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Abstract 

The work described in this thesis is concerned with the development of hard-
ware efficient, image processing and machine vision algorithms for implementation, 
using recently developed low cost CMOS cameras. These allow the integration 
of processing on the same silicon substrate as the imaging sensor. The general 
approach differs from other image processing research in that algorithms are being 
developed for a target architecture, rather than hardware being developed for a 
particular image processing function. A particular application, namely intruder 
detection and tracking, has been chosen, to demonstrate this approach. 

The use of image processing in alarm systems has many advantages over active 
electronics: the main ones being installation costs and reliability. In particular, 
stereo vision has the potential of providing an invisible wall and estimates of in-
truder significance. However it is also desirable that alarm systems have wide angle 
lenses. Wide angle lenses create particular problems for stereo vision, in relation to 
pixel quantisation. Techniques to provide a low cost sub-pixel estimate of disparity 
are presented. Further, an original stereo matching algorithm is described which 
solves the stereo correspondence problem, in a computationally simple manner. 
Adaptations are also made to the low level segmentation stages which would allow 
an efficient implementation using CMOS sensors and processing. Other savings 
have been made by eliminating digital floating point calculations, multiplications 
and divisions at the lower levels of processing. Also, due to the reduced data rates 
required for global frame to frame computation, higher level, calculations can be 
performed on an associated microprocessor. Thus, a Kalman tracking filter has 
been applied to integrate the three possible disparities from three cameras, with 
experimentally calculated error covariance matrices. A results chapter describes 
the extraction of these matrices, together with simulations of the algorithms ap-
plied to twelve different sequences. These show that the system could be effective 
as an alarm system. Also described, at various stages in the thesis, are possible 
hardware implementations of the algorithms and partitions between analogue and 
digital circuitry. The thesis finishes with some general conclusions. 
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1.1 Aims and Objectives 

The purpose of the research reported in this thesis is to demonstrate methods 

and techniques suitable for the design of commercial stereo vision systems. An 

original algorithm will be presented which would allow a low cost implementation 

of a stereo vision application using CMOS sensors. The algorithm takes advan-

tage of the fact that a known application is being considered; an intruder alarm. 

Thus, it is not an aim to imitate the human vision system and an "engineering 

approach" has been taken. In this respect, a theme of the algorithms described, 

will be reductions in the required processing power for a final implementation. 

Thus, implementation using CMOS sensors, with on-board processing, would be 

a feasible option. Another feature is the adaptation of existing image processing 

techniques to this application. In many research projects, the different machine 

vision functions are implemented as "black boxes". However, in this system the 

segmentation stages, of the algorithm, have been developed to produce only those 

edges which matching requires. In effect, the correspondence problem' has been 

treated as one of segmentation. As a result, computational improvements have 

ensued in both segmentation and stereo matching. 

1.2 Background 

The computer vision and image processing areas of research have developed, over 

the years, from projects directed at both specific problems and general machine 

understanding. There has been considerable interplay between the two subject ar-

eas. As a rough rule, image processing is normally thought of as the study of lower 

level operations including compression, edge detection and thresholding, whereas 

vision research, emanating from the artificial intelligence community, has tended 

'This is described later in this chapter. 
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to concentrate on the general problems of making machines see. This usually 

involves consideration of higher level data structures compared to those normally 

associated with image processing. Such higher level processes are currently less 

well understood and on a poorer theoretical basis than the initial stages of vision. 

The different subject areas of the entire vision problem tend to obscure the 

fact that the divisions are very rarely clear cut. For example, movement can be 

useful in an object's recognition, as well as the more obvious parameters such as 

shape and colour. The interdependence of different research areas is particularly 

true in the case of 3D depth perception. The major problem in stereo vision 

is correspondence; finding features in one view of a scene and matching them to 

those of another view of the same scene. Clearly, the matching procedure will be 

dependent, to some extent, on how the initial features are extracted. In terms of 

recognition using 3D information, errors are likely to be dependent to some extent 

on the input information from the matching algorithm. In these terms, stereo 

vision could be classified as an intermediate process between edge detection and 

object modelling. It is neither at the bottom v.oat the top of any hierarchy. 

1.2.1 The Imaging Hierarchy and Correspondence 

General machine vision can be viewed as the pyramid shown in Figure 1-1. As one 

proceeds upwards, towards the pinnacle, each layer employs larger data objects 

and more heuristic algorithms will be applied. Several vision architectures and 

data structures, based on this principle, have been proposed. For example, Marr 

[51], citing biological evidence, suggests segmentation algorithms using multiple 

spatial channels of different bandwidth. Processing starts with information from 

the smoother, low frequency, channels, which is then used to constrain the results 

from the higher frequency channels. A different approach is suggested by Burt 

[13] where the lower levels of the pyramid are used to survey the complete scene 

for regions of interest. Higher processes in the algorithm can then "home in" 

on the appropriate areas. Pyramidal organisation can also be found in hardware 

architectures for image processing. Often processing elements are arranged in a 

master-slave arrangement with the master distributing tasks and processing the 
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results on a global level. Tregidgo et. al. [82] and Howlett [38] provide examples 

of this type of architecture. 

It is not the purpose of this thesis to describe generalised processing algorithms 

and architectures as the ones just suggested. However, hierarchy can usually be 

applied to a specific vision application, where data is transformed from low level 

pixel primitives to higher level object features. Application specific decisions can 

then be made on these objects at a global level. The above discussion would sug-

gest that such hierarchical structures would result in a reduction in computational 

requirements, at higher levels in the pyramid. This is not always the case. In-

deed if one is trying to construct groups of features based on the strength of their 

connections, then solutions often become impossible within the resources avail-

able. An example would be recognition based on. a search for maximal cliques in 

a general graph [4]. Graph matching, in this manner, is an NP-complete problem 

[25] and such a search is likely to lead to a combinatorial explosion. Recognition 

algorithms usually have to restrict the possible search space by employing addi-

tional constraints. Similar space constraints exist when calculating generalised 

Hough transforms for non-standard shapes. Often the Hough solution will use an 

infeasible number of variables, and therefore dimensions, to parameterise a shape. 

Problems arise, with the above and other techniques, when the object under 

study is not rigid. Its shape will vary between frames and a stationary matching 

model cannot be used. Hogg [33] describes techniques for modelling non-rigid 

objects, such as humans, using ellipses and posture as matching parameters. This 

has had some success but has not been extensively tested in a wide range of 

situations. In view of the computation involved it is unlikely that such a system 

would be efficient in a current sensor implementation. Further, for the applications 

being considered in this thesis, ie. intruder detection and tracking, it seems that 

height and size would be more useful parameters. Thus, for this application, there 

is no requirement for a complete body model. Such non-rigid model matching is 

a current area of research and may be feasible in the future, given improved 

commercial processing abilities. 

ft 
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Figure 1-1: The Imaging Pyramid 

In this work, computation is reduced by the development of algorithms which 

suit a particular application. We chose intruder detection and tracking as an area 

where.image processing techniques could improve on existing systems. Depth and 

disparity information would be extremely useful in detecting genuine intruders 

and reducing the number of false alarms. We thus need to study techniques which 

can extract depth information from a scene. 

Vision algorithms, which attempt to extract 3D information, can be divided 

into two groups; active and passive. In the first category, light of known source 

is projected into the scene and the resultant images recorded and analysed using 

triangulation. Different combinations of camera can be deployed. For example, it 

is possible to extract light using a single camera with two incoherent light sources 

switching on and off alternatively. As an alternative, a single camera with some 

form of patterned light source can also be used to project structure onto the 

scene. Jarvis [41] provides a survey of techniques which have been suggested in 

the research literature. Such range finding techniques are generally considered 

more reliable and accurate than passive stereo but suffer from several problems 

in the type of application considered here. Firstly, normal background light may 
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interfere with the projected light causing distortions and mismatches. It is desired 

that the system function in normal daylight as well as artificial light. Thus in 

active vision systems, the projection of patterned beams of light over large scenes 

during daylight may be difficult due to light dispersion. The second problem, for 

large scenes, is the difficulty in projecting beams of light onto surfaces of unknown 

reflectivity. For example, a white shirt may reflect a beam which a black jacket 

would absorb. The final reason for rejecting active vision systems is that the 

correspondence problem remains. Features from one image, no matter how it 

is lit, will have to be matched with those from another image. Thus the basic 

principles for stereo matching remain for both active and passive systems. The 

passive stereo algorithms described in this thesis could be extended to use active 

light. 

Stereo matching and disparity estimation is the main area where computa-

tion has been reduced. The stereo correspondence problem is one of a number of 

similar problems in general machine vision. It is closely allied to time matching, 

where attempts are made to track features and objects through scenes. The prob-

lem to be solved, in both tasks, is that of finding the same features in a number 

of different images. Before the correspondence problem is solved, a decision must 

be made as to what type of feature to match. The most obvious technique is that 

of correlation between areas of the two images. However, correlation has serious 

problems when used in this manner. When there is little luminosity gradient it 

becomes increasingly difficult to differentiate between adjacent patches. Areas of 

constant texture also cause problems together with the obvious fact that different 

views of the same scene will be different. These constraints together with the 

probable expense in correlation computation have resulted in stereo matching al-

gorithms based on features, for example edges. These do not occur in isolation 

and are usually part of a larger object which can be utilised to provide further 

constraints on matching. For this and the reasons described above, an edge based 

stereo algorithm has been developed in this thesis. Further, this part of the corre-

spondence problem has been transferred to the segmentation stages of processing, 

simplifying matching. Chapters Four and Five describe an approach based on 
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extracting and grouping edges into larger objects before matching. Also discussed 

are the problems found when calibrating two or more cameras. However, for the 

present, a description of the basic types of data representation will be given. 

1.2.2 Image Representation and Hardware Restrictions 

Images are normally represented as a matrix of grey levels extracted from some 

kind of sensor. The sensor can either be a vacuum tube or an array of CCD's or.  

CMOS diodes. All current sensors produce analogue signals and the images are 

normally digitised before processing. This has the obvious disadvantage of noise 

but also the many processing advantages of the digital domain. The majority of 

research in image processing is described in terms of digital raster arrays of pixels. 

An issue which arises in nearly all vision systems is that of error and noise 

control. This is of particular importance in stereo vision systems where direct 

measurements are being extracted. Hardware restrictions will normally impose 

a minimum pixel size which together with poor calibration and lens distortion 

may cause false disparity estimates. These errors are determined by the quality 

of hardware employed in the equipment and are unavoidable. It is important that 

such errors are recognised when attempting to assess the possible uses and failings 

of a system. The work described in this thesis uses a technique based on disparity 

histograms to estimate the magnitude of errors empirically and also to reduce 

the actual effects of quantisation noise. These issues will discussed in Chapters 

Three, Five - and Six. In considering, algorithm design, it is also important to 

understand the limitations of currently available VLSI and sensor hardware. This 

must be done in the light of a practical final implementation. 

Research conducted at Edinburgh [17] [72] in recent years has been directed 

at cost-effective implementations of VLSI vision technology. A camera sensor, 

an example of which is shown in Figure 1-2, has been developed. The design 

can be manufactured using a standard CMOS process. CMOS fabrication allows 

processing to be conducted on the same silicon substrate as the sensor array. This 

has been demonstrated by Anderson [1] in a single chip fingerprint recognition 
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Figure 1 -2: The .\SI 1011 Smgle ('hip Video Sensor 

-vstem. It is the intention of this work to design algorithms suitable for this type 
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ilied in an implemented algorithm. For reasons of cost, floating point calcu-

lations have to be restricted to those which can be performed in real time on 

llssociated microprocessors. Constraints must also he placed on general multipli-

Lations and divisions which would also have to be placed off-chip. At this stage 

tlioices have to be made between performing calculations in the digital or analogue 

domain. Here there is little choice as the stereo algorithm needs digital informa-

tion to work. The analogue to digital conversion must be performed before stereo 

iiatching2 . In contrast, edge detection can be performed using analogue circuits, 

which is particularly easy when performing lateral differentiation. 

1.2.3 Applications 

[he main thrust of the thesis is the development of vision systems and algorithms 

which could he implemented as commercial products. Although parallel algo- 

2 This is true for the algorithm in this thesis. Analogue stereo algorithms do exist 

one of which is considered in Chapter Two. 
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rithms and architectures have solved many image processing speed problems it is 

highly unlikely, at current prices, that large parallel machines will be employed to 

perform processing in any volume product. Basic image processing modules must 

therefore be tailored to specific applications. 

Stereo vision has many possible applications when combined with other vision 

modules such as tracking. Here we consider human body detection for alarm 

systems and door opening devices. A machine which can passively determine 

the presence and distance that a moving object has in relation to the camera 

would have many advantages over the active electronics currently used. From the 

depth information the size of the object could be estimated and used to test its 

significance. Tracking would allow the use of "invisible walls". Thus, if a disparity 

threshold is crossed for a number of frames then the alarm can be sounded. Similar 

principles apply to door opening systems. 

1.3 Thesis Plan and Objectives 

The overall theme of the thesis is the design of vision algorithms aimed at creat-

ing a stereo vision system which could be employed in alarm systems and other 

range and detection applications. This thesis will explain the techniques and fi-

nally present some results, discussion and conclusions. The last chapter will also 

include some ideas for future research. In order to set the scene, and gain a 

better understanding of the problems encountered in developing machine vision 

applications a literature review was conducted. This has been divided into two 

chapters. Chapter Two will provide a review of current theory and practice in 

image processing with a discussion of the trade-offs involved in edge detection, 

segmentation and thresholding. Also, there will be a brief presentation of com-

mon recognition techniques. The last part of Chapter Two will review current 

hardware techniques and vision applications. This is of particular importance in 

understanding the restrictions that would be imposed by a final implementation. 

Algorithms can be then tailored accordingly. The third chapter will consider some 

possible stereo vision algorithms in detail. Calibration and accuracy are examined 
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in light of their relevance to this application. Chapter Four will describe the lower 

level image processing applied in the system, while Chapter Five will deal with 

the stereo matching algorithm and higher level analysis. For convenience, the 

system described will be referred to as DETECT, throughout the thesis. Experi-

mental results, from the system, will be presented in Chapter Six together with a 

description of the equipment employed. The final chapter will draw some general 

conclusions and describe future lines of research. 



Chapter 2 

The Image Processing and Hardware 

Background 

11 
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2.1 Introduction 

It has been instructive for the purposes of this work to survey some of the standard 

techniques proposed in other research. This section will describe - the general 

algorithms such as edge detection, thresbolding and segmentation. These are 

to be found in most machine vision applications. In addition to this survey, a 

section on current implementation techniques is also included. As described in 

the introduction, an aim of this work is the development of algorithms for an 

efficient hardware machine vision implementation. An understanding of current 

image processing hardware was therefore important. The hardware survey will 

start with some of the more general architectures, such as parallel machines and 

arrays, and then progress to a survey of VLSI architectures. Finally some specific 

applications will be briefly described, including a finger print recognition system 

developed at Edinburgh University, a circuit to calculate the centre of mass and 

an analogue implementation of a stereo algorithm. 

Stereo vision algorithms are discussed in the next chapter. This division be-

tween segmentation and stereo is purely organisational and is not intended to 

imply that they should be separate in practice. It is the author's view that vision 

modules usually have considerable interdependencies. Errors and strengths in one 

module can have effects on the efficiency of another. This is particularly true in 

the relationship between stereo and edge detection, where matching problems can 

be reduced by extracting relevant edges. Edge detection can be adapted, possibly 

reducing the computation, to suit the stereo algorithm. 

The review begins with a detailed discussion of edge detection. Edges are 

of prime importance in the current theories of human vision and are normally 

assumed to represent object boundaries. 
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2.2 Edge Detection 

It is known that the mammalian eye performs a form of edge detection and that 

this constitutes an integral part of human vision [51]. In fact, it is thought that 

the human recognition system attaches far more importance to luminosity changes 

than to colour boundaries. 

Based on the human model, the problem of edge detection can be stated as 

the extraction of luminosity gradients and the construction of higher elements to 

represent changes in intensity across a two dimensional image. Using these data 

structures, higher level algorithms such as model and stereo matching can be 

applied, while at the same time reducing the required processing. Thus, in view 

of the wide spread use of edge detection in applications and biological systems, 

an understanding of the trade-offs involved is required. 

There are two classes of edge detection algorithm. Zero crossing detectors at 

tempt to find the spatial second derivative of the image, while maximum gradient 

operators attempt to find the steepest part of the luminosity variation. Marr and 

Hildreth [52] suggest zero crossings based on evidence that humans apply this 

technique. In contrast, the Canny Operator [16] employs a maximum gradien-

t technique which is optimal with respect to the criteria about to be discussed. 

Many other operators have been described in the literature [7] [24] [34]. Thus apart 

from Canny's methodology, two zero crossing techniques are also briefly describede 

Marr and Flildreth[52], and Vliet and Young[49]. 

2.2.1 Assessment Criteria 

We require to be able to compare edge operators. Canny [16] has defined three 

criteria for comparison. These are: 

1. Good detection: There should be a clear difference between true and 

false edges. In signal processing terms this can be simply expressed as 

maximising the signal to noise ratio. 
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Good localisation: Points marked should be close to the true centre 

of the edge. 

Limited number of maxima: The number of marked responses to 

a particular edge should be restricted to one, (noise can cause several). 

For these desirable qualities, measures were derived, for the one dimensional sit-

uation. These are shown in Equations 2.1, 2.2 and 2.3. 

t+w 

I] G( — x)f(x)dxl 

	

SNR= —w 	 (2.1)

n,rj+  — 
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J 
C'(—x)f'(x)dx 
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Th /ffl2( x )dx  
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I / 	
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Equation 2.1 can be used to calculate the signal to noise ratio (SNR) for a spatial 

filter, f(x), applied to a luminosity function G(x). The filter has an impulse 

response limited by (—w, w) where n0  is the RMS grey level noise per pixel. 

For localisation, Equation 2.2 increases with the expected distance between a 

marked and true edge'. This parameter is inversely proportional to the degree of 

smoothing in the applied filter. The final constraint, Equation 2.3, is a limitation 

on the number of false peaks within a specified width, w. Xsep is the mean distance, 

between the first derivative peaks, in the response of of f(x). The distance between 

maxima will be 2x 3  and we can expect_L - noise peaks in the filter response. 
1.5€,,. 

'Here we are working in the continuous domain. It is assumed, that for the spatial 

frequencies found in a real image, the pixel size will be sufficiently small to prevent 

aliasing errors. Pixel size is therefore ignored in these calculations. 
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2.2.2 The Canny Operator 

The above allows us to measure the quality of a filter and define an optimal 

operator, for the above criteria, for a particular type of edge. Canny employed 

numerical techniques to maximise the product of Equations 2.1 and 2.2. The third 

constraint, Equation 2.3, was implemented as a penalty function. Thus when the 

desired distance, between first derivative peaks, was violated the penalty had a 

non-zero value. 

The numerical optimisation procedure was employed to estimate a filter for 

unit step edges. The ideal was found to be close to the first derivative of the 

Gaussian curve', as shown in Figure 2-1. A selection of operators, suitable for 

the different types and directions of edge can then be calculated for the particular 

types of edge found in an application. Further extensions include the use of 

noise estimates over a sequence of images. The filter masks can then be adjusted 

accordingly. 

Calculations such as the ones just described above would normally be con-

sidered impractical for every image in a particular application. A sub-optimal 

adaptation is now described as a compromise between performance and compu-

tation. 

A Realistic Implementation of the Canny Operator 

Figure 2-1 shows the first derivative of a one dimensional Gaussian curve, sug-

gested as a filter in the last section. A 2D approximation can be derived from 

the application of two ID curves in the x and y directions. Simpler processing 

is the result. Thus a practical near optimal step edge operator can he imple-

mented as two one dimensional Gaussian smoothing curves followed by adjacent 

pixel differencing in both the X and Y directions. The vertical and Horizontal 

2 1f we reduce 	 % witif respect to one criteria improvements can be made 

in another. This will change the optimal shape. It is unlikely to be Gaussian. 
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Figure 2-1: The First Derivative of a Gaussian Curve 

components can then be combined to provide a direction and strength normal to 

the edge. This allows an estimate of the likelihood of a particular pixel being a 

true peak. Once the above calculations have been performed, a 1D representation 

of the edge can be obtained by tracking peaks. One problem that occurs when 

tracking is "streaking": an edge will fall below some predefined noise threshold. 

Hysteresis thresholding based on noise estimates from the edged image can re-

duce this problem. Canny calculates a noise estimate from the edged image using 

the second derivative of an impulse function. The two thresholds can then be 

extracted as some percentile of the noise histogram. 

Problems still arise as to when, and where, edges begin and end. Edges can be 

broken at points of maximum or minimum curvature and also when the overall 

strength, over a number of pixels, fall below minimum thresholds. Length can 

also be used. The above approximation to the Canny operator was implemented 

in software. A typical result image is shown in Figure 2-2 

'These are more stable when an object moves[39]. 
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Figure 2-2: A Canny Edge Detected Scene 

2.2.3 Other Edge Detectors 

The Marr-Hildreth Operator 

Marr and Hildreth [52] suggest edge detection using several filter channels of 

differing spatial frequency. The operators are based on the Laplacian of a Gaussian 

(V 2 G), as shown in Figure 3-2. Zero crossings are tracked, instead of the gradient 

maxima, as in the Canny technique. The usual problems of tracking apply here, as 

in other operators, with one important difference. Zero crossings are not tracked 

on the basis of their strength. Thus edges will always connect to themselves, the 

edge of the image or to another object. However, multi-resolution spatial filters 

can be used to constrain the overall extraction of segmented information in a 

coarse-to-fine strategy. As will be discussed in the next chapter the coarse to fine 

approach corresponds with ideas of the human visual system and with some stereo 

matching algorithms. 

The Non-Linear Laplace Operator 

Vliet and Young [49] describe another zero-crossing operator which adapts to the 

spatial gradient within a pixel neighbourhood. Each neighbourhood is searched 



Chapter 2. The Image Processing and Hardware Background 	 18 

for the largest and also the smallest grey scale value. Then, two functions, called 

gradrnax and gradmin, are calculated. Gradinax is the difference between the 

largest, grey level, value and the central value and grad rain is the difference be-

tween the smallest grey level, and the central pixel. The output value, called 

NNLAP(X,Y), is then calculated from the sum of the two functions gradmax and 

gradmin. 

The result, of the above processing, is an image composed of positive, negative 

and zero regions. Zero crossings are extracted from the joins between the two 

types of region. A problem arises when there are areas of zeros. Where is the 

true positive to negative transition? Before crossings can be found these zero 

regions must be assigned to their nearest positive or negative area. A distance 

transform can be used to calculate the nearest region to a zero pixel. Vliet and 

Young suggest the Borgefors [9] method. This computes, in two passes, paths to 

the nearest region. Tracking techniques can then be applied to the zero crossings, 

as in the Marr-Hildreth operator. 

2.2.4 Discussion of Edge Detection 

Although edge detection is simple in concept, it is rarely so in practice; many 

problems can arise due to noise, closely spaced edges and poor thresholding. It 

has been suggested by Torre and Poggio [81] that edge detection is "ill posed". In 

essence, all edge detectors perform some form of differentiation, thus amplifying 

noise. It is for this reason that detection normally begins with smoothing. Canny 

showed that the optimum low pass filter for step edges is close to the Gaussian 

curve. However, in practice sampling will ensure only an approximation to this 

ideal. Further, as noted by Horn [35] other types of formalism can provide similar 

valued weights. Apart from sampling, decisions must be made about the size of 

an operator. Both accuracy and computational complexity must be considered; 

computational complexity, because the number of pixel multiplications increases 

as the square of the mask width, and accuracy, because if an operator is truncated 

too much its performance will fall. A slightly less obvious tradeoff is that between 

localisation and detection as defined in Equations 2.1 and 2.2. An operator which 
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provides a high signal to noise ratio will act as low pass filter, smooth the image, 

and reduce positional accuracy. The opposite applies if a filter provides accurate 

location. 

Overall "Canny edge detection" has become widely used in the image process-

ing and machine vision community. However, for efficiency reasons, such a stand 

alone module has not been utilised in the work, described in later chapters, where 

only parts of the above edge detection theory are applied. For example, if only 

vertically orientated edges are required, tracking can be reduced to downwards 

searches. Also, differentiation can be restricted to the horizontal direction. Alter-

ations such as these can reduce the required computation without a reduction in 

performance and show that individual machine vision modules should not be con-

sidered in isolation. Thus in an overall system, functions such as stereo matching, 

edge detection and thresholding will be interdependent. Thresholding is described 

in the next section. 

2.3 Thresholding 

Thresholding is one of the more common techniques used in image segmentation 

and is often termed a pixel classification problem. Sahoo, Soltani and Wong 

[771 group thresholding algorithms into three classes: point dependent, region 

dependent and local. A point dependent algorithm classifies pixels solely from it's 

individual grey value. In contrast, region dependent algorithms take account of 

the neighbourhood of a particular pixel. Local thresholding is the application of 

global techniques to smaller sub-images. Here, smoothing is often used to limit 

discrepancies, caused by threshold variation between areas. 

2.3.1 Point Dependent Methods 

Sahoo, Soltani and Wong [77] list seven different point dependent methods which 

will be summarised here: 
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The Ptile Method 

This simple method assumes that the percentage area of the object is known. A 

threshold is chosen to provide that percentage of object pixels. It must also be 

known, a priori, whether the object is darker or lighter than the background. 

The Mode Method 

The histogram of the difference image is extracted and assumed to consist of 

background and foreground peaks. The threshold can be based on the valley 

between the peaks. Problems occur when valleys are flat, when peaks are unequal 

and when the difference between the peaks is small. 

Ostu's Method 

Ostu [63] describes a method based on minimising the ratio, q, from Equation 2.4, 

1 =(2.4) 
CT 

where 4 is the variance of all grey levels in the entire image and a, ' , a joint 

variance, calculated from, 

4 = wow1 (t i2 ) 2 , w0 
=m 

 and w1  = 1 - wo , 	(2.5) 

,ti and p. are means of the grey levels above and below a particular threshold. 

pi is the probability of a particular grey level, i. From the above, the parameters 

4 and  4 can be calculated from the difference histogram and used to evaluate 

?7 for each possible threshold. The lowest q indicates the optimal threshold. 

Histogram Concavity Analysis 

It is often the case that there is no clear valley in the histogram and the ideal 

threshold is on the shoulder of a histogram. After calculating the smallest convex 

polygon which covers the histogram, possible thresholds can be selected at max-

ima of the difference between the true histogram and the convex curve. This is 

illustrated in Figure 2-3. 



Chapter 2. The Image Processing and Hardware Background 	 21 

Frequency 

/ Largest gap between 

/ histogram and mimimum 

convex curve. 

Grey Level Intensity 	 - 

Figure 2-3: Histogram Concavity Analysis 

Entropic Methods 

Entropic methods utilise information theory to make a threshold decision. Several 

methods have been proposed [69] [40] [45] which attempt to maximise an equation 

similar to 2.6. 

(2.6) 

H,: and H, are normally calculated directly from the histogram using some form 

of Equations 2.7 and 2.8. 

H,:  = —pin(p) 	 (2.7) 

1-1 

H. = - 	plr1p)J 	 (2.8) 
i-t+1 	) 

where the threshold, t, is chosen from 1, possible, grey levels. 

2.3.2 Region Dependent Methods 

With the techniques described above, thresholds are dependent, solely, on global 

image statistics. No allowances are made for regional information. Apart from 

adaptively thresholding sub-images, local information can be used to improve the 
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characteristics of the histogram and make the point dependent techniques more 

accurate. 

Histogram Improvement 

Theoretically, edges are likely to be at the boundary between the background and 

foreground of a difference image. Using this assumption, edge information can be 

used to calculate weights for histogram values. After applying an edge operator, 

pixels which have high values can be weighted least in the calculation of the new 

histogram from the original image. The threshold can then be chosen using one of 

the techniques described above. As a variation, Weska and Rosenfeld [88]  suggest 

that actual thresholds be chosen from peaks in the histogram of pixels which have 

been extracted as edges. 

One other method, of region based histogram improvement, uses quadtrees[9O]. 

A particular difference image, or sub-image, can be recursively divided into blocks, 

according to whether the standard deviation, of all the pixels within that block, 

exceed a predefined limit. The limiting standard deviation can be altered as the 

hierarchy is descended'. Thus, by the end of the division a particular block should 

represent a roughly homogeneous region. The pixels, within that block, are then 

replaced by its mean. 

The division is illustrated in Figure 2-4. Due to the homogeneity of each 

block the overall histogram will have deeper valleys and sharper peaks which, 

in some cases, might allow better thresholding. Code was written to implement 

the quadtree operation and example difference images are shown in Figure 2-

5. Histograms are also shown. Clearly, the histogram of the quadtree image has 

sharper peaks and deeper valleys than that of the original difference image, making 

the choice of a threshold, based on the histogram, simpler. Another advantage 

4 ff the standard deviation is increased blocks are less likely to overlap an image 

feature as the hierarchy is descended. 
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Cnninlete Tmn grp 

Figure 2-4: The Quadtree Method of Segmentation: Each node represents a 

quadrant of the picture. TL = top left, TR = top Tight, BR = bottom right and 

BL = bottom left. Quadrants represent an area of the image with grey level values 

within a defined standard deviation. 

of quadtrees is that they provide a conveniently segmented and easily accessible 

data structure for further processing. 

Relaxation Techniques 

Relaxation methods are only briefly mentioned here, as they often require consid-

erable computation and are unpredictable in the time taken to converge. Pixels 

are initially classified according to a very rough threshold. Pixels are then altered 

according to the surrounding neighbourhood. A black pixel in white neighbour-

hood will likely be classified as black and vice versa. The process is repeated until 

convergence. 

2.3.3 Discussion of Thresholding Techniques 

In this short review, only the most general ideas in binarisation have been covered. 

Many, more speèialised, algorithms have been developed for particular application- 

s. For example, several thresholding algorithms have been developed specifically 

for character recognition [89]. None of the above will work in all situations and 
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Figure 2-5: Original (left) and quadtree (right) images and respective 

histograms. 
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techniques can be combined to satisfy a wider range of situations. As described in 

Section 2.3.2, thresholding can be related, closely, with edge detection. However, 

there are also close relationships with other problems such as model matching, 

finding regions of interest and background estimation. The next sections will con-

sider some techniques related to building larger features from the basic ones just 

described. 

2.4 Segmentation 

The problem of separating objects, from each other and from backgrounds, is 

known as segmentation. An exact definition of how this broad aim should be 

achieved is hard to come by and may or may not include thresholding and edge 

detection, as described above. A general segmentation algorithm, such as that 

present in the human vision system, will require the integration of many different 

sources of information. For example human beings are capable of recognising and 

extracting most unknown objects from a mixed bin of parts. Here, it seems logical 

that humans use knowledge of the physical world to extrapolate the few visible 

edges and determine the location of the object in the bin. In this case, physical 

knowledge of how solid objects react in the world will be integrated with visual 

knowledge. Although, the development of such a system is beyond the scope of 

this thesis, it should be noted that attempts have been made to solve the "bin 

picking" problem. For example, work at Sheffield University has been directed at 

building robots which perform this task[67]. 

In practical terms, segmentation means the construction of larger primitives 

from lower features; edges can be built into outlines and clusters into surfaces. 

This section will deal with some common techniques used to find connections 

between objects, including the Rough transform and graph matching. 
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2.4.1 Hough Transforms 

As Figure 2-2 shows, edge detectors do not provide perfect outlines or bound-

aries. There will always be breaks where the luminosity gradient falls below the 

set threshold. A technique often employed to extract edges from unreliable and 

discontinuous data is the Hough transform [37]. It's basic form attempts to find 

straight line edges in terms of gradient and offset. Each pixel in the edged image 

can then be assigned a particular gradient and distance which are used as coordi-

nates in the Hough space. Thus the Hough space is divided in terms of gradient 

and offset coordinates, with peaks corresponding to lines in the original image. 

The problem with this formulation is that it is only sensitive to straight lines. 

A generalised Hough transform was developed by Ballard [5] and is capable of 

detecting arbitrary shapes. Here votes for each accumulator 5  are cast according 

to a predicted centre which is calculated on the basis of a pixel s spatial gradient. 

Figure 2-6 shows an irregular shape with an arbitrary reference point chosen in 

the centre of the object. Before the transform is applied a model of the shape, 

under study, is used to calculate values of the R-table. This table records all the 

possible radii for each spatial gradient. Thus the R-table is constructed from the 

orientation, 0, at each boundary point and the radius, r, from that point to the 

central reference. When a new image is processed the spatial gradient for each 

boundary pixel allows access to all the radii for that orientation. Thus all possible 

centres can be accumulated by drawing a circle of votes in Hough space. I 

The generalised Hough transform has all the advantages of the basic version, 

in that it is very robust with incomplete and noisy data. However, problems occur 

when the orientation of the object in the scene is unknown. Unfortunately this is, 

probably, the majority of situations. Object orientation has to be introduced as 

an extra dimension resulting in an increase in required computation. Computa-

tional complexity is a problem often found when implementing Hough transform 

5 The Hough space is usually divided into an array of cells. Each edge pixel will cause 

a particular accumulator to increment. 
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Figure 2-6: The Generalised Hough Transform 
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Table 2-1: The Hough Transform R-Table 
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Figure 2-7: Graph Matching 

algorithms. Every extra parameter requires a new dimension in the search space. 

Although maximum and minimum bounds can be applied to a models search 

space, the Hough transform is likely to be too complex for the work considered 

later in this thesis. Problems also arise if a particular object rotates in the scene. 

In this situation, multiple Hough models must be extracted and then matched. 

Again computation is likely to be unreasonable. One technique which, sometimes, 

is resilient to rotation, is graph matching. However computational problems still 

arise in a different form. 

2.4.2 Graph Matching 

In many applications there is a known relationship between different features. 

A common approach to segmentation, or grouping, is to take a set of extracted 

features and calculate interconnection parameters. For example, the distance 

between the centroid of two edges can be one connection, as can the relative 

feature directions. These parameters, and many more, can be represented using 

a graph where nodes represent features and arcs represent connection strengths. 

A diagrammatic example is shown in Figure 2-7. 
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For each incoming image a set of incomplete features and their relationships 

- is extracted and compared to the stored graph. This procedure requires the 

discovery of maximal cliques. If one matched clique is discovered within another it 

is likely that the smaller clique is an incomplete representation of the larger. Thus, 

as with the Hough transform, this method allows for incomplete data. However, 

unless the search is pruned, computational problems will also arise with graph 

matching. General graph matching of this sort is known to be NP-complete [87]. 

Apart from matching models, graph matching data structures can be used 

to combine fragmented edges. A seed edge can be defined as a node and other 

edges, in the same neighbourhood with similar orientation, can be connected with 

varying degrees of confidence. The problem can be reduced to the pixel level and 

edges extracted by choosing a path through the graph. Heuristic cost functions 

can be defined to evaluate each potential edge segment or pixel. Examples of 

heuristic parameters include edge strength, curvature and distance. 

Graph matching has also been used to find, corresponding features' between 

stereo images[61]. However, as with model matching, stereo graphs are likely to 

be too computationally complex for the low cost alarm applications considered 

here. 

2.4.3 Discussion of Segmentation 

Both the above techniques have a wide range of possible applications which are 

not restricted just to image processing and machine vision. The Hough transform 

is useful in that it can detect specific types of feature, such as circles and ellipses, 

whereas the graph matching can be used to establish relationships between dif-

ferent features. Unless the search space is restricted, both suffer from complexity 

problems. 

Segmentation should also be considered in the light of this application. For 

example, the problem of estimating the background and foreground parts of an 

'The stereo correspondence problem is considered in the next chapter. 
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image is interlinked with that of thresholding and segmentation. In effect it is a 

classification problem. As such, it is unlikely to be perfect for every pixel. Also 

of importance is the way that background extraction, thresholding and feature 

grouping are related. 

In the imaging hierarchy, described in Chapter One, the stages above edge 

detection are often referred to as clustering or grouping. It is at this level that 

typical heuristic decisions are often made. However the decisions are based on 

information from the lower processes such as thresholding and edge detection. Also 

lower level processing can be improved, in a feedback loop, by information from 

higher levels. Features are often proposed by low level processing and "filtered" by 

higher level grouping and object construction . Such integrated vision algorithms 

are usually more application specific and less well understood. 

The next section is included as a review of current machine vision architectures 

and, in particular, specialised VLSI systems. As has been suggested above the 

practicalities of an implementation have considerable bearing on the overall design. 

2.5 Hardware Review 

Researchers have designed many systems for image processing, although, for obvi-

ous reasons of cost and time, there have been far fewer hardware implementations. 

It is the author's view that the limitations of hardware have considerably reduced 

the effectiveness of practical research from the acquisition stage through to the 

image analysis stage. Figure 2-8 shows the typical information flow for an image 

processing system. Most of the existing specialised hardware is directed at lower 

level processing. This is where the current bottleneck is and inherent parallelism 

at its most obvious. Images stored as arrays of pixels can easily be mapped onto 

parallel processors. An assumption often made is that higher level operations are 

inherently less parallel. Weein's 473] has countered this view saying that it is 

wrong to assume that the computational bottleneck always lies with pixel based 

operations. He cites graph matching as an example where there is significant com- 
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Figure 2-8: Information Flow in a Typical Imaging System 

potation at higher levels. In a hardware implementation of such algorithms the 

main problems tend to be centred on efficient communication and the mapping 

of processes to processing elements. In this respect, it is likely that the real rea-

son most specialised hardware is orientated at early processing, is that low level 

functions are the best understood and have the most obvious parallelism. 

This section will present an overview of a few of the more important archi-

tectures proposed in recent years. Such a study is highly relevant in this work 

where we are attempting to build cost effective and practical systems. In this 

context it is necessary to understand what architectures would be practical and 

useful for this type of application. Thus the section will begin with some general 

architectures, designed to satisfy a number of processing functions, and progress 

towards more application specific hardware. The first architectures considered are 

array processors. 
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2.5.1 General Parallel Processing 

Early image processing is ideally suited to implementation on parallel networks 

of processing elements. Sub-images can usually be mapped directly onto the 

processing array with small boundary overlaps and the problems of communication 

kept to a minimum. As a result many research projects have been conducted on 

arrays of Transputers or machines such as the ICL DAP where advantages of 

speed can be gained using general purpose machines. Apart from general parallel 

hardware, specific image processing languages have been developed [29] which 

allow machine vision problems to be expressed in a higher level form. 

Array Architectures 

The two dimensional nature of basic image processing has led many researchers to 

propose processing arrays. The most common, in the British research community, 

is the Transputer [21][74][92]. The Transputer was introduced in 1985 and has 

been used to build many multiprocessors of the SIMD and MIMD types. It is 

programmed in OCCAM which directly reflects the parallelism inherent in the 

architecture. The current versions of the Transputer have on-chip memory and 

are capable of connection through parallel I/O ports to other Transputers. Usually 

Transputer arrays are arranged with a master processr distributing tasks to ifs 

multiple slaves. The array will be serviced by a host such as a Pc or workstation. 

Morrow and Perrott [59] describe several low level algorithms implemented us-

ing Transputers. An entropy based edge operator was built using three processors 

connected in the pipeline shown in Figure 2-9. The first processor takes in the 

nine values of the present pixel s neighbourhood and calculates probability values, 

P. The second processor calculates nine values of PlogP whereas the third cal-

culates the sum and normalises the final value. Results are returned to the host. 

The division of an algorithm in this way is often referred to as task parallelism. 

It is a technique common in current high performance scientific computers and 

RISC microprocessors. Systolic arrays also employ such task parallelism. 
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Figure 2-9: Entropy calculations using Transputers 

Systolic Arrays 

Systolic arrays were first proposed in the early eighties by H.T. Kung [47] of 

Carnegie Mellon University based on the idea of task parallelism described above. 

The term systolic comes from the human heart and processing arrays are meant to 

resemble opening and shutting of heart valves. Effort has also gone into developing 

compilers and efficient optimisation tools to generate the arrays and interconnect. 

[3][18]. Kung proposed a machine called Warp [2] based on a linear array of 

processing elements connected to a host through an interface unit as shown in 

Figure 2-10. The design was specifically aimed at image processing problems 

although other applications were programmed. 

Although linear arrays only have two PE's to communicate with the host an 

increased I/O bandwidth is possible due to the separation of function along the 

array. Every warp processor has its own program memory of 8k combined with 

32k words of data memory. A larger data memory can allow more computation 

for the same I/O bandwidth for some algorithms. The architecture of each cell is 

shown in Figure 2-11. 

Individual cells can receive data from either of its two neighbours. Also, data 

can pass both ways along the array. For some algorithms this can ensure that all 
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cells are processing making better use of the array. Each cell communicates with 

its left and right neighbours through two data and one address link. All three 

links have a 512 word queue at their inputs. This is large enough to buffer one 

row of a 512x512 image. Hardware control ensures that one cell cannot write to 

another cell when its queue is full and cannot read from its own queue when it is 

empty. With this type of I/O individual cells can block the passage of data and 

care must be taken in programming to ensure that data flows evenly through the 

array. To allow this type of dataflow, clocking signals must cross chip boundaries. 

Speed restrictions may ensue. 

Warp cells have one floating point multiplier and one floating point adder which 

are pipelined within themselves. Obviously effective programs must supply these 

arithmetic pipelines with uninterrupted data. Thus, algorithm implementation 

is restricted to those with regular data sequences and few interrupts. The next 

section describes some of the problems normally associated with programming 

such machines. 

Parallel Programming 

Parallel programming is complicated by the problem of program partition. An-

naratone et. al. [3] propose three methods:- 

1. Input Partitioning: Each processing element computes only a por-

tion of the input data and its corresponding output. Most low level vi-

sion algorithms can be efficiently implemented using input partitioning. 

Often the problem with this arrangement is downloading the various 

sub-images to each processor's individual memory. However if the ar-

ray is big enough and the operations well ordered in time and space the 

array has only to be loaded once and the results can be stored at each 

processor. A new operation is then demanded by the master processor 

as a SIMD instruction. This type of algorithm is likely to be inefficient 

at higher levels where disparity information has to be brought together 

from other parts of the image. 
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Output Partitioning: Each PE processes the entire input data but 

only produces a section of the output. Histogram processing and image 

warping are examples where output partitioning is efficient. 

Pipelining: Pipelining is typical of systolic arrays where each cell 

performs one part of the computation. Annaratone et.al  [3] provides, 

as an example, a solution of the partial differential equation: 

U2ii 	32u 	
(2.9) 

The system is solved by recursively calculating the values of u on a two 

dimensional grid using the Equation 2.10: 

= (1 - w)u, + wL 	2,2 _1 + U 	+ U 1 2 1 + U_i + Ui+i,j 	
(2.10) 

where w is a constant parameter. Each cell performs one of the above 

relaxations. While cell k is performing on raster i, the preceding cell, 

k-i, is computing row i+2 and the following cell, k+i, is computipg 

row i-2. The process is repeated until convergence is achieved.. 

2.5.2 Pyramid Architectures 

Some researchers have noted that the human vision system is dynamic and does 

not process entire scenes at any one time. The eye can concentrate on a particular 

part of a scene and only be peripherally aware of other parts of the scene. P.J. 

Burt [13], among others, propose a more active architecture around the general 

idea of "smart sensing". There are a number of ideas which constitute smart 

sensing:- 

Controlled Resolution: Clearly, it is difficult to alter camera resolu-

tion during operation. However low-band pass filters and sub-sampling 

can be employed to reduce data rates to the minimum that is required. 

Restricted Windows: It is desirable that only windows of current 

interest be extracted from the sensor. Thus an architecture should be 

able to access specific regions of the image individually. 
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Figure 2-12: Pipelined Pyramid Machine 

Feature Extraction: The general extraction of edges and other mea-

sures of image structure require flexible window sizes and hardware 

capable of convolution. Look-up tables may also be necessary. 

Compressed Range: Another suggestion by smart sensor proponents 

is the compression of grey level resolution using high-band pass filters 

followed by a log function. 

The Pipeline Pyramid Machine (PPM) proposed by Burt, and shown in Figure 

2-12, consists of a number of special purpose functional units connected through 

a switch network. The flexibility provided by the switch network allows config-

urations and algorithms to be dynamically changed during operation. This is 

important when specific image regions are being processed and allows more func-

tional units to be added to the system. 

Burt gives several examples of the system in operation including detecting flaws 

in television screens and smart surveillance. The latter is of particular interest 

in this research as the application considered, in later chapters, is vision alarm 
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systems. Based on difference images between successive frames, a decision is made 

as to whether there is motion in the scene. This is then decomposed into a set 

of spatial bandpass channels by constructing a Laplacian, pyramid [14]. Laplacian 

pyramids are built by taking the difference between two Gaussian outputs , one 

of which provides a smoother, lower pass, response. G 0  and G1  represent the 

original and low pass filtered images respectively. A difference image, L 0  = Go - 

C1 , is calculated. As L 0  is a difference image, fewer bits are required. Also, 

C1  can be sub-sampled on the basis that it has been low pass filtered. The 

same procedure can be repeated through several Gaussian channels to achieve a 

sequence, L 0 , ..., L,. This is known as a Laplacian pyramid and can be used to 

completely reconstruct the original image. 

Such data structures can be used to detect events and regions of interest at 

a specific spatial frequency. Reduced processing is attainable due to the reduced 

resolution and data compression. The PPM machine's switch network, with con-

nected and variable functional units, is suited to running such algorithms. 

2.5.3 VLSI Architectures 

The above descriptions of hardware and related algorithms have all been directed 

at solving general vision problems. They are capable of computing more than one 

algorithm. Many VLSI architectures are aimed at individual image processing 

functions such as edge detection, correlation and filtering. Other processing chips 

have been directed at slightly more specific functions such as stereo vision. For 

cost reasons, VLSI application specific image processing systems have been less 

common and tend to be directed at commercial products. Initially, this section 

will cover some of the more recent research VLSI architectures targeted at solving 

low level image processing functions. Following this some analogue architectures 

will be described including moments calculation and a CCD/CMOS stereo sensor. 
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General VLSI Processors 

Texas Instruments have developed a chip called the SVP or Serial Video Processor. 

This has 1024 bit processing elements combined with input and output register 

files. A feature common to most of the current image processors is the closeness of 

the memory to the processing elements and the techniques used to access memory 

appear to be of increasing importance. Another feature of these processors is their 

SIMD nature. They are directed at low level functions where the same operation 

has to be performed many times. 

Figure 2-13 shows the layout of the SVP processor. Data flows in at the top left 

hand corner and out at the bottom right corner. Both input and output are serial 

and could be in the form of raster scans. Individual lines can then be built up in 

the input register and then moved downwards. There are two dual ported register 

files, one for input and one for output. Addresses and instructions are provided 

by a controller. Thus some form of address generation must be considered when 

using this element. 
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A second architecture is shown in Figure 2-14 and differs from the SVP ar-

chitecture in that it includes a general purpose switching array. There are two 

memory buffers either side of the switching array with the processing elements re-

stricted in their function, only being able to accumulate and threshold. However 

many image processing functions, eg. Fourier Transform, can be performed using 

switch arrays combined with comparators. 

Of interest in both these architectures is the use of input and output memory 

to compile raster scans into data which can be acted on in a regionally specific 

manner. In the SVP processor the input buffer is 1024 pixels, whereas in the 

IRIS chip it is 512 pixels wide. Also of interest is the use of a switch array, in 

the IRIS processor, to provide some of the functionality of the ALU's of the SVP 

processor. The general conclusion that can be drawn from these examples is that 

memory organisation and data storage is of crucial importance. Indeed, for some 

functions, eg. the Fourier Transform, data shifting and register organisation is a 

major part of the processing. 
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Application Specific VLSI Processors 

There now follows three architectures directed at application specific tasks. The 

first computes the Canny edge detector described earlier in this chapter. The 

second was designed over a number of years in Edinburgh as a finger print security 

system. The third is a stereo matching architecture developed for a CCD/CMOS 

implementation. 

The Canny design [75] is divided, as in the algorithm, into four blocks and was 

designed to edge detect at 25 frames per second. Initial smoothing is performed 

using two identical l-D convolvers as an approximation to the Gaussian function. 

If a design was implemented, further silicon space savings would be obtained by 

halving the mask, reversing the data stream and then adding the results together. 

As Figure 2-15 shows, Ruff computes the two masks using a buffered memory 

between two convolvers. While the X-convolver is writing to one memory buffer 

in row/column format the Y-convolver reads from the other buffer in a column/row 

manner. Access to the memory is then switched. Also shown in Figure 2-15 is a 

more detailed circuit of the half Gaussian filter. Input and output data is eight bits 

wide and internal calculations range between 8 and 21 bits. Gradient magnitudes 

and directions are calculated for the smoothed image on a 3x3 neighbourhood 

input through FIFO buffers. These are then used to interpolate, to sub-pixel 

acuity, the expected values of gradient either side of the central pixel. Next, 

non-maximal suppression is applied by marking, as edges, those pixels where the 

central value is greater than the two interpolated pixels. 

The next stage of a Canny edge detector is tracking. As edge tracking is unpre-

dictable, and the system pipelined, the Canny hysteresis thresholding algorithm 

must be adapted to work with neighbourhood data. A technique based on edge 

growing has been implemented. Each pixel neighbourhood from the suppression 

module was thresholded twice according to an upper and lower threshold. The 

lower threshold bitmap was then compared to the upper. Any low thresholded 

pixels adjacent to upper thresholded pixels were marked for output at the next it-

eration. Overlaps between neighbourhoods were also implemented to ensure edge 

connection. 
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The final design considered in this review is a finger print recognition system 

developed by Anderson et al. [1]. A block diagram of the system is shown in 

Figure 2-16. A particular feature of this design is the integration of the sensor 

onto the same substrate as the image processing functions. With the exception of 

the micro-controller and some RAM, all functions were integrated onto a silicon 

substrate. To avoid the full cost of an ADC a thresholding operation is combined 

with the ADC using a DAC and comparator. Possible thresholds are fed into the 

DAC and compared with the analogue output from the sensor. If the ratio of 

black to white pixels is wrong then the threshold is adjusted accordingly. Using 

this technique, the requirement for an expensive framestore is eliminated. The 

thresholding and normalisation function is shown in Figure 2-17. 

Compared to other image processing functions relatively few VLSI design-

s have been developed specifically for stereo. Mahowald and Delbruck[50]  im-

plemented the Marr-Poggio algorithm whereas Hakkarainen[28] implemented the 

Marr-Poggio- Drumheller (MP D) [54] algorithm. As the Hakkarainen design was 

aimed at integration of processing and sensing on the same CCD chip, this is 



Chapter 2. The Image Processing and Hardware Background 
	

44 

I 	- 

------------------------------------------------------------I 
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the one presented here. Figure 2-18 shows a block diagram of the algorithm and 

architecture. 

Pre-processing in this algorithm implies the application of a Laplacian of Bi-

nomial (LoB) spatial bandpass filter masks. This is simply a smoothing filter 

followed by an edge detector operation. Hakkarainen did not implement the LoB 

function himself and other CCD analogue architectures from related work were 

suggested [46] as possible solutions to this problem. Thus although the architec-

ture has been designed as a complete system, the only part fabricated specifically 

for this project was the match generator. This was tested by interfacing the 

AVD module to a computer and performing the LoB operation, the local support 

operation and the decision module in software. 

A schematic of the AVD (Absolute-Value-Difference) module is shown in Fig-

ure 2-19. Data, or charge, from the pre-processed left and right images is entered 

into CCD shift registers (L., R1) before corresponding rows are differenced in par-

allel. For each pixel, the result is inverted to provide a measure of similarity. 

Following this, the next set of candidate matches are calculated by shifting either 

input row along by one pixel. This is repeated for each possible disparity within a 
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predefined range and the results, for each disparity, stored in a third shift register 

(A i ) before being read out. After this the candidate matches for each disparity 

shift and pixel strengths would be supplied to the, software implemented, local 

support module. 

In Hakkarainen's results the local support module assumes that the disparities 

across a scene vary smoothly . Using the local support module, each candidate 

match i score is recalculated, by taking a weighted sum, from the neighbouring 

disparities and the results fed into a decision support module. The decision al-

gorithm maintains the highest scores for each pixel together with its associated 

disparity. In a working system this would be continually updated as the best 

matches, for each pixel, were found. 

Such a CCD implementation is efficient in area and would fit in well with 

current commercial sensors. However there are practical problems associated with 

this type of approach. As suggested by Skifstad and Jam [78] stereo matching 

becomes difficult, or impossible, for parts of an image where there is no luminosity 

gradient. However, in this work, the assumption is made that disparity varies 

smoothly over the image and, using a neighbourhood support scheme, an attempt 

is made to find a match at every pixel. The neighbourhood support is most 

likely to cause errors at areas of the image where there are sudden changes in 

disparity. These areas are likely to be edges. Thus this algorithm will provide 

poor performance in the areas of the image with the easiest matches, ie. large 

luminosity changes or edges. Despite this such an algorithm can have success in 

textured scenes. Also Hakkarainen's design shows that stereo algorithms can be 

implemented in analogue VLSI. The next section considers some other analogue 

image processing circuits. 

7  A is discussed in the next chapter this assumption is not always true. 
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Analogue Architectures 

Horn [34] states that although parallel digital networks are ideal for research they 

are large and expensive and he proposed experimentation with analogue VLSI 

networks. Examples include edge detection, Gaussian and binomial filters and 

moment calculation. Several analogue chips have been built to implement these 

functions and moments calculation is discussed here as an example. 

DeWeerth and Mead [19] designed an analogue chip to calculate the centre of 

mass of a thresholded object in the scene. The calculation is performed by noting 

that the inertia about an axis perpendicular to the image plane is minimised at 

the centre of mass. In effect we must minimise the value of Equation 2.11. 

E = f[(x - ) 2 + (y - y)b(x,y)dxdy, (2.11) 

where b(x, y) is the thresholding function for each pixel. Finding the minimum of 

Equation 2.11 can be solved by finding the zeroes of the following two derivatives. 

= aIf ( x - )b(x,y)dxdy 	 (2.12) di 	D 

dy =aJ 
fD '' 	

(2.13) 

where a is a gain factor which controls the speed of adjustment of estimates of W 

and V. 

The implementation proposed by DeWeerth and Mead [19], employs a bus for 

each of the above equations. The voltage on this bus is proportional to the current 

estimates ë or V. Every pixel injects, onto the bus, a current proportional to the 

difference between its x or y coordinate and the bus potential. This is only done 

if the pixel exceeds the threshold, b(x, y). When equilibrium has been achieved 

the injected currents into the bus add up to zero and the voltages on the busses 

represent true estimates of i and Y. 
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2.5.4 Discussion of Image Processing Hardware 

The above hardware survey is aimed at providing a broad overview of current 

research. It ranges from the general machines, such as the Transputer, to the 

application specific analogue and digital processors described above. 

With the exception of the PPM machine, relatively few parallel architectures 

seem directed at solving lower level image processing problems, such as smoothing 

and feature extraction. Problems such as graph matching, model matching and 

perception have not been seriously studied in terms of hardware. A main reason 

for this is that these processes tend to be less well understood and are considered 

irregular. Of particular interest to this work is the implementation of stereo 

algorithms in CCD analogue VLSI. 

In terms of the general processors, two characteristics appear to be common. 

Firstly all have on-chip memory to allow raster scan data to be assembled into 2-1) 

neighbourhoods. Secondly the multi-function processors are nearly all designed to 

be cascadable. The processor can then be employed in a "dataflow" arrangement 

and its function altered with respect to the desired algorithm. Cascadable pro-

cessors are at their most obvious in systolic architectures. The designers of these 

machines have emphasised the problems of I/O bandwidth across chip bound-

aries. They state the inefficiencies inherent in a design if one part of the overall 

architecture is faster than another. Thus computation should be balanced with 

I/O speed. 

Analogue hardware was also covered and it is clear that there is potential 

for some very efficient implementations in a final system. The calculation of mo-

ments by DeWeerth and Mead [19] provide one example as does the combination of 

thresholding and analogue to digital conversion described by Anderson [1]. How-

ever problems still remain in image storage and in the combination of information 

from different parts • of th scepe. 7 
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2.6 Conclusions 

This chapter started with a description of current research and practice in low 

level image processing covering the areas of edge detection, thresholding and seg-

mentation. What is evident from these distinct areas is the interdependence, in 

a final system, of the different modules. For example, thresholds can be chosen 

from an edge detected image, edges can be built from segmentation techniques 

such as the Hough transform and, as will be shown in the next chapter, stereo 

vision errors can be dependent on extracted edges. 

Such low level functions can be used to build up an imaging system for a par-

ticular application. For example, an estimation of the background and foreground 

parts of an image can be performed using threshold and segmentation techniques. 

A similar and, again, interlinked problem is that of grouping features into one ob-

ject. Basic functions can be built into a larger system to provide a solution to this 

problem. The solution will very rarely be perfect due to unpredictable changes 

in the scene and it is important that all the available information is combined. 

This approach will be described in later chapters where a simplified edge detector 

is combined with a simplified thresholding function to extract only those edges 

which are necessary for the stereo matching algorithm. Combination of informa-

tion in this manner can also reduce the overall computational cost and avoid the 

use of intensive algorithms such as the Hough transform and graph matching. 

The last section of this chapter was a survey of current hardware techniques. 

It is clear from the survey that, in a practical CMOS/sensor implementation, the 

design should be conducted in the light of the following considerations: 

The cost of floating point arithmetic. 

The cost of low level processing compared to possible advantages to be 

had from using larger data structures. Thus a speedy transition from 

a pixel based description to a higher level segmented description of the 

image would reduce the data processing required at the more function-

ally complex stages of the system. This is also important in terms of 
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the I/O bandwidth problem described in the section on systolic arrays. 

If the sensor can be integrated on the same chip as early processing the 

problem of pin capacitances and drive circuits is largely resolved. Only 

significant features such as edges need be extracted from the chip. 

Early image processing should be specialised to the application in mind. 

Savings can be made by altering the algorithm. 

Memory is of considerable importance. All the processing arrays de-

scribed above had some form of on-chip memory to arrange data in a 

spatial manner. 

These considerations have been applied in the DETECT system described later 

where the algorithm has been adapted to be suitable for a CMOS/Sensor imple-

mentation. 
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3.1 Introduction 

This chapter is concerned with the examination of current stereo vision techniques 

and their application to the problem of tracking human beings using minimal 

hardware. Stereo vision can provide us with estimations of distance and size. 

Such estimates would be of considerable use in reducing the occuir'nce of false 

alarms. 

An initial statement of general stereo geometric principles will be followed 

by a brief description of recent biological research and computational algorithms, 

designed to model the human system. Marr's matching constraints, which can 

be applied to solve what is commonly called the correspondence problem, are 

also described. Of particular interest is recent research [64] suggesting that the 

human eye only attempts matching for a limited number of points in the scene. 

In the work described in later chapters complete matching is not attempted for 

every edge feature in the scene. It seems pointless to do so and would generate 

an unnecessary computational load. Section 3.4 provides a review of current 

developments in stereo algorithms and discusses them in the light of possible 

VLSI implementations. This discussion will link with Chapters Four, Five and Six 

which describe stereo vision and image processing algorithms aimed at a specific 

application, ie., the detection and tracking of intruders. Later sections, of the 

chapter, will deal with calibration and error analysis, followed by some conclusions. 

3.2 Geometric Principles 

Depth estimates of a particular scene, feature or object can be based on spatially 

separated views, using a stationary camera, or temporally separated views when 

the camera or subject is moving. Estimates of distance are inversely proportional 

to the differences, or disparities, of separate views of the scene. This inverse nature 

of the problem has led to stereo being labelled "ill-conditioned". Small errors are 

amplified by the process of inversion. Such errors are considered in section 3.5.2. 
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Figure 3-1 shows a generalised, two camera stereo rig. Knowing the interocular 

distance, D, focal length, F, pixel size, P and the transformation relating the two 

coordinate systems, the world coordinates of a point P can be found from the left 

and right camera views. The two coordinate systems can be represented in terms 

of the rotation, R and translation, T, shown in Equation 3.1. 

X I 	 X 

ji' 	=R 	' 	+T 	 (3. .1) 

Z I 	z 

The above situation can be simplified such that cameras are laterally separated 

and on the same imaging plane, Figure 3-12. In this situation rasters from the 

two cameras will correspond and the epipolar constraint applied. The following 

relationships can be defined. Disparity, 6, Equation 3.2, is defined as the difference 

in X position on each of the two imaging planes once their local coordinate origins 

are aligned. 

6 =I  X, - X1 I 	 (3.2) 

where X1 and Xr are the left and right lateral feature positions on the imaging 

plane with respect to their local origins. We also get an equation relating depth, 

Z, and disparity, 6, with the product of the focal length, F, and the interocular 

distance, D. 

VMS] 
6 

(3.3) 

Thus, disparity is inversely proportional to depth and can be used to estimate 

depth if a particular camera geometry is known and similar features in both images 

are known. The next section covers current ideas about how the human vision 

system solves this correspondence problem. 

'The epipolar constraint simply means that searches for corresponding matches can 

be restricted to scans along the relevant rasters in the two images. 
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3.3 Biological Systems 

The ability of the human eye to judge distance is remarkable and a digression to 

consider current theories of human correspondence is worthwhile. Much of stereo 

vision research has been conducted in artificial intelligence organisations where 

biological systems have provided the main inspiration for the most important 

theories. Marr gives a good summary in Vision [51] which describes researchers 

attempts to imitate the human eye's own stereo algorithm. The exact algorithm by 

which the eye solves the correspondence problem is not known. However, it would 

seem obvious that humans' memory and image understanding play important 

roles, together with explicit depth extraction from lateral or temporal motion. 

It is known that the eye performs edge detection early on in an image's in-

terpretation. It is also known that that the receptive fields of the eye consist of 

a central excitatory region surrounded by an inhibitory area. This is thought to 

result in a V 2 G operator being applied to incoming light. The V 2 C function is 

shown in Figure 3-2 and is obtained by taking the LLaplacian of a Gaussian curve.) 

Psychologists [15} believe that four of these V 2   operators provide four spatial 

channels, at different scales, as an input to further processing. 

Human stereo vision is thought to use the zero crossings as matching fea-

tures. A coarse to fine strategy, starting from the largest spatial channel and 

proceeding downwards is then used to constrain matching and feature detection. 

Higher bandwidth channels are more detailed and, therefore, correspondence more 

problematic, whereas lower bandwidth channels will have poorer localisation of 

features but better matching. 

Marr describes a computational theory of stereopsis and proposes three con-

straints in order to determine a unique correspondence between two images. These 

are:- 

1. Compatibility: Obviously only items which arise from the same ob-

ject and have similar features should be considered for matching. 
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Figure 3-2: The V 2   Operator 

Uniqueness: A feature from one image can only match one feature 

from the other image. 

Continuity: The disparity of correct matches should vary smoothly 

over the majority of the image. Obviously this will not apply every-

where, but as objects are usually continuous it is most likely that its 

depth will be continuous. 
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3.4 Stereo Algorithms 

Based upon the above, Marr described two algorithms which satisfy the above 

constraints and are therefore possible imitations of human stereopsis. The first is 

a cooperative algorithm. 

3.4.1 Marr's Cooperative Algorithm 

The following description refers to Figure 3-3 which shows a binary array with ex-

citatory connections along the diagonals, and inhibitory connections in the vertical 

and horizontal directions. Each diagonal line represents a particular disparity with 

the central positive diagonal being zero. Binary features from the corresponding 

epipolar rows of a left and right camera are extracted. The disparity array is 

initialised by setting individual bits to one, if the corresponding pixels in the left 

and right epipolar lines are both one, and to zero' er for all other combinations. A 

correspondence is said to be found if a disparity array bit is one. Clearly the 

initialisation of the array will generate a number of false matches, violating the 

uniqueness constraint. False matches are eliminated by applying the continuity 

constraint. Each bit in the disparity array is updated by summing the weighted 

bits from the surrounding neighbourhood. Weights in the positive diagonal di-

rection will excite, whereas all others will inhibit. Further to this, a threshold 

function was applied to the neighbourhood sum to define whether an individual 

pixel should be one or zero. Over a number of time-steps, parts of the epipolar 

line with similar disparities, and which are near each other, will reinforce and 

reduce the number of false matches. Convergence is achieved when the difference 

between successive time steps is reduced to an acceptable minimum. 

Variations on the above approach are possible. Instead of having an on-off 

binary array, accumulators could be employed at every possible disparity match. 

In this situation it would be important to ensure that the system is stable and 

that both the inhibition and excitation are within reasonable limits. Hardware 

implementations have been proposed to implement the above algorithms and an 
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analogue network, with connections implemented using variable resistances has 

been described by M.A. Mahowald and T. Deibruk [50]. 

3.4.2 Marr's Biological Algorithm 

A second algorithm, suggested by Marr and Poggio [53] and implemented by 

Grimson[27], is based directly on the limited knowledge of the human matching 

system: ie., a four channel coarse to fine strategy. As described above, zero 

crossings, with their sign and orientation, are extracted from the output of a VG 

operator at different spatial resolutions. Crossings from the two separated views 

are matchable if their signs are similar and their orientations within 30 degrees. 

This was done across the filtered image on a pixel by pixel basis. The coarsely 

filtered images are matched first, reducing the number of potential matches and 

the disparity search range in the higher bandpass filters is retricted according to 

the results from coarser channels. Thus, after successive filters and matches have 

been applied, reasonable edge localisation and match accuracy can be achieved. 

3.4.3 Other Approaches and Constraints 

There are many other approaches to finding correct disparity matches [6] [42] [32] 

[70] [62]. Often a brute force correlation technique has been utilised where a grey 

level patch from one image is compared with successive patches from the other 

image. However, problems arise with the size of correlation block and from lumi-

nosity variations between different camera views. Often attempts will be made 

to match blocks where there are minimal luminosity variations. As human snow 

blindness shows, it is impossible to extract disparities from featureless information 

[78]. 

Another question, which often arises, is whether depth information should be 

calculated before or after recognition has been performed. Clearly, knowledge 

about the shape and structure of the object under consideration would be of ad-

vantage in both reducing the number of false matches and increasing the accuracy 

of the measurement. As the problem of recognition and model matching is not 
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being considered in this work, we will confine the discussion, in this and coming 

chapters, to general matching principles which can be applied without recognition. 

The most fundamental feature which can be used for matching is the edge 

as this represents a change in luminosity. Further to this, is the fact that edge 

strengths are relative. It is more likely that edge strengths from two views of 

the same scene will be similar. This is not the case when one considers absolute 

luminosities. The next section discusses the possibilities of edge based matching. 

3.4.4 Edge Based Methods 

Edges have several parameters which can be used in matching: 

Strength: The usual understanding of an edge in a grey level image 

is that of a sharp change in luminosity gradient. If the two views 

are reasonably close then corresponding edges should have luminosity 

gradients of the same order. Edges should also be of the same polarity, 

ie. a positive gradient edge should not match a negtive gradient edge. 

Direction: Spatial direction has been used as a constraint. For ex-

ample, Grimson[27] eliminated any candidate matches if they diverged 

by more than 30 degrees. The threshold angle will be, to some extent, 

dependent on the camera geometry. 

Position: Scene knowledge and camera parameters can be used to 

restrict the image area in which candidate matches will be considered. 

In effect maximum and minimum disparity limits can be applied to 

reduce the chances of false matches. 

Length: If the focal lengths of the two cameras are equal and are at 

approximately the same depth, then the features should be of similar 

size. It is unlikely that size, can be used when matching lower level 

features, due to fragmentation of the initial segmentation. 

Disparity Gradient: The concept of disparity gradient, V8, is taken 

from experiments which appear to indicate that humans find difficulty 
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in matching features where VS > 1. In computer vision the disparity 

gradient has proved to be of considerable use in discriminating between 

correct and false matches. Burt and Julesz [65] defined the disparity 

gradient, between two points, as the difference in their disparities di-

vided by their separation in distance. Figure 3-4 illustrates. For the 

upper matching feature, the shape and, therefore, disparity is constant, 

as the edge is tracked from top to bottom. 

61  = 62 = 63 	 (3.4) 

This edge would be accepted as a correct match. The second feature 

would probably fail a disparity threshold test and be eliminated as an 

incorrect match. The quality of a point to point match can therefore 

.rt. determined by both the surrounding matches and changes in dispari-

ty. In addition, disparity gradient thresholds can be used to segment 

an edge into separate components. Any sudden jumps in disparity of 

an edge are likely to indicate the end of one feature and the start of 

another. 

3.4.5 The P]VIF Algorithm 

Pollard, Mayhew and Frisby [76] have developed a stereo vision system within 

the Sheffield TINA environment [67]. This algorithm directly applies a disparity 

gradient limit to the matching problem. Figure 3-5 shows the algorithmic details. 

Potential matches from the feature maps are initially selected according to the 

epipolar constraint, the sign and edgel strength. An initial strength is computed 

using the product of the two candidate pixels. The strongest matches can then be 

proposed as seeds from which other matches can be derived. Starting with edge 

pixels, from the left image, all potential matches along the epipolar line in the right 

image are considered. For each potential match, support within a circular area 

is calculated to provide an estimate of match strength. The support is weighted 

according to the disparity gradient with the central match. Those initial matches 
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which have sufficient support are proposed as input for the next iteration.. The 

cycle continues three times. 

3.4.6 Phase Based Stereo 

Another way of considering disparity is to represent it as a phase difference. Sev-

eral authors [44] [20] have proposed disparity extraction techniques using phase 

difference. As with correlation techniques, a dense disparity map, for the entire 

scene, can be extracted. Phase differences can be calculated, in the frequency 

domain, from the output of multiple bandpass filtered images. The technique is 

illustrated, for the one dimensional case, in Figure 3-6. Frequency dependent 

phase information is calculated for each spatial channel and for both the left and 

right images. The difference in phase, between the left and right images, may be 

used as an estimate of disparity. Often several possible disparities will he extract-

ed and further constraints such as ordering and the disparity gradient can then 

be applied. 

Using the notation presented by Jenkin [43], perfectly filtered left and right 

luminosity images can be represented, in the x dimension, by Equations 3.5. 

Ij = Asirt(wj x + Oi) Ir  = Bsin(Wx + Or ) ( 3.5) 

where A and B are amplitudes, w 1  frequencies and 0 j  phase angles. In phase 

based disparity estimation, the assumption, that w 1  = Wr, is made. Equation 3.6 

indicates the disparity d(x) as a function of the phase difference 0. 

d(x) 	OW 	 (3.6) 

where 
1 

= 	+Wr ) 	 ( 3.7) 

and 

(x) = (w, - wr)x + (Ol - Or) 	 (3.8) 

Using the above representation phase information can be extracted from the Fouri- 

er Transform and the difference between the left and right images calculated. 
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Figure 3-6: Disparity Estimation Using Phase Differences 
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These techniques have not been applied in this work due to the computational 

complexity required to implement each spatial filter and the subsequent Fourier 

transforms. 

3.4.7 Neural Algorithms 

Considering the current interest in neural networks it is surprising that there is 

not more published work on the explicit application of neural networks to the 

stereo vision problem. Perhaps this is due to the conceptual similarities between 

the cooperation algorithms, one of which was discussed in section 3.4.1, and neu-

ral networks. Both involve processing elements, which sum inputs, and both use 

connections which can be inhibitory or excitatory. An alternative approach, de-

scribed by Nasrabadi and Choo [60], calculates correspondence, on edge elements, 

using a Ropfield network to optimise the solution. 

The initial features are extracted using a Moravec operator [58] and Marr's 

constraints represented as a cost function to be minimised. Figure 3-7 represents 

an N, x N 7  array of neurons where N, and N7  are the total number of interesting 

points in the left and right images respectively. Neurons are on or off, indicating 

the possibilities of matches between the left and right images. Thus a suitable 

initialisation of the network would be setting all possible matches along an epipo-

lar line, and within a certain disparity, to one. The network update functions, 

described by Nasrabadi, are: 

rN1 Nr 	 1 
0 if— 	 - 8k1) Vi, +21 <0 	(3.9) 

j=1 1=1 	 j 

N1 N. 
17ik —41 if 	E(C kj , Sjj - Ski) V, +2 >0 	(3.10) 

j=1 1=1 

N1 N r  
no change if - 	E(Cjkj, - Sij - Ski) Vi + 2= 0 	(3.11) 

j=1 1=1 

where 

2 
C1ki = ______ - 1 	 (3.12) 

[1 + 6A(X-O)] 
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Figure 3-7: Disparity Estimation Using a Hopfleld Network 

and 

X = [ i/1 jAdj + W2  AD] 	 (3.13) 

Ckj is a measure of compatibility between features. A graph of CIkl is shown in 

Figure 3-8. Its value varies between -1, a poor match, and +1, a good match. In 

Equation 3.12 the values of bij and 8k1  are used to prevent correspondences between 

impossible matches. Thus 6ij is 1 when i = j and 0 for all other combinations of 

i and j. A is a scaling factor and 0 controls where the function crosses the X-axis. 

Ad is the difference in the disparities of the matched pairs (i,k) and (j,k) and AD 

is the difference between the distances i to j and from k to 1. W1  and W2  are 

constant weight factors and satisfy the relationship W1  + VT"2  = 1. Experimental 

values for all the above parameters can be found in the paper. 

The network can be run by random update of individual neurons until the 

change in energy becomes minimal. Obviously, local minima problems can arise 

and these are exaggerated by the binary nature of the network. A continuous 

network would reduce this problem at the expense of computational complexity. 
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Figure 3-8: The Compatability Function 

The authors present results for the network applied to several images for which 

the network took 1000 iterations to find the correspondences. Again, for compu-

tational reasons, the above neural approach is unsuited to the objectives of this 

thesis. 

3.5 Error Analysis 

An important part of stereo matching is an analysis of the probability of errors. 

The types of error which can occur in a stereo rig can be described as follows. 

Stereo mismatching and false edge extraction. 

Pixel quantisation noise. 

Abasing noise. 

Digitisation noise. 

Physical camera misalignment and lens distortion. 

Grey level noise. 

The above list gives an indication of possible sources of error. These, with 

the exception of stereo matching, are present to a greater or lesser degree in 
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every image processing system. This section will not concern itself with the the 

last two items due to their physical nature. The noise caused by converting an 

analogue signal to a digital signal depends on the quality of the ADC circuit 

and the variability of the sampling clock. Although not discussed here, camera 

misalignment is also inevitable. Sections 3.6 and 5.6 discuss techniques to calculate 

an unknown camera geometry. 

3.5.1 Stereo Mismatching and False Edge Extraction 

Correspondence must be solved before depth can be extracted from a stereo vision 

system. It is worth considering the types of errors which can occur when matching 

two pictures. For the purposes of this section, it is assumed that the epipolar 

constraint is satisfied and that we have a perfect pin hole camera. We also assume 

that edge elements are the features being used for matching. 

Mohan et. al [56] classify incorrect matches into the two catagories: 

Type 1 (local) errors: Figure 3-9 shows correct pixel matches be-

tween segments AB and CD. Also shown are incorrect matches to two 

other segments. There are more correct matches between AB and CD 

than false matches to any other segments. These types of error can be 

corrected on the basis of figural continuity. 2  

Type 2 (global) errors: Figure 3-10 shows an erroneous match for 

which it is impossible to correct. Here there are more matches to the 

wrong segment EF than to the correct segment CD. Type 2 errors 

cannot be detected or corrected, whereas type 1 errors can. 

Having defined the extent to which matching errors can be both corrected and 

detected we now discuss the likely causes of errors. Edge detection will never be 

2 Figural continuity simply implies that the edge CD is connected and not split into 

several elements. 
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perfect and streaking may cause problems by breaking the edges into insignificant 

segments. A detector may simply generate spurious features. Clearly, these errors 

are dependent on the iiitial segmentation and the luminosity in the scene. Other 

errors can be caused by the physical structure of the scene in relation to the two 

cameras. Occlusion is the most obvious where an edge in one view of a scene is 

also not present in the other. More subtle problems can occur with transparent 

objects and with reflections and shadows. Finally the correspondence technique 

may simply make mistakes. 

The analysis of the likelihood of error for a correspondence technique will 

depend on the algorithm itself. However, a simple technique, proposed by Mohan, 

to calculate a percentage error is to count the number of Type 1 corrections that 

require to be made. This will give a rough indicator of erroneous mismatches 

without having to work out by hand, or by an active matching algorithm, the 

true correspondences. 

Further to the above, Thacker and Courtney [79] published a technique to 

estimate errors for a specific corner matching algorithm. The details of this anal-

ysis are specific to the particular matching algorithm proposed in the paper and 

are therefore not repeated here. Thacker rightly criticises empirical approaches, 

employed to estimate error, as data dependent. However, his approach assumes 

that matching errors are independent of the detection process. This is clearly 

not the case in the algorithm described later in this thesis and is not a valid as-

sumption for many other stereo techniques. As suggested by Thacker, current 

comparison methods for different stereo algorithms are unsatisfactory and require 

more research. 

As an alternative to the mathematical approach experimental results can be 

extracted over a range of input images from various scenes. An empirical technique 

which estimates the combined likelihood of error, from both the matching and 

feature detection algorithms, described in this thesis, is presented in Chapter Six. 

This allows a confidence to be assigned to a particular measurement. 
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3.5.2 Geometric Errors 

This section will confine itself to discussing the fundamental types of error like-

ly from the camera geometry. Other sources of geometric error such as camera 

misalignment will be discussed in Section 3.6. The two sources of error consid-

ered here, pixel quantisation and aliasing, are fundamental to the imaging sensor 

and therefore hard to correct, using calibration techniques. Referring to Figure 

3-11, and assuming perspective projection, pixel quantisation and aliasing are 

dependent on the following parameters: 

Pixel size, P 

Feature depth and position in the scene, Z 

Focal Length, F 

Similar triangles from Figure 3-11 gives us Equation 3.14 and Equation 3.15, 

where X is the measured value of X such that X = X + AX and Ax the quanti-

sation noise. 

k(x+AX) 
(3.14) 

Z 	F  

X  
- (3.15) 

AX 
= ZAx 	

(3.16) 

Equation 3.16, derived from Equations 3.14 and 3.15, shows how AX varies with 

distance and localisation error, Ax. It is clear that Ax increases with depth and 

decreases with focal length. Thus, to reduce the effects of pixel quantisation, 

we require to have a long focal length and restrict the maximum allowed distance 

from the camera. This situation arises in most of the current imaging applications 

such as industrial work benches and robotics. However it is not the case for alarm 

systems, where large distances are commonplace and wide angle lenses, ie. short 

focal lengths, are important. We will now discuss the effects of quantisation noise 

on stereo measurements. 
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Stereo Errors 

Figure 3-12 shows an idealised stereo rig in which the imaging planes are parallel, 

the focal lengths are equal, epipolar lines coincide and perspective pin-hole pro-

jection is assumed. The disparity (8) is defined as the difference between the x 

positions with respect to local origins as in Equation 3.17. 

S = Xj - Zr 
	 (3.17) 

From this equation, the measured disparity, 5, with quantisation noise is shown 

in Equation 3.18. 

= xi + AX, - Zr - Ax 
	

(3.18) 

We also define the disparity error, AS, as - 8. Thus the limits on AS are +P. 

This gives us an absolute value on the error, the significance, of which, depends 

on the value of the disparity. A relative error, AR, can be defined as in Equation 

3.19. The relative error is inversely proportional to disparity. 

AR= 	 (3.19) 

The next problem is to estimate how disparity error affects estimates of depth 

information. Equation 3.22, derived from Equations 3.20 and 3.21, shows that the 

range error is inversely related to the product, DF. 

Az=2—z (3.20) 

DF 
z = (3.21) 

—z 2 AS 
Az= (3.22) 

DF + zAS 

Equation 3.22 still does not provide an estimate of how error varies with respect 

to distance. For this we need a measure of relative error, 	Thus, we now have Izi 
Equations 3.23 and 3.24 in terms of depth and disparity respectively. 

	

Az 	zAS 

	

I - - 	 (3.23) 
z 

	

Az 1 	AS 
(3.24) 

	

z 	b+ AS  
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The relative error, in depth, plotted against disparity and distance are shown in 

Figures 3-13 and 3-14, respectively. For both graphs a pixel size of 20 pm is 

assumed. Thus if the luminosity gradient across the pixel is 1 then the expected 

disparity quantisation noise, Ax, is 20x)96  The focal length was 14mm and the 

interocular distance 10cm. 

As an extension to the above Blostein and Huang [8] have derived an equation 

giving the probability of a depth error (€4 being less than a specified tolerance 

(r2 ). This is is repeated here in Equation 3.25. 

1 - (1 - 75)2 	< 
1 

2 < r ) 
= { 	

(3.25) 
1 	 Yz ~ i 

Equation 3.25 is accurate as long as the disparity is greater than some small 

number of pixels. Unfortunately this is not necessarily the case in a wide angle 

lens alarm system. 

Equations 3.23 and 3.24 provide estimates of percentage error for a particular 

depth or disparity. Equation 3.25 provides us with a method of specifying a desired 

depth tolerance and calculating the probabilities of error for various disparities. 

What has not been defined is a probability density function or a measure of error 
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Figure 3-14: Relative Z Error Against Depth 

within a defined depth band. Figure 3-15 shows the PDFs, for two and three 

camera rigs, for A z within a specified range. The error is calculated by randomly 

generating points in a scene and projecting them onto a simulated stereo rig. The 

depth is then recalculated. The difference between the recalculated depth and 

the true depth is the error. Obviously, the errors are likely to be less for a three 

camera stereo rig. Due to pixel quantisation, this is especially important for the 

short focal length lenses likely in an alarm system. As a result, the experiments 

in Chapter Six are conducted for a three camera rig. Such an analysis would 

also be useful in estimating the likelihood of error in any final alarm system or 

installation. 

3.5.3 Discussion of Errors 

Clearly there is a trade-off between accurate feature matching and accurate 1  

range estimation. On the one hand we wish to avoid as much occlusion as possible 

and therefore require a low baseline-focal length product, whereas on the other 

we require the opposite for accurate 3D rectification. As the sampling interval is 

always restricted, a compromise must be made between accurate feature matching 

and accurate rectification. Added to this is the problem of segmentation. Often 
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the errors associated with feature extraction, such as edge localisation, noise and 

streaking, will have a considerable affect on a matching algorithms effectiveness. 

All this makes comparison between different, stereo algorithms extremely difficult 

with results being data dependent. 

Although not discussed here, errors can also vary with relative camera angles. 

Borghese and Ferrigno [10] show that the quantisation errors are likely to be at 

their minimum when both cameras are at 45 degrees to the main depth axis. 

However, for practical reasons a commercial system is likely to have both cameras 

laterally separated on the same imaging plane. This is the system used in the 

experiments described in Chapter six. 

The above section dealt with the fundamental, and usually unavoidable, causes 

of error in a stereo system. In any practical system it is unlikely that the camera 

geometry will be known accurately, a-priori, due to mechanical inaccuracies. The 

next section will deal with the problem of estimating the camera parameters from 

known scene geometry or feature matches. 
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3.6 Calibration 

All the previously described stereo matching theories and techniques have stu-

diously ignored the question of rectifying or extracting depth information, in 

recognised units, from estimated disparities. This was done for two reasons. The 

first is that that it is a distinct issue and has no direct bearing on the problems 

of correspondence and the second is that, for alarm systems, it is possibly not 

required. For an individual camera setup we can conduct comparisons in raw 

inverse disparities. The problems only arise when we consider the possible errors 

around a particular disparity value. - 

The problem of camera calibration is the accurate 3D determination of internal 

camera geometries and optical properties with as little a priori scene knowledge 

as possible. Estimating the translational and rotational parameters between two 

or more stereo cameras is a similar problem to that of estimating the motion of 

a moving camera. We wish, only, to use the correspondences between features in 

spatially separated views of a scene. For the rest of this section, we will assume 

that the correspondence problem has already been solved. 

Until about 1980, it was unknown how many correspondences were required 

to ensure a unique estimate of motion. Further, the only techniques available 

for finding camera geometries from matched correspondences required the itera-

tive solution of third order simultaneous equations. In 1981, Longuet-Higgins [48] 

solved both the above problems and proposed a non-iterative scheme. A similar 

algorithm was published around the same time by Tsai and Huang [85][86]. Both 

authors showed that eight independent correspondences were necessary and suf-

ficient to uniquely determine 3D motion. The eight point method proposed by 

Tsai et. al. and Longuet-Higgins is now summarised. 
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3.6.1 The Longuet-Higgins/Tsai Calibration Algorithm 

The scene coordinates of a point P are (X 1 , X2 , X3 ) in the left camera coordinate 

system and (X, X, Xf3 ) in the right camera coordinate system. We can project 

these points onto the imaging planes, as in Equations 3.26 and 3.27. 

(XI, X2) = x
1  x2 	

(3.26) 
Y3 Y3 )  

x'x' 1 	 (3.27) (x,x) 
= 

It is more convenient to work in homogeneous coordinates and we therefore set 

= 1, X = 1 and define 

x=- 	 (3.28) 

where (p, ii = 1, 2,3). We can now define a relationship between the coordinate 

systems of the left and right hand images where R is the rotation matrix and T 

a translation vector. 

X = 	- T) 	 (3.29) 

Longuet-Higgins shows that by using a matrix Q such that, 

Q = RT 	 (3.30) 

and where 

0T 

 

T= T3  0 T1  

T2 —T1  0 

we can obtain relationships between the image coordinates such that 

= 0 	 (3.32) 

Thus, if eight corresponding points are known, x and x, in the scene, then the 

coefficients of Q can be found by solving eight simultaneous linear equations. We 

do this by dividing the LHS and RHS by Q3,3. This has the effect of providing 

a suare 8x8 matrix on the L.H.S. with a 3x1 matrix on the R.H.S. and can be 

solved for every ratio using L.U. decomposition and back-substitution. We now 
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have an un-scaled value for every element in Q and can proceed to calculate the 

values of the translation and rotation matrices. 

The values and relative signs of the translation vector can be obtained from 

Equation 3.33. 

l-T12  —T 1 7'2  —T 1 7'3  
qqT 

= —T 2 T1  1 - T —T 2 T3 	 (3.33) 

—T3T1  —T 312  1132  

and the rotation matrix from Equation 3.35 by defining the new matrix, W, 

shown in Equation 3.34. Each row is calculated individually and a, fi and y are 

permutations of (1,2,3). 

Wcw  = Qc, x T 	 (3.34) 

= W~ + WO  >< W1 	 (3.35) 

The final stage of the procedure is to alter the signs of T and Q. This is done 

by calculating estimates of X' and X using the Q matrix. If the signs are not 

correct then the relevant rows and columns of Q and T require to be multiplied 

by -1. The details of this procedure can be found in the papers. 

The Longuet-Higgins, Tsai technique is straight forward and well understood 

and depends on all the points in the scene being independent. Tsai and Huang 

[86] also describe combinations of points which must be satisfied to ensure that the 

eight point algorithm provides a unique solution. These can be found in Reference 

[86]. 

The above provides a non-iterative approach to calibrating stereo cameras. 

However, there are doubts about accuracy and choice of feature points. Yasumoto 

and Medioni [91] suggest that the problem of estimating 3D motion is an ill-

defined inverse problem and results would be improved if regularisation techniques 

were employed. The ill-poised nature of the problem was also expressed in error 

estimates provided by Tsai and Huang [86]. These results are repeated in Table 

3-1 for image plane points shifted in a random directions by 1%. This simulates 

errors in feature matching and extraction. It is of interest to note that the error for 

R, the rotation matrix, decreases as the number of points escalates. In contrast, 
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Number of Points 8 9 20 

Error of Q 47.13% 18.74% 2.32% 

Error of II. 14.32% 3.68% 0.83 % 

Error of 
Az 

and 
Az 53.97 % 3.52 % 10.09 % 

Table 3-1; Calibration Error Versus Number of Points for 1 % Perturbation of 

(X', Y') 

the error for translation,(, 	) first decreases and then increases to 10.09%. 

These types of errors were confirmed in software simulations by the author. There 

is clearly a problem in accurately extracting translations at the same time as good 

rotations. The next section discusses ways of improving on these results. 

3.6.2 Improvements in Calibration Accuracy and Other 

Calibration Techniques 

It is clear, from the previous section that calibration accuracy can be severely 

impaired by pixel quantisation and feature localisation errors. Considering the 

inverse nature of camera calibration, Yasumoto and Medioni [91] proposed the 

use of additional constraints to restrict the number of acceptable solutions. They 

search the surface of an error function calculated for each matched point. Ya-

sumoto proposes regularisation in order to smooth the extracted error surface and 

reduce the number of false minima. 

As an alternative, or adjunct, to Yasumoto's work, researchers have attempted 

to improve results by integrating the calibrations from successive images. Thacker 

and Mayhew [80] published one example which uses a Kalman filter to track 

rotation and translation variables through time. In addition to this they employ 

a form of variational regularisation first suggested by Trivedi [83]. 

Initially an estimate of the error is calculated from the positional changes 

required, in x' and x, to satisfy Equation 3.32, for a particular Q matrix. Thacker 
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and Mayhew calculate estimates of these shifts explicitly and use the results to 

calculate an overall error function, Equation 3.36. 

E = I: bEi = E(fixS 1 6xi + 6x7S 1 öx) 	 (3.36) 

where 6x 1  and 5x are the required shifts to satisfy Equation 3.32 and S is the 

a 3x3 error covariance matrix derived from the feature detection algorithm. The 

minimal solution to Equation 3.36 was found, by adjusting the Q matrix, in terms 

of a standard algorithm such as the "Downhill Simplex Method" [68]. 

3.6.3 Discussion of Calibration Techniques 

The techniques just reviewed are all computationally intensive and are certainly 

not candidates for a commercial CMOS implementation. If accurate Cartesian 

coordinates are required in a final stereo installation, the most likely configura-

tion is that of a portable computer with an interface to the image sensors. As an 

alternative it is not always necessary to perform a complete calibration to estab-

lish correspondences or relative depth. In many applications depth need only be 

estimated in terms of disparity. For example, as described later in this thesis, it 

may only be necessary to determine a disparity threshold for an alarm system. If 

the intruder crosses the threshold for a certain number of frames then the alar-

m can be activated. Thus, using relative depths, higher level algorithms can be 

developed which still employ depth information. In this respect, Mohr and Arbo-

gast [57] show one technique for extracting depth information without knowing 

the camera's geometry. 

Overall, accurate camera calibration is a serious problem for stereo vision 

systems if we wish to establish the Cartesian world coordinates of points in a 

scene. The inverse nature of the problem amplifies small errors in the coordinates 

being used. Automatic camera calibration is an area which requires more research. 
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3.7 Conclusions 

This chapter started with review of algorithms which solve the correspondence 

problem in the light of the biological evidence. There are. many different approach-

es, ranging from brute force correlation to specific feature and object matching. It 

has been decided, for reasons of computational complexity, that a feature matching 

approach is most suitable for the intruder pr'oblem described in the introductory 

chapter. Employing a feature based approach allows a reduction in the data rates 

required, by matching only those parts of the image which are interesting . An 

important point, not made by many authors, is that the task of feature detec-

tion is integral to the matching algorithm employed. Most researchers appear to 

concentrate only on the correspondence problem, or only on the feature detection 

problem without considering the trade-offs involved between the different stages. 

Clearly if one alters the feature extraction process to extract one type of edge, 

simplifications can be made to the correspondence algorithm. This is the approach 

taken later in this thesis. 

Simplifications in the algorithm can also mean reductions in the hardware 

required. There have been relatively few stereo algorithms implemented in spe-

cialised hardware, two of which were mentioned in the previous chapter. Apart 

from cost, several reasons appear to have caused this situation. The first is the 

dependency of stereo algorithms on the input features. It is therefore difficult to 

build a general piece of hardware which would be useful in a sufficient number-

of applications. This dependency is not just restricted to the input data. Differ-

ent applications may desire various forms of output data. Thus in this work, the 

general approach of building a stereo module was avoided. Effort was directed to 

altering the various image processing modules to take advantage of interdepen-

dencies. 

31n any case, it is difficult, if not impossible, to match areas of the image where there 

is no luminosity gradient. 
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Also considered, in Section 3.5, was an analysis of the likely errors which 

will be encountered in a typical stereo system. These were divided into errors 

dependent on the matching algorithm and those dependent on the camera and 

scene geometry. As Figure 3-15 shows there are clear advantages in using a three 

camera stereo rig. Such calculations would be of particular interest in an alarm 

system where wide angle lenses and longer ranges can be expected. 

The final sections dealt with the thorny problem of calibration. The inverse 

nature of stereo vision has resulted in this being an area of vision where errors 

can be large. The algorithms reviewed here were all computationally intensive 

and thereforç infeasible for this application. However it is not always necessary 

to extract depth in metric units and valuable information can be gained using 

relative disparity measurements. 
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4.1 Introduction 

The aim of this and the next chapter is to describe a hardware efficient system 

capable of tracking a human moving in a stationary background in a large scene. 

For the remainder of this thesis this software will be referred to as the DETECT 

system. The main functional problem associated with such a stereo vision system 

is in the short focal lengths necessary to view the required area. In addition, 

the hardware constraints imposed by any cost effective implementation require 

to be satisfied. The last two chapters have considered algorithms in the light of 

possible and real hardware implementations. In particular, this work is aimed 

at an implementation using the CMOS sensors [1] described in Chapter One. 

Achievement of this gokl requires that limits be placed on allowed arithmetic 

at the pixel level of the algorithm. In effect, at the pixel level, floating point 

digital calculations must be eliminated together with general multiplications and 

divisions. Due to the reduced data rates, higher level processing, such as explicit 

disparity calculation, time domain filtering and global threshold calculation would 

be performed using associated microprocessors. Such arithmetic efficiency has 

been achieved by developing software which uses three major constraints, specific 

to stereo vision, and the expected application. These are: 

The vertical nature of the human form: A standing human has 

very few horizontal edges. Also, the lateral separation of the stereo 

cameras used in this work makes it difficult to match horizontal edges 

anyway. This makes it sensible to extract only vertical edges, reducing 

edge detection to a lateral differentiation, followed by a vertical track. 

Only outline edges are extracted for matching: This transfers 

the stereo correspondence problem to the lower stages of segmentation 

and reduces the computation required for matching to a simple scan. 

Only a disparity threshold is required to implement an invis-

ible boundary. Thus if an object continually exceeds that threshold, 

through time, the alarm can be sounded. This disparity threshold could 
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be calculated, on site, by a person moving around at the desired dis-

tance. Alternatively, if metric distances are desired, a more accurate 

calibration could be provided at installation using an interface to a 

portable computer. In the latter case, the errors mentioned in the last 

chapter should be considered. 

Figure 4-1 gives an overview of the entire DETECT system and the various 

sections of the algorithm. It is not intended that these modules be considered in 

isolation from one another; implementation advantages can be gained by consid-

ering the problem in its entirety. It is the author's view that treating individual 

vision problems in isolation often hides many interdependencies. In creating a high 

level intelligent vision system, an understanding of the likely errors and failings of 

the lower level "image processing" is required. Allowances and limits of operation 

can then be defined. Despite this, it is necessary to consider the different sections 

of the system in isolation and then highlight their dependencies. 

This chapter will start with a section considering the low level algorithmic 

principles and techniques used in the system. Throughout Section 4.2 reference 

will be given to possible hardware implementations and trade-offs. Section 4.3 

will give a brief description of the software used to test the algorithms discussd 

in section 4.2 and the next chapter. A more detailed explanation, of the software 

function, can be found in Appendix B. The chapter will finish with some general 

conclusions. 

4.2 The DETECT Stereo Algorithm: Low Lev-

el Segmentation 

Attention is now given to the individual DETECT modules shown in Figure 4-1. 

Figure 4-2 shows the earlier stages of processing in more detail. The techniques 

used to provide this segmentation are all differential to allow reductions in com-

putation, and correlation methods have been avoided. This has included the e-

limination of an initial smoothing filter for edge detection. In the trials described 
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Figure 4-1: Overview of DETECT System 

in Chapter Six, it was found that this made little difference to the overall disparity 

estimate. If, in a larger trial, a smoothing filter was necessary then low cost 

analogue implementations of such functions exist[1]. 

For the rest of this thesis, the following terms will be used. 

1. Background Images: The images captured when there is no movement 

in the scene. 

2. Foreground Images: The images captured when an object is being 

tracked. 
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Difference images: The modulus of the difference between the fore-' 1  

ground and background images. 

Edged Background and Edged Foreground Images: The above named 

images, after the edge detection procedure has been applied.  
Computations aimed at deriving edge information and the maintenance of an - 

edge map are described in Sections 4.2.1 and 4.2.2. Section 4.2.3 will describe 

how difference images are thresholded to provide input for the nearest-neighbour 

clustering described in Section 4.2.4, respectively. Section 4.2.5 will deal with how 

estimates of the background can be maintained through time. Backgrounds are •  

used to derive difference images for thresholding. Once the edges and clusters 

have been extracted they are combined to provide the outlines required by the 

matching algorithm. Section 4.2.6 describes how this is achieved. The combination 

of information, in this manner provides more reliable segmentation. 

4.2.1 Edge Extraction 

Disparity estimation requires edges for matching. These can be extracted from 

the difference, background and foreground images by differentiation followed by 

tracking. In the current implementation a lateral differentiation, across the image, 

is performed on both the background and current images. No initial smoothing 

is applied to control the edge noise. Thus, false edges are eliminated using a min-

imum line length, comparison with extracted clusters, and the disparity gradient 

limit. However the hardware cost of a simple averaging filter is not so great as 

to preclude its use. It may turnout to be desirable from the results of a larger 

field trial. One problem, with initial smoothing filters, discussed in the literature 

review, is that of edge localisation. There is no point in applying an extra mask 

if it is not needed. After lateral differentiation, a modified non-maximal suppres-

sion is applied to the resultant image. however, the process is simplified to one 

dimension, with pixels either side of peaks being set to zero. Suppression reduces 

the number of falsely tracked edges. 

Tracking is applied using hysteresis thresholding for both edge strength and 

edge length. For edge strength, if an upper threshold is exceeded, tracking pro- 
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for a = 0 to IMAGESIZE{ 
for b = 0 to IMAGESIZE{ 

if (latdiffimage[a][b] > start threshold) 
track = 1 
currentrow = a 
currentcol = b 
while (track) 

{ 

- compare lower three pixels 
ie. currentrow+1, currentcol+(-1,0,1) 

- take the largest value 
if (the largest value is greater than contthreshold){ 

- currentrow = currentrow + 1 
- currentcol = value of largest pixel 
- if tracklength > minimum track length store in edge structure 
- if tracklength > minimum track length for the firsttime 

transfer edge buffer to edge structure 
else store column value in temporary buffer 

} 

else 
track = 0 

} end of while loop 
} end of starting track if statement 

} end of  loop 
} end of a loop 

Figure 4-3: The Tracking Algorithm 

ceeds downwards to the next row, where the three adjacent pixels are considered as 

edge candidates. Assuming a lower strength threshold is exceeded and one of the 

three pixels is a peak, the edge is extended. Tracking proceeds until a minimum 

edge length has been exceeded. During this initial phase the results are stored in 

a temporary buffer. If the minimum length is exceeded tracking continues until 

no pixels in the neighbourhood of the next row exceed a lower threshold. Thus 

candidate edges are selected on two accounts. Firstly, each must exceed a cer- 

tain minimum length and, secondly, exceed either of the two strength thresholds. 

The tracking algorithm employed can be summarised in the pseudo-code shown 

in Figure 4-3. The current DETECT implementation applies edge detection to 
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the raw foreground and background images blindly. As an extension, use could 

be made of edges extracted from the difference image and then compared with 

those from foreground and background edge maps. The outline of a new objec-

t should have similar edges in both the foreground and difference images, but 

not the background. The technique is illustrated, for the one dimensional case, 

in Figure 4-4. A problem with this approach is that overall lighting conditions 

change from frame to frame. Thus, the edge strengths will be dependent on two 

images and strength comparisons may fail under these circumstances. However, 

the main reason for not using this method is that the extracted edges still have 

to be grouped using the difference clusters, described in Sections 4.2.3 and 4.2.6. 

In order to extract these clusters we threshold the difference image and tend to 

extract sections of important outline edges, by default. Parts of the foreground 

edge will coincide with the cluster boundary. Outlines can then be defined by 

their proximity to a significant cluster. 

Separate extraction of edges from the foreground and background, followed by 

a comparison with edges from the clustered difference image, is therefore preferable 

for this work. Its advantage is that the edges are dependent on position and 

strength relative to its own neighbourhood. Edge thresholds are therefore based 

on differences which are more likely to be constant over time. Also, the use of 

length as an indicator of edge significance allows the edge strength threshold to 

be less critical to the system as a whole. Figure 4-5 shows the edges extracted 

for a single scene. Although noisy in comparison with other edge detectors, eg. 

the Canny operator described in Chapter Two, the computational complexity is 

much reduced. Deficiencies are compensated by the combination of information 

from the clustering and thresholding modules of the system. 

4.2.2 Edge Map Use and Update 

Initial detection is based on edges rather than absolute frame to frame differences. 

The extracted edge map from the foreground image is stored for reference and 

used to eliminate persistent edges. Decisions must be made as to which edges are 

stationary and which are not. Several parameters can be employed in estimating 
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the permanence of an edge through time. The following criteria are the most 

obvious: 

Difference in edge strength: Edges represent changes in spatial 

luminosity and are relatively independent from temporal light differ-

ences. Thus the strength of a stationary edge often remains constant 

in time. 

Position: Assuming the cameras are not moving, edges should remain 

constant in position. An edge pixel from a stationary edge in one 

frame should be an edge in the next frame. Various sources of noise 

can prevent this occurring. For example, if the true position of an 

edge is halfway between the centres of two pixels then a slight change 

in luminosity may cause a change, of one pixel, in the marked edge 

position. 

Orientation: Clearly, if two edges have the same position, individual 

edge pixels should have similar orientations. Edges extracted from in-

dividual frames are rarely complete and orientation could be employed 

to extrapolate from known segments, to other more doubtful parts. In 

this situation, assumptions must then be made about edge curvature. 

Such predictions are hard to make in the wide range of proposed scenes 

targeted by this system. 

Within the bounds of computability, consideration was given to techniques 

for building edges maps. Firstly, laterally differenced frames can be continually 

added and normalised. Here, advantage is taken of the fact that moving edges 

reduce in significance as time progresses. It is vice versa for stationary features. 

Using edge strengths in this manner can cause problems when different edges have 

variable strengths. A particularly strong edge, resulting from a large change in 

spatial luminosity, may cause problems with scaling and push weaker edges under 

a strength threshold. These "weaker edges" may be consistently in the same 

position and valid in each individual frame. 
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Figure 4-5: A Typical Edge Map 

The obvious solution to this problem is to express edges in binary represen-

tation. Now, edges are exclusively dependent on their persistence through time. 

This is the method used in the present system. As an example, Figure 4-5 shows 

the vertical edge map extracted for a 12 frame sequence. Every time a pixel is 

designated as an edge, the map for that position is updated. The final image is 

grey level stretched to display the more significant stationary edges. 

Once the stationary edge map has been established, current edges can be 

compared to previous ones. As a current edge is tracked along its path, a value of 

positional similarity can then be calculated, dependent on length and edge map 

strength at that point. Equation 4.1 shows one possible measure. 

L 

L.j dE1 
C,  
3edge = 	L 

(4.1) 

8edge is the edge's calculated persistence., L is the length of the current edge, 

is an individual edge's persistence and dE1 is the difference in edge strength 

'This is simply the value of the accumulated edge map, through time, for a particular 

pixel. 
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through time. Unfortunately, the computation of Equation 4.1 involves division 

and multiplications which would be unreasonable in a final CMOS sensor system. 

However, adaptations are possible. Instead of dividing the overall sum by the total 

length, the edge can be sub-sampled to allow a power-of-two divisor. Also in the 

current implementation values of dE1 are not used, removing a multiplication. 

This has been achieved without an appreciable reduction in performance. 

4.2.3 Thresholding 

Some threshold techniques were reviewed in Section 2.3. Most of the described 

algorithms can be dismissed on grounds of their arithmetic complexity. Exceptions 

to this are the P-tile and mode methods [77]. Although not reviewed in Chapter 

Two, local mean thresholding was also considered for this application. 

The P-tile method uses a priori knowledge of the size of the object and choos 

es a threshold to achieve it. Once a moving object is being accurately tracked 

thresholds can be chosen to maintain a particular size within allowed limits. This 

has several problems. Objects may suddenly change, in size, when two separate 

clusters merge. The resultant threshold will wrongly increase to separate the clus-

ters. An even poorer threshold at the next frame will result. This process can 

cause large jumps in the applied threshold and tracking is likely to fail. Another 

difficulty arises in establishing, for three dimensional scenes, a correct estimate of 

object size. Although implemented, the P-tile method is not applied in the cur-

rent DETECT system. The problem of finding an initial size estimate together 

with the likely tracking errors are the main reasons. However, with longer test 

sequences, recorded at faster rates, it might be feasible to make better estimates 

of the correct cluster size. Such a tracking technique, based on known cluster 

sizes, is a possible line for future research for this type of low cost system. 

A second possibility is the use of local means as adaptive thresholds. Figure 

4-6 shows an example where a difference image has been thresholded according 

to the local mean. However this technique tends to extract poorly connected 

clusters which fall below relevant size thresholds. The basic problem with mean 
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.1 

Figure 4-6: Mean Thresholding Applied to a Difference Image 

thresholding is that it takes no account of global information and tends to work 

best if sub-regions can be scaled with a known object size. This situation does 

not arise in this application where objects move and change size with time. 

As an alternative, to the above, one can classify pixels using histogram analysis 

2  The histogram of a difference image should, theoretically, consist of two clear 

foreground and background peaks. Thresholds are chosen to be at the bottom of 

the valley between the two peaks. Problems occur with this type of threshold-

ing when there are multiple peaks, multiple valleys and different sized frequency 

amplitudes. 

The current implementation of DETECT uses the fraction of-the global mean 

as an initial threshold. After four frames of tracking, the grey level distribution, 

of the previous frames main tracked cluster, was extracted. The mean of this 

distribution was used to calculate a higher bound. A second distribution was cal-

culated by subtracting the previous cluster s histogram from the current frame's 

overall difference distribution. A mean is again taken from this new distribution 

and used as a lower bound. A threshold can be chosen somewhere between the 

2 llistogram techniques are often referred to as mode methods 
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Figure 4-7: Overall Difference Histograms Through Time 

two boundaries. The advantages of this technique are several. Firstly, it is based 

on histograms which can easily be implemented as accumulators in hardware. 

Computation of means from the histogram is simpler than calculating local in-

formation for every neighbourhood. Secondly, account is taken of the difference 

distribution specific to a tracked cluster. An example thresholded image with its 

main cluster marked is shown in Figure 4-10. This image is extracted from the 

Sequence 9, from the test data described in Chapter Six. Difference histograms, 

for sequence 9, are shown in Figures 4-7, 4-8 and 4-9. Figure 4-7 shows the com-

plete difference histogram through time. Figure 4-8 shows the complete difference 

histogram, minus the cluster distribution, from the previous frame and Figure 4-9 

shows the distribution of the major changing clusters through time. Overall, the 

calculation of these statistics can be implemented efficiently using hardware accu-

mulators on a VLSI chip. Mean calculations could be performed, on an associated 

microprocessor, using these histograms as input. It seems clear that custom VLSI 

is efficient at collating data, into a format suitable for a microprocessor, although 

not performing the final calculations. 
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Figure 4-8: Difference Histograms Through Time with Clusters Subtracted 

4.2.4 Clustering 

There are many definitions and meanings of the word "cluster" [22]. In this work,. 

the term cluster is used to define a connected area of the thresholded difference 

image. This can be used to connect disparate edge segments into one object and 

extract a combined outline from both the cluster data and the edge data. 

As with thresholding, the cluster algorithm was written to expose hardware 

implementation problems. Thus, procedures have been written without recursion 

in order to expose the true storage requirements for a hardware implementation. 

The routine s basis is a local search which pushes thresholded pixels from each 

neighbourhood onto a stack. The pixel in the input image is then set to zero. 

Once done for a locality, another pixel is "popped" off the stack and used as 

the next search centre. The following pseudo-code, Figure 4-11, illustrates the 

code used to generate Figure 4-10. Although not mentioned in Section 4.2.3, it 

is possible, with minor alterations to the above code, to perform thresholding at 

the same time as the connectivity search. More sophisticated adaptive difference 
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Figure 4-9: Difference Histograms of Clusters Through Time 

Figure 4-40: Cluster Thresholding Applied to a Difference Image 
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- XOR thresholded image to find cluster edges 
for a = 0 to IMAGESIZE{ 

for b = 0 to IMAGESIZE{ 
if (binaryimage[a][b] is an edge of a cluster){ 

currentrow = a 
currentcol = b 
continuecluster = TRUE 
while (continuecluster) { 

forc= -ltol{ 
for d = -1 to 1 { 

if (bin aryi mage [currentrow + c][currentcol + d] 
is an edge of a cluster) then 

- push (currentrow + c, currentcol + d). 
- set binaryimage[currentrow+c] [current col+d] 0. 
- update cluster max/mm left/right boundaries. 

} end of d loop 
} end of c loop 
if stack is not empty pop (currentrow, currentcol) 
else{ 

- create new cluster structure. 
- store cluster parameters eg. size, boundaries etc. 
- continuecluster = FALSE 

} end of while loop 
} end of main if condition 

} end of b loop 
} end of a loop. 

Figure 4-11: The Cluster Algorithm 
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Figure 4-12: Cluster Expansion (White) with Core Cluster (Grey) 

thresholds could then be used, using parameters such as cluster size and shape, 

running totals of grey level differences and the cluster's position in the scene. In 

this work, a hysteresis technique was implemented. Thus, a cluster search only 

started if a pixel exceeded an upper threshold and stopped when the current value 

had no untouched neighbours above a lower threshold. However, after combining 

thresholding and clustering in this manner, there was little difference in the overall 

performance of the DETECT system and this technique is not currently used. 

Another adaptation attempted was a form of cluster expansion. Currently 

multiple sources of information are used to decide which edges are outline and 

which are not. Thus it is better to choose a more severe threshold to ensure 

that clusters are well separated. Once the outlines are known they can be used 

as seed points in a lateral expansion, at a lower threshold, or until an edge is 

met. Figure 4-12 shows a core cluster with its lateral expansion marked in white. 

Although a slight improvement in overall segmentation was achieved, the current 

implementation does not employ this routine. As is discussed in Section 4.2.6 

cluster outlines are used to extract relevant edges. If a individual edge coincides 

with the cluster outline it is used for matching. Such a lateral expansion tended 

to "connect" with noise edges and reduce the number of correct stereo matches. 
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Overall, accurate extraction of clusters is not a crucial part of the system 

as the results are combined with edge information to provide a more complete 

segmentation. 

4.2.5 Background Update and Extraction 

The thresholding/clustering algorithms just described, assume a previously stored 

and continuously updated background image. We wish to store all areas of the 

stationary background which are not covered by the tracked object. This task 

is similar to many problems in the computation of motion flow and image cod-

ing[30] [26] [36], where one wishes to quantise those blocks of the image which have 

changed. 

As an intruder in an alarm system is likely to be an unusual event, it should 

be possible to completely update the background during the normal operation of 

the system. Attaining this goal requires clear discrimination between an object's 

presence in the scene and a general change in luminosity. Changes in luminosity 

can be caused by slow effects such as clouds and day light, or higher frequency 

effects such as sine waves, in time, produced by mains strip lighting. These ef-

fects must he eliminated or prevented from affecting the tracking and detection 

algorithms. 

Discrimination between global and local luminosity changes can be based on 

edge information. They measure relative and not absolute changes in luminosity. 

Edges will remain constant in position and, often, in strength. Thus, the sudden 

appearance of significant moving edges provides a better indicator of an intruder's 

presence than frame to frame luminosity differences. 

Figure 4-13, shows the ratio of the number of changed edges to the number of 

background edges through time. This sequence was created artificially by merging 

two half sequences, such that a person suddenly appears in Frame 6. Clearly the 

ratio of new edges to old increases as a person appears in the scene. A more 

realistic example of how the number of edges change, as an intruder enters the 
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Figure 4-13: Graph Showing the Ratio of New Edges to Background Edges 

Against Time for Artificial Sequence 

scene, is given sequence 10 , In all three sequences an intruder enters gradually 

through a door. A graph showing the new to old edge ratio is shown in Figure 

4-14. The ratio increases as the person moves towards the camera. 

Such a new to old edge ratio parameter is largely independent of absolute light 

changes and is therefore a good measure of physical changes in the scene. In a 

final implementation experiments would have to be conducted to establish the 

optimal ratio at which complete backgrounds would be captured. 

Once detection has been achieved, background extraction and update can be 

restricted to areas outside the main regions of interest determined by the cluster-

ing/thresholding routines. In DETECT, the background is renewed everywhere, 

every frame, except within the main clusters boundaries. This is performed on a 

simple pixel for pixel substitution without smoothing or neighbourhood averaging 

and provides a satisfactory low cost solution for the current data. 

3 The details of Sequence 10 can be found in Chapter Six. 
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Figure 4-14: Graph Showing the Ratio of New Edges to Background Edges 

Against Time for Sequence 10 

Errors in update will inevitably occur, due to shadows and reflections. These 

are dealt with in several simultaneous ways. Most local lighting changes are 

restricted to small areas and can be eliminated using a minimum cluster size. 

Thus if the cluster is insignificant the background, in this area, will update. 

4.2.6 Edge and Cluster Combination 

At this stage in the system we now have two sets of data representing the scene. 

Firstly the thresholded and clustered regions of the image and, secondly, the list 

of vertically oriented edges. As shown in Figure 4-2, these two sets of data are 

combined to extract the relevant edges for stereo matching. 

The problem is one of establishing which of the disconnected edges are from the 

same object. Section 2.4 discussed the different approaches. Maximal cliques can 

be used to find strengths of connection between different edges. Such strengths 

could be based on edge orientation, edge strength and proximity. The computation 

involved rules this avenue out of bounds. 
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For this work, a modified "connection strength" technique was attempted. 

Edges from the foreground image were compared with the difference image. Lat-

eral scanning started from each edge pixel in a direction determined by the sur-

rounding pixels in the difference image. If the difference pixels on the left were 

larger, then the scan would proceed to the left and vice versa. The scan continues 

across the difference image, following the pixels of largest value, until a connection 

is established with an edge of the opposite difference sign. 

Edges were grouped on the number of connections and grey level difference 

strength between edges. There are several fundamental problems associated with 

this approach. The maxima, in the difference image, are based on foreground to 

background differences and not on the connectivity of the object. Additionally, 

there is no explicit way to separate outline edges from any other type of edge. 

Due to these deficiencies this technique was not pursued. 

The technique used in DETECT, eliminates edges which are not attached 

to the outline of the tracked cluster. Each cluster outline is represented by the 

number of the cluster from which it is derived. If an edge pixel is on a particular 

cluster outline then the reference number is used, as an index, to increment the 

appropriate bin of a histogram. The edge is assumed to be part of the cluster with 

the largest accumulator value. The following pseudo-code, Figure 4-15, illustrates 

the method. The above technique simply attaches each proposed edge to the 

outline with the most similar path. Also, the number of pixels which correspond 

to each overlap between the edge and the cluster must exceed a threshold. This will 

eliminate all the edges which are not attached to any cluster and those which only 

just touch. An advantage of this technique is that it allows, at a reasonable cost, 

both cluster and foreground edges to be incomplete and partial, without the entire 

procedure failing. Additionally, the combination of two separate sources of data 

can control the errors of an imperfect segmentation. For example, thresholding 

is unlikely to be perfect and some extracted clusters will exceed the significance 

threshold. However it is improbable that a significant moving edge will also be 

attached to that cluster. A further defence against false edges being used for 

matching is implicit in the use of multiple cameras. If a false edge has attached to 
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while (noteridofedgelist) 

{ 

- set cluster accumulators to zero 
while (notendofpixellist) 

{ 

- extract the cluster number from a reference image of significant clusters. 
- increment a cluster accumulator using the reference value as an index. 

} end pixel tracking loop 
- search accumulator array and find the maximum valued index. 
- search cluster list for the cluster with equivalent index value. 
- add a pointer from that cluster to this particular edge. 

} end of edge loop 

Figure 4-15: Extraction of Outline Edges 

• false cluster then the same error must occur in either two or three cameras for 

• correct disparity match. These two "filters" reduce the number of false matches 

to a minimum. 

4.3 The Software Environment and Data Rep-

resentation 

A more detailed explanation of the DETECT software can be found in Appendix 

B. The DETECT system was entirely written in C, operating under UNIX, on 

SUN 3 and 4 Work Stations. Demonstration and debugging software was written 

using sunview libraries, allowing results to be displayed in both the SUNTOOLS 

and OPENWINDOWS colour graphics environments. All the initial operations 

of segmentation are performed on 256x256 raster scan images. As described in 

Section 6.2, these were captured using custom framegrabber hardware linked to 

a PC. Each pixel was digitised to 256 grey levels requiring 64k for each image. 

The lower levels of processing required the most storage due to the requirement 

of a background image and intermediate images. In a hardware system only the 
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background would have to be stored completely and intermediate storage could 

be compressed to smaller on-chip buffers. 

Data storage can also be reduced at the higher levels when using edges, thresh-

olded images and clusters. These features can all be given a binary representation. 

Edge storage can be further compressed if it is known that there will not be more 

than one column between rows. In this case, the largest possible edge, from top to 

bottom, would require only 64 bytes (512 bits) for the column data plus 2 bytes 

for the starting offsets. Also, as will become clear in the next chapter, disparity 

histograms are required for each non-background edge. The range of possible dis-

parities is unlikely to exceed 30 requiring a similar number of 8 bit accumulation 

registers. Each histogram could be stored with the edge as a suffix. 

Cluster data structures are also fairly compact, only requiring boundaries to be 

stored with pointers to attached edges. Again limited storage has to be reserved 

for the clusters own histograms for grey level distribution and disparity. However 

it is unlikely that more than ten significant cluster structures will have to be stored 

for each frame. 

Overall, the storage requirements for the above data structures are small when 

compared to that necessary for the background image, of which parts will have to 

be updated every frame. In addition, a record must be kept of stationary edges 

for comparison with those of the current frame. In the current software this is 

done by updating a list of edges, but in a hardware implementation the stationary 

edge map is likely to be maintained as a one bit array. This is simpler to access 

and has a reduced storage overhead. 

4.4 Discussion of a Hardware Implementation 

and Storage Requirements 

Section 2.5 considered some of the memory architectures possible in an ithage 

processing system such as this. A reasonable observation was that most digital 

chips had memory close to the processing elements to assemble regions of interest. 
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It seems clear that storage is a prime consideration for this type of vision system. 

Brief consideration is now given to possible architectural implementations of the 

algorithms discussed in Section 4.2. For a final system a more detailed analysis 

between functionality and architecture would have to be performed. Such low 

level algorithms are the most likely to be implemented in custom hardware, as 

most operations are based on neighbourhoods. Thus, caches can be used to cycle 

through the image, reducing access time and memory storage. 

A point, which is of relevance for a hardware implementation, is the simplic-

ity of the downwards tracking technique. If tracking is conducted in a square 

neighbourhood then problems arise when edges cross each other' and go round 

in circles. Mechanisms must be employed to ensure that no endless loops and 

re-tracking occur. Obviously this can be done by setting tracked pixels to zero. 

However this would require a separate memory to store the original image being 

tracked. Setting tracked pixels to zero would also have to be done after the min-

imum edge length had been achieved, otherwise a considerable number of other 

edges would be wrongly broken. Also, with a downward technique there is a well 

defined limit to edge length: the height of the image. Thus edge storage can be 

reduced to a simple starting row and column, followed by a stream of binary data 

defining the position of the current pixel in relation to the previous. This sort 

of structure could be stored and accessed in off-chip FIFO buffers. Control and 

extraction logic could be implemented on the CMOS sensor. 

In contrast to the above, the current implementation of clustering is a random 

process and the theoretical maximum stack possible is limited only by the size of 

the image. In an efficient implementation one would want to restrict the possible 

stack size to avoid off-chip interfaces. To this end, the clustering algorithm has 

been altered to track around, rather than through, a cluster. This allows the stack 

to be restricted to two pixel positions, one for each end of the current line; Cluster 

significance is now dependent on perimeter length rather than absolute size. The 

trials, described in Chapter Six, indicate that this does not appear to seriously 

increase the number of false clusters. 

We still require storage of a complete thresholded image in memory. An im- 
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Figure 4-16: Possible Implementation of Shift Memory for Clustering 

provement would allow the processing to be performed on several complete raster 

scans or bands as described in Figure 4-16. Every cluster will be assigned a num- 

ber, which together with the boundary, will be recorded for all "live" threshold 

regions. Raster scans can be loaded and shifted upwards as they are produced 

by the sensor/ ADC/thresholding circuitry. The register bank can be searched for 

connected regions and the boundaries extracted. An advantage of this technique 

is that, depending on the number of rows stored, many of the smaller insignificant 

clusters could be eliminated without having to store its details. A problem is 

that areas, of the same cluster, which are connected, on a lower row will be given 

different reference numbers. The simple solution is to produce a list of reference 

numbers indicating which clusters have become connected further down the image. 

The last part of the DETECT system described in this chapter was the group-

ing of extracted edges with significant clusters. Three possible implementations 

could be: 

1. Clusters and edges held as raster scan data: Processing would 

be performed on two images, one of which contained the edges, stored 

as reference numbers, and the other, the clusters, again stored using 

references. The relevant pixel values could be used as indexes to a 

numbered array of accumulators. Unfortunately the array sizes are 

unpredictable and dependent on edge thresholds, difference thresholds 
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and the scene. However in the current system there are usually about 

ten clusters and, up to, 300 significant edge segments. 

One data source held as raster scan and the other in list for-

mat: This has the advantages of reducing the required storage for 

either the cluster or edge lists. The processor would store one in raster 

format and the other as a list. The lists would then be fed in and com-

pared to the raster scan. Which was stored as which would depend on 

the architectural experiments together with expected operating thresh-

olds. 

Both clusters and edges stored as lists: Of the possible three 

combinations this technique requires the least storage. However, as 

usual, the price for reduced memory is an increase in processing. For 

each edge pixel the entire cluster list, with associated outline edges, 

has to be searched. Again, reference numbers would be used to index 

an array of accumulators. 

4.4.1 Conclusion 

This chapter has described the early segmentation stages of the DETECT sys-

tem. These are aimed at providing a low cost solution allowing extraction of 

outline edges in stationary scenes. These cost considerations are particularly im-

portant at the pixel levels of computation where the largest number of calculations 

are required. At this level the DETECT system employs no multiplications, di-

visions or floating point calculations, eliminating the need for expensive silicon 

implementations of these functions. Consideration has also been given to possible 

architectures. As mentioned in Chapter Two, most image processors have local 

memory close to the processing elements to allow neighbourhoods to be assem-

bled. It seems clear that the problems of memory organisation would need to be 

considered in any architectural study. 

Further, and implicit to the idea of simple hardware, is the combination of 

different sources of data, to provide the outline of the clusters for matching. This 
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is important as, often, machine vision researchers apply different processing mod-

ules, blindly, without considering possible savings inherent in the overall problem. 

From a practical engineering point of view systems should be specialised to an 

application's requirements. 

The next chapter will describe how the edges and cluster outlines are used 

to provide estimates of interocular disparity. Although discussed, in a separate 

chapter, the matching process is essentially a continuation of the segmentation 

stages described here. Matching should be considered in terms of the outlines 

produced by the low level segmentations described in this chapter. 
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5.1 Introduction 

This chapter will describe the stereo matching and disparity estimation techniques 

used in the DETECT software. As described in Chapter Three, there are many 

different ways to solve the stereo correspondence problem. Two types appear to 

be evident; those based on correlation searches and those on feature matching. 

For reasons of complexity reduction a feature based matching system has been 

implemented. It is now intended to describe one such system which makes use of 

the fact that under certain camera configurations and object dimensions an image 

overlap occurs when local coordinate systems of the two cameras are aligned. 

Thus, if the outline edges of the object can be separated from the surrounding 

features then the matching problem is reduced to a computationally simple one 

way search along the epipolar raster scans. There is no requirement to solve the 

stereo correspondence problem for all types of edge. In this manner, the matching 

algorithms described are interlinked with the segmentation techniques discussed 

in Chapter Four. In particular, segmentation was designed to extract only the 

outline edges of a moving object. 

Following on from the techniques used to match left and right features, Section 

5.3 describes how a sub-pixel measure of disparity is extracted from moving objects 

in large scenes. Such scenes require the use of wide angle lenses resulting in 

significant pixel quantisation. Techniques are presented to reduce and control 

this problem. Brief consideration will also be given to the problems of calibration 

although, as suggested in Chapter Seven, this is an area for future research. As in 

previous chapters, hardware constraints have been taken into consideration. Here, 

the problems are likely to be less severe, given the reduced data rates required 

once segmentation has been performed. Thus, in the calculation of disparities 

and in filtering operations, more complex arithmetic operations are feasible. The 

speeds required for this type of calculation are not excessive, at frame rates of 

2511z. The chapter will end with some conclusions. 
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5.2 The Matching Process 

Stereo matching is the process of finding corresponding features from two or more 

views of the same scene. It has many similarities with the problem of tracking 

features through time except that stereo disparities are caused by a spatial sep-

aration of the cameras whereas time disparities are caused by movement of the 

object or camera. In addition stereo disparities have predictable directions par-

allel to the camera displacements. Some stereo vision algorithms[54] [53] [76] were 

described in Chapter Three. However, many are computationally intensive and 

have been developed to imitate the human vision system. The constraints im-

posed by possible commercial VLSI and hardware implementations suggest that 

a reduction in processing would be advantageous. In effect, control of the search 

space for stereo matches is required. 

Chapter Three also covered the various constraints which can be used to help 

solve the stereo correspondence problem. The two major, published, search con-

straints of use in this work are: 

The Epipolar Constraint: If cameras are separated by a lateral 

translation then a feature from one camera will have its correspondent 

on the same raster in the other camera. Clearly, this constraint can 

reduce the problem of finding corresponding features to one dimension. 

In reality, raster scans from two spatially separated cameras will never 

be perfectly aligned. Some form of calibration is required to allow 

equivalent rasters to be compared. 

The Disparity Gradient Limit: The disparity gradient limit has 

been shown to be an effective technique in eliminating incorrect match-

es[84][66]. Figure 3-4, in Chapter Three, illustrates this constraint. As 

the edge is tracked, disparity is calculated by simply scanning across 

from one edge to the other. If the disparity from one match to the next 

exceeds a threshold then that match can be rejected. 
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/ Stage One */ 
while (ñotendofsigniflcantrightclusterlist) 

{ 

- set reference image to zero 
while (notendofattachededgestocurrentcluster) 

{ 

if edge is the left cluster edge then code = 1 
if edge is the right cluster edge then code = 2 
if edge is a left edge segment then code = 3 
if edge is a right edge segment then code = 4 
while(notendofpixellist) 

{ 

- calculate the calibrated row and column values 
for this particular pixel. In the current system 
this simply involves adding a translational offset. 
- set reference image pixel, using the above row and 

column to the correct code. 
} end of pixel list 

} end of attached edge loop 
} end of right cluster list 

Figure 5-1: Matching Algorithm: Stage 1 

In addition to the above two general stereo matching constraints,, assistance is also 

extracted from what is called in this work, the overlap constraint. This is described 

in Section 5.2.1. This allows the entire object to be taken into consideration when 

matching is performed. 

Figure 5-3 shows a block diagram of the matching procedure described in 

Figures 5-1 and 5-2. 

Matching begins with the transfer of all the edges extracted from the main 

right hand clusters into a reference image. Edges are recorded in the reference 

image under four different codes, to represent the left and right outlines coming 

from the separate cluster and edge detection algorithms. It is also important to 

note that the edges are transferred on a cluster by cluster basis. Thus only the 

largest clusters with attached edges are used for matching. Following the definition 

of the edge types, calibration information can be added when setting the reference 
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/* Stage Two / 
while (notendofsignificantleftclusterlist) 

{ 

while (notendofattachededgestocurrentcluster) 

{ 

- set disparity histogram, for this edge, to zero 
while(notendofpixellist) 

{ 

- row = row of this pixel 
- col = column of this pixel 
- startcol = column of this pixel 
while (code of the current pixel is not equal 

to the code of the reference image pixel and col i IMAGESIZE) 

{ 

- increment col 

} 

- disparity = col - startcol 
- update this edges histogram using "disparity" as an index. 
- disparitygradient = lastdisparity - disparity 
- lastdisparity = disparity 
if (disparitygradient > DISPARITYGRADIENTLIMIT) 

{ 

- break edge at this point 
- create new edge from the remainder 
- add new edge to list end 
- notendofpixellist = TRUE 

} 

} end of pixel list 
} end of attached edge loop 

} end of left cluster list 

Figure 5-2: Matching Algorithm: Stage 2 
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Figure 5-3: The Matching Process 
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image. In the current system this involves a simple (x,y) translation added to the 

edge coordinates. Calculating such an offset will be done by the calibration stage 

when the system is installed. For the applications being considered in this work, 

it should be possible to calculate these offsets using the trial and error approach, 

discussed in Section 5.6. 

The second stage in the matching process involves scanning, in the x direction, 

from a known start point, and then finding the first pixel with the same code as 

that edge. The length of the scan is a measure of the disparity. As the edge is 

being tracked downwards, the disparity gradient limit is applied. If this exceeds a 

limit, usually one pixel, then the edge is re-segmented and a new edge formed from 

the remainder. It is unlikely that false matches will track with a low disparity 

gradient and a re-segmentation allows a later separation of good matches from 

false. Such a "goodness" calculation would complicate custom hardware due to 

the likely divisions involved. It has therefore been kept separate from the main 

matching algorithm and would be implemented on a microprocessor. 

Several techniques, inherent in the above two stages, reduce the possibilities 

of false matches. The use of codes ensures that edges only match their own kind: 

an edge attached to the left hand side of a cluster will only match with another 

edge attached to the left hand side of a cluster. In addition, some edges are 

directly extracted from the cluster itself. The significance of these in the final 

disparity calculation can vary depending on the segmentation for a particular 

frame. However they add an extra layer of safety to the final results. In summary, 

once the outline edges have been extracted, matching can be performed by a simple 

scan from a left image edge to a right image. Thus the correspondence problem has 

been transferred to the segmentation stages of processing and explicit matching 

searches have been avoided. 

Attention is now turned to the geometry which allows this type of matching. 

In particular the geometry required to ensure that an object s images in the left 

and right cameras overlap when their local origins are aligned. 
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Figure 5-4: Overlap Matching 

5.2.1 The Overlap Constraint 

The above technique, which has not appeared in the surveyed literature, employs 

the fact that an object's image in two spatially separated cameras will overlap 

when their local origins are aligned. Figure 5-4 shows two simplified images where 

a blob is projected onto both cameras. The cameras are assumed, unrealistically, 

to be perfectly calibrated and spatially separated. Thus a simple translation will 

allow the local origins to be aligned. Such a matching algorithm requires that 

corresponding edges from two cameras be positioned, in the reference image, as 

close to one another as possible. The chances of other false edges "getting in the 

way" obviously increases as edges are separated either by translational offsets or 

by genuine disparity. In this respect it is important to be able to calculate the 

geometric conditions when an overlap will not occur and ensure that the camera 

is set up correctly. 
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The following analysis derives a general formula to calculate the disparity-

overlap ratio for two idealised images of the same object. Figure 3-1, in Chapter 

Three, shows a general two camera stereo arrangement. For simplicity we will 

assume that there is no rotation around the x or z axis and reduce the problem to 

that in Figure 5-5. The problem is now two dimensional and the left coordinate 

system can be projected onto the right using Equation 5.1. 0 represents the 

angle of rotation between the two coordinate systems and (XT, Zr) the translation 

between the two origins. 

x

cos0 sinO 	lx 'I 	(Zr 

— 	

I 

z j 	sinO casO) k z ) 	k Z T 

An object of width W is now placed in the scene and its end points, L and R 

are projected onto the two camera image planes through the focal points LF and 

RF. L has coordinates (XLL, ZLL)  in the left hand camera coordinate system and 

(XRL, ZRL) in the right hand coordinate system. R has coordinates (XLR, ZLR) 

in the left hand camera coordinate system and (XRR, Z1) in the right hand 

coordinate system. The projected points are LR (xLR, ZLR), LL (XLL, ZLL), RR 

zArrn) and RL (XRL, ZRL). The following equations represent these projec-

tions, through focal lengths of F, onto the image plane. 

FXLR 	 FXLL 	 FXRR 	 FXRL 
XLR = /7 	XLL = 	 XRR = 	 XRL = 	 ( 5.2) 

F — LJLR 	 F—ZLL 	 F—ZRR 	 F—ZRL 

Before the parameters, which define disparity are used, it is necessary to translate 

the right hand camera coordinate system onto the left using Equation 5.1. Thus, 

F(XLRCOSO + ZLRSiTiO + Zr) 	
(5.3) Xflfl 

= F + XLRSiTh0 — ZLRcOSO — ZT 

F(XLLCOSO + ZLLSiI -I9 + Zr) 	
(5.4) XRL 

= F + XLLSin0 — ZLLCOSO - Zr 

Figure 5-6 shows the position, in a combined image, of the above parameters, 

XLR, ZLL, XRR, XRL. It allows a definition of both overlap, °iap,  and disparities, 

61  and 62, as in Equations 5.5 and 5.6. 

61  = XJJ — XLR, 62 = Zj — XLL 
	

(5.5) 

°lap = XLR — XRL 
	

(5.6) 
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Figure 5-5: Stereo arrangement with no roll nor tilt 
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Figure 5-6: Overlap and Disparity Definition 
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When the object is thin, in relation to the range, then the two values of disparity, 

61  and 2,  may be assumed identical. This assumption is true for the scenes and 

equipment employed in this work where an alarms requirements will likely lead to 

short focal lengths and longer ranges. We can now say that 61 = b2 = S. 

The geometry can again be simplified by assuming that 9 = 0 and ZT = 0 as 

shown in Figure 5-7. For mechanical reasons this is the camera geometry used 

in the trials, described in the next chapter. Equations 5.3 and 5.4 now reduce to 

Equations 5.7 and 5.8. 
F(XLR+XT) 

XRR 	
F 	

(5.7) 
- ZLR  

and 

F(XLL + XT) 

= F - ZLL 	
(5.8) 

If the angle, 0, which the object makes with the imaging plane, is zero, and 

W = XLR - XLL, then ZLL = ZLR = Z and Equation 5.6 can be replaced by 

Equation 5.9. 

°lap 
= F(W + XT) 	

(5.9) 
F—Z 

Also, disparity can be represented by Equation 5.10. 

FXT 
F—Z 

(5.10) 

From Equation 5.9 it can be seen that an overlap will always occur if the interoc-

ular distance, XT, is less than the width of the object, W . Further, Equations 

5.9 and 5.10 can be combined to calculate the overlap /disparity ratio, R. 

W+XT 	
(5.11) 

XT 

The important point to note is that R is constant throughout the entire scene. It 

is dependent entirely on the geometry of the camera and object and is jndependent 

of position in the scene. 

One must now consider what happens to an overlap, and therefore the match-

ing algorithm, when an object rotates in the scene. If the object width parallel 

1 °iap becomes negative at this point. 
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Figure 5-7: Simplified Camera Geometry, Showing Limiting Condition 

for Overlap (xjjR = XLL) 
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to the imaging plane is greater than the translation between the cameras, the in-

terocular distance, then overlap will always occur. However, if an object rotates, 

by some angle 0, the object will eventually separate in the two images. Equation 

5.12 is the limiting condition for overlap to occur when an object rotates. This 

is extracted from the geometry shown in Figure 5-7. Thus D is the interocular 

distance where there is no overlap and XLL = Xp. D is constructed by subtract-

ing s from the distance Wcosçb, where s is found using similar triangles, such that 
= XttWsznl The main point to note is that, due to the sine term, overlap is 

now position dependent. 

XLL  
Dx=W (Cos c_ 	sin 	 (5.12) 

The general conclusion from the above analysis is that, for this algorithm, it 

will thus be impossible to match objects for which the width parallel to the imaging 

plane is narrower than the distance between the cameras. In the experiments 

described in Chapter Six the camera rig was set up with this in mind. Such a 

restriction is not a serious problem in this application and is, in fact, an advantage. 

It prevents the extraction of disparities for spurious objects which fall below a 

physical size threshold. The extraction of such disparities is now described. 

5.3 Disparity Extraction 

The previous section dealt with the mechanics of finding correspondences for out-

line edges between two different images. Explanations of the disparity gradient 

limit and overlap were also provided. The result of the above matching process is 

a collection of clusters with attached edges and associated disparity histograms. 

These histograms are now used to provide estimates, to sub-pixel accuracy, of 

the current main cluster's overall disparity. Section 3.5.2 discussed some of the 

accuracy issues related to the extraction of disparity. Pixel quantisation noise 

and mis-matches will cause the disparity to spread over several values of the his-

togram. As we are using short focal lengths, these errors become more significant, 

especially, when tracking longer range objects. 
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Figure 5-8: Edge Disparity Histograms for One Cluster 

Figure 5-8 shows the disparity distributions for the three edges from an ex-

tracted cluster. To improve the cluster's disparity distribution, measures of con-

fidence can be assigned to each individual edge. - 

The current implementation of DETECT uses the mean and variance of rele-

vant parts of the disparity histogram as measurements and associated confidence. 

Once a cluster has been detected in the scene and is being tracked, disparities from 

previous frames are used to restrict those allowed in the current frame. Thus the 

means are calculated on a specific band of the histogram around the major peak. 

Provided enough pixels are matched and the usual Gaussian assumptions appli-

cable, the mean provides a sub-pixel disparity measurement for the entire object. 

Figure 5-9 describes how this is done for the edge clusters. Example disparity 

histograms, plotted through time for each of the three measurements, are shown 

in Section 6.3.2. 

Consideration was also given to weighting match frequencies according to their 

distance from the previous frames disparity and in relation to other edges in that 

cluster. A problem associated with this type of weighting is that, while reducing 
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Figure 5-9: Disparity Extraction from Matching Histograms. 

the contribution of x disparitieslt distorts the distribution for a particular edge. 

Thus it is not currently used. 

An important feature of this work is that a measure of the error is inherently 

provided by the calculation of the variance of the disparity. This not only takes 

into consideration the errors caused by quantisation but also those caused by 

inaccurate feature matching. Such combined measures, as discussed in the next 

section, can be utilised in the tracking filters described in Section 5.5. 

5.4 Disparity Histogram Error Analysis 

With the three camera rig suggested, by Figure 3-15 in Chapter Three, three 

disparities can be extracted: two from the inner pairings and one from the outer 

cameras. The error PDF's shown in Figure 3-15 cover the entire scene. However 

as described in Section 3.5.2 errors vary with distance from the camera. Thus 

different points in the scene will have different PDF's. Probably, in any final 
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system, it would be necessary to calculate PDF's for separate range bands in 

the scene. This would allow confidence envelopes to be calculated for particular 

disparities. 

In view of the error considerations, described in Chapter Three, the DETECT 

system has employed three cameras to estimate an overall disparity. This reduces 

the combined effects of pixel quantisation noise and the matching errors of an 

individual point in the scene. 

Consideration is now given to estimation of combined errors for the three 

stereo measurements from a triple camera rig. The disparities from each possible 

measurement from three cameras are not independent. This is clear from the fact 

that a poorly extracted edge from the left camera will cause inaccuracies in two 

out of the three measurements. In this application we assume that the errors in 

feature extraction are independent and calculate our error covariance matrix for 

feature matching on this assumption. The advantage of this approach is that it 

provides a combined variance for quantisation errors and feature matching errors. 

The three possible disparity measurements are represented by 

61  = x1+711 — x2—i2 	62 = X2 + 772 — X3 q3 	83  = 	 ( 5.13) 

where x i  is the edge position with respect to the local coordinates and 'h  is noise. 

61  is the disparity between the left and middle cameras, 62 is the disparity between 

the middle and right cameras and 83  is the disparity between the two outer cam-

eras. A false match is considered part of the noise. Thus the errors in disparity, 

can be summarised as 

AXI = 1 	2 A X2 = )2 -173 Ax3 = 17 -77 	 (5.14) 

and considered as combinations of independent noise sources ij. From this an 

error covariance matrix can be derived based on the experimentally calculated 

values of Ax. The error covariance matrix can be represented by 

Cov(c) = E[A.xS tx] 	 (5.15) 
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where the main diagonal elements, iu, are E[&x € ]. The other elements in the 

matrix are 
- 133 - 111 - 122 

12 = 121 - 	 (5.16) 
2 

i23 = - 32 - ll - 22 - 133 

2 

113 = 131 - 
- 122 - 	- ill 

2 

It is important to note that the values of t ij  are simply the variances of the 

extracted disparities. They can be extracted from the disparity histograms and 

then used to calculate the other elements of the matrix. We have used the Cov(c) 

matrix in the Kalman formulation where the disparity velocity is modelled as 

signal noise. 

5.5 Filtering Techniques 

Figure 5-10 shows the disparity output curves from a 16 frame sequence. In the 

main the results are fine. However there are problems with sudden large spikes 

and errors in particular frames. This section is about the control of such errors and 

the combination of the three disparities such that these spikes are eliminated in 

the final averaged disparity trace. Additionally, it would be useful if a confidence 

measure could be provided to allow the calculation of alarm thresholds. Adaptive 

filtering techniques can be used to combine current information with that from 

previous frames and from other measurements. 

Several common techniques have been developed to smooth such time depen-

dent data series. The two considered here are: 

Least Mean Squares 

Kalman Filtering 

The Least Means Squares, (LMS), algorithm has been applied generally in 

many areas of signal processing[31]. The following equations represent the basic 
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Figure 5-10: Extracted Raw Disparities for Sixteen Frame Sequence 

structure of the algorithm: 

Filter output, 

y(n) = *T(n)u(n) 	 (5.19) 

Estimation Error, 

e(n) = d(n) - y(n) 	 (5.20) 

Tap- Weight Adaptation, 

*(n + 1) = *(n) + pu(n)e(n) 	 (5.21) 

where y(n) is the estimated output signal for time step n, *(n) is the vector 

of weights to produce y(n). u(n) is the input vector of measurements. The 

estimation error, e(n), is calculated from the difference between the training signal, 

d(n), and the current estimate. It is then used to calculate the next set of weights 

with respect to a convergence parameter, p. 
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In terms of the current application of stereo tracking, problems arise with the 

LMS formulation. The first and most significant problem is that a training signal 

is required to calculate the initial values of the filter weights. In any practical 

installation, it will be very difficult to calculate true disparities for the current ob-

ject position. Secondly, the calculated weights will only be valid for a single series 

of disparities, ie. the ones that were used as the training signal. In wide angle 

systems it is likely, that the object in the scene will be free to move anywhere, and 

in any direction. One set of weights will not be sufficient for the many possible 

tracks through an individual scene and no account is taken of the current velocity 

or acceleration. The third problem associated with the LMS, and similar algo-

rithms, is that it is difficult to combine information from different measurements. 

It therefore does not utilise all the available information. 

Kalman filtering provides an alternative to the LMS algorithm which can ex-

plicilly model the object's motion in a scene. it can also be formulated to take 

account of interdependencies between the three extracted disparities. It is a recur-

sive technique which uses a priori knowledge about the uncertainties associated 

with particular measurements of the state vector. In this work the state vector 

could be a measurement of the three possible disparities; or depths, from a three 

camera stereo rig. Each of these measurements has a variance associated with 

it. An estimate of the current state, based on the measurement error covariance 

matrix is maintained, with the system error matrix which models the likelihood 

of changes in acceleration. The formulation applied in this project is based upon 

examples and theory preAented by Haykin [31], Matthies [55], Hwang [12] and 

Bozic [llJ. The equations for a vector implementation are stated below: 

Estimate 

R(k) = A*(k - 1) + K(k)[y(k) - 	- 1)] 	(5.22) 

Filter Gain 

K(lc) = P1(k)CT[CP1CT + R(k)]' 	 (5.23) 

P i ( k) = AP(/C - l)AT + Q(k - 1) 	 (5.24) 
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Error Covariance Matrix 

	

P(k) !1ck)(k)c(k)Pl(k) 	 (5.25) 

The i matrix is the state vector being estimated at a time step represented by 

Ic. In this application it consists of the three possible disparities extractable from 

a three camera rig and is therefore a 3x1 vector. y is the measurement vector and 

K the Kalman gain matrix, which is calculated from 5.23 and 5.24. In reference 

to Equations 5.22 to 5.25, we can approximate the change in disparity, between 

frames, using the following vector equation. 

	

x(k) =.Ax(k - .1) + w(k —1) 	 (5.26) 

A is the state transition or signal dynamics matrix. Thew vector is a 3x1 vector 

containing the expected disparity changes between frames. This is dependent on 

the speed and depth of the moving object and can theoretically be altered as 

the system is running. However sudden jumps in the system error are liable to 

make the filter unstable. Thus in the current implementation the values of w are 

kept constant. These could be extracted, from raw disparities, during equipment 

installation with a person walking backwards and forwards in the scene. Equation 

5.27 re-expresses Equation 5.26 in it's matrix form. 

1 0 0 	81 (k) 	w i  

52 (k + 1) 	= 	0 1 0 	82 (k) 	+ w2 	(5.27) 

83(k+1) 	0 0 1 	83 (k) 

The second part of the Kalman formulation is the measurement equation. This 

can be defined as shown in Equation 5.28 and expanded to the matrix system 

shown in Equation 5.29. 

	

y(k) = Cx(Ic) + v(k) 	 (5.28) 

A(k) 	1 0 0 	81 (k) 

= 	0 1 0 	52 (k) 	+ 	v 2 	 (5.29) 

0 0 1 	63 (k) 	1)3 

The values of v are the variances of the disparity measurements and represent the 

expected noise in the value of y. Again, these can be extracted from the raw dis- 

parity histograms by averaging disparity variances over a series of measurements. 
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Using the matrices described in the Equations 5.27 and 5.29 a Kalman filter was 

programmed to estimate the three possible disparities for which the results are 

described in the next chapter and Appendix A. 

Apart from the above, where the system matrices are defined with velocities 

included as noise, two other formulations were attempted on the basis that they 

model reality more accurately. The first included a single common velocity as 

part of the state vector x. Acceleration, A6, of this velocity was then defined as 

the system noise. Equation 5.30 describes the situation where w is an expected 

change in acceleration with zero mean. 

81(k+i) \ 	t 	0 0 1 \ ( 61(k) \ 	1 0 

82(k+1) 	= 	0 1 0 1 	
+ 	

0 	
(5.30) 

83(k+1) 	0 0 1 1 	83 (k) 	0 

8(k+1) 	0 0 0 .1 	AS), 

The second system attempted used a different velocity state for each estimated 

disparity. Both these systems were programmed and tested on the trial data. 

However the results were not satisfactory and tended to be unstable. Better 

results may be achievable for longer sequences of images. 

At this point it is worth considering the non-stationary nature of the stereo 

system. Measurement variances will change through time as an object crosses dif-

ferent backgrounds and mis-matches come and go. Such variances could, in theory, 

be used to constantly update the error covariance matrix. Unfortunately, vari-

ances will tend to stay constant and then suddenly jump as different backgrounds 

are crossed. These are likely to cause the Kalman Gain Matrix to become un-

stable. The integration of non-stationary time series into the Kalman and other 

filter formulations is a possible future area of research. 
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5.6 Calibration 

The problems of accurately calibrating spatially separated cameras and automat-

ically establishing the true translations and rotations were discussed in Section 

3.6. Apart from the algorithm's unreliability, it is clear that a low cost VLSI 

implementation of the techniques described would be impractical, due to the re-

quired arithmetic. One possibility would be to provide an interface to a portable 

computer which would perform the necessary arithmetic and then download the 

appropriate calibration offsets. However, for this application accurate camera cal-

ibration and explicit extraction of metric distances is not required and processing 

can be done in disparity space. 

This still leaves the problem of calibrating translational and, possibly, rotation-

al offsets necessary before matching can be started. Dealing first with rotation, 

it is the experience of the experiments in the next chapter that rotation was less 

of an inhibition to matching than at first thought. In all cases the matching al-

gorithm managed to provide a disparity trace which correlated with the person's 

movement through the scene. The main reason for this is that we are extract-

ing an average disparity for the entire object and not for any particular edge. 

Compared to the accuracy in alignment possible when using a PCB with three 

mounted sensors the equipment used in this work was relatively crude. Thus, in 

a final implementation it is likely that rotation will not be a significant source of 

error. 

In contrast, translational offsets were required in the trials described in Chap-

ter Six'. Depending on the architecture and mechanical set-up they may or may 

not be required in a final system. One possible technique, which could he an area 

for future research, would be to repeatedly try different offsets on a sequence of 

2 Translational offsets can, sometimes, be used to increase the chances of an accurate 

match. 
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images where the object motion was known. This could be done until a consis-

tent series of disparities were extracted from the sequence. Using a more accurate 

camera rig, ie., PCBs, the number of possible offsets could be limited, reducing 

the search. 

An extension to the above, which is described in Section 6.4.3, is to run the 

algorithm or installation with objects of known position. This could be performed 

for several points in the scene and used to build up a rough disparity map of the 

scene. Section 6.4.3 described experiments where this was done. 

5.7 Hardware Implementation 

This section will discuss a possible hardware implementation of the above match-

ing algorithm and attendant time domain analysis. It follows on from Section 4.4 

in the last chapter, where implementation in VLSI was considered for the lower 

level processing. To complete the picture, Figure 5-11 shows a possible archi-

tecture using a microprocessor and three ASIS processors. Not included on this 

diagram are the DAC's and ADC's required. These are shown with the correct 

relationships, to other processing elements, in Figure 5-12. The basic idea behind 

such an architecture is that all the low level processing up to stereo matching 

would be performed on specialised hardware. This has been made possible by the 

fact that there are no multiplications, divisions or floating point calculations dur-

ing these processing stages. Further efficiencies can be obtained by implementing 

some functions, which act exclusively on local areas of the image, in analogue. 

The shaded areas in Figure 5-12 show this for edge detection, differencing and 

difference thresholding. The algorithms described in Chapter Four have been 

adapted to allow this. For example, edge detection has been reduced to a later-

al scan which is ideal for processing raster scan data. Other functions, such as 

tracking and clustering, are less likely to be developed in analogue due to the un-

predictable neighbourhoods upon which this type of processing has to be carried 

out. However, experiments with regions of interest and addressing random parts 

of the imaging array may allow an analogue implementation of these functions as 
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Figure 5-11: Hardware Overview of a Possible Detect Implementation 

well. Locational information could be fed back from the higher levels of processing 

directly to the imager array. There appears to be little in the hardware literature 

describing such an approach and it could be a fruitful area of future research. 

A crucial area in such an architecture will be the required memory and how 

it is organised. By implementing the lower functions in analogue, the system will 

avoid costly storage and processing of grey level pixels. The processing of binary 

information instead of grey levels may also allow the use of an on-chip memory for 

outline extraction and stereo matching. An interesting trade-off would be between 

the techniques used to store edges and the required on-chip memory. A 256x256 

array is indicated in Figure 5-12. However this could be reduced if some form of 

spatial organisation was imposed on the edge storage. In the DETECT software, 

edges are stored as lists of displacements from an initial row and column. The 
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obvious way to store these lists is in a FIFO. In an implementation these edges 

would be loaded into the on-chip array for outline extraction with clusters and 

stereo scan matching. To reduce the size of this on-chip buffer, edges from the 

four quarters of the image could be stored and processed separately. In this 

situation the on-chip memory could be reduced from 81(b to 2Kb. Clearly, more 

reductions could be made, at the likely expense of functionality, by dividing the 

edge information further. 

Use of the same on-chip memory could be made by the scan matching part 

of the algorithm. In this case, edges from other cameras will have to be loaded 

with those from the current sensor. Unfortunately the matching algorithm works 

better if different types of edge, ie., left and right are matched separately. The 

current DETECT software uses codes to differentiate between types of edge. Due 

to the one bit nature of the above memory it is likely that this option will not be 

available. Different types of edge will have to be loaded into the array separately. 

Also, at this stage, calibration offsets require to be added to each edge location 

before being recorded in the array. 

As said above, Figure 5-11 shows the overall architecture with connections 

between microprocessors, background, edge and disparity memories and ASTS 

processors. To allow all processors to perform scan matching it is necessary to 

pass edges between the different cameras. Some form of communication link 

will be required to accept and transmit edges. Also, shown in both figures are 

interfaces to the controlling microprocessor. This will be used to implement the 

threshold calculations based on integer statistics and histograms from the sensors 

themselves. The arithmetic required should not be too severe at a maximum of 25 

frames per second, if the statistics from the processing are presented in a compact 

manner. It may also be possible to perform the Kalman filter matrix operations 

using the same microprocessor, again due the relatively low calculation speeds of 

25Hz. 

In conclusion to this section, several general points are worth stating. Firstly, it 

seems very important that local processing of grey levels is performed in analogue 

avoiding the space costs of large busses and temporary registers. Secondly, there 
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is a trade-off between the compactness of the data storage for edges and the use 

of on-chip buffers for temporary storage. As the on-chip memory is likely to cost 

more than the standard off-chip edge store, it would make sense to group edges in 

memory according to their position in the overall image. The third feature involves 

the techniques required to calculate thresholds, image statistics and perform time 

domain filtering. It will not be worthwhile implementing this type of calculation 

on chip. However relatively simple processing can be used to accumulate the 

statistics required by a microprocessor into compact histogram forms. The above 

discussion gives a good idea of what sections of the algorithm are implementable on 

the sensor and what would be best left to more general purpose microprocessors. 

Although, in a final implementation, the designer would have go into more detail, 

it is -hoped that this description will give some idea of general possibilities of the 

DETECT algorithms. 

5.8 Conclusions 

An original stereo matching algorithm has been developed with the aim of being 

implementable in VLSI hardware. The matching process is interlinked with the 

segmentation stages of the lower level processing described in Chapter Four. Only 

outline edges are used as matching primitives. The matching algorithm takes 

advantage of the fact that for cameras on the same imaging plane objects overlap 

when there local origins are aligned. With this camera geometry, an overlap 

will occur provided the object is wider than the lateral translation separating 

the cameras. Further to the overlap constraint, the disparity gradient is applied 

as edges are being matched, pixel by pixel. Edges are re-segmented at points 

which break a disparity gradient limit. This, together with limits on the allowed 

disparities should remove the vast majority of false matches. 

Following the matching of the extracted outlines, disparity histograms are cal-

culated for edges. These can allow the elimination of poorly matched edges, on 

the basis of disparity variance and amplitude. False and unmatched edges created 

by the application of the disparity gradient limit, can also be eliminated using the 
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same variance and amplitude thresholds. The final part of the current DETECT 

system uses the confidences and error estimates available from the disparity mea-

surements in a Kalman filter. Estimates are extracted experimentally from the 

trial data and combine both matching and localisation errors. 

Later sections of this chapter discussed calibration and hardware issues relating 

to the DETECT system. Compared to other stereo applications, calibration is less 

of an issue, as accurate metric estimates of distance are not required. It appears 

from the results in the next chapter, that simple translational offsets are adequate. 

Finally, hardware was dealt with in Section 5.7 with a general description of those 

parts of the system which would be implemented on an ASIS sensor and those, 

for which, it would be more sensible to use a microprocessor. 
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6.1 Introduction 

Whereas the last two chapters have dealt with algorithmic concepts, this chap-

ter will consider the system's operation. In particular, a series of trials will be 

described, showing DETECT's ability to track and estimate disparity for moving 

objects. 

The chapter will start with a description of the hardware and software used to 

capture the images. A significant part of this work involved the design and con-

struction of equipment capable of simultaneously capturing stereo pictures from 

CMOS cameras. CMOS cameras, mentioned in Chapter One, allow application 

specific processing on the same substrate as the sensor. Pixel aspect ratios can 

also be altered according to an implementation's requirements. For example, if 

the expected edges are vertically oriented it might be sensible to have a similar-

ly oriented pixel. One other advantage of the ASIS architecture, is the on-chip 

generation of signals, such as "pixel valid" and "frame start", useful in image digi-

tisation. Most frame grabbers have to estimate when a pixel should be sampled 

using video line signals. The pixel valid signal, from the ASIS sensor, emanates 

directly from the chips own clock and is automatically synchronised with the video 

waveform. Sampling errors can therefore be reduced at a minimal cost in frame 

grabber hardware. 

When capturing stereo pictures, synchronisation of separate video sources and 

framegrabbers is also necessary. The majority of low cost commercially available 

framegrabbers allow, incoming video signals to be multiplexed into the same grab-

ber on a frame by frame basis. However, parts of human hands and legs can move 

significantly in one frame. Stereo mismatches and disparity errors will inevitably 

occur between frames captured at different time intervals. As an alternative, 

several boards can be run together on the same computer with synchronisation 

being performed by the computer. Such a technique is limited by the fact that 

each framegrabber board will have to be addressed separately. Synchronisation is 

limited by the speed of the computer and operating system. Another major re- 
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striction was that reasonably costed commercial boards are limited by the memory 

available to store sequences of image, usually around 4 frames per card. 

Video signals must - also be synchronous. Most commercial, and non-

expensive, CCD video cameras do not allow the input of a synchronisation signal. 

The ASIS range of CMOS cameras have been designed to allow both the input 

and generation of a SYNC pulse. In the current system, a fourth camera generates 

the SYNC pulse which is then fed, in parallel, to the other three cameras. The 

above considerations led to the design and construction of custom image capture 

hardware for the ASIS camera series. 

Following the hardware description, Section 6.4 will present a worked example 

and summary of results obtained from applying the DETECT algorithms to se-

quences obtained from CMOS cameras and framegrabbers. The full set of results, 

for the twelve sequences tested, can be found in Appendix A. Appendix A in-

cludes graphs of the raw and averaged disparities extracted through time, Kalman 

estimates of disparity over time, disparity histograms and measures of confidence. 

Also included in Section 6.4 are some general statistics extracted from the data in 

Appendix A. The last section of this chapter will discuss these results and provide 

conclusions. 

6.2 Equipment Description and Operation 

Figure 6-1 shows a diagrammatic representation of the capture apparatus. CMOS 

cameras surrounded by test-jig PCBs were attached to aluminium lens mountings. 

Plastic screws were used to adjust the sensor's focal length and distance from the 

lens. The cameras were then mounted on a track and adjusted as described in 

Section 6.2.3. Video signals were synchronised using a fourth camera in SYNC 

generation mode. Also shown in Figure 6-1 are the power supply, exposure control, 

video and digitisation connections to the PC frame grabbers. These connections, 

and the fact that the cameras are powered directly from the PC make the sys-

tem easier to use and more portable. Exposure can be explicitly defined in the 
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Figure 6-1: The Image Capture Equipment 
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framegrabber software. Further, signals such as "pixel valid" and "frame start" 

allowed a simplification of the frame grabber hardware avoiding noisy synchroni-

sation circuits. 

6.2.1 The ASIS Camera 

The ASIS cameras were developed after several years research in the Departmen-

t of Electrical Engineering at Edinburgh University culminating in commercial 

applications. Over the last three years sensors have been designed for different 

applications. For example, a finger print recognition system has been implement-

ed on the same chip as the video sensor [1]. For the tests performed in this work 

the ASIS1010 sensor was used. 

ASIS1010 was a prototype 256x256 pixel array and was designed to be the first 

video camera with sensor and video generation circuitry on the same substrate[17]. 

The video circuitry also included both automatic and manual exposure control 

circuitry. The manual control of exposure allowed sensitivity mismatches, between 

different cameras, to be corrected; a feature which is useful when sensors respond 

differently to the same scene. Since the initial prototypes several cameras have 

been produced with increasing performance. Problems such as fixed pattern noise 

and blooming have been to a large extent resolved and current ASIS versions are 

now comparable, in performance, to existing CCD sensors [17]. 

6.2.2 Framegrabber Design 

Development of the custom framegrabber started with a fourth year project by 

Ramsay [71]. The author expanded the design to include a PC interface and also 

to power the cameras directly from the computer[23]. Additions were also made 

to the analogue amplifier to improve the signal to noise ratio and extra memory 

was added, allowing sequences of up to sixteen frames to be captured per board. 

Signals to control exposure and a flash are also produced by the frame grabber. 

After developing the above circuit on prototype cards the design was implemented 

as a plug in PCB for the PC/AT bus. Ten frame grabbers in all were assembled. In 
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Figure 6-2: Frame Grabber Design 

the trial apparatus three cards were used in parallel. These could be synchronised 

using a single write command from the computer, but read independently. Each 

board had a common address for writing, but an individual address for reading. 

A block diagram of the system is shown in Figure 6-2. The analogue circuitry 

consisted of amplification and level shift on the incoming video signal before being 

fed into the video ADC. Potentiometers were positioned at the rear of the board 

allowing access through the PC's back. These allowed the gain and DC voltage 

level to be controlled, allowing variation of the contrast and absolute luminosity. 

As indicated above, the cameras provide several useful signals. The two most 

important are PVB, indicating when a pixel is valid, and FST, indicating when 

the frame is about to start. PVB and FST have allowed the elimination of "lock-

on" circuitry to estimate when a video signal should be sampled. In particular, 

a delayed PVB is used, indirectly, as the sampling signal to the ADC. The delay 

has been made variable to allow sampling on the least noisy part of the incoming 

video signal. 

In parallel with the above hardware development, menu driven PC software 
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was written. The software set up the appropriate board logic to grab images 

into the frame grabber's memory, save the captured images to disk, display those 

pictures on the screen and allow calibration of analogue offsets using grey level 

histograms. Further to this, separate routines were developed to capture, read 

and align three individual cameras. Alignment is discussed in the iiext section. 

6.2.3 Camera Setup 

Once the three frame grabbers were installed in a PC, the stereo cameras could 

be adjusted to minimise misalignment. This was done using a white cross on 

a black background and differencing between pairs of cameras. Adjustment was 

done by repositioning the sensors behind the fixed lens. Once a pair were correctly 

aligned the difference image would have no horizontal white bands. The rest of the 

image should be black except for vertical white columns representing the disparity 

between the cameras. In practice, the cameras could never be perfectly aligned and 

corrections had to be made using software offsets. Calibration and translational 

offset techniques are considered in Sections 3.6, 5.6 and 6.4.3. The rig was then 

mounted on a trolley, together with a PC, and taken to various scenes for sequence 

capture. Capturing triple sequences of sixteen images presents problems for disk 

storage with a single sequence require 3 Mbytes. 

All sequences were digitised at 5 frames/second. A higher frame rate was not 

chosen, as a final implementation would be more expensive at 25 frames/second. 

Further, each frame grabber can only capture 16 frames. The three seconds of 

capture time, provided at 5 frames/second allow a person to walk a sensible dis-

tance between frames. For a person walking at 2m/s this ensures 40cm, frame 

to frame. It is a good test of the system to measure disparity differences to a 

resolution of 40cm. 
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Scene Length Width 

1 12m 4m 

2 17m 1.5m 

3 6m 7m 

Table 6-1: Scene Dimensions 

6.3 System Simulation 

The DETECT algorithms, described in Chapters Four and Five, were implement-

ed in software, the details of which are described in Section 4.3 and Appendix B. 

This section will describe the scenes used to test these algorithms and provide a 

worked example. 

6.3.1 Description of Scenes 

Three scenes were chosen for comparison. In all, twelve sequences were captured. 

The backgrounds are shown in Figures 6-3, 6-4 and 6-5 with their dimensions in 

Table 6-1. 

Figure 6-3 shows an entry hail scene with a bright outdoor background. The 

outdoor light is dominant compared to the indoor strip lighting. The camera 

points directly at the light source. Figure 6-4 shows a long 17 metre corridor 

bathed in artificial light and a generally dark background. This background pro-

vides a contrast to scene 1. A problem encountered with this scene was camera 

blooming caused by strip lighting. To reduce this problem the camera contrast 

has been considerably reduced. Such a contrast reduction provides a stiffer test 

for the segmentation algorithms. Figure 6-5 shows the third background of a 

scene lit with outdoor lighting coming from behind the camera. 
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Figure 6-3: Scene 1: Entrance Hall with Bright Outdoor Background. 

Figure 6-4: Scene 2: Indoor Corridor with Artificial Light 

Figure 6-5: Scene 3: Room with Table and Lit with Outdoor Light.] 
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6.3.2 Worked Example of the DETECT System in Op-

eration 

In order to provide a fuller explanation of the DETECT system a worked example 

is now provided. Sequence 7 is typical with the intruder walking away from the 

camera. Sequence 7 was taken in Scene 2, Figure 6-4 where the problems of 

blooming and attendant contrast reduction were at their worst. 

The first stage of the algorithm is the determination and storage of a back-

ground image and establishing a lack of movement in the scene. Change in the 

number of detected edges from frame to frame can be used to indicate when there 

is no intruder. The techniques to indicate presence, with example sequences, are 

described in Section 4.2.5 as they are interrelated with the problem of background 

update. 

Once an initial background is established it can be updated when current 

object positions are known. In the current version of DETECT, this is done 

for regions greater than ten pixels in the x-direction from a significant cluster. 

No updating was done above or below the main cluster as legs and heads are 

particularly vulnerable to fragmentation and separation. Using the background 

we can calculate the thresholded difference and combine with the tracked edges 

to provide an estimate of an object's outline. Overall this provides segmentation 

results which are not dependent on a single source of data. Thus' if the edge 

detection is poor in a particular part of the image, cluster outlines can be used 

instead and vice versa. 

To illustrate, Figure 6-6 shows the eighth frame of sequence 7. Edges were 

extracted according to their length, connectivity and whether they exceeded a 

minimum noise threshold. Thresholding was performed globally on the difference 

image using an experimentally estimated fraction of the mean. In many systems 

such values are critical and changes in histogram distribution cause segmentation 

failures. The advantage, of using different sources of segmentation information, is 

that individual thresholds are less critical. Figures 6-7 and 6-8 show the resultant 

edge detected and thresholded images. 
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Figure 6-6: Sequence 7: Example Left, Middle and Right Foreground Images 
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Figure 6-7: Sequence 7: Edge Detected Images Before Background Edge Re-

moval 

Figure 6-8: Sequence 7: Thresholded Difference Image Showing Significant 

Clusters 
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Figure 6-9: Sequence 7: Outline Edges Extracted by Comparison with Previous 

Edges and Thresholded Clusters 

Explicitly extracted edges are compared to cluster outlines and if they corre-

late are used in the matching process. The resultant edges, before matching is 

attempted, are shown in Figure 6-9. In this particular frame the outline edges 

come mostly from the cluster segmentation whereas in other frames and sequences, 

from the trial, the reverse is true. In general, it appears that cluster outlines are 

better for matching at longer ranges and directly extracted edges better nearer 

the camera or when the object is large. 

We now discuss DETECT's computationally simple solution to the correspon-

dence problem. There are three possible pairings using three cameras: left and 

middle (left image), middle and right (middle image) and left and right (right 

image). After correction with translational offsets the extracted outlines from the 

two images are overlayed as in Figure 6-10. Possible matches are shown as scan 

lines between the overlayed left and right camera edges. Continuous bands, of 

similar width, represent correct matches. At this point the disparity gradient and 

overlap constraints apply. If the width of a band suddenly jumps, ie. exceeds the 

disparity gradient limit, it is likely that there is a false match at that point and 

one of the matches, either side of that point, will be wrong. The application of 

such a gradient limit, in this way, requires that the entire object be assumed at 

the same depth. As we are working with wide angle systems, at longer ranges, 

this assumption is valid. The disparity gradient and the particular segmentation 

of outline edges eliminate the majority of false matches. An additional concern, 

in reducing the number of false matches, are the translational offsets used to align 
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Figure 6-10: Sequence 7: Three Matching Measurements Possible from a Triple 

Camera Rig 

the left and right images. These offsets are significant due to the likely clutter 

of "in-between" edges. Thus, if the spacing, between the true matches, is too 

large then more matches will be erroneous. Alternatively, if the edges are too 

close together then there is no room for any disparity variation. In this situation 

lens distortion and other types of calibration error will cause some parts of over-

layed edges to cross one another and invert. A reduction in the number of correct 

disparities will again result. In view of such error considerations, translational 

offsets can be varied to achieve an optimum for a particular camera set up. This 

could be done automatically using objects moving in a known direction and the 

measures of disparity confidence described in Section 5.4. Also important in the 

control of false matches is the maximum allowed disparity between two edges. 

Long lines across the images in Figure 6-10 show matches eliminated on the basis 

of an absolute disparity limit. 

Having estimated the correspondences for a particular cluster, edges can now 

be weighted according to "goodness" factors. The overall variation of disparity as 

the edge is tracked can be used as can the amplitude of the disparity histogram 

for a particular edge. Using the weighted disparities each match is entered in a 

cluster histogram. Normalised histograms, for this example frame, are shown in 

Figures 6-11, 6-12 and 6-13 and for the entire sequence, through time, in Figures 

6-14, Figure 6-15 and Figure 6-16. 

After some histogram smoothing the main peak is found and the mean around 
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Figure 6-11: Sequence 7: Disparity Histograms Extracted from the Matching - 
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Figure 6-12: Sequence 7: Disparity Histograms Extracted from the Matching 

Frames Shown in Figure 6-10, Measurement 2 
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Figure 6-13: Sequence 7: Disparity Histograms Extracted from the Matching 

Frames Shown in Figure 6-10, Measurement 3 

Figure 6-14: Sequence 7: Disparity Histograms Shown Through Time, Mea-

surement 1 
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Figure 6-15: Sequence 7: Disparity Histograms Shown Through Time, Ma-

surement 2 

Figure 6-16: Sequence 7: Disparity Histograms Shown Through Time, Mea- 

surement 3 
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that peak calculated. The proportions of disparities, either side of the peak, give 

an estimate to sub-pixel precision. The calculation of peaks is carried out on the 

entire 16 frame sequence. Thus, the outlying values, away from the main peaks, 

are not included in the calculation of disparity. The final disparity estimates are 

done through time using the Kalman filter, described in Section 5.5, followed by 

confidence weighted averaging. The calculations are based on the assumption that 

the disparity distribution for a particular measurement is Gaussian. 

6.3.3 Sequence 7: Results 

The results shown in this section are purely for Sequence 7, Scene 2. Figure 6-17 

shows the disparities calculated as described above, and before any further Kalman 

calculations have been performed'. They show a clear reduction in disparity as 

the intruder walks away from the camera. In addition the third disparity, from the 

outside cameras, has roughly twice the gradient of the two inner pairings.. Absolute 

values of disparity cannot be compared due to translational offsets. However the 

trend is clearly correct and the gradients would be sufficient to reliably activate 

an alarm for some disparity threshold. 

The raw data was then used as input data to a Kalman filter, where the initial 

error covariance matrices are calculated from raw error variances for all twelve 

sequences. The Kalman filter output is shown in Figure 6--18. In this graph the 

third measurement has been halved before being input to the Kalman filter to 

allow a proper comparison. The final graph, Figure 6-19, shows the weighted 

average of the three Kalman estimates, where the weights are calculated using the 

disparity frequency of the peak. 

'It should be noted that the disparity scale has been increased to 30 to show the 

whole graph. This differs from the graphs shown in Appendix A, which have a reduced 

scale 	-ime disparity gradients to be shown more clearly. 
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Figure 6-18: Disparities Output from the Kalman Filter 
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Figure 6-19: Averaged Kalman Disparity 

6.4 General Results 

Appendix A shows, for each sequence, the raw, Kalman and averaged Kalman dis-

parity traces. Following this are graphs of the measurement strength and variance. 

For completeness the disparity histograms are also presented. 

In all twelve sequences, a human was detected and tracked with disparity 

trends in the correct direction, ie. inversely to the range. Theoretically, the 

outside disparity should be twice the two inside values. However this is not always 

the case due to translational offset variations. The important point to note is that 

the time gradient, not the absolute value, of the disparity through time, for the 

outside cameras, should be twice that of the internal pairings. 
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6.4.1 Time Gradient Comparison 

Table 6-2 shows the gradients of linear regression best fit lines for each of the 

twelve raw disparity traces. Also shown are the intruder starting ranges from the 

camera and the direction in which he is moving. Calculation of gradients, for these 

traces, presents problems, in that an intruder will not always be walking at the 

same speed. Often the person accelerated as the sequence progressed. Therefore 

a straight best fit line will not follow the data exactly and results for a particular 

sequence should not be taken in isolation. However, the best fit line does provide 

overall measures of movement through the scene without being solely dependent 

on the first and last disparities. 

As expected, there are clear differences in best fit gradients between those 

sequences where the "walker" starts near the camera, at 4m, and those where 

the "walker" starts at 17m. Time disparity gradients are less for the sequences 

where the person is further away. If the number of frames, while a particular 

disparity threshold is breached is used as an alarm threshold, it might be sensible 

to increase this number of frames in line with the boundary depth. The only 

exception to the gradient variations described above is sequence three, where a 

person walks, parallel to the camera, but outside the window of scene 1. In this 

case the disparity gradient should be small anyway. 

In the case of sequences 2,5,7,9 and 11 the third measurement gradient is 

roughly twice that of the inner pairing. For the other sequences there is less 

of a difference. There are three reasons for this discrepancy. Firstly the errors 

associated with the longer range sequences are bound to be larger. Secondly, 

in sequences 3 and 4, the individual is not moving, in depth, very much at all. 

Thirdly, the measurements extracted from the best fit analysis, in Table 6-2, only 

provide a rough guide to the general direction of motion. For individual traces, a 

more accurate picture can be found in Appendix A. 
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Sequence Time Disparity 

Gradient (Pixels) 

1 2 3 

1 (llm - T) 0.26 0.10 0.29 

2 (urn - T) 0.14 0.11 0.21 

3 (14m - 14m) 0.00 0.03 0.00 

4 (17m - T) 0.03 0.06 0.08 

5 (4m - A) -0.25 -0.23 -0.47 

6 (17m - T) 0.06 -0.11, 0.14 

7 (4m - A) -0.20 -0.13 -0.31 

8 (17m - T) 0.03 0.04 0.06 

9 (4m - A) -0.32 -0.20 -0.51 

10 (Sm - T) 0.05 0.09 0.10 

11 (Sm - T) 0.16 0.13 0.25 

12 (Sm - T) -0.00 -0.00 0.04 

Ave. (Mod) 0.12 0.10 0.20 

Table 6-2: Best Fit Disparity Gradients, (Through Time), of Image Sequences, 

T = towards the camera, A = away from the camera 
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Sequence Meas. 1 Meas. 2 Meas. 3 

1 0.46 0.45 0.33 

2 0.51 0.36 0.37 

.3 0.67 0.39 0.38 

4 0.43 0.52 0.40 

5 0.31 0.40 0.24 

6 0.45 0.68 0.53 

7 0.33 0.45 0.27 

8 0.40 0.49 0.41 

9 0.33 0.39 0.28 

10 0.45 0.42 0.48 

11 0.41 0.65 0.57 

12 0.39 0.38 0.32 

0.43 0.46 0.38 

Table 6-3: Averaged Disparity Measurement Variances for the Twelve Sequences 

6.4.2 Amplitude and Variance Comparison 

This section discusses some of the noise measurements obtained from the 12 se-

quences used in the trial data. Section 5.5 described how a Kalman filter could be 

applied to make estimates of disparity. Also, Section 5.4 described the calculation 

of an initial covariance matrix based on variances from the disparity histogram. 

In effect, only the central diagonal values of the 3x3 matrix need be calculated 

experimentally. Others elements can be derived from these three initial values. 

As was stated in Section 5.4, such variances combine both the matching errors 

and locational errors for the entire system and can be used in the initialisation of 

the Kalman measurement error matrix. Table 6-3 shows the averaged variances 

for each of the twelve sequences and their three measurements. Measurement 1 is 

the variance from the left and middle cameras, Measurement 2 is from the middle 

and right cameras and Measurement 3 is from the left and right camera. 

Also mentioned in Section 5.4 was the independence of the errors, or confi- 
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dence measures, between the three disparity measurements. In a final application 

of the DETECT algorithms, for an alarm application, such error measures, and 

their relative independence, would be important in a decision to alert the atten-

tion of a controller. The two most obvious measures of confidence are amplitude 

and variance. Amplitude suffers from the problem that its value will vary with 

distance. Clearly, objects nearer the camera are more likely to produce larger 

matched edges and a higher amplitude in the disparity histogram. However, a 

larger amplitude does mean that there are more matches and better sub-pixel 

accuracy. It is worthwhile comparing the independence of the disparity histogram 

amplitudes with the independence of the disparity histogram variances. This can 

be done using the correlation coefficient between two data series x and y. This is 

defined in Equation 6.1. 

= 	 )  (6.1) 
)2 	.. 

The independence of the errors between measurements I and 2, measurements 2 

and 3 and between 1 and 3 are shown in Tables 6-4 and 6-5. Using the definition 

of the correlation coefficient, described above, values of r can vary between -1 

and 1. 0 represents no correlation, neither positive or negative. The averaged 

values for r for both amplitude and variance are all positive indicating the level 

of dependence between the measurements. However they are still low enough to 

allow large accuracy improvements to be made by combining the results from the 

three measurements. 

6.4.3 Calibration Data 

Calibration was discussed in Sections 3.6 and 5.6. For the applications being con-

sidered in this thesis, ie., intruder detection, accurate calibration is not required. 

Indeed for computational reasons it is undesirable. The presence or absence of 

a person within a set boundary only requires a disparity threshold to be defined 

which, if crossed, will activate the alarm. Thus the calibration of an alarm system 

could be reduced even further, by walking around at the required boundary and 

extracting disparities only at that distance. 
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Sequence Correlation Coefficient 

Meas. 1 Meas. 2 Meas. 3 

1 -0.10 0.27 -0.09 

2 0.47 -0.08 0.18 

3 -0.00 0.41 0.13 

4 026 0.29 0.38 

5 	. -0.00 0.34 0.20 

6 -0.43 0.89 -0.25 

7 0.11 0.43 0.45 

8 0.00 0.62 0.00 

9 0.22 0.36 0.77 

10 0.82 0.68 0.79 

11 0.37 0.03 -0.10 

12 0.31 0.37 0.96 

Ave. 0.24 0.38 0.28 

Table 6-4: Correlation Between Measurement Variances 
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Sequence Correlation Coefficient 

Meas. 1 Meas. 2 Meas. 3 

1 0.07 0.54 0.26 

2 0.89 0.82 0.91 

3 0.35 0.61 0.22 

4 0.84 0.80 0.83 

5 0.06 0.52 0.40 

6 0.47 0.63 0.55 

7 0.30 0.37 0.32 

8 -0.04 0.83 -0.12 

9 0.03 0.02 0.43 

10 0.77 0.69 0.50 

11 0.92 0.74 0.79 

12 0.77 0.69 0.80 

Ave. 0.45 0.60 0.49 

Table 6-5: Correlation Between Measurement Amplitudes 
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Figure 6-20: Disparity (Pixels) versus Measured Distance (Meters) 

This section presents a simple technique which avoids the problems of numeri-

cal analysis and its associated computation. Disparities were extracted for known 

ranges marked in the scene. If the camera rig is stable these can be used in a 

look-up-table to estimate absolute distances for each disparity. Figures 6-20 and 

6-21 show plots of estimated disparity against measured distance. Figure 6-20 is 

taken from known distances in Scene 1 whereas Figure 6-21 is taken from known 

distances in Scene 2. They show a clear inverse relationship between distance and 

disparity and the expected difference in gradient between measurements 1/2 and 

3. The same measurements were not taken in scene 3 due to furntjture. 

25 
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Figure 6-21: Disparity (Pixels) versus Measured Distance (Meters) 

6.5 Discussions and Conclusions 

This chapter started with a review of the equipment used in this research. A 

frame grabber was designed to allow the simultaneous capture of video pictures 

from the ASIS cameras into a PC. The techniques used to set up the cameras 

were also described. For these experiments a simple black and white cross was  

used and the left and right cameras were adjusted accordingly. Software was 

written to perform this and other camera calibration functions. Twelve sequences 

were captured from three scenes and used to simulate the system as described 

in Section 6.3. For explanation of the algorithms described in Chapters Four 

and Five a worked example is provided in Section 6.3.2. This goes through the 

separate stages of the DETECT system with intermediate images. 

The final section of this chapter summarises the results data shown in Ap-

pendix A. Tables were extracted for best fit time disparity gradients, variances 

and amplitudes, and the correlations between the three possible measurements 
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from three cameras. The variances were extracted and averaged for each se-

quence's disparity measurement. They were used as the starting measurement 

error covariance matrix in the Kalman formulation described in the last chapter. 

Variances, together with amplitude, can be used as measures of confidence in a 

final alarm system. As such it is important to know the correlation between the 

variances of the three measurements. These can be found in Tables 6-4 and 6-5. 

As expected, and stated in Section 5.4, amplitude and variance are not indepen-

dent. Clearly, lighting conditions are likely to cause similar matching problems 

in each of the three disparity measures. However the average correlation for both 

amplitude and variance is still low enough to allow the combination of the infor-

mation from the three sources using a weighted average. Again, such information 

would be of use in a final installation. 

A few final comments are worthwhile on the subject of computation. As said 

in Section 4.3, the algorithms were written on Sparc I work stations. The current 

software takes about 5 minutes to process a 16 image trinocular sequence. This 

time includes all the processing from loading images, through early segmentation 

and stereo machi4;to the final stages of highr level processing. As the software 

was developed over a period of time, considerable improvements could be expected 

after a rewrite. Due to the restrictions placed on the allowed arithmetic, there is 

no reason why low cost commercially viable hardware could not be developed to 

at standard frame rates. 
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7.1 Introduction 

Stereo and machine vision problems have been studied extensively over the last 

twenty years, as attempts have been made to imitate the human system. Despite 

this, relatively few commercial vision applications have been developed. There 

are several reasons for this, the most obvious being that general machine vision 

problems are difficult. As a result, researchers have divided the problems into 

separate vision functions and attacked each independently. This approach has had 

some success. For example, the tradeoffs involved in edge detection and multi-scale 

feature extraction are now generally agreed. However the interactions between 

these modules in larger systems, are not well understood. There are few rules and 

most artificial intelligence systems use functions such as edge detection and stereo 

matching algorithms in a "black box" manner. It seems likely that efficiency 

savings can be made if different vision modules can be considered together. 

The work described in this thesis provides an example of how stereo corre-

spondence has been simplified by segmenting only certain types of edges. We are 

also aiming at a specific type of implementation using the recently developed low 

cost ASIS sensor/processors, described in the introduction. This differs from the 

approach taken by Hakkarainen [28] who describes part of a general stereo vision 

algorithm developed in more expensive CCD technology. The main problem here 

is the integration of other image processing functions onto a single substrate. They 

would all have to be developed in analogue CCD. CMOS sensors with appropri-

ately adapted algorithms, provide an alternative implementation architecture. 

In view of the above, we have considered alarm systems as a possible appli-

cation of vision algorithms, together with CMOS technology. The question asked 

here, and answered, for this application, is: Can machine vision algorithms be 

developed, for low cost implementations, without a problematic loss of function? 

Chapters Four and Five describe such a system which employs no floating point 

calculations, multiplications or divisions at the lower levels of processing. Due 

to the data rates required by pixel based operations, a microprocessor implemen- 
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tation is impossible and parallel floating point processor arrays are prohibitively 

expensive. 

Raving defined the initial aim, a review of current image processing and ma-

chine vision techniques was undertaken. Chapter Two surveyed low level tech-

niques. Edge detection, thresholding and segmentation were described in the 

context of recognition techniques such as graph matching and the generalised 

Rough transform. Chapter Three considered the current theories of stereo vision 

and what constraints are normally used to solve the correspondence problem, in 

the light of the likely errors inherent in the geometry of the system. The impor-

tant problem of calibration was discussed with a description of current solutions. 

The calibration techniques, surveyed, were considered to be too computationally 

complex for an alarm installation where accurate metrics might not be necessary. 

Here, a disparity threshold could be used as an invisible boundary and the system 

offsets and thresholds arranged to activate the alarm when an intruder crosses the 

boundary for some number of frames. 

The second half of the thesis described the DETECT algorithms and their 

possible hardware implementations in detail. Chapter Four described the seg-

mentation stages used to extract only outline edges for stereo matching. Other 

savings have been made by acknowledging that stereo matching does not work 

well with horizontal edges, and that a moving human intruder is likely to con-

sist of, mainly, vertical edges. Edge detection can then be reduced to a lateral 

differentiation followed by a vertical track along peaks. Apart from the relation-

ship between extracted edges and the stereo matching algorithms, emphasis was 

placed on the interdependencies between the different processing modules. For 

example, outline edges are found by combining the cluster extraction with verti-

cal edge detection. Finally, for the segmentation stages, it is also important to 

note that effort was directed at extracting the relevant image information from 

the raw images as quickly as possible. Apart from storage, there are consider-

able computational advantages to be gained by acting, only, on relevant parts of 

binarised and segmented images. 

Following on from Chapter Four, Chapter PW described the stereo matching 
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algorithms. In particular, an original low cost correspondence algorithm was de-

veloped. Notice was taken of the fact that, for laterally symmetric stereo camera 

geometries, with imaging sensors on the same plane, objects will always overlap 

when their images are overlayed. Overlap will occur no matter where the object is 

positioned in the scene. Scan matching was followed by the creation of disparity 

histograms for each significant edge and cluster. In an ASIS implementation it is 

likely that disparity histograms would be the final output of the chip. Due to it's 

compact nature further statistical processing could be developed using a micro-

processor to perform floating point calculations to provide the required accuracy 

in disparity measurements. The final part of the DETECT system calculates the 

disparity for the three possible measurements available from a three camera rig. 

Confidences can be extracted from the disparity histograms and used in a Kalman 

formulation to correct for obvious errors and integrate the three measurements in 

time and with each other. In this application Kalman measurement and system 

error covariance matrices are kept constant to prevent the gain becoming unsta-

ble. However, as can be seen in Appendix A, the reality is different and variances 

change in time and between different scenes. As mentioned in the next section, 

non-stationary filtering is a possible area for future research in the stereo field. 

7.2 Future Research 

The work described in this thesis has been aimed at evaluating possibilities of low 

cost stereo systems with wider than normal angles of vision. Having developed a 

system capable of detecting and tracking a moving intruder, three specific areas 

of future research are now open. 

Firstly, a trial could be conducted on a larger number of sequences from a 

variety of different scenes. Also, in order to test alarm disparity thresholds and 

Kalman filter convergence it would be desirable to analyse longer sequence lengths. 

The main problem with a larger trial would be storage and capture of the required 

number of longer image sequences. This is especially so with stereo vision, where 

multiple sequences of matched images require to be processed. It is clear from the 
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literature that the capture and storage of such large amounts of data is a major 

restriction on current image processing work. Most of the published work appears 

to describe results from only one or two sequences of trial data. As was shown 

by the finger print work described by Anderson et. al. [1] such large trials are 

necessary before a final implementation is qualified for acceptance. 

The second direction for future research would be a hardware implementation 

of the algorithms using the CMOS sensors. As discussed in Section 5.7 considera-

tion would have to be given to what functions were most suitable for integration on 

the sensor substrate. The DETECT algorithms have been developed to make this 

task easier. For example, as edge detection is basically a lateral differentiation, it 

could be performed on raster scans without any local storage. Also, investigations 

could be conducted into combining thresholding and ADC conversion and more 

consideration would have to be given as to the best techniques for storing and 

processing edges. 

A third problem area is calibration. In this work the issue has been avoided 

due to the application under consideration. Calibration can be simplified to a 

person moving around at the threshold depth at the time of camera installation. 

If a more complicated calibration were required it might be possible to perform 

the necessary calculations on a portable computer attached to the installation. In 

this case the standard numerical techniques could be applied. However, there is 

considerable doubt about the accuracy of these techniques, over individual frames. 

Thus, several researchers have developed algorithms which integrate calibration 

parameters over a sequence of images. There is scope for improvement here, in-

cluding using the three measurements possible from a triple rig to further constrain 

calibration. Indeed, it should be possible to vary rotation and translation param-

eters, in a sequence, until a consistent series of disparities was achieved from the 

three measurements. 



Chapter 7. Conclusions 	 176 

7.3 Concluding Remarks 

A stereo vision image processing system has been developed which can allow the 

detection and distance tracking of large vertical moving intruders in a scene. An 

original stereo matching algorithm has been developed which maps into low cost 

integrated sensing and processing hardware, linked to a microprocessor. Results 

have been presented showing the system working and confidence statistics ex-

tracted for use in a Kalman tracking filter. It is the author's view that the work 

presented in this thesis would provide a sound basis for further development of 

hardware efficient vision systems. 
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Appendix A 

Trial Results 

This appendix described the results when the DETECT algorithms were applied 

to twelve triple stereo image sequences. These results should be viewed in con-

junction with the discussions presented in Chapter Six. The capture and storage 

of the sixteen frame sequences was described in Section 6.2 and the dimensions 

and details of the direction in which the person was moving can be found in Tables 

6-1 and 6-2. Backgrounds for each scene can be found in Figures 6-3, 6-4 and 

6-5. A worked example is described in Section 6.3.2. 

There are two pages of results for each sequence. The first page shows the 

raw disparities, Kalman filtered disparities and the weighted averaged Kalman 

disparities. Also shown are the variances and the amplitudes of the disparity 

measurements. In all graphs time, in frames, is along the x axis. 

The second page of results shows the disparity histograms for each sequence 

through time. It is from these graphs that the sub-pixel disparity measurements, 

shown in the first page, are extracted. Confidences can also be extracted from the 

disparity histograms. 
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Figure A-21: Sequence 11: Raw Disparities (Top Left), Kalman Output (Top 
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Figure A-23: Sequence 12: Raw Disparities (Top Left), Kaman Output (Top 
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Appendix B 

The DETECT System Software 

This appendix describes the function of the main procedures used to test the 

DETECT algorithms on the trial sequences. The main procedure is contained 

in detect.c which handles all file loading and saving operations. Each time step 

consists of three 256x256 images for the left, middle and right cameras requiring 

considerable disk storage for the 12 trial sequences. Due to the storage require-

ments, the image archives are stored over two disk systems. 

Separate files contain routines which implement different aspects of the algorithm:- 

cluster.c: cluster. c: contains the routines, clusters, mergeclusters: and 

expandclusters which, respectively, extract connectivity from the input 

images, combine smaller regions into larger ones and expand cluster 

outlines. The task of these routines is to find significant connected 

areas of the difference image. The boundaries of the connected region 

are output, together with its size and grey level histogram, as a size 

sorted linked list. Each cluster structure is defined to allow direct 

connections to individual items in the edge list. The code is written 

without recursion to make the memory and resources required explicit 

for implementation in hardware. 

edgediff.c: Routines to laterally differentiate, latedge, and calculate 

the difference between current background and foregrounds, duff. Lat-

eral non-maximal suppression is also applied in the lat edge routine. 
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group. c: A routine which combines cluster information with the edges 

provided by tracking.c. Direct connections, dependent on proximity, 

are established between the cluster list and the, normally, longer edge 

list. 

kalman.c: Provides all the necessary matrix arithmetic and proce-

dures to maintain Kalman estimates of the current disparity. The ini-

tial covariance matrices are also defined in this file. 

matching.c: This file contains several routines to perform stereo match-

ing, disparity histogram extraction and time domain disparity analysis. 

These are contained, respectively, in matchingclusters:, disparitypro-

cessing and postprocessirtg. Also implemented, but not currently used, 

is a routine to match edges through time, timematching. 

tracking.c: A downward tracking algorithm using hysteresis thresh-

olding, trackpeaks, is defined in this file. Criteria for an edge's existence 

such as strength and length are also defined in trackpeaks and associ-

ated sub-routines, edgestart, edgccortt and edgeconti. 

defs.h: Definitions of data structures such as edges, lists of pixels and 

clusters. 

gendefs.h: The various thresholds used throughout the system are 

defined in this file. 

The segmentation stages produce candidate edges and possible clusters, both 

stored as linked lists. The main features included in edge list elements are: 

Reference Number. 

Starting Row and Column. 

List of pixels in this edge. 

Length. 

Cluster with which this edge is grouped. 

Histogram to compile disparity frequencies as edge is matched. 
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7. Total changes in disparity as the edge is tracked. 

The main components of the cluster list are: 

Cluster number. 

Size. 

Cluster boundaries. 

List of outline pixels. 

List of attached edges. 

Combined disparity histograms of attached edges. 

Histogram of grey level difference values 

Although a list of background edges has to be retained at each frame, the 

storage requirements, in this software, for the above data structures are small 

when compared to that necessary for the background and intermediate images. 
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CORSIM: A Two Dimensional Simulator for Contacts with Arbitrary 
Geometries 

K.W.J. Findlay, W.J.C. Alexander and A.J. Walton 
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King's Buildings 
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ABSTRACT 

A program has been written which can simulate the contact resistance of arbitrarily 

shaped contacts between different resistivity materials. The simulator uses triangular finite 

elements and overcomes the restrictions of previous software. The effects of geometry, 

contact window misalignment, sheet resistivity and specific contact resistance have been 

examined for circular contacts and compared to previous results for square ones. Finally 

the accuracy of the simulator under various extremes was investigated. 
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INTRODUCTION 

As geometries used in integrated circuits have reduced the ohmic contact resistance 
has become more important and starts to limit circuit performance. This paper describes 
the development of a program that can simulate contacts that become circular due to 
fringing effects which occur during optical lithography. This is effect is illustrated in figure 
1 as contact geometries are reduced. 

The 2-D contact simulator FECORS [1] can only model square contacts and has been 
used to examine the limitations of the Kelvin structure shown in figure 2. It uses two mesh 
planes connected by a set of vertical resistors which model the contact resistivity. The 
square element employed is ideally suited to modelling rectangular contact windows and 
collars. The simulator CORSIM is based on a similar concept except that it uses triangular 
elements for the two conductor levels. This gives it the ability to simulate contacts with 
curved boundaries. 

CORSIM: A GENERALISED CONTACT RESISTANCE SIMULATOR 

2.1 Generation 

The mesh generator used was adapted from a program called GRID [12, 131 which 
defines the region to be simulated using eight noded super elements. The contact to be 
simulated is divided up into several super elements as shown in figure 3. The program uses 
a curvilinear coordinate system which is capable of representing the curved boundaries of 
the contact region. GRID proceeds through each region in turn and generates the 
individual triangular elements. An example of a low density mesh generated from the 
super elements in figure 3 is illustrated in figure 4. 

2.2 The Calculation of the Interface Resistance 

Once the mesh for the two conducting layers 
calculate the values of the resistors used to model 
interface resistance (R e ) can be calculated using 

has been generated the next step is to 
the interfacial contact resistance. The 

pR A 	 (1) 

where p is the specific contact resistivity in fl/cm' and A is the area in cm 2  [9]. 
When the element mesh within the contact region is a regular series of squares the 

calculation of the interconnect resistors for each node is simple since there is only a set 
number of conditions. However, with triangular elements there are an infinite number of 
possible variations. This requires a more complicated calculation which takes into 
consideration the area adjacent to each node. Every node can be considered to relate to a 
surrounding area bounded by the perpendicular bisectors of the midpoints of each element 
side as illustrated in figure 5(a). Figure 5(b) shows an example of the area associated with 
a node and once this area has been calculated, the contact resistor associated with that node 
can be evaluated. The only restriction is that obtuse triangles are not permitted within the 
contact region because, in this case, the point of intersection between the bisectors lies 
outside the element. The value for each resistor is given by 

PC 
= 	 (2) 

where A 	is the area associated with an individual node. This approach gives good 
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agreement when compared with FECORS. 

2.2 Stiffness Matrix Solution 

After the calculation of the interfacial contact resistors CORSIM generates the 
stiffness matrix and the solution is performed using the frontal method [14]. There are 
several issues which arise relating to the accuracy of the final output resistances. 

2.3 Accuracy 

It was noted during the initial testing that the convergence of simulations with metal 
(0.05 fl/c) to diffusion (27.0 fl/c) contacts resulted in a degree of instability as the number 
of elements were increased. This did not occur with the polvsilicon (30.0 fl/C) diffusion 
contacts which indicates that resistivity differences between the contact resistors and sheet 
resistance was causing rounding errors. The use of the double precision variables overcame 
this problem provided a suitable mesh was chosen. 

With metal - diffusion contacts there is a negligible voltage drop in the metal which is 
shown in the field plot of figure 6. In contrast the voltage drop in the diffusion layer can 
be observed along with the two dimensional current flow. This two dimensional current 
now leads to inaccuracies in the extracted value of contact resistance and is one of the 
problems associated with the Kelvin structure. Another one can be seen in figure 7 which 
compares the extracted contact resistivity with the true value of interface resistivity. This 
shows how, at high values of p, the specific contact resistance can be extracted. However, 
at lower values of p, the sheet resistivity of the conducting layers dominates the 
measurement and the extracted resistivity p,, becomes independent of the specific contact 
resistance. This agrees with results obtained using FECORS. One of the advantages of 
using triangular elements is that the density of elements may be varied in an appropriate 
manner for the voltage gradients which are present in the structure. This is a very useful 
feature especially when current flow in 90° contacts is being considered. 

3 COMPARISONS OF CIRCULAR AND SQUARE CONTACTS 

3.1 The Effects of Shape and Size on Lateral Current Crowding 

The Kelvin structure is widely used for the measurement of contact resistance but the 
value extracted assumes uniform current flow. There have been a number of papers 
dealing with the inaccuracies introduced by the fringing fields [1.2.4,5]. Correction factors 
for 2-D effects have been proposed but these have all assumed square contacts. It is also 
worth considering what proportion of the correction factor is due to the change in current 
flow as opposed to contact area reduction as the contacts move from a square to circular 
geometry. 

Figure 8 shows a comparison between square [1,5] and circular contact windows for 
various mesh densities. This shows that the measured value of R for a circular contact is 
higher than that for the equivalent square when the contact's diameter is the same as the 
square's dimensions. However, the extracted values of p which takes into account the 
difference in area are much closer in value as shown in Table I. As the collar size is 
reduced, contact geometry has a larger influence on current flow. Table 2 shows the 
extracted values of Pt for different collar sizes when both layers have a sheet resistance of 
30 fl/c. It can be observed that the relative values of p for square and circular contacts 
change as the collar size varies. The extracted contact resistivity for circular contacts is the 
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Contact Type COT C R, (11) Area (jim 2) p. (flcm') 
Metal 

to 
Diffusion 

0 8.84 19.6 1.74x 10 -' 

c 7.06 25.0 1.77x 10 -' 
Poly 

to 
Diffusion 

C 12.13 19.6 2.38x 10-' 

c 	1 9.66 	1 25.0 2.42x10-' 

Table 1. Comparison of square and circular contact parameters extracted from a Kelvin 
structure with Sjim contacts and a 5p.m collar. The specific contact resistivity is 
lx 10 -' flcm'. 

Collar Size C or C R_(11) Area (p.m 2) Pr (Oem 1)  

Sjim 
o 24.7 19.6 1.70x10' 

29.3 25.0 1.83x10' 

ljsm 
__ 

C 17.8 19.6 1.25x 10' 

25.0 

.

5:4 n__ FO _ 

17.1 19.6 1.17x l0' 

o 9.66 25.0 1.07x 10 -6  

Table 2. Comparison of square and circular contact parameters extracted from a Kelvin 
structure with a 3p.m contacts and a variable size collars. The, 
1x10' flcm. 

specific contact resistivity is 

smaller of the two for large collar sizes but the situation is reversed as the contact collar 
reduces below 1 jim. This is because the circular contact still distorts the current flow even 
when the collar width is zero whereas for the square contact the current flow would be 
totally one dimensional, current flow. as the collar size increases. 

For circular and square contacts with the same area and a collar size of Sjim (see 
figure 9) the simulated values of R were 10.08 0 and 9.88 0 for the circle and square 
respectively. For a circular contact with the diameter the same size as the dimensions of 
the square contact R was 12.1 (1. It can be concluded that for structures with large collars 
the shape of the contact has little effect on the measured values. The important parameter 
is area. 

The second comparison examines upon how variations between collar and window 
size influence the measured value of R. This is illustrated in figure 10 and in all cases the 
resistance increases with both collar and window size. As the window size reduces the 
difference between the two types of contact (polysilicon - diffusion and metal - diffusion) 
increases. The value of Rc  for polysilicon - diffusion is always greater due to the voltage 
drop, which in this case, occurs on both layers. As expected the circular contacts always 
have a higher value of R associated with them because of their smaller contact areas. 

3.2 Misalignment Comparison 

The comparison of misaligned polysilicon - diffusion contacts shown in figure 11 
indicates that the same trends apply to both square and circular contacts for these 
dimensions. The only difference is that the values of R will be greater due to the size of 
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the contact window and larger collar area. 

3.3 The Effects of Sheet Resistance Variation Directly Under the Contact 

It has been stated [10] that the sheet resistance directly under the contact window may 
vary from that in the surrounding area and reference [1] simulated the effect of changing 
the value of R under the contact. The simulations performed by CORSIM for circular 
windows give similar results with higher values of R than those for square contacts as 
shown in figure 12. As the gradient is linear and the same for both the square and circular 
contacts the error in any Kelvin measurements will be the same for both shapes. 

4. CONCLUSIONS 

A finite element program that can model arbitrarily shaped contacts has been 
developed. It can be used to evaluate the effect that changes in geometry, specific contact 
resistivity, sheet resistivity and the modification of sheet resistivity under the contact have 
upon contact systems. The Kelvin test structure has been used to illustrate some of its 
capabilities. It is intended to use this software to develop correction curves for Kelvin 
structures that do not have rectangular contacts. 
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Figure 1. The fringing effect which occurs during optical lithography. 
The arrow indicates decreasing size. 
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Figure 2. D-Resistor Kelvin device. Current is forced from 1 1  to 12 and the Kelvin poten-
tial is measured at V 2  with respect to V1. 
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Figure 3. The division of the Kelvin device into super elements before 
mesh generation (L= 3p.m and C= 5p.m). 

H 

Figure 4. A low density mesh generated using GR. The star' nodes imply 
nrescribed voltages. 
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of the perpendicular bisectors of each side. 	 - 
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Figure 5(b). The area associated with each contact node and used in the calculation of the 
contact resistors. 
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THE EFFECT OF CONTACT GEOMETRY ON THE VALUE OF CONTACT 
RESISTIVITY EXTRACTED FROM KELVIN STRUCTURES 
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Department of Electrical Engineering 
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University of Edinburgh, 

Edinburgh, EI-19 HL, UK. 

Abstract: The effects of geometry, contact misalignment and 
sheet resistivity on the extracted values of specific contact 
resistance have been simulated for both circular and square 
contacts. These results have been used to detail the errors 
involved in extracting contact resistivity from Kelvin structures 
with rectangular and circular contacts. 

1. INTRODUCTION 

As the geometries used in integrated circuits reduce, the' 
ohmic contact resistance becomes more important and starts to 
become a limiting factor in circuit performance. Contacts 
with these reduced dimensions also become more circular due 
to the fringing which occurs during optical lithography. This 
trend is illustrated in figure 1 and any test structure which is 
used to measure contact resistance for a small geometry 
process will obviously , have rounded contacts. It is 
consequently important that the effect of contact shape on the 
extracted value of contact resistance is quantified. This paper 
describes the development and application of a program that 
can simulate contacts with non-rectangular shapes. 

2. CORSIM: A CONTACT RESISTANCE SIMULATOR 

2.1 Introduction 

The 2-D contact simulator FECORS [1] has been 
previously used to to examine the limitations of the Kelvin 
structure shown in figure 2. It uses two resistor mesh planes 
which are connected by a set of resistors which model the 
contact resistivity. The square element employed is ideally 
suited to modelling structures with rectangular contacts and 
collars as are the other contact simulators reported elsewhere 
[2-7]. The simulator CORSIM which is detailed in this work, 
is based on a similar concept except that it uses triangular 
elements for the two conductor levels. This gives it the ability 
to simulate contacts with curved boundaries and the element 
size can easily be graded in regions of high current density. 

2I Element Generation 

To reduce the amount of data input required by 
CORSIM a mesh generator has been implemented. This was 
adapted from a program called GRID [8,91 which uses eight 
noded super elements to define the region to be simulated. 
The contact system to be modelled is divided up into several 
super elements as shown in figure 3 and their x ,y coordinates  

provide the input data. The program uses a curvilinear 
coordinate system which is capable of representing the curved 
boundaries of the contact region. GRID proceeds through 
each region in turn and generates the individual triangular 
elements. An example of a low density mesh generated from 
the super elements of figure 3 is illustrated in figure 4. 

One of the limitations of FECORS, with its square grid, 
is that element density can not be varied over the structure. 
An advantage of using triangular elements is that they may be 
graded in a manner appropriate to the voltage gradients which 
are present. This is a very useful feature especially when 
current flow for 900  contacts is being considered. 

[:]  0 0 

Decreasing Size 

Figure 1. The fringing effect which occurs during optical 
lithography. 

N 

Diffusion 

MetalS 

Contact 

Figure 2. D-Resistor Kelvin device. The four arms have 
width, W, and a collar, C, which surrounds the square or 
circular contact, L. Current is forced from Ii  to 12 and the 

potential is measured between V2 and V 1 . 
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Y-axis 
(microns) 	Contact Area 

(Metal or Polysilicon) 

Top Layer 

perpendicular bisectors of the midpoints of each clement side 
as illustrated in figure 5(a). Figure 5(h) shows an example of 
the area associated with a node and having calculated this 
area, the contact resistor associated with that node can he 
evaluated. The only restriction is that obtuse triangles are not 
permitted within the contact region because, in this ease, the 
point of intersection between the bisectors lies outside the 
element. The value for each resistor is simply given by 

R c,..ode  = 
PC 	

(2) 
Anode 

here A,, d, is the area associated with an individual node. 
This approach gives good agreement when compared with 
results generated using FECORS. 

(Diffusion) 

Lower Layer 

is 
ons) 

Y-axis 
Figure 3. The division of the Kelvin structure into super 
elements before mesh generation. 

Figure 4. A low density mesh generated using using the 
super elements illustrated in figure 3. 

2.2 The Calculation of the Interface Resistance 

V-Axis 

S 
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Ava OS 
 

X-axis 

Figure 5(a). The subdivision of each element according to 
the intersection of the perpendicular bisectors of each side. 

X-axis 
Once the mesh for the two conducting layers has been 

generated the next step is to calculate the values of the 
resistors used to model the interfacial contact resistance. The 
interface resistance (Re)  can he calculated using 

A 	 (1) 

where p, is the specific contact resistivity in cicm 2  and A is 
the area in cm 2  [10]. 

When the element mesh within the contact region is a 
regular series of squares the calculation of the interconnect 
resistors for each node is simple since there are only a set 
number of conditions [1]. However, with triangular elements 
there are an infinite number of possible variations. This 
requires a more complicated calculation which takes into 
consideration the area adjacent to each node. Every node can 
be considered to relate to a surrounding area bounded by the 

Figure 5(b). The area associated with each contact node and 
used in the calculation of the contact resistors. 

2.3 Solution 

After the calculation of the interfacial contact resistors 
CORSIM generates the admittance matrix and the solution 
then performed using the frontal method [111.  This gives the 
node voltages and currents which can then be used to calculate 
the contact resistance. The solution can also he displayed as a 
contour plot of the equipotcntials to provide further 
information. Figure 6 and 7 show an example of these types 
of plots for Kelvin structures with circular and square contacts. 
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Figure 6. Voltage contour plots for a metal (0.05 li.) to 
diffusion (30.0 Ill.) 3p.rn circular contact with a 2p.m collar 
(Pc=10m). (a) diffusion. (J) metal. 

3. COMPARISONS OF CONTACT GEOMETRY 

3.1 Introduction 

The Kelvin structure [1213] is widely used for the 
measurement of contact resistance but the value extracted 
assumes uniform current flow. The parasitic resistance drops 
obviously reduce the accuracy of the device and in certain 
circumstances can totally mask the measured value [1]. It is 
therefore important that these limitations are understood in 
order that the structure can be employed to its full potential. 

3.2 The Effects of Shape and Size 

There have been a number of papers dealing with the 
inaccuracies introduced by the fringing fields 1-61. 
Correction factors for 2-0 effects have been proposed but 
these have all assumed square contacts. When considering the 
relationship between square and circular contacts there are two 
options which can be used for comparisons. These are when 
the diameter of the circle is the same as the dimension of the 
square and the case when the area of both contacts are equal. 
These conditions are illustrated in figure 8. In all the 
following comparisons, the specific contact resistivity in the 
simulations has been fixed at 10 -6  Rem 2  with the extracted 
value being calculated from the voltage and current evaluated 
by CORSIM. 

Obviously the measured value of I?, for a circular contact 
will he higher than that for the equivalent square when the 

Figure 7. Voltage contour plots for a metal (0.05 1/111) to 

diffusion (30.0 f1I.) 3pm square contact with a 2pm collar 

(p=100,cm2). (a) diffusion. (b) metal. 

L2 

Li 

at 

Figure 8. The three contact areas used for comparisons. L 2  

is the diameter of a circle with the same area as the square 

and L 1  is the diameter of the circular contact with the same 

dimension as the square. 

contact's diameter is the same as the square's dimensions. 
l-lowçver the extracted values of p

' 

 , which takes into account 

the difference in area, will be muh closer. Table 1 gives 
comparison of these results for a Spm contact with a 
collar. Table 2 gives the extracted values of p, for circulai 
and square contacts with the same dimensions while table 
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Contact Type 0 or c R 	(12) Area (pa2) p, (1k_2) 

Metal 
to 

Diffusion 

0 8.84 19.6 1.74x10 

c 7.06 25.0 1.77x10 

Polysilicon 

Diffusion 

0 
to  

12.13 19.6 2.38x 10 

M 9.66 25.0 2.42x10 

Table 1. Comparison of square and circular contact parame-
ters extracted from a Kelvin structure with Sjam contacts 
and a Sp.m collar. The specific contact resistivity for the 
simulation was 19 12cm2. 

Dimension of 
square contact 0 or C 

 Collar Size 
5sm 3m lp.m 

Sum 
o 2.29 1.88 1.48 

O 2.4 1.87 1.32 

10.25m 

o 1.69 1.51 1.25 

o 1.78 1.5 1.2 

Ijsm 
_____________ 

o 1.12 1.10 1.02 

• 0 1.16 1.13 1.06 1.02 

O.2Sum 
o 1.01 1.01 1.01 1.00 

1.01 1.01 1.01 1.01 

Table 2. Comparison of square and circular contact resis-
tivity (X 106) extracts from a poly-diffusion Kelvin structure 
with variable contact and collar sizes. The diameter of the 
circular contact is the. same as the dimension of the square 
one. The specific contact resistivity for the simulations was 
ir' (1cm 2, 1t1., 27W. and iy) 

Dimensions of 
square contact 0 or 0 

 Collar Size  
5p.m I 	3p.m iizm I 0.25 am 

Sum 
o 2.46 1 	1.93 1.37 

o 2.4 1.87 1.32 1.18 
o 1.80 1.55 1.06 

o liE 1.5 1.2 1.09 

ljsm 
_ o 

o 1.16 1.13 1.06 - 
1.16 J43 1.06 1.02 
1.01 1.01 1.01 

oi 1.01 1.01 - 
Table 3. Comparison of square and circular contact resis-
tivity (x10 6) extracts from a poly-diffusion Kelvin structure 
with variable contact and collar sizes. Both contact shapes 
have equal areas and the specific contact resistivity for the 
simulations was 10_6  (1cm 2, R.401)  = 27W. and 

= 30W.. 

-gives the values for circular and square contacts with identical 
areas. Figure 9 summarises some of the data given in tables 2 
and 3. It cn be observed that for circular and square contacts 
with the same dimensions the extracted contact resistivity for 
circular contacts is smaller when the collar is large. However, 
for small collar sizes the situation is reversed as the contact 

L-5urn 

2.00 
H 
I- -4 in L-3 um H 

1.50 
I- 
C, 

lurn 
1.00 - 	CIRCULAR C, 

P 
U 

- - SQUARE 

I 	 I 	 I 
.50 

1 	2 	3 	4 	5 8 

COLLAR SIZE (MICRONS) 

Figure 9 Extracted specific contact resistivity for various 
collar and window sizes of a polysilicoñ to diffusion contact. 
The circular and square contacts both had the same 
dimensions with different areas and the specific contact 
resistivity was 101km 2 , R 1hIy)=27.0fl/ and 
Rsg1jj 	30.0W.. 

collar reduces below 1 um. This is because the circular 
contact still distorts the current flow even when the collar 
'width' is zero whereas for the square contact the current flow 
becomes totally one dimensional. 

From the above results it can be deduced that, for the 
Kelvin structure, the exact geometry of the contact is not of 
primary importance when extracting contact resistivity. By far 
the most important parameter is the area. Kelvin structures 
with equal area contacts result in very similar values of contact 
resistivity being extracted. 

Figure 10 shows a comparison of the extracted vatues of 
as window and collar size vary. In all cases the resistance 

increases with both collar and window size. As the window 
size reduces the difference between the two types of contact 
(polysilicon- diffusion and metal - diffusion) increases. The 
value of RC  for polysilicon - diffusion is always greater due to 
the voltage drop, which in this case, occurs on both layers. 
As expected the circular contacts always have a higher value of 
R associated with them because of their smaller contact areas. 

POLY-DIFFUSION CONTACTS 	0 CIRCULAR 
- - PIETAL-nIrrusxow CONTACTS + SQUARE 
150.0 

r L1.Oum 

Es  90.0 F- 
60.0 - 

L2 • Bum 

0.0 . 	I 

COLLAR SIZE (MICRONS) 

Figure 10. Extracted contact resistance, R,  for a range of 
collar and window sizes for both circular and square 
contacts. The specific contact resistivity was 10 6f1cm 2 , 

R,h(1)=0.05W•, b(poIy)2701 . and Rshdum=30.0W•. 
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Table 4 shows a comparison of the extracted value of p, 
for circular and square contacts with the same dimensions. In 
this case the contacts are metal to diffusion and it can be 
observed that the effect of the parasitic voltage drops are 
smaller due to the lower sheet resistanbe of the metal. 

Dimensions of 
square contact 0 or 0 

Collar Size  ______ 
Sum 3  1  0.25 p.m 

Slim 
o 1.73 1.51 1.26 1.21 

o 1.76 1.48 1.17 1. 0 7  

3jsm 
o 1.38 1.27 1.13 1.08 

o 1.42 1.28 1.11 1.05 

ljsm 
- 

o 1.07 1.06 1.03 1.01 

0 1.09 1.07 1.03 1 	1.01 

F0,25~- 
o 1.01 1.01 1.00 1.00 

0 1.01 1.01 1.01 1.01 

Table 4. Comparison of square and circular contact resis-

tivity (X 106) extracted from a metal-diffusion Kelvin struc-
ture with variable contact and collar sizes. The diameter of 
the circular contact is the same as the dimension of the 
square one. The specific contact resistivity for the simula-

tions was 10 Oem2, = 0.0501. and R,(djm = 30W0. 

3.3 Misalignment'ComparisOfl 

It is well recognised that misalignment of the contact 
window within the collar [1,4] is a source of error in a Kelvin 
measurement. Figure 11 shows the effect of misalignment on 
the extracted values of resistivity for both circular and square 
contacts with the same dimensions. The difference in area for 
the two contact geometries is accounted for by Pce and the 

error in the measurement for both of them can be observed to 
be very similar. The shape of the contact obviously has a less 
significant influence on the measurement then the degree of 
misalignment. It is perhaps of interest to note that for the 
geometries used in this example the circular contact always 
results in an extracted contact resistivity closest to the value set 
in the data that was used as input to CORSIM. 

3.4 Sheet Resistance Variation Directly Under the Contact 

It has been stated [10] that the sheet resistance directly 
under the contact window may vary from that in the 
surrounding area. Reference [1] simulated the effect on the 
value of R  when the value of R. under. the contact was 
varied. The simulations performed by CORSIM for circular 
windows gives similar results with higher values of R than 
those for square contacts as shown in figure 12. With the 
gradient being the same for both the square and circular 
contacts the error in any Kelvin measurements will be the 
same for both cases. 

4. CONCLUSIONS 

A finite element program that can model 'arbitrarily 
shaped contacts has been developed. It can be used to 
evaluate the effect that changes in geometry, specific contact 
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Figure 11. 	Extracted specific contact resistivity for 
misaligned polysilicon (30.001.) to diffusion (27.001.) 
contacts with p=10 and L=3p.m and C=51sni. (a) square 

contact (b) circular contact 
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Figure 12. Extracted contact resistance for a 3sm 
polysilicon to diffusion contact over a range of collar sizes as 

a function of the modified sheet resistance under the contact. 
The specific contact resistivity was 10 6, R.kn.nlv127.0W• 

and Rsh(djm 30.00/u. 
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resistivity, sheet resistivity and the modification of sheet 
resistivity under the contact have upon contact systems. The 
Kelvin test structure has been used to illustrate sOme of its 
capabilities. This work has shown that the contact area of this 
test structure is of primary importance. The contact shape has 
little influence on the the extracted value of p. It is intended 
to use this software to further examine the effect of contact 
geometry on a range of different test structures to develop 
correction curves for non-rectangular contacts. 
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ABSTRACT 
Over the years a considerable amount of research has been conducted in the area of passive stereo vision. Usually 

attempts have been made to solve the stereo correspondence problem in its most general sense and build an all purpose 
stereo module. Possible matches are proposed for all parts or edges of the image. 

The above general approach is not always necessary. Indeed there is evidence that the human vision system only 
attempts to match a small number of possible edges in a particular scene. In this paper we describe a computationally 
simple algorithm which takes advantage of the nature of the object being tracked. Disparity measurements are made 
for the entire edge and statistics used to provide subpixel accuracy. This approach reduces the problems caused by 
quantisation noise when attempts are made to rectify the depth information. We show that stereo algorithms can be 
used and adapted in an application specific manner to construct viable systems in the areas of alarms and "invisible 
wail" detection. Results are presented to show the effectiveness of the algorithm in a number of both difficult and 
simple sequences. In conclusion, we believe our work demonstrates an industrially viable vision system requiring 
minimal hardware for implementation. - 

1 INTRODUCTION 

Vision algorithms have been developed to solve both general and specific problems. However there are relatively few 
practical vision systems in use, either in an industrial or consumer environment. Those that have been successful have 
normally been restricted to recognition tasks on an assembly line or character recognition in places such as post offices. 
An important reason for this is cost. We aim to design further working vision systems using a minimum of hardware. 

In this paper we describe an alarm system which will detect and track a human moving around a scene from stationary 
cameras. It uses trinocular vision. The system has many applications in situations where "invisible" boundaries are 
required and could replace or complement systems where light beams and active electronics are currently in use. Two 
possible applications are automatic door and burglar alarm systems. In the case of doors it is desirable that the position 
of an approaching object is known. A more sensible decision can then be made as to when the door should be opened. 

Stereo vision is a possible solution to the position and size problem and a low cost algorithm has been developed 
which will utilise constraints particular to this application. It is based on the fact that, provided certain conditions are 
satisfied, two images of the same object will overlap, 1  if the width of the object is greater than the distance between the 
cameras. Using this constraint allows stereo matching, without comparing large numbers of features or performing area 
based correlation. 

However a problem with alarm systems is the requirement for wide angle lenses and pixel errors in stereo are inversely 
proportional to the product of the focal length and the distance between the cameras. Wider angle lenses require shorter 
focal lengths, increasing the significance of individual pixels. A method using disparity histograms and a basic assumption 
about the objects nature is described. Using disparity histograms for individual objects and edges allow probabilities to 
be calculated for each possible disparity. This allows a disparity estimate to be made to sub-pixel precision. Results are 
presented which employ this technique in tracking a man through a scene. 

The final application will use recently developed low cost CMOS cameras [3]. These have all the advantages that 
fabrication with a standard CMOS process allows. 

When their local origins are aligned 
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Figure 1: Overview of System Blocks 

The structure of this paper will be a discussion of the important algorithmic points in section 2. This will be followed 
by comments on calibration and accuracy in section 3. Section 4 will briefly discuss a possible hardware implementation 
while section 5 will provide examples of trials performed over fifteen different sequences. Finally, section 6 will prdvide 
general conclusions. 

2 THE SYSTEM 

This section will give a summary of the system from the lower pixel based representation to the higher level edge grouping, 
stereo matching and false alarm elimination. An overview of the entire algorithm is shown in figure 1. Data flows from 
the three cameras into the initial segmentation modules before the matching algorithm is applied. It should be noted 
that these modules are not considered in isolation. Significant computational savings can be made in one by considering 
them together and in relation to the overall application. After stereo matching between the three cameras we utilise each 
edge's statistics and apply the disparity gradient limit, Pollard [6]. Decisions about the reliability of a particular match 
can be made at this stage. The disparity results are then extracted and considered in terms of recent frames and analysed 
over time. Statistics from this module can be used to alter thresholds at lower levels and provide some indication of the 
reliability of the current measurement. 

2.1 Low Level Segmentation 

There is no requirement to build a depth map for the entire scene. Only the outline edges of an object (ie. a human) 
are desired. The segmentation algorithm can be manipulated to this end. Segmentation is based on combining a roughly 
thresholded and clustered difference image with the output from a simplified edge detector. Edge detection is also 
simplified as the multiplications, divisions and floating point calculations, associated with correlation based methods such 
as Canny [2], are too computationally expensive in terms of hardware. In the case of edge detection one has to pay the 
price of an increase in noise and false edge generation. However as we only require matching in a small number of edges 



a disparity gradient limit [6] effectively eliminates most false erroneous edges. 
We also take advantage of the fact that only edges with a substantial vertical component need be extracted. There 

are two reasons for this. Firstly matching becomes difficult for edges parallel to the base line of the stereo camera rig. 
This unsurprising conclusion has been proven in a more general sense by Skifstad and Jam [7] who show that matching is 
impossible for surfaces with no luminosity gradient. Secondly by their very nature humans have more significant vertical 
edges and short horizontal edges. These two facts allow us to restrict edge detection to a horizontal differentiation across 
the image. Further, a map is maintained of stationary edges. This allows the separation of significant moving edges from 
the background edges and reduces the effects of noise. Over a sequence of frames we build up an accurate picture of the 
non-moving vertical background edges which can be used to extract relevant foreground edges. A proposed edge is only 
accepted for matching if it is attached to a significant cluster edge. 

Overall, the above method provides a reasonably robust segmentation and works sufficiently well on our present data. 
In larger trials alterations may have to be made to take account of possible unforeseen failures. However in this application 
we are attempting to extract a general trend over a period of time. Failures in any one frame can be compensated for 
over time and by the use of three cameras. 

2.2 Computationally Simple Stereo 

There have been many algorithms and constraints developed to solve the correspondence problem in its general sense [6] 
[5]. However it is not the aim of this work to generate a complete 2D sketch for an entire scene. This would unnecessarily 
complicate the detection algorithm and require more recognition functionality at a higher level. We note from previous 
work in the form of the PMF stereo algorithm [6] that a disparity gradient limit is effective when attempting to find 
correct matches. One further constraint which is particularly suited to this application is overlap. We try to avoid 
explicit searches as much as possible. The system is therefore orientated to extracting only the relevant information from 
the initial raw image data. In this case, that is the outline edge of a human body. Other information is irrelevant and 
regarded as noise. The burden of correspondence is thus transferred to earlier stages of processing. 

2.2.1 The Overlap Constraint 

Use is made of the fact that we only require a single averaged disparity for the entire object. As alarm systems normally 
use short focal lengths, limiting accuracy, this approach has considerable advantages here. Outline features are assumed 
to be at a constant depth and statistical techniques used to estimate disparity to sub-pixel accuracy. 

The interocular distance is constrained, by the matching algorithm which we employ. In effect, the distance between 
adjacent cameras cannot be greater than the width 2  of the object, ie. a human, for which we are extracting depth. 
Thus if the outline edges for an object are known then matching can be performed by aligning the local origins of the 
images and simply scanning from an edge in one image to the nearest edge in the other image. The standard calibration 
problem applies here. However we are not attempting to directly extract depth and are only looking for a trend in the 
disparity. An alarm can be activated if the human crosses a disparity threshold for some number of frames. Also, in the 
test equipment which we employed, the rotation and lens distortion are not significant enough to prevent a correct match 
and a trend being extracted. Therefore, with the exception of translational offsets, no calibration is required. 

Figure 2 represents the stereo arrangement where two idealised cameras are on the same plane. The above method 
of scan matching depends on the fact that the two segmented views of the human overlap when their local origins are 
aligned. Also shown in figure 2 is the limiting condition for overlap to occur. That is when the object in the scene has 
precisely the same parallel width as the interocular distance. At this point the two objects will lie beside each other and 
do not overlap. The following equation, 

LJ=W 
	
sin O+ Cos 9 	 (1) 

is extracted from the geometry of the situation in figure 2 and represents what happens, to the overlap, when an object 
rotates by an angle 0 in the scene. It is important to note that the disparity/width ratio only remains constant when 
the cameras have the same focal length and are positioned on the same plane. The ratio is position dependent in these 
situations. 

2 The width parallel to the camera plane 



Figure 2: Two Camera Stereo Arrangement 

2.3 Disparity Estimation 

Quantisation errors in stereo analysis are inversely proportional to the product of the baseline and the focal length [1]. 
They are also inversely proportional to the range in the scene at which an feature is located. If the pixel size for an imager 
array is P then the RMS error in position, for a single measurement, isand in disparity 5. As we are using short 
focal lengths these errors become more significant. However when an edge can be assumed to be at constant depth then 
its disparity can be estimated more accurately. Edge location will tend to wind around its true location in the image, 
thus as an edge is tracked and matched we can build up a histogram of disparities. At this stage the edges can also be 
segmented according to the disparity gradient limit. The mean and variance of relevant parts of the disparity histogram 
are then used as estimates of disparity and associated confidence. Provided enough pixels are matched and the usual 
Gaussian assumptions are made a sub-pixel measurement for the entire object can then be calculated. At this level it is 
quite reasonable to calculate variances and disparities using floating points as the data rates are fairly low, for example, 
20 edges per frame. 

An important feature of this work is that a measure of the error is inherently provided by the calculation of the 
variance of the disparity. This not only takes into consideration the errors caused by quantisation but also those caused 
by inaccurate feature matching. These values can be utilised in any tracking filters which may he employed. This is 
described in the next section. 

2.4 Error Analysis 

We have used three cameras in order to estimate comparative disparities. This reduces the combined effects of pixel 
quantisation noise and the matching errors of a point. Errors which can be particularly significant in alarm systems 
where wide angle lenses are required. Large distances may also be expected. 

The disparities from each possible measurement from three cameras are not independent. This is clear from the fact 
that a poorly extracted edge from the left camera will cause inaccuracies in two out of the three measurements possible 
from a triple camera stereo rig. In this application we assume that the errors in feature extraction are independent and 
calculate our error covariance matrix for feature matching on this assumption. The advantage of this approach is that it 
provides a combined variance for quantisation errors and feature matching errors. 

The three possible disparity measurements, (6i), are represented by 

61 = X1 + 7)j - 	- 72 	2 = X2 + 1)2 - 	- 773 	63 = X3 +7)3 - xi - hi 	 (2) 

where x1 is the edge position with respect to the local coordinates and ij  is noise. A false match is considered part of the 
noise. Thus the errors in disparity can be summarised as 

Ax 1 =i31 —q 2  zx2=1)2-773 Ax3=713-771 	 (3) 

and considered as combinations of independent noise sources ljj. From this an error covariance matrix can be derived 
based on the experimentally calculated values of Ai. The error covariance matrix can be represented by 

Cov(e) = E[A.xS t x] 	 (4) 



where the main diagonal elements, ljj, are E[A 7 x]. The other elements in the matrix are 

- 133 111 - 122 	 tfl -. 	- t33
13 	j - 

- 122 - t33 - 11 
112 = t2i_ - 	 = 132 = 	 1 = 1 	 (5) 
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It is important to note that the values of Ijj can be extracted from the measurement process and used to calculate the 
other elements of the matrix. We have used the above measurement error matrix in the Kalman formulation where 
disparity velocity is modelled as the signal noise. 

3 CALIBRATION 

As with all stereo systems it is difficult to align cameras with no unwanted translation, rotation or pan. Algorithms have 
been developed which attempt to correct for these distortions [8] [9] [4]. In this system we use three cameras in order to 
reduce error and increase our chances of a correct match being found. These cameras are arranged as closely as possible 
to be on the same imaging plane. 

The apparatus was fairly crude and only adjusted as best as possible by hand using a white cross on black background 
and subtracting the images one from another until there was no fringe around the edges. It appears from our results 
that rotation was far less of a problem than at first thought and that the translation could be easily corrected for using 
simple offsets. Also we have taken advantage, in this system, of the fact that only a threshold disparity need be crossed to 
activate the alarm. If this is consistently breached over a number of frames the alarm is sounded. Full three dimensional 
rectification is not required. The disparity threshold can be calculated automatically when the system is installed or 
manufactured. 

Using three cameras opens possibilities of being able to correct for translational misalignments automatically. Different 
offset combinations could be attempted until consistency is obtained over a sequence of frames with a person walking 
around at the same depth. Alternatively for more accurate distance measurements the installation could be linked to a 
computer and the calibration parameters calculated using more accurate techniques. 

4 HARDWARE 

It is the intention that the above algorithms be easily implemented in cost effective hardware. The central feature of the 
system is the camera. There is little point in developing a commercial piece of processing hardware only to be defeated 
by the cost of CCD cameras. 

Implementation should be possible using a CMOS sensor with some on-chip processing to perform low level segmen-
tation and edge detection. This processing would also be required to maintain histograms and edge maps. The above 
circuitry could then be interfaced to a general microprocessor to perform the more complicated calculations of thresholds, 
means and variances. Finally an interface to memory for storage of edge maps and background images will also be 
necessary. 

5 RESULTS 

Trials and experiments have been conducted on 15 trinocular image sequences, from scenes of varying difficulty. We 
present examples of the system working in three scenes with different lighting conditions. Also presented is the output 
from the Kalman filter and the confidence weighted average of the three Kalman estimates. Absolute values are not 
significant in this application as we are only interested in a trend for a particular installation. However it should be noted 
that the disparity from the two outside cameras is halved before being input to the tracking filter. 

Each sequence is sixteen images long captured from CMOS cameras [3] of 256x256 pixels. The images are digitised 
to eight bits at five frames per second using in-house frame grabbers. Figure 3 shows the results extracted from sequence 
1, figure 6, as a man walks towards the camera from 12m. 

Figure 4 is derived from sequence 2, figure 7 as a man walks towards the camera from 17m. This scene is different 
from sequence 1 in that background is dark. Figure 5 is derived from sequence 3, figure 8, as a man walks away from the 
camera. He started at 6m. 

In all sequences the human is detected and tracked through the scene. Inevitably there are frames when matching 
becomes difficult as can be seen in the raw data graphs in figure 4 and figures. The large spikes are the result of matching 
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Figure 4: Sequence 2: Disparity against Time (Frames) 
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failures and poor extraction. However they are very obvious in relation to the disparities extracted from the previous and 
next frames. The filter manages to eliminate the worst effects of these spikes. 

We intend to expand the trial to include a greater number of sequences. It is only by such an experimental process 
that the system can be refined and knowledge gained as to when it will fail. This knowledge can be incorporated in 
an iterative manner by changes in thresholds and small changes in the algorithm. Although tedious this experimental 
approach has proven its worth in the systems designed by Anderson [3] and Vellacot [10]. 

6 CONCLUSIONS 

We have developed a stereo alarm system which employs the fact that for stereo cameras on the same plane a constant 
disparity to width ratio exists for the entire scene. This has allowed considerable savings in computational cost which 
would allow implementation using CMOS cameras with on-chip processing. 

A summary of the trials conducted has been described and accuracy examined. Measures of accuracy are extracted 
directly from the data and used in calculating confidences. This technique, combined with Kalman filtering and three 
camera stereo, has been used to calculate disparities to sub-pixel accuracy. Finally the system could be of use in automatic 
alarm systems and door opening and further trials could be performed to this end. 
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Figure 5: Sequence 3: Disparity against Time (Frames) 
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Figure 6: Triple Stereo: Sequence 1 	 - - 	 - 
16 Frames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. The focal length was 16mm and the resolution 256x256 
pixels 

Figure 7: Triple Stereo: Sequence 2 
16 Frames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. The focal length was 16mm and the resolution 256x256 
pixels 
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Figure 8: Triple Stereo: Sequence 3 
16 Frames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. The focal length was 16mm and the resolution 256x256 
pixels 
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AN INTELLIGENT ALARM SYSTEM 

K W J Findlay, D Renshaw and P B Denyer 

Edinburgh University, Scotland. 

1 Introduction 

Over the years considerable research effort has been 
directed towards the theory and practice of Al tech-
niques. Much of this work has been directed at solv-
ing vision problems and algorithms have been de-
veloped to solve both general and specific problem-
s. However there are relatively few practical vision 
systems in use, either in an industrial or consumer 
environment. Those that have been successful are 
normally restricted to recognition tasks on an as-
sembly line or character recognition in places such 
as post offices. A main reason for this is cost. We 
aim to design further working vision systems using 
minimum hardware at the lower levels of processing. 
These systems are directed at specific applications. 

In this paper we describe an alarm system which will 
detect and track a human moving around a scene 
from stationary cameras. The system has many ap-
plications in situations where "invisible" boundaries 
are required and could replace or complement the 
light beams and active electronics which are current-
ly in use. 

Stereo vision is a possible solution to the position 
and size problem and a low cost algorithm has been 
developed which will utilise constraints particular to 
this problem. It is based on the fact that 1  two views 
of the same object will overlap when their local ori-
gins are aligned. Using this constraint it allows us to 
solve the so called correspondence problem 2  without 
correlation or extensive searching. 

The final application will use recently developed low 
cost CMOS cameras [2]. There is little point in e-
conomising in other areas of processing only to be 
defeated by the current cost of CCD cameras. An-
other major advantage of this technology is the ca-
pability of placing processing on-chip together with 
the sensor array. Pixel sizes and shapes can also be 
manipulated. A CMOS camera's use with on-chip 
processing has been demonstrated by Anderson et. 

'Provided an objects width is greater than the distance 
between the two cameras. 

2 Solving the correspondence problem involves finding a 
scene feature in one image and trying to find the same, or 
corresponding, feature in the other image.  

al. [3] in a finger print recognition system. 

The structure of this paper will be an explanation of 
the important points of the algorithm in section 2. 
This will be followed by discussion about the systems 
calibration and accuracy, section 3. Also explained, 
in section 3, are the reasons for using three cameras 
as opposed to two. Section 4 gives examples of the 
algorithm applied to trial sequences. Finally section 
5 will provide general conclusions. 

2 The System 

Here we provide a summary of the system from the 
lower pixel based representation to the higher lev-
el edge grouping and stereo matching. An overview 
of the entire algorithm is shown in figure 1. Data 
flows from the three cameras into the initial segmen-
tation modules before the stereo matching algorith-
m is applied. It should be noted that these mod-
ules are not treated independently. We have found 
that significant computational savings can be made 
in one by considering it in relation to the other. Af-
ter stereo matching, between the three cameras, we 
utilise edge statistics and apply the disparity gradien-
t limit [4]. This allows a decision about a particular 
edges "goodness' to be made. The disparity result-
s are then extracted, considered in terms of recent 
frames, and analysed over time. The statistics from 
this module can then be used to alter the thresholds 
at lower levels of processing. 

2.1 Low Level Segmentation 

In this work edge detection is based on difference 
techniques since the multiplications, divisions and 
floating point calculations, associated with correla-
tion based methods such as Canny [1], are too com-
putationally expensive in terms of hardware. The 
main problem caused by reducing complexity at the 
pixel level is false edge generation. These will cause 
incorrect stereo matches. However it has been shown 
[4] that a disparity gradient limit is an effective con-
trol in determining correct matches between the two 



views. Also, inaccurate matches tend to become ob-
vious over a period of time. 

Further savings can be made in edge detection by 
taking account of the nature of the human form. 
Humans tend to have long vertical edges and short, 
insignificant, horizontal edges. As we are using lat-
erally displaced stereo cameras we do not attempt 
matching for horizontal edges. Edge extraction can 
therefore be confined to lateral differentiation. 

The edge information is combined with segmentation 
information from a clustering/thresholding algorith-
m which again does not employ the more computa-
tionally complex arithmetic described above. 

2.2 Computationally Simple Stereo Tracking 
and Control 

The correspondence problem is well known in most 
vision applications and many constraints have been 
devised as attempts to solve it in its most general 
sense. We note from previous work in the form of 
the PMF stereo algorithm [4] that a disparity gradi-
ent limit is an effective constraint when attempting 
to find correct matches. We also take note of the 
possibly obvious but nevertheless important fact that 
depth information cannot be extracted from a scene 
or area where there is not a luminosity gradient [5] 
and make our algorithm edge based. Edges have the 
highest luminosity gradient. There are many other 
advantages in using edges one of which is their con-
tinuing presence when shadows are cast. A further 
constraint which is particularly suited to this appli-
cation is what we call the overlap constraint. As 
said before we are trying to avoid explicit searches 
or correlation. The system is therefore orientated 
to extracting only the relevant information from the 
initial raw image data. In this case that is the out-
line edge of a human body. Other information is 
irrelevant and regarded as noise. We thus transfer 
the burden of correspondence to the segmentation 
stages of early image processing. Also it is only nec-
essary to find a small part of that outline reliably in 
order to estimate depth. The segmentation and edge 
detection modules can therefore be fairly crude. Ob-
viously the more correct edges that are found the 
better the accuracy of disparity estimation for the 
whole object. 

2.2.1 The Overlap Constraint 

Once the candidate outline edges have been extract-
ed it is a simple matter of scanning along a raster 
until the first edge in the other camera is found. 
The distance between these two edges is the dis- 

parity. Figure 2 represents the stereo arrangemen-
t where two cameras are on the same plane. The 
above method of scan matching depends on the fact 
that the two segmented views of the human overlap 
when their local origins are aligned with respect to 
their calibration offsets. Also shown in figure 2 is the 
limiting condition for overlap to occur. That is when 
the object in the scene is precisely the same width 
as the interocular distance, D. At this point the t-
wo objects will lie beside each other and not overlap. 
The following equation, 

I 
D=W 

Ix  
_tsin9+cosO 	 (1) 

is extracted from the geometry of the situation in 
figure 2 and represents what happens to the overlap 
when an object rotates by an angle 9 in the scene. 

2.3 Error Control 

Histogram analysis is used to form an estimate of 
the disparity of each edge. The advantage of this 
technique is that it reduces the effect of pixel quan-
tisation, a factor significant in alarm systems due 
to the effect of wide angle lenses. Also, large dis-
tances may be expected, reducing the actual size of 
the object in the image and increasing the impor-
tance of an individual matched pixel. If the correct 
disparity for an edge is somewhere between two pix-
el measurements an estimate for the entire edge can 
be calculated from the proportions of pixels at each 
disparity. We assume that for all practical situations 
where this system will be used the entire human is 
at one depth. Floating points can be used here as an 
inexpensive microprocessor should be fast enough to 
calculate a mean for the small number of difference 
clusters per frame. 

In this application we have used three cameras in or-
der to estimate comparative disparities. This also re-
duces the effects of pixel quantisation noise. Figure 3 
shows the normalised error probability distribution-
s for both two and three camera rigs. In the later 
there are three possible depth measurements which 
are averaged. The simulations were performed using 
the camera parameters described in sections 4 and 
involved rectifying the depth from 100000 randomly 
generated points in a scene with depth 20 meters. 
The errors generated were caused by both quantisa-
tion noise, dependent on camera geometry, and addi-
tional simulated noise, (a = 0.5). It should perhaps 
be noted that the error probability functions vary 
with distance and that the p.d.f.'s shown in Figure 3 
are for the complete simulated area. This factor will 
have to be taken into account when alarm thresholds 
are considered. 



3 Calibration 

As with all stereo systems it is extremely difficult to 
align cameras with no unwanted translation, rotation 
or pan. Algorithms have been developed which at-
tempt to correct for these distortions [6]. However, 
accurate calibration is not required in this system 
as a simple threshold can be utilised to determine 
invisible distance boundaries. Translational offsets 
are sufficient. We have taken advantage of the fact 
that only a disparity value need be crossed to acti-
vate the alarm. If this is consistently breached - over a 
number of frames the alarm is sounded. The dispari-
ty threshold could be calculated automatically when 
the system is installed, or manufactured, by people 
moving at a known distance. 

Also as an alternative to the above, more accurate 
distance measurements could be extracted if the sys-
tem is calibrated accurately. The installation could 
be linked to a computer and the calibration param-
eters calculated using the more accurate teqniques 
described in the literature. 

4 Results 

Trials and experiments have been conducted on fif-
teen trinocular image sequences of varying difficulty. 
These have been largely successful in detection and 
relative depth estimation. In all sequences the mov-
ing human has been detected, and then tracked for 
most of its "walk" through the scene. 

We present examples of the system working in three 
different scenes with varying lighting conditions. The 
apparatus employed was mechanically fairly crude 
and only adjusted as best as possible, by hand, using 
a white cross on black background and subtracting 
the images one from another until there was no fringe 
around the edges. It appears that rotation was far 
less of a problem than at first thought and translation 
could be easily corrected using simple offsets. 

Each sequence is sixteen images long and captured 
from CMOS cameras [21 of 256x256 pixels. The im-
ages are digitised to eight bits at five frames per sec-
ond using in-house frame grabbers. 

Figure 4 shows comparative depths extracted from 
three sequences. Figure 4(a) is derived from sequence 
1, Figure 5, and consists of a man walking towards 
the camera from 12m. The spike around frame 5 is 
caused by a sudden change in background. Howev-
er the system is capable of compensating within 2 
frames. Figure 4(b) is derived from sequence 2, Fig-
ure 6 and shows a man walking away from the camera 
from 3m. This scene is different from sequence 1 in 

that background is dark. Figure 4(c) is derived from 
sequence 3, Figure 7, and consists of a man walking 
through a door towards the camera from 8m. 

In all cases the traces tend in the correct direction 
and have sufficient gradient to set off an alarm once 
a threshold is crossed. 

We intend to expand the trial to include a greater 
number of sequences and refine the system to track 
these examples. It is only by such an experimental 
process that the system can be refined and knowl-
edge gained as to when it will fail. This knowl-
edge can be incorporated in an iterative manner by 
changes in thresholds and small changes in the algo-
rithm. Although tedious this experimental approach 
has proven its worth in the systems designed by An-
derson [2]. 

5 Conclusions 

A low cost vision system which could be utilised in 
the area of alarm verification and detection has been 
developed. The stereo system has been designed to 
provide distance measurements which could be u-
tilised as "invisible" barriers. Considerable savings 
in complexity have been achieved at the lower levels 
of processing which would allow a simpler hardware 
implementation. 
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Figure 4: Disparity against Time (Frames) Solid traces are distance extracted from between the two outside 
cameras; broken lines are distances extracted between the inside camera pairings. 

Sequence I(a) 	 Sequence 2 (b) 	 . 	Sequence 3 (c) 

FRF 

Figure 5: Triple Stereo: Sequence 1 
16 Frames at S frames/second. 
Each camera was separated by an interocular distance of 10cm. The focal length was 16mm and the resolution 
256x256 pixels 

Figure 6: Triple Stereo: Sequence 2 
16 Frames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. The focal length was 16mm and the resolution 
256x256 pixels 
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Figure 7: Triple Stereo: Sequence 3 
16 Frames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. The focal length was 16mm and the resolution 
256x256 pixels 
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Abstract 

Over the years considerable research has been conduct-
ed in the area of passive stereo vision Most of the algo-
rithms are designed to extract a complete 2 ID sketch 
over the entire image. The above approach is not always 
necessary when a general vision system is not required. 
This paper describes all original algorithm which utilis-
es a priori knowledge about an object's width to reduce 
the matching search to a simple X-axis scan. In effec-
t it transfers the coinpiexi Ix from the matching process 
to the segmentation stage which can he performed using 
traditional difference techniques. 

The algorithm is adapted for VLSI implementation us-
ing a low cost CMOS Image sensor and requires no mul-
tiplications, divisions or floating point calculations at the 
pixel level of the image hierarchy. This will allow a more 
commercially viable implementation. 

1 Introduction 

Much research effort has been directed towards the theory and 

practice of image processing and vision. However a great many 

systems require massive processing power in order to operate in 

real time. This hardware is both expensive and time consum-

ing to design, limiting both the research effort and the range of 

practical systems which can be implemented. Few vision sys' 

tems are working today in a commercial environment and one 

major reason for this is the cost of hardware. It is an aim of our 

work to demonstrate systems which are commercially viable in 

terms of the hardware required. This has been done by placing 

restrictions on the algorithm design to eliminate the more expen-

sive parts. In effect this is an algorithm for a target architecture 

rather than hardware aimed at computing an algorithm. The 
architectures aimed for are low cost CMOS VLSI implenienta-
tions of both image sensor and processing. This technology has 

been developed by Denyer óI.al. [3] [5] and an example, showing 

both processing and sensor, is given in figure 1. 

The above CMOS techniques can be exploited to reduce the 

final implementation cost, eliminating the need for expensive C-

CD technology. However, chip space restrictions require that 

constraints be placed on a pa rtici,la r algorithm's arithmetic.  In 

effect, the more complex ant htnetic has to he excluded front 
the lower levels of processing. Ali example of this is given by 
Anderson [3] in a fingerprint recognition system. In this ar-

chitecture a CMOS sensor was isitegra ted on-chip with all the 

necessary recognition processing. An important consideration in 

such a system is the problem of analogue to digital conversion. 

In this case, the video out put Iron i the sensor was t It resholded 

Figure 1: An ASIS Image Sensor With On-Chip Processing 

and digitised at the same time. The following stereo algorith-

m has been developed with the above hardware constraints in 

mind and there are no multiplications, divisions or floating point 

calculations at the pixel level of processing. 

In view of the above, the work presented in this paper is the 

design of a low cost alarm system which will detect and track 

a human moving around a scene viewed from stationary cam-

eras. We have chosen stereo vision as a possible solution to the 

above problem and have developed an algorithm which will u-

tilise constraints particular to this application. Notice is taken 

of the fact that for cameras on the same plane all overlap will 

occur if the width, (parallel to the image plane), of the object is 

greater than the interocular distance, no matter where the object 

is positioned in the scene. This constraint is further explained 
in section 2.2. 

The paper will start with a discussion of the important points of 

the algorithm, section 2, followed by comments on the calibration 

of the system in section 3. Section 4 will deal with hardware 

considerations while the last two sections will stnnmanise results 

and present general conclusions. 

2 The System 

This section will give a summary of the system from the low-

er pixel based representation to tile higher level edge grouping, 

stereo matching and false alarm elimination. Data flows from 

three cameras into the initial segnien tat ion modules  before the 

matching algorithm is applied. It should he noted that vision 

modules are not considered in isolation - Significant conipnta- 
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tionai savings can be made in one module by considering them 
together and in relation to the overall application. After stereo 
matching between the three cameras we utilise the statistics of 
each edge and apply the disparity gradient limit. Pollard [6]. De-
cisions about the reliability of a particular match can be made at 
this stage. The disparity results are then extracted and consid-
ered in terms of recent frames and analysed over time. Statistics 
from this module can be used to alter thresholds at lower lev-
els and provide some indication of the reliability of the current 
measurement. 

2.1 Low Level Segmentation 

There is no requirement to build a depth map for the entire 
scene. Only the outline edges of an object lie. a human) are de-
sired. The segmentation algorithm can be manipulated to this 
end. Segmentation is based on combining a roughly thresholded 
and clustered difference image with the output from a simplified 
edge. detector. Edge detection is also simplified as the multi-
plications, divisions and floating point calculations, associated 
with correlation based methods such as Canny [2], are too com-
putationally expensive in terms of hardware. In the case of edge 
detection, one has to pay the price of all increase in noise and 
false edge generation. However. as we only require matching in 
a small number of edges a disparity gradient. limit [6] effectively 
eliminates most false matches. 

We also take advantage of the fact that only edges with a sub-
stantial vertical component need be extracted. There are two 
reasons for this. Firstly, matching becomes difficult for edges 
parallel to the base line of the stereo camera rig. This unsur-
prising conclusion has been proven in a more general sense by 
Skifstad and Jam [7] who show that matching is impossible for 
surfaces with no luminosity gradient. Secondly, by their very 
nature humans, have more significant vertical edges and short 
horizontal edges. These two facts allow us to restrict edge detec-
tion to a horizontal differentiation across the image. Further, a 
map is maintained of stationary edges allowing foreground fea-
tures to be separated and reducing the effects of noise. Over 
a sequence of frames we build up an accurate picture of the 
non-moving vertical background edges which can be used to ex-
tract relevant foreground. A proposed edge is only accepted for 
matching if it is attached to a significant cluster. Overall, the 
above method provides a reasonably robust segmentation and 
works sufficiently well on our present data. 

2.2 Computationally Simple Stereo 

There have been many algorithms nit1 constraints developed to 
solve the correspondence problem in its general sense- Howev-
er it is not the aim of this work to generate a complete 2D 
sketch for an entire scene. This vonhil unnecessarily complicate 
the detection algorithm and require more recognition function-
ality at a higher level. We note from previous work in the form 
of the PM F stereo algorit lint [6) that a dispa6ty gradient  Ii nit 
is effective when attempting to ft iii correct iii a ti-lies. One fur-
ther constraint which is particularly stilted 10 this application is 

Figure 2: Two Camera Stereo Arrangement 

overlap. We try to avoid explicit searches as much as possible. 
The system is therefore orientated to extracting only the relevant 
information- from the initial raw image data. In this case, the 
relevant information is the outline edge of a human body. Other 
information is irrelevant and regarded as noise. The burden of 
correspondence is thus transferred to earlier stages of processing. 

2.2.1 The Overlap Constraint 

Use is made of the fact that, for this application, we only re-
quire a single averaged disparity for the entire object. As alarm 
systems normally use short focal lengths, limiting accuracy, this 
approach has considerable advantages here. Outline features are 
assumed to be at a constant depth and statistical techniques are 
to estimate disparity to sub-pixel accuracy. 

The interocular distance is constrained, by the matching.algo-
rithm which we employ. In effect, the distance between adjacent 
cameras cannot be greater than the width I of the object, ie. a 
human, for which we are extracting depth. Titus, if the outline 
edges for an object are known then matching can be performed 
by aligning the local origins of the images and simply scanning 
from an edge in one image to the nearest edge in the other image. 
The standard calibration problem applies here. However, we are 
not attempting to directly extract depth and are only looking. 
for a trend in the disparity. An alarm can be activated if the 
human crosses a disparity threshold for some number of frames. 
Also, in the test equipment which was employed, 

the rotation and lens distortion are not significant enough to 
prevent a correct match and a trend being extracted. There-
fore, with the exception of translational offsets, no calibration is 

required. 

Figure 2 represents the stereo arrangement where two idealised 
cameras are on the same plane. The above method of scat' 

'The width parallel to the camera plait. 
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Figure 3: Disparity Histograms, X axis, Represented in Time, Y 
axis 

matching depends on the fact that the two segmented views 
of the human overlap when their local origins are aligned. Also 
shown in figure 2 is the limiting condition for overlap to occur. 
That is when the object in the scene has precisely the same 
Parallel width as the interocula r  distance. At this point the t-
wo objects will lie beside each other and do not overlap. The 
following equation, 

D = 14
,LV  

sill  + cosej 	 (1) 

is extracted from the geometry of the situation in figure 2 and 
represents what happens, to the overlap, when an object rotates 
by an angle 9 in the scene. It is important to note that the 
disparity/width ratio only remains constant when the cameras 
have the same focal length and are positioned on the same plane. 
The ratio is position dependent in these situations. 

2.3 Disparity Estimation 

Quantisation errors in stereo analysis are inversely proportional 
to the product of the baseline and the focal length (1]. They are 
also inversely proportional to the range at which an feature is 
located. If the pixel size for an imager array is P then the RMS 
error in position, for a single measurement, is 	and in dispar- 
ity 	. As we are using short focal lengths these errors become 
more significant. However, when an edge can he assumed to be 
at constant depth then its disparity can be estimated more accu-
rately. Edge location will tend to wind around its true location 
in the image, thus as an edge is tracked and matched we can 
build up a histogram of disparities for the entire edge. At this 
stage the edges can also be segmented according to the dispar-
ity gradient limit. The mean and variance of relevant parts of 
the disparity histogram are then used as estimates of disparity 
and associated confidence. Provided enough pixels are matched 
and the usual Gaussian assuiliptions are made a sub-pixel mea-
surement for the entire object call now he calculated. Example 
'lisparity histograms, pl otte(I through time, for each of the three 
possible measurements, are shown in figure 3. At this level it 
is quite reasonable to calculate variances and disparities using 
floating points as the data rates are fairly low, 10, example, 20 
edges per frame. 

An important feature of this work is that a measure of tIme or- 

ror is inherently provided by the calculation of the variance of 
the disparity. This not only takes into consideration the er-
rors caused by quantisation but also those caused by inaccurate 
feature matching. These values can be utilised in any tracking 
filters which may be employed as described in the next section. 

2.4 Error Analysis 

We have used three cameras in order to estimate comparative 
disparities. This reduces the combined effects of pixel quantisa-
tion noise and the matching errors of a point. These errors can 
be particularly significant in alarm systems where wide angle 
lenses are required. Large distances may also be expected. 

The disparities from each possible measurement from three cam-
eras are not independent. This is clear from the fact that a 
poorly extracted edge from the left camera will cause inaccura-
cies in two out of the three measurements possible from a triple 
camera stereo rig. In this application we assume that the errors 
in feature extraction are independent and calculate our error co-
variance matrix for feature matching On this assumption. The 
advantage of this approach is that it provides a combined vari-
ance for quantisation and feature matching errors. 

The three possible disparity measurements.(6 1 ), are represented 
by 

61 = x+rn—z3—,7 62 = x2+ln — x3 - 113 63 = r3+q3—xi fli 
(2) 

where xi is the edge position with respect to the local coordinates 
and 77i is noise. A false match is considered part of the noise. 
Thus the errors in disparity can be summarised as 

Xi=111-13 AZ2= 772 - 713 Ax3 =v13 —Il l 	( 3) 

and considered as combinations of independent noise sources 
From this an error covariance matrix can he derived based on 
the experimentally calculated values of A 1 . The error covariance 
matrix can be represented by 

Com4c) = E[x&x} 	 (4) 

where the main diagonal elements, I,. are E[Alx). The other 
elements in the matrix are 

133 - tit - 22 
12 = t21 = 	 (5) 

2 

t22 -  
123 = 132 = tii - 
	

(6) 2 
22 - 133 - ( I] 

(7) 153=133= 	
2 

It is important to note that the values of !jj  call be extracted 
from the measurement process and used to calculate the other 
elements of the matrix. We have used the above measurement er-
ror matrix in a Kalman formulation where the disparity velocity 
is modelled as the signal noise. Again, ill a final imple men ta-
tion the frame rates required will allow these calculations using 
limited hardware. 
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3 Calibration 

As with all stereo systems it is extremely difficult to align cam-

eras with no unwanted translation, rotation or pan. Algorithms 

have been developed which attempt to correct for these distor-

tions [8] (9) [4). In this system we use three cameras in order 

to reduce the possibility of error and increase our chances of 

a correct match being found. We have taken advantage of the 

fact that only a threshold disparity need be crossed to activate 

the alarm. As a result full three dimensional rectification is not 

required. 

The apparatus used in the experiments was fairly crude and 

only adjusted as best as possible using a. white cross on a. black 

background and subtracting images from one another until there 

was no unwanted fringe around the edges. With this equipment, 

rotation was far less of a problem that at first thought and trans-

lation could easily be corrected using simple offsets. For more 

accurate calibration, including corrections for Lens distortion, the 

final equipment could be linked to a computer and parameters 

calculated using more computational techniques, 

4 Hardware 

The central feature of the system is the camera.. There is little 

point in developing a. commercial piece of processing hardware 

only to be defeated by the cost of CCD cameras. To this end 

we intend to utilise a CMOS sensor[3],which can be customised 

to a particular application, including changing pixel array sizes 

and altering aspect ratios. 

It is the intention of the above algorithms that they be easily 

implemented in cost-effective hardware. As a result they have 

been designed to have no multiplications, divisions or floating 

point calculations at the pixel level. Floating point calculations 

can be used in deciding thresholds and objeci disparities, pro-

vided that the data is accumulated by the lower level processing 

and presented in a suitable form to the microprocessor. Stan-

dard microprocessors are capable of calculating such arithmetic, 

at video rates. 

5 Results 

Trials and experiments have been conducted on fifteen triitocular 

image sequences, from scenes of varying difficulty. We present 

examples of the system working in three scenes with differeti- 

lighting conditions. Also presented is the output from the 

Kalman filter and the confidence weighted average of the three 

Kalman estimates. Absolute  values are not significant in this 

application as we are otifv ittt.ere.sted in a. trend for a particu-

lar installation. However it should he noted that the disparity 

from the two outside ca niera s is It a Ived before being input to the 

tracking filter. 

Each sequence is sixteen mt age.s long rapt u red from CMOS cant- 

era-s 131 of 256x256 pixels. The itnages are digitised to eight hits 

Figure 4: Sequeâce 1: Disparity (y) against Time (x), frames 

Raw 	 Filtered 	Weighted Average 

Figure 5: Sequence 2: Disparity (y) against Time (x), frames 

Raw 	 Filtered 	Weighted Average 

at five frames per second using in-house frame grabbers. Figure 

4 shows the results extracted from sequence 1, figure 7, as a man 

walks towards the camera from 12m. 

Figure 5 is derived from sequence 2, figure 8 as a man walk-

ing towards the camera from lint This scene is different from 

sequence 1 in that the background is dark. Figure 6 is derived 

from sequence 3, figure 9, as a. man walks away from the camera. 

He started at 6m. 

In all sequences the human is detected and tracked through the 

scene. Inevitably there are frames when inatclsing becomes diffi-

cult as can be seen in the raw data graphs in figure 5 and figure 

6. The large spikes are the result of matching failures and poor 

extraction. However they are very obvious in relation to the dis-

parities extracted from the previous and next frames. The filter 

manages to eliminate the worst effects of these spikes. 

We intend to expand the trial to include a greater number of 

sequences. It is only by such an experimental process that the 

system can be refined and knowledge gained as to when it will 

fail. This knowledge can be incorporated in an iterative manner 

by changes in thresholds and small changes in the algorithm. Al-

though tedious this experimental approach has proven its worth 

in the systems designed by Anderson [3] and Vellacot [10]. 

Figure 6: Sequence 3: Disparity (y) against Time (x), frames 

Raw 	 Filtered 	Weighted Average 
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6 Conclusions 

A low cost stereo vision alarm system has been developed. To 
the best of our knowledge the above overlap constraint has not 
been published explicitly in the stereo vision literature. Its use 
has allowed considerable savings in complexity and transferred 
the burden of correspondence, for an object's outside edges, into 
the segmentation stage. 

Results have been presented here which show the effectiveness of 
the algorithm in different scenes. We have also extracted mea-
sures of accuracy directly from the data which can be used in 
calculating confidences and tracking filters. Finally, hardware 
implementation would be a viable option in a commercial envi-
ronment. 
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Figure 7: Triple Stereo: Sequence 1 
16 Fames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. 
The focal length was 16mm and the resolution 256x256 pixels 

Figure 8: Triple Stereo: Sequence 2 
16 Frames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. 
The focal length was 16mm and the resolution 256x256 pixels 

Figure 9: Triple Stereo: -Sequence 3 
16 Frames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. 
The focal length was 16mm and the resolution 256x256 pixels 
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Abstract 

We aim to track, in three dimensions, humans and other 
moving objects using wide angle lenses. This has caused prob-
lems with quantisation noise which increases as focal lengths 
reduce. in order to control these errors the assumption, that 
all the extracted edges from the tracked object are at the same 
depth, is made. 

An original stereo vision matching/segmentation algorith-
in has been developed which minimises the problems caused 
by quantisation noise in wide angle stereo ranging systems. 
It is intended that this algorithm be implemented in cost. 
effective hardware using recently developed CMOS cameras. 
It could have many applications in the areas of general track-
ing systems and passive alarms. 

1 Introduction 

Usually attempts are made to solve the stereo correspondence prob-

lem in its most general sense and build an all purpose stereo module. 

Possible matches are proposed for all parts or edges of the image. 

The above general approach is not necessary, in this and other ap-
plications. 

We aim to track, in three dimensions, humans and other moving ob-

jects using wide angle lenses. This has caused problems with quan-

tisation noise which are inversely proportional to the product of the 

focal length and interocular distance. In order to control these errors 

the assumption, that all the extracted edges from the difference im-

age are at the same depth, is made. This is justified by the range in 

which we operate the system and by the fact that we do not require 

a complete 2 -D sketch for the entire scene. Using this constraint a 

strict disparity gradient limit can be applied and statistics gathered 

for the "goodness" of a particular match. These are used to provide 

sub-pixel accuracy and compensate for the problems of quantisation 

noise. Edges are then grouped and an overall disparity extracted. 

In the correspondence stage of the system we take advantage of the 

overlap which occurs between two views of the same object and 

match only outline edges. Outline edge detection and early segmen-

tation are based on computationally simple, difference, and cluster-

ing techniques, combined with time domain information. This allows 

the elimination of low level multiplications, divisions and floating 

point calculations and make, a commercial implementation feasible, 

using ASIS imaging technology developed by Denyer et. al. [6]. ASIS 

technology allows implementation of camera sensor and processing, 

on the same chip, using low-cost CMOS fabrication. 

Segmentation 	Segmentation 	Segmentation). 

Swreo 

(Disparity Analysis 	
/ 

Time Domain Analysis

so- 
  Fame 

Figure 1: Overview of System Blocks 

The structure of this paper will be a discussion of the important 

algorithmic points in section 2. Section 3 will provide the results of 

trials performed over different image sequences. Finally, section 4 
will draw general conclusions. 

2 The System 

An overview of the entire algorithm is shown in Figure I. As said 

in the introduction one of the aims of this work is an efficient imple-

mentation in hardware to allow commercial applications. Restric-

tions have been, necessarily, placed on the arithmetic allowed at the 

pixel level of representation. To this end, we have taken advantage 
of certain application specific features: 

The vertical nature of a moving human allows edge detection 

to be restricted to a lateral scan across the image followed by 

downwards tracking. This simplification is alsojustified by the 
lateral separation of the cameras. 

Only a disparity threshold is required to activate an alarm. 

Thus accurate camera calibration is not required. If the thresh-

old is crossed, for a number of frames, the alarm can be acti-
vated. 
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Further simplification of any future hardware implementation, has 

been achieved by employing only difference techniques at the pixel 

level. The multiplications, divisions and floating point calculations, 

associated with correlation based methods such as Canny [I], are too 

computationally expensive. The main problem, caused by reducing 
complexity at the lower levels of processing, is false edge genera-
tion. These will cause incorrect stereo matches. However it has 
been shown [5] that a disparity gradient limit is an effective control 
in determining correct matches between two view.s. Also inaccurate 
matches tend to become obvious over a period of time. 

Edge information is combined with segmentation information from a 
cluster ing/thresholding algorithm which again does not employ the 

more computationally complex arithmetic described above. Thresh-

olding is performed on differences between background and fore-
ground images and is initially chosen to be some fraction of the 
mean. As time progresses, tracking confidence will increase, and 
the threshold can be altered. Grey level difference distributions, of 
the extracted connected regions, are then used to estimate an ap-
propriate threshold. Thresholded regions are extracted on a nearest 
neighbour basis and used to group edges into relevant objects. This 
has the advantage that the overall system becomes system less de-
pendent on one source of data. Also, we need only consider moving 
edges. Edge maps, based on previous frames, are maintained and 
used to eliminate stationary features. Overall the above segmenta-
tion techniques will almost always provide some part of the outline 
of a moving object in the scene. 

Turning now to stereo matching, this is based on the simple fact that 
the images of an object in the scene can overlap if their local origins 
are aligned. This will occur if an object in the scene is wider than 
the interocular distance and the cameras are on the same imaging 
plane (2]. Once the candidate outline edges have been extracted it 
is a simple matter of scanning along a raster until the first edge in 
the other camera is found. The distance between these two edges is 
the disparity. 

Obviously, the above form of matching requires knowledge of equiva-
lent epipolar lines and rotational translations. Algorithms have been 
developed which attempt to find these corrections[Bj (9) [3] and cal-
ibrate the cameras. In the equipment employed in the trials we are 
conducting rotation is not a significant factor. Thus, translational 
corrections, and the alarm threshold, can be calculated using a man 
walking about at a known distance. Different offsets can be attempt-
ed until consistency is achieved. We have taken advantage of the fact 
that only a disparity value need be crossed to activate the alarm. If 
this is consistently breached over a number of frames the alarm will 
be sounded. 

2.1 Quantisation Error Control 

Q uantisation errors in stereo are inversely proportional to the prod-
uct of the baseline and the focal length [7]. They are also inversely 
proportional to the range at which an object is positioned. The 
extent to which distance, focal length and interocular distance are 
significant depend, also, on the pixel size, and the RMS error, in 
position, for a single measurement is and for disparity . As 
we are using short focal lengths, quantisation errors are large. In 
addition, we must also expect the system to function at distances of 

up to 20 meters. 

In this work an assumption is made that each matched edge is at 
one depth. We can use histogram analysis to form an estimate of the 
disparity of each edge. Edge location will tend to wind around its 
true location in the image, thus as an edge is tracked and matched 

Figure 2: Disparity Histograrns(X Disparity, Y Time, Z Frequency) 

Figure 3: PDF error distributions 
Two Camera Rig 	Three Camera Rig 

we can build up a histogram of disparities. Examples of these are 

shown, plotted through time, in Figure 2. 

Three histograms are plotted for the three measurements possible 
from a triple camera stereo rig. The advantage of histogram analysis 
is that it reduces the effect of quantisation and provides a sub-pixel 
acuity estimate of the disparity. 

At this stage the edges can also be segmented according to the dispar-
ity gradient limit [5] eliminating the vast majority of false matches. 
The mean and variance of relevant parts of the disparity histogram 
are then used as estimates of disparity and associated confidence. 
These confidencesnot only take into account the errors caused by 
quantisation but alsâ those caused by inaccurate feature matching. 
This information can be utilised in any tracking filters which may be 
employed. Also it is, now, possible to calculate variances and dispar-
ities using floating point calculations. Data rates, at this level, are 
fairly low, for example, 20 edges per frame and calculations could be 
performed using simple microprocessors. 

Three cameras have been used as a further attempt to reduce the 
expected error by averaging. Figure 3 shows the simulated depth 
error probability distributions for both two and three camera rigs. 
The three camera rig, where the disparity measurements are aver-
aged before inversion to depth, has a clearly improved PDF. The 
simulations were generated using the camera parameters described 

in section 3, from 100000 randomly generated points in a scene with 
a depth of 20 meters. It should, perhaps, be noted that the error 
probability functions vary with distance and that the p.d.f.'s shown 
in Figure 3 are for the complete simulated area. For example, the 
PDF between 15m and 20m will be flatter than the PDF between 
and lOm. This factor will have to be taken into account when alarrr, 

thresholds are considered. 
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Figure 4: Disparity against Time (Frames) 

(a)Seq. 1 	 (b) Seq. 2 	 (c) Seq. 3 

Figure 5: Triple Stereo: Sequence 1 

16 Frames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. The 

focal length was 16mm and the resolution 256x256 pixels 

3 Results 

Examples are presented from a trial on fifteen image sequences cap-

tured in several different scenes. Each sequence was sixteen images 

long, captured from three CMOS cameras [6) of 256x256 pixels. The 

images were digitised to eight bits at five frames per second using 

in-house frame grabbers. 

Figure 4(a) shows the results extracted from sequence 1, Figure 5, as 
a man walks towards the camera from 12m. Figure 4(b) is derived 

from sequence 2, Figure 6, as a man walks away from the camera. 

Figure 4(c) is derived from sequence 3, Figure 7, as a man walks 

initially parallel to the camera's image plane and then towards it. 

The top trace in all three graphs is the disparity extracted from the 

outer two cameras. The lower two traces are measurements from 

the inner pairings. Naturally, the outer measurement has a steeper 

gradient than that from the inner cameras. 

In all sequences the human is detected and tracked through the scene. 

Inevitably there are frames when matching becomes difficult as the 

large spikes indicate. However they are very obvious in relation to the 

disparities extracted from the previous and next frames and would 

be controlled using tracking filters such as tb, Kalman formulation 

[2]. It can also be seen that, overall, disparity through time varies 

reasonably smoothly and does not jump as pixel quantisation bound-

aries are crossed. The gradient are steep enotgh to allow disparity 

tI uholds to activate alarms. 

Figure 6: Triple Stereo: Sequence 2 

16 Frames at 5 frames/second. 

Each camera was separated by an interocular distance of 10cm. The 

focal length was 16mm and the resolution 256x256 pixels 

Figure 7: Triple Stereo: Sequence 3 

16 Frames at 5 frames/second. 
Each camera was separated by an interocular distance of 10cm. The 

focal length was 16mm and the resolution 256x256 pixels 

4 Conclusions 

An original stereo vision matching/segmentation algorithm has been 

developed which minimises the problems caused by quantisation 

noise in wide angle stereo ranging systems. It is intended that the 

algorithm be implemented in cost-effective hardware using recently 

developed CMOS cameras and has been optimised to this end. It 

could have many applications in the areas of general tracking sys-

tems and passive alarms. Further trials would allow the system to 

be tested in a wider context and allow incremental improvements as 

problems arise. This method of experimental design has proven its 

worth in systems described by Anderson [4] and Vellacot [10]- 
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