific purposes is to deduce
visual inferences that could be applied to prescribe accurate and meaningful system responses
and behaviours in time. A navigating robot utilises tracking modules to plan its trajectory,
and to avoid collisions in a cluttered environment. In medical sciences, both detection and
tracking algorithms are executed (along with image processing routines) to outline shapes of
diseased areas, and to trace the irregular movements of vital organs to aid physicians. Despite
of the presence of some pessimistic views, an artificial vision is generally a cost effective and
environmentally friendly way to monitor remote applications.

The natural world (in most cases) is much more dynamic than the majority of man made
process controllers; this is mainly due to the fact that the operating environment and the
configuration space of the system could deviate (in the course of a few frames) in a non-
linear and unpredictable fashion. The observed volatility could be due to the changes in the
lighting, reflections and shadows from other dynamic objects, and partial occlusions that
usually invalidate structural information content of an object [4]. Furthermore, complications
in the pattern matching algorithms usually make the simplistic detections much more
cumbersome to be handled in a real time frame [5]; this non-differentiability gives rise to the
false detections and causes instability. The core theme of this thesis is that the surge in
improbable identifications could be contemplated by using non-deterministic and
evolutionary mathematical routines. In contrast, the precision modelling within an analytical

framework is generally much more prone to errors [6].

Figure 1.1: The Quantum Cloud by Antoney Gromley near Millennium Dome source [7].



An alternative to the common deterministic dynamics is portrayed in Figure 1.1; it delineates
the importance of an organised random walk, and is a valid demonstration of the fact that
many aesthetically impressive structures could be created by alternating roles, and through
undergoing designated movements along various subsections of a solution space. The
information content of the scene (Figure 1.1) has been perfectly preserved by selecting
versatile step lengths and turning angles, and at the same time a range of organised random
walk is also carried out to render the important background information. Similarly, it would
be fascinating to study the consequences of implementing general evolutionary behaviours
(in which transitions are composed of both social and randomised search velocities) in a
visual tracking environment. This chapter emphasizes the need for adapting evolutionary
trends in the object tracking algorithms, the aims and objectives of this research are identified
along with the contributions and structure of this thesis. The key theoretical concepts are also

introduced that contributed in the reduction of the algorithmic complexity in this thesis.
1.1 Aims & Objectives

The aim of this thesis is to develop self reliant, portable and light weight real time tracking
and detection algorithms inspired by the natural expositions. A self reliant tracking/detection
facilitates timely recovery (e.g., if an object track is temporarily lost in a sequence of frames)
without elaborative initialization steps. The reinstatement of a tracker is of paramount
importance for remedial actions required in the safety critical applications and in surveillance
tasks. In order to addresses the video tracking problem, a bifold strategy has been adapted in
this thesis. First the major disparities in the evolutionary literature are highlighted and
explored with experiments, and a novel tuning free optimisation strategy is therefore
proposed. Later on, the newly developed algorithms are applied to both natural and indoor
scenes to expedite the tracking process. Hence after methodological testing, it is

strongly/passionately concluded that some loose ends (in the evolutionary science) are
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accurately resolved in this report.
1.2 Background.

Image denoising, segmentation and tracking are all classed as inverse problems [8]. In
inverse problems, only corrupted data (due to the sensor and medium imperfections) is
available to develop an accurate model of the underline dynamics, and to get rid of the
unwanted interferences. To define spatial transitions between frames, the observed velocity,
acceleration and positional coordinates are all commonly used as state variables. The hidden
information that we may need to retrieve could be composed of any other electronic signal
(e.g., utterances at a microphone). Removing interferences from an image that has travelled
through the communication technology is a further example of an inverse problem.

Non-linear transformations and related abnormalities (e.g., the changing position of light
sources) further complicate the process of developing an accurate model of the dynamics, and
therefore object recovery within two subsequent imaging frames becomes more problematic
[9]. To address an inverse problem, and in order to discover a promising solution one has to
deal with high data sensitivity causing illpossdness [10], and have to perform relative
verifications that the solution is indeed unique in all sense [11]. Direct inversion has been
studied in classical mathematics, but its applicability is limited to only a handful of

applications [12], indirect inversion on the other hand is more costly and subtle procedure.

Forward Problem

/ \ DI=Direct Inversion

f Inverse Problem

Estimation Process

Appraisal Process R

\ Estimated Inversion = Estimation + Appraisal
Model

Figure 1.2: Graphical depiction and division into forward and inverse problems.



One rectification (to tackle the mentioned problems) is to smooth observed datasets by
applying regularization techniques [13]. The unnecessary variations and inconsistencies in a
digital image (and in other electronic signals) are significantly reduced during a
regularization stage, and after performing direct inversions (Figure 1.2) true information is
finally retrieved. The direct inversion is generally impractical in the computer vision
algorithms because of the large datasets and due to the large variety of information.

The irrationality involved with direct inversion is dealt with by bringing in a notion of an
appraisal mechanism [14], and therefore inversions are carried out in a more implicit manner.
The inverse problems are therefore systematically tackled by a collaborative mechanism
which breaks down the problem into two stages as represented in Figure 1.2. The estimation
stage predicts a possible solution to the problem (using a plant model or a system dynamics),
whereas the appraisal stage investigates this problem further and much deeper by evaluating
the likelihood of the observed/measured densities against the vague projections made at an
estimation stage. The underline aim is to establish the missing link by anticipating the
discrepancy margins between the projected hypothesis or predictions and the objective
conditions of optimality. Estimation-appraisal processes are more commonly recalled as data
fusion filters (Kalman filter is a major example of this approach [28]). Such highly analytical
schemes have celebrated huge successes in the industrial plant modelling, and abundantly
applied in the manufacturing industry. However an amicable research question (remain
unanswered) is to analyse with experimentation that whether precision controllers are in fact
the optimal methodologies to handle visual disparity within images (in the first place), or are

there better alternatives to perform these vision tasks outside the control science.

1.3 Environment mapping and computational intelligence.

Estimation process (as mentioned in Section 1.2) performs linear projections in the solution

space. This modified shape of the search space is therefore expected to be much more
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confined and regular, so that appropriate local searches (e.g., Newton Method [15]) or
gradient techniques (like the steepest descent and ascend [16]) could be applied for an
optimal convergence. This iterative minimization or maximization process theoretically
seems reasonably straightforward, but practical imaging scenarios are contaminated with non

differentiability issues as shown in Figure 1.3.
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Figure 1.3: The importance of proper initialization in iterative solution searches.

Such problems have been reported in the leading computer vision literature, e.g., in the Level
Set curve tracking [17], Meanshift and Camshift approaches [18] [19], sequential Monte-
Carlo and particle filters [20], and also have been noticed in the recursive Bayesian
Estimations [21]. The instability issue has been identified in Figure 1.3. Seeking optimal in
this simple one dimensional problem appears totally circumstantial as distinct initializations
(at points a, b) in the search space could lead to the discovery of only local best values. The
convergence timing (to a feasible solution) is also very sensitive to this initialization and
varies accordingly. In the gradient ascend scenario, the solution has minimal chance of
escaping the valley (where the direction of the gradient could not be established), unless
some kind of meta-heuristic is used to guide the solution into a feasible region.

Through employing more meaningful initialization stages, the number of steps required in
the gradient descent scenario (Figure 1.3) could also be significantly reduced. By providing
more realistic and multiple initial guesses, the prospects of finding an acceptable solution are

generally increased. As diversity is an inherent part of the evolutionary trends, it therefore



could also improve stability in the visual tracking procedures. The computational techniques
address inverse problems by iteratively seeking better solutions; an alternative option to the
traditional deterministic methodologies. The essence of which is in the underlying ability to
conduct global optimisation, it therefore has much better potential to penalise the unwanted
local traps (e.g., by using guided searches to escape local minima in a multi-modal cluttered
environment). This comprehensive environment mapping is in principle very similar to the
other well known scanning methods (e.g., conducted by the Doppler weather radars, laser
scanners and in the modelling of submerged terrains using sonar).

The individual photons of electromagnetic pulses (in those cases) are replaced by the discrete
elements which are known as particles. The relationship between the strength of population
and convergence timings are important factors to solve computational problems; therefore, a
significant portion of this thesis is dedicated to answer these questions. The movement of
particles in the search space could be completely autonomous, or the trajectories may be
imposed by the gravitational forces (a usual form of exertion by the peer particles). In the
particle swarm optimisation (PSO) [22], the particle positions are therefore calculated using a
linear combination of random and social perturbations, and the magnitude of velocity vectors
are induced by employing tuning variables.

Some recent optimisation methods work on the principle of hierarchical division using
elitism, which separates population into foragers and workers [23]. It is the role of the
foragers to predict initial solutions, which are then iteratively refined by collating opinions of
the rest of the population. In an ant colony optimisation (ACO) [24], the best solutions
compete against each other by calculating strengths of the pheromone trails [25]. In bee
hives, waggle dances are performed by the foraging insects to solicit, and the sole perspective
of this act is to gather wider audiences and recruits [26], this environment is commonly

referred to as combinatorial optimisation schematics in the leading scientific literature.



1.4 Thesis contributions

L

II.

I1I.

The deep-seated problems in the vision applications are discussed in this thesis. It is
explained (by investigating 3 prominent tracking methods) that why tracking is an
entirely different class of problem than the control theory (Section 2.5). This novel
understanding of the vision problems could help to devise more feasible methodologies

in the science of computer vision.

The partial function evaluation has proven a superior approach (in terms of both
convergence accuracy and timing) than the traditional Bhattacharyya measure between
two discrete colour probability densities (Section 4.2 and Figures 5.1-5.14) in tracking
applications. By avoiding complicated data structures (matrices and associated linear
algebraic operations), and portraying knowledge using simplistic constructs addresses
the curse of dimensionality problem. Therefore, simpler and effective binary flags are

used in the particle detections, and to associate measured data with the predictions.

Several weaknesses of the evolutionary and swarming methods are identified in this
thesis (Sections 3.3-3.4). There is a significant amount of flaw and misconceptions
when the role of an elementary search agent (particle) is defined in the evolutionary
literature. In the view of this thesis, particles must be free in their searches and spatial
correlations in order to compete efficiently against each other in a solution space (like
real life hunters, and foragers). When the element of immortality is removed from the
particle definitions, a much faster task oriented convergence is experienced. Several
new particle paradigms were introduced in order to rectify the common misconceptions

in the evolutionary literature (Sections 3.1-3.4).
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VL

VIIL

A novel stochastic particle swarm optimization (PSO) algorithm was implemented, and
analytical comparisons are performed between the nostalgic and concurrent variants of
PSO using evolutionary test cases. From these experiments, it was learnt that the best
technique to solve the optimal trajectory problem is definitely a memory free approach

(Figures 3.42-3.66).

A novel scale free method (radical search optimisation-RSO) was introduced in this
thesis that efficiently solved a lot of complex evolutionary test cases with ease. Better
convergence timing (compared to both PSO and Bat algorithm [27]) are witnessed

using RSO, and in some cases the convergence time was decreased to 0.250t,, (Where

tpso 1S the time the PSO algorithm has taken to converge with similar accumulation of

errors), therefore the prospects of real time tracking are significantly increased (Figures

3.45-3.51).

Heuristic and guided searches are applied in both detections and tracking of the objects
of interest. By rectifying the unnecessary memory operations (a new technique was
implemented that does not store the intermittent particle positions (Section 6.3 and
Section 3.4) in the search space, a significant performance boost was observed in both
particle swarm optimisation and Bat algorithm when the searches were motivated by the
RSO. The evolutionary based tracking also worked much better than the Kalman
filtering based approaches [28]

Artificial BAT is a newly developed meta-heuristic optimisation technique, which in
many cases has performed the standard PSO [29]. Both BAT and PSO methods are
implemented to track a range of objects in Chapter 6. Later on, radical searches are

applied to direct BAT and PSO algorithms towards an optimal region of interest (with
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an objective to reduce the algorithmic complexity). By applying the novel variants of
PSO, RSO-VGS, and the scale free correlations, a frame rate of as high as 250FPs are

observed in some of the most difficult test conditions (Sections 6.5-6.10).

1.5 Thesis Structure

Chapter 1

Readers are introduced to the significance of the computer vision algorithms, and the aims
and objectives of this research are explored. After establishing a research background, the
novelty of the adapted framework is presented. The major contributions and the structure of
this thesis are also discussed.

Chapter 2

The research background is presented in this chapter. The tracking problem is formulated in
an optimisation framework, and relevant discussions are presented for adapting a nature
inspired methodology. Three historical tracking schemes are discussed, and the ramifications
of using analytical mathematics to solve frame tracking problems (in the past) are
highlighted.

Chapter 3

This is the methodology section, and constitutes an important section of this thesis due to the
scientific and comparative analysis performed that also lead us to the development of a novel
methodology The limitations of the gradient based methods are experimented using test
cases, and later on strategic initializations have been strongly emphasised. The optimisation
redundancies (e.g., in both PSO and evolutionary strategies (ES)) are mentioned, and
computational bottlenecks (e.g., social calling) are highlighted for developing an expedited

tracking scheme.
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Chapter 4

The procedural flowcharts of various algorithms are developed and presented in this chapter.
Detailed discussions are presented that establishes tracking within a dynamic optimisation
framework.

Chapter 5

Several test benches are introduced in this chapter. The diversity of test cases is established
by drawing movement graphs and corresponding patterns in the feature space.

Chapter 6

This chapter implements the previously developed novel ideas in Chapters 3 and 4, and
experiments are performed using a wide variety of detection and tracking scenarios. A
detailed analysis is conducted which first modifies the optimisation search basin using a
nested radical approach, and later on, the penalising guided searches are applied to
distinguish an object from the background clutter. A range of meta-heuristic algorithms
(BAT, PSO and RSO-VGS) are programmed in Matlab, and applied to frame tracking
problems, and the convergence characteristics are plotted in the graphical formats.

Chapter 7

This is the concluding chapter, and the results of our research are presented and discussed.

Moreover some conspicuous research directions have also been proposed for a keen reader.
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Chapter 2

Principles of Video Tracking

Kinematics is a branch in mathematics that explicitly deals with the geometry of motion [30].
In the historical computer vision applications, the three leading principles of kinematics have
been extensively applied in the motion modelling of various objects of interest [31]. In
contrast to the general mechanics, the applied forces causing spatial displacements are not
explicitly calculated in the vision applications. Several branches of classical physics (e.g.,
kinetics and analytical dynamics) shed more light and focus on the evaluation of applied
forces to prescribe desired movements. In engineering environment kinematics is applied in
the precision modelling of electromechanical systems, which basically rely on a number of
interconnected modules to perform a designated task. The coordinated and precision
movements required in the manoeuvring and navigating robots [32], calculating the
efficiency of high speed turbines and modern internal combustion engines are all prime
applications of kinematics [33].

On the other hand, the Newton laws of motion are classical examples of the analytical
dynamics [35], and are the main building blocks of many reconnaissance machines ranging
from sea and land to the enduring designs needed in the space exploratory capsules [34].
Choosing a suitable coordinate system is a crucial first step in the subject of motion analysis.
The newly formulated Hamiltonian and Langrangian frameworks are prominent attempts that
try to reduce the dimensionality of problems for more robust designs [36] [37]. Whereby,
many branches of classical physics explicitly apply Newtonian dynamics to define the
trajectories of particles and matter undergoing transitions, a video tracking application is

somewhat different class of motion problem. A change in dimensionality takes place when
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motion is captured onto a camera plane, regardless of whether it is mounted on a static or a
moving platform. The transformation from a 3D coordinate system of the world to an
imaging plane is a complicated and a delicate process, that generally results in the loss of
information embedded in the real dynamical objects (Figure 2.1). Therefore in applications
where reverse projections (2D-3D) are needed (e.g., to generate motion using electrical
motors in robotics), the study of structural variations within a camera plane are mandatory.
The vertical motion of an object moving in world coordinates using a static camera platform
could only be analysed by studying the size of a moving object (shown in Figure 2.1). Real
life objects often exhibit versatility in their motion trajectories, the movements could be
confined to a specific plane in a Euclidean search space (e.g., traffic on an open stretch of
road), or the patterns of motions could be completely randomised as observed in sports, and
also when the behaviour of wildlife is studied under lab conditions. Therefore, a truly

portable tracking algorithm is not context sensitive, and must be applicable in all scenarios.

Figure 2.1: Projection of a 3d motion from the world onto (XY) camera plane.

Once a suitable image is captured onto an imaging plane and photometric sensor, the
computer vision algorithms are then applied to pursue knowledge needed to facilitate a
reverse projection (to generate the required effects as mentioned earlier). The timely selection

of a closed and confined solution space is important for a tracking algorithm to produce a real
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time response. For a human observer, the video has to be presented at around 25 frames per
second (FPS) in order to appear continuous and smooth. The real time convergences (to
process frames at more than 25FPS) could be facilitated if the search variables (a design
choice generally made by a computer analyst) are effectively reduced to address the curse of
dimensionality problem [38]. Both video tracking in computer vision and classical Newtonian
dynamics use vector formulations to represent motions.

In the evolutionary branch of mathematics, the search characteristics of agents are also
defined by manipulating vectors in an algebraic formulation [40]. In cases where the
capturing device (camera) is dynamic and jittering defining motions becomes much more
cumbersome, as it is not normally possible to build a generic model addressing all possible
displacements. The applications of video tracking are versatile and ranges from the trajectory
planning in robotic application to predicting motions in the collision avoidance systems. The
Mars rover is a mobile platform, and applies both binocularity and visual disparity to take
advantage of the mounted robotic arm, and to plan its motion in the rugged terrain (see Figure
2.2). The rover therefore exhibits classical transformations in both forward (3D-2D) and in

the reverse (2D-3D) directions.

Figure 2.2: Disparity in trajectory planning through Boulders. Mars Rover Missions [39]

The real time response of a computer vision task is of paramount importance when the safety
is a critical issue. An automatic driving assistance applies tracking to detect the symptoms of

fatigue in drivers, and takes remedial actions to deal with the developing hazards [41]. The
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artificial learning environments apply both eye and body language tracking to develop an
optimised lesson plan [42]. The Tesla automotive self driving technology utilizes radar and
camera inputs to detect stationary and dynamic objects, and for mapping their surrounding
landscape [43]. The tracking of microscopic organisms provides the biologists with vital
visual clues to understand complex behaviours [44]. Tracking the movements of insects and
reptiles in scientific labs is a useful technique that helps to reduce the harmful impacts of
parasites to boost crop productions [45]. The flow of traffic could be automatically controlled
if blobs of vehicles are detected and analysed using computer vision technology. Modern

remote surveillance systems also apply visual detectors to identify intrusions [46].

2.1. Aims and Objectives.

The aim of Chapter 2 is to introduce to the readers the fundamental building blocks of visual
tracking systems. The three most prominent principles of tracking are discussed in Section
2.5, and the prospects for further improvements will also be discussed. The scope of research
will be briefly discussed, and the tracking problem is established within an optimization
framework. The discussions presented in this chapter also pave the way towards developing a

new evolutionary computational tracking methodology.
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2.2. Scope of research in imaging.

The scientific research in the context of image science is perpetually vast, and the scope of
this horizon span from the clean fabrication labs that help to develop the latest sensor
technology (CCD, CMOS and CIS etc. [47]) to the understanding of semantics and structural
information contents of a digital image. The storage and transportation using information
retaining compression, digital filtering and the identification of dynamical structures are some
other related perspectives of the image based science [48]. The removal of interferences using
structure preserving denoising and image editing/enhancement routines have been the main
focal points for many researches in this subject. Images and three dimensional graphics are
extensively applied in prototype developments in manufacturing engineering using CAD
software, and imaging information is also applied to guide modern CNC machines [49].

The image enhancing routines facilitate retrieval of the structural information content needed
in the forensic labs and to allocate resources. The optimal segmentation process is
scientifically learnt in medical sciences by examining a large database of images to facilitate
radiologists [50]. The expert medical imaging systems use advanced data mining techniques
to analyse hundreds of thousands of patient records and images, and therefore assist
physicians in their diagnostics. The tracking or sequential object segmentation is a higher
level task, and the aim therefore is to identify feasible regions in an image to conduct further
lower level analysis. The dynamical structures are used in the broadcast technology to save
the bandwidth of a communication medium (e.g., by broadcasting only the dynamical areas
of an image) [51]. In this age of cybernetic intelligence, the human race is entering into a new
era of distributed and biomimetic robotics which apply visual inferences in a collaborative

fashion to perceive the surrounding environments [52].
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2.3. Tracking as a both space and time problem.

Tracking an object of interest in moving imagery is a spatio temporal problem, hence;
suitable measures in both space and time are needed to increase the algorithmic efficiency.

The observed displacements are then further analysed along the discrete time dimensions t,
andt,, , in order to perceive motion patterns. The video refresh rate of the capturing device is
a relevant issue in determining motions, as intuitively larger displacements Ad =s,,, —s; are
predicted in low speed cameras (where s,,s,,are positional coordinates of an object of

interest (OOI) in a R"dimension space at times t andt+A) between frames. High speed
cameras are rarely deployed in general tracking applications, and are usually reserved for the
precision industrial and military applications.

An important step in developing an automated detection and tracking system is to create an
object identifier in a feature space (e.g., RGB colour space). The interconnected object

regions Q, , are therefore identified using stored patterns expressed in a mathematical format

(Figure 2.3). It is possible for the region based features to be described as parametric
Gaussian or through non-parametric histograms. The illumination impacts are generally
reduced by allocating fewer weights to the boundary pixels of an object. The object clusters
in an object may occupy distinct positions in the RGB feature space (as shown in the middle
section of Figure 2.3), but as they are associated with the similar object, they are all encoded

mathematically as parts of an objective pattern.

Cluster
centroid

“Cluster-n

Figure 2.3: Various connected sub regions Q, of OOI with distinctive clusters in the feature space.
A non-parametric colour density also stores cluster centroid and relative spread of
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measurements using data histograms. In Figure 2.4, a general tracking and detection scenario
is presented. Detection and tracking often work in collaboration, and are associated processes
in vision technology. In some literature detection and tracking phases are also referred to as
unique and distinct phases. In video tracking detection is usually carried out during an
initialization stage.

Tracking is performed on a confined and narrowed down space (with an objective to reduce
the associated computational costs). Whereas, detection explores all relevant areas of an
image and conduct much broader attempts to match stored templates with the candidate
model. At a tracking stage where the required condition of optimality (e.g., colour pattern
matching within a tracking window) has not been observed, a detection phase normally takes
over to reinstate tracking algorithm back into a feasible search space (shown in Figure 2.4.).
The anticipated line of research in this thesis is based on the fact that if detections are robust
and timely, there is no particular need to confine tracking (also known as limiting the search
basin), and could supplement difficult tracking phases by dynamically adjusting the current
basin for a robust recovery. The detections performed by particle centred approaches are

multiple solution techniques that are inherently designed to conduct diversified detections.

-
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For all frames ft:l-n in a digital sequence ]
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\

Detect region
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Figure 2.4: A generic object tracking and detection scenario used in the computer vision.



2.4. Tracking as an optimization process.

The objective of video tracking is to identify a dynamical object, and to consequently reveal
its positional coordinates as it drifts away from an initial known position in an image.
Therefore various dynamical objects are also identified sometimes through trajectory
classifications in a search space. At any moment in time, the state vector of an object could

comprise of its movement components, that usually consists of previous known position ( p),

velocity ( p.)) and acceleration ('p; ). The future positions of objects in the Euclidean space are

therefore represented by the positional derivatives with respect to time as shown in Equations

(2.1) and (2.2).

P=(Xp.Yp-Zp)=Xp i+ Y, j+ 2,k (2.1)
oAp dp ot o D

V=I1lm—=—=p=X,. . . .
Jim == P=Xp.i+yp. j+ 5.k (2.2)

Here (x,.y,.2,) are the associated Cartesian coordinates, and 1, j, k are the unit vectors of

. . .. v
this coordinate system. The components of velocities { y} are then calculated, and are
VX

applied to refresh the object coordinates along time using Equations (2.1)-(2.2).
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Figure 2.5: Tracking problem in the presence of missing data (occlusion) in a video sequence.
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The path of one translating object is represented in Figure 2.5. The trajectory comprises of
various movement phases, including linear displacements, and also some curvilinear motion
phases are present in this particular case. At points of manoeuvrability (POM), it suddenly
accelerates away, and changes its direction of travel. Therefore, no patterns are immediately
observable within the bounding box (representing an object of interest), hence the tracker
diverges away from the true solution. It could be seen in Figure 2.5 that the tracked object
may undergo complete occlusion (where the trajectory information is missing); the
dimensions of the bounding box define the basin of searches in this particular experiment.

During non-linear phases, the tracking problem is more challenging, as it becomes very
difficult to mathematically describe all associated motions using a linear Gaussian model.
Other problems include partial and complete occlusions, and estimating the next point in their
trajectories essentially becomes a black-box problem (due to the missing information for a
length of time), these scenarios have been identified in the relevant research literature [53],
and broadly speaking, different strategic variations in tracking are attempts to address these

1ssues.

it

Optimal ! \

Figure 2.6: Landscape of an optimisation problem [54].

Figure 2.6 is a multi-modal landscape that constitutes of many local minimisers, and the main
optimization objective is to identify the optimal peak, and to facilitate conditions so that the
solution is guided towards the optimal region of interest. The underline task of an

optimisation algorithm could therefore also constitute of timely identification and ranking of
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all admissible local solutions as well along with revealing the global optimiser.

Evolutionary optimization is an emerging branch of applied mathematics that is proving
much more effective in addressing black-box problems [55]. Mathematical optimization is
the science of minimizing or maximizing a function value over a finite space in which the
problem is defined. Optimization problems could be befitting application of the proverb
‘courses for horses’, therefore, the optimisation techniques are frequently varied in both space
and time dimensions, and an optimal strategy depends on the shape and terrain of the
problematic landscape. The landscapes of optimization problem are the functional variations
over the domain of operation. Therefore, the aim of an optimization run is to select a
particular set of independent variables (coordinate selections in the tracking applications),
that yields the maximum objective values (a maximization process).

The objective task in the computer vision applications could range from segmenting contours
to shape alignment routines required to establish identities. The ‘minimizing or maximizing’
of an energy function refers to an optimisation stage in which the detected features are
matched to the stored values in a spatio-temporal domain. In minimization problems (for
example), it refers to a situation when an evolving curve encapsulates an area of an image, so
that all pixels falling within are probabilistically more relevant to the region under
observation. In Figure 2.7, the minimum energy state is achieved when evolving curve breaks
and merges and formulates a closed boundary around the bacterial organisms, hence the total

length of the segmenting curve is reduced in the optimal state.

Figure 2.7: Energy minimization process used in curve segmentation [56].

Whilst segmentation is the process that differentiates an object from the background in static

22



imagery, tracking is the prolongation of this knowledge into the temporal domain. Therefore,
the strategic know-how of the landscape is seemingly crucial for domain reductions in order
to converge in a real time. The determination of a pixel neighbourhood is also a domain
related problem (as shown in Figure 2.8), many tracking and segmentation implementations
use a variety of pixel connection schemes (e.g., 4 or 8 connected pixels to identify the

intensity variations) to analyse changes at an observation position (x,y) as shown in Figure
2.8. In image denoising, the intensity value of a pixel at position [ } could be selected as an
y

average of the local neighbourhood.

(x,y+1) x=1Ly+1)| (xp+l) o+l y+l

(x=1,») (x,y) (x+1,1) {x=1y) (x,y) (x+1,p)

(xy-1) x=1y=1) (xy-1) fx+ly-1

4-neighbourhood 8-neighbourhood

Figure 2.8: Two connected pixel schemes commonly used in the imaging literature [57].

Evolutionary mathematics addresses the issues discussed earlier by iterative selections of the
neighbourhood regions. The variable searches could prove particularly effective during the
occlusion phases (Figure 2.5), where classical methods usually fail to converge. In general
analytical optimization techniques, when no valid measurements are observed the algorithm
predominantly relies on the deterministic models (in a hope) to find an optimal. The
analytical framework sometimes generates an unwanted complexity as the stored plant
dynamics may not be applicable when sudden velocity changes are observed. To compensate
in the difficult tracking scenarios, this thesis applies parallel tracking hypothesis using

multiple solution techniques (also known as combinatorial optimization scheme).
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2.4.1. Optimisation-An act of steering.

Norbert Weiner was a well known cyberneticist and a renowned scientist for his work in the
fields of control and communication technologies, his publications and quotes (‘optimisation
is an act of steering’) provide a common platform for both neurophysiologists and engineers
to understand generic automatic control problems [58]. The goal of Norbert’s research was to
gather natural inferences from the complex motor solutions in a human body, and to apply
those later on in other complicated engineering scenarios. Following Norbert’s guidelines,
Nikolan Bernstein also concluded in his experimental studies that the artistic motor perfection
and control (in the biological systems) is not entirely based on the precision and tighter
control laws (as previously thought), but the key is in the precise application of the motor
variability that applies diversity to perform the same task in many different ways [59].

This diverse control (for similar end results) is due to the multiple moto-neurons synopsing
on the same muscle, a conceptual portrayal is shown in Figure 2.9. The control policy
consists of free-scale motions (isotropic regions) as well as correlated and tighter stages of
control policy. A human body performs similar sequence of precision-tighter-loose-tighter-

precision controls by flexing and tightening of muscles.

Motor
Variability

Precision
Control

A

Loose Control

. Tighter Control
A\ e

Time (t)

»
»

Figure 2.9: Control variability in repetitive assignments of a task in a human body.
The Bersteinian theory in general and the degree of freedom (DOF) problem [60] in

particular are the foundation stones for the strategic particle behaviour in this thesis.
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According to the DOF problem, there are multiple ways in which humans and animals
conduct their bodily movements to reach to a similar goal and objective (i.e., an element of
repetition without repetitions is actually present in these situations). Thus, by implying a
loose optimization stage with diversified particle motions, the search space could be more
effectively sampled than the frequent application of much tighter deterministic drifts (e.g.,
used in the historical particle filtering methods).

There could be all sorts of related reasons/justifications to adapt a nature inspired approach in
this thesis. Dr Wayne Dyer (1942-2015), a renowned spiritualist, naturalist and a modern day
philosopher has mentioned in his book “Inspiration: Your Ultimate Calling” [61] the
mysterious and magical journeys of the monarch butterflies, and their prevailing navigational
intelligence during migration trips are remarkable events. The round journey from Brazil to
Nova Scotia (Canada) of the fragile monarch butterfly (through varying gusts of wind and
atmospheric fluctuations) is fascinating for both evolutionary mathematicians and engineers
alike.

Despite the volatile physical capacity, and the density of brain not much wider than a normal
pin head, the Monarch’s journey is an ultimate call from the nature (in the view of Dr Dyer’s
book) and an explicit demonstration of a natural distributed intelligence. Many evolutionary
optimisation methods also rely on the distributed intelligences in order to minimise or
maximise rewards [62]. The collaboration among social insect boost their chances of survival
in the natural world. A lot more caution however is needed when social gestures are applied
in the computational grids. It would be interesting to understand the role of social calling in
this thesis, and to analyse the corresponding impacts (in terms of convergence
timing/accuracy) for several test functions. One main reason for dealing optimisation in
slightly differently context is due to the fact that the natural conditions are generally more

detrimental than the artificially simulated environments.
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2.4.2. Essential properties and categorization of tracking algorithms.

Sections 2.3 and 2.4 focused on some fundamental characteristics of a video tracking
problem, and one possible resolution is to address tracking issue within a combinatorial
optimization framework. Therefore, the most relevant path of objects is chosen from a list of
discrete choices, and this selection is done by establishing relationships using strategically
spread particles in a solution space. The aim of tracking is to match the dynamics of a
bounding box (an operational basin, or a contour) to the kinematics of an object undergoing
transitions in a world coordinate system. The motion of objects could be of predictable nature
and type, as some movements are cyclic and more recurrent in nature. On the other hand,
many observed movements are relatively randomised in nature, and thus are rather difficult to
be described in an appropriate mathematical format. The moving objects also have varying

degrees of freedom impacting the efficacies of the tracker.

Algorithmic

Complexity

Accuracy Speed

Strategy
Control

Figure 2.10: The strategic controller’s responsibility in order to assign a balanced tracking policy.

In order to achieve a real time solution, a basic necessity however for any tracking algorithm
is to possess the inherent ability to alter the algorithmic complexity (as shown in Figure
2.10). The selection of a right balance between accuracy and the speed of convergence is
pivotal for many tracking problems. The scheme shown in Figure 2.10 is a centralised control
method, and a strategy control module is responsible for declaring the desired control policy.
During stages of manoeuvrability, it may therefore be more efficient technique to put more
emphasis on the speed of convergence rather than calculating precise boundaries of an object

of interest.
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The background subtraction formulates clusters of knowledge [63], and performing analysis
using scale space is relevantly less complicated localization method, and could also help to
escape local traps [64]. As a matter of fact, in most type of linear motions with limited degree
of freedom such methods could generate a real time response. In curve based tracking, the
aim is to adapt the shape and length of an evolving contour to address the translational
movements and relevant scale changes of a region [65]. The shape of an object is also
matched sometimes with the stored priors for an identification purpose [66].
In many tracking situations, the mean and spread of the object like clusters are deemed
sufficient to analyse a basic imaging frame. An ideal tracking algorithm must be well aware
of the degree of freedom of an object, and must have recovery techniques in place to adapt to
a changing environment. The reactivity of tracker incorporates both spatial and feature based
changes. Therefore, to attain the desired level of stability in complex search domains, a
pattern prediction and updating algorithm could rectify clutter. Some brief definitions of
essential properties of a tracking algorithm have been presented here, and would be explored
further in Chapters 4 and 6.

A. Predictability: To incorporate balance between predictions and measurements.

B. Cyclicity: To save computational costs by learning underlying motions.

C. Reactivity: Alters the models in cases of changes due to reflection and refraction.

D. Accuracy: Dynamically adjust precision and computational complexity (Fig 2.10).

E. Stability: To handle varying conditions, e.g., occlusion handling.

F. Recovery: In cases of lost frames, the ability to successfully detect the region.

There are several distinguishing merits that could be used to classify the object tracking
algorithms. It is important to establish the core differences among various tracking

approaches so that a better understanding of the problem could be developed. Several authors
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have simply used nomenclature to categorise (without establishing the similarity/uniqueness
observed at the operational level).

Colour is an excellent tracking feature due to the underlying properties of invariance to both
rotation and scaling [67]. Object represented through primitive shapes has also been studied
extensively, but are considered as stable features only if the structure is rigid [66].
Categorizing shapes in an image involves studying the inflection points, e.g., the calculation

of corners and gradients. Therefore, in subsequent frames, the tracking simply becomes a

frame correspondence problem. Relating a set of point S(P),_,to S(P), can be an extremely

difficult task to be handled in a real time, e.g., in the optical flow method the proximity
information is applied to allocate weights using the Euclidean distances calculated at various
points in the search space [68].

Several frame correspondences (along the time dimensions) are used in the multiple
hypothesis trackers [69]. The aim of the multiple region tracking is to generate a connected
graph of movements; this is achieved by associating various trajectories to the corresponding
objects in video frames. To rectify the correspondence relating issues, smaller structure like
edgelets and primitive shapes are used to analyse motion in related configuration space [70].
Shapes could also be represented through silhouettes and closed contours; the level set
representations of evolving shapes are higher dimensional surfaces used to make the curve
tracking (merging and splitting processes) processes much easier to handle [71].

The process of shape matching could be very extensive due to the affine transformational
routines needed to match with the stored templates [72]. These enhanced shapes are then used
in the automatic recognition of the objects (e.g., face recognition). One possible appearance
based categorization will be briefly mentioned in this section. Rather than based on the
principle or a particular methodology, the appearance based classification uses the colour

density and shape orientations as parameters for the tracker -classifications, such
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distinguishing merits are portrayed in Figure 2.11. To distinguish among different objects,
both shape and colour densities are therefore encoded in a feature space. In contrast to the
global density models (e.g., in an optical flow technique) a local method only formulates and
stores the colour variation of a region of interest. Similarly, the shape of an object could be
represented by higher dimension techniques using level sets or by storing the corners and
edges based information using gradient vector field.

Furthermore, as the shape of an object is variant to different affine transformations (in
contrast to the colour representations); it is also a common practise to use both colour and
shape of an object as a penalising force. However, as mentioned earlier in this section, there
are many possibilities in which a distinguishing criterion could be established. Any keen
reader is strongly advised to review these literatures to gain further insight into this

categorization problem [73] [74].

Classification (appearance-based)

Shape Density
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Figure 2.11: Classification of tracking algorithms based on appropriate feature selections.
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2.5 Principles of video tracking

In this section three main tracking methodologies will be discussed. The first two approaches
apply temporal propagation of conditional densities to identify the most probabilistic object
position in a digital image. The third technique exploits gradient information to climb to the
peak of the density.

2.5.1 Recursive Bayesian estimation (RBE) in tracking applications

Life is full of uncertainty and unpredictable happenings. According to the frequentists, the
probability or likelihood of an event ‘E’ taking place could be established using the past
observations and history. As an example, let’s imagine a group of mountaineers are planning
to climb a tropical peak; they want to depart with the appropriate climbing gear for the dry
conditions. A frequentist usually prefers to utilise historical data to deduce that whether a
particular day would be a rainy day. The frequentist’s approach is a good prediction tool, but
in not sufficient on its own to accurately solve this problem at hand. Using advanced
measurement tool like altimeter, atmospheric pressure gauges and isobars the problem could
be more precisely addressed. This is the core concept of the recursive Bayesian estimation
(RBE) [75]; the belief is updated on the arrival of latest information. In Bayesian inferences,

the likelihood of an event (e.g., a rainy day) is represented byP(e|k), whereP is the

probability of an event taking place in the light of a specific body of knowledge and
observations K.

P(BIAP(A)

P(A[B) = P(B)

(2.3)

The Bayes’s theorem [76] in Equation (2.3) was proposed by the Rev. Thomas Bayes (1701-
1761). It is used to calculate the conditional probabilities without explicitly knowing the joint

probability distributions P(A,B). In Equation (2.3), P(A) and P(B) are the independent

probabilities of the events A,B, whereas, P(A|B) and P(B|A) are the conditional probability
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density functions. We are interested in calculating the probability of an event A taking place
when Bis also true using the reverse conditional probability P(B|A) (which relates past
observations of B taking place when A is found to be true as well). With slight modification,
a more practical format (suitable using a measurement context) could be written as in
Equation (2.4).

_ PEIX)P(X)

P(X12Z) PZ)

(2.4)

Equation (2.4) reorganises the Bayes theorem in terms of a hypothesis X = {x;,x,,..x,) e R"in a

multi-dimensional spaceR". In tracking, 'X'(a state vector) is composed of n dimensional

positional coordinates, velocity and acceleration of a moving object at timet, P(Z) is

normalization constant (the probability of an observation in an image space which is a

constant), and P(X)is the prior probability calculated by applying Newtonian dynamics using
previously assigned state vector and the known position at time(t-1), P(Z|X) is the

measurement density which is used to link observations with a particular event.

P(X | Zi-1)

Predictive Stage

RN : P(x | 72)
Update Stage

Figure 2.12: Graphical depiction of a recursive Bayesian estimation process.

If Equation (2.4) is recursively applied (as in Figure 2.12) over a discrete time period
(assuming that all future and past states are drawn from a normal distribution), then such

RBE is equivalent to the standard Kalman filter [77]. Thus, posterior or conditional
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probability distribution of a future state P(B|A) largely depends on the current state, the state

transition and the observation model, and is usually independent of any previous state. In

Figure 2.12, a state x,at time instant t is therefore dependent only on the state x,_, .

P(X: | Z-1)
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Figure 2.13: Reshaping of a Gaussian pulse in recursive linear Bayesian estimation processes.

Under uncertainty, the covariance of posterior P(x, |z)is enlarged, this is the theoretical

reasoning of the introduction of the Kalman gain, which uses the residual covariance
(error/distance between predicted and measurement state vectors) in order to update the
posterior covariance model. Generally, any recursive linear estimation filter could be

represented by the stages shown in Figure 2.13. On the arrival of a new video frame f,,,, the

previous posterior density becomes a prior.

A recursive linear estimation filter is generally comprised of three distinct processes as

shown in Figure 2.13. During the first stage, the density x, drifts bodily, and translates under

the effects of a deterministic component composed of its own dynamics. Later on, the
stochastic component of this transition spreads the Gaussian pulse increasing its uncertainty,

and finally the density goes through a fine tuning stage known as a reactive reinforcement
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(where the distribution is convolved with another obtained through the measurement process,

and generates a new density. Mathematically, the process is normally written as [see 78].

P(X{1Z) = _[ P(X¢ [ X)) - P(Xy 12, ) - dXe (2.5)

P(Zy | X)) P(X1Z0) _
P(Z,)

P(Xi1Zy) = aP(Z, | Xy)-P(X{ 1Zi2)) (2.6)

The above Equations (2.5)-(2.6) represent the two step estimation process. Equation (2.5)
states that the prediction density is the integral sum of the products of state transition models
and the prior posterior calculated during the time step(t-1). During the next stage, the
posterior density is calculated by normalizing the product of the current likelihood and the

prediction density as expressed in Equation (2.6).
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2.5.2 Critical Analysis of RBE.

RBE is intensively used in many video tracking applications, and suffers from both stability
and convergence timing problems. RBE could also be anticipated from the viewpoint of the
Bernsteinian theory (Section 2.4.1). The control sequence in RBE is rather confined, and
relies heavily on the plant dynamics which is difficult to be validated in the tracking
applications. Similarly, the stochastic diffusive component has its own limitations (due to the
reason that a Gaussian pulse has to remain a Gaussian) during the state transition in the
standard Kalman Filter. One interesting thought in the course of this analysis is that the
tracking applications do not require stringent control of dynamics as no safety fears are
generally involved (e.g., required in dynamical control of an aircraft using ailerons or tail
fins). Hence, in the opinion of this report, the deterministic components, and therefore the

motion modelling is less crucial in tracking applications.
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Figure 2.14: Various diversity models which could be employed in tracking scenarios.

Therefore, a more feasible approach is to use a whole variety of bodily drifts to sample the
search space. As a single solution based approach, the standard Kalman filter/ RBE is limited
in its applications. Alternatively, as shown in Figure 2.14, the multiple solution approach is
much more recommended methodology to address unpredictable and larger variety of
motions (of a region of interest). In Section 2.5.3, the limitations of recursive Bayesian
estimations are overcome by initiating a multiple solution approach, known as the Monte

Carlo sampling.
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2.5.3 Monte Carlo Sampling (MCS).

According to historians, the name Monte Carlo initially emerged from a course of leisure
testing conducted by a statistician at a famous casino in Monte-Carlo/Monaco [79]. It is
believed that he took a series of repetitive measurements on several roulette machines to
discover any possible hidden bias and a concealed probabilistic selective mechanism. During
a fair trial, chances of winning and loosing games are equivalent, and therefore gathering
repetitive samples for a reasonably longer period of time could reveal the shape of its
underlying distribution (e.g., if it has a Gaussian hump, or is uniform etc). Alternatively, if
the shape of a PDF is known, then the weighted samples drawn from it could be used as its
representatives, and underline changes in distribution are reflected by using such samples in

both space and time.

P(X) 4 Weighted samples Q

Posterior density X

v

Figure 2.15: A set of sample points are used to represent a complex multimodal distribution.

In Figure 2.15, the blob sizes are used to allocate the importance and weights to various

samples z;, which are then used to construct the observation density p(z|x) by integrating

the measurements of several individual elementss” . In the factored sampling, an unknown
probability density function is approximated by mathematical convoluting the two known

distributions g,(x) and g,(x) as shown in Equation (2.9), and the process could be represented

35



graphically as in Figure 2.16.

FO)=9:(x).92(0) (2.9)
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Figure 2.16: Factored sampling using two separate density functions [80]

If “X’ are the space parameters where a sample distribution x is defined, then in the first
instance, a set s’ € X is sampled randomly ('N' times) from the density shown on the top left

of Figure 2.16. During the second phase the weights of the samples are calculated according

to the following formula [81].

. €))
20 =867 (2.10)

n .

D 9,67

=1
Equation (2.10) states that the weight of any particle z'¥ is determined after normalizing its
fitness likelihood measurement (shown on the top) with the overall observation density g, (x)
of n particles in the population. Generally, particles are represented by multi-dimensional
vectors, which is also used to stipulate their individual state vectors (positional coordinates,
velocities and accelerations in a coordinate space), and associated importance weight

i.e.{sy, 7y} . Here the subscript 'k'is used to indicate the particle’s own state in relevance to

36



the state of the system.

Sk = AlS¢ 1+ Boy (2.11)
In Equation (2.11), a particle undergoes a state transition based on a known deterministic
component'A' representing the system/plant dynamical model, and'B' is a multiplicative
factor that is used to adjust the noise covariance.
The effects of this dynamics have been portrayed in Figure 2.17. The blob sizes are used to

represent the relativity of the individual measurements. A state vector of any particle is

composed of its position in the search space, and the associate weight matrlces{ k}. The
7Tk

bodily shift of the particles is shown in the middle section (with a broken line), where the
particles are translated in the search space by implementing Equation (2.11). Finally, the re-
sampling process is applied in which less important particles are pruned out of the system and

new ones are generated in the feasible areas (the bottom row in Figure 2.17).
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Figure 2.17: The sequential importance sampling in the prediction based systems [82].

In order to improve particles effective rate(ry,), only those particles with appropriate weights

progress into the next prediction stages. In the spatial-temporal domains, particles need to be
deployed at strategic location in both space and time with a prospect for a rapid convergence
to a global optimal solution. During the transitional or bodily shift, some particles diverge
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further away from the feasible areas, and therefore become computationally ineffective.
These particles are also phased out during the next stage of simulations as shown in Figure

2.17.
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Figure 2.18: An initial concept of the virtual/sleeping particles (which do not need memory).

The main concerns (flaw in the view of author) in MCS are the associated computational
overheads in determining the transitional energies of the particles. This idea can be conveyed
as in Figure 2.18, where accumulating errors drift a solution away from the true dynamics,
and even applying a stochastic velocity component (shown on the left of Figure 2.18) has
failed to locate the true coordinates of an object. Instead of selective or rejection samplings,
which are contradictory phases in the view of the author, a more indulging scheme could be
based on the autonomous particle behaviours. The free-scale behaviour of particles would be
studied in Chapters 3-6.

The swarming behaviour is an alternative nature inspired particle characteristic, which has
been gaining popularity in recent years. There is a factor of emotional intelligence in the
swarming particle characteristics, which makes them to alter their trajectories without any re-
sampling requisites. Moreover, the nature based particle formulations do not generally
require complicated data structures to store dynamical models in the system memory, and

instead of being phased out, they evolve their trajectories towards an optimal region.
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2.5.4 Mode seeking algorithms.

In contrast to the projective transformations explained in Section 2.5.1 and Section 2.5.3, a
mode seeking (MS) algorithm does not utilise predictive tools as such, but instead exploits
the differentiability of an objective function to gain an insight into the possible locations of
an optimal region [83]. Therefore, a prime focus in the MS is to develop a sense of direction
that guides the solution towards convergence. The term ‘mode’ explicitly refers to the highest
possible altitude (peak) of the density, usually sought in an iterative manner. Similar to
experienced mountaineers, who have to reach many rational decisions along various points in
a summit, a mode seeking algorithm analyses local information to anticipate the best
direction of ascend (where the objective function seems to be changing fastest towards a
possible solution). Some simplistic but effective mode seekers are standard hill climbing [84]

and the steepest descent minimization [85].
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Figure 2.19: Iterative climbing process encountered in mode seeking algorithms.

To develop further insight into these techniques, a methodological example is portrayed in
Figure 2.19; it shows four possible climbing routes, and all potentially leads to the global
solution. The climbers would experience slope variability, encounter diverse hardships
demanding mental and physical consistencies and agilities during any such ascending

journey. Particular, in the presence of a poor visibility, climber ‘A’ may misinterpret a local
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peak as the global or highest altitude point, especially if they are not equipped with the
appropriate instruments (e.g., altitude meters), and are oblivious of the peak due to poor
visibility at this time. In the analytical terms, at each step during this ascend the algorithm

calculates the gradient Vf(x) of function f(x). A condition of optimality is that at the peak of
density, the gradient vanishes to zero i.e.Vf(x')=0. Here, x" €R" is a point in space where
the vector +(x;-x,,) had yielded the best change in the function value, and no further

incremental modifications could be observed in any close neighbourhood or closer vicinities

of x". The angle of this optimising vector V is called the gradient ascent/descent direction (in
case of minimization). On the other hand, the determination of the magnitude of the gradient
vector is relatively complicated, and a great deal of research has been particularly dedicated
(e.g., exact line search, variable line search and the conjugate search direction [86]) to
expedite the convergence. For the gradient descent scenario we can write the expression as

x*KD = x© _ p@Oyf(x©y and f(x*y< f(x*) (2.12)

Figure 2.20: Contour plot of variable step gradient method to reach an optimum.

The descent process is drawn in Figure 2.20, but the convergences in the gradient based cases
does not always yield the optimal solutions, as the solution is not able to differentiate

between a global and a relative best solution. In Equation (2.12) 7 is the step size mentioned
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earlier, if it is selected too large then the solution may overshoot and fall into the non feasible
area. The calculations to determine these step lengths play a significant role in the tracking
applications, as very small convergent steps mean greater computational complexities (which
could deter a real time approach). A real time solution needs optimal selection of jumps in the
search space, and usually it is not possible for a single solution based approach to deal with
such issues. There are two main aspects of standard mean shift tracking algorithm as

mentioned underneath [87].

(A)-Operational basin (OB)

In MS tracking, the operational basin refers to the depth of the measurements in the search
space, it refers to an area in space, in which various competing clusters are analysed, matched
using density comparison tools [88], and therefore a gradient vector (mean shift vector) is
calculated which sees the whole operational basin shifting to a new location. A selection
mechanism is also programmed into the process, and more weights are allocated to the pixels

lying at the centre of the regions.
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Figure 2.21: Iterative climbing to the peak of density using Mean Shift vectors.

This process is shown in Figure 2.21. At the far right, the operational basin is relatively small
compared to the spread of the cluster under analysis, therefore calculating MS vector is based
on local information only and hence will cause the tracking window to slowly diverge away

from the true solution (in the subsequent frames). Alternatively if OB is too large and

41



elaborative, the convergence would restrict a real time tracking application as usually an
exhaustive search is conducted within the basin. Therefore, in order to find a best
compromise between the speed of convergence and algorithmic accuracy (see Figure 2.10),
the window size and relevant operational basins are dynamically allocated (in an ideal

environment) as an object moves towards or away from the camera.

(B)-Kernel weighting.

To formulate a confidence map within an operational basin, the mean shift algorithm uses
principles of kernel weighting to identify the modes of density. The most popular kernel in
this respect is the parametric multivariate isotropic Gaussian [89]. The main idea of allocating
preferences in this manner is to rectify noisy observations and to eliminate the effects of

reflections from other static or moving objects in a scene.
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Figure 2.22: Effects of convolution of a discrete probability density function with Gaussian Kernel.

This confidence mapping process can be shown as in Figure 2.22. In contrast to the uniform
kernel (a step function switching between two states), the weighting of the pixel values using
Gaussian Kernels is more discriminatory, and for a clear understanding, it could be seen as a
shadowing process displayed in Figure 2.22. To build a reliable map, some training could
also be used to assign more accurate labels to the pixels under question, as shown in Figure

2.23. The overall accuracy of the confidence map on the left side is much higher than the one
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on the right. The fundamental objective of this process is to distinguish the background
clutter. A detailed study of the background subtraction methods are presented in this

publication [90].
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Figure 2.23: Confidence mapping in order to track a pedestrian [91].

Particularly, in the outdoor environments, addressing the ramifications of the changing light
and other weather related conditions poses treacherous tracking conditions; hence, timely
updates of models (background or foreground) may become obligatory. On the other hand, it
is also possible to model a linear deterministic drift (in the feature space) as well after

conducting a detailed examination of the lighting conditions overtime.

Representation

Meanshift Clustering
Algorithm

Figure 2.24: Three main parts of the Mean-shift tracking algorithm.

The Mean shift clustering algorithm is composed of three main stages as shown in Figure
2.24. The mathematical background in the context of these three stages will be described in
this section. In Equation (2.13), the object model/representation is constructed in terms of its

discrete density estimate ’q,’, this is accomplished by first calculating corresponding bin

indexes of individual pixelsb(x;), each contributing one delta to the feature histogram. All
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delta functionalities are then summed up, and weighted in accordance to a Gaussian kernel

definitionk(.).

Ay =C YKl x; I1)eTbOg) —u] (2.13)

i=1
This process is repeated for all pixels(i=1:n), and the weights are then normalised as shown
in Equation (2.13) by the coefficient'C'. These object models are then stored in forms of
arrays, and in upcoming frames are statistically matched to the candidate models constructed
during live tracking phases (also discrete distributions). The most common metric used to
determine the overlap of densities is the Bhattacharyya similarity measure [92] as shown in
Equation (2.14). Therefore the distance between two densities is calculated by using Equation

(2.15).

Ds(p.0) = [ 4/PO0.a00d (2.14)

1

dy = {1- Dy(p,q)}2 (2.15)

If p=(p;, p,.--Py) and q=(q,,q,,....q,) are any two such vectors in an n-dimensional Euclidean

space, then Equation (2.14) could also be interpreted as the dot (scalar) product between these
two vectors, and the resultant measure is a real numberR € 0:1. In the context of MS tracking,
the Bhattacharyya coefficient is the objective criterion calculated during each frame, and acts
as a surface mapping where the tracking window is drifted towards the more dominant mode

of the density (a spatial location where the distance in Equation (2.15) is minimised).

The landscape of this objective function (BC) could be smooth and subtle or highly rippled,
and therefore, seeking modes of density using single solution based approaches is somewhat

difficult to achieve in the practical real life applications. Hence, MS works perfectly well in
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the linear and uni-modal environments, as it does not possess an inherent capacity (in the
original format) to address the multiple modes in the local landscape (as shown in Figure
2.25). In the simplistic one dominant modal case, the density climbing is much smoother and

accurate compared to the one on the right hand side of Figure 2.25.
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Figure 2.25: Landscape generated by Bhattacharyya coefficients in tracking [93].

The initial location of the solution is represented by a small circle along with the convergence
point which is marked using a triangle in Figure 2.25a. The standard meanshift tracking is a
single solution based approach, and in its original format is unable to address multi-modal
environments as represented in Figure 2.25b. The iterative localization procedure in Figure
2.25 is accomplished by calculating the gradient (represented by the mean shift vector), and
then it shifts the kernel towards this newly determined position in the search space. For an n
data points in a d-dimensional spaceR?, we can write this multivariate kernel density

estimate as in Equation (2.16).

X_

1 < X;
f(x):WiZI:K( —) (2.16)

where x;,i=1,..,n are n data points, nhYis a normalisation constant to take into account the

effects of window sizesh.Thus the convergence steps using a circular symmetric kernel

profile(isotropic Gaussian) could be written in the format shown in Equations (2.17) and
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(2.18) [93]. The first term in Equation (2.18) is the position of the mode in newly perceived

likelihood map obtained through matching the densities, and x, refers to the previously

calculated position of the region of interest.

Therefore, the new window position x'*'is calculated through an iterative shifting of the
previously known coordinates x'of an object by applying the mean shift vector translations
as calculated by the expression shown in Equation (2.18). The meanshift is a very efficient
algorithm, and only the object based features and characteristics are required to track an
object of interest. In Equation (2.17), ‘C’ is the normalization constant, so that the kernel
weights add up to unity. All observations in time are weighted by the kernelk, and the

distance metric| x| stipulates the fact that the kernel preferences depend on the standard

Euclidean 1?> norm [94]. Finally, the mean shift vector is calculated using Equations (2.18)

and (2.19).

K (%) =Cy gk(l| xII*) (2.17)

{ZX 9{” i ﬂ » (2.18)

S

X =xt+m, (xh (2.19)

My (X) =

2.6 Critical analysis of the tracking principles.

In Section 2.5 three dominant techniques are presented that almost constitute the bulk of
modern tracking methodologies in computer vision applications. However, the main focus of
this thesis is to adapt an objective orientated method that manifests simplistic and

dynamically altering solutions to the tracking problem that could be implemented in an
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embedded processing environment. This could mean finding and discovering solutions using
a scale-space of problem (e.g., using Gaussian pyramids [95], and then clustering using frame
differences [96]). Restricting the domain of measurements analytically might not be the most
effective or feasible approach in this regard.

Alternatively, rather than viewing the tracking problem through an analytical eye, it might
also help to overcome some of the most common misconceptions, and to avoid configuring
frame tracking problems in the light of the general control theory devised particularly for
process design applications. Therefore, it would be much more interesting to study the
tracking problem in a hybrid framework (evolutionary factored sampling/MCS and mode
seeking algorithms). This problem is also identified in Figure 2.25, where the landscape
proposes a multiple solution approach, and due to the reason that such kind of problems are

highly sensitive to an accurate declaration of initial conditions.

2.7 Conclusions.

Some of the most prominent tracking methodologies are discussed in Chapter 2. The
fundamental flaws of the recursive Bayesian estimation (RBE) are discussed in Section 2.5.2.
The Monte-Carlo sampling (MCS) in Section 2.5.3 addresses some of the inherent
weaknesses/flaws of the RBE technique but even the most popular MCS method (a particle
filter [97]) is self contradictory in the view of this report. The fundamental reason of the
contradictory behaviour is due to the possibility of accumulation of errors in the state
transition models; a re-sampling stage therefore is usually required to compensate the
detrimental effects of the discrepancies in the plant models, which usually restrict a real time

and fast convergence.
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Chapter 3

Natural Experiential Learning

The evolutionary branch of mathematics is a fast developing science primarily based on the
theories of learning and swarming among social insects, birds flocking behaviour, and is
deeply inspired by both microscopic and macroscopic world. In order to achieve collective
goals, a two phase inter species phenomenon of competition and collaboration has been
frequently observed in the biological life forms, and is also extensively studied in the
scientific literature [98]. Our planet earth is a typical example of a multiple agent system,
where members of certain species not only race against each other to gain peer attention, but
at the same time provide navigational aids to the colony that helps to reach significant food
reserves. The competitive and collaborative mechanisms in natural colonies are therefore

leading research directions in the modern optimisation literature.

Figure 3.1: A sensational murmuring phase observed in a group of starlings [101].

One specific example worth mentioning in this context are the research findings of a group of
mathematicians working on the Starflag project, its research goal is to understand the

flocking and murmuring phases observed during starling flypasts (within the boundaries of
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the cosmopolitan city of Rome [99]), an intriguing murmuring phase of starlings is shown in
Figure 3.1. The fascinating formations of starlings are due to the marvellous achievements at
both individual and collective levels, and are not only aesthetically admirable but are also
remarkable displays of strength [100]. During murmuring phases, starlings tend to split and
merge into intriguing group formats and at a blink of an eye. The effective scanning of
environment at both individual and combined level therefore caught the attention of scientists
and engineers alike to solve complex processes.

Another profound scenario of the natural optimisation sequence (a chain of events) has been
noticed in the ant colonies, where foragers compete among each other to reach most
admissible food resources [102]. The waggling of a forager bee at the hive dance floor is
another fascinating phenomenon which has baffled researches for many decades. As a matter
of fact, it was later learnt that the waggle dances of honey bees are social techniques that
convince other members of the hive to investigate prominent food resources [103]. The
second most important issue to be addressed in this thesis is to introduce the radical particle
behaviours that could help to resolve the fundamental flaw in standard optimisation
algorithms. Modern evolutionary algorithms, e.g., ant colony (ACO) [104] and particle
swarm optimisation (PSO) rely on one major assumption that all agents of population have to
be physically transported and shifted [105] (e.g., from a nest position A to the newly
discovered location B).

The aim of this chapter is to explore the applicability by programming foraging
characteristics within particles to solve complex mathematical test functions. After studying
the inherent weaknesses of general gradient based methods, a new optimisation scheme is
proposed that grants a lot better vision to the agents. The underline freedom in choosing
motion trajectories in exploring complicated multi-modal state space relies on a novel

revolutionary dynamics described in Section 3.4.
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3.1 David Kolb’s Learning Model (KLM) in the tracking applications.

During 1984, David Kolb presented his profoundly famous learning model [106] that ever
since has been applied to a wide variety of educational programs to facilitate learning. The
fundamental aim of the Kolb model is to deliver tailor made lesson plans for both individuals
and groups of learners alike. The possible domain of KLM could range from artificial
computation to devising effective lesson plans in both primary and higher level educational
and training institutes. According to Kolb, “learning is a process, whereby knowledge is a
transformation of experience gained through phases of active experimentations [107]”. The
Kolb’s theory initially tries to address the learner’s internal cognitive processes through
experiential observations, and once such information is suitably inferred, it is reflected back
into delivering more appropriate sequences of information, hence maximising the chances of

gaining a far reaching body of knowledge (as mentioned above).

Experience

Test Reflect

Conceptualise ’

Figure 3.2: David Kolb learning model.

In Figure 3.2, the four typical stages of KLM are presented, the iterative application of self
reflections and conceptualisation help in devising more meaningful experiences. The title of
this chapter (experiential learning) also implies this core idea (presented in the Kolb’s theory
of learning), and the main differentiation of this technique revolves around embedding
broader experimental variations in tests in order to acquire knowledge and expertise to

perform a task in the best possible manner. In short, an experiential learning is a process in
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which a mass or body of knowledge is gained through active experimentations rather than
solely based on the theoretical expositions and models. This experimental form of learning is
also very close in nature to the naturally occurring processes seen in early year children and
infants, and is witnessed in both human and natural populations. Based on such
considerations, the tracking problem in computer vision could be effectively solved by
granting searching particles the experiential freedom to plan their personal expeditions.

3.2 Towards developing a faster Global convergence methodology.

This section prepares the readers to gain further insight into various mathematical
optimization processes. The Fermat theorem (FT) [108] is a basic optimisation strategy that
proposes an initial search direction (e.g., along the gradient) to find a solution. The first order
condition in FT imposes a necessary condition (to be satisfied) before a point in a search
domain could be further tested to establish if it is indeed a local extremum.

If S is a feasible subset of a Euclidean search space of dimensionR", and f eR ('R' is the
real line) are the function values over the defined set 'S', then according to FT, at a relative
minimum or maximum point x*, the gradient of the objective function vanishes and becomes
zero (i.e.,Vi(x")=0). In order to distinguish other possible stationary points (e.g., inflection
points [109]) from the local optimal solutions, it is a common practice to carry out a second
order derivative test. The second derivative test imposes sufficient conditions, and a point
satisfying both first and second order derivative tests is finally classified as a relative critical
point [110].

In the simplistic words, sufficient conditions theorem (second derivative test) implies that if
the function’s first derivative vanishes at some point, and its second order derivative is

greater than zero at that point f'(x )>0, then the point x is a local maximizer of the

function f . On the other hand, a point x* is a local minimum if the value of the function
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second derivative at this point is less than zero f'(x")<0. The third interesting but rather

confusing scenario takes place when the second derivative tests prove inconclusive, and in
those circumstances, further higher order derivative tests are imposed (e.g., Taylor series
expansions [111]) in order to locate further critical points, and to investigate the general trend

of changes in its domain.
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Figure 3.3: Examples of a non-convex and a strictly convex function on the right.

In Figure 3.3, two function plots are presented. In the monotonic case (on the right), the
functions values either increase or decrease over its domain (and gradient information could
be used as a guidance), and therefore is simpler to analyse and investigate in comparison to
the non-monotonic case. Furthermore, the function on the right in Figure 3.3 is a uni-modal
test case, because it is monotonically decreasing to a certain point, and then function value
starts increasing in its domain.

In contrast f(x) in Figure 3.3 is multi-modal, and the monotonic properties (changes in

function values) could only guide to a local solution. There is a wide range of competing
regions and convex hulls in this test case, but only one leads to the global best or an optimal
solution. If the solution gets trapped into a local ridge and valley, there is no guarantee that
the optimal solution will be discovered, such problematic situation has been discussed in
literature previously and any interested reader is referred to the following literature to gain
further insight into this mathematical problem [112] [113].
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3.2.1 Greedy optimization strategies.

The fundamental weakness encountered in the monotonic object tracking techniques is due
the factual possibility that these methods could get short sighted very quickly, and may
converge only to maximise the immediately available rewards at any moment in time. This is
the main reason of failure of mode seeking algorithms [114], the contour methods also suffer
from similar setbacks due to the non differentiable stationary points developing on the
surface of a contour [115]. Many high curvature points generated on the curve surfaces are
the consequence of a reduced visibility after following the steepest descent directions for a

number of iterative steps.

Jump irregularities

Figure 3.4: A short sighted solution tends to converge towards local mode (node B).

The diagram presented in Figure 3.4 shows how a short sighted and greedy algorithm tend to
converge to a locally optimal solution (node-B), and generally would remain oblivious of the
position of the global best solution (node-A). We will conduct a range of tests to clarify the
effects of the above mentioned adversities in the evolutionary test cases in this chapter. In
order to expedite the convergence timing and to provide a real time response, a correct locus
to the optimal solution is needed within a allowable time limit.

To increase the prospects of locating the correct node, one possible resolution is to introduce
the jump irregularities as shown in Figure 3.4. An intuitional heuristic shortcut and jump

could also result in the reduction of the convergence timing (however, the optimality is not
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always guaranteed), which becomes more apparent if the depth and breadth of the searches
are vast (e.g., there are 307k data points in an image of resolution 640x480 . On the other hand,
if all the data nodes are revisited in order to understand their relevance in the feasibility
space, then such a search resembles a brute force search, and is a gigantic computational
overhead. A one dimensional graph is plotted in Figure 3.5a to elaborate this further using a

simplistic test polynomial.

MModes of a 1-dimensional test function
100w T == : =
Y PR L I LR S
i i i !
' 0 0 Jl'
= e, S
E Dl’----;r ——————————— E —————— “"\..:_—a —————— El
T 0 '
[} 1
r 1
S0 p---F--- koo EESSSSSE R
-100ms = =
-4 -2 0 2 4
¥

Figure 3.5a: Graph of polynomial h(x) = x> - 8x> + 10x + 6.
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Figure 3.5b: First derivative test of functionh(x) = x* — 8x> +10x + 6.
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Figure 3.5¢c: Second order derivative test of functionh(x).
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Suppose the optimisation task is to find the absolute minimum (x") of the function h(x) which
is defined in the intervals x=-2 tox=3. But in reality, many practical optimisation problems
have no detailed knowledge of the graph of a function. After analysing the graphs of the 1%
order derivative test (necessary conditions) in Figure 3.5b, it becomes apparent that the
relative minimums are located in the vicinity (x=-0.68)/(x =2.083).

The second derivative further tests the projected hypothesis by implying a sufficient
condition test and the position of the absolute minimum ofh(x) are analysed using higher
order tests (Figure 3.5¢c). It is evident from the function plots, that, in order to use the local
convexity to reach a solution, we have to initiate the searches at diverse points in the search
space. There are two competing troughs in the domain of this function (Figure 3.5), and when

the minimization process was initiated at(x=0), and the function monotonic characteristics
are applied, it resulted in reaching to a local solution (x =-0.68 & h(x) =1.5701) . However when

two competing solutions were initialized in the search regions, it enabled the same algorithm

to detect the absolute and the global optimiser h(x)=-6.2586 is observed at ( x =2.083).

A 3D nom-convex fmetion A 3D strictly convex fanction.

Figure 3.6: The landscape of a non-convex and convex three dimensional problems.

The test scenario discussed above is a clear demonstration of the importance of initialization
in the multi-modal landscapes, and is one of the most rigorous issues to be tackled in the
global optimization branch of mathematics. The minimization procedure in higher

dimensional problems is similar to the 1-dimensional case presented earlier; the only
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exception is that search directions are established using negative gradients. The landscapes of
both convex and non-convex functions are plotted in Figure 3.6. These 3D cases resemble
camera generated images (as both are functions of two variables); therefore, it seems
reasonable to study convergences using such artificial landscapes. The decaying graphs in
Figure 3.6 are plotted using Equations (3.1) and (3.2) respectively. The exponential function

defined in Equation (3.1) is strictly convex and a trough at(x =0,y =0) is prominent to notice,

whereas in Equation (3.2), two competing convex regions are present with a non-convex

overall response.
G(x,y)=1-e¥¥) 3.1

Z(x,y)=1- (e_xz_yz + e~ (1T =(y-1.7)? ) iy

Algorithm 2.1

1. Compute — Vg f(x®)

2. Choose 7% = argmin{f (x* — Vg f (X))}
n

3. Update x**'=x¥ —p v, f(x*)
4. Repeat (Go to 1) until “VR f (xk)“ <¢

Figure 3.7: A generalised pseudo code of the gradient descent (GD) convergence algorithm.

In this section we will try to understand the convergence properties using gradient descent
optimisation (gradient testing is also common in contour tracking methods [116] [117]). The
pseudo code for a generic minimization problem is portrayed in Figure 3.7. In Algorithm 2.1,
the fastest change in the function values is calculated using a negative gradient first (step 1),

the selection of an appropriate scale of measurements Vi ('R'is the bandwidth in which

changes are observed) is an important aspect in accomplishing this step. The second
step/stage establishes how long it would be feasible to travel in the direction of the gradient to

minimise the given function,V f (x*) within a neighbourhood, hence a vector/ray is projected
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in that direction to answer this question. The factor 's' assigns a suitable magnitude to this
vector/line search to calculate an optimal value of f(x*) (step 2), and finally the solution is
updated by calculating x“*'in step 3. The iterative process shown in Figure 3.8 is repeated

until the magnitudes of the changes fall below a predefined thresholdHVR f(xk)“ < ¢, gradient

ascend works in a similar way with the exception that the optimum points are yielded

using + V5 f (x*) direction.

Gradient Descent without Line Search
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Figure 3.8: The gradient descent convergence of 1— ey using different bandwidth values.

In Figure 3.8, the number of iterations have been significantly reduced (from 200’ steps at
R=0.01 to ‘40’ whenR=0.05) by choosing more appropriate scale. Similarly, some built in
ray casting procedure and automatic selections of resolution may prove beneficial to detect
intensity variations in a digital image, and the computational complexity could also be reduce
as such technique requires less memory operations.
The convergence timing graph (Figure 3.9) was plotted using a resolution sweep spanning
from 0.005 t0 0.1050. Figure 3.9 emphasizes that the convergence timing could be significantly
reduced by systematically varying the solution starting points in the search space. In all 3
cases key changes in characteristic are observed around 0.04, and further decrementing R may

prove detrimental in terms of converge timing, a threshold error of¢ =0.01was used in this
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experiment.

Figure 3.9: Timing graph of a test function (defined in Equation 3.1 with distinctive starts).
The experiment conducted in Figure 3.8 was repeated using fixed line searches (FLS) this
time, and Figure 3.10 provides a graphical comparison when the gradient descent was applied

without inbuilt line searches (NLS). The advantage of an imminent line search is clearly
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evident in Figure 3.10 as the solution converges in just 10 steps.

Figure 3.10: The convergence of a test function using a fixed line search operation (FLS)
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Figure 3.11: The comparison of the convergence timings (NLS vs. FLS)

The convergence timing graph is presented in Figure 3.11. Although the time needed for the
NLS to converge at each iterative step is far less than the FLS scenario (3.48¢™°"
and 0.0022 seconds respectively), the overall descent time in the FLS case was recorded to be
just0.022 seconds, which is significantly lower than NLS, and has taken 0.0674 seconds to
converge to the global solution. The reasons for the individual FLS iterations to be
computationally expensive than NLS is simply due to the fact that, a significant proportion of

time is spent in determining the slope (ray casting process as shown in Equation 3.3) and in

evaluating function values at new data points.
y=L2"Yyc 3.3
Xy =X
The general line equation is presented in Equation (3.3), where the values of x are stipulated

using the history of movements (gradient directions), whereas, the value of the second

independent variable 'y'is determined using the slope (22—21) (calculated by using the

Yo,y
Xy =X

previous point of convergence to the newly calculated direction of the gradient i.e. Vf(X)),

where X {y} is a vector in this two dimensional Euclidean space and 'C'is a constant that
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refers to the initial location of the data points in a solution space. In object tracking, we often
experience similar situations (mentioned in the previous paragraphs) especially when
deterministic techniques (e.g., Kalman Filter [118]) are applied in tracking, the historical
movements are generally ignored in predicting better solutions (but could be utilised due to
economical memory devices at this technological age). Another relevant technique is Hill
climbing [119] which is also a single solution based approach.

The contour plot of the function Z(x,y) (Equation 3.2) is shown in Figure 3.12. The plot of
the monotonic characteristics of Z(x,y) sheds a focus on the inherent weaknesses of the

gradient oriented solutions. Particularly, in the multi-modal imaging landscapes the
monotonic feature is not a stable approach due to the reasons explained earlier in this section.

The arrows in Figure 3.12 indicate the direction of +V f(X) which are highly inconsistent at

various point in the graph of function.

Level Lines and Plat of the Gradient

Figure 3.12: The combined (Level lines and direction of the gradients) plot of Z(x,y).
Figure 3.13 is a rotated graph of function Z(x,y) that was presented earlier in Figure 3.6, and

only 90 data points are used to sample its unique camel hump characteristics using Matlab.

The gradient inconsistencies in relation to both Figures 3.12 and 3.13 clearly demonstrate the
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need for an experiential variation type of approach as discussed earlier in Section 3.1. The
prospects of converging to a global solution are therefore more circumstantial in the multi-
modal landscape. If the GD optimization is initiated in the valleys in Figure 3.12, there are

minimal chances of recovery.

Z-dimensional plot of test function

0 10 20 a0 40 a0 B0 70 a0 =]
Data Points

Figure 3.13: 2D plot of the local and the global optimal solutions of Z(x, y) .

. N . .. 0.01 .
Figure 3.13 indicates a relative minimumZ(X)=-0064 at X 2[001} and a global optimum

1.7 . . . T
Z(X):—1.0031atX:{1 7] Having mentioned the importance of the initialization stages

previously (Figure 3.4), we will now try to study the initialisation problem in more detail by
performing a gradient descent test on a multi-modal test case. In this section 500 test runs are
conducted in order to understand the convergence issues, and therefore the accumulated
errors are analysed using pseudo random sampling from two Normal distributions in Figure
3.14.

In this experiment, the aim is to guide the solution into the correct convex hull (as was

emphasized in Figure 3.3) by perturbing searches using two unique Gaussian seeds. In
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comparison to the function in Equation 3.1 (where optimality is guaranteed), the aim of these
tests (using highly rippled landscape with a lot more local distracters) is to analyse if

randomization could facilitate in discovering dominant modes (Section 2.5.4).

Variations using Pseudo number generators
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Figure 3.14: Random sampling from 2 Gaussian distributions (with distinct means).
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Figure 3.15: A stochastic meta-heuristic based gradient descent algorithm.
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The flow diagram of the tests conducted in Figure 3.16 is drawn in Figure 3.15; the main
focal point of this novel stochastic gradient based descent test (beside other key points
mentioned earlier) is the random seed generator which diversifies the searches in order to

develop several parallel hypotheses in the search domain.
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Figure 3.16: Error graphs generated by stochastic process defined in Figure 3.15.
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In comparison to the gradient descent process in Algorithm 2.1, the downhill walk in the
direction of the negative gradient is repeated here until the convergence conditions are met
for a variety of starting points (500 iterations/seed). Along with the NLS/LS processes
(explained earlier in Figure 3.10), it is generally assumed that an additional meta-heuristic
stage (if inserted onto the top of tracking and optimization algorithms) could introduce
considerable improvements in all key stages during the descent walks. However at this stage

of Chapter 3, only the results of the randomization processes are shown in Figure 3.16.
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Figure 3.17: The zoomed in version of the graphs drawn in Figure 3.16.

From the graphs of the convergence errors (Figure 3.16), it is clear that the convergence

errors are significantly reduced when the perturbations are generated using a Gaussian with a

mean u = E;} . Figure 3.17 is a zoomed version of the graphs presented in Figure 3.16, which

also confirms the suggested proposition that suitable initialization is mandatory for accuracy.
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In Figure 3.17 the ratio of accumulated error was observed to be 39:15 which is a significant

improvement compared to when = {g} The probability of iterative random solutions
correctly identifying the global best were observed to be 0.82 when u = Bq and in the order

0f 0.3034 when x = B} . Therefore, it could be safely concluded that by increasing the level of

diversity (a kind of pseudo number seeding used earlier) would also facilitate significant
improvements in exploring the dominant modes in the detection algorithms in computer

vision (due to close resemblances of landscapes).
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3.2.2 The simulated annealing as an optimization process.

A controlled annealing is a technique in the Metallurgical engineering that removes the

molecular level defects in machine parts constructed from versatile alloys. In the first stage of
the annealing process, metallic components are subjected to very high temperatures which
facilitate the removal of existing bonds between atoms and alter the molecular properties of a
material. During the next phases, a temperature schedule is maintained by a slow cooling
mechanism resulting in re-crystallization, hence the desired characteristics (e.g., better
stress/strain capacities) are forged which are required for a particular design scenario. The
heart of the annealing process is a molecular diffusion process. The simulated annealing (SA)
algorithm is a relatively new state space exploration methodology (compared to the
deterministic analytical methods) in which a solution is perturbed to escape the local traps

using controlled cooling schedules [120].
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Figure 3.18: The temperature controlled selection of neighbourhood nodes in SA.

In contrast to the solution ascending/descending towards the immediately best solutions in the
gradient based methods, in SA algorithms some worse solutions are also selected depending
on the current temperature schedules. In Figure 3.18, the temperature changes were simulated
from (100 - 0)C°in order to study the selection probability of non optimum nodes. The
exponentially decaying temperature schedule is usually implemented [121] in accordance

with Equation (3.4).
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(~1) * max([0, R(n) — R(m)))
Psq) =€ T® (3.4)
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Figure 3.19: The function gets out of local minimum by selecting node with f(n) < f(m)..

Suppose we are stuck at a particular node'm' (Figure 3.19), and have relevant information
that the current point in space is not a local optimal solution, also the function values within
the local neighbourhood set of nodes S(m)are all worse than the current position in the search

space i.e., f(m)> f(S,). To incorporate diversity, the selection of a new evaluation point in

-1
the search space is made based on a decaying functione™® (as defined in Equation 3.4) and a

multiplicative factor max[0,R(n) - R(m)] governing the temperature decay (where 'R' are the

available rewards at nodes) and the cooling schedule. The graph of temperature and selection
based probability is shown in Figure 3.18 which reduces exponentially as the temperature is
decreased (interpreting the graph from right to left). The chances of finding the optimum
therefore increases significantly in this temperature controlled selection mechanism (shown
in Figure 3.19).

A further graphical interpretation of implementing the SA meta-heuristic in optimization
applications could be established in the context of Figure 3.20. The intensity of the
temperature and cooling schedule alters two relative simultaneous processes at any given
moment in time. The first of the two properties of any SA converging solutions produces a

similar effect as a variable amplitude modulated signal (AM) [122], where the modulating
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waveform is produced by the devised heating and cooling mechanisms (e.g., Equation 3.4).
The second factor of interest controls the frequency of observations carried out during a
specific length of time, a period in which SA is being run to find a global optimal solution. At
higher frequency a search particle could undergo many thousands of scheduled jumps in the

relevant search space as shown by the zigzag lines in Figure 3.20.
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Figure 3.20: A generic representation of an amplitude modulated (AM) signal.

Figure 3.20 also demonstrates graphically how the movement of a particle/agent is governed
by a number of simulated heating and cooling schedules along time dimension. The small
circles represent local searches carried out by a particle after undergoing jump irregularities
(represented by zigzag lines). As at high temperature, the dispersion and diffusion of
molecules is much more intensive because the matter is in a more agitated state, therefore, at
higher temperatures a search particle undergoes higher intensity jumps in the search space.
Therefore at intensified temperature stages, the SA algorithm prefers frequent high amplitude
jumps (Figure 3.20 shows several heating and cooling schedules) rather than conducting
more intensified local searches (compared to a gradient method). The whole scenario
involving both local and global searches therefore mimics a meta-heuristic environment. The
meta-heuristic search processes would be further clarified in the upcoming sections of this
report.

Despite the variations introduced by the annealing process, the SA algorithm suffers from a
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variety of complexities. Generally, the switching of states between the local and global
searches in the simulated annealing processes require considerable planning stages and are

strongly dependent on the landscape of the optimization problem. We can also relate the SA
process as a variable line search techniquex**' =x* —p*vof(x*). A similar ray casting

approach was applied in one of the author publication to track objects of interest [123].

Local Gradient
Search P p Based
Method 1 n | Approach

Figure 3.21: The state machine adaptation in a general simulated annealing algorithm.
Figure 3.21 is a state machine representation of the SA algorithm. Along with utilising a
variety of combinations of local search methods, it must also provide parametric control

(e.g.,N,M ) and introduce mechanism to define jumps (bold curves).

VALLEYS

G, Y]

Figure 3.22: A multi-modal landscape generated by the Egg-Crate function (Matlab).

In the presence of adversities, normally the solution strategically traverses between points
Pand P, (two such points in the search space are shown in Figure 3.21) in an optimistic
attempt to find the global solution. Furthermore, a badly tuned algorithm (where the policies
behind performing larger intuitive shifts or alternatively the continuation of the current local

search modes (N/M) are not comprehensively defined) therefore has larger tendencies to
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drift towards non optimal regions. Generally, along the course of optimisation journey, if the
solution diverges far from the locus (towards the minimum), then in reality, the prospects of
finding optimal solutions vanish leading to the tracking window roaming around in non
feasibility space. Figure 3.22 shows the landscape of a 2 dimensional Egg-crate function

[124]. There are many relative/local solutions (in comparison to Equation 3.2) to this problem

. . . 0 . .
but one global best, the optimal solution is located at X :{0} where the function attains

Gy =0. The contour plot in Figure 3.23 reveals the extent of the problem and

maximization/minimization of the function is a difficult task due to the local ridges/valleys.

Contour Plot (Matlab) of Egg-Crate Funtion.
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Figure 3.23: Contour plot of the Egg crate function i.e. X* +Y? +25(Sin*X + Sin?Y).

Figure 3.23 postulates an artefact which is created by the uncertainties. At the beginning, the
chances to converge to any of the local optimal solution are equally probable, however, once
the solution has descended or ascended much deeper into the regions (Figure 3.24 with a
decision point'D'), there are minimal chances of recovery as the landscape (on its own) could
not direct the solution towards the correct locus (path to the optimal'R' in contrast to

relatively incorrect'w").
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Figure 3.24: A single solution based approach traps the solution into wrong regions.

3.2.3 Case Study-Honey bird in a Meta-heuristic environment.

Before concluding this section, a case study would be presented here that which would help
to rectify some of the misconceptions in relation to the higher level guidance system, needed
desperately in the object tracking applications. In Section 3.2.2, it was mentioned that the
embedded Meta-heuristics in simulated annealing is generally weak, and therefore has an
inability to scan the environment in an effective manner. The cooperative mutual recruitment
of human hunters and honey-guide (Figure 3.25) is an excellent example of both a strong
Meta-heuristics and the much required control variability (as was studied in relation to the

Bersteinian theory and the DOF problem (Section 2.4.1).

[
Figure 3.25: An artistic impression of the cooperative recruitment in honey guides [125].

The honey-bird guided hunting facilitates the much needed inclusiveness which could
explicitly solve the terrain related problems. Due to the airborne characteristics of the honey
bird (compared to the human hunters who get themselves trapped in the local landscape), it

has better anticipation of the environment but due to its structural limits has an inability to

subdue the stinging bees to reach the reward. David Attenborough (renowned for the natural
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world programs) exclusively presented an episode (‘talking to strangers’) in which the
honeyguide calls to solicit human partners [126]. An extra dimension to this already
supercharged drama was that the birds also responded to the humans save our soul (SOS)
calls. According to Dr Claire Spoottiswoode (behavioural Ecologist at the University of
Cambridge), the most remarkable fact about this human-honey guide relationship is the
cooperative evolution of free-living wild animals and humans which might have spanned
over the course of thousand of years [127].

To relate the honeyguide scenario to optimisation problems, we can see the experiments
conducted using gradient based methods (Section 3.2.1) as the ability of human hunters,
which therefore have higher sensitivity to the terrain and landscapes. The Meanshift
algorithm (Section 2.54) is one further example where the absence of a meta-heuristics causes
seizures of tracking windows. Therefore if a particle based guidance system is imposed over
the mean shift tracking algorithm, the global convergence characteristics could be
significantly improved.

The answer to the adversities in the above paragraph are somewhat contained within the
problem definitions itself. Sections 2.5.1 to 2.5.3 focused around these explicit issues, that
preconceived deterministic drifts could possibly deteriorate both stability as well as
convergence timing in many tracking applications. What we aim to portray in this thesis is to
introduce much wider search experience based on experimental variations and broader
learning experiences (Section 3.1). One way to incorporate the necessary meta-heuristics is
through the information fusion techniques that are common in computer science [128]. The
division of landscape into sub-regions by deployment of static and roaming particles is one
possibility that mimics the SOS calls in a human-honey bird relationship. By dynamically
altering the complexity level, and bringing in the norms of scale-space methods (sparse to

denser datasets, as was implemented in another author’s publication [129]) has proven more
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effective tracking schemes in a variety of situations (in contrast to the deterministic methods).

3.3 Population based nature inspired algorithms.

Since the start of the millennium, scientists and engineers have been focusing onto the
possibilities to enhance the capabilities of nature inspired algorithms especially in the context
of non-linear mathematical problems. In reality, some of the most pragmatic aspirations to
tackle complex mathematical problems come from the very simplistic of the naturally
occurring phenomenon. One of the most common urge for the people of almost every
generation and cultures is to witness a snowfall, especially during the festive season.
Furthermore, the formation of snowflakes introduces a superficial element to the otherwise
unnoticeable tiny frozen water molecules, which when ride on the horizontal/ vertical gusts of

winds and thermals, create a delightful weather extravaganza.

Figure 3.26: A magnified depiction of a snowflake/ ice crystal. [130].

In this whole rather artistic masterpieces of nature, the most interesting factor for scientists is
to research/explore how smaller entities integrate in order to formulate larger influential
structures and groups that assign them power to override the undesirable operational and
atmospheric conditions. Although, the snowflakes or ice crystals are lifeless creations (the six
sided snowflake/crystal is shown in Figure 3.26), but when sufficiently populated could
whitewash the landscape in a matter of a few hours. There is no social element among non-

living objects like ice crystals, therefore, these are incapacitated to an extent and unable to
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change the course of their destination (falling and ultimately to meltdown), and hence are
solely dependent on the implication of external projection. The aim of population based
nature inspired algorithms is however to bring in the element of a social life into an otherwise
segregated particle. The snowflakes also create an emergent behaviour but without a much
needed social element, which when is explicitly introduced into the landscape gives birth to a
complete different dimension and search expeditions. Utilising the gifted imaginations and
following the hierarchical discipline birds could create larger influential groups and versatile
flocking behaviours (Figure 3.27), that could even baffle local authorities into spending
treacherous resources and research time to deal with the problem [131].

One example of the research of emergence phenomenon is the Strarflag project [132], which
primarily aimed to deal with the nuisance (due to the ever growing population size to what
Rome could dwell) and antisocial behaviour (human perspective) of starlings that could
change the landscape of this modern city within a matter of seconds. There are other
uncountable examples in terms of the swarming behaviours observed in the social insects
including the travel journeys of Monarch butterflies, schooling fish, bee hives and ant

colonies.

Figure 3.27: The display of nuisance and spectacular starling formations and acrobatics [132].

Figure 3.27 shows some of the excerpts from one of the latest documentary presented by Sir
David Attenborough (‘cities, planet earth 2’ [133]) filmed at Rome in Italy. The top row

shows some of the landmarks and monuments that are being damaged by the growing
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population of starling, and the bottom exhibits the extraordinary features involving the group
disciplines which also vary in the population sizes and underlying structures. Each starling
formations seem to be competing with rivals, and usually take place around the sunset,
whereas, during day times most of the starlings fly around randomly producing an effect of a
noise contaminated images. In the last few decades, many similar population based

optimisation techniques have emerged that also aim to address these core issues [134] [135].

3.3.1 The evolutionary and swarm based optimization methodologies.

Since the start of the millennium, there has been an endeavour by scientific community to
nurture the evolving branch of evolutionary mathematics [136]. The lack of coordination and
contemptuous attempts have resulted in a paradox promoting a thinking that evolutionary
[137] and swarm based optimization methods [138] are fundamentally distinct branches of
evolutionary computation. An evolutionist (Godless thinking) believes that all living beings
are constantly changing in order to adapt the trait that revamps them to compete against the
threats imposed by the potent environment. Whereas, the elemental belief of a creative
thinker comes from an idea that all creations are purposeful inventions, and are contraption
free products of a supernatural force with no past genetic linkage whatsoever [139].
Nevertheless, as this thesis is not about the ethical behaviours, in engineering the concept of
evolution must not be confined to its natural counterpart.

Moreover, an evolutionary algorithm is a progressive methodology, which when is least
wilful, provides an environment that promotes to collate opinions from versatile school of
thoughts. The closest association of coordinated behaviours in lifeless objects has been found
in ferromagnetic materials [140], where particles (spinning electrons) align themselves (at
critical temperatures) and form strong interconnections in order to enhance the fundamental

properties of the matter [141]. One of the most mesmerizing applications of self learning
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(prompting collective response) could be seen in the twisting and morphing cloud of
flocking/swarming starlings.

The swirling masses of clouds created by murmuring starlings is a partial revelation (similar
to the automated mechanism design (AMD) [142]) integrating both distributed and
centralised intelligence, and delineates that the strength is in the unification and disciplined
rendering (see Figure 1.1). According to the findings of the Starflag research project (partly
supervised by Giorgio Parisi, a physicist from the University of Rome), the abilities of
starlings to form unique structures, that sometimes evolve from within an already existing
cloud is the result of the scale free correlations, the possible physics and the mathematical
findings of this group have also been published [143]. The murmuration of starling and the
resultant intelligent cloud is certainly more than a freak show, and a critical thinker may infer
that this marvel of collective genius could be in fact a deterrent to scare and to keep at bay

powerful opponents like the Peregrine Falcons.

A: Full Velocities B: Velocity Fluctuations

Figure 3.28: The two dimensional projection (velocity vectors) of the starling flypasts [144].

The possibility of territorial warfare among rival starling groups (resulting in such exhibitions
of highly coordinated flight patterns) may not be completely ruled out, and one line of
thought is that, it is merely a recruitment strategy in order to further grow in size. Through
analysing hours of recording of swarming and flocking behaviours, we came to a similar
conclusion that murmuration is just one of the modes of starlings in flight. One of several

different occasions, the flying birds mimic swarming behaviour without any higher order
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thoughts and need to create a disciplined flypast. In Figure 3.28, the two dimensional
projection of 3D velocity vectors identifies two non-identical flight patterns, in the first case,
the velocity vectors of the whole flock seems to be highly correlated and form a simple
swarming effect, whereas scenario B shows the presence of a significant level of diversity
and the birds appear to be in murmuring phases.

Whether the aesthetic formations of flocking birds, schooling fish or even swarming Monarch
butterflies are the products of scale free correlations, or of neighbourhood velocity
adjustments [145], the computational charm lies in answering the question that how
inferences from these natural agents could alleviate convergence to the trivial search areas in
an optimization problem. It would be impartial to write that the most prudent and problem
solving technique is still the original (1995) work of Kennedy and Eberhart in the context of
particle swarm optimization (PSO) [146]. Apparently, the original authors were quite aware
of a possible deluge, and therefore in order to set the sequel and scope of the problem have

discussed several hypotheses and some were strengthened through benchmark testing.

The original PSO method is highly intrigued by the development in human cognition by
means of social interaction [147]. The work of Kennedy-Eberhart (KE) could also be seen as
the continuation of the findings of sociobiologist E.O.Wilson [148]. According to Wilson, the
collaboration of individual knowledge (in a school of fish) to discover new sparsely
distributed food resources far outweighs the disadvantages of the competition in order to gain
a fairer share from the hunt. A primitive conclusion from the work of KE is a short excerpt
[149] “social sharing of information among conspeciates offers an evolutionary advantage”,
which also suggests some grass-root level relationships among swarm and evolutionary
approaches as predicted earlier in this section.

Furthermore, KE explicitly mentioned in their paper, that problem solving abilities in
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physical space in human beings (e.g., the collision avoidance techniques) are learned at a
very early age but form only trivial component of the overall psychological experiences, and
PSO is thus only a simplistic coding of the social milieu of the flocking birds. The history of
social development in humans goes much further than the unpredictable choreography of the
murmuring birds [150]. On one side, the work of KE explored the repercussions of using the
Cornfield vectors alone (when all the wandering birds are well informed about the location of
a cornfield) introduced in the flocking simulations by Heppner [151], and then studies the
aftermaths of introducing an element of craziness/madness which prohibits the particles to
collapse in a short space of time (with a primary aim to enhance exploration). The insertion
of the charged particles (magnetic fields to discriminate searches [152]) giving the exploring
agents tendencies to be attracted by the opposite genders (e.g., negative charges) are (as a
matter of fact) the same cornfield influences used by Heppner to formulate a tightly knitted
group with genetic orders. Mathematically, we can write the PSO algorithm as shown in

Equation (3.5) [146].

vi(t+1) =av(t) + (Dlrl[x?(t) = X (D] + P,1[gy () — X; (D] 3.5
It is evident from Equation (3.5), that the velocity control of particles (represented by the
index 1 at time instantt+1) is provided through the linear combination of the inertial,
cognitive and social elements of the trajectories. The first term in Equation (3.5) is an inertial
factor and when scaled by the variable'a’, generates a variety of preferences in terms of how
further any particle should travel along its present search direction. The second and third
components of movement (cognitive and social factors) influence the particles to exhibit a
tendency to converge towards their own personal best findings and an assimilative factor
respectively, which influences the particles to exhibit the desired level of group empathy. The

velocities could be amplified or dampened by ®,and @, (which are known as tuning

parameters and usually range between0-2) and r/r,are the stochastic components to
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introduce variability.

The phenomenon of emergence and murmuration (unification of smaller entities to create
larger structures) is inherently absent from the PSO (of course as the name implies) and is
merely a swarm of particles. Furthermore, the dynamic environmental conditions impose a
demand for versatility and are much harder to be controlled using static means (Equation 3.5

and using®,and®,). The changing global best assignments g, (t) further deteriorate the

problem and a large population is needed to avoid convergence to sub-optimal regions.

A

Moreover, the nostalgia in PSO (personal best position x ;(t) ) is memory intensive task and

demand amendments.

Therefore in order to reduce convergence timing, a strategic control of tuning parameters is
mandatory, otherwise the solution produces an oscillatory response (in trivial regions)
prohibiting the particles to ever settle down. Along with definitions of allowed maximum

velocities V

max

(so that the particles do not jump out of the search space

boundaries/limitations [153]), the strategic dampening of speed (and velocities) is crucial so
that particles could evolve into the next phases (in an evolutionary sense). The next section is

aimed to rectify the inherent flaws in general swarm based methodologies.
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3.3.2 The role of mortality in the ecosystem of particles.

Researchers have found evidences that many natural processes are designed to counterpoise
detrimental effects (of one another) and generate timely medicaments to neutralise, therefore
creating an atmosphere of harmony in which life flourishes [154]. Many man made
machinery has also been influenced by these natural manifestations (e.g., the rear rotor of a
flying helicopter counterbalances the rotational forces exerted by the main rotor [155]). One
of the key demonstrations of this natural balancing lies deep down under our feet and into the
molten outer core of our planet (Figure 3.29). The change in magnetic fields created by the
structural variations of molten core and super-rotations (rotational speed changes) of solid
core (which rotates in an opposite direction to earth layers) formulates a geodynamo,
inducing billions of amperes of electrical current. The resultant magnetic field created by
earth’s internal processes helps to keep earth’s orbit, and therefore preventing our thin

atmosphere to dissolve into the space [156].
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Figure 3.29: The antidote created by the super-rotation of the earth solid inner core [157].

The advantages of the introduction of an antidote in a solution space could be observed in
many other circumstances as well [158], the eradication of wolves from the Yellowstone
national park resulted in an unprecedented escalation of the Elk population which wreaked
havocs on the surrounding ranches. Therefore, since 1995, eco-scientists and biologists are
trying to reinforce the balance (in this particular ecosystem) by manual injections and

monitoring of the wolf populations [159].
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The essence of the earlier discussion (both natural and geological) is to understand the role
of the convergence phenomenon and to investigate and develop a possible antidote in order to
balance the ecosystem of particles. As any particle is the prevalence of a hypothesis/belief in
a search space, hence the converging particles could result in a diversity loss, therefore
without devising suitable techniques to address these ramifications would consequently lead
the population into very confined search regions. With the beliefs collapsing onto narrow
hypothetical areas in space, the universal impact of this crowding is similar to the

gradient/analytical based methods (Section 2.5.1).

The utilization of the particle based methodologies (inspired by natural entities) to solve
complex mathematical problem requires a meticulous know-how of both the morphology
(structure) and physiology (behaviour) of living entities. All living organisms have
individualized genetic encodings (genome) which is the product of two complicated
processes known as the crossovers and mutations. The genetic crossover is the transition of
genetic material into the offspring [160] and culminates the morphological as well as
physiological features of the child population. The appearances of certain characteristics also
depend on the dominant and recessive alleles (e.g., blue eyes have a dominant allele,
whereas, blue eyes need two signatures in order to appear [161]) and despite of the presence
of a specific element in their genetic material might not prevail morphologically in the next
generation.

The Heredity or passing of genetic information into the genome of a child is an error-prone
procedure, the crossover defects (also known as mutations) are one of the consequences of
this transformation. Some evolutionary computational techniques (e.g., genetic algorithm
(GA) [162]) therefore introduce some forms of random mutations to reflect this natural

process. Along with the microbiological imperfections that arise during crossovers, some
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elements in the genome are environment perturbations which after going through micro and
macro stages of evolution create the phenotype traits (behavioural and structural) of a species
[163]. Along the course of the lives of living organisms, the interactions of individuals with
their surroundings also affect their genotype (set of genes) in such a way that enhances their
natural fitness abilities (similarly to an antidote). The depositional effects of mutation and the
retentions of a simple crossover of genetic material are shown in Figure 3.30. Although the
child inherited and retained some of the genes from both of its parents but the effects of

mutation have created a different genetic structure.
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Figure 3.30: The effects of crossovers and mutations in a child population

Most particle based methods (e.g., PSO, Evolutionary Strategies (ES) [164]) address only
limited physiological trends and starkly overlook the important morphological features
commonly observed at both individual and social levels in both microscopic and macroscopic
life forms. The changes in swarming starlings into murmuring also emphasize a transition in
morphological structures, and this collective evolution could be the result of the radical roles
within the population. It is pivotal to seemingly program and to implement the phenotype
changes (in particle generations) in real vector space (e.g., camera plane and multivariate
functions) and to diversify in a compelling but timely fashion after analysing all the tell-tale
signs (e.g., data fusion [165] and applying scale space changes [166].

One of the most fundamental computational techniques that apply the rules of natural

variation and recombination is the Evolutionary Strategies (ES) [167]. The ES method does
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not explicitly apply the natural selection but relies heavily on the random Gaussian processes
[168]. Therefore, all particles in ES have a possibility to be selected as parents. In contrast, in
EA, parents are chosen from a genetic pool based on their fitness levels (an example of

fitness proportionate selection is roulette wheel selection (RWS) [169])
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Figure 3.31: The cyclic reproductive processes in the evolutionary computational algorithms.

Figure 3.31 is an umbrella representation of the class of computational algorithms inspired by
the natural evolution, and usually consists of three main processes commonly referenced in
literature as the marriage, mutation and selection. Proscribing the initialization debate here

(see Figure 3.16), a generation run of EA starts from the x parental population, the marriage

operator reproduces 4 offspring which after going through diversification and enhancements
become mutated individuals (MI). The fitness of all MlIs is retested and some are chosen to be
married in order to generate next child generation. In ES all individuals (whether children or
parents) are represented in the form of real vectors and controlled by the endogenous and
exogenous processes [170].

The endogenous parameters expedite mutations to increase the fitness level of an individual.
The endogens also explicate the means, variances and correlations in Gaussian mutation (to
grant the evolution a sense of direction), whereby, the exogens tend to proclaim the

predominant reproductive characteristics (e.g., birth rates and selection techniques). One key
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exogenous control is to define the genetic pool from which future parents are selected, the

(u,2) type of selection restricts the gene pool to individuals from the offspring population 1
only and the parents ¢ are forgotten regardless of their fitness levels, whereas in the (u+ 1)

reproduction both the parents and children have an equal probability to be chosen in virtual

marriages.

Roulette wheel selection (RWS)

Mean of 6- Parental Vectors in ES In

Figure 3.32: Two commonly used parental selection techniques in ES and EA.

On the left of Figure 3.32, y,_., are N vectors in the R" dimensional search space and all have
an associated fitness F(y,). All vectors are potential solutions to the optimisation problem
and are stored in the memory in formatc, == (y,,s,,F(yx)), where s, are the endogenous
strategy parameters associated with each solution in the search space.

Figure 3.33 display only four such Gaussian mutations (however in practice there could be a
large variety of's, ) which are asserted using the endogenous strategic definitions s, affiliated
with each vectorc,. The relationship (to retain a Gaussian like hump) between standard
deviation and the strength of mutations are presented in the graphs (Figure 3.33) using four
unique mutation operators (a-d). To incorporate wider genetic diversity in tracking/vision
algorithms, the mutation vector for particles could be randomly sampled from a variety of
such normal shaped distributions.

Furthermore, in order to diversify the searches for any specific agent/particle, each vector vy,

might also be prescribed with time contingent features. Therefore, the endogenous strategy
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parameters are also varied in time (mutates the mutation strengths) to introduce the relevant
transitions in space for each and every particle in population. Especially, for converging
behaviours a purposeful and diminishing mutation becomes statutory, or else the particles

would hop out of the feasible areas of the search space.
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Figure 3.33: Defining four endogenous strategy parameters N;(z,%) to N,(x,Z) Yy_, vectors.
|
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The graphical depiction (on the left) in Figure 3.32 is expressed mathematically in Equation
(3.6). The strength of a specific mutation is chosen by calculating the mean of 'N' random
mutation vectorsV,. The > operator is used here to represent such linear combinations, and
therefore the magnitude/strength of this newly created mutation is the average of all relevant
vectors v;_, yin Equation (3.6). Similarly, in multi-parent recombination (to generate a
genetic crossover effect in the ES), a child vector is reproduced by calculating the mean
(Equation 3.6) of all the parental vectors. After the addition of a random mutation, the mean

of vectors (a child centroidc,) would be shifted again in order to further enhance the

exploration of the search space.
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The RWS on the other hand exerts in a more disparate fashion as the parental fitness levels
are scaled on a virtual roulette wheel, hence the fitter individuals occupy a larger proportion
of the space, and therefore have more chances of being selected in a spin. In Equation (3.7),

the probability of selection of a parent p;is determined by dividing the fitness level of the

N
individual f, with the compound fitness of the generationz fi.
i=1

f 3.7

N
2",

j=1

P-:

There are untold variants in literature and largely differ in a manner in which the parental
features are transplanted onto the future generations. In differential evolution (DE) of Storn
and Price [171], the binary crossover of a particle X (current solution) with intermediate
agents (calculated by linear projections of 3 randomly selected agents) is used to scrutinize
the search space. Whereas in stochastic diffusion searches (SDS), the random experiences of
particles/delegates are used to congregate around the best regions in the space and future
trajectories are just opinionated decisions [172].

We have reached a climactic stage here postulating that a maverick particle physiology is
possible using wider learning experiences. Furthermore, a detailed analysis is needed to
determine whether forming particle log offer any optimization advantages at all. Most of the
particle based methodologies (e.g., PSO [173], DE [174]) rely on registration of searches.
The idea of non-nostalgic scale free explorations could be augmented with human
experiences. Generally, as the confidence in acquisition of new skill increases we utilise
fewer memory which also eases the cognitive pressure/overload. Similarly, it might be
possible to reduce the complexity of particle methods using some radical, novel and record

free phases.
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3.4 Radical Search Optimisation (RSO)

In the earlier sections some key challenges in the optimisation of multi-modal problems are
discussed. It was learnt through experiments that a higher order guidance sought through the
monotonic information (embedded in the function domain) might only lead to the local
optimal solutions. Hence, in highly rippled cases (e.g., imaging frames) a suitable emphasis
on forming top order meta-heuristics is needed to resolve short sightedness problems (as in
Figures 3.3 and 3.4). The adversity introduced by assuming that particles are immortal agents
(similar to a natural colony) is previously discussed in reasonable details. Therefore, a more
balanced ecosystem of particles could be created when particle rebirths (and a revolutionary
dynamics) are introduced to overcome the crawling natural evolution. By building upon the
already set foundations (established in Sections 3.1-3.3), we are in a better position to
formally discuss the novel radical search optimisation (RSO) discovered in this research. The
vital properties and key characteristics will be discussed (in this section) that could
accomplish fastest and more efficient solutions than the conventional methods.

Before going into further detail, it might be useful to gain some acquaintance with the word
‘radical’, which is frequently mentioned in psychology and behaviourism science. The
market based research carried out by Norman [175] associated the radical phenomenon with
the introduction of more innovative approach in the product development (rather than the
conventional incremental changes in an existing design). The radical social reforms are also
more unconventional and thorough in nature, and exhibit far reaching effects in diversified
human societies [176]. In the political arena, radicals and reformists are two widely debated
groups (and political sympathizers) that try to improve governance styles for the benefits of
general public [177]. In Cambridge English Dictionary the term radical is defined as a trait
that seeks greater, extreme and wide ranging changes in a variety of disciplines [178].

In the context of the optimisation procedures to track an object of interest, the radical search
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optimisation (RSO) refers to the strategic grouping and deployments of radical particles. A
radical particle is an autonomous computational agent, and it does not believe in social
captivity induced within colonised group of particles, and generally follows its personal
intuition and judgements to explore a search space. Moreover, unlike conventional particles
in PSO; the radical particles are not governed by any hard-wired logic, and hence, all radical
particles perform scale free searches without any neighbourhood confinements shown in
Figure 2.8. Any keen reader is referred back to Figure 3.28, and to the discussion (presented
on pages 79-80) using Giorgio Parisi research work regarding spatial correlations of
murmuring starlings. A RSO is therefore a collective characteristic of a population of radical
particles undergoing broader and innovative movements in a solution space.

We have reached a pinnacle stage, and the optimisation benefits using RSO will be
methodologically tested using evolutionary test bench problems. To achieve a real time goal
set in this research, and in order to process visual data at 25+ FPS, we need to clampdown on
the computational overheads in the evolutionary approaches, and therefore a more functional
contingency (forward looking) plan is needed in the computer vision algorithm.

The selection-variation antagonist (applied in the computational evolution) although drafts in
some of the leading features present in Darwin’s theory, but an impeccable question is that
whether these processes are the real and factual antidotes we witness in the naturally
engineered projects seen in nature. In a visual dimension the bulk of computational time
should be focused towards discovering macro changes observed in the manoeuvring and
translating objects, and therefore biological evolution in particles has limited applicability
(e.g., to analyse a linear dynamics only) and may not be a goal oriented and practical
approach. A case study is presented in Section 3.4.1 that could enable us to understand scale
free searches (using RSO) in a practical computer vision environment, and to understand the

problem within an optimisation framework.
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3.4.1 A case study involving radical and scale-free searches.

A common approach in both Lagrangian [179] and Eulerian [180] formulations in contour
based tracking is to assemble data points in such a manner that tracking flaunts the distinctive
properties of a moving front (e.g., the flame propagation in thermodynamics [181] as shown
in Figure 3.34). A fundamental question that may surface (within the natural comprehensions
of a critical thinker and scientist) is to challenge the restrictive calculations enumerated as
narrowband along the curve’s surface.

Whereas, we can facilitate scale free searches using computational agents to immediately
reveal the boundaries of an object (shown through arrows and RSO particles in Figure 3.34b).
One key focal point in this discussion is that the curvature reduction measures [182], and the
computational lethargy introduced by generating the coordinated movement styles are not
mandatory during intermittent searches (of an evolving contour). Therefore in order to
segment a moving object in time, such denser datasets should only be introduced in the closer

vicinities, and only during the final evolution stages (see Figure 2.10).
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Figure 3.34: Scale free searches in contour tracking to reduce evolution time.

In Figure 3.34a, the region of interest is quite distant and further away from an evolving
contour (shown by using an analogy of the metallic rings). The ring structures (created by

imposing conditions in terms of curvature of the curve) generally prohibit the contour to
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evolve (as a whole) in the direction of the object. A scale free search (on the other hand) is
not bounded in a confined domain, as there is no real benefit in selecting a neighbourhood in
the first place (shown by a number of small circles and dotted lines). The scale free searches
in this detection mode do not restrict particles using narrowband (similar to foraging bees
departing from a hive in search of more suitable sites), and this concept is portrayed in
Figures 3.34a and 3.34b. Hence, the domain of applying precision oriented segmentation
within a narrowband is limited (e.g., in medical imaging), and in the view of the author is a
major misconception requiring calculations of explicit and contradictive energy terms (e.g.,
smoothing movements to reduce curvature and curve length, and feature based energies that
drive a contour towards an object of interest), and this issue has been starkly overlooked in
the past. One fascinating idea is to incorporate visual diversity using RSO as a (separate)
meta-heuristics over an evolving contour to attract it (in a more meaningful fashion) towards

an object boundary.

3.4.2 Basic characteristics of a radical particle (RP).

As the title of this thesis suggests, the natural inspirations are at the core of the tracking
methodology in this report. One of the main focal points therefore is to understand and
investigate the behaviour of many natural world foragers (bees, ants, fireflies, monarch
butterflies etc) from everyday occurrences. All natural foragers and hunters possess an
extraordinary ability to integrate measurements (e.g., using visual and olfactory senses) and
commonly apply those in trajectory planning, these paths may be composed of completely
different walks and flight patterns than their peers.

Figure 3.35 portrays graphically the main features of an elementary radical particle proposed
in this thesis. Similar to the dances performed by foragers at hive dance floor after conducting

independent walks and flights, a radical particle only registers its searches after a significant
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breakthrough in their hunts. Therefore majority of the searches performed by radical particles
are in fact processed in virtual modes, and therefore these agents are termed as virtual
particles (VP) in this thesis. Some promising search strategies in this context could be
uniformly distributed random walks or flights sampled from parametric Gaussian (or Levy
distributions mentioned earlier). Several anthropological studies also concluded that 21%
century hunter-gatherers exhibit levy characteristics in their search patterns for bush-meat
(like their natural counterparts [183] [184]).

On several occasions, the searches appear to be signal modulated meaning that the search
parameters are altered using an information fusion process (e.g., honey bird scenario). Hence,
versatility in searches during hunting phases is the backbone of any successful run as
depicted in Figure 3.35. The penalising ability is the prime characteristic of a RP; it integrates
a wide variety of opinions in order to accept/reject object detections. Such hypothesis pruning
is fundamentally similar to the nest site selections (NSS) in medium sized ant colonies [185].
All radical particles can glance beyond their physical position by taking virtual
measurements, and could undergo spatial transitions based on a variety of sampling
techniques. The nested behaviour is based on a rebirth phenomenon where inner searches are

guided by an external process.
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Figure 3.35: The characteristics of a basic radical particle.
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The guided search [186] is a novel technique that has never been applied in the computer
vision algorithms before (and further explored in Chapters 4-6), it formulates several
discriminatory criterions to accept a hypothesis that a region belongs to an object. Only those
regions that pass the penalising test undergo further investigations in order to establish them
as legitimate targets. A radical particle is a hybrid technique in the sense that it applies both

registered and undocumented phases to attract peer attention.

3.4.3 Nested operations in RSO.

A brief synopsis of the developments presented in the earlier sections of this thesis is
presented here (for the benefit of the readers). The radical search optimization is developed
on the particle sovereignty, and neither is controlled by the velocity models (which demand
extensive memory operations), nor any deterministic drifts are used to scrutinize the search
space (Sections 2.5.1. 2.5.2). The RSO does not require parametric tuning; therefore it has an
overwhelming advantage over the PSO due to their higher algorithmic efficiency and stability
in unknown test cases (increasing portability of a solution), as usually minor perturbations in

the values of tuning parameters @,/®, in Equation (3.5) could forge substandard

convergences.

Furthermore, there are no social elements in the RSO, and it does not rely on the empathetic
social calling of agents, where all individualised solutions are mortal in nature (meaning that
all particles are eliminated while testing a projected hypothesis). Due to the higher search
motivations and capacities, RSO could also be formulated as a meta-heuristics (see Section
3.2.3) over the traditional swarm methodologies (this axiom would be explored in Chapter 6).
One key property of RSO is that the particles do not converge themselves, but in practice, the
search space narrows down itself using successive approximations provided by the scale-free

radicals. These successive approximations and discoveries are nested explorations (we called
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scanning phases) which help to guide the inner solutions towards a more feasible space

(Figure 3.36). The outer loop generally formulates a meta-heuristics to guide the inner loops

to reduce the convergence timings.
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Figure 3:36: Two nested RSO phases used to detect a global optimal solution.
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Table 3.1
PSO RSO
Particle Vision None Yes
Social At all times No
Mortality No Yes
Rebirths Never After each iteration
Nested No Yes

Therefore, RSO only require the declarations of the counter variables rather than extensive
tuning mechanism applied in PSO. In complex multi-modal mathematical problems, a higher
counter value generally enables more rigorous and thorough outer searches. The successive
particle placements and rebirths after rigorous scanning phases therefore tend to solve the
usual premature stagnation problem (witnessed in the traditional particle based
methodologies). Moreover, at an instance in time, the counter variables and identification of
a feasible space (using mean and variance) are generally adequate to find a global optimal

solution.
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Based on the discussions presented in this section, we are in a position to present the feature
based comparisons between PSO and RSO (as shown in Table 3.1). All particles in RSO have
a visionary radius and therefore unlike PSO could glance much further than their current
positions in the search space. Each particle is subjected to mortality in RSO, and further
exploitation of a projected hypothesis is performed through intelligent placements and
rebirths (to avoid the costly translations in PSO). To find out whether there is any social
advantage in PSO is the goal of the experimentation part (Section 3.5) in this chapter. The
nested convergence process is discussed earlier with the aid of Figure 3.36, and could
facilitate in guiding the solutions out of local traps. Further tests would be conducted in
Chapter 6 where radical particles are deployed in video frames to guide PSO towards an

object of interest.

94



3.4.4 Assigning search policies in RSO.

The vision characteristic in RSO enables particles to work in non tactile modes; therefore
particles are well aware of the surrounding landscape. As this maverick particle psychology
(in RSO) is based on the natural hunting patterns (observed in the biological life) it is much
simplistic and a common sense approach (e.g., in comparison to the particle filters). The
particles are strategically placed in the key areas exerted by a meta-heuristic process, and
after going through several diffusion phases nominate particular areas in solution space for
further testing as shown in Figure 3.37, and after several independent diffusion phases,
particles are directed immediately within these regeneration areas (rather than evolving the

entire population in the search space).
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Figure 3:37: One specific schematics/arrangement of placements and diffusion phases in RSO.

Aloarithm 3 1- RSO

[Placements] - x,_, , Distribute n-particles in the search space using meta-heuristics.

[Olfactory State (a)]-Assign each particle with a local/visionary search radiusR,,.

for each particle in the Search Space ‘S’
[Designation]-Allocate P, , their unique search strategies P,_, ,
[Local Searches]-Conduct local searches in visual proximities defined in lines 3-4.
[Current Best Solution] - Choose the current best solution C,.
[Local Perturbations]-Apply k perturbation L, to discover the best solution.
[Hypothesis Selection] - If matching condition met then deactivate rest of particles.
[Inner Searches] - Modify search space parameters to define new feasible space.
: [Regeneration] - Apply particle rebirths in the regeneration region found in line-9.
: [Olfactory State (b)] - Modify R, in order to apply inner searches.

: [Convergence] - if |g, — c,| <T, then

el
PO oo khrwN R

[ERY
N

13: [Break] - Export the best solution as the global optimal solution and terminate
13: [Re-Selections] — else if convergence conditions failed at line 12 then
14: [Reinitialization] - GOTO line-1. re-oraanise particles usina hiaher level heuristics.

The RSO algorithm (in a pseudo-code format) is shown in Algorithm 3.1. The prime focal
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point that makes this approach quite unique is the designation of local search radiuses (Line-
2), and usually undocumented searches (like natural foragers) are carried out in a virtual
mode. In the tracking algorithms, particles are particularly placed using intelligent meta-
heuristics (using frame subtractions and scale space methods). Instead of an
inherent/hardwired social structure as seen in PSO, all computational agents in RSO hop
around (in feasible space) using pre-allocated strategies, e.g., levy flights and using a mixture
of Gaussians and random perturbations (Lines 4-7). A list of best hypothesis (usually<5) are
meticulously analysed (Steps 8-13), and the search is terminated when a specified threshold
condition is met (Line-12). Another differentiating aspect (of RSO) is that instead of particle
convergences (in PSO), a rebirth phenomenon is applied here (Lines 9-10). Moreover, only
activated particles are used within inner searches (Line-8) which also saves a lot of

computational complexity.

3.4.5 Individual and global properties of RSO.

In this section the three main properties of novel RSO algorithm/technique would be
discussed. The idea of a revolutionary dynamics (instead of slowly incurring changes through
an evolutionary process) is of pivotal importance in radical behaviours explained in the
earlier section. The overall approach is primarily deduced from the murmuring phases
observed in a starling population (and explained earlier in the context of Figures 3.27 and

3.28).

A-Zero transitional energy during converging/dispersing phases

In many optimisation scenarios, the painstaking exposition (requirement of a strategic control
by the parametric tuning) of converging particles towards a potential solution is purely a

simulative gesture (in the view of this thesis is a redundant optimisation feature), and is based
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on one weak assumption that computational particles are indispensable family members of a
natural colony (e.g., bee ant ant). On the other hand (although less empathetic towards the
collective well being of any natural colony) if particles are treated as mortal elements, the
relocation expenditures of thousands and thousands of particles could be eradicated which
could expedite tracking. Therefore, the decimation of such tenacious features mainly arising
from the presumption of the permanent and generational particles (in both evolutionary and
swarm based methods), and employing the provisional or task oriented computational agents

instead is a more resolute option in the view of this thesis.
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Figure 3.38: Dynamics of immortal particles in both ES and PSO.

The time lapsing trajectories of some of the particles are drawn in Figure 3.38. On the left is
the typical particle dynamics scenario inspired by ES, it illustrates the fact that out of three
particles only one has ever managed to find the optimal solution, and this has been possible
only in their 5t generation (after undergoing extensive transitional phases involving mutation
and selection processes). Whereas in the PSO case, the position of particle (after
consolidating the effects of the inertial, nostalgic and social components) is still much further

away, and is in a transitional state (at position S!from the current global best solution and

moving with a net velocity of V;').
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The integrated aftermaths of these behaviours of all particles(P_,.,) in the whole population

could be very time demanding and deteriorates further with changing global best
assignments. What we are trying to emphasize here is to utilise particles in an expeditionary
manner, and save the transitional energies by halting the unsuccessful explorations and
missions. The dormant particles could be aroused (although rebirth is also a suitable option,
as described in the context of Algorithm 3.1) once the potential regions are comprehensively
searched.

A virtual particle (VP) using radical search approach does not have to divert attention
towards the collision avoidance, and intentionally avoids the formalities of calculating the
magnetic attractions and repulsive forces. Therefore due to the very nature of VP, it could be
anywhere at any time and has better prospects to detect changes due to its foraging behaviour.
One selection of such a direct path is shown in Figure 3.39. The potential region is
scrutinized immediately by flying the particles directly (which is not possible in real life
environment) into the regeneration areas (around potential global best). In contrast, the
computational strategies used in standard swarm based methods are elaborative and complex

as shown by the dotted line.

\ / Potential
»

GB

IndirectPath |
(N-steps) V>

Regeneration
Area

Direct Route

7

O

Figure 3.39: Direct path VS indirect trajectories calculated in swarm based methods.
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B-Collective Vision of a moving Swarm.

The intrinsic objective of a population of particles is predominantly to take ample
measurements in a solution space. The ultimate goal of tens of thousands of particles (when
evenly spread in the space of function variables) is to discover data correlations, and if
befitting conditions (imposed by the objective function) are detected then those are instantly
broadcasted (e.g., GB) using social networking of particles (any keen reader is referred to the
Firefly algorithm [187], where a much clearer networking criterion has been developed).

Therefore, in contrast to general analytical models (Section 2.5.1, where much rigid control is
impelled), this intended spread and collation of measurements captivate the recoverability of
the algorithm (especially when a large discrepancy among true and assumed dynamics is
present). As discussed in Section 2.6, object tracking in a virtual space does not demand such
compacted control and provisions (e.g., imposed through the gain in the standard Kalman
filter [28]) as there are no rigorous safety implications as such (e.g., to reduce current

transients, copper losses and heat generation).

Arbitrary

Isotropic Correlated
o

Strategic Control
And Murmuring and Swarming of Particles
Swarm Placements

Individual Particles O

Figure 3.40: A new form of evolution which is based on the revolutionary dynamics.

The virtual swarms are strategically arranged in key areas discerned by the higher-order

cognitive processes (e.g., scale space methods and using motion detectors and frame
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differencing). The mean position of swarm at time instant t is represented by s'and shape
and covariance are controlled by endogenous factors (e.g., the spread'R') as shown in Figure
3.40. To reduce the deployment of a large number of computational agents, we instigate two
novel properties in our method i.e. a particle’s personal vision (PV) and a group quality
imputed by the swarm vision (SV) which is a collective PV characteristic.

In Figure 3.40, instead of deploying evolutionary trends in individual particles, the specific
portions of the swarms are displaced using a mean velocity component. Figure 3.40 also
reciprocates that the resulting swarm format could acquire any shape and form like

murmuring starlings using a strategic control element.

3-Particle Group

Figure 3.41: The antagonistic processes in controlling the particle visionary radiuses.

This scenario portrayed in Figure 3.41 uses both personal particle vision and also of the
surrounding particles forming a network like structure. However, unlike real time foragers
they do not have to conduct an expensive journey (in computational terms) to the origin.
Generally, raising a flag (could be a binary number) would suffice in such artificial
environments. In virtual reality mode (zero transitional energy assumption), we therefore
require fewer particles to conduct a wide-ranging analysis of the search space, an idea that

fixates on the illusion of swarms of virtual particles rather than pledging for a physical one.

To eliminate/rectify the problems discussed in the previous discussion, in our novel
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methodology every virtual particle has substantial circle of influence usually orchestrated by
the information integration methodologies (as mentioned earlier), this culminates the particles
to glance much further into their search space and without explicit data calculations and
maintenance. Using the concept of the PV, the tracked region (shown as a rectangular block)
is readily recovered (Figure 3.41) despite it was initially beyond the particle’s tactile capacity
(and normally it is only a pixel wide if standard PSO is used in tracking) but using
visionary/olfactory radiuses the problem is rectified without incurring expensive translational
costs.

Taking aspirations from the biological life forms, each individual member of a colony (e.g.,
a forager bee) has its personal visual radius and forecasts its own behaviour by integrating
olfactory senses with vibrations or social alerts. In standard PSO, the visions of particles are
cramped in the search space (size of a pixel in computer vision) therefore, despite being in
close proximity to an optimal solution at times could still remain oblivious of its location.

To remedy this, in our novel methodology every virtual particle has substantial circle of
influence usually orchestrated by the information integration methodologies as mentioned
earlier, this culminates the particles to glance much further into their search space and
without explicit data calculations and maintenance. Using the concept of the PV, the tracked
region is readily recovered (Figure 3.38) despite it was initially beyond the particle’s
visionary/olfactory radius.

The dynamical allocations of the complexity levels and covariance assignments are exerted
through an iterative search algorithm (ILS) [188] as shown in Figure 3.41. By establishing the
comprehensive swarm visions, the tracking in subsequent frames (like murmuring starlings)
demands only a mean velocity control (Figure 3.40). This fractal like movement of swarms is
based on a faster revolutionary dynamics (in contrast to the crawling evolutionary changes)

and has been found to be much more functional in achieving real time tracking, and further
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tests would be carried out at later stages of Chapter 3 and in Chapter 6.

The revolutionary dynamics and sweeping movements of swarming structures (in feasibility
space) could question the legitimacy of the traditional swarm based models (in the first place,
as was discussed critically in reference to Figures 3.38, 3.39, 3.40 and 3.41). Instead of plying
with the concentrated converging and dispersion mechanisms, these swarming delusions are
virtual manifestations where faster movements are fabricated using coordinated (fixated)
particle clouds. There are ample supplements available in the nature inspired literature (e.g.,
heuristic searches by the Levy walks/flights [189], Brownian motion [190], organised random
walks etc.) that could wield such autonomous expeditions (within and beyond the olfactory
radiuses).

The virtual murmuring could be simulated by only tens of particles, whereby in PSO we need
hundreds and thousands of particles in order to facilitate the same level of search. According
to the no free lunch theorem (NFLT) of Wolpert and Macready [191], a particular
optimization strategy is likely to be biased in a particular scenario, and when algorithmic
instances are averaged out they appear to be almost equivalent. The bias within the PSO and
Bat algorithm could also be analysed in the context of the NFLT as described in the following

paragraph, and in terms of the elevated data processing requirements.

A particle conducing autonomous scale-free searches must acclimatize with the changing
conditions imposed by the objective function. A significant improvement in the speed of
convergence could also be achieved by allocating computational agents with simple binary

objectives (e.g., by using only relevant bin numbersb(x;) in Equation 2.13). The evolutionary

literature is abundant in such penalising methods and two relevant techniques are guided

search (GS) [192] and Tabu search (TS) [193].
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C- Locus to the optimal solution and a new reproduction paradigm.

Finally, the most important axiom would be developed in this section which comprises the
bulk of the evolutionary literature in mathematics, and in its entirety is dedicated to granting
an evolution a ‘sense of direction’. The selection of the evolution path and prescribing the
appropriate dosage of the mutation strengths in time are two admissible characteristics in this
regard. In general, what we are aiming is to mutate the mutation strength itself in order to

acquire the conditions impelled by the objective function.

Correlated Step Sizes Path Length Control
Mutation Strength O (Expected Path over G generations)

Covariance Matrix
C
Adaptations

Isotropic Mutations

Figure 3.42: The affects of the path length control and correlated mutations over G generations.

The convergence and its antagonist mechanism (dispersions of solutions) are usually
implemented in ES by partially inducing the future genetic perturbations in the direction of

the historical transitions (spanning over the course of hundreds of generations)g,,. The

evolutionary path for seven such generations is shown in Figure 3.42. The core idea of
keeping an essential control through computationally cumbersome covariance matrices and
adaptations is mainly to define a locus towards a potential optimal solution (Figure 3.42).

In cumulative matrix adaptation evolutionary strategy (CMA-ES [194]), these resolute
indulgences (weighted sum) of both anisotropic and isotropic factors facilitate a futuristic but
task oriented evolution. The prime aim of integrating the evolutionary paths is to impulse the
productivity of any generation and to cut algorithmic complexity. Assigning the mean

me R" (after testing the fitness levels of a population) is only the start to embark on this
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relentless journey, and future mutations are therefore carefully dispersed using the favourite
solutions (as shown in Equation 3.8).

However, the aim of the iterative macro-evolutionary stage is to divert the solution towards
the optimal regions in the landscape. Sometimes, additional enterprising steps are enumerated
by impeding the isotropic quality, and therefore mutation preferences (oeR™) are
incorporated using extra measures. Such penalising ellipsoids (mutation directions) are
projected by manipulating theC e R™ covariance matrices along time as shown in Figure
3.39. This process is mathematically depicted underneath [194].

yi =m+a9N;(0,C) (3.9)
z9 :liw-%(g) (3.9
P e I

In Equations (3.8) and (3.9) could be generally interpreted as a mean update procedure
(shown in Figure 3.39). Furthermore, in Equation (3.8), i random mutations (y;) are sampled
from a zero mean Gaussian distribution N(0,C) specified by its covariance matrixC (if C=I
or identity matrix, then all genetic variations are isotropic Gaussian in nature). During the
next phase u parents are chosen from the A offspring population (using fitness levels as a

selection criterion), and the mean is updated as shown in Equation (3.9).

In more sophisticated evolutionary approaches (e.g., cumulative step-size adaptation
evolutionary strategies (CSA-ES]) additional control is emphasized by a finely tuned
mechanism which reactively diffuses future mutations %' by taking the historical changes
into consideration as well (normally implied byo?N;(0,C) distribution during each
generational step). Therefore the covariance matrix C in generation g and the updated parental
centroid z°are both taken into considerations to determine the new genetic correlations

(Equation 3.10). If v*' is one such adapted path in current generation, then Beyer [195]
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imposes evolutionary control as shown in Equation (3.10).

VIt = 1 - +,/c(2—c)6—\/Ezg (3.10)

The cumulative control of evolution is therefore subjected by determining the weighted sum

of v9(using cumulative time parameter (0<c<1)) and the newly calculated vector specified

by£

5 29 (for detailed proof please consult [195]). The exogenous control is therefore
o

introduced by mutating the mutation strength o9and inducing the path control using./u

parental importance towards z9 direction (as shown in Equation (3.10) [195]).

LI (3.11)

Finally the mutation strength is updated by comparing the intensity of va“ with the

expected path X as shown in Equation (3.11), where D < /N is a damping factor and N is the
n

dimension of the search space.

One reason for this eccentric control (of the shapes of distributions) is to increase the
efficiency of the mutations (in relevance to the fitness landscape), and to discourage the
proliferation of particles in non optimal regions. In essence, we need to entail viable path
control strategy without complicated matrix manipulations and storage requirements (suitable
for platforms with limited computational powers). In tracking such correlations (of solutions)
could be determined by studying the history of movements, where the mean of the converged

particles specifies the positional coordinates of any dynamic object.
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The exogenous and endogenous controls are usually directed to entertain the peculiarities
introduced by the immortality assumption (of particles) as explained earlier in this chapter.
Alternatively, the path control could be nurtured by the strategic deployment of particles with
varying olfactory circles as shown in Figures 3.41 and 3.43. Eventually, as mortal entities,
there are no strict requisites for documenting the parental explorations (shown on the bottom

left of Figure 3.43).

Evolutionary
Particle-n _—1 Preferences Observation Direction

o\
/ Searches within the olfactory radiuses
Current mean of Population \g

=1
Isotropic Mutations Radius of observations

N-dimensional search spage”

Correlation-a Correlation-b

Figure 3.43: The correlation effects could be achieved using strategic placement of particles.

To detect and track a dynamic object (e.g., a moving automobile) we only create
observational dispositions by cleverly deploying search particles with diversified scope of
measurements. A typical object detection scenario has been presented at the bottom right

(Figure 3.40) where an otherwise foist exogenous strategy is exerted simplistically using the

. . .- . S
observation radiuses'R'and mean position of the partlcles{ y} .
S

X

In Figure 3.44, two such searches are explored, on the left the searches appear to be familiar
to a Levy distribution, whereby the coordinated movement styles are used on the right to
detect an object. The main objective of the next section is to conduct detailed experimental
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analysis (using a variety of cases) to test the convergence features of RSO. This would enable
us to find out that whether radical searches offer any computational advantages over the

inherently complex social systems.

Coordinated
Movements

Levy Walk
and
Flights

Figure 3.44: Utilizing two established techniques in searching within olfactory radiuses.

In Chapter 6 we will perform further experimentation in order to research into the most
practical autonomous search techniques. The virtual measurements taken within olfactory
circles does not require endogenous controls as such (e.g., mutation strengths and path length
control) but conducive responses of self-centred heuristic searches may suffice (e.g., Levy
flights and walks which are still utilized in the 21 century by the African hunter-gatherers in

search of bush meat, and the foraging patterns of honey bees during nest site selections.
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3.5 Experimental Analysis.

The principal goal of the fact-finding analysis performed earlier in Chapter 3 (and graphically
portrayed in Figures 3.5-3.17) was to identify some possible flaws in commonly used
gradient based techniques in the context of computer vision applications. From these
experiments we reached to the conclusion that the optimization success probabilities are
acutely conditioned by the problematic landscapes (Figure 3.12). Therefore in order to attain
an optimal solution in space-time dimensions and to increase the success likelihood, we have
to commence searches at multiple locations (feasible portions) in the landscape. A variety of
experiments were conducted in this regard and some were recollected in Figure 3.15. The
novel stochastic perturbations (in the bi-modal test problem) facilitated reductions in the
convergence error.

In this second episode of demonstrations, we aim to minimise the test functions described by
Equations (3.1) and (3.2), the focal point is to identify several algorithmic peculiarities in
regards to the population based formulations. The comparative analysis among three distinct
swarm based methodologies and RSO variants (Figure 3.45) would help the readers to

explicate the ideas developed in Chapter-3.

Solving
Test case Problems

RSO
PSO Variants

@ @ @ — Levy

Figure 3.45: The comparative test structure of the forthcoming experiments.

One of the most prestigious particle swarm technique relies heavily on the nostalgic and
historical trajectories (stored in memory) in order to select a current global best solution.

108



Alternatively, it is also possible to assign GB during each generational run by only using the
current best solutions. The stochastic particle swarm optimization (SPSO) is a novel
algorithm introduced in this context to increase the exploration of agents. Instead of the
nostalgic (PB) tendencies, stochastically defined velocities are inaugurated as shown in the
mathematical expressions underneath.
Vi =®,(GB-S{ ")+ ®,.(N(xZ)-S™) 3.12
Sf=Vv!'+sH! 3.13
In Equation (3.12), ®,and @, are the tuning parameters which tend to modulate the velocities

in accordance to the problem landscapes (so that particle do not jump out of feasible space),

N(u,Y) are the multivariate Gaussian distributions defined by their means # and variancesy ,
whereas S!™' represent the coordinates of any particlei during the time step t—1. The

positions of all particles in the population are therefore updated as shown in Equation (3.13).
During the next stage, the fitness of a particle is tested and both personal best and global best
vectors are promptly updated.

The flowdiagram in Figure 3.46 clearly indicates the generic nostalgic phenomenon (for a
particular iteration) that takes place in the standard PSO. If the newly anticipated objective
function values (at a recent position of a computational agent/particle) are not improved from
the historical searches, then the future trajectories (of particles) are calculated through a

vector summation which takes into consideration the previously best known positionB,. The

A

nostalgic velocity components are shown in Equation (3.5) using @,r,[x;(t) — x;(t)] vector, ®,r
is a dampening factor that allocates preferences/weight we allocate to the nostalgic features in
order to update particles positions S; (Figure 3.46).

Therefore, NPSO is a form of PSO which considers nostalgic/historical velocities at each and

every transitional stage. In contrast, concurrent or CPSO only depends on the current
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iterations without recording previously best achievements of all particles in the search space.

Initialise Particles
t
Si

In the Search Space

Calculate

. t
Fitness Fi

Nostalgic
Velocitie

Compare Best Particle
From both Choose Best Particle from

Fit And PB History. Fit Fitness of Agents

Calculate

Vit Using Equation 3.5

Update Particle Positions

Si=v!+sH

Convergence
Criterion
Met

Figure 3.46: A generic PSO flow diagram used to solve test problems in Chapter-3.
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3.5.1 Solving uni-modal test case.

All three variants of PSO are applied to solve the convex uni-modal test case introduced in

Figure 3.6. The results of this analysis are presented in Figures 3.47-3.49.
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Figure 3.47: Behaviour of CPSO to solve the uni-modal test problem defined in Figure 3.6

111



MPSO-Convergence Error
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Figure 3.48: Applying NPSO to solve the uni-modal test problem.
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Figure 3.49: Applying SPSO in minimization case defined in Equation (3.1).
It is evident from Figures 3.47-3.49 that in terms of convergence timings, NPSO (nostalgic

variant of PSO) behaved much worse than the CPSO (concurrent-PSO) and SPSO
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(stochastic-PSO) implementations of the algorithm. The mean convergence time for 100
serial runs of this minimization algorithm has been recorded to be around 0.1228 seconds,
which is considerably higher than both CPSO and SPSO. The errors plots also confirmed that
all the variants of PSO descended to an acceptable solution in their search space. The
algorithmic  parameters used in this analysis have Dbeen selected to

be n = population _size =50 ®; =0.8 ®, =0.09.
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3.5.2 Optimising bi-modal test problem.

During course of the next experiments, we applied all three PSO variants to solve the bi-
modal test problem (as shown in Figure 3.6). Although the search space in both
unimodal/bimodal cases are identical, but it appears, that the convergence timings has been
adversely affected by the inherent complexity of the landscape (e.g., the convergence time for
CPSO have been recorded to be 0.0439 and 1.3831 seconds for uni-modal and bi-modal test
cases respectively).

The prime reason for this higher complexity (in view of the author) is mainly due to the
changing assignments of the global best (see Figure 3.23), and is in accordance with the text
descriptions (Section 3.2.2). In particular, and with references to Figures 3.50-3.53, we have
analysed that SPSO (see Equations 3.12 and 3.13) has the lowest recorded mean convergence
timing in all 100 algorithmic instances. The relevant error plots confirmed that all PSO
variants successfully converged to the global optimum. The algorithmic errors were

significantly lower than the single solution based approaches (Figures 3.16, 3.17).

Further investigations would be carried out (in the next series of experiments) in order to
study the effects of the landscapes onto the convergence timings (with a view of real time
tracking in mind). As it was proclaimed earlier that the social hierarchy created by the
swarming particles is mainly a simulative gesture, and scale free search experiences (inline
with the David Kolb learning experiences) are relevantly better strategies, to confirm this, we
will also implement and administer the three fundamental characteristic/properties developed
(in contrast to the immortality assumption in a general PSO algorithm) earlier in Section 3.3

to these test cases.
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Figure 3.50: Using CPSO to solve a bimodal test case as shown in Equation (3.2).
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Figure 3.51: Hundred iterations of the NPSO algorithm to solve the bimodal test case.
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Figure 3.52: The application of SPSO in 100 algorithmic runs to solve bimodal test case.
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3.5.3 Optimising the Egg-Crate Function.

In the next experiment PSO variants are applied to minimize the Egg-Crate function as

presented earlier in Figures 3.22 and 3.33. The results are presented in this section.
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Figure 3.53: Solving the Egg-Crate minimization problem using SPSO (50 serial runs).
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Figure 3.54: Solving the Egg-Crate minimization problem using Nostalgic PSO.
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Optimization of Egg-Crate Function (CPSO)
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Figure 3.55: Solving the Egg-Crate minimization problem using CPSO.

Despite of a rather difficult landscape, all PSO variants (we implemented using Matlab)
successfully converged to the global optimal solution as depicted in the 50 algorithmic runs
(Figures 3.53-3.55). Both the Nostalgic and Stochastic variants of PSO were transcended by
the CPSO version in this test case, which took only 0.998 sec mean time to converge to the
global optimal solution. Although the convergence tests conducted here have shown the
dominance of particle based methods, but still there are profound challenges to be addressed

in order to develop a faster tracking system.
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3.5.4 Solving the highly oscillatory Rastrigin function.

The Rastrigin function (RF) creates another challenging landscape and is commonly used to
analyse the convergence characteristics of the nature inspired algorithms [210]. The
behaviour of RF is highly rippled and induces an inordinately multimodal scenario with a
very narrow locus to the optimal solution (refer to Section 3.2 and Figure 3.3). Therefore the
mode seeking algorithms (Section 2.5.4) would not be successfully if are applied in such
highly oscillatory problems (as explained earlier in the context of Figures 2.19 and 2.25).

The subtle landscape of RF has been plotted in Figure 3.56.
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Figure 3:56: The landscape of the Rastrigin Function (RF).
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Contour Plot of the Rastrigin Function
T T

Figure 3:57: The contour plot of the RF.

The contour plot of the Rastrigin functionality is drawn in Figure 3.57; it shows the locus of
abundant local distracters along with only a single global solution. The RF is implemented in
Matlab here, and the parameters (shown in Equation 3.14) are selected to

be(A=10,d =2,x=data_point). The initial aim is to optimise the RF using CPSO and SPSO

alone by completely avoiding the nostalgic criterion (which has been deemed ineffective and
an overhead in the previous analysis) in the standard PSO. It is also a prerequisite to define
the tuning parameter for both these PSO methodologies (as discussed earlier) in order for the
subsequent convergences to be meaningful due to the highly rippled landscape (and also

within allowable time and computational iterations).

d
G(x,y)=Ad + Y [X’ — Acos(22%)] 3.14

i=1
The optimization of RF was initiated by choosing a highly populated solution, and
subsequently, we experimented with the tuning parameters ®,and @, (in Equation 3.5) in
order to understand the convergence phenomenon in this specific problem. Figures 3.58 and
3.59 demonstrate the significance of choosing appropriate tuning parameters in particle
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swarm optimization. According to the results displayed in the graphical format underneath,

the most consistent and error free solutions were observed in the ranges 0.35<®, <0.63
and 0.01< @, <0.06, the peaks in the graphs exhibit that beyond these specified regions, the

intensity of errors grows resulting in the failure of the minimization objective (the location of

. . 0
GBinRFisG,,, =0 atX :{0}).
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Figure 3:58: A number of experiments were conducted (91) to determine the best @, value.
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Figure 3:59: A wide variety of tests used to choose the most suitable parametric value for @,

The graph in Figure 3.60 shows that the best convergence time is observed

when 0.35<®, <0.45. Hence, a suitable choice (after studying the responses in both Figures
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3.58 and 3.60) could obviously be ®, = 0.40. Whereas, by analysing Figures 3.59 and 361, we
reached to a conclusion that @, =0.028 would also be a wiser selection for reducing both

execution time and convergence errors in the minimization of the RF.
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Figure 3:60: The convergence parameter ®,and the timing graph in the CPSO method.
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Figure 3:61: The effects of the convergence parameter @, onto the algorithmic timing.

As explained earlier in this section, the appropriate choice of population strength (n) is

another key criterion to be met in the tracking systems. The three dimensional landscape of

the RF is (as a matter of fact) remarkably identical to the video camera frames in the object
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tracking scenarios. The translational movement of an object under observation (similar to { }
y

independent parameters of selection in RF) takes place in a two dimensional grid as well,
where the successful determination of the locus (to the minimum in vision tasks) depends on
the size of a region. As the feasible space in RF is narrow, therefore if RSO successfully

detects the global optimal solution, it certainly would prove useful to solve vision problems.

Population Size Ws Convergence Timing
3 T T T T
26 frvnnneee e s oo -
2 _____________________________________________________________________ —
[ai]
E
= H H H H
= i i i i
S 15f---- B boeeeeoeoeee frommmmmmneeees oeoenooooes s
= 1 1 ' '
[l
a ]
=
L
T (O O | S U S -
oskA ML | i A .
0 il | | |
] s00 1000 1500 2000 2a00
Population Size of Agents

Figure 3:62: The population sweep is employed to analyse the effects on execution timing.

In Figure 3.62, the minimization of the Rastrigin problem was initiated with a population of
n=50. During next iterations, the population was increased by 5 and particles were
repositioned in the solution space to conduct searches. It is evident from the timing graph
(Figure 3.62), that the solution failed to converge initially (where the peaks represent that the
maximum permissible time has lapsed). Once a suitable population size (n=350) was reached,
the minimization gained momentum, and further increments have resulted in higher execution

times (without any optimization benefits) reaching to 0.9 second at N=2050.
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Having considered the idealistic tuning parameters (n =350, ®, = 0.42,®, =0.028), we executed

the minimization algorithm, and the error trajectories for both CPSO and SPSO are displayed
in Figure 3.63. For the CPSO, the mean convergence time (Figure 3.63a) was recorded to be
0.2911 second, whereby in SPSO, the mean convergence time (Figure 3.63b) was 0.2500,
which is slightly better than CPSO. Also the trajectory/slope of the errors in SPSO is steeper
and aggressive compared to that of CPSO. Hence, we can safely conclude that both SPSO
and CPSO performed competitively in solving the RF, which is an example of a highly

oscillatory and multimodal test function.

Errar Trajectonies Rastrigin (5PS0)

Error Trajectory Rastrigin Function (CPS0)
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Figure 3:63: The CPSO algorithm generally converged in 6th but SPSO in the 5" iterations.

3.5.5 Solving complex mathematical test problems using radical searches.

We have reached to a pinnacle phase in Chapter-3, where with the aid of the
experimentations we would analyse the efficacy of the radical/virtual particles in a variety of
test problems as implemented earlier. The Rastrigin function (as shown in Figure 3.56) is a
highly multimodal three dimensional test function, where the search space (in our

demonstrations) spans between the regions —6<(x,y) <6, this problem is also reckoned to be
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befitting test bench for the tracking applications due to its narrow feasible space, and hence
illustrates a classic detection scenario. The location of the optimal solution has been shown in
the search space, the presence of nearby competing peaks pose a huge optimization risk, as a
slight drift in the function variables could translate the solution in its entirety to the local
optimal areas (Figure 3.64). The RSO (see Algorithm 3.1) is applied to solve the Rastrigin

problem, and the results are displayed in Figures 3.65 and 3.66.

Locus of Optimal
Solution

Figure 3:64: A rotated zoomed in mesh plot of the RF.
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Figure 3:65: Solving the RF using RSO and the relevant convergence timing graph.
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Figure 3:66: The error graph showing 100 optimisation runs in order to solve the RF with RSO.

The mean convergence time for 100 optimization runs (Figure 3.67) was recorded to be

0.0661seconds which is significantly lower than both the CPSO and SPSO algorithms (which

were 0.2911 and 0.2500 respectively in the Figures 3.58 and 3.59). The convergence errors

(mean=7.65e-005) in Figure 3.66 are also very competitive and significantly lower than the

ones observed using the PSO methods. We also applied the RSO to the Egg-Crate function

and the results are presented in the Figure 3.67.

Solving Egg-Crate Function using Scale Free Searches

0.055 : :

0.035

0.03 -

Conwergence Time (seconds)

0.025

Y] SRS RS S S — l
ENS7 =3 A S S S A §

171} IS AN I i

0.02 I !
0

Minimization Atternpt

g0 100

128



w 10 " onvergence errors-Radical Searches (EggCrate Function)
g R . S .
El---F------- S . b e Ao e |
= : ;
(| 5_"'""""?""""" T ]
o : .
o H H
= A4f--q------- Rl | o L dmmmmmmm - e —
famp ] ' '
@ : :
= . 1
S 3b--41------- R, | I Fommmm oo Ao [ —
L= H H
= |
1--------- demmm e . R EEEEEEP b
5 oA A
0 L | R o T T E A
] 20 40 B0 80 100
Flinirmization Attempt

Figure 3:67: The timing and the error graphs for minimizing the Egg-crate function using RSO.

The mean convergence time for 100 optimization runs was recorded to be 0.0319 seconds,
whereby CPSO took almost 2.31 seconds (Figure 3.49), and when SPSO was applied (Figure
3.51), a mean convergence time of 0.99 seconds was recorded, and the convergence errors are
also notably lower than the threshold set in our experiments. The results of implying the

radical searches to solve the bimodal and unimodal cases are shown in Figure 3.68.
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Figure 3:68: Applying RSO to bimodal and unimodal functions

The time consumed by 100 optimisation runs to solve the bimodal test problem using RSO
was 63 and 51 times faster than CPSO and SPSO respectively (as were analysed in Figures
3.46-3.48). By comparing the graphs in Figures 3.43-3.45, we reached to a similar conclusion
that the unimodal convergence timings using RSO are 2.8, 3.5 times faster than CPSO and
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SPSO respectively.

3.6 Conclusions.

Chapter 3 started with a discussion which emphasized on the importance of the experiential
learning (David Kolb’s model). The wider search experiences have also been witnessed in
many natural and biological life forms, the findings of the Starflag project also confirmed that
the marvellous flight displays of starlings are due to their scale free correlations. The
optimisation problems encountered in the gradient based methods were discussed, and it was
analysed through experiments, that in the absence of reliable gradient vector field the
minimization processes usually converges to the non-optimal solutions. A major prospect to
resolve convergence issues is to initialise the solutions at multiple points in the search space
(Figure 3.15). However, significantly better results were achieved using the population based
methods (e.g., CPSO and SPSO).

In view of the author, there are a number of design flaws and misconceptions in multiple
agent based systems, and readers were introduced to a novel RSO method which is based on
three key characteristics and deemed suitable in artificial environment (Section 3.3). Later on
in Section 3.4, we demonstrated using evolutionary test cases that scale free search
experiences could indeed outperform social swarming methods by huge margins. We also
highlighted a tuning free optimisation paradigm that could be used as a meta-heuristics over
traditional swarms to improve convergence errors. No evidences were found in our tests that
the social calling and nostalgic memory helps convergence. Instead in the view of the

experiments social elements are computational overheads.
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Chapter 4

Tracking in the Context of Dynamic
Optimization

Many real world problems are dynamic in nature, and the convergence at any moment in time
could not assert that the same solution would be applicable during the future instances. The

goal of any static optimization problem (analysed in Chapter 3) is to find a value for
X €S eR"(x" is the optimal solution from a feasible setS in the n-dimensional Euclidean

space ") in order to maximize (or minimize) the objective function i.e. f(x")> f(x)
(or f(x") < f(x)). The detection of the object of interest in a distinct video frame is a static

optimization problem, and once the solution has converged to the optimal, we would
generally require some mechanism to address the dynamicity introduced in the next frame. In
brief, the convergence was a desired property from static optimization point of view but
could become problematic with a dynamical perspective in mind [196].

Therefore to address a dynamic optimisation problem (DOP), some kind of diversity is
needed to be artificially introduced in the search space, so that the particles hypotheses do not
collapse onto the restricted areas in the search space. The landscape of a visionary
optimization problem (a pedestrian tracking problem from a computer vision repository) is
shown in Figure 4.1. At each frame, the peak of the density (optimal) drifts randomly, and
therefore a particle splitting mechanism (anti convergence order) is required to detect the
object like features in the subsequent video frames. In general, computer vision systems often
see a deluge of such time varying parameters, this may include changes in the size of the

object during incoming frames, the abrupt translational and rotational movements along with
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unprecedented changes in the object models (in feature space) which could invalidate

tracking results.

Figure 4.1: The tracking of a pedestrian is a dynamic optimization problem (DOP).

4.1 Diversity indulgence techniques

A range of propositions have been suggested in the evolutionary branch of mathematics to
address the catastrophes related to the dynamically changing environments [197] [198]. Some
of the most extensively researched themes in this regard involve increasing the diversity of
the population by artificial injections [199], and the particles are also restricted from an
absolute collapse using anti-convergent measures [200] [201]. Alternatively, it is also
possible to exploit an auxiliary agent population (e.g., RSO which serves as an antidote, see
Section 3.3.2) to retain a suitable level of diversity, which as a matter of fact, could also
decrease the computational complexity for a real time convergence. The scale free
experiences (described in Chapter 3) have an inherent feature to address the changing
environmental conditions. In multimodal landscapes, another dominant methodology is to
watch the competing peaks with random scouts [202], which are arbitrarily solutions
introduced to pertain aspirations about the changing objective functions.

F=f(xat) 4.1
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A general DOP problem is usually described mathematically as shown in Equation (4.1) (¢
is a set of strategy control parameters, which stipulates the spread of the particles in the
fitness landscape at any time instant, and x is a solution from a feasible set i.e. xeS". A
rather simplistic strategic control parameter is the multi-variate measure of the relevant
Euclidean distance (from the last known mean of a converged population). If the changes in
the strategy parameter are represented byA¢, then at time instantt+1, the dynamic
optimization problem is expressed as in Equation (4.2), the fusions of the strategy control
variables ¢, ®A¢ may also have much broader implications on the future convergence

instances of the algorithm [203].
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Figure 4.2: Watching multi-modal landscape along time using Random Scout Population

The most fascinating resolution to the changing goal post problem, which is also valid in
many tracking scenarios, is applied with the introduction of the scout populations in the
search space (with an aim to watch competing regions of interest as mentioned earlier). An
optimization scenario is shown in Figure 4.2, where contending peaks are watched by scouts,
therefore when the peaks move in time the changes are readily detected and addressed
accordingly. The standard iterative optimization methodologies (e.g., the Newton method
[204] shown in Equation 4.3) would certainly had failed in such circumstances (especially in
the regions of the valleys) where it is extremely difficult to establish the gradient

direction f '(x,).
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nil = Xq — fv(xn) 4.3
f(x,)

Similarly, a reactive-proactive tracking algorithm adapts a futuristic kind of metaphor to
comprehend challenging tracking scenes. The non-linearity of the landscape is resolved using
a knowledgeable approach that also identifies other relative optimum around the region of
interest. The diversified artificial injections could also facilitate the restoration and recovery
of the lost tracks. Furthermore populations are also systematically prioritised using elitism
approaches [205] primarily with a prospective to detect the non-linear movement patterns
during the manoeuvrability phases. A tracking algorithm built on the DOP perspectives

therefore has the following key potentials.

A set of anti convergence features of the population are defined for each video

frame f, which generally are used for scene specific recovery phases.

e To actively learn the motion model of the object of interest. This would strongly
affect the mutation strengths and other relative parametric control measures that
define the population behaviours for a robust and expedited convergence.

e To implement an effective change detection procedure, however if the change
detection principle and corresponding decision making process are too slow (e.g., it
require collating opinions from all agents before making a decision), then this would
deter the real time convergence properties of the algorithm.

e Itis fundamentally important to declare the correct level of population diversity.

If the diversifying elements/agents have trapped themselves into the local minima, then the
solution would have no alternate means to come out of these local traps. The severity of
changes in the past could be used to determine the next set of strategy parameters. The

projections using the motion history is one way to learn the required diversity levels.

134



However, to answer completely randomised motions, extra steps and many elaborative
diversification phases are needed so that the underlying non-linear movements could be
tackled in the video frames. The tracking failure could also result from the noisy environment
(e.g., due to the sensor noise, camera resolution and background clutter [206]), it may also be
due to consequence of the objects going under occlusion for a length of period. In recursive
and repetitive object movement patterns memory based techniques (e.g., Tabu search [207])

could also be utilised in the timely detection during occlusion phases.
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Figure 4.3: Anti-convergent parameters help timely convergence in subsequent frames.

Figure 4.3 shows a generic problematic condition in the particle based systems, after the
discovery of a global optimal solution the particles rush towards the surrounding landscapes
with an intention to exploit the nearby space. However, the ramifications of the converged
population is devastating for tracking in the next video frame (bottom right of Figure 4.3),
and need remedial velocity declarations to define their splitting behaviours. A resolute
technique to address the dynamic environment is to prohibit the particles from convergences

using repulsive forces (as mentioned earlier) and is explored further using Figure 4.3 (bottom
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left). In natural unforeseen tracking cases, where there are more chances of frame corruptions
due to the noise, it is much more feasible to facilitate and develop a restart strategy with
strategic placements of agents to reduce the tracking time. Therefore, the tactical initialization

of particles plays a significant role in both static (Section 3.2) and DOP scenarios.

Figure 4.4: Artificially created DOP landmark using Moving Peak benchmark problem.

The mathematical description of the evolutionary dynamic optimisation test bench problems
(EDOP) would go beyond the scope of this thesis. However, a typical scenario is portrayed in
the context of Figure 4.4. The height and width of the peaks are controlled in this moving
peak benchmark test problem (MPBP) [208] using time changing assignments of the global
best solution (ranging from a much cluttered environment on the left to a rather simplistic
landscape on the right). Figure 4.5 is also presented here in order to relate the EDOP and a
general tracking scenario, a cluttered tracking scenario is presented, where, the foundation
rules of a combinatorial optimisation are applied to differentiate among various moving

objects (in order to differentiate a white car enclosed within a tracking window).

Figure 4.5: Tracking of a white Car using EDOP and its corresponding contour landscape plot.
The tracking terrain could also be more rugged as shown in Figures 4.6 and 4.7. A frame

from the ant tracking sequence has been presented, which exhibit the severity of the task due
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to the resultant shadows from the maze boundaries. The histogram ball plot of the ant (on the
right of Figure 4.6) shows the colour distribution of the object in the RGB feature space. One
major differentiating criterion that could also be applied to ensure optimal convergence is
related to the observation of the individual histogram balls within a confined area (suspected
of harbouring an optimal region, this would also be explored further using penalising guided
search). In Figure 4.7, the landscape of a video frame stipulates the similarity of tracking
frames and the MPBP.

By studying the contents of Figures 4.6 and 4.7 we may reach to a vital analysis that a task
oriented computer vision algorithm is generally composed of two parallel operations. The
first stage deals with the feature based characteristics to create a unique identity of a region.
In contrast, a second stage relies on parallel detections (ideally through the scale free searches

explained in Chapter 3), to discriminate among the potential global optimal. If the scene

conditions are dynamic in nature than the profile updates are also mandatory.

Figure 4.7: Feature Space diversification with multiple scout population in Ant sequence.
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4.2 Properties of a proactive tracking system

The fundamental reason behind adapting nature inspired approaches in tracking applications
(in this thesis) is mainly due to the significance of their natural abilities to address the
dynamically changing environment. Biological life forms have to rigorously tackle the
environmental peculiarities on a daily basis in order to survive in harsh conditions. The
challenges imposed on the natural colonies and inhabitants of wilderness are enormous, it
could range from the daily hunt for food [209], fending off predators, and to devise suitable
action plans to tackle natural threats and selection of secure nests [210]. The RSO method in
Chapter 3 is an autonomous search strategy motivated by the movements of natural foragers,
and several search models are explored in Chapter 4 with an aim to apply those in tracking
applications. The most important characteristics of our novel reactive-proactive tracking
algorithm are displayed in Figure 4.8. RSO is also inherently a strategically better dynamical

optimisation strategy compared to standard particle swarm optimisation.

Actions

Communication
Strategy

Knowledge )

Reactive-Proactive
Tracking Environment

Learning
Recovery

Figure 4.8: Elements of an intelligent reactive-proactive tracking algorithm.
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4.2.1 Actions for optimal convergence timing

In a discrete computer grid a larger parametric jump is attributed to exactly the same
computational complexity as an alternative shorter flight between two points P and R (Figure
4.9). The course of actions needed to apply the RSO as a meta-heuristics over the swarm
based methods are specified in Algorithm 4.1. Once the feasibility of a specific optimal
solution has been established, Algorithm 4.1 devises a distance modulated convergence
strategy (steps 3-4). The relatively larger jumps are introduced to reach the feasibility space

(distance d,g in Figure 4.9) and steps are repeated for the whole population.

The random perturbations (e.g., using Gaussian models) are also introduced at times to
enhance the exploration of the algorithm (steps 5, 8). The distance modulation scheme
(represented in Figure 4.9 and Algorithm 4.1) does not rely on the tuning parameters ®,,®, as
shown in Equation (3.5). Therefore, instead of several small convergence steps (a;,a,,..a,)a
larger exploratory jump is preferred to speed up the convergence process (lines 3-7); both

Iterative local searches (ILS) and local search methods would also be discussed in Chapter 4.

Search Path due to
Iterative Assignment of GB

a N-Equal non-Adaptive Steps

Examples of Implicit & Explicit
Search Trajectories

Figure 4.9: The distance modulated parametric control in the agent based systems.

Algorithm 4.1

1- Repeat

2- For all Agents in Population do

3- Calculate Distance (...) to local optimal solutions

4- Devise Distance Modulated Search Scheme

5- Add random covariance in search paths for exploration

6- If solution not discovered yet

7- Define appropriate search regions around potential solutions

8- Use exploitation algorithms to adaptively search optimal e.g., Using ILS-LS [11]
9- End if;
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10- Evolve Population in accordance with the above rules
11- End For;
12- Until Converged,;

4.2.2 Recovery of the lost tracks.

The experiments conducted in Chapter 3 are broader attempts to find the optimal solutions
through detection algorithms, as there is an absence of a propitious scheme in which the
gradient information would have been exerted. A similar detection mode could also be
implemented in the object tracking, and if it is prompt enough, it might also facilitate a real
time tracking (a prime objective). When the particle population is colossal, every agent
occupies a place in space, and then such situations are conventionally referred to as brute
force searches (BFS) [211]. One of the traditional BFS techniques is the standard mean shift
algorithm (MS) (Section 2.5.4). One of the repercussions of the absence of a recovery stage
in MS is the absolute search fiasco, such MS adversities are frequently observed in the
circumstances when no objects like features are detected within an observational window. To
incorporate robustness, hybrid methods could be applied (to both expedite the MS
convergence and to rectify errors), static and dynamic particles could be utilised in this

context [212] (as shown in Figure 4.10).

Static Particle or Informants
O (Gatekeepers)

Mean Shift
Window

Figure 4.10: A hybrid robust MS variant resulting from integrating particles and density mode.
By incorporating both static and dynamic sensors [213], a recovery phase is induced onto the
standard MS algorithm. The task of the static particles (which are strategically placed around
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the MS window) is to act as gatekeepers, and develop a Meta-heuristics by granting a sense
of direction to the tracking window (arrows in Figure 4.10). The role of the dynamic particles
is to assert the dominant modes within the MS window (Figure 4.10). The flow diagram of

the recovery procedure is shown in Figure 4.11.
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Figure 4.11: A detection and tracking cycle of a hybrid MS algorithm.

In Figure 4.11, a recuperative process (over the MS algorithm) ensures that the algorithm
robustly catches up with the dynamic object, and therefore the lost window is timely

recovered in a video frame. First, the mean shift vector V,is calculated using Equations

(2.17)-(2.19), and in case no object like feature are detected then the opinions of static
particles are collated. The tracking window could also be shifted in Auxiliary mode to gather
better local information of the hypothesis projected by the static particles. Furthermore,
another remarkable characteristic of particle based methods is that both dynamic and static
particles could be employed as computational agents. Static particles (similar to random

scouts in Figure 4.2) are computationally more effective methods in order to anticipate
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motion in complex vision applications. The objective function (e.g., matching RGB colour
histograms in tracking) values in the vicinities of the static particles are also calculated. The
detection window normally hovers around the potential optimal regions until a dominant
density mode is detected in an image frame. Theoretically speaking, the widened dynamical
searches are homogeneous to the covariance matrix adaptations in the standard Kalman
filters. However, due to the hybrid nature of the tracking window, and because of its auxiliary
or flexible nature, it is more diverse and robustly adjusts its scale of measurements without

complicated matrix operations.
4.2.3 Learning the motion model.

Many real world tracking problems disclose heterogeneity in their movement sequences. An
automatic surveillance system [214] has to extensively entail both detection as well as
tracking phases (due to the nature of the operation, where the tracked body might change its
shape, disappears in several frames, and re-emerge at an entirely different search area). In
contrast, tracking the flow of traffic on the motorways has a certain degree of linearity, and
the direction of travel could be predicted to an extent as the movements are generally in
compliance with the local traffic laws. An airborne object on the other hand might not be
reprimanded by a stringent course of actions, and due to an extra degree of freedom may be
allowed to move in a non-linear manner. In Biology, trackers are used in labs to understand
the behavioural pattern of reptiles and insects, and their motions appear to be predominantly
random with no deterministic components [215].

The inter-frame displacements in video sequences therefore could take place in a specific
Euclidean plane (the motions due to the gravity alone) or might enumerate linearity as well as
the projectile like characteristics [216]. The tracking essence therefore is in conceiving the
motion peculiarities of the relevant situation (projectile/linear). Generally, the efficacy of

tracking algorithms could be significantly improved if the larger dynamics are already known
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to the analyst programmer. In the computer vision systems, historical motions could
effectuate the crucial task of narrowing down the search space. In contrast to the Markov

assumption [217] (where the current state of the system s; is independent of the ones
observed durings,_;,S;_5,....S;_, ), the previously discerned measurements and models (in

feature space) could also be applied to prioritise the search phases in the object tracking
modules.

Due to the exuberant motions observed in the world objects, both deterministic and stochastic
trackers are needed to promote a balance between an area specific and to develop diversified
search rapports. Therefore, a more concerning tracking strategy is to indulge all possible
rectifying measures to scrutinize the search space (see Section 2.5.2). One major research
question that was undertaken in this thesis was to analyse the roles of the motion models onto
the tracking efficiency. An inherent flaw in the Monte-Carlo particle methods [218] (in the
view of the author) is that the particles are dispersed in space-time using pre-determined
models (Section 2.6), which in majority of the cases prove counter productive (because of the

re-sampling and allocation of preferences).

P 4 A v Measurement
Covariance
Isotropic Step Length & Turning Angles

P- Occurrences

NOccurrences

Figure 4.12: Two different characteristic shows randomness and predictable motion models.

The RSO tracking (on the other hand) is entirely based on the foraging behaviours [219] and
therefore no explicit models are generally required to track an object (in a generic scenario).
Furthermore, the nested searches in RSO cooperate in discovering the dominant modes of

motions and guide the optimising process. However, as it was analysed in Sections 3.3 and
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3.4 that the search correlations reduce the computation complexity, the historical motion are
seemingly beneficial for achieving a real time tracking. The anticipated motion vectors are
stored in our algorithm to prioritize searches as shown in Figure 4.12. The determination of
the motions in the ant tracker (on the left) displays a randomised pattern of movements,
whereby, in a pedestrian tracker (right) displacement logic could be emphasised to correlate
search. The historical motion trajectories are stored in memory arrays (using Matlab) and are

validated as the tracking progresses in time.

4.2.4 Environmental knowledge for the optimal particle convergences.

There are several important paradigms that must be entertained in order to reinforce the
particle awareness in their search space. The partial evaluation of the objective is one such
possible technique to boost the environmental know-how of the sparsely distributed agents.
The detection of a dynamic body through its bin identification function alone b(x) (Equation
2.13) is an example of the partial evaluation of its colour density model. Furthermore, the size

of the object of interest could also be utilised to differentiate between targets and distracters.

A

Figure 4.14: The partial information about the histogram distribution of the colour model.
The swarm based methodologies (in their typical format) generally lack an inbuilt feature to

penalise distracters, therefore at times, converge to the local solutions (until an agent
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specifically reaches to a target area). Therefore, the optimal may remain oblivious (for a
length of time), and a badly tuned algorithm with ineffective population strength further
exacerbates the situation (Section 3.3). As shown in Figure 4.13, a particle’s environmental
knowledge could be profoundly heightened by the random walks conducted in its immediate
neighbourhoods, and the objective is to integrate the landscape data with an underlying aim
to translate its own position in the search space.

The allocation of partial objectives (e.g., the relevant histogram balls in Figure 4.14 are all
essential components of the overall information) enhances the environmental scanning
abilities of the particles, and such knowledge is exploited to determine the depth of the field
(tracked object). By composing a circumstantial particle network (Figure 4.13), the
algorithmic complexity of the algorithm is substantially reduced, as the non-sampled areas
(e.g., ridges and valleys) in the search space could be identified using this knowledge (e.g.,

line of sight) in Figure 4.15.

Line of Sight

Agent A

Figure 4.15: The ridges and valleys are easier to be sampled using line of sight trajectories.

A rather conflicting optimization scenario in PSO [220] is portrayed in Figure 4.16 (the
bottom equations replicate the velocity/positional updates in the PSO). The optimum
trajectory for one particular particle (from its initial position) is represented by the bold arrow

on the top of Figure 4.16. Instead of adapting the shortest possible trajectory, the state vector

of the particle B'} is wrongly modified due to the changing global assignments (as

1
represented by the arrows). However (as evident in Figure 4.16) the size of the optimal
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(larger circle) is remarkably different than the rest of the objects (triangle, square etc),
therefore if the shape information is encoded into the tracking algorithm at an earlier stage,

the unnecessary iterations could be avoided for an optimal tracking time.
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Figure 4.16: The divergence of particles away from optimal due to varying global assignments

To incorporate the penalising models, we researched along the directions imposed by the
Guided local search algorithm (GLS) [221]. As explained in Chapter 3, the radical searches
are autonomous behaviours inspired by the natural foragers (ants and bees). The foremost
important factor in these spectacular natural agents is that, they appear to have a genetic
assignment to differentiate between resourceful directions (e.g., viable food locations) [222].
The manner in which the non-optimal solutions are discarded by the follower ants and bees is
a matter of larger interest for a transpiring tracking system. The activation signals generated
by the successful hunter bees (e.g., in nest site selection) are substantially similar to the

mathematical GLS as expressed in Equation (4.1).

g(s) = f(s)+4a D 1;(s)p; 4.1

I<j<m
The augmented cost function g(s) uses a penalising approach to distinguish targets from the
relative distracters. In terms of tracking application, we can interpret I;(s).p; as a target

localization map of the object of interest, whereas, 0< 1 <1 is used to specify diversity levels.
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More thorough searches are conducted around regions where object like features are detected,
whereby ‘a’ is a problem specific constant in Equation (4.1). The penalising costs calculated

by weighing the indicator functions using the p, models (and summation is carried out along

all dimensions as in Equation 4.1) is one manner through which the non-optimal convergence
are rectified in agent centred tracking. In this thesis, we have successfully programmed the

bin strengths (as an indicator function) using the object model,Zbi as an indicator function

to penalise clutter.
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Object Object i Object
Features Features i Features
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Hypothesis Score

Acceptable
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Figure 4.17: Tracking using a hybrid (GLS and RSO) algorithm in Section 6.8-6.14.

Further test benches would be presented to the readers in Chapter 5, which would also
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facilitate to understand the roles of the partial function evaluation (PFE) and GLS. The
flowchart in Figure 4.17 deploys n initial agents in the search space (RSO could be used in
this context to narrow down the region of interest). During the next phase, particles conduct
local searches and collate neighbourhood information (Figure 4.13). The mean positions of
agents are updated using the local information, and the particles which do not meet the fitness
criterion (the candidate/detected RGB models do not match the stored priors) are deactivated.
Only the winning particles therefore enter into the next phases in our algorithm. The
penalising GS approach is then applied to compare the identity of the object with the stored

memory models (the object size and the observations of relevant bins Zb(i) are
n

simultaneously applied).

The tracking window is updated once a required GS score is achieved; otherwise, this
proposed hypothesis is rejected, and parameters of search are altered to incorporate more
diversified searches (as shown in Figure 4.17). The tracking algorithm (Figure 4.17) relies on
all three fundamental characteristics devised in Section 3.3. The underlying logic (in this real
time system) is that the computational cost is significantly lessened due to the deactivated
particles as majority of searches are non-nostalgic in nature. The tracking algorithm finally

terminates when the end of sequence is detected.

4.2.5-The communication channels in the particle based methods.

The communicational line among population agents plays a crucial role in the success
probabilities of a converging evolutionary algorithm. Through these communications, a
computational agent deduces a kind of emotional intelligence [223] about its role in particle
societies, and of its peers [224]. However the communication in computational environments

(e.g., in the Cartesian space) does not have to deal with the usual perks and challenges
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experienced by alive natural environment agents. The search behaviour of the natural world
foragers would be analysed in the next sections, and some implicit communication channels
(e.g., trail pheromone [225]) are critically discussed. Similarly, the waggle dances of the
forager bees are redundant phenomenon (in our view) and impractical approach. Once a
suitable food resource is detected, a forager does not have to return to its base (to solicit) in
artificial landscapes. Furthermore, in contrast to a direct channel, an implicit form of
communication may also exist by a third party channel (e.g., the entity ¢ could be a trail path)

as in Figure 4.18.

Direct Communication

Agent A Agent B

—_— >< Entity C > ......
~

o

Indirect Path

Figure 4.18: The direct (explicit) and implicit communication between particles.

Brightness levels of (1...n) fireflies

Optimal
Region

Figure 4.19: The communication radiuses in the firefly algorithm (FA).

To establish a further insight into the communication methods, the readers are encouraged (a
detailed discussion is beyond the scope of this thesis) to investigate the operational principle
behind the Firefly algorithm (FA) [226]. The core theme in the FA is to spread the particles in
the search space, and the fitness level of each and every firefly is calculated using their

current positional coordinates. In the context of 3D test functions described earlier in Chapter
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3 (e.g.,, see Figures 3.6, 3.22 and 3.52), the fitness indicators are the function

calculations Gy v, at each positional coordinate of a translating firefly in the predefined search

space. However, in object tracking algorithms the corresponding objective is to match the
object colour density in 3D (RGB) colour space. Once all the fitness values of fireflies are
analysed, then similar to the real world insects the best ones are illuminated at higher/brighter
intensities than the worst ones. During the next stage, implicit channels are established using
the natural light attenuation characteristics, and therefore, only neighbouring fireflies are
attracted towards the highly glowing insects (an optimal is drawn in Figure 4.19). The type of
competitiveness is usually referred to (in the evolutionary literature) as a combinatorial

optimisation methodology/framework.

4.3 Heuristic searches in video tracking problems.

The engineering problems are riddled with unprecedented levels of uncertainties, and often a
unique solution to the problem is unattainable. In cases where solving a problem with
precision mathematical techniques is a valid option, the dimensionality of the space and
complex inter-correlations among data variables complicate the problem to an extent that the
real time solutions are challenging . The removal of outliers using regularization is a
possibility to smooth out the noisy measurements. However, finding an exact analytical
solution with a conditioned data field is still gigantically complex to commence in safety
specific applications. To tackle high dependencies, sometimes it is feasible to use alternative
shortcuts to detect acceptable solutions to the problem. The heuristic shortcuts (HS) [227] are
intuitive decisions which could facilitate problem solving in complicated visual systems.
Similar to the intuitional decisions made by human beings (where an inner guidance is sought
to replace complex cognitive processes [228]), heuristic searches reduce the dimensionality

issues through intuitional adjustments of the independent variables. It would be appropriate to
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write that, heuristics object tracking applies trial-error rules to find an acceptable solution to

this computer vision task.

Heuristic Searches
1....n

INPUT
OUTPUT

Meta- Heuristics

Figure 4.20: The framework of heuristic searches in RSO.

Figure 4.20 is a general HS framework where n parallel/serial heuristics are applied to secure
a solution. The role of the meta-heuristic (MH) stage is to identify appropriate search areas to
apply the inner heuristic searches. The readers are referred to Section 3.2.3, where the honey-
bird and human relationship is discussed, which in our view could be attributed as a strong
meta-heuristics. Similarly hyper-heuristics (HH) [229] is a top order rule that supervises the

heuristics based solutions, with an aim to supplement the probabilities of success.

Motion Estimation
Using
Frame Differencing

Gaussian Pyramids
Scale-Space
Methods

Apply
Particle Systems

Figure 4.21: Top order stages in the combinatorial optimised tracking systems.

In terms of the honey-bird human scenario, we could also refer the hyper stages as an
experiential learning model discussed in Chapter 3, the interpretation of the body language of
the birds and further refinements overtime is a hyper stage. The gradient descent methods in

Sections 2.5.4 and 3.2.1 are short sighted due to an absence of a hyper-heuristics. Through
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the experimentation in Chapter 3, we reached a conclusion that the RSO heuristics generates
a superior directional sense in particle systems (verified in solving complex test problems,
Section 3.5). In computer vision applications, similar methods have been applied (in this
thesis) to track an object in real time.

In Figure 4.21, both standard frame differencing and the ones using time differed Gaussian
convolved images are applied in order to identify the suspected object movements. Once
suitable regions are identified by the top order information fusion stage, the particles are
deployed in those competing areas and the result of this combinatorial optimisation process is
analysed, and the best solution is chosen as an object of interest. Therefore, despite of an
absence of particular dynamical models, objects are tracked with high precision and frame
rates in this thesis. Many resolute evolutionary methodologies (as shown in Figure 4.22) also
act in an iterative undaunted manner to address dimensionality issues by exploiting the deep-

seated heuristics.

Heuristic
Searches
Levy Walks Organised Tterative Random
And Random Local Gaussian
Flights Walks Searches Heuristics

Figure 4.22: Some of the most prominent heuristic searches.

The quantum cloud by Antoney Gromley (Figure 1.1) is a delineation of the organised
random walks (ORW) [230], first the solution space is divided into multiple subspaces, and
then organised random walks are carried out to characterize the optimal sketch of the image.
The foraging strategies deployed through the Gaussian cored heuristics are (on the other
hand) highly randomised, and due to their parametric nature, often need explicit definitions of
the search covariance. The iterative local search (ILS) [231] is a pseudo-random proposition

that imposes local search irregularities to perform objective pattern matching. The ILS
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(Figure 4.23) uses non-linear projections (using variability in step sizes and turning angles) to
detect translational motions in tracking, and could increase the tracking robustness when

applied as a heuristics over the short sighted algorithms.

Various Step Sizes

& Turning Angles
lterativi Local Search

Figure 4.23: An iterative local search algorithm VS the local search method.
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Figure 4.24: A Levy distribution (model) with heavy-tail characteristics.

Some recent studies have also unveiled the fact that many 21* century North African hunter
gatherers use Levy like walks and flights in order to reach amicable food resources [232].
The comprehensive mathematical description of the Levy model is out of the scope (readers
are referred to [233] [234]), but a general graphical comparison of the Levy model versus
Gaussian distribution is presented in Figure 4.24. The heavy tailed Levy function indulges
more diversified searches in comparison to the Gaussian probability distributions.

Many foraging insects (bees, ants and termites) also use similar patterns in their daily hunts
for food and in the respect of their nest site selections (NSS) [235]. Crist et al investigated the
behaviour of forager ants and an excerpt from his renowned paper has been presented here

for the sake of this discussion [236], “Individual ants exhibited fidelity in both search site and
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native seed species. Spatial analysis of foraging movements showed a highly oriented travel
path while running, and an area-restricted path while searching. Searching ants moved in a
manner consistent with a correlated random walk. The deterministic component of path
fidelity and the stochastic component of search may override energetic foraging decision in
individuals P.Ooccidentalis ants”.

The forager bees also apply local and randomised heuristics to collect nectar from

sporadically distributed food resources. It has been observed that only (2 -5)% insects (from

an overall population) depart their hives at any one time to search for food, and on their
returns perform Waggle dances to convince remaining foragers to fly towards the competitive
directions [237]. Therefore, the bee colonies reciprocate a natural inclination towards
competitive-cooperative population structures. The RSO (Chapter 3) could make explicit use
of the distributions represented in Figure 4.22, with an objective to improve the convergence
timing. The recruitment processes in the natural colonies could be one-to-one (e.g., the
tandem runs, in which a forager ant guides a single novice recruit towards a food resource

[238]), or a group of recruits are led by the successful forager ants.
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4.4 Novel propositions.

Having considered the fundamental drawbacks in the general video tracking (Sections 2.1-

2.5), and after laying the foundations for a new particle oriented theory (RSO) in Chapters 3

(see Sections 4.1, 4.2 as well), we are now in a privileged position to present our key

propositions in this report. The characteristics defined in Section 4.3 are also the main paving

stones/building blocks that may lead to a better understanding of our adapted approach.

Furthermore, this section also acts as a framework for forthcoming discussion of the tracking

flowcharts, and provides a general guidance about the experiments conducted in Chapter 6.

Prediction dynamics and state transition models are not crucial / mandatory in the
object tracking scenarios. The proliferated errors during the predictive phases augment
the algorithmic complexity, and are usually counter-productive gestures. The plant
dynamics are therefore replaced (in this report) by competing particle swarms and

through random trials (e.g., based on the iterative and guided local searches).

. The partial function evaluation using the bin identification numbers are expedited

objective functionalities, and more insightful than the procrastinations witnessed during

the explicit similarity determinations (among two densities). A voting strategy based on

a multivariate density evaluation at data points, and a Euclidean measure in L* norm

(e.g.,\/(x—a)2 +(y—b)*) in colour-space could prove equally effective in the tracking

applications.

Projection of belief space using information fusion and dynamic optimisation
techniques, e.g., using nested RSO and parallel populations, random scouts, artificial
injections and memory based methods are novel affectations to detect an object of
interest in a computerised vision. The .fusion schemes (e.g., of colour and motion

models) reduces the search space effectively, hence explorative swarms could be

155



VI.

VII.

VIII.

initialised in those search regions to increase the particle effectiveness.

Hybrid methods e.g., using the particle assisted calculation of meanshift vectors
outclassed the standard meanshift in both space and time. Therefore, the meanshift
operational basin is automatically adjusted based on the iterative projections of the
belief space.

Simple but competitive heuristics that converges to the local optimal solutions (e.g.,
formulated around potential regions of interest as circular level sets or spherical
structures in higher dimensions) are effective methodologies to address both
translational and scale changes between two frames.

Standard particle swarm method does not incorporate the local intelligence, e.g., in
natural world, all entities have an olfactory sense (OS) that enables agents to alter their
search trajectories, and when OS is not taken into account, lead the solutions to relative
best regions. The well aware particles have an ability to hop around and autonomously
decide their own trajectories, and serve a resolute alternative to the predetermined
movements applied in the particle swarm optimization. Therefore the search (in our
approach) becomes a distance modulated scheme utilizing a collective intelligence.

It is of paramount importance to emphasize that the iterative evolution of agents is not
mandatory to resolve complex multimodal problems. Instead, the particle rebirths in
projected areas through RSO are more logical approaches to address convergence
timing.

The heuristic searches could also be applied in the segmentation applications. The
curve evolution timing could be significantly reduced due to the fact that such methods
do not require explicit calculations of the curvature (or normal vector field using re-

initialisations using signed distance transforms).
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4.5 System Diagrams.

The core theme of this thesis is described along various sections in this report, and it revolves
around the fact that computer vision is not a precision oriented science. Perhaps, as
emphasised in Sections 2.4.1, a significant portion of the tracking procedure constitutes of
integrating tighter and flexible phases (Section 2.5.2). Furthermore, it is more feasible to
monitor different phases using a strategy controller so that a correct balance between the
speed of convergence and algorithmic accuracy could be achieved (Figure 2.10). One way to
achieve this balance is to use experiential variations (embedded in RSO) in accordance with

the Kolb model to achieve better convergences.

System

Input — System Outputs
Deterministic

X Modelling e i
7T 3

1s10n Analysis \

Identification

Figure 4.25: A layout of a control problem facilitated with an artificial vision.

Figure 4.25 also highlights the fact that any visual analysis must not be embedded within the
system dynamics for a robotic application to prove more robust. Although modelling of the
deterministic components is essential to generate precise movements (e.g., to achieve traction
control in the electrical motors under various load conditions), a computer vision analysis
must be an autonomous entity and should not be part of the overall dynamical model.
Tracking as well as many other computer vision task (e.g., segmentation) is therefore a scale

free search process (that is successfully applied in Chapter 3 to solve related 3D problems),
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Especially on the mobile platform, a distributed process using roaming particles overcome
many inherent drawbacks of the single solution based approaches (which usually need
extensive modelling in matrix formats). The main characteristics of a multiple agent based

tracking are shown in Figure 4.26.
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Figure 4.26: Properties of particle based visual tracking applied in Chapter 6.

The timely identification of a relevant search space is important to cut algorithmic
complexity, and the underline motive a pre-processing step is to eliminate the unnecessary
noisy observations in an image to accomplish faster convergences in Figure 4.26, therefore
these two processes work in close conjunction. The most fundamental part of the algorithm is
to apply the relevant perturbation models (RSO, PSO and other heuristic techniques are
appropriate exemplifications in this context). In a computational environment we need a
pattern matching stage (such process are extremely efficient in a biological visual system and
equally hard to understand) to establish identities as reflected in Figures 3.58-3.68.An overall
picture of the complete algorithm could be portrayed as in Figure 4.27.

Instead of using tighter and precise deterministic components of the dynamics (Sections
2.5.1, 2.5.2), the visual tracking (in this approach) resembles a state model in Figure 4.27.

This section is devoted to describe the major sections in diagram 4.27; however a brief detail
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is presented here. As experimented in Section 3.5, the best perturbation model is generally
the one which employs least memory operations (Figure 4.27) as it has been established that
there is no algorithmic advantage in recording trajectory changes (e.g., a virtual particle has
been found more efficient than all PSO variants in difficult test cases). The strategic
controller indulges the required flexibility in tracking (case based software constructs are
applied to introduce diversified tracking), and performance based measures could be selected

for more meaningful convergences.
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Figure 4.27: Structure of the proposed tracking algorithm.

The identification stage uses top order/meta-heuristics (frame differencing and clustering
techniques) to first subdivide image into prioritised clusters/regions, which are later analysed
using perturbing agents. At a later stage individual measurements collated by using diffusing
particles are integrated matched against stored templates and the tracking coordinates are

updated. S. Therefore without using any hardwired logic (e.g., present in Mean shift and
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particle filter based tracking), the system still facilitate superior and automatic recovery of the
tracking window. The metaphorical and systematic measurements only prioritise particles

that matched the core features of a stored pattern.

Top-order
Clustering Perturbation
(Global)

Perturbation
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Figure 4.28: Dynamic control policy in the mobile tracking applications.

Figure 4.28 is a simplistic controller strategy; the eccentric control introduced by using a
supervisory scheme (S) ensures that unnecessary calculations are avoided by allowing more
flexibility in the state jumps. Therefore, the preference to stay at a particular state (e.g.,S, ) is
dynamically altered using a centralised controller, and depends on the scene conditions (e.g.,
by manipulating variables (n,i)and i, j) ). The nested searches are implemented using local and
global perturbations, and the search parameters (e.g., particle populationn,) are also
strategically allocated along with the number of frames needed to impose a higher order

heuristics.
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4.5.1 Identification of a feasible search space

The task of creating computationally effective tokens is of momentous nature in the field of
computer vision. The uniqueness of a region is established by describing patterns in a
mathematical format, and such identifiers are generally stored in memory. Colour, texture
and shapes are common criteria to group pixels (into specific objects), which are then used to
penalise video frames and to track objects. Despite of occupying distinct areas in a feature
space, tokens belonging to the similar object (under observation) are unified (Figure 2.3).
However, the static analysis of an image (e.g., pixel to pixel searches) is generally a very
costly process, and an initial frame portioning could be done by exploiting the time

dimensionality by comparing two (or more) sequentially generated images in a digital video.

Identification ‘ - To Initialisati
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Figure 4.29: A flowchart to formulate a top order clustering and metaheuristics.

Initially two subsequent frames (f,, f,_;) are utilised to identify suitable clusters (of pixels)

exhibiting a correlated motion (however, any past or an averaged image could be chosen to

perform this higher order clustering), the threshold parameter(n,) is readjusted as an initial

strategy if no viable clusters are identifiable. However, if this scheme fails (using counter

variable C) the motion based clustering is performed with a variety of previous frame
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information and relevant subtractions to observe changes in a current frame.
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Figure 4.30: The generic flow sequence applied in the frame clustering.

The flow diagram in Figure 4.30 performs top order clustering using frame subtractions, the
changes in the intensity levels (after differencing two frames) is analysed using a pre-learnt

threshold. 'n.'. The relevant information is grouped into 'k' regions by minimizing

Euclidean/ > norm (arg minZ"x — u;|) of the observations at stage 4. The resultant clusters are
S

then prioritised at stage 5, and submitted for further analysis using appropriate particle
initializations (e.g., random Gaussian) in those regions as shown in Figure 4.27. In Figure
4.31, the moving clusters (in a pedestrian crossing situation) are determined using two time

lapsed images (27 and 20). The initial surface plots (middle row) are quite complicated, and it
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may prove much very time consuming to eliminate the static objects through a sequential or
brute force search. However, by using just 2 threshold levels (stage 3 in Figure 4.30); the

prioritised particle initialisation generates a meta-heuristics to scrutinize the image space in

real time.
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Figure 4.31: Particle initialisations using frame difference and priority clustering.
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4.5.2 Pre-Processing.

In order to highlight the role of this thesis, the scope of research in the field of digital imaging
is discussed in Section 2.2. Generally, the image enhancement and pre-processing techniques
are computationally intense, and could contradict with our prime objective of tracking in real
time. However, some cost effective image processing (IP) techniques are discussed here for a
self contained reading. The main IP routines used in this thesis revolve around the non-
penalising approach of pixel diffusions using isotropic Gaussian functionalities. The term
‘diffusion’ in imaging refers to the flow (as a general mathematical diffusive process ) in
which a specific pixel neighbourhood is applied to assign values to a central pixel, and this
produces a blurring effect is used to define the scale of information and to remove

discontinuities. Equation (4.2) assigns average intensity (in a neighbourhood N ) to a pixel x

X =

1 N
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N i=1
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Figure 4.32: The role of image processing routines in the computer vision literature.
The flow diagram presented in Figure 4.32 highlights that the computer vision tasks attempt
to infer a hidden model (e.g., a model of object motion) after conditioning frames using

image processing techniques (the computer graphs is a reverse process).

1 N
K=Y % 42

i=1
Denoising and blurring (to produce scale space image pyramids) are two main pre-processing
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stages applied to track objects in Chapter 6 (Sections 6.1-6.13). Image denoising could be
broadly classified into two categories, and five common filters are categorised into isotropic
and anisotropic filters (in this respect) as shown in Figure 4.33. In traditional mean image
filtering and denoising (Equation 4.2), each pixel RGB channel data is replaced with a mean
intensity level which is calculated using a mask (Figure 2.8) of N neighbouring pixels.

A median filter (on the other hand) reorganises pixel data into a list of ascending values, and
the median intensity level is used to replace noisy pixel value. Whereas in Gaussian
smoothing (applied in Equation 4.3), an original noisy image l,(x,y) produces a family of
digital images I(x,y,t) after applying mathematical convolution to itself with several
different Gaussian kernelsG(x,y;X) of changing variancesX . Due to the isotropic nature of
this particular kernel, the resulting images exhibit a blurring effect which generally reduces
the information content of an image (generating a scale-space image pyramid). The wide-
ranging imaging information contents (finer to much coarser level) are then used to locate a
region of interest using secondary foraging/perturbing particles as mentioned earlier.

1(X,y,1) = Io(X, y) ® G(X, y;Z) 4.3

Linear / Isotropic : : :
Non-linear / Anisotropic
O Mean filter <:|
0 Median filter Ima.g§ 0 Total variation denoising
0  Gaussian smoothing SO S 0 Perona-Malik diffusion
bl Algorithms |:>

Figure 4.33: Classification of denoising algorithms in image processing applications.

Figure 4.34 depicts the effects of introducing Gaussian blurs into a campus image (Aston-
Webb, University of Birmingham). The filter parameters (mask sizes and standard deviation)
are identified at the bottom (Figure 4.34). The image pyramid (in this case) consists of only
three subsequent scale-space images. However, in practical recognition systems (e.g., scale
invariant feature transform (SIFT) [239]), it usually consists of tens of sequentially blurred

images which facilitate prominent feature matching process of an object. In Section 6.1, a
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range of similar scale-space images are applied to detect top order object movements.

9

Original Gaussian Noise Mean Filter Median Filter Gaussian Filter
u=0,0=0.005 0.003 seconds 0.0021 seconds 0.00183 seconds

Figure 4.35: Effects of applying various denoising filters on a library image of Lena.

In Figure 4.35, a Gaussian white noise (x =0,c =0.005 ) was introduced into an original image
of Lena, and the responses of various filters (mentioned earlier) are replicated on the right.
All linear denoising filters (when applied on this typical computer vision library image of
resolution 14400 pixels) worked very efficiently, although, more blurring is introduced by the
isotropic Gaussian filter (mask size= 25 pixels,o =1.5). Furthermore, all three linear filters
introduced in this section are remarkably efficient in terms of algorithmic timings (as shown
in Figure 4.35), and could be applied in the context of real time tracking applications.

One possible layout of a scale-space frame difference (SSD) scheme is shown in Figure 4.36.
There are 'N'number of filters in this bank, and both an incoming frame (at time instantt )
and n previous frames (stored in memory) are used to detect possible movements. The state

vector in a general tracking application comprises of mean positional coordinate vector or

) ) ) ) . IS )
centroid of a region of interest, i.e.,m;, = [ﬂ , and the spread of measurement is Ly} (which

X
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forms a feasible space for particle based searches). A data fusion module () collates opinions

of N -SSD modules (Section 4.4.1). A possible fusion strategy is the simplistic majority
voting or consensus (e.g., if total votes in favour of a current hypothesis >%). In hybrid

tracking particles are therefore initialised using the proposed state vector at this stage and

further refined by applying perturbation models.

b Data Fusion Module

f(x,y,t)

Current
Incoming Frame

(f)

State Vector

f(x,y,t—-k) ———— -

Figure 4.36: Schematics to apply SSD filter-banks in hybrid (particle and motion) tracking.
Imposing meta-heuristics (similar to the honeybird-human scenario described in Figure 3.25)
by integrating motion estimations is a very strong tool at our disposal; it helps to cut down
convergence timing in a significant manner. On the other hand, anisotropic diffusion (Figure
4.33) is more suitable for off-line segmentation. One dominant advantage of non-
linear/discriminatory diffusions is that the object boundaries are perfectly preserved.

L (X, ¥) = CAI(X, y) = C.(lxx + 1) 4.3

Equation (4.3) demonstrates linear image diffusion (using Laplacian), and is inspired
primarily by the solution of the general heat equation [240]. When such diffusion is applied

to an image I, (where 1, and 1, are the second spatial derivatives along x and y image

dimensions, c is the conduction coefficient) all high contrast edges are smoothed out resulting

in a steady state image version. Figure 4.37 shows the effect of such simplistic diffusion
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(prescribed in Equation 4.3); clearly, all edge information has been lost in the process.

: -
R ——
Figure 4.37: Most of the high contrast (edges) information is lost in the linear image diffusions.

Any keen readers are briefly introduced here to an active research area related to anisotropic
diffusion. The pioneering research work in this regard was carried out by Perona-Malik [241]
endeavouring non-linear diffusivity into digital images, the intensity of gradients and gradient
vector field are applied as conduction coefficients (in their approach) to retain edges. Rudin-
Fatemi applied calculus of variations to reduce noisy variations from digital images whilst
preserving image information/fidelity [242]. Mumford-Shah performed contour based
tracking and non-linear denoising within a single operation [243]. The processing timing and
frame rates achieved (using anisotropic diffusion) in our experiments (Figure 4.38) are found
to be inadequate for real time convergences. However, the extraordinary feature of preserving

edges could be pivotal for segmentation purposes in computer vision (evident in Figure 4.38).

..:_I ',\_;-'_-.,-. - --_ L ™ --.. .-'.-- ! : " = h n i

.Figure 4.38: Result of applying Perona-Malik diffusion using two unique conduction coefficients.
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4.5.3 Pattern Matching using partial function evaluations.

A significant research is needed to investigate the advantages of sequentially populating
observational densities in computer vision routines. In RSO, sparsely distributed
measurements are systematically integrated (along time) to conduct denser searches at later
stages. Practical vision systems encounter a number of bottlenecks when comprehensive
discrete density estimations (described in Sections 2.5.1 and 2.5.4) are implemented in an
iterative computer program. The fundamental aim of particle hierarchy (in this thesis) is
therefore to highlight the advantage of collating measurements of sparse agents (similar to
murmuring starlings in Figure 3.1), and to prove their superiority (in all major aspects) over
single solution based video tracking.

Section 2.5.4 presented relative drawbacks of applying such costly measurement procedures
(right from start) in a typical dominant mode seeking tracking stage. In MS, a weighted
discrete density and a candidate model (using kernel estimations) is matched against stored
patterns. Generally, Bhattacharyya measure (dot product of two density vectors) is
implemented to discover a missing link by applying Equations (2.13)-(2.19). The search
processes in both Kalman filter and MS are in fact brute force searches (conducted within an

operational basin) which hinder timely convergences as mentioned earlier.

/I\

Peak of density
Y my = fi

Tracking Window

Pixel arrgss Radical Particle Searches

X =

Figure 4.39: Pictorial comparison of brute force searches and agent cored pattern matching.
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Figure 4.39 shows how minute and tiny/partial bits of information (gathered by hopping
particles hierarchy) could be iteratively employed to predict overall spatial density transitions

(shown using block arrows). The fundamental objective is therefore to allocate optimal

. . V
magnitudes to the velocity components { y

X

}that also expedites window translations between

frames f; and f,. At steady state, a tracking window aligns itself perfectly with the newly
discovered peak at spatial location|,,,, where 'X' and 'Y' are image resolutions in Figure

4.39. The costs associated with sequential memory access and calculating Bhattacharyya
dissimilarity are therefore significantly reduced in cases where virtual foraging behaviours

are implemented as exemplified in Figure 4.40.

Integer Numbers Real Line

B, B, \ B,
\Q/ O\ N-particle Network Probabilistic Associations
/ ~a 4 Initialised to of particles

search relevant bins

A
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Feature Vectors
G B
'd i

Figure 4.40: Tree prominent partial function evaluations in colour feature matching.
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Temporal/sequential segmentation is a feature matching process in which every pixel of a
digital image is grouped into their respective regions (foreground or background) as shown at
the bottom left of Figure 4.40. Equations (4.4)-(4.6) represent how only partial function
evaluations could be utilised to detect a variety of objects in videos. Equation (4.4) is
reproduced from Section 2.5.4; here only bin identifications b(x)are allocated as objectives
to exploring particles (shown on the top left of Figure 4.40).

The kernel weightsk(|| x; |*) in this approach are stored in the form of look-up tables (which

is more cost effective than performing calculations in Equation 4.4). Therefore, denser
searches are conducted in the vicinity of particles that have discovered those core bins.
Equation (4.5) calculates the Euclidean distance between two feature vectors (either grey
levels or RGB colour vectors shown in Figure 4.40). Whereas in Equation (4.6), a Gaussian
distribution is used to identify an object (calculated at each particle position), and are used as
probabilistic associations of particles with the dynamic objects (top right of Figure 4.40).

In our experiments (Chapter 6) we preferred implementing b(x; ) as an objective for foraging

particles, as in this case, only integer tags are required (compared to the other two partial
evaluation cases represented in Figure 4.40) to detect a specific object of interest in an
imaging frame. The particle based pattern matching process starts by randomly allocating

objective bins (b,b,,...,b,) to a particle population. During the next phase, particles are

initialised within regeneration areas (identified in Section 4.4.1), and then hop (using
perturbation models described in Section 4.4.4) to match designated integer objectives which

is also displayed pictorially in Figure 4.40. The flow diagram of this algorithm is drawn in
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Figure 4.41.
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Figure 4.41: A nested tracking algorithm based on bin function evaluations.

A possible layout of this novel tracking algorithm is shown in Figure 4.41 (to portray a
complete picture readers are also referred to Figure 4.17 and Algorithm 3.1), and this is the
basis of the detection experiments in Chapter 6. The process starts by loading appropriate
number of frames into working memory, and once a feasible search space is identified using
top order clustering (explained in earlier sections), particles are generated into such regions
(for a relevant sampling/initialisation strategy see Figure 3.14). However, if no relevant bins

are detected at n-particle positions(p;), suitable velocity perturbations (as explained in

Section 4.4.4) are applied to particles until more meaningful patterns are discovered. The
algorithm is constituted of two local searches; this includes a Guided local search (shown in

Equation 4.1) stage in which feature strength F, is analysed (within a closed neighbourhood
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region N, formulated around a particle positions p{ ). A suitable choice for colour based
features and patterns is F >%, hence, if more than half of relevant integer bins (stored as

feature Identities) are discovered (in predefined neighbourhoods), the region under question
is labelled as a legitimate target (otherwise the hypothesis is rejected and further outer
velocity modulations are applied). Finally, the position of tracked object is refined using
correlated movements (explained in Section 4.4.4 and Figure 3.44), and the target position is

updated using the newly calculated mean positional vector p,. The algorithm is repeated for

all frames as shown in Figure 4.4.1.
4.5.4 Perturbation Models

‘Perturbation theory’ has been historically applied to a number of situations where finding an
exact solution (to a mathematical problem) is next to impossible [244]. The particle dynamics
(e.g., applied in PSO and DE) are complementary computational rhetoric (introduced in an
analogues context) to address inversion (inverse problems) in a computerised visual system
(please refer to Sections 1.1-1.3). A significant portion of this thesis has already been
dedicated to the cause and effects of indulging velocity variations, which are predominantly
driven by social factors (abundant in natural agents). Sections 3.1-3.4 are structured to devise
an alternative that nullifies the overheads in swarm cored analytics.

Later on in Section 3.4, a newly improved perturbation model was introduced (to the readers
based on virtual dynamics observed in foraging agents) that has proven more effective during
experiments conducted along the course of Section 3.4.5.The concept of ‘mortality of
particles’ introduced in Section 3.3.2, and comparative discussion presented using relevant
ecological and geological disturbances (a possible synonym for the word ‘perturbation’)
paved the way to understand how vital balances are kept in natural systems. Some further

perturbation models are introduced in this section for more detailed analytical comparisons to
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be performed in Chapter 6. A case study will be presented (using bee nest site

selection/BNSS algorithm [246]) for relating natural and computational worlds.
(a)-Search Strategies in the Virtual Bats

During 2010, Yang proposed a novel meta-heuristic algorithm inspired by the urban living
micro bats [245]. Bat algorithm is mainly built around the echo localization behaviour of
micro bats. The bat algorithm tries to conduct much wider range of searches compared to the
PSO algorithm, with an inherent/key advantage that it has to deal with less strategic control
parameters compared to the PSO technique. Echolocation is a type of sonar ranging between
25 kHz to 100 kHz which lasts for only a few milliseconds, during this time, short bursts of
pulses are discharged by the bat which could be as high as 20-30 bursts per second.

Bats also have good vision, and rely on their sense of smell to plan their trajectories.
Therefore, both auditory and olfactory senses are applied by the bats to effectively scan their
environments. In the original bat algorithm, bats deploy echolocation techniques to sense the
distances to the food and prey, and use the reflected pulses to differentiate between preys and
to plan their paths through the complex terrains. The virtual bats therefore also apply
loudness and a variable pulse rate to explore the search space. The velocity and the frequency

of pulses at any moment in time are determined by the following Equations (4.7)-(4.9).

fi = fmin +(fmax - fmin)ﬁ 47
vi=vit e (o = x) £ 4.8
X =x v 4.9

In Equation (4.7),8 €[0,]] is a random variable drawn from a uniform distribution. The

frequency of pulses is adjusted by a randomization process which assigns values by taking
into consideration the maximum and the minimum allowable frequencies in a specific search
space (Equation 4.7). The velocities of the virtual bats are calculated through Equation (4.8).
Finally the newly calculated velocities are used to update bat positions in Equation (4.9). In

174



order to get a right balance between the exploration and the exploitation phases, the loudness
and pulse rates are varied in accordance with Equations (4.10) and (4.11). All bats explore the
search space using variable loudness values which could range between A, - A, @s shown in
Equation (4.10).
AT = oAl Anda €[0.1] 4.10

=’ —exp(-n)) ¥ >1 4.11
When micro bats get closer to their assigned objectives (e.g., bin identities or other pattern
matching objectives in Figure 4.40), they vary rates of emitted pulses in order to perform
localized searches (using exponential function in Equation 4.11). In contrast, the loudness
decreases towards zero at a near optimal point (where a bat gets almost stationary). The
loudness and pulse rates are indulged for local searches, whereas, the variable frequency
assignments are embedded meta-heuristics which broaden searches, and provides opportunity
for a bat population to be attracted towards promising regions (within space boundaries).
The flowchart of micro bats based optimisation algorithm is shown in Figure 4.42. The
algorithm starts by implanting n-micro bats in the search area. Next, the corresponding
objective function values are evaluated at each bat location, moreover, solutions are ranked in
ascending/descending orders to nominate best matches. If the function value f(x) at a
proposed global optimal position is below (or is equal to) a pre set threshold value
(i.e., f(x")<T), then, 2 parallel search phases are initiated (as shown in Figure 4.42).
The aim of these two simultaneous processes is to further refine the newly projected global
optimal solution f(x*) using Equations (4.10)-(4.11), and at the same time, global searches
continue searching for alternative solutions using Equations (4.7)-(4.9). Once a bat
accomplishes its designated task (or gets nearer to achieve its allocated task), the pulse rate is
incremented, and bat search frequencies are more smoothly varied (in a linear fashion, similar

to the simulated annealing stages described in Section 3.2.2) which enables all bats to search

175



within local proximities (and restricts them jumping beyond the current search space). As the
pulse rate is the confidence measure of a particular bat (that it has find its objective),
therefore, in searches wherer' < 4, the local search is terminated and the algorithm enters into
an initial global search phase. Finally, the process terminates if the error discrepancy

(between objective and calculated values) isHF( p) — F(x*)“ <E.

Initialise micro bats
XI = Xl N X2 ,...Xn

Assign Random Frequencies
fi = fonin + (Fnax = Fnin )8

Evaluate Objective f(Xi) _ b= Xt_l Iy
i =M i

*
Rank Bats and declare X

I |
«;—» -

i |

Local Global
Search Search

Ait+1 - aAit v (= ).

i =1’ (1-exp(—t)

Evaluate Objective Criterion
At both local and Global Micro-bat Locations

Figure 4.42: Flow chart of the original micro bat algorithm applied in Chapter 6.
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(b)-Correlated Walks

Correlated walks (CW) are one further type of particle perturbations (beside PSO, BAT and
RSO and guided searches) that will be applied to track and detect object boundaries in
Chapter 6. The correlated walks could prove particularly useful in parallel hypothesis pruning
in the combinatorial optimisation technique described in Figure 4.19. Once the top order
clustering (mentioned in Section 4.4.1) has been performed, the particles are regenerated
around the vicinities of those clusters, and both inwards and outwards correlated walks

(depicted through + in Equation 4.12) are performed to detect object boundaries, where P is
the current choice of the global optimal, and x| is the position of a particle at time instant t.

xi=g(x " =Pt x" 4.12

Sparse to Denser dataset

>

Figure 4.43: New correlated movements in particles for combinatorial detections and tracking.

The velocity of a particle (Figure 4.43) at time x{is calculated by the distance modulation
scheme (also proposed earlier in Algorithm 4.1), in this approach the particle velocities g(S)
(at an instant of time) are non-linear function of their respective distances S =(x~' - P,) from
a prospective global optimal (as shown in Equation 4.12, and through the plot of the function
G(s) in Figure 4.43). Therefore, as particles travel towards the centroid of the cluster, there

velocity are dampened and become stationary at the boundaries. Finally, the tracker window
is updated by finding the mean position of the particles using Equation (4.13). All particles

use bin functions B(X) as colour templates to discriminate between object and background

177



regions (see Figure 4.40).
(c)-Case Study using Bee Nest Site Selection (BNSS)

In BNSS [246], only a smaller proportion of population is activated at any time in contrast to
the PSO. The search strategies of the forager bees could be versatile and a range of local and
global searches (e.g., isotropic and correlated Gaussians, signal modulated Levy or pure
randomisation) could be employed in this context as shown in Figure 4.44. All scouts keep

looking for the nest site (four correlated walks from swarm position pgy.ry are shown in the
top left corner) until they come across a potential nest site (object). At this stage, scouts
recruit a number of followers to investigate further (e.g., by deploying CW in Figure 4.43).

R i Swarm Bee Nest-Site
ay casting Position Selection

pswarm

T.ocal Searches
For All n Scout

Develop Search

Possible Scout Signal
Searches Modulated

Potential
Site Found 1

For all Followers
Choose a Scout -s

Fitness quluate
Score _ Sites

ILS-LS
HIGH
Score < Threshold
Group Group Recruitment Probability of Choosing
Score _ Scout-s

Swarm Position
Update

Pswarm = Pnew

Figure 4.44: Tracking algorithm motivated by the bee nest site selection (BNSS).
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The ray castings are however tighter and precision line searches that could also be used in

. . fit
this regard. The fitness scores of scouts are ranked according to p; =———, and more

iuj fit,
k=1

followers are recruited if higher fitness score is achieved by a particular scout. In the standard
BNSS algorithm, two additional guided stages are also performed during the optimisation
process, here successively increasing populations and group fitness are evaluated (e.g., by
controlling follower population) to establish if a potential site meets all the necessary
conditions (e.g., object size and range of colour distributions in tracking-similar to the
natural hives). The systematic evaluation at both individual and group levels is therefore used
to select nests in BNSS. Therefore BNSS is a more advanced approach that reduces the
associated computational costs and is an excellent example of a dynamical controlled
environment. The RSO very much resembles to the BNSS due to the inbuilt guided search
stage. The main fitness score in RSO is however based on the observations of a variety of
colour bins within a candidate region (Figure 4.41), and the relevant multivariate colour
distributions (Figure 4.40) are used as a pattern matching process. Finally the swarm position

(or tracking window in an image) is updated upon a successful match.

4.6 Conclusions

The purpose of this chapter is to introduce to the readers the key characteristics of a dynamic
optimization environment. The dynamic optimization rules are applied to expedite a tracking

stage by conducting more diversified searches in the feasible region.
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Chapter 5

Test cases-image sequences

This chapter introduces several challenging detection and tracking scenarios that would be
later applied in Chapter 6; the aim is to select a wide variety of scenes so that the response of
proposed methods could be analysed. Several plots are presented in this Chapter that defines
each problem in the search space. The spatial search space in tracking and detection
algorithms is the corresponding image dimension in which objects undergo translations
(Figures 2.1-2.5), whereby, a feature space is used in matching the unique patterns of an
object of interest (e.g., using colour, texture and shape based features).

It is established through a variety of experiments that formulating an efficacious
communication between social expatriates (similar to foraging hierarchy in bee hives), and a
converging population (e.g., PSO) could address the common challenges in the deterministic
systems [247]. The effectuated diversity introduced by the scale free correlations could
culminate accurate movements in heterogeneous applications (hence results in increased
portability mentioned in Section 1.1). Figure 5.1 shows a range of visual challenges in this

context where various detection and tracking experiments would be conducted in Chapter 6.

Figure 5.1: Tracking scenarios to be applied in our experiments (taken from vision repository [248]).

180



5.1 Frame Rates in video tracking applications

The frame rate of a capturing device is an important characteristic in the tracking
applications. When high speed cameras are deployed to capture the underline motions, the
precise and minute movement details are perfectly preserved onto a capturing plate/film. The
motions appear quite smooth and jitter free (to a human observer) if visual information is
sampled and presented at 25+ FPS. However, the tracking rate achieved in a tracking
algorithm is an entirely different aspect, and this scenario is presented in Figure 5.2 to clarify.

There could be f, number of frames that have been used to sample the motion of a dynamic

object during one second of time interval. However, the tracking frame rate explicitly depicts
the processing speed (in FPS) at which motion trajectories has been derived from a stored
video sequence. Hence, if the tracking is observed to be effectively working at250FPS , then it
means that such number of frames are being processed at a tracking stage, and could be
utilised in situations with the respective camera speeds (e.g., in a live monitoring). Generally,

the underline displacements are described in terms of the pixel space (the top left pixel of a

Yn

digital image is [g}, and the bottom right is a corresponding pixel at [x

} spatial location
n

(where n is the resolution of a square image).

Sampling Frame rate Tracking Frame rate

Figure 5.2: Pictorial difference between the sampling and tracking frame rates.
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5.2 Test Benches

Several computer vision test problems will be specified in this section. The displacements
patterns in the form of generalized motion trends are presented along with the corresponding
quantitative characteristics in both spatial (ground truth of motions) and feature space
(histogram ball plots) formats. Several related factors including the sampling frame rates,
average and maximum displacements (in Euclidean pixel distances) are highlighted for each
test scenario. Therefore, the selected patterns exhibit a great deal of versatility and diversified

styles of movements (to be further tested in Chapter 6).

5.2.1 Ant Sequence

In this sequence an ant randomly traverses the maze, and occasionally slips and falls off the
maze walls, and generally alters its direction of travel in a non-deterministic fashion. The
shadows from the boundary walls and the illumination changes further exacerbate the
volatility of this scene. The models stored in the memory therefore frequently become
invalidated and (during adverse stages) could not be applied to differentiate between the
object and the background clutter. Hence, an alternative fusion methodology is needed in
order to regain control of the window. An ample tracking system could be built using the
nested heuristic searches (Sections 3.3, 4.2), and by treating each potential region as parallel

hypothesis with only the top order solution being accepted as an object of interest.

Varying Lighting Conditions

Figure 5.3: Tracking a randomly moving insect under lab condition (taken from repository [249]).
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Figure 5.4 shows the surface plot of a particular tracking frame (shown in Figure 5.3), the
landscape of this sequence is highly rippled, and for comparative analysis, the terrain
generated by the Egg-crate function is also plotted [250]. Due to the similarity of the
landscapes, the previously implied test processes (Section 3.5) are generally applicable in the
tracking domain as well. The ground truth (movement coordinates) of the ant movement
history has been shown in the Figure 5.5 along with its feature plot in a RGB colour space.
The respective histogram bins in the feature domain (799, 1073, and 1421 etc and marked with
the arrows), and the distracter features have been identified as well. In contrast to the density
related comparisons in the mode seeking algorithms (Section 2.5.3), particles will be assigned
shorter binary objectives (to detect dominant modes using the respective bins), the frequency

of the respective bins is indicated by the radius of the balls. All histogram ball plot diagrams

presented in Chapter 5 are interpreted in a similar manner.

) <

g = C Kllx I st j-u]

Figure 5.5: Plot of the ground truth in the ant test case (sequence consists of 774 image frames).
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The quantitative characteristics of the ant sequence are presented in Table 5.1. The sequence
is composed of 773 images captured at a frame rate (camera speed) of 25.8 FPS. The total
displacement in Table 5.1 refers to the pixel distance this object has traversed within its
spatial space during 30 seconds. The displacement refers to the Euclidean distance it has
traversed during its trajectory, whereas the maximum displacement observed between any
two frames is around 12 pixels. The diversified and random style of movement is evident in
the Matlab plot drawn in Figure 5.6; the plotted vectors show both magnitude and direction of
the movements between all video frames (in an image space XY ). Tables 5.1-5.4 could also

be interpreted as described in the above paragraph.

Table 5.1
Sequence Length 773 frames
Sampling Frame Rate 25.8 FPS
Sequence Time 30 Seconds
Total Displacement (Pixels) 1.5057e+003 Pixels
Maximum Displacement 12.53 Pixels

Plot of the Motion “ectors in the Ant Sequence
10 T — T

-10 .
-10 -5

ootk

Figure 5.6: The vector plot of motions observed between frames in the ant sequence.
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5.2.2 PETS Pedestrian Sequence-1.

This pedestrian test scenario has been adapted from the PETS video repository [251], and is a
standard problem to detect the tracking efficiency, and its speed of convergence. The profiles
of the tracked people are manually formulated using the discrete density histogram models
[252]. The Bhattacharyya similarity measure will be used to match the estimated density to
the ones stored in the memory. The movement trajectory of the pedestrian-3 has been plotted
on the right in Figure 5.7, which shows a near-linear translational during the entire 195 video

frames. This clip constitutes of 195 frame captured at a Frame rate of 24FPS (Table 5.2).

Trajectory of Object-2 in Video
1
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Figure 5.8: The histogram ball plot of the colour profile of the pedestrian-3.
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The histogram ball diagram for the pedestrian-3 has been plotted in the Figure 5.8. The
numerical data in the plot stipulates a variety of histograms components. Therefore, the aim is
to match these numerical values with the ones detected during the online tracking stage. The
3d plot (Figure 5.9) shows the general data trend in profiling the pedestrian in normalised
RGB-space. Larger variance has been observed along the vertical dimension and therefore

the changes are accordingly reflected into the objective function.

Tracking Data-Blueshirt

v

v

Figure 5.9: Plot of the colour characteristics of object 3 in Figure 5.5.

Table 5.2
Sequence Length 195 Frames
Sampling Frame Rate 24 FPS
Sequence Time 8 Seconds
Total Displacement (Pixels) 587.89 Pixels
Maximum Displacement 8.361 Pixels

186



5.2.3 Highway Sequences.

Some highway videos have also been selected as test benches, and four particular images
from this sequence are shown in Figure 5.10 [253]. In this sequence a variety of motor
vehicles are tracked, and the trajectory of a green van has been identified with the arrows.
The histogram ball plot (where the radius of a ball show the frequency of observations) of the
object has also been presented in Figure 5.11. The movement of this motor vehicle during
145 frames are plotted in Figure 5.12, and the overall motion appears to be of a curvilinear in
nature compared to the pedestrian sequence, and the tracking data in a quantitative format is
presented in Table 5.3. This particular sequence is captured with a high speed camera,

therefore, a smaller (maximum) movement of 1.89 is observed between frames.

il 1l 8

Figure 5.10: Four frames of the highway tracking sequence.

3525, 3810, 3825,3841.4035,4039.40504081,4096

Figure 5.11: The histogram ball diagram of a green vehicle in the RGB colour space.
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Figure 5.12: The curvilinear movement and path of the object of interest.
Table 5.3
Sequence Length 145 Frames
Sampling Frame Rate 36.25 FPS

Sequence Time

4 Seconds

Total Displacement (Pixels)

0.545e+003 Pixels

Maximum Displacement

1.89 Pixels
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5.2.4 Quads-Copter/Drone Sequence.

This video sequence was created at a local park in Edgbaston, Birmingham. The underlying
aim is to investigate the applicability of the RSO in objects subjected to the scale,
translational and rotational movements. This platform is an idealistic test bench to determine
the penalising strength of the guided local searches (Figure 4.17). Due to being an airborne
vehicle, the quad-copter frequently blends with the clutter, and therefore is a challenging
tracking problem. As the drone drifts away from the dynamic camera, it undergoes sudden
changes in its scale, and at its furthest distance, it dramatically reduces to only a few imaging
pixels. The poor visibility and outpouring conditions demand an update in the feature space

to increase the tracker stability and its robustness.

Figure 5.13: The histogram ball plot of an airborne vehicle shown in the Figure 5.14

Figure 5.13 shows the changes in the object histogram model. The deviations in the
circumferences of the balls indicate the scale of the observed discrepancies between two
video frames. Along with the changes in the frequency of measurements, a significant
reduction in the histogram components is observed within a very short time period. In cases
where larger model invalidation is observed, it is often more feasible to narrow down the
search space using the data fusion techniques (e.g., using motion and feature detection sub-
modules). A number of frames from the drone tracking problem (the tracking test case is

constituted of 879 image frames) are presented in Figure 5.14, the airborne vehicle often
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merges with the low and fast moving cloud, and therefore tracking window is dynamically
altered in order to diversify the measurements. The footage was captured on a Nokia mobile
phone with a maximum sampling rate of 7FPS. Therefore, this particular sequence is
especially challenging due to the jittering platform (held in hand) and low sampling

frequency and higher displacements between all frames as expressed in Table 5.4.

Figure 5.14: The scale changes in eight video frames taken from the drone sequence.

Table 5.4
Sequence Length 879 Frames
Sampling Frame Rate 7 FPS
Sequence Time 125 Seconds
Total Displacement (Pixels) 9.879¢+003 Pixels
Maximum Displacement 35.8 Pixels
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5.3 Conclusions.

This chapter was written with an aim to introduce readers to some most common and
challenging test cases utilised in the computer vision community. Several difficult video
tracking and detection problems have been identified in this chapter. The ground truth values
are plotted along each test case, and would be used in the next chapter to determine the

accuracies of our detection/tracking algorithms.
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Chapter 6

Natural Detection and Tracking

It has been a fervent desire of human beings to learn from the nature’s artistic designs [254].
We apply our biological vision to accomplish almost every task that frequently incorporates
visual tracking of bodies in order to enhance our anticipation of the environment. The salient
features are derived and availed to promptly recognize a dynamical object in our vision [255].
A partial inspiration in this report came from our visual references and consequently the
realization of a denser semantic knowledge to handle complex situations. Solving the visual
jigsaw in machine vision is more elaborate and decades of scientific research is needed to

gain the proficiencies of the natural vision.

List of algorithms

Novel Proposals in this thesis PSO
Generate
Particl, BAT
v Random Search Optimization articles Firefly

(RSO)
v' Virtual Guided Searches (VGS)

Cuckoo

Differential Evolution
SDS

Evolutionary
Strategies

Evaluatio
Of
Objective

Converge
Or
Disperse

Move
Particles

Figure 6.1: Strategic differences in general optimisation and methodologies applied in this thesis.

Some inferences about a biological vision could be deduced from self analysis. The
association of the computer vision systems and our visionary perspectives could be a key to
implement the fundamental aspects effectuating our visual prolepsis during highly cluttered
scenes. One of the major components of a biological vision is the presence of a systematic

hierarchy (similar to the RSO we applied to solve test problems) in which sparse observations
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are generally imputed to perpetuate lower and denser solutions. It is not much deviation from
the reality to write that it seemingly appears that we apply dominant scene characteristics (in
our vision) to detect a top order movement. After further visual refinements, a human brain
conjectures a belief and reaches to a specific conclusion regarding the visual depth of an
object.

We would like to conclude the main theoretical expositions presented in this thesis before
conducting further experimentation. Some complicated evolutionary test cases were
successfully solved in Chapter 3 by applying RSO and stochastic variations (Section 3.4).
The novel system (RSO/VGS) stipulated the preferences of space based convergences
(Section 3.1-3.3) over the traditional calls in the social particles. A major source of the
misconceptions in the evolutionary algorithms (RHS of Figure 6.1) is due to wrongfully
considering particles as immortal agents. Furthermore, storing intermediate states of particles,
and mathematically calculating the complex social interactions are analysed as redundant
features in this thesis.

Therefore, a search driven optimisation based on nested particle behaviours is a novel
technique which first integrates observations of the virtual swarms (Section 3.4), and later
applies guided searches (Section 4.3) to solve complicated vision problems. The two
optimization processes shown in Figure 6.1 are unique within themselves in the sense that
instead of converging or dispersing particles, the priority is on particle proliferations using
rebirths (in our approaches) around the feasible area in a search space. The exploration and
exploitation (EAE) phases in a particle system are shown in Figure 6.2. In traditional swarm
methods (e.g., PSO [256]) both EAE are simultaneously carried out in all iterations (top right
side of the Figure 6.2). The incorporation of EAE based on social calling is the main source
of complexity in many nature inspired algorithm (as verified using experiments in Section

3.5). Therefore the priority in this thesis is to decouple EAE into separate phases to increase
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search efficiency. Such kind of optimisation process is theoretically identical to the searches

carried out by the independent foragers in the solution space as shown in Figure 6.3.
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Figure 6.2: Selection of tuning parameters in swarm based approaches.
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Figure 6.3: Foraging and iterative search strategies without activating the population.

Figure 6.3 replicates the hunting pattern of independent agents which depart from converged
colonies (bee-hives/ant nests) in order to find suitable food resources. The larger circles are
drawn to display the local olfactory radiuses of the foragers during their flight paths. The
scale free searches carried out by autonomous particles therefore are analogous to the
artificial injections in dynamic optimisation methodologies [257]. Similar to determining the
optimal population size (Figure 3.57), it would also be interesting to analyse the forager

particles needed to detect an object.
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To supplement the earlier arguments (especially regarding the particle rebirth phenomenon),
we have portrayed a pictorial representation of the ant colony optimisation method [258] in
Figure 6.4. The path of a wining forager ant is drawn along with those of the unsuccessful
ones. The major obstruction in the route (river and mud) enforces the search agents to seek
alternative shortest permissible paths to a potential nest site. The larger pheromone trails are
therefore deposited (due to the collated opinions of a large number of recruited ants) along
the optimal trajectory to the new nest site. The implicit communication method uses
pheromone trails to guide the nervous ants (at the nest site) towards a solution. However, one
major research question to answer is that whether such implicit methodologies are absolutely

mandatory in artificial vision based tracking.
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Figure 6.4: The competitive and collaborative environment of ACO.
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6.1 Experimental Setting

The aim of Chapter 6 is to demonstrate with experiments that the RSO and virtual agents
(memory-less particles) are capable of tracking objects in diversified scenarios. This chapter
is organised as follows, the scale space methods (Gaussian blurred images) are applied in
Section 6.1 to track a pedestrian in a video sequence. Then in Section 6.2 we will apply the
foraging patterns (organised random walks) to track the movements of the same pedestrian.
In Sections 6.1-6.13 several detection and tracking experiments are performed on randomly
moving objects. First we have applied PSO and BAT algorithms in order to detect and track
motions, and later on the same objects are tracked using RSO and VGS to analyse the
tracking efficiencies in the space-time dimensions. Finally, the process is repeated for a

number of other dynamical objects.
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Processor Information Processor Information
Model: | Mobile Intel Atom M270 (Diamondyille) Maodel: | Mobile Intel Atam M270 (Diamondvills)
Platform:  Socket 437 (FCBGAL3T) Platform: | Socket 437 (FCEGA43T)
Frequency: | 1595.42MHz (132,95 x 12.0) Frequency: | 797.71MHz (132,95 x 6,0}
VID: |1.1000 % VID: |0.9000 v
Revision: | C0 Lithographey: | 45 nm Revision; |0 Lithagraphy: |45 nm
CPUID: | <1062 CPUID: | Ox106C2
Processor #0: Temperature Readings Processor #0: Temperature Readings
i, Mawx: | 90°C Min,  Max,  Load Tj. Max: [90°C Mn,  Max. Load
Core #0: |9°C O 9t | 3% Core #0: | 19°C 7°C | 19°C | 0%

Figure 6.5: The properties of the platform on which the experiments are conducted.

The aim of this tracking project is to devise tuning free real time tracking for the embedded
platforms (e.g., smart phones). A mobile Intel device (N270-798/1600 MHz) with 1GB of
memory was used in our analysis (Figure 6.5) [259]. The tracking does not take into
consideration the display characteristics. Therefore experiments are independent of the

graphical renderings, accelerations and storage capabilities of the graphic cards.
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6.2: Tracking experiment using Motion Estimations.

The detection of the pedestrians and culminating their trajectories is an important task in the
emerging vision technologies (e.g., driverless cars [260]). The main ideology (industrial
perspective) of any engineering system is to invent a jargon free design that guarantees an
optimal performance within the economical constraints (speed and budget) A higher level
corroborative module in embedded platforms could be based on analysing movements using
the Gaussian convolved image differences. The identification and associations of the relevant

information clusters obtained through the frame subtractions f, - f,_,(1<n<t-1) is a cost

effective technique to solve complex tracking landscapes.

@&

Figure 6.6: The pyramid of information by fusing Gaussian smoothed images [261].

Figure 6.6 shows an information pyramid generated by subtracting two images taken from the
pedestrian sequence introduced in Section 5.2.2. The clusters reciprocate the suspected
movements and could be further exploited at various scale-space (by convolving with
Gaussian models) to analyse motions. The translational movements of the pedestrian-3 in
Figure 5.5 are identified by narrowing down the relative pyramids in Figure 6.6. Furthermore,
it is quite straightforward to relate contextually different visual problems (e.g., Figure 6.6) to
combinatorial optimisation methods applied in the test cases (Figures 3.6, 3.22 and 3.52).
Many historical trackers applied inter-connected sub modules to track movements of people
[262]. We have presented one typical solution where a Kalman filter was used to track the
movements (detailed discussion could be found in [263] and are out of the scope in this

thesis). The tracking relies on the state-space model (shown by numerical data in brackets)
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which utilizes the general equations of motion (kinematics) to analyse movements as shown
in Figure 6.7. The results of the tracker have been shown in the top right hand corner of

Figure 6.7.
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Figure 6.7: Estimating Motion by applying SSD and MS phases to a Kalman filter stag-e.
To analyse the applicability of a proposed scheme (based on information pyramids shown in
Figure 6.6) we used Gaussian convolved frames to deduce frame information and the
consequent tracking results (pedestrian-3 in Figure 5.5) have been drawn underneath. The
trajectory of the tracking window (using cluster analysis) is presented in Figure 6.8 alongside
the ground truth (in Figure 5.5). The overlapping graphs prove that the information fusion by

Gaussian convolutions is a valid higher order tracking technique.
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Figure 6.8: Tracking a pedestrian using Gaussian convolved images.

Figure 6.10 shows the timing plot of the Gaussian scale-space based tracking method. The
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overall convergence time (for a sequence containing 143 images) using frame differences
(FD) was observed to be around 5.775 seconds in this experiment. Therefore tracking of a
pedestrian was performed at 25 frames per second (FPS), this is quite remarkable finding in
itself that could also be applied in narrowing down the search space in more complex frames
(we used a window of size 10x10 pixels around the last known position of pedestrian as
shown in Figure 6.9). Therefore, in the pedestrian tracking cases, the FD cluster analysis

appears to be an effective approach (as apparent from the graphs). The mean pixel distance

Ye

€rror
X

} for 143 frames (in Figure 6.8) was observed to be Eiﬂ , which is quite remarkable

e
for a tracker based on FD alone. However, there is a significant margin for further improving

the frame rates as in Section 6.2.

Figure 6.9: Information deductions from a variety of video frames using scale space methods.
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Figure 6.10: Timing efficiency graph in a pedestrian sequence.
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6.3: The Motion Estimations using Foraging Patterns.

The real time tracking approach in this thesis predominantly relies on a fact that the search
space could be narrowed down using information fusion (IF) techniques [264] (as learnt in
Sections 6.1 and 3.4). The deep-seated reason for the success of the nested RSO (proposed in
the Section 3.1-3.3) is that it applies various IF stages to select a best hypothesis. The frame
subtraction method is an exemplification of an elitism [265] based meta-heuristics (similar to
the honey-bird human relationship in Section 3.2.3) that could also be applied in the real time
applications. In the coming demonstrations, we will analyse with experiments the fact that
how IF in visual tracking could conjecture search reductions. The partial function evaluation
of the colour distribution (introduced in Section 4.1.4) will be used as an objective criterion

for the foraging particles in this case.
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Figure 6.11: Tracking an ROI in video sequence using only a few foraging-particles.

An alternative to usual analytical deterministic drifts is presented in Figure 6.11. There are n-
foragers in the search space which form a cluster around a potential region of interest (ROI),
and perform iterative local searches within the olfactory radius (determined by a higher level
process, e.g., clusters formulated by frame subtractions) to detect the object. The radiuses of

the olfactory senses are learnt along time by taking into consideration the historical motions
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(Section 4.1.3), and the initial position of particles Lﬂ are calculated by implementing a

circular symmetric model (in this scenario) as drawn in Figure 6.11. At a point in time, n
foragers leave the nest and are represented by arrows. However by exploiting the properties
1-3 (Section 3.3.2), all intermittent and transitional velocity updates are avoided to achieve a

real time convergence.
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Figure 6.12: The partial function evaluation using multivariate Gaussian PDF.

Once main foragers have presented their hypothesis about the validity of a potential nest-site
(similar to foraging bees) further evaluations are carried out using a small group of recruits.
The recruits fly around autonomously within the designated space to detect the clusters
belonging to the object. All forging particle use partial function evaluations of the colour
distributions (as described in Section 4.4.3) in Figure 6.12. Similar to the probabilistic
associations established by using grey level or intensity changes in Figure 4.40, the
corresponding RGB variations are modelled using a multivariate Gaussian distribution [266].

Moreover, the particles utilise non-linear speed function that makes them stationary in the
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vicinities where object like features are detected (refer to Figure 4.44). Due to the simplicity
of this feature matching process, only the encoded values of mean and covariance matrix of
the colour variations (within a region using RGB space) are required to assign probability
values to each pixel in the search space (as shown in Figure 6.12). Figure 6.13 shows how the
particles search space are manipulated over the course of time to calculate the underline

movements in this video.

(S : ; * —-. -._
Figure 6.13: Six tracking frames from the pedestrian sequence using olfactory radiuses.
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Figure 6.14: Tracking errors in the x-dimension using 4 scouting particles.

The tracking results in the graphical formats are presented in Figure 6.14. In the first
scenario, particles are deployed using pyramid structures (obtained through FD as a top order
heuristic) to narrow searches. The results in XY search space dimensions are compared to the
ground truth (GT) in Figure 6.14, and the corresponding accumulated errors are presented in
Figure 6.15. The errors in the XY dimensions (when FD and foraging behaviour [267] were
applied together) are observed to be -1.78 and -2 pixels respectively. The discrepancies are

further reduced to a mean of 0.92 and 0.2 when only 4-scout (RSO) particles are initiated in
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the relevant space without analysing any top level clusters through the Gaussian pyramids

[268].
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Figure 6.15: Tracking errors in the y-dimension using only 4 scouting particles.
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Figure 6.16: Tracking results of 4 particles using FD and when only scouts were deployed.
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In Figure 6.16, the ground truth positions of the pedestrian are plotted alongside two further
scenarios when the ROI was being tracked using foraging behaviours alone, and with frame
subtraction as a higher order heuristics. The results are convincing and stipulate an earlier
hypothesis that the nested RSO could significantly outperform single solution based
analytical methods (e.g., Figure 6.7).

The timing graphs are also presented in Figures 6.17 and 6.18. When the mobile processor is
running at its peak operating frequency (Figure 6.5), we achieved a mean tracking speed of
100 frames per second (FPS), which is significantly higher than the system implemented in
Figure 6.7. The dominating performance of a simplistic natured inspired approach (foraging

behaviours) is therefore very conclusive in this application.

4-patticles
n.m -
b ence=] 012

o Fpa=10100
=
S 0.015H .
o
[ip]
= by LA i _ -
E I i 4 ] + 1
= T O (" 8 2. ) O O 0 Y .= PO -
E 0.01 p3 .l'r F 0 EIF, -_.!r._r.:_ 'J,. I',-,"'J‘-. s
o "Il"'
=
[15]
=
= 0005 .
]
(]

I:l 1 1 1 1 1 1 1

a A 40 &1 3 1] 100 120 140 1E0

Frarta

Figure 6.17: The graph of the convergence timing at a processor speed of 1595 MHz.

The tracking results for 15 frames are shown in Figure 6.19. The position of the tracking
windows represents the mean pedestrian location detected in a frame. The pictorial data also
confirms that this tracker works remarkably well (at impressive frame rates) in detecting the

pedestrian movements during the entire length of this sequence.

204



comr ergence-timing(seconds)

0.0z

Iemar=] 01335
1.a2s fp=53 .
- M ot
1.ai5s =
.01 =
CPT-L=197 75 bl
0.005 CPT-H=1595. 50k ]
FidM=LME
|:| 1 1 1 1 1 1 1
1] 20 4 A0 a0 100 121 140 160
frarme

Figure 6.18: The convergence timing graph for a processor running at 798 MHz.

The tracking results for 15 frames are shown in Figure 6.19. The position of the tracking

windows represents the mean pedestrian location detected in a frame. The pictorial data also

confirms that this tracker works remarkably well (at impressive frame rates) in detecting the

pedestrian movements during the entire length of this sequence.

Figure 6.19: Tracking results using only 4-foragers at an FPS of around 100.
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The analysis in Figure 6.17 was repeated for a range of other particle populations, and the
tracking results are provided in Figures 6.20 and 6.21. By comparing Figure 6.20 with Figure
6.17, we reached to a conclusion that no significant improvements (in the tracker accuracy)
are observed by increasing the population size of the foraging particles in this particular

pedestrian tracking problem.
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Figure 6.20: Tracking results using 8, 16, and 32 numbers of foragers.
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Figure 6.21: Pedestrian tracking using 64, 128, and 256 numbers of foragers.
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The effects of the particle population strengths on the convergence timings of the tracking
algorithm are drawn in Figure 6.22. The mean convergence time for § particles was recorded
to be around 0.147 sec, and by increasing the particle size to 32, the convergence time
jumped to 0.88 second (Figure 6.22). The timing graphs for 64, 128 and 256 particles are also
plotted in Figure 6.23 (with worsening convergence timings). Hence, no particular
improvement in terms of the convergence accuracy is ever recorded in this test by

incrementing the foraging population sizes (Figures 6.20 and 6.21).
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Figure 6.22: The convergence timing graph for 8, 16 particles.
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Figure 6.23: The convergence timing graph for 32, 64, 128 and 256 foragers.
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6.4: Solving the detection problem using virtual guided searches (VGS).

The detection of an object in an image often becomes a challenging multi-modal problem.
The underline idea of this section is to apply RSO proposed in Chapter 3 to find an object of
interest. The inherent philosophy of the devised RSO method is to highlight the fact that
learning of dynamics using scale free experiences is a preferable optimization method than
the deterministic drifts employed in both standard Kalman and particle filters. It was
demonstrated earlier (Figures 3.63-3.66) that the nostalgic factors (e.g., previous best
positions) do not contribute as much as it was previously thought in the optimisation of
evolutionary test cases. Other major sources of functional discrepancies in the agent based

methods are the memory operations needed to update the particle’s positions [269].
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Figure 6.24: Understanding the notion of particle positioning and recording in memory.

A predominant source of the computational complexity in particle centred schemes (e.g.,
PSO, BAT and Firefly algorithm) is that the agent’s positions are stored in complex data
records (Figure 6.24) which are not mandatory at all in the view of the author. In particle
swarm optimisation, the velocity modelling relies on the personal best (PB) and global best
(GB) positions, and particle positions are updated by applying newly calculated velocities to
the stored positions. A virtual particle on the other hand does not require such complicated
data structures, and no particular velocity models are kept in the record to specify their search

behaviours in the feasible space.
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The virtual particles (similar to foraging insects) fly around intermittently (e.g., based on
stochastic Gaussian models) without broadcasting their positions to the rest of the population.
Once a suitable region is identified using broader searches, a virtual agent utilises the
available communicational method to advertise its findings. The denser guided searches
(Equation 4.1) are then applied in order to accept or reject a hypothesis. The idea therefore
revolves around devising an effective recovery phase to regain control of the tracking
windows (as was explained in Sections 4.1, 4.2). The virtual guided search (VGS) is hence a
novel idea presented here to solve the vision based problems. We aim to apply both VGS and
the RSO in the coming sections.

The operational environments for the visual detection problems are presented in Figure 6.25.
The detection challenges are exacerbated in the drone sequence due to the variations in scale
and background clutter. Furthermore, the illumination and shadows complicate the process of
identifying the ant positions within allowable time in Figure 6.25. Both ant and drone
sequences would be extensively used in the coming sections to analyse the most plausible

tracking method.
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Figure 6.25: Detection of object of interest becomes a blind search in case the trail is lost.
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6.4.1 Detection Experiment (the ant in a maze sequence).
In this experiment we kept the window size to ﬁg} pixels in both x-y dimensions, and the

aim here is to analyse the effectiveness of the exploratory features of both PSO and Bat
algorithms. The virtually guided particle behaviours are then applied in order to research into
the most suitable tracking methodology for a real time performance. A complicated frame
was chosen from the video (introduced in Section 5.2.1) for the detection runs. The surface
plot of the problem is shown in Figure 6.26, and it is evident that this problem is highly

rippled with similar peaks present in the surroundings.

Figure 6.26: The surface plot of the search space shows peaks of matching densities.
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Figure 6.27: The visual detection of ant is carried out by using a particle sweep in PSO.
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Figure 6.27 shows the detection results when the newly devised PSO format (based on the
stochastic variations defined in Equations 3.12-3.13) is applied to the ant trapped in a maze
image sequence. A population sweep (similar to Figure 3.57, where a particle population is
sequentially increased to study the consequences on an optimisation process) was conducted,
and the detection behaviour is plotted for 5-1000 particles. The general trend that could be
observed in Figure 6.28 is that the computational complexity increases almost exponentially
with the proliferating agent population. The best detection speeds are however observed
when the particle population is ranging between the limits 50-150, and within this population

span, a mean detection rate of 41 fps are recorded.
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Figure 6.28: The convergence behaviour of a modified PSO without using for-loops.

A code optimisation (CO) procedure [270] was carried out onto the PSO program (applied in
Figure 6.27). The main idea of CO is to avoid the conventional ‘for loops’ (a type of
programming construct) which are extensively applied during particle translations in a search
space (Figure 6.29). The code in Figure 6.29 consists of five major sections, an initialization
phase (particles are spread in the space), an outer loop to sequentially increment the

population sizes, and the calculation of the objective values in the RGB space, a PSO
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behavioural implementation (Equations 3.5, 3.12 and 3.13), and finally calculating the

Euclidean distances between the observed positions and the ground truth value of B:g} The

detection results after applying CO are shown in Figure 6.28, the detection rates were

increased to a mean of 52.31 fps.
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Figure 6.29: A section of the detection code written in Matlab (image processing toolbox).
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Figure 6.30 shows the positions of the particles with respect to the object of interest for
various tuning parameter selections (Equations 3.12-3.13). The video frames are taken after
the maximum allowable time lapses during the runs. The non-convergent characteristic of the
virtual particles could be observed in Figure 6.30d. On the other hand particles collapsed at a

point in the situation ¢ (where the parametric values are chosen as ®, =0.8and®, =0.2).
Figure 6.31 shows the convergence timing for a detection experiment with®, =0.1. Higher

convergence rate (129.7 FPS) is observed in the range where the tuning parameter
was0.01<®, <045, whereby selecting its values between 045<®,<0.8resulted in the
detection rates dropping to a mean of 53 FPS. Therefore the experiment (in Figure 6.31) also
verified that visual detections are highly sensitive to the parametric choices in the swarm

based methods (as suspected).
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Figure 6.31: A modified PSO without using for-loops in the velocity and positional updates.
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Similar to Figure 6.27, the bat algorithm was implemented to detect the object in the relevant

landscape (Figure 6.26), and the results are presented in Figure 6.32. The mean convergence

timing for a population size of 50-150 particles was observed to be around 143 fps, which is

significantly higher than both PSO variants. Finally the detection was repeated for the virtual

particle behaviours, and the results (Figure 6.33) are remarkably higher (as expected)

compared to both Bat and PSO algorithms. The detection rate of 200 fps using virtual

particles also verifies the earlier proposition (Section 6.3) that the memory operations in PSO

and Bat algorithms are computational overheads with no optimisation impacts whatsoever.
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Figure 6.32: The detection timing when Bat algorithm was used to find the ant in a maze.
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Figure 6.33: Frame rate/ detection time using only virtual-particles (VPs).
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6.5: Solving the Detection problem in the widened Search Space.

The operational basin in the meanshift (MS) visual detections remains static throughout the
tracking (Section 2.5.4). One way to rectify the inherent weakness of the MS algorithm is to
automatically alter the window sizes to incorporate more diversified measurements. However
widening of the search space gives birth to an expedited accumulation of errors, as more
clutter is usually introduced into the measurements as shown in Figure 6.34 (when the search

space widens fromQ toQ,, a lot more distracters enter into the tracking window). Figure

6.35 has been specifically drawn to relate the above mentioned problem in a typical detection
case. As the tracking window widens, more surface abnormalities corrupt the measurements,

and calculation of the correct MS vector is difficult to achieve.

Q, Q,

Local distracters

¥

Detection Phase

Figure 6.34: Search space selection and incorporation of local clutter in the measurements.

Histogram Profile
Oof
the ROI

Figure 6.35: (a) ROl in frame. (b) Surface Plot. (c) A depiction of discrete density model.
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In this section we will conduct further experimentations to check that whether the Guided
local search (GLS) could be used to identify local clutter and the changing histogram profiles
in Figure 6.35 (c¢). We will iteratively increase the window sizes as shown in Figure 6.35(a)

to penalise the distracters (using the guided local searches as in Equation 4.1). In the first

. . . . . . 10| | 210 .
case, detections are carried out by widening the tracking window ({10}{210}) without the

GLS module, and the results are presented in Figure 6.36.

“wintualf=sEied P atide SwamiComegenceEm

a00 T

Wirtusl SGuided
AED - Swarm Popd=tion [
A00 1
350} .

EronFoks]
Wl
)

a 50 100 £ 211 25
DCistactionindav-Sizaly.x]

Figure 6.36: The detection using PSO failed drastically after 80" frame.
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Figure 6.37: The guided search maintained the position of object as the window is enlarged.

216



The guided search was then applied in Figure 6.37 exploiting two optimisation paradigms.
First virtual guided search (VGS) was used as a meta-heuristic over the PSO, and in the
second case, the experiments were repeated using VGS on its own. The results in Figure 6.37
show that both algorithms worked competitively well and errors are significantly reduced.
The tests are repeated for the Bat algorithm and VGS algorithm in Figures 6.38-6.39 (two
plots exhibit VGS assisted Bat and the VGS tracking on its own). The plot in Figure 6.39

shows how GLS facilitated the recovery of the Bat detections carried out in Figure 6.38.
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Figure 6.38: The error plot of detection using Bat algorithm in Figure 6.35.
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Figure 6.39: Errors are significantly reduced by introducing the guided searches.
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Figures 6.36-6.39 were generated by programming a meta-heuristics (VGS) over the standard
Bat and PSO algorithms. The core idea of these hybrid tests was to analyse if swarming
phenomenon increases the precision. However from the experimental data (Figure 6.39), it
was affirmed that the virtual particles (with a guided local heuristic) are capable within
themselves to precisely detect and track an OOI (overlapping results in Figure 6.39). Further
timing experiments were conducted by varying the population sizes in the VGS algorithm (to
maximum permissible window size- ng} ), and the results are presented underneath. It
appears that the convergence timings of the VGS algorithm are less prone to the population
strengths as displayed in Figure 6.40. The ant was successfully detected in all 205 runs

(despite of the clutter) at an average rate of 0.2-0.3 seconds.
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Figure 6.40: The graph of the detection time versus the population size using VGS.
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The program structure used in the virtual assisted Bat experiment is partly shown in Figure
6.41. The outer loop-1 is used to increase the windows size, whereas loop-2 strategically
places the required number of particles in the search space and calculates the corresponding
objective function values. The guided local search is then implemented in the construct-3,
whereby, further refinements (nested searches) are sought by reproducing a swarm of Bats in

closer vicinity projected by the VGS.
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Figure 6.41: The VGS assisted Bat detection algorithm.
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6.6: Applying RSO and VGS in the Ant tracking sequence.

Two predominantly common problems in the sequential pattern matching algorithms (e.g.,
vision tracking) are the changes in the object profiles in the feature space, and the exhibition
of non-linear dynamics during the video tracking stages, which often translates an object
outside the scope of an observational window or operational basin. The aim of the
forthcoming sections is to analyse the applicability of both RSO and VGS algorithms in order
to regain control of the tracker in challenging scene conditions. If the feature space changes
are not timely incorporated into the object model, the tracking algorithm is normally unable
to detect the object under observation. Similarly, when the object travels outside the search
basin, the tracking algorithm fails to match the known patterns, and therefore, the window

generally keeps roaming around in the sub-optimal regions.

LT |
HEEEEENNNEEEN

. . EEEEEEEEEEEEE.
Figure 6.42: The feature space plots of an object of interest during lighting change.

Figure 6.42 shows the effects of lighting on the object model during two different frames of
the sequence (Section 5.2.1). The 3d surface plots of the normalised colour intensities show
the extent of the non-linear shifts which render the objects to an extent that they become
undetectable in frames. One solution to the problem displayed in Figure 6.42 is to provide
motion assistances using scale space differences (see Figure 6.6) until the original conditions
have returned.

In cases of permanent shifts the only resilient solution (to address the dynamic problem) is to
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remodel the objects in the feature space. Optimistically speaking, the VGS and RSO
(Sections 3.4, 4.1, 6.4) based detections would enable us to address any unpredictable
movement (due to a scale free approach) during manoeuvrability phases, and these scenarios
will be further tested in the coming experiments. Figure 6.43 shows the sequence of these
demonstrations. The experiments start by allocating the dynamical windows in Section 6.6,
and a final conclusive stage (Section 6.10) would help to stipulate the applicability of the
tuning free approach (adapted in this thesis), and the aim is to test the performance of the

novel RSO-VGS algorithm.

Order of tracking Experiments

Dynamic Window Fusi(()in of Mqtion sGuidgd
Allocations And Densities earches

Tracking
Experiments

Model
Updates
VGS Assisted Bat VGS Assisted PSO m

Figure 6.43: The sequence of the tracking experimentations in coming sections.
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6.7: Tracking using the dynamically changing window size.
In this experiment we applied the standard Bat algorithm to track an object of interest. The

core idea in this approach is to alter the window sizes in order to regain control of the

. . . . . . 10| .
tracking window during the lost frames. In the first experiment, a window size of LO} pixels

is selected to track an ant in a maze as shown in Figure 6.44. Figure 6.44 reveals that once the
tracking window was lost in the frame (205™ frame), the tracker was never able to recover,
EX

and the window roams around in the search space. The errors (Figure 6.45) are plotted
E

for this video sequence in Figure 6.44.
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Figure 6.44: The errors E, and E, are plotted for the 774 frames.
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Figure 6.45: The calculation of the Euclidean error distance VS the errors E,andE, .
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Figure 6.46: The pictorial view of the tracking errors E, and E, in four imaging frames.

Some frames from the tracking sequence are presented in Figure 6.46. The larger squares are
used to identify the true positions (ground truth) of the ROI, whereas, the smaller window
replicate a tracked positions along the 2 dimensional (XY) space. In the next experiment, we
have altered the swarm population size from p, =50to p, =100, and the tracking results are
plotted in Figure 6.47. Remarkably, the tracking window successfully recovered after 417"

frame in this sequence. The 2 dominant error phases are plotted in Figures 6.47-6.48. In case

of a window sizeW, = Bg} , the error plots in Figure 6.47 display a robust recovery.
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Figure 6.47: The object tracking with a window size {20} and swarm of 50 BATS.
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Finally, the tracking window was adjusted to w; =[28} with p, =100 bats, and Figure 6.48

shows the tracking errors observed in this particular detection situation. This experiment
shows the scale of the errors when a tracking window is widened in order to recover a lost
position (Section 6.4). The problem has also been identified in Figure 6.48, which exhibits
that the tracker converged to the non-optimal regions/shadows. The tracker has never been

successful in locating a ROI (as in Figure 6.49).

Figure 6.48: The pictorial/graphical view 3-tracking frames.
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Figure 6.49: The object tracking with a window size [50} and a swarm of 100 BATS.
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6.8 Tracking using state vector fusions.

One way to resolve the model related problem (exemplified in Figure 6.42) is to fuse the state
vectors of parallel processes with an aim to increase the tracker robustness. The
undeterminable changes in the object models could be addressed by collating the motion and
density vectors. The opinion polling mechanism [271] was used in this experiment to
integrate location based information. Both Euclidean and x-y errors are plotted in Figure
6.51. The performance enhancement is evident when the results are compared to Figure 6.49.
The performance of the tracker is somewhat marginalised by a low mean frame rate of 21.73

FPS. The stability of the tracker during adverse lighting phases could be confirmed in Figure

6.50 as well.
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Figure 6.50: ROI was successfully tracked in the region of large illumination changes.
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Figure 6.51: The fusion of colour and motion models increases stability in the ant tracking.
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6.9 Tracking using penalising approaches.

The virtual assisted PSO (PSO-VA) and the virtually assisted Bat (Bat-VA) are novel meta-
heuristic algorithms devised to entail optimal convergence of particles. The RSO performs
random searches in the search space, and the guided search (Sections 4.2-4.3) is applied once
the object characteristics are discovered. During the next stages, particle rebirths (see Figure
3.36) take place and both PSO and Bat convergences are used to refine the object locations.
The x-y tracking errors are plotted in Figures 6.51 and 6.52. Both Bat and virtually assisted

PSO recovered from seven major illumination changes as plotted in Figures 6.52 and 6.53.
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Figure 6.52: The performance of the virtual assisted PSO in the ant tracking sequence.
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Figure 6.53: The performance of the virtual assisted Bats in detecting an ant trapped in a maze.
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6.10 Tracking using Model-Updates and VGS as a metaheuristic.

The population based methods generally lack an ability to penalise clutter, and therefore due
to an absence of a guiding procedure, the process suffers from a tendency to converge
towards local optimal regions. The radical search optimization (RSO) (Section 3.4) is a novel
scale free optimization methodology which is more effective than the particle swarms
(Section 3.3). Moreover, the virtual guided search (VGS) is a memory free particle hierarchy
(Figure 6.24) that enables the agents (conducting RSO) to perform detailed local searches and
penalise the non-optimal regions. Figure 6.54 exhibits the scale of changes in the RGB space
experienced in two consecutive frames. The underline theme behind the model updates is to
reconstruct the feature profiles at the moment an adversity is found in a video frame. In this

section, the profile updates will be applied using PSO-VA and Bat-VA.

EGE Channels in two tracking frames

200 Ehie
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Figure 6.54: The discrepancies in the RGB colour channels of the object profile.

The results of the tracking by subjecting the PSO-VA and Bat-VA along with the feature
updates are shown in Figures 6.55 and 6.56. Both algorithms maintained good tracks of the
moving object, and the resulting plots show that the convergence timing was also
significantly increased from 21.73fps (Figure 6.51) to 50fps in the PSO-VA case with
RMSE=6.9pixels. The Bat-VA was comparatively more effective and frames were tracked at

a rate of 66fps (Figure 6.56) with reduction in the errors (RMSE=4.42 pixels).
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Figure 6.55: Frame rate of 50fps and a RMSE of 6.9 pixels were observed in ant sequence.
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Figure 6.56: BAT algorithm using virtual guided search as meta-heuristics and bin updates.
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6.11 Tracking using only VGS with Model-Update.

The aim of this experiment is to analyse both the tracking accuracy and the convergence
timing using VGS and RSO routines without swarm deployments. The performance plots in

Figure 6.57 highlights the fact that the errors in both x-y dimensions are significantly reduced

. 2.58 . .. .-
with a mean error VGC‘[OI‘|:4 23] The illumination variations have been compensated by

rebuilding the feature profile during adverse frames. Compared to Figure 6.55, the errors
peaks between 335-373 frames are therefore less significant. A mean convergence time of
0.004 seconds was recorded in Figure 6.58. Therefore the RSA-VGS produced significantly
accurate results at 250fps in this vision tracking sequence. The performance of RSO is also in
line with the results obtained in optimising the evolutionary test cases (Figures 3.63-3.66). A
number of frames (32) have been selected and the tracking results are displayed in pictorial

formats in Figure 6.59.
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Figure 6.57: VGS tracking was performed with fewer errors than the PSO-VA and Bat-VA.
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Figure 6.58: The VGS algorithm managed to attain a mean FPS=250, VGS/RSO has outclassed both
BAT and PSO (inline with the findings presented in Section 3.5) by huge margins. This is partly due

to the fact that no record of velocity and positions is kept as explained in Section 6.3.
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Figure 6.59: Tracking ant sequence at a frame rate of between 200-250 using VGS alone, the

algorithm quickly regained control after the lost frames using RSO heuristics.
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6.12 Scale free searches in the Drone Sequence.

The motion modelling using kinematics (Sections 2.1-2.4) has been a popular methodology
for many years in the video tracking problems. However, one of the key adversities (that
standard tracking algorithms based on motion modelling have been unable to address) is the
partial and complete occlusions of an object of interest. When an object becomes
undetectable in an observational window for several frames, the tracking algorithm generally
lags behind the true position and the detection fails. Figure 6.60 shows this problem
graphically, the state of any tracking application comprises of the window size
parameter {Wy i

}, and its mean position{ } . Therefore the aim of tracking is to minimise the

X X

distance d,, between the mean window position and the object centroid. The role of the RSO

particles is to provide the required loose control based on the Bernsteinian control theory
(Figure 2.9), and later on, the strict disciplinary nature of the VGS projects a much tighter

control to efficiently detect and track an object.

........................................ Scale-free Searches

Figure 6.60: The scale free searches using RSO

We applied the scale free searches based on RSO and VGS to the drone sequence, the

severity of the problem with dynamical windows have been identified in Figure 6.61. The
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enlargement of the tracking window (in this test) provides an ideal platform to study the

detection efficiency of the RSO-VGS duo. In these experiments the window size will be

varied from Bg} to ng}, and the penalising VGS approach will be applied to distinguish

between the low cloud and drone.

Region of Interest (Circle)
Tracking window Sizes
(Rectangles)

Figure 6.61: The scale of the search windows in these experiments compared to the ROI.
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The tracking window size is varied as shown in Figures 6.59 and 6.60, both the detection

errors and the convergence timings are plotted for each case.
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Figure 6.62: Effects of the window size selection LO} to {50} onto the frame/detection rates and the

time needed to converge.
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Figure 6.63: Effects of window size selections {100}[300} onto the detection errors and the

convergence timings (drone).
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In Figures 6.62 and 6.63 the mean convergence rate is recorded to be between 0.01-3.65

seconds when the window size was varied between 100-90k pixels. The detection efficiency

of 0.94 with a window size of Egg} shows the stability of the proposed RSO-VGS
methodology. The detection (after occlusion) in the largest window (Figure 6.63) took only

3.65 seconds to converge to the optimal. A real time convergence rate of 98fps was observed

. 10 . . .. . .
with aLO} window size. Further fascinating factor in these tests was that the experiments

were performed with only N, =3 particles that simulated virtual swarms in the search space

To analyse the effects of particle strengths in VGS tracking, a population sweep test was

. . . 100
conducted 3< N, <203 with a window size of LOO} , and the convergence results are presented

in Figure 6.64. From the shape of error plots we can conclude that the accuracy of the RSO-
VGS trackers is also less dependent on the population strengths. However the frame rate

peaked when 150-203 particles are deployed in this experiment.
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Figure 6.64: Effects of the particle sizes implying the VGS-RSO tracking in the drone Sequence.
The tracking results with variable window selections are drawn in Figure 6.62. The algorithm

dynamically changes complexity by evaluating the scene using the VGS. If the pattern
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matching fails in an image, the algorithm dynamically alters the windows size to incorporate
wider RSO searches. The drone was successfully tracked at an average rate of 35fps, and
some tracking frames are presented in Figure 6.65. On a particular occasion the drone got
occluded during several frames by a low cloud, and it recovered from this complete occlusion

in less than 2.44 seconds at a later stage by using the RSO.

mean 32fns
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Figure 6.65: Tracking of the drone sequence using auto-varying window sizes.
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6.13 Comparison with Mean Shift Tracking.

In this section the meanshift (MS) tracking was implemented to track a pedestrian as shown
in Figure 6.66. Due to the intensive nature of the meanshift searches (which usually takes
place in a fixed operational basin) it only managed a maximum tracking rate of only 21FPS

in pedestrian tracking sequence at a mean convergence error of 1.34 pixels.

Figure 6.66: Tracking in pedestrian sequence using uniform meanshift kernel.

The application of MS in the ant tracking sequence (Figure 6.67) managed a frame rate of
only 17FPS in Figure 6.66, and the convergence errors are averaged out and found to be in
the vicinity of 1.23 pixels (using the Euclidean distance norm). When both MS and motion
estimation were utilised, the convergence timing improved to a mean value of 23FPS (Figure
6.67) which is still way less than what we achieved using the RSO-VGS algorithm in earlier

analysis performed in Chapter 6.

Figure 6.67: Tracking ant using MS at a frame rate of 17 and RMSE of 1.2 pixels.
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6.14 Tracking Highway Sequence.

Several vehicles were also accurately tracked using the RSO-VGS methodology proposed in
Chapters 3-6. The results approved that our tracking methodology is suitable for a variety of
detection and tracking scenarios. In the top sequence various motor vehicles were correctly
identified and tracked, whereby a green van was tracked at a rate of 60FPS with a mean pixel
discrepancy of 2.13. The RSO tracking was also successfully applied to a synthetic motorway

sequence (Figure 6.68).

Figure 6.68: Real time tracking in Highway Sequences at frame rates of 57-70.
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6.15 Results of some further Experiments.

To establish further applicability of the VGS-RSO, several experiments were conducted in
order to track and detect a variety of objects. Detection test precisely located various balls in
the juggling sequence. Tracking algorithms were applied to a video game sequence (in Figure
6.69) achieving real time performances of 17-31fps. The detection experiments (50 runs)
were carried out to identify various regions in the cartoon images (Figure 6.70) achieving
detection times of between 0.013-0.023 seconds. Finally, the partial occlusion was
successfully resolved in the walking man video (Figure 6.71). Hence we conclude safely that

our novel tuning free particle method is widely applicable.

= W

-
= =]

& e - gy iz L

o i = = =
=

Figure 6.69: Multiple object tracking in synthetic sequences using bat and virtual particles.

.Figure 6.71: Detection of Walking Man after phases of occlusion was robust and accurate direction.
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Chapter 7

Conclusions

Automatic tracking is a fundamental branch of vision science and it deals with the
identification of a region of interest, and inferences are made to determine the concealed
knowledge (e.g., motion patterns) on the sequential arrivals of digital images. To meet the
challenges and demands of developing a real time tracking algorithm, author had to deal with
a number of misconceptions basically stemming from the technological limitations of the past
century. Many common linear estimation processes and relative stochastic controllers (an era
beginning from the renowned work of Rudolf Emil Kalman [28]) generally tend to ignore the
historical inferences (as integrated memory was reckoned to be a luxury during that time) in
order to gain an insight into the future behaviour of a dynamic system. Today, the human
generation is rocketing towards a new technological phase, and the role of self evolving
systems and collaborative intelligence (among entities) is becoming much more apparent,
therefore paving further a path to self correction and towards an embedded reconfiguration.

7.1 Research Background

Like many real world agents (birds, humans, wild animals and insects), a particle is a basic
computational agent that is deployed to solve computational problems arising when an exact
solution does not exist in reality (Sections 1.1-1.3). Scientists are intrigued to designate
versatile behaviours to the basic search element, and the particle roles are generally depicted
from the natural life observations. The literature survey conducted in this thesis spanned from
the correlative and mesmerising flypasts of the murmuring starlings to the bioluminescence

among mating fireflies. However, one key aspect that captivated our attention (we may call it
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a discrepancy), and comes after the realization that a lot of (so called) optimisation scenarios
are in fact just simulations of the natural agents, and exhibit their changing social behaviours
in a natural world in order to deal with the calamities. In view of this research, a futuristic
strategy and approach should rectify the core misconceptions in order to develop faster and
efficient optimisation routines. For a new generation of scientists and engineers, a clearer
insight into this problem is important, and there is an imperative need to differentiate among
the particle roles in both simulative and optimisation scenarios.

This thesis developed a practical approach to devise some novel optimisation strategies that
are tested in both evolutionary and imaging test cases. From a broad range of
experimentations conducted in this thesis, it has come to our attention that tracking
applications are extremely sensitive to the parametric selections in regards to the discovery of
solutions that satisfy both space and time constraints. Particularly, in the work of Kennedy
and Eberhart [146], the right parametric settings in Equation (3.5) are extremely difficult to
be handled in live real time video scenarios; this effect is studied in detail and demonstrated
