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Abstract

The work described in this thesis is concerned with the development of hard-
ware efficient, image processing and machine vision algorithms for implementation,
using recently developed low cost CMOS cameras. These allow the integration
of processing on the same silicon substrate as the imaging sensor. The general
approach differs from other image processing research in that algorithms are being
developed for a target architecture, rather than hardware being developed for a
particular image processing function. A particular application, namely intruder
detection and tracking, has been chosen, to demonstrate this approach.

The use of image processing in alarm systems has many advantages over active
electronics: the main ones being installation costs and reliability. In particular,
stereo vision has the potential of providing an invisible wall and estimates of in-
truder significance. However it is also desirable that alarm systems have wide angle
lenses. Wide angle lenses create particular problems for stereo vision, in relation to
pixel quantisation. Techniques to provide a low cost sub-pixel estimate of disparity
- are presented. Further, an original stereo matching algorithm is described which
solves the stereo correspondence problem, in a computationally simple manner.
Adaptations are also made to the low level segmentation stages which would allow
an efficient implementation using CMOS sensors and processing. Other savings
have been made by eliminating digital floating point calculations, multiplications
and divisions at the lower levels of processing. Also, due to the reduced data rates
required for global frame to frame computation, higher level, calculations can be
performed on an associated microprocessor. Thus, a Kalman tracking filter has
been applied to integrate the three possible disparities from three cameras, with
experimentally calculated error covariance matrices. A results chapter describes
the extraction of these matrices, together with simulations of the algorithms ap-
plied to twelve different sequences. These show that the system could be effective
as an alarm system. Also described, at various stages in the thesis, are possible
hardware implementations of the algorithms and partitions between analogue and
digital circuitry. The thesis finishes with some general conclusions.
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Chapter 1. Introduction 2

1.1 Aims and Objectives

The purpose of the research reported in this thesis is to demonstrate methods
and techniques suitable for the design of commercial stereo vision systems. An
original algorithm will be presented which would allow a low cost implementation
of a stereo vision application using CMOS sensors. The algorithm takes advan-
tage of the fact that a known application is being considered, an intruder alarm.
Thus, it is not an aim to imitate the human vision system and an "engineering
approach” has been taken. In this respect, a theme of the algorithms described,
will be reductions in the required processing power for a final implementation.
Thus, implementation using CMOS sensors, with on-board processing, would be
a feasible option. Another feature is the adaptation of existing image processing
techniques to this application. In many research projects, the different machine
vision functions are implemented as "black boxes”. However, in this system the
segmentation stages, of the algorithm, have been developed to produce only those
edges which matching requires. In effect, the correspondence problem! has been
treated as one of segmentation. As a result, computational improvements have

ensued in both segmentation and stereo matching.

1.2 Background

The computer vision and image processing areas of research have developed, over
the years, from projects directed at both specific problems and general machine
understanding. There has been considerable interplay between the two subject ar-
eas. As arough rule, image processing is normally thought of as the study of lower
level operations including compression, edge detection and thresholding, whereas

vision research, emanating from the artificial intelligence community, has tended

1This is described later in this chapter.
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to concentrate on the general problems of making machines see. This usually
involves consideration of higher level data structures compared to those normally
associated with image processing. Such higher level processes are currently less

well understood and on a poorer theoretical basis than the initial stages of vision.

The different subject areas of the entire vision problem tend to obscure the
fact that the divisions are very rarely clear cut. For exampie, movement can be
useful in an object’s recognition, as well as the more obvious parameters such as
shape and colour. The ihterdependence of different research areas is particularly
true in the case of 3D qkepth perception. The major problem in stereo vision
is correspondence; finding features in one view of a scene and matching them to
those of another view of the same scene. Clearly, the matching procedure will be
dependent, to some extent, on how the initial features are extracied. In terms of
recognition using 3I) information, errors are likely to be dependent to some extent
on the input information from the matching algorithm. In these terms, stereo
vision could be classified as an intermediate process between edge detection and

object modelling. It is neither at the bottom wetat the top of any hierarchy.

1.2.1 The Imaging Hierarchy and Correspondence

(General machine vision can be viewed as the pyramid shown in Figure 1-1. Asone
proceeds upwards, towards the pinnacle, each layer employs larger data objects
and more heuristic algorithms will be applied. Several vision architectures and
data structures, based on this principle, have been proposed. For example, Marr
[51], citing biological evidence, suggests segmentation algorithms using multiple
spatial channels of different bandwidth. Processing starts with information from
the smoother, low frequency, channels, which is then used to constrain the results
from the higher frequency channels. A different approach is suggested by Burt
[13] where the lower levels of the pyramid are used to survey the complete scene
for regions of interest. Higher processes in the algorithm can then "home in”
on the appropriate areas. Pyramidal organisation can also be found in hardware
architectures for image processing. Often processing elements are arranged in a

master-slave arrangement with the master distributing tasks and processing the
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results on a global level. Tregidgo et. al. [82] and Howlett [38] provide examples
of this type of architecture.

It is not the purpose of this thesis to describe generalised processing algorithms
. and architectures as the ones just suggested. However, hierarchy can usually be
applied to a specific vision application, where data is transformed from low level
pixel primitives to higher level object features. Application specific decisions can
then be made on these objects at a global level. The above discussion would sug-
gest that such hierarchical structures would result in a reduction in computational
requirements, at ‘higher levels in the pyramid. This is not always the case. In-
deed if one is trying to construct groups of features based on the strength of their
connections, then solutions often become impossible within the resources avail-
able. An example would be recognition based on a search for maximal cliques in
a general graph [4]. Graph matching, in this manner, is an NP-complete problem
[25] and such a search is likely to lead to a combinatorial explosion. Recognition
algorithms usually have to restrict the possible search space by employing addi-
tional constraints. Similar space constraints exist when calculating generalised
Hough transforms for ‘non-sta,nda,rd shapes. Often the Hough solution will use an

infeasible number of variables, and therefore dimensions, to parameterise a shape.

Problems arise, with the above and other techniques, when the object under
study is not rigid. [ts shape will vary between frames and a stationary matching
model cannot be used. Hogg [33] describes techniques for modelling non-rigid
objects, sucil as humans, using ellipses and posture as matching parameters. This
has had some success but has not been extensively tested in a wide range of
situations. In view of the computation involved it is unlikely that such a system
would be efficient in a current sensor implementation. Further, for the applications
being considered in this thesis, ie. intruder detection and tracking, it seems that
height g,nd size would be more useful parameters. Thus, for this application, there
is no requirement for a complete body model. Such non-rigid model matching is
a current area of research and may be feasible in the future, given improved

commercial processing abilities.
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Figure 1-1: The Imaging Pyramid

In this work, computation is reduced by the development of algorithms which
suit a particular application. We chose intruder detection and tracking as an area
where,image processing techniques could improve on existing systems. Depth and
disparity information would be extremely useful in detecting genuine intruders
and reducing the number of false alarms. We thus need to study techniques which

can extract depth information from a scene.

Vision algorithms, which attempt to extract 3D information, can be divided
into two groups, active and passive. In the first category, light of known source
is projected into the scene and the resultant images recorded and analysed using
triangulation. Different combinations of camera can be deployed. For example, it
is possible to extract light using a single camera with two incoherent light sources
switching on and off alternatively. As an alternative, a single camera with some
form of patterned light source can also be used to project structure onto the
scene. Jarvis [41] provides a survey of techniques which have been suggested in
the research literature. Such range finding techniques are generally considered
more reliable and accurate than passive stereo but suffer from several problems

in the type of application considered here. Firstly, normal background light may
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interfere with the projected light causing distortions and mismatches. It is desired
that the system function in normal daylight as well as artificial light. Thus in
active vision systems, the projection of patterned beams of light over large scenes
during daylight may be difficult due to light dispersion. The second problem, for
large scenes, is the difficulty in projecting beams of light onto surfaces of unknown
reflectivity. For example, a white shirt may reflect a beam which a black jacket
would absorb. The final reason for rejecting active vision systems is that the
correspondence problem remains. Features from one image, no matter how it
is lit, will have to be matched with those from another image. Thus the basic
principles for stereo matching remain for both active and passive systems. The
passive stereo algorithms described in this thesis could be extended to use active

light.

Stereo matching and disparity estimation is the main area where computa-
tion has been reduced. The stereo correspondence problem is one of a number of
similar problems in general machine vision. It is closely allied to time matching,
where attempts are made to track features and objects through scenes. The prob-
lem to be solved, in both tasks, is that of finding the same features in a number
of different images. Before the correspondence problem is solved, a decision must
be made as to what type of feature to match. The most obvious technique is that
of correlation between areas of the two images. However, correlation has serious
problems when used in this manner. When there is little luminosity gradient it
becomes increasingly difficult to differentiate between adjacent ps;.tches. Areas of
constant texture also cause problems together with the obvious fact that different
views of the same scene will be different. These constraints together with the
probable expense in correlation computation have resulted in stereo matching al-
gorithms based on features, for example edges. These do not occur in isolation
and are usually part of a larger object which can be utilised to provide further
constraints on matching. For this and the reasons described above, an edge based
stereo algorithm has been developed in this thesis. Further, this part of the corre-
spondence problem has been transferred to the segmentation stages of processing,

simplifying matching. Chapters Four and Five describe an approach based on
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extracting and grouping edges into larger objects before matching. Also discussed
are the problems found when calibrating two or more cameras. However, for the

- present, a description of the basic types of data representation will be given.

1.2.2 Image Representation and Hardware Restrictions

Images are normally represented as a matrix of grey levels extracted from some
kind of sensor. The sensor can either be a vacuum tube or an array of CCD’s or.
CMOS diodes. All current sensors produce analogue signals and the images are
normally digitised before processing. This has the obvious disadvantage of noise
but also the many processing advantages of the digital domain. The majority of

research in image processing is described in terms of digital raster arrays of pixels.

An i1ssue which arises in nearly all vision systems is that of error and noise
control. This is of particular importance in stereo vision systems where direct
measurements are being extracted. Hardware restrictions will normally impose
a minimum pixel size which together with poor calibration and lens distortion
may cause false disparity estimates. These errors are determined by the quality
of hardware employed in the equipment and are unavoidable. It is important that
such errors are recognised when attempting to assess the possible uses and failings
of a system. The work described in this thesis uses a technique based on disparity
histograms to estimate the magnitude of errors empirically and also to reduce
the actual effects of quantisation noise. These issues will discussed in Chapters
Three, Fiveand Six. In considering, - algorithm’ design, it is also important to
understand the limitations of currently available VLSI and sensor hardware. This

must be done in the light of a practical final implementation.

Research conducted at Edinburgh [17] [72] in recent years has been directed
at cost-effective 1mplementations of VLSI vision technology. A camera sensor,
an example of which is shown in Figure 1-2, has been developed. The design
can be manufactured using a standard CMOS process. CMOS fabrication allows
processing to be conducted on the same silicon substrate as the sensor array. This

has been demonstrated by Anderson [1] in a single chip fingerprint recognition
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Figure 1-2: The ASIS1011 Single Chip Video Sensor

system. It is the intention of this work to design algorithms suitable for this type

of target architecture.

Physical space restrictions place limitations on what calculations can be u-
tilised in an implemented algorithm. For reasons of cost, floating point calcu-
lations have to be restricted to those which can be performed in real time on
associated microprocessors. Constraints must also be placed on general multipli-
cations and divisions which would also have to be placed off-chip. At this stage
choices have to be made between performing calculations in the digital or analogue
domain. Here there is little choice as the stereo algorithm needs digital informa-
tion to work. The analogue to digital conversion must be performed before stereo
matching?. In contrast, edge detection can be performed using analogue circuits,

which is particularly easy when performing lateral differentiation.

1.2.3 Applications

The main thrust of the thesis is the development of vision systems and algorithms

which could be implemented as commercial products. Although parallel algo-

This is true for the algorithm in this thesis. Analogue stereo algorithms do exist

one of which is considered in Chapter Two.
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rithms and architectures have solved many image processing speed problems it is
highly unlikely, at current prices, that large parallel machines will be employed to
perform processing in any volume product. Basic image processing modules must

therefore be tailored to specific applications.

Stereo vision has many possible applications when combined with other vision
modules such as tracking. Here we consider human body detection for alarm
systems and door opening devices. A machine which can passively determine
the presence and distance that a moving object has in relation to the camera
would have many advantages over the active electronics currently used. From the
depth information the size of the object could be estimated and used to test its
significance. Tracking would allow the use of ”invisible walls”. Thus, if a disparity
threshold is crossed for a number of frames then the alarm can be sounded. Similar

principles Apply to door opening systems.

1.3 Thesis Plan and Objectives

The overall theme of the thesis is the design of vision algorithms aimed at creat-
ing a stereo vision system which could be employed in alarm systems and other
range and detection applications. This thesis will explain the techniques and fi-
nally present some results, discussion and conclusions. The last chapter will also
include some ideas for future research. In order to set the scene, and gain a
better understanding of the problems encountered in developing machine vision
applications a literature review was conducted. This has been divided into two
chapters. Chapter Two will provide a review of current theory and practice in
image processing with a discussion of the trade-offs involved in edge detection,
segmentation and thresholding. Also, there will be a brief presentation of com-
mon recognition techniques. The last part of Chapter Two will review current
hardware techniques and vision applications. This is of particular importance in
understanding the restrictions that would be imposed by a final implementation.
Algorithms can be then tailored accordingly. The third chapter will consider some

possible stereo vision algorithms in detail. Calibration and accuracy are examined
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in light of their relevance to this application. Chapter Four will describe the lower
level image processing applied in the systern, while Chapter Five will deal with
the stereo matching algorithm and higher level analysis. For convenience, the
system described will be referred to as DETECT, throughout the thesis. Experi-
mental results, from the system, will be presented in Chapter Six together with a
description of the equipment employed. The final chapter will draw some general

conclusions and describe future lines of research.



Chapter 2

The Image Processing and Hardware
| Background

11
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2.1 Introduction

It has been instructive for the purposes of this work to survey some of the standard
techniques proposed in other research. This section will describe ™ the general
algorithms such as edge detection, thresholding and segmentation. These are
to be found in most machine vision applications. In addition to this survey, a
section on current implementation techniques is also included. As described in
the introduction, an aim of this work is the development of algorithms for an
efficient hardware machine vision implementation. An understanding of current
image processing hardware was therefore important. The hardware survey will
start with some of the more general architectures, such as parallel machines and
arrays, and then progress to a survey of VLSI architectures. Finally some specific
applications will be briefly described, including a finger print recognition system
developed at Edinburgh University, a circuit to calculate the centre of mass and

an analogue implementation of a stereo algorithm.

Stereo vision algorithms are discussed in the next chapter. This division he-
tween segmentation and stereo is purely organisational and is not intended to
imply that they should be separate in practice. It is the author’s view that vision
modules usually have considerable interdependencies. Errors and strengths in one
module can have effects on the efficiency of another. This is particularly true in
the relationship between stereo and edge detection, where matching problems can
be reduced by extracting relevant edges. Edge detection can be adapted, possibly

reducing the computation, to suit the stereo algorithm.

The review begins with a detailed discussion of edge detection. Edges are
of prime importance in the current theories of human vision and are normally

assumed to represent object boundaries.
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2.2 Edge Detection

It is known that the mammalian eye performs a form of edge detection and that
this constitutes an integral part of human vision [51]. In fact, it is thought that
the human recognition system attaches far more importance to luminosity changes

than to colour boundaries.

Based on the human model, the problem of edge detection can be stated as
the extraction of luminosity gradients and the construction of higher elements to
represent changes in intensity across a two dimensional image. Using these data
structures, higher level algorithms such as model and stereo matching can be
applied, while at the same time reducing the required processing. Thus, in view
of the wide spread use of edge detection in applications and biological systems,

an understanding of the trade-offs involved is required.

There are two classes of edge detection algorithm. Zéro crossing detectors at-
tempt to find the spatial second derivative of the image, while maximurm gradient
operators attempt to find the steepest part of the luminesity variation. Marr and
Hildreth [52] suggest zero crossings based on evidence that humans apply this
technique. In contrast, the Canny Operator [16] employs a maximum gradien-
t technique which is optimal with respect to the criteria about to be discussed.
Many other operators have been described in the literature [7][24][34]. Thus apart
from Canny’s methodology, two zero crossing techniques are also briefly described,

Marr and Hildreth[52], and Vliet and Young[49].

2.2.1 Assessment Criteria

We require to be able to compare edge operators. Canny [16] has defined three

criteria for comparison. These are:

1. Good detection: There should be a clear difference between true and
false edges. In signal processing terms this can be simply expressed as

maximising the signal to noise ratio.
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2. Good localisation: Points marked should be close to the true centre

of the edge.

3. Limited number of maxima: The number of marked responses to

a particular edge should be restricted to one, (noise can cause several).

For these desirable qualities, measures were derived, for the one dimensional sit-

uation. These are shown in Equations 2.1, 2.2 and 2.3.

| [ 6(-n)f @)z |

SNR = (2.1)
/_ f(@)da
[ (a)f (2)de |
Localisation = —=% — (2.2)
n\/ [ ey
too T
[ @y
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Equation 2.1 can be used to calculate the signal to noise ratio (SNR) for a spatial
filter, f(z), applied to a luminosity function G{(z). The filter has an impulse
response limited by (—w,w) where n, is the RMS grey level noise per pixel.
For localisation, Equation 2.2 increases with the expected distance between a
marked and true edge'. This parameter is inversely proportional to the degree of
smoothing in the applied filter. The final constraint, Equation 2.3, is a limitation
on the number of false peaks within a specified width, w. e, is the mean distance,
between the first derivative peaks, in the response of of f(z). The distance between

maxima will be 2z,., and we can expect_.-— noise peaks in the filter response.

.SQ?

1Here we are working in the continuous domain. It is assumed, that for the spatial
frequencies found in a real image, the pixel size will be sufficiently small to prevent

aliasing errors. Pixel size is therefore ignored in these calculations.
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2.2.2 The Canny Operator

The above allows us to measure the quality of a filter and define an optimal
operator, for the above criteria, for a pa,rticular type of edge. Canny employed
numerical techniques to maximise the product of Equations 2.1 and 2.2. The third
constraint, Equation 2.3, was implemented as a penalty function. Thus when the
desired distance, between first derivative peaks, was violated the penalty had a

non-zero value,

The numerical optimisation procedure was employed to estimate a filter for
unit step edges. The ideal was found to be close to the first derivative of the

?, as shown in Figure 2-1. A selection of operators, suitable for

Gaussian curve
the different types and directions of edge can then be calculated for the particular
types of edge found in an application. Further extensions include the use of
noise estimates over a sequence of images. The filter masks can then be adjusted

accordingly.

Calculations such as the ones just described above would normally be con-
sidered impractical for every image in a particular application. A sub-optimal
adaptation is now described as a compromise between performance and compu-

tation.

A Realistic Implementation of the Canny Operator

Figure 2-1 shows the first derivative of a one dimensional Gaussian curve, sug-
gested as a filter in the last section. A 2D approximation can be derived from
the application of two 1D curves in the x and y directions. Simpler processing
1s the result. Thus a practical near optimal step edge operator can be imple-
mented as two one dimensional Gaussian smoothing curves followed by adjacent

pixel differencing in both the X and Y directions. The vertical and horizontal

W s -

: Heo
2If we reduce tha &lr‘-li!:;:& with respect to one criteria improvements can be made

in another. This will change the optimal shape. It is unlikely to be Gaussian.



Chapter 2. The Image Processing and Hardware Background 16

<

(=2
T
L

=

[}
T
|

1 (]
o o
- [

| T

| 1

-0.6

-10 -5 0 5 10

Figure 2-1: The First Derivative of a Gaussian Curve

components can then be combined to provide a direction and strength normal to
the edge. This allows an estimate of the likelihood of a particular pixel being a
true peak. Once the above calculations ilave been performed, a 1D representation
of the edge can be obtained by tracking peaks. One problem that occurs when
tracking is "streaking”: an edge will fall beloew some predefined noise threshold.
Hysteresis thresholding based on noise estimates from the edged image can re-
duce this problem. Canny calculates a noise estimate from the edged image using
the second deﬁvative of an impulse function. The two thresholds can then be

extracted as some percentile of the noise histogram.

Problems still arise as to when, and where, edges begin and end. Edges can be
broken at points of maximum or minimum curvature ® and also when the overall
strength, over a number of pixels, fall below minimum thresholds. Length can
also be used. The above approximation to the Canny operator was implemented

in software. A typical result image is shown in Figure 2-2

SThese are more stable when an object moves[39].
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Figure 2-2: A Canny Edge Detected Scene

2.2.3 Other Edge Detectors
The Marr-Hildreth Operator

Marr and Hildreth [52] suggest edge detection using several filter channels of
differing spatial frequency. The operators are based on the Laplacian of a Gaussian
(V2G), as shown in Figure 3-2. Zero crossings are tracked, instead of the gradient
maxima, as in the Canny technique. The usual problems of tracking apply here, as
in other operators, with one important difference. Zero crossings are not tracked
on the basis of their strength. Thus edges will always connect to themselves, the
edge of the image or to another object. However, multi-resolution spatial filters
can be used to constrain the overall extraction of segmentéd information in a‘
coarse-to-fine strategy. As will be discussed in the next chapter the coarse to fine
approach corresponds with ideas of the human visual system and with some stereo

matching algorithms.

The Non-Linear Laplace Operator

Vliet and Young [49] describe another zero-crossing operator which adapts to the

spatial gradient within a pixel neighbourhood. Each neighbourhood is searched
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for the largest and also the smallest grey scale value. Then, two functions, called
gradmaz and gradmin, are calculated. Gradmaz is the difference between the
- largest, gfey level, value and the central value and gradmin is the difference be-
tween the smallestlgrey level, and the central pixel. The output value, called
NNLAP(X,Y), is then calculated from the sum of the two functions gradmaz and

gradmin.

The result, of the above processing, is an image composed of positive, negative
and zero regions. Zero crossings are extracted from the joins between the two
types of region. A problem arises when there are areas of zeros. Where is the
true positive to negative transition? Before crossings can be found . these zero
regions must be assigned to their nearest positive or negative area. A distance
transform can be used to calculate the nearest region to a zero pixel. Vliet and
Young suggest the Borgefors [9] method. This co‘mputes, in two passes, paths to
the nearest region. Tracking techniques can then be applied to the zero crossings,

as 1n the Marr-Hildreth operator.

2.2.4 Discussion of Edge Detection

Although edge detection is simple in concept, it is rarely so in practice; many
problems can arise due to noise, closely spaced edges and poor thresholding.. It
has been suggested by Torre and Poggio [81] that edge detection is ill posed”. In
essence, all edge detectors perform some form of differentiation, thus amplifying
noise. It is for this reason that detection normally begins with smoothing. Canny
showed that- the optimum low pass filter for step edges is close to the Gaussian
-curve. However, in practice sampling will ensure only an approximation to this
ideal. Further, as noted by Horn [35] other types of formalism can provide similar
valued weights. Apart from sampling, decisions must be made about the size of
an operator. Both accuracy and computétional complexity must be considered;
computational complexity, because the number of pixel multiplications increases
as the square of the mask width, and accuracy, because if an operator is truncated
too much its performance will fall. A slightly less obvious tradeoff is that between

localisation and detection as defined in Equations 2.1 and 2.2. An operator which
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provides a high signal to noise ratio will act as low pass filter, smooth the image,
and reduce positional accuracy. The opposite applies if a filter provides accurate

{ocation.

Overall ”Canny edge detection” has become widely used in the image process-
ing and machine vision community. However, for efficiency reasons, such a stand
alone module has not been utilised in the work, described in later chapters, where
only parts of the above edge detection theory are applied. For example, if only
vertically orientated edges are required, tracking can be reduced to downwards
searches. Also, differentiation can be restricted to the horizontal direction. Alter-
ations such as these can reduce the required computation without a reduction in
performance and show that individual machine vision modules should not be con-
sidered in isolation. Thus in an overall systemn, functions such as stereo matching,
edge detection and thresholding will be interdependent. Thresholding is described

in the next section.

2.3 Thresholding

Thresholding is one of the more common techniques used in image segmentation
and 1s often termed a pixel classification problem. Sahoo, Soltani and Wong
[77] group thresholding algorithms into three classes: point dependent, region
dependent and local. A point dependent algorithm classifies pixels solely from it’s
individual grey value. In contrast, region dependent algorithms take account of
the neighbourhood of a particular pixel. Local thresholding is the application of
global techniques to smaller sub-images. Here, smoothing is often used to limit

discrepancies, caused by threshold variation between areas.

2.3.1 Point Dependent Methods

Sahoo, Soltani and Wong [77] list seven different point dependent methods which

will be summarised here:
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The Ptile Method

This simple method assumes that the percentage area of the object is known. A
threshold is chosen to provide that percentage of object pixels. It must also be

known, a priori, whether the object is darker or lighter than the background.

The Mode Method

The histogram of the difference image is extracted and assumed to consist of
background and foreground peaks. The threshold can be based on the valley
between the peaks. Problems occur when valleys are flat, when peaks are unequal

and when the difference between the peaks is small.

Ostu’s Method

Ostu [63] describes a method based on minimising the ratio, 7, from Equation 2.4,

2
o
n=— (2.4)
ar

where o7 is the variance of all grey levels in the entire image and ¢, a joint
variance, calculated from,

¢
o = wowy (g1 p2)?,  wo = pr and wy = 1 — wy, (2.5)
=0

p1 and p, are means of the grey levels above and below a particular threshold.
p: is the probability of a particular grey level, i. From the above, the parameters
0% and o} can be calculated from the difference histogram and used to evaluate

n for each possible threshold. The lowest 5 indicates the optimal threshold.

Histogram Concavity Analysis

It is often the case that there is no clear valley in the histogram and the ideal
threshold is on the shoulder of a histogram. After calculating the smallest convex
polygon which covers the histogram, possible thresholds can be selected at max-
ima of the difference between the true histogram and the convex curve. This is

illustrated in Figure 2-3.
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Figure 2—3: Histogram Concavity Analysis

Entropic Methods

Entropic methods utilise information theory to make a threshold decision. Several
methods have been proposed [69][40][45] which attempt to maximise an equation
sirnilar to 2.6.

H =H,+H, (2.6)

H, and H, are normally calculated directly from the histogram using some form

of Equations 2.7 and 2.8.

;-
H, ==Y pin(p:) (2.7)
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where the threshold, ¢, is chosen from I, possible, grey levels.

2.3.2 Region Dependent Methods

With the techniques described above, thresholds are dependent, solely, on global
image statistics. No allowances are made for regional information. Apart from

adaptively thresholding sub-images, local information can be used to improve the
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characteristics of the histogram and make the point dependent techniques more

accurate.

Histogram Improvement

Theoretically, edges are likely to be at the boundary between the background and
foreground of a difference image. Using this assumption, edge information can be

used to calculate weights for histogram values. After applying an edge operator,

pixels which have high values can be weighted least in the calculation of the new - -

histogram from the original image. The threshold can then be chosen using one of
the techniques described above. As a variation, Weska and Rosenfeld [88] suggest
that actual thresholds be chosen from peaks in the histogram of pixels which have

been extracted as edges.

One other method, of region based histogram improvement, uses quadtrees[90].
A particular difference image, or sub-image, can be recursively divided into blocks,
according to whether the standard deviation, of all the pixels within that block,
exceed a predefined limit. The limiting standard deviation can be altered as the
hierarchy is descended?. Thus, by the end of the division a particular block should
represent a roughly homogeneous region. The pixels, within that block, are then

replaced by its mean.

The division is illustrated in Figure 2-4. Due to the homogeneity of each
block the overall histogram will have deeper valleys and sharper peaks which,
in some cases, might allow better thresholding. Code was written to implement
the quadtree operation and example difference images are shown in Figure 2-
3. Histograms are also shown. Clearly, the histogram of the quadtree image has
sharper peaks and deeper valleys than that of the original difference image, making

the choice of a threshold, based on the histogram, simpler. Another advantage

*If the standard deviation is increased blocks are less likely to overlap an image

feature as the hierarchy is descended.
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Complete Image

Figure 2—4: The Quadtree Method of Segmentation: Each node represents a
quadrant of the picture. TL = top left, TR = top right, BR = bottom right and
BL = bottom left. Quadrants represent an area of the image with grey level values

within a defined standard deviation.

of quadtrees is that they provide a conveniently segmented and easily accessible

data structure for further processing.

Relaxation Techniques

Relaxation methods are only briefly mentioned here, as they often require consid-
erable computation and are unpredictable in the time taken to converge. Pixels
are initially classified according to a very rough threshold. Pixels are then altered
according to the surrounding neighbourhood. A black pixel in white neighbour-
hood will likely be classified as black and vice versa. The process is repeated until

convergence.

2.3.3 Discussion of Thresholding Techniques

In this short review, only the most general ideas in binarisation have been covered.
Many, more specialised, algorithms have been developed for particular application-
s. For example, several thresholding algorithms have been developed specifically

for character recognition [89]. None of the above will work in all situations and
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Figure 2-5: Original (left) and quadtree (right) images and respective

histograms.
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techniques can be combined to satisfy a wider range of situations. As described in
Section 2.3.2, thresholding can be related, closely, with edge detection. However,
there are also close relationships with other problems such as model matching,
finding regions of interest and background estimation. The next sections will con-
sider some techniques related to building larger features from the basic ones just

described.

2.4 Segmentation

The problem of separating objects, from each other and from backgrounds, is
known as segmentation. An exact definition of how this broad aim should be
achieved is hard to come by and may or may not include thresholding and edge
detection, as described above. A general segmentation algorithm, such as that
present in the human vision system, will require the integration of many different
sources of information. For example human beings are capable of recognising and
extracting most unknown objects from a mixed bin of parts. Here, it seems logical
that humans use knowledge of the physical world to extrapolate the few visible
edges and determine the location of the obj:ect in the bin. In this case, physical
knowledge of how solid objects react in the world will be integrated with visual
knowledge. Although, the development of such a system is beyond the scope of
this thesis, it should be noted that attempts have been made to solve the "bin
picking” problem. For example, work at Sheffield University has been directed at
building robots which perform this task[67].

In practical terms, segmentation means the construction of larger primitives
from lower features; edges can be built into outlines and clusters into surfaces.
This section will deal with some common techniques used to find connections

between objects, including the Hough transform and graph matching.
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2.4.1 Hough Transforms

As Figure 2-2 shows, edge detectors do not provide perfect outlines or bound-
aries. There will always be breaks where the luminosity gradient falls below the
set threshold. A technique often employed to extract edges from unreliable and
discontinuous data is the Hough transform [37]. It’s basic fo.rm attempts to find
straight line edges in terms of gradient and offset. Each pixel in the edged image
can then be assigned a particular gradient and distance which are used as coordi-
nates in the Hough space. Thus the Hough space is divided in terms of gradient
and offset coordinates, with peaks corresponding to lines in the original image.

The problem with this formulation is that it is only sensitive to straight lines.

A generalised Hough transform was developed by Ballard [5] and is capable of
detecting arbitrary shapes. Here votes for each accumulator ® are cast according
to a predicted centre which is calculated on the basis of a pixel s spatial gradient.
Figure 2-6 shows an irregular shape with an arbitrary reference point chosen in
the centre of the object. Before the transform is applied a model of the shape,
under study, is used to calculate values of the R-table. This table records all the
possible radii for each spatial gradient. Thus the R-table is constructed from the
orientation, ¢, at each boundary point and the radius, r, from that point to the
central reference. When a new image is processed the spatial gradient for each

boundary pixel allows access to all the radii for that orientation. Thus all possible

centres can be accumulated by drawing a circle of votes in Hough space.}

The generalised Hough transform has all the advantages of the basic version,
in that it is very robust with incomplete and noisy data. However, problems occur
when the orientation of the object in the scene 1s unknown. Unfortunately this is,
probably, the majority of situations. Object orientation has to be introduced as
an extra dimension resulting in an increase in required computation. Computa-

tional complexity is a problem often found when implementing Hough transform

5The Hough space is usually divided into an array of cells. Each edge pixel will cause

a particular accumulator to increment.
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Figure 2-6: The Generalised Hough Transform
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Table 2-1: The Hough Transform R-Table
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Figure 2—-7: Graph Matching

algorithms. Every extra parameter requires a new dimension in the search space.
Although maximum and minimum bounds can be applied to a model's search
space, the Hough transform is likely to be too complex for the work considered
later in this thesis. Problems also arise if a particular object rotates in the scene.
In this situation, multii)le Hough models must be extracted and then matched.
Again computation is likely to be unreasonable. One technique which, sometimes,
is resilient to rotation, is graph matching. However computa,tiona.‘l problems still

arise in a different form.

2.4.2 Graph Matching

In many applications there is a known relationship between different features.
A common approach to segmentation, or grouping, is to take a set of extracted
features and calculate interconnection parameters. For example, the distance
between the centroid of two edges can be one connection, as can the relative
feature directions. These parameters, and many more, can be represented using
a é;raph where nodes represent features and arcs represent connection strengths.

A diagrammatic example is shown in Figure 2-7. v
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For each incomiﬁg image a set of incomplete features and their relationships

- is extracted and compared to the stored graph. This procedure requires the
discovery of mazimal cliqgues. If one matched clique is discovered within another it
is likely that the smaller clique is an incomplete representation of the larger. Thus,
as with the Hough transform, this method allows for incomplete data. However,
unless the search is pruned, computational problems will also arise with graph

matching. General graph matching of this sort is known to be NP-complete [87].

Apart from matching models, graph matching data structures can be used
to combine fragmented edges. A seed edge can be defined as a node and other
edges, in the same neighbourhood with similar orientation, can be connected with
varying degrees of confidence. The problem can be reduced to the pixel level and
edges extracted by choosing a path through the graph. Heuristic cost functions
can be defined to evaluate each potential edge segment or pixel. Examples of

heuristic paraineters include edge strength, curvature and distance.

Graph’ matching has also been used to find corresponding features® between
stereo images[61]. However, as with model matching, stereo graphs are likely to
be too computationally complex for the low cost alarm applications considered

here.

2.4.3 Discussion of Segmentation

Both the above techniques have a wide range of possible applications which are
not restricted just to image processing and machine vision. The Hough transform
is useful in that it can detect specific types of feafure, such as circles and ellipses,
whereas the graph matching can be used to establish relationships between dif-
ferent features. Unless the search space is restricted, both suffer from complexity

problems.

Segmentation should also be considered in the light of this application. For

example, the problem of estimating the background and foreground parts of an

8The stereo correspondence problem is considered in the next chapter.
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image is interlinked with that of thresholding and segmentation. In effect it is a
classification problem. As such, it is unlikely to be perfect for every pixel. Also
of importance is the way that background extraction, thresholding and feature

grouping are related.

In the imaging hierarchy, described in Chapter One, the stages above edge
~detection are often referred to as clustering or grouping. It is at this level that
typical heuristic decisions are often made. However the decisions are based on
information from the lower processes such as thresholding and edge detection. Also
lower level processing can be improved, in a feedback loop, by information from -
higher levels. Features are often proposed by low level processing and *filtered” by
higher level grouping and object construction . Such integrated vision algorithms

are usually more application specific and less well understood.

The next section is included as a review of current machine vision architectures
and, in particular, specialised VLSI systems. As has been suggested above the

practicalities of an implementation have considerable bearing on the overall design.

2.5 Hardware Review

Researchers have designed many systems for image processing, although, for obvi-
ous reasons of cost and time, there have been far fewer hardware implementations.
It is the author’s view that the limitations of hardware have considerably reduced
the effectiveness of practical research from the acquisition stage through to the
image analysis stage. Figure 2-8 shows the typical information flow for an image
processing system. Most of the existing specialised hardware is directed at lower
level processing. This is where the current bottleneck is and inherent parallelism
at its most obvious. Images stored as arrays of pixels can easily be mapped onto
parallel processors. An assumption often made is that higher level operations are
inherently less parallel. ‘.i;” Wee_ifts..,r"[T:}] has countered this view saying that it is
wrong to assume that the computational bottleneck always lies with pixel based

operations. He cites graph matching as an example where there is significant com-
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Figure 2-8: Information Flow in a Typical Imaging System

putation at higher levels. In a hardware implementation of such algorithms the
main problems tend to be centred on efficient communication and the mapping
of processes to processing elements. In this respect, it is likely that the real rea-
son most specialised hardware is orientated at early processing, is that low level

functions are the best understood and have the most obvious parallelism.

This section will present an overview of a few of the more important archi-
tectures proposed in recent years. Such a study is highly relevant in this work
where we are attempting to build cost effective and practical systems. In this
context it is necessary to understand what architectures would be practical and
useful for this type of application. Thus the section will begin with some general
architectures, designed to satisfy a number of processing functions, and progress
towards more application specific hardware. The first architectures considered are

array processors.
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2.5.1 General Parallel Processing

‘Early image processing is ideally suited to implementation on parallel networks
of processing elements. Sub-images can usually be mapped directly onto the
processing array with small boundary overlaps and the problems of communication
kept to a minimum. As a result many research projects have been conducted on
arrays of Transputers or machines such as the ICL. DAP where advantages of
speed can be gained using general purpose machines. Apart from general parallel
hardware, specific image processing languages have been developed [29] which

allow machine vision problems to be expressed in a higher level form.

Array Architectures

The two dimensional nature of basic image processing has led many researchers to
propose processing arrays. The most common, in the British research community,
is the Transputer [21][74]{92]. The Transputer was introduced in 1985 and has
been used to build many multiprocessors of the SIMD and MIMD types. It is
programmed in OCCAM which directly reflects the parallelism inherent in the
architecture. The current versions of the Transputer have on-chip memory and
are capable of connection through parallel [/O ports to other Transputers. Usually
Transputer arrays are arranged with a master processor distributing tasks to it's

multiple slaves. The array will be serviced by a host such as a PC or workstation.

Morrow and Perrott [59] describe several low level algorithms implemented us-
ing Transputers. An entropy based edge operator was built using three processors
connected in the pipeline shown in Figure 2-9. The first processor takes in the
nine values of the present pixel 5 neighbourhood and calculates probability values,
P;. The second processor calculates nine values of P;logP; whereas the third cal-
culates the sum and normalises the final value. Results are returned to the host.
The division of an algorithm in this way is often referred to as task parallelism.
It is a technique common in current high performance scientific computers and

RISC microprocessors. Systolic arrays also employ such task parallelism.
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Figure 2—-9: Entropy calculations using Transputers

Systolic Arrays

Systolic arrays were first proposed lin the early eighties by H.T. Kung [47] of
Carnegie Mellon University based on the idea of task parallelism described above.
The term systolic comes from the human heart and processing arrays are meant to
resemble opening and shutting of heart valves. Effort has also gone into developing
compilers and efficient optimisation tools to generate the arrays and interconnect.
[3](18]. Kung proposed a machine called Warp [2] based on a linear array of
processing elements connected to a host through an interface unit as shown in
Figure 2-10. The design was specifically aimed at image processing problems

although other applications were programmed.

Although linear arrays only have two PE’s to communicate with the host an
increased I/O bandwidth is possible due to the separation of function along the
array. Every warp processor has it's own program memory of 8k combined with
32k words of data memory. A larger data memory can allow more computation
for the same I/Q bandwidth for some algorithms. The architecture of each cell is

shown in Figure 2-11.

Individual cells can receive data from either of its two neighbours. Also, data

can pass both ways along the array. For some algorithms this can ensure that all
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cells are processing making better use of the array. Each cell communicates with
its left and right neighbours through two data and one address link. All three
~ links have a 512 word queue at their inputs. This is large enough to buffer one
row of a 512x512 image. Hardware control ensures that one cell cannot write to
another cell when its queue is full and cannot read from its own queue when it is
empty. With this type of I/O individual cells can block the passage of data and
care must be taken in programming to ensure that data flows evenly through the
array. To allow this type of dataflow, clocking signals must cross chip boundaries.

Speed restrictions may ensue.

Warp cells have one floating point multiplier and one floating point adder which
are pipelined within themselves. Obviously effective programs must su‘pply these
arithmetic pipelines with uninterrupted data. rI‘.hus, algorithm implementation
is restricted to those with regular data sequences and few interrupts. IThe next
section describes some of the problems normally associated with programming

such machines.

Parallel Programming

Parallel programming is complicated by the problem of program partition. An-

naratone et. al. {3] propose three methods:-

1. Input Partitioning: Each processing element computes only a por-
tion of the input data and its corresponding output. Most low level vi-
sion algorithms can be efficiently implemented using input partitioning.
Often the problem with this arrangement is downloading the various
sub-images to each processor’s individual memory. However if the ar-
ray is big enough and the operations well ordered in time and space the
array has only to be loaded once and the results can be stored at each
processor. A new operation is then demanded by the master processor
as a SIMD instruction. This type of a;,lgorithm is likely to be ineflicient
at higher levels where disparity information has to be brought together

from other parts of the image.
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2. Output Partitioning: Each PE processes the entire input data but
only produces a section of the output. Histogram processing and image

warping are examples where output partitioning is efficient.

3. Pipelining: Pipelining is typical of systolic arrays where each cell
performs one part of the computation. Annaratone et.al 13] provides,

as an example, a solution of the partial differential eqﬁation:

& Ju
302 T EX = f(z,y) (2.9)

The system is solved by recursively calculating the values of u on a two

dimensional grid using the Equation 2.10:

' Jig i1+ Uigen F Ui+ Ui
u; = (1 —wluij 4w 4

(2.10)

where w is a constant parameter. Fach cell performs one of the above
relaxations. While cell k is performing on raster i, the preceding cell,
k-1, is computing row i+2 and the following cell, k41, is computing

row i-2. The process is repeated until convergence is achieved. .

2.5.2 Pyramid Architectures

Some researchers have noted that the human vision system is dynamic and does
not process entire scenes at any one time. The eye can concentrate on a particular
part of a scene and only be peripherally aware of other parts of the scene. P.J.
Burt [13], among others, propose a more active architecture around the general
idea of "smart sensing”. There are a number of ideas which constitute smart

sensing:-

1. Controlled Resolution: Clearly, it is difficult to alter camera resolu-
tion during operation. However low-band pass filters and sub-sampling

can be employed to reduce data rates to the minimum that is required.

2. Restricted Windows: It is desirable that only windows of current
interest be extracted from the sensor. Thus an architecture should be

able to access specific regions of the image individually.
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3. Feature Extraction: The general extraction of edges and other mea-
sures of image structure require flexible window sizes and hardware

capable of convolution. Look-up tables may also be necessary.

4. Compressed Range: Another suggestion by smart sensor proponents
1s the compression of grey level resolution using high-band pass filters

followed by a log function.

The Pipeline Pyramid Machine (PPM) proposed by Burt, and shown in Figure
2-12, consists of a number of special purpose functional units connected through
a switch network. The flexibility provided by the switch network allows config-
urations and algorithms to be dynamically changed during operation. This is
important when specific image regions are being processed and allows more func-

tional units to be added to the system.

Burt gives several examples of the system in operation including detecting flaws
in television screens and smart surveillance. The latter is of particular interest

in this research as the application considered, in later chapters, is vision alarm
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systems. Based on difference images between successive frames, a decision is made
as to whether there is motion in the scene. This is then decomposed into a set
of spatial bandpass channels by constructing a Laplacian pyramid [14]. Laplacian
pyramids are built by taking the difference between two Gaussian outputs , one
of which provides a smoother, lower pass, response. Gy and G, represent the
original and low pass filtered images respectively. A difference image, Lo = G —
G1, is calculated. As Lo is a difference image, fewer bits are required. Also,
G can be sub-sampled on the basis that ‘it has been low pass filtered. The
s@me procedure can be repeated through several Gaussian channels to achieve a
sequence, Lg,..., L,. This is known as a Laplacian pyramid and can be used to

completely reconstruct the original image.

Such data structures can be used to detect events and regions of interest at
a specific spatial frequency. Reduced processing is attainable due to the reduced
resolution and data compression. The PPM machine’s switch network, with con-

nected and variable functional units, is suited to running such algorithms.

2.5.3 VLSI Architectures

‘The above descriptions of hardware and related algorithms have all been directed
at solving general vision problems. They are capable of computing more than one
algorithm. Many VLSI architectures are aimed at individual image processing
functions such as edge detection, correlation and filtering. Other processing chips
have been directed at slightly more specific functions such as stereo vision. For
cost reasons, VLSI application specific image processing systems have been less
common and tend to be directed at commercial products. Initially, this section
will cover some of the more recent research VLSI architectures targeted at solving
low level image processing functions. Foilowing this some analogue architectures

will be described including moments calculation and a CCD/CMOS stereo sensor.
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General VLSI Processors

Texas Instruments have developed a chip called the SVP or Serial Video Processor.
This has 1024 bit processing elements combined with input and output register
files. A feature common to most of the current image processors is the closeness of
the memory to the processing elements and the techniques used to access memory
appear to be of increasing importance. Another feature of these processors is their -
SIMD nature. They are directed at low level functions where the same operation

has to be performed many times.

| Figure 2-13 shows the layout of the SVP processor. Data flows in at the top left
hand corner and out at the bottom right corner. Both input and output are serial
and could be in the form of raster scans. Individual lines can then be built up in
the input register and then moved downwards. There are two dual ported register
files, one for input and one for output. Addresses and instructions are provided
by a controller. Thus some form of address generation must be considered when

using this element.
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Figure 2—-14: The IRIS Video Processor

A second architecture is shown in Figure 2-14 and differs from the SVP ar-
chitecture in that it includes a general purpose switching array. There are two
memory buffers either side of the switching array with the processing elements re-
stricted in their function, only being able to accumulate and threshold. However
many image processing functions, eg. Fourier Transform, can be performed using

switch arrays combined with comparators.

Of interest in both these architectures is the use of input and output memory
to compile raster scans into data which can be acted on in a regionally specific
manner. In the SVP processor the input buffer is-1024 pixels, whereas in the
IRIS chip it is 512 pixels wide. Also of interest is the use of a switch array, in
the IRIS processor, to provide some of the functionality of the ALU’s of the SVP
processor. The general conclusion that can be drawn from these examples is that
mermory organisation and data-storage 1s of crucial importance. Indeed, for some
functions, eg. the Fourier Transform, data shifting and register organisation is a

major part of the processing.
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Application Specific VLSI Processors

There now follows three architectures directed at application specific tasks. The
first computes the Canny edge detector described earlier in this chapter. The
second was designed over a number of years in Edinburgh as a finger print security
system. The third is a stereo matching architecture developed for a CCD/CMOS

implementation.

The Canny design [75] is divided, as in the algorithm, into four blocks and was
designed to edge detect at 25 frames per second. Initial smoothing is performed
using two identical 1-D} convolvers as an approximation to the Gaussian function.
If a design was implemented, further silicon space savings would be obtained by
halving the mask, reversing the data stream and then adding the results together.
As Figure 2-15 shows, Ruff computes the two masks using a buffered memory
between two convolvers. While the X-convolver is writing to one memory bufler
in row /column format the Y-convolver reads from the other buffer in a column/row
manner. Access to the memory is then switched. Also shown in Figure 2-15 is a
more detailed circuit of the half Gaussian filter. Input and output data is eight bits
wide and internal calculations range between 8 and 21 bits. Gradient magnitudes
and directions are calculated for the smoothed image on a 3x3 neighbourhood
input through FIFO buffers. These are then used to interpolate, to sub-pixel
acuity, the expected values of gradient either side of the central pixel. Next,
non-maximal suppression is applied by marking, as edges, those pixels where the

central value is greater than the two interpolated pixels.

The next stage of a Canny edge detector is tracking. As edge tracking is unpre-
dictable, and the system pipelined, the Canny hysteresis thresholding algorithm
must be adapted to work with neighbourhood data. A technique based on edge
growing has been implemented. Each pixel neighbourhood from the suppression
module was thresholded twice according to.an upper and lower threshold. The
lower threshold bitmap was then compared to the upper. Any low thresholded
pixels adjacent to upper thresholded pixels were marked for output at the next it-
eration. Overlaps between neighbourhoods were also implemented to ensure edge

connection.
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The final design‘ considered in this review is a finger print recognition systern
developed by Anderson et al. [1]. A block diagram of the system is shown in
Figure 2-16. A particular feature of this design is the integration of the sensor
onto the same substrate as the image processing functions. With the exception of
the micro—cd(ntroller and some RAM, all functions were integrated onto a silicon
substrate. To avoid the full cost of an ADC a thresholding operation is combined
with the ADC using a DAC and comparator. Possible thresholds are fed into the
DAC and compared with the analogue output from the sensor. If the ratio of
black to white pixels is wrong then the threshold is adjusted accordingly. Using
this technique, the requirement for an expensive framestore is eliminated. Thfe

thresholding and normalisation function is shown in Figure 2-17.

Compared to other image processing functions relatively few VLSI design-
s have been developed specifically for stereo. Mahowald and Delbruck[50] im-
plemented the Marr-Poggio algorithm whereas Hakkarainen[28] implemented the
Marr-Poggio-Drumheller(MPD) [54] algorithm. As the Hakkarainen design was

aimed at integration of processing and sensing on the same CCD chip, this is
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Figure 2-17: Combined Thresholding and Analogue to Digital Conversion

the one presented here. Figure 2-18 shows a block diagram of the algorithm and

architecture.

Pre-processing in this algorithm implies the application of a Laplacian of Bi-
nomial (LoB) spatial bandpass filter masks. This is simply a smoothing filter
followed by an edge detector operation. Hakkarainen did not implement the LoB
function himself and other CCD analogue architectures from related work were
suggested [46] as possible solutions to this problem. Thus although the architec-
ture has been designed as a complete system, the only part fabricated specifically
for this project was the match generator. This was tested by interfacing the
AVD module to a computer and performing the LoB operation, the local support

operation and the decision module in software.

A schematic of the AVD (Absolute-Value-Difference) module is shown in Fig-
ure 2-19. Data, or charge, from the pre-processed left and right images is entered
into CCD shift registers (L;, R;) before corresponding rows are differenced in par-
allel. For each pixel, the result is inverted to provide a measure of similarity.
Following this, the next set of candidate matches are calculated by shifting either

input row along by one pixel. This is repeated for each possible disparity within a
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predefined range and the results, for each disparity, stored in a third shift register
(A;) before being read out. After this the candidate matches for each disparity
shift and pixel strengths would be supplied to the, software implemented, local

support module.

In Hakkarainen’s results the local support module assumes that the disparities
across a scene vary smoothly 7. Using the local support module, each candidate
match‘l-'l score is recalculated, by taking a weighted sum, from the neighbouring
disparities and the results fed into a decision support module. The decision al-
gorithm maintains the highest scores for each pixel together with its associated
disparity. In a working system this would be continually updated as the best

matches, for each pixel, were found.

Such a CCD implementation is efficient in area and would fit in well with
current commercial sensors. However there are practical problems associated with
this type of approach. As suggested by Skifstad and Jain [78] stereo matching
becomes difficult, or impossible, for parts of an image where there is no luminosity
gradient. However, in this work, the assumption is made that disparity varies
smoothly over the image and, using a neighbourhood support scheme, an attempt
1s made to find a match at every pixel. The neighbourhood support is most
likely to cause errors at areas of the image where there are sudden changes in
disparity. These areas are likely to be edges. Thus this algorithm will provide
poor perfbrmance in the areas of the image with the easiest matches, ie. .large
luminosity changes or edges. Despite this such an algorithm can have success in
textured scenes. Also Hakkarainen’s design shows that stereo algorithms can be
implemented in analogue VLSI. The next section considers some other analogue

Image processing circuits.

“As is discussed in the next chapter this assumption is not always true.
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Analogue Architectures

Horn {34] states that although parallel digital networks are ideal for research they
are large and expensive and he proposed experimentation with analogue VLSI
networks. Examples include edge detection, Gaussian and binomial filters and
moment calculation. Several analogue chips have been built to implement these

functions and moments calculation is discussed here as an example.

DeWeerth and Mead [19] designed an analogue chip to calculate the centre of
mass of a thresholded object in the scene. The calculation is performed by noting
that the inertia about an axis perpendicular to the image plane is minimised at

the centre of mass. In effect we must minimise the value of Equation 2.11.

E=[ [ (-2 + - pMe.y)dedy,

o
]
p—
p—

e

where b(z,y) is the thresholding function for each pixel. Finding the minimum of

Equation 2.11 can be solved by finding the zeroes of the following two derivatives.

% _ a/fD(m —#)b(z,y)dudy (2.12)
Z—f = affD(y ~ ¥)b(z, y)dzdy, (2.13)

where « is a gain factor which controls the speed of adjustment of estimates of T

and 7.

The implementation proposed by DeWeerth and Mead [19], employs a bus for
each of the above equations. The voltage on this bus is proportional to the current
estimates 7 or . Every pixel injects, onto the bus, a current proportional to the
difference between its x or y coordinate and the bus potential. This is only done
if the pixel exceeds the threshold, 5(z,y). When equilibrium has been achieved
the injected currents into the bus add up to zero and the voltages on the busses

represent true estimates of T and 7.
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2.5.4 Discussion of Image Processing Hardware

The above hardware survey is aimed at providing a broad overview of current
research. It ranges from the general machines, such as the Transputer, to the

application specific analogue and digital processors described above.

With the exception of the PPM machine, relatively few parallel architectures
seem directed at solving lower level image processing problems, such as smoothing
and feature extraction. Problems such as graph matching, model matching and
perception have not been seriously studied in terms of hardware. A main reason
for this is that these processes tend to be less well understood and are considered
irregular. Of particular interest to this work is the implementation of stereo

algorithms in CCD analogue VLSI.

In terms of the general processors, two characteristics appear to be common.
Firstly all have on-chip memory to allow rasier scan data to be assembled into 2-D
neighbourhoods. Secondly the multi-function processors are nearly all designed to
be cascadable. The processor can then be employed in a "dataflow” arrangement
and its function altered with respect to the desired algorithm. Cascadable pro-
cessors are at their most obvious in systolic architectures. The designers of these
machines have emphasised the problems of 1/O bandwidth across chip bound-
aries. They state the inefliciencies inherent in a design if one part of the overall

architecture is faster than another. Thus computation should be balanced with

1/0 speed.

Analogue hardware was also covered and it is clear that there is potential
for some very eflicient implementations in a final system. The calculation of mo-
ments by DeWeerth and Mead [19] provide one example as does the combination of
thresholding and analogue to digital conversion described by Anderson [1]. How-
ever problems still remain in image storage and in the combination of information

_—_— . ..

from differént parts’ of _thg_scey_g.,__?
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2.6 Conclusions

This chapter started with a description of current research and practice in low
level image processing covering the areas of edge detection, thresholding and seg-
mentation. What is evident from these distinct areas is the interdependence, in
a final system, of the different modules. For example, thresholds can be chosen
from an edge detected image, edges can be built from segmentation techniques
such as the Hough transform and, as will be shown in the next chapter, stereo

vision errors can be dependent on extracted edges.

Such low level functions can be used to build up an imaging system for a par-
ticular application. For example, an estimation of the background aﬁ\d foreground
parts of an image can be performed using threshold and segmentation techniques.
A similar and, again, interlinked problem is that of grouping features into one ob-
ject. Basic functions can be built into a larger system to provide a solution to this
problem. The sélution will very rarely be perfect due to unpredictable changes
in the scene and it is important that all the available information is combined.
This approach will be described in later chapters where a simplified edge detector
is combined with a simplified thresholding function to extract only those edges
which are necessary for the stereo matching algorithm. Combination of informa-
tion in this manner can also reduce the overall computational cost and avoid the

use of intensive algorithms such as the Hough transform and graph matching.

The last section of this chapter was a survey of current hardware techniques.
It is clear from the survey that, in a practical CMOS /sensor implementation, the

design should be conducted in the light of the following considerations:

1. The cost of floating point arithmetic.

2. The cost of low Jevel processing compared to possible advantages to be
had from using larger data structures. Thus a speedy transition from
a pixel based description to a higher level segmented description of the
image would reduce the data processing required at the more function-

ally complex stages of the system. This is also important in terms of
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the I/O bandwidth problem described in the section on systolic arrays.
If the sensor can be integrated on the same chip as early processing the
problem of pin capacitances and drive circuits is largely resolved. Only

significant features such as edges need be extracted from the chip.

3. Early image processing should be specialised to the application in mind.

Savings can be made by altering the algorithm.

4. Memory is of considerable importance. All the processing arrays de-
scribed above had some form of on-chip memory to arrange data in a

spatial manner.

These considerations have been applied in the DETECT system described later
where the algorithm has been adapted to be suitable for a CMOS/Sensor imple-

mentation.
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3.1 Introduction

This chapter is concerned with the examination of current stereo vision techniques
and their application to the problem of tracking human beings using minimal
hardware. Stereo vision can provide us with estimations of distance and size.
Such estimates would be of considerable use in reducing the occu®nce of false

alarms.

An initial statement of general stereo geometric principles will be followe-d
by a brief description of recent biological research and computational algorithms,
designed to model the human system. Marr’s matching constraints, which can
be applied to solve what is commonly called the correspondence problem, are
also described. Of particular interest is recent research [64] suggesting that the
human eye only attempts matching for a limited number of points in the scene.
In the work described in later chapters complete matching is not attempted for
- every edge feature in the scene. It seems pointless to do so and would generate
an unnecessary computational load. Section 3.4 provides a review of current
developments in stereo algorithms and discusses them'in the light of possible
VLST implementations. This discussion will link with Chapters Four, Five and Six
which describe stereo vision and image processing algorithms aimed at a specific
application, ie., the detection and tracking of intruders. Later sections, of the

chapter, will deal with calibration and error analysis, followed by some conclusions.

3.2 Geometric Principles

Depth estimates of a particular scene, feature or object can be based on spatially
separated views, using a stationary camera, or temporally separated views when
the camera or subject is moving. Estimates of distance are inversely proportional
to the differences, or disparities, of separate views of the scene. This inverse nature
of the problem has led to stereo being labelled ”ill-conditioned”. Small errors are

amplified by the process of inversion. Such errors are considered in section 3.5.2.
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Figure 3-1 shows a generalised, two camera stereo rig. Knowing the interocular
distance, D, focal length, F, pixel size, P and the transformation relating the two
coordinate systems, the world coordinates of a point P can be found from the left
and right camera views. The two coordinate systems can be represented in terms

of the rotation, R and translation, T, shown in Equation 3.1.

r x
2’ r4

The above situation can be simplified such that cameras are laterally separated
and on the same imaging plane, Figure 3-12. In this situation rasters from the
two cameras will correspond and the epipolar ! constraint applied. The following
relationships can be defined. Disparity, §, Equation 3.2, is defined as the difference
n X position on each of the two imaging planes once their local coordinate origins

are aligned.

§=| X ~ X, | (3.2)

where X; and X, are the left and right lateral feature positions on the imaging
plane with respect to their local origins. We also get an equation relating depth,
Z, and disparity, 6, with the product of the focal length, F, and the interocular

distance, D.

Z = ? (3.3)

Thus, disparity is inversely proportional to depth and can be used to estimate
depth if a particular camera geometry is known and similar features in both images
are known. The next section covers current ideas about how the human vision

system solves this correspondence problem.

The epipolar constraint simply means that searches for corresponding matches can

be restricted to scans along the relevant rasters in the two images.
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3.3 Biological Systems

The ability of the human eye to judge distance is remarkable and a digression to
consider current theories of human correspondence is worthwhile. Much of stereo
vision research has been conducted in artificial intelligence organisations where
biological systems lLave provided the main inspiration for the most important
‘theories. Marr gives a good summary in Vision {51] which describes researchers
attempts to imitate the human eye’s own stereo algorithm. The exact algorithm by
which the eye solves the correspondence problem is not known. However, it would
seem obvious that humans’ memory and image understanding play important

roles, together with explicit depth extraction from lateral or temporal motion.

It is known that the eye performs edge detection early on in an image’s in-
terpretation. It is also known that that the receptive fields of the eye consist of
a central excitatory region surrounded by an inhibitory area. This is thought to

result in a V2@ operator being applied to incoming light. The V2G function is

shown in Figure 3-2 and is obtained by taking the if;placian of a Gaussian (;1_11_1‘\_(9_.}
Psychologists [15] believe that four of these V2@ operat:,ors provide four spatial

channels, at different scales, as an input to further processing.

Human stereo vision is thought to use the zero crossings as matching fea-
tures. A coarse to fine strategy, starting from the largest spatial channel and
proceeding downwards is then used to constrain matching and feature detection.
Higher bandwidth channels are more detailed and, therefore, correspondence more
problematic, whereas lower bandwidth channels will have poorer localisation of

features but better matching.

Marr describes a computational theory of stereopsis and proposes three con-
straints in order to determine a unique correspondence between two images. These

are:-

1. Compatibility: Obviously only items which arise from the same ob-

Ject and have similar features should be considered for matching,
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Figure 3-2: The VG Operator

2. Uniqueness: A feature from one image can only match one feature

from the other image.

3. Continuity: The disparity of correct matches should vary smoothly
over the majority of the image. Obviously this will not apply every-
where, but as objects are usually continuous it is most likely that its

depth will be continuous.
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3.4 Stereo Algorithms

Based upon the above, Marr described two algorithms which satisfy the above
constraints and are therefore possible imitations of human stereopsis. The first is

a cooperative algorithm.

3.4.1 Marr’s Cooperative Algorithm

The following description refers to Figure 3-3 which shows a binary array with ex-
citatory connections along the diagonals, and inhibitory connections in the vertical
~ and horizontal directions. Each diagonal line represents a particular disparity with
the central positive diagonal being zero. Binary features from the corresponding
epipolar rows of a left and right camera are extracted. The disparity array is
initialised by setting individual bits to one, if the corresponding pixels in the left
and right epipolar lines are both one, and to zero for all other combinations. A
correspondence is said to be found if a disparity array bit is one. Clearly the
initialisation of the array will generate a number of false matches, violating the
uniqueness constraint. Fa.lse matches are eliminated by applying the continuity
constraint. Each bit in the disparity array is updated by summing the weighted
bits from the surrounding neighbourhood. Weights in the positive diagonal di-
rection will excite, whereas all others will inhibit. Further to this, a threshold
function was applied to the neighbourhdod sum to define whether an individual
pixel should be one or zero. Over a number of time-steps, parts of the epipolar
line with similar disparities, and which are near each other, will reinforce and
reduce the number of false matches. Convergence is achieved when the difference

between successive time steps is reduced to an acceptable minimum.

Variations on the above approach are possible. Instead of having an on-off
binary array, accumulators could be employed at every possible disparity match.
In this situation it would be important to ensure that the system is stable and
that both the inhibition and excitation are within reasonable limits. Hardware

implementations have been proposed to implement the above algorithms and an
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~analogue network, with connections implemented using variable resistances has

been described by M.A. Mahowald and T. Delbruk [50].

3.4.2 Marr’s Biological Algorithm

Y

A second algorithm, suggested by Marr and Poggio [53] and implemented by
Grimson[27), is based directly on the limited knowledge of the human matching
system: ie., a four channel coarse to fine strategy. As described above, zero
crossings, with their sign and orientation, are extracted from the output of a V*@
operator at different spatial resolutions. Crossings from the two separated views
are matchable if their signs are similar and their orientations within 30 degrees.
This was done across the filtered image on a pixel by pixel basis. The coarsely
filtered images are matched first, reducing the number of potential matches and
the disparity search range in the higher bandpass filters is restricted according to
the results from coarser channels. Thus, after successive filters and matches have

been applied, reasonable edge localisation and match accuracy can be achieved.

3.4.3 Other Approaches and Constraints

There are many other approaches to finding correct disparity matches [6] [42] [32]
. [70] [62]. Often a brute force correlation technique has been utilised where a grey
level patch from one image is compared with successive patches from the other
image. However, problems arise with the size of correlation block and from lumi-
nosity variations between different camera views. Often attempts will be made
to match blocks where there are minimal luminosity variations. As human snow

blindness shows, it is impossible to extract disparities from featureless information

78].

Another question, which often arises, is whether depth information should be
calculated before or after recognition has been performed. Clearly, knowledge
about the shape and structure of the object under consideration would be of ad-
vantage in both reducing the number of false matches and increasing the accuracy

of the measurement. As the problem of recognition and model matching is not
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being considered in this work, we will confine the discussion, in this and coming

chapters, to general matching principles which can be applied without recognition.

The:most fundamental feature which can be used for matching is the edge
as this represents a change in luminosity. Further to this, is the fact that edge
strengths are relative. It is more likely that edge strengths from two views of
the same scene will be similar. This is not the case when one considers absolute

luminosities. The next section discusses the possibilities of edge based matching.

3.4.4 Edge Based Methods

Edges have several parameters which can be used in matching;

1. Strength: The usual understanding of an edge in a grey level image
is that of a sharp change in luminosity gradient. If the two views
are reasonably close then corresponding edges should have luminosity
gradients of the same order. Edges should also be of the same polarity,

ie. a positive gradient edge should not match a negative gradient edge.

2. Direction: Spatial direction has been used as a constraint. For ex-
ample, Grimson{27] eliminated any candidate matches if.they diverged
by more than 30 degrees. The threshold angle will be, to some extent,

dependent on the camera geometry.

3. Position: Scene knowledge and camera parameters can be used to
restrict the image area in which candidate matches will be considered.
In effect maximum and minimum disparity limits can be applied to

reduce the chances of false matches.

4. Length: If the focal lengths of the two cameras are equal and are at
approximately the same depth, then the features should be of similar
size. It is unlikely that size. can be used when matching lower level

features, due to fragmentation of the initial segmentation.

5. Disparity Gradient: The concept of disparity gradient, V§, is taken

from experiments which appear to indicate that humans find difficulty
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in matching features where V§ > 1. In computer vision the disparity
gradient has proved to be of considerable use in discriminating between
correct and false matches. Burt and Julesz [65] defined the disparity
gradient, between two points, as the difference in their disparities di-
vided by their separation in distance. Figure 3-4 illustrates. For the
upper matching feature, the shape and, therefore, disparity is constant,

as the edge is tracked from top to bottom.
61 == 62 = (53 (34)

This edge would be accepted as a correct match. The second feature
would probably fail a disparity threshold test and be eliminated as an
incorrect match. The quality of a point to point match can therefore
\r¢. determined by both the surrounding matches and changes in dispari-
ty. In addition, disparity gradient thresholds can be used to segment
an edge into separate components. Any sudden jumps in disparity of
an edge are likely to indicate the end of one feature and the start of

another.

3.4.5 The PMF Algorithm

Pollard, Mayhew and Frisby [76] have developed a stereo vision system within
the Sheffield TINA environment[67]. This algorithm directly applies a disparity
gradient limit to the matching problem. Figure 3-5 shows the algorithmic details.

Potential matches from the feature maps are initially selected according to the
epipolar constraint, the sign and edgel strength. An initial strength is computed
using the product of the two candidate pixels. The strongest matches can then be
proposed as seeds from which other matches can be derived. Starting with edge
pixels, from the left image, all potential matches along the epipolar line in the right
image are considered. For each potential match, support within a circular area
is calculated to provide an estimate of match strength. The support is weighted

according to the disparity gradient with the central match. Those initial matches
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which have sufficient support are proposed as input for the next iteration.. The

cycle continues three times.

3.4.6 Phase Based Stereo

Another way of considering disparity is to represent it as a phase difference. Sev-
eral authors [44][20] have proposed disparity extraction techniques using phase
difference. As with correlation techniques, a dense disparity map, for the entire
scene, can be extracted. Phase differences can be calculated, in the frequency
domain, from the output of multiple bandpass filtered images. The technique is
illustrated, for the one dimensional case, in Figure 3-6. Frequency dependent
phase information is calculated for each spatial channel and for both the left and
right images. The difference in phase, between the left and right images, may be
used as an estirate of disparity. Often several possible disparities will be extract-
ed and further constraints such as ordering and the disparity gradient can then

be applied.

Using the notation presented by Jenkin [43], perfectly filtered left and right

luminosity images can be represented, in the x dimension, by Equations 3.5.
Iy = Asin(wiz + 0;) I, = Bsin(w,z + 0,) (3.5)

where A and B are amplitudes, w; frequencies and 6; phase angles. In phase
based disparity estimation, the assumption, that w; = w,, is made. Equation 3.6

indicates the disparity d(z) as a function of the phase difference 4.

dz) = ~(z) @)
where
_ 1
W = "2-((.01 +w.,.-) (37)
and
#z) = (wr —wy )z + (6 - 0,) (3.8)

Using the above representation phase information can be extracted from the Fouri-

er Transform and the difference between the left and right images calculated.
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These techniques have not been applied in this work due to the computational
complexity required to implement each spatial filter and the subsequent Fourier

transforms.

3.4.7 Neural Algorithms

Considering the current interest in neural networks it is surprising that there is
not more published work on the explicit application of neural networks to the
stereo vision problem. Perhaps this is due to the conceptual similarities between
the cooperation algorithms, one of which was discussed in section 3.4.1, and neu-
ral networks. Both involve processing elements, which sum inputs, and both use
connections which can be inhibitory or excitatory. An alternative approach, de-
scribed by Nasrabadi and Choo [60], calculates correspondence, on edge elements,

using a Hopfield network to optimise the solution.

'The initial features are extracted using a Moravec operator [58] and Marr’s
constraints represented as a cost function to be minimised. Figure 3-7 represents
an N; x N, array of neurons where N; and N, are the total number of interesting
points in the left and right images respectively. Neurons are on or off, indicating
the possibilities of matches between the Ieftl and right images. Thus a suitable
initialisation of the network would be setting all possible matches along an epipo-
lar line, and within a certain disparity, to one. The network update functions,

described by Nasrabadi, are:

Ny Ny i
V-ik — 0 Zf - Z Z(Cikj] — (52'3; — (5;;1)‘/3'1 +2l <0 (39)
hj:]. =1 J
[ t Nr T .
Vie — 1 Zf — ZZ(CU&“ — (5,;4;,' — 51“-)1/:1'1 +2 >0 (310)
Li=11=1 ]
Ny N,
no change Ef - Z(C“‘ﬂ — 6,'_,' — 6k1)1/_;'1 + 21 =0 (3.11)
1=11=1
where
2
Cirjt = m——— — 1 (3.12)

[+ 9]
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Figure 3~7: Disparity Estimation Using a Hopfield Network

and

X = [W1 |Ad| + W, |AD|] (3.13)

Ci;rt is a measure of compatibility between features. A graﬁh of C;jgr 1s shown in
Figure 3-8. Its value varies between -1, a poor match, and +1, a good match. In
- Equation 3.12 the values of 0;; and &y are used to prevent correspondences between
impossible matches. Thus §;; is 1 when i = j and 0 for all other combinations of
1and J. Ais a scaling factor and § controls where the function crosses the X-axis.
Ad is the difference in the disparities of the matched pairs (1,k) and (j,k) and AD
is the difference between the distances i to j and from k to 1. W; and Wg a-re
constant weight factors and satisfy the relationship W, + W, = 1. Experimental

values for all the above parameters can be found in the paper.

The network can be run by random update of individual neurons until the
change in energy becomes minimal. Obviously, local minima problems can arise
and these are exaggerated by the binary nature of the network. A continuous

network would reduce this problem at the expense of computational complexity.
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'The authors present results for the network applied to several images for which
the network took 1000 iterations to find the correspondences. Again, for compu-
tational reasons, the above neural approach is unsuited to the objectives of this

thesis.

3.5 Error Analysis

An important part of stereo matching is an analysis of the probability of errors.

The types of error which can occur in a stereo rig can be described as follows.

1. Stereo mismatching and false edge extraction.

2. Pixel quantisation noise. |

3. Aliasing noise.

4. Digitisation noise.

5. Physical camera misalignment and lens distortion.

6. Grey level noise.

The above list gives an indication of possible sources of error. These, with

the exception of stereo matching, are present to a greater or lesser degree in



Chapter 3. Stereo Vision Techniques 69

every image processing system. This section will not concern itself with the the
last two items due to their physical nature. The noise caused by converting an
analogue signal to a digital signal depends on the quality of the ADC circuit
and the variability of the sampling clock. Although not discussed here, camera
misalignment is also inevitable. Sections 3.6 and 5.6 discuss techniques to calculate

an unknown camera geometry.

3.5.1  Stereo Mismatching and False Edge Extraction

Correspondence must be solved before depth can be extracted from a stereo vision
system. [t is worth considering the types of errors which can occur when matching
two pictures. For the purposes of this section, it is assumed that the epipolar
constraint is satisfied and that we have a perfect pin hole camera. We also assume

that edge elements are the features being used for matching.

Mohan et. al [56] classify incorrect matches into the two catagories:

1. Type 1 (local) errors: Figure 3-9 shows correct pixel matches be-
tween segments AB and CD. Also shown are incorrect matches to two
other segments. There are more correct matches between AB and CD
than false matches to any other segments. These types of error can be

corrected on the basis of figural continuity. ?

2. Type 2 (global) errors: Figure 3-10 shows an erroneous match for
which it is impossible to correct. Here there are more matches to the
wrong segment EF than to the correct segment CD. Type 2 errors

cannot be detected or corrected, whereas type 1 errors can.

Having defined the extent to which matching errors can be both corrected and

detected we now discuss the likely causes of errors. Edge detection will never be

®Figural continuity simply implies that the edge CD is connected and not split into

several elements.
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perfect and streaking may cause problems by breaking the edges into insignificant
segments. A detector may simply generate spurious features., Clearly, these errors
are dependent on the initial segmentation and the luminosity in the scene. Other
errors can be caused by the physical strﬁcture of the scene in relation to the two
cameras. Occlusion is the most obvious where an edge in one view of a scene is
also not present in the other. More subtle problems can occur with transparent
objects and with reflections and shadows. Finally the correspondence technique

may simply make mistakes.

The analysis of the likelihood of error for a correspondence technique will
depend on the algorithm itself. However, a simple technique, proposed by Mohan,
to calculate a percentage error is to count the number of Type 1 corrections that
require to be made. This will give a rough indicator of erroneous mismatches
without having to work out by hand, or by an active matching algorithm, the

true correspondences.

Further to the above, Thacker and Courtney [79] published a technique to
estimate errors for a specific corner matching algorithm. The details of this anal-
ysis are specific to the particular matching algorithm proposed in the paper and
are therefore not repeated here. Thacker rightly criticises empirical approaches,
employed to estimate error, as data dependent. However, his approach assumes
that matching errors are independent of the detection process. This is clearly
not the case in the algorithm described later in this thesis and is not a valid as-
sumption for many other stereo techmiques. As suggested by Thacker, current
comparison methods for different stereo algorithms are unsatisfactory and require

more research.

As an alternative to the mathematical approach experimental results can be
extracted over a range of input images from various scenes. An empirical technique
which estimates the combined likelihood of error, from both the matching and
feature detection algorithms, described in this thesis, is presented in Chapter Six.

This allows a confidence to be assigned to a particular measurement.
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3.5.2 Geometric Errors

This section will confine itself to discussing the fundamental types of error like-
ly from the camera geometry. Other sources of geometric error such as camera
misalignment will be discussed in Section 3.6. The two sources of error consid-
ered here, pixel quantisation and aliasing, are fundamental to the imaging sensor
and therefore hard to correct, using calibration techniques, Referring to Figure
3-11, and assuming perspective projection, pixel quantisation and aliasing are

dependent on the following parameters:

1. Pixel size, P
2. Feature depth and position in the scene, Z

3. Focal Length, F

Similar triangles from Figure 3-11 gives us Equation 3.14 and Equation 3.15,
where X is the measured value of X such that X = X + AX and Az the quanti-

sation noise,

X _ (x4 Ax)
E —_ ———F’—. (3-14)
X =z
Z =5 (3.13)
ZAzx
AX =22 (3.16)

Equation 3.16, derived from Equations 3.14 and 3.15, shows how AX varies with
distance and localisation error, Az. 1t is clear that Az increases with depth and
decreases with focal length. Thus, to reduce the effects of pixel quantisation,
we require to have a long focal length and restrict the maximum allowed distance
from the camera. This situation arises in most of the current imaging applications
such as industrial work benches and robotics. However it is not the case for alarm
systems, where large distances are common place and wide angle lenses, ie. short
focal lengths, are important. We will now discuss the effects of quantisation noise

on stereo measurements.
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Stereo Errors

Figure 3-12 shows an idealised stereo rig in which the imaging planes are parallel,
the focal lengths are equal, epipolar lines coincide and perspective pin-hole pro-
jection is assumed. The disparity (&) is defined as the difference between the x

~ positions with respect to local origins as in Equation 3.17.
(5:321—377. (317)

From this equation, the measured disparity, 5, with quantisation noise is shown
in Equation 3.18.
b=z + Az — z, — Az, (3.18)

We also define the disparity error, A6, as § — 6. Thus the limits on Ad are £ P.
This gives us an absolute value on the error, the significance, of which, depends
on the value of the disparity. A relative error, AR, can be defined as in Equation

3.19. The relative error is inversely proportional to disparity.

AR= Lﬂ# (3.19)
The next problem is to estimate how disparity error affects estimates of depth

information. Equation 3.22, derived from Equations 3.20 and 3.21, shows that the

range error is inversely related to the product, DF.

Az=%~2 (3.20)
DF
= 21
-2 B21)
—22Aé
Az = 3.22
*T DF t 206 (3:22)

Equation 3.22 still does not provide an estimate of how error varies with respect
to distance. For this we need a measure of relative error, JlAz—fl. Thus, we now have

Equations 3.23 and 3.24 in terms of depth and disparity respectively.

Az N
'~ = bFtans (3.23)
Az Ab
142 (3:20)
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The relative error, in depth, plotted against disparity and distance are shown in
Figures 3-13 and 3-14, respectively. For both graphs a pixel size of 20 pm is
assumed. Thus if the luminosity gradient across the pixel is 1 then the expected

x10-6

disparity quantisation noise, Az, is E\/-—

~— The focal length was 14mm and the

interocular distance 10cm.

As an extension to the above Blostein and Huang [8] have derived an equation
giving the plrobability of a depth error (e,) being less than a specified tolerance
(7.). This 1s is repeated here in Equation 3.25.

1-(1-16)?2 7. <

Bl < |)= (3.25)

Dne= Crfe

Tz

Equation 3.25 is accurate as long as the disparity is greater than some small
number of pixels. Unfortunately this is not necessarily the case in a wide angle

lens alarm system.

Equations 3.23 and 3.24 provide estimates of percentage error for a particular
depth or disparity. Equation 3.25 provides us with a method of specifying a desired
depth tolerance and calculating the probabilities of error for various disparities.

What has not been defined is a probability density function or a measure of error
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within a defined depth band. Figure 3-15 shows the PDFs, for two and three
camera rigs, for Az within a specified range. The error is calculated by randomly
generating points in a scene and projecting them onto a simulated stereo rig. The
depth is then recalculated. The difference between the recalculated depth and
the true depth is the error. Obviously, the errors are likely to be less for a three
camera stereo rig. Due to pixel quantisation, this is especially important for the
short focal length lenses likely in an alarm system. As a result, the experiments
in Chapter Six are conducted for a three camera rig. Such an analysis would
also be useful in estimating the likelihood of error in any final alarm system or

installation.

3.5.3 Discussion of Errors

Clearly there is a trade-off between accurate feature matching and accurate’
range estimation. On the one hand we wish to avoid as much occlusion as possible
and therefore require a low baseline-focal length product, whereas on the other
we require the opposite for accurate 3D rectification. As the sampling interval is
always restricted, a compromise must be made between accurate feature matching

and accurate rectification. Added to this is the problem of segmentation. Often
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the errors associated with feature extraction, such as edge localisation, noise and
streaking, will have a considerable affect on a matching algorithms effectiveness.
All this makes comparison between different, stereo algorithms extremely difficult

with results being data dependent.

Although not discussed here, errors can also vary with relative camera angles.
Borghese and Ferrigno [10] show that the quantisation errors are likely to be at
their minimum when both cameras are at 45 degrees to the main depth axis.
However, for practical reasons a commercial system is likely to have both cameras
laterally separated on the same imaging plane. This is the system used in the

experiments described in Chapter six.

The above section dealt with the fundamental, and usually unavoidable, causes
of error in a stereo system. In any practical system it is unlikely that the camera
geometry will be known accurately, a-priori, due to mechanical inaccuracies. The
next section will deal with the problem of estimating the camera parameters from

known scene geometry or feature matches.
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3.6 Calibration

All the previously described stereo matching theories and technigues have stu-
diously ignored the question of rectifying or extracting depth information, in
recognised units, from estimated disparities. This was done for two reasons. The
first is that that it is a distinct issue and has no direct bearing on the problems
of correspondence and the second is that, for alarm systems, it is possibly not
required. For an individual camera setup we can conduct comparisons in raw
inverse disparities. The problems only arise when ‘we consider the possible errors

around a particuiar disparity value.

The problem of camera calibration is the accurate 3D determination of internal
camera geometries and optical properties with as little a priori scene knowledge
as possible. Estimating the translational and rotational parameters between two
or more stereo cameras is a similar problem to that of estimating the rﬁotion of
a moving camera. We wish, only, to use the correspondences between features in
spatially separated views of a scene. For the rest of this section, we will assume

that the correspondence problem has already been solved.

Until a,bo'ut 1980, it was unknown how many correspondences were required
to ensure a unique estimate of motion. Further, the only techniques available
for finding camera geometries from matched correspondences required the itera-
tive solution of third order simultaneous equations. In 1981, Longuet-Higgins (48]
solved both the above problems and proposed a non-iterative scheme. A similar
algorithm was published around the same time by Tsai and Huang [85][86]. Both
authors showed that eight independent correspondences were necessary and suf-
ficient to uniquely determine 3D n‘mtion. The eight point method proposed by

Tsai et. al. and Longuet-Higgins is now summarised.
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3.6.1 The Longuet-Higgins/Tsai Calibration Algorithm

The scene coordinates of a point P are (Xi, X, X3) in the left camera coordinate
system and (X, X3, X}) in the right camera coordinate sjstem. We can project

these points onto the imaging planes, as in Equations 3.26 and 3.27.

Xl X2

=(—, = 3.26
(1,22) = (Fh ) (3.26)
X X,

-, = 3.27
=5 (3.21)

(21, 25) = (

It is more convenient to work in homogeneous coordinates and we therefore set

X3 =1, X} =1 and define

X, . X
_ _ A 3.98
X, YT X» (3.28)

Tu
where (g, v = 1,2,3). We can now define a relationship between the coordinate
systems of the left and right hand images where R is the rotation matrix and T

a translation vector.

X! = R, (X, -T,) (3.29)

Longuet-Higgins shows that by using a matrix Q such that,

Q=RT (3.30)
and where

0 Iy =T,

™ -h 0

we can obtain relationships between the image coordinates such that
.TLQ“,,:L‘,, =10 ’ (332)

Thus, if eight corresponding points are known, z, and z,, in the scene, then the
coefficients of () can be found by solving eight simultaneous linear equations. We
do this by dividing the LHS and RHS by Q3. This has the effect of providing
a square 8x8 matrix on the L.H.S. with a 3x1 matrix on the R.H.S. and can be

solved for every ratio using L.U. decomposition and back-substitution. We now
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have an un-scaled value for every element in Q and can proceed to calculate the

values of the translation and rotation matrices.

The values and relative signs of the translation vector can be obtained from

Equation 3.33.
1-TF -N'T, -TiTs

QQT=| -1 1-T2 -1y (3.33)
“TST ~TsTy 1—172

and the rotation matrix from Equation 3.35 by defining the new matrix, W,
shown in Equation 3.34. Each row is calculated individually and «, # and + are
permutations of (1,2,3).

W,=Q,xT (3.34)

R, =W, +Wjx W, (3.35)

The final stage of the procedure is to alter the signs of T and Q. This is done
by calculating estimates of X' and X using the  matrix. If the signs are not
correct then the relevant rows and columns of @ and T require to be multiplied

by -1. The details of this procedure can be found in the papers.

The Longuet-Higgins, Tsai technique is straight forward and well understood
and depends on all the points in the scene being independent. Tsai and Huang
(86] also describe combinations of points which must be satisfied to ensure that the

eight point algorithm provides a unique solution. These can be found in Reference

[86).

The above provides a non-iterative approach to calibrating stereo cameras.
However, there are doubts about acciracy and choice of feature points. Yasumoto
and Medioni [91] suggest that the problem of estimating 3D motion is an -
defined inverse pmblém and results would be improved if regularisation techniques
were employed. The ill-poised nature of the problem was also expressed in error
estimates provided by Tsai and Huang [86]. These results are repeated in Table
3-1 for image plane points shifted in a random directions by 1%. This simulates
errors in feature matching and extraction. It is of interest to note that the error for

R, the rotation matrix, decreases as the number of points escalates. In contrast,
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Number of Points 8 9 20
Error of Q 47.13% | 18.74% | 2.32%
Error of R 14.32% | 3.68% | 0.83 %

Az
Error of —

and £% 53.97 % | 3.52 % | 10.09 %

Table 3-1: Calibration Error Versus Number of Points for 1 % Perturbation of
(XY

the error for translation, (%f, %E) first decreases and then increases to 10.09%.
These types of errors were confirmed in software simulations by the author. There

is clearly a problem in accurately extracting translations at the same time as good

rotations. The next section discusses ways of improving on these results.

3.6.2 Improvements in Calibration Accuracy and Other

Calibration Techniques

It is clear, from the previous section that calibration accuracy can be severely
impaired by pixel quantisation and feature localisation errors. Considering the
inverse nature of camera calibration, Yasumoto and Medioni [91] proposed the
use of additional constraints to restrict the number of acceptable solutions. They
search the surface of an error function calculated for each matched point. Ya-
sumoto proposes regularisation in order to smooth the extracted error surface and

reduce the number of false minima.

As an alternative, or adjunct, to Yasumoto’s WO'I'k., researchers have attempted
to improve results by integrating the calibrations from successive images. Thacker
and Mayhew [80] published one example which uses a Kalman filter to track
rotation and translation variables through time. In addition to this they employ

a form of variational regularisation first suggested by Trivedi [83].

Initially an estimate of the error is calculated from the positional changes

required, in z’ and z, to satisfy Equation 3.32, for a particular Q matrix. Thacker
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and Mayhew calculate estimates of these shifts explicitly and use the results to

calculate an overall error function, Equation 3.36.
E=3"8E; =3 (62:5 " 6x + 62,757 6)) (3.36)

where 6z; and §z; are the required shifts to satisfy Equation 3.32 and § is the
a 3x3J error covariance matrix derived from the feature detection algorithm. The
minimal solution to Equation 3.36 was found, by adjusting the Q matrix, in terms

of a standard algorithm such as the "Downhill Simplex Method” [68].

3.6.3 Discussion of Calibration Techniques

The techniques just reviewed are all computationally intensive and are certainly
not candidates for a commercial CMOS implementation. If accurate Cartesian
coordinates are required in a final stereo installation, the most likely configura-
tion is that of a portable computer with an interface to the image sensors. As an
alternative it is not always necessary to perform a complete calibration to estab-
lish correspondences or relative depth. In many applications depth need only be
estimated in terms of disparity. For example, as describéd later in this thesis, it
may only be necessary to determine a disparity threshold for an alarm system. If
the intruder crosses the threshold for a certain number of frames then the alar-
m can be activated. Thus, using relative depths, higher level algorithms can be
developed which still employ depth information. In this respect, Mohr and Arbo-
gast [57] show one technique for extracting depth information without knowing

the camera’s geometry.

Overall, accurate camera calibration is a serious problem for stereo vision
systems if we wish to establish the Cartesian world coordinates of points in a
scene. The inverse nature of the problem amplifies small errors in the coordinates

being used. Automatic camera calibration is an area which requires more research.
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3.7 Conclusions

This chapter started with review of algorithms which solve the correspondence
problem in the light of the biological evidence. There are many different approach-
es, ranging from brute force correlation to specific feature and ob ject matching. It
has been decided, for reasons of computational complexity, that a feature matching
approach is most suitable for the intruder problem described in the introductory
chapter. Employing a feature based approach allows a reduction in the data rates
required, by matching only those parts of the image which are interesting 3. An
important poiﬂt, not made by many authors, is that the task of feature detec-
tion is integral to the matching algorithm employed. Most researchers appeé,r to
concentrate only on the correspondence problem, or only on the feature detection
problem without cénsidering the trade-offs involved between the different stages.
Clearly if one alters the feature extraction process to extract one type of edge,
simplifications can be made to the correspondence algorithm. This is the approach

taken later in this thesis.

Simplifications in the algorithm can also mean reductions in the hardware
required. There have been relatively few stereo algorithms implemented in spe-
cialised hardware, two of which were mentioned in the previous chapter. Apart
from cost, several reasons appear to have caused this situation. The first is the
dependency of stereo algorithms on the input features. It is therefore difficult to
build a general piece of hardware which would be useful in a sufficient number-
of applications. This dependency is not just restricted to the input data. Differ-
ent applications may desire various forms of output data. Thus in this work, the
general approach of building a sterec module was avoided. Effort was directed to
altering the various image processing modules to take advantage of interdepen-

dencies.

3In any case, it is difficult, if not impossible, to match areas of the image where there

is no luminosity gradient.
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Also considered, in Section 3.5, was an analysis of the likely errors which
will be encountered in a typical stereo system. These were divided into errors
dependent on the matching algorithm and those dependent on the camera and
scene geometry. As Figure 3-15 shows there are clear advantages in using a three
camera stereo rig. Such calculations would be of particular interest in an alarm

system where wide angle lenses and longer ranges can be expected.

The final sections dealt with the thorny problem of calibration. The inverse
nature of stereo vision has resulted in this being an area of vision where errors
can be large. The algorithms reviewed here were all computationally intensive
and therefore infeasible for this application. However it is not always necessary
to extract depth in metric units and valuable information can be gained using

relative disparity measurements.
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4.1 Introduction

The aim of this and the next chapter is to describe a hardware efficient system
capable of tracking a human moving in a stationary background in a large scene.
For the remainder of this thesis this software will be referred to as the DETECT
system. The main functional problem associated with such a stereo vision system
is in the short focal lengths necessary to view the required area. In addition,
the hardware constraints imposed by any cost effective implementation require
to be satisfied. The last two chapters have considered algorithms in the light of
possible and real hardware implementations. In particular, this work is aimed
at an implementation using the CMOS sensors [1] described in Chapter One.
Achievement of this goal requires that limits be placed on allowed arithmetic
at the pixel level of the algorithm. In effect, at the pixel level, floating point
digital calculations must be eliminated together with general multiplications and
divisions. Due to the reduced data rates, higher level processing, such as explicit
disparity calculation, time domain filtering and global threshold calculation would
be performed using associated microprocessors. Such arithmetic efficiency has
been achieved by developiné software which uses three major constraints, specific

to stereo vision, and the expected application. These are:

1. The vertical nature of the human form: A standing human has
very few horizontal edges. Also, the lateral separation of the stereo
cameras used in this work makes it difficult to match horizontal edges
anyway. This makes it sensible to extract only vertical edges, reducing

edge detection to a lateral differentiation, followed by a vertical track.

2. Only outline edges are extracted for matching: This transfers
_the stereo correspondence problem to the lower stages of segmentation

and reduces the computation required for matching to a simple scan.

3. Only a disparity threshold is required to implement an invis-
ible boundary. Thus if an object continually exceeds that threshold,

through time, the alarm can be sounded. This disparity threshold could
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be calculated, on site, by a person moving around at the desired dis-
tance. Alternatively, if metric distances are desired, a more accurate
calibration could be provided at installation using an interface to a
portable computer. In the latter case, the errors mentioned in the last

chapter should be considefed.

Figure 4-1 gives an overview of the entire DETECT system and the various
sections of the algorithm. It is not intended that these modules be considered in
isolation from one another; implementation advantages can be gained by consid-
ering the problem in its entirety. It is the author’s view that treating individual
vision problems in isolation often hides many interdependencies. In creating a high
level intelligent 'vision system, an understanding of the likely errors and failings of
the lower level ”image processing” is required. Allowances and limits of operation
can then be defined. Despite this, it is necessary to consider the different sections

of the system in isolation and then highlight their dependencies. -

This chapter will start with a section considering the low level algorithmic
principles and techniques used in the system. Throughout Section 4.2 reference
will be given to possible hardware implementations and trade-offs. Section 4.3
will give a brief description of the software used to test the algorithms discussed
in section 4.2 and the next chapter. A more detailed explanation, of the software
function, can be found in Appendix B. The chapter will finish with some general

conclusions.

4.2 The DETECT Stereo Algorithm: Low Lev-

el Segmentation

Attention is now given to the individual DETECT modules shown in Figure 4-1.
Figure 4-2 shows the earlier stages of processing in more detail. The techniqﬁes
used to provide this segmentation are all differential to allow reductions in com-
putation, and correlation methods have been avoided. This has included the e-

limination of an initial smoothing filter for edge detection. In the trials described
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Figure 4-1: Overview of DETECT System

in Chapter Six, it was found that this made little difference to the overall disparity
estimate. If, in a larger trial, a smoothing filter was necessary then low cost

analogue implementations of such functions exist{1].

For the rest of this thesis, the following terms will be used.

1. Background Images: The images capturéd when there is no movement

in the scene.

2. Foreground Images: The images captured when an object is being

tracked.
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IV — —— -~

3. Difference Inages: The modulus of the difference between the fore—

i
ground and background images. l:

4. Ldged Background and Edged Foreground Images: The above named

images, after the edge detection pzoceduxe has been applied. i

" Computations aimed at deriving edge information and the maintenance of an -
edge map are described in Sections 4.2.1 and 4.2.2. Section 4.2.3 will describe
how difference images are thresholded to provide input for the nearest-neighbour
clustering described in Section 4.2.4, respectively. Section 4.2.5 will deal with how
estimates of the background can be maintained through time. Backgrounds are.
used to derive difference images for thresholding. Once the edges and clusters
ha\.fe been extracted they are combined to provide the outlines required by the
matching algorithm. Section 4.2.6 describes how this is achieved. The combination

of information, in this manner provides more reliable segmentation.

4.2.1 Edge Extraction

Disparity estimation requires edges for matching. These can be extracted from
the difference, background and foreground images by differentiation followed by
tracking. In the current implementation a lateral differentiation, across the image,
is performed on both the background and current images. No initial smoothing _
is applied to control the edge noise. Thus, false edges are eliminated using a min-
imum line length, comparison with extracted clusters, and the disparity gradient
limit. However the hardware cost of a simple averaging filter is not so great as
to preclude its use. It may turnout to be desirable from the results of a larger
field trial. One problem, with initial smoothing filters, discussed in the literature
review, is that of edge localisation. There is no point in applying an extra mask
if it is not needed. After lateral differentiation, a modified non-maximal suppres-
sion is applied to the resultant image. However, the process is simplified to one
dimension, with pixels either side of peaks being set to zero. Suppression reduces

the number of falsely tracked edges.

Tracking is applied using hysteresis thresholding for both edge strength and
edge length. For edge strength, if an upper threshold is exceeded, tracking pro-
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for a = 0 to IMAGESIZE{
for b = 0 to IMAGESIZE{
if (latdiffimage[aj[b] > startthreshold){
track = 1
currentrow = a

currentcol = b
while (track)

{

- compare lower three pixels
ie. currentrow+1, currentcol+({-1,0,1)
- take the largest value
if (the largest value is greater than contthreshold){
- currentrow = currentrow -+ 1
- currentcol = value of largest pixel
- if tracklength > minimum track length store in edge structure
- if tracklength > minimum track length for the firstfime
transfer edge buffer to edge structure
else store column value in temporary buffer

}

else
track = 0
} end of while loop
} end of starting track if statement

} end of b loop
} end of a loop

Figure 4-3: The Tracking Algorithm

ceeds downwards to the next row, where the three adjacent pixels are cqnsidered as
edge candidates. Assuming a lower strength threshold is exceeded and one of the
three pixels is a peak, the edge is extended. Tracking proceeds until a minimum
edge length has been exceeded. During this initial phase the results are stored in
a temporary buffer. If the minimum length is exceeded tracking continues untit
no pixels in the neighbourhood of the next row exceed a lower threshold. Thus
candidate edges are selected on two accounts. Firstly, each must exceed a cer-
tain minimum length and, secondly, exceed either of the two strength thresholds.
The tracking algorithm employed can be summarised in the pseudo-code shown

in Figure 4-3. The current DETECT implementation applies edge detection to
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the raw foregfound and background images blindly. As an extension, use could
be made of edges extracted from the difference image and then compared with
- those from foreground and background edge maps. The outline of a new objec-
t should have similar edges in both the foreground and difference images, b.ut
not the background. The technique is illustrated, for the one dimensional case,
in Figure 4-4. A problem with this approach is that overall lighting conditions
change from frame to frame. Thus, the edge strengths will be dependent on two
images and strength comparisons may fail under these circumstances. However,
the main reason for not using this method is that the extracted edges still have
to be grouped using the difference clusters, described in Sections 4.2.3 and 4.2.6.
In order to extract these clusters we threshold the difference image and tend to
extract sections of important outline edges, by default. Parts of the foreground
edge will coincide with the cluster boundary. Outlines can then be defined by

their proximity to a significant cluster.

Separate extraction of edges from the foreground and background, followed by
a comparson with edges from the clustered difference image, is therefore preferable
for this work. Its advantage is that the edges are dependent on position and
strength relative to its own neighbourhood. Edge thresholds are therefore based
on differences which are more likely to be constant over time. Also, the use of
length as an indicator of edge significance allows the edge strength threshold to
be less critical to the system as a whole. Figure. 4-5 shows the edges extracted
for a single scene. Although noisy in comparison with other edge detectors, eg.
the Canny operator described in Chapter Two, the computational complexity is
much reduced. Deficiencies are compensated by the combination of information

from the clustering and thresholding modules of the system.

4.2.2 Edge Map Use and Update

Initial detection is based on edges rather than absolute frame to frame differences.
The extracted edge map from the foreground image is stored for reference and
used to eliminate persistent edges. Decisions must be made as to which edges are

stationary and which are not. Several parameters can be employed in estimating



Chapter 4. The DETECT System and Initial Segmentation 94

Foreground Image or Current Frame

Edge Strength
Grey Level
— =
X X
Difference Image Edge Strength
Grey Level
—
X X
Stored Background Image . Ldge Strength
Grey Level
———
X X

Figure 4—4: Outline Edge Extraction Using Difference Images
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the permanence of an edge through time. The following criteria are the most

obvious:

1. Difference in edge strength: Edges represent changes in spatial
luminosity and are relatively independent from temporal light differ-
ences. Thus the strength of a stationary edge often remains constant

in time.

2. Position: Assuming the cameras are not moving, edges should remain
constant in position. An edge pixel from a stationary edge in one
frame should be an edge in the next frame. Various sources of noise
can prevent this occurring. For example, if the true position of an
edge is halfway between the centres of two pixels then a slight change
in luminosity may cause a change, of one pixel, in the marked edge

position.

3. Orientation: Clearly, if two edges have the same position, individual
edge pixels should have similar orientations. Edges extracted from in-
dividual frames are rarely complete and orientation could be employed
to extrapolate from known segments, to other more doubtful parts. In
this situation, assumptions must then be made about edge curvature.
Such predictions are hard to make in the wide range of proposed scenes

targeted by this system.

Within the bounds of computability, consideration was given to techniques
for building edges maps. Firstly, laterally differenced frames can be continually
added and normalised. Here, advantage is taken of the fact that moving edges
reduce in significance as time progresses. 1t is vice versa for stationary features.
Using edge strengths in this manner can cause problems when different edges have
variable strengths. A particularly strong edge, resulting from a large change in
spatial luminosily, may cause problems with scaling and push weaker edges under
a strength threshold. These "weaker edges” may be consistently in the same

position and valid in each individual frame.
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Figure 4-5: A Typical Edge Map

The obvious solution to this problem is to express edges in binary represen-
tation. Now, edges are exclusively dependent on their persistence through time.
This is the method used in the present system. As an example, Figure 4-5 shows
the vertical edge map extracted for a 12 frame sequence. Every time a pixel is
designated as an edge, the map for that position is updated. The final image is

grey level stretched to display the more significant stationary edges.

Once the stationary edge map has been established, current edges can be
compared to previous ones. As a current edge is tracked along its path, a value of
positional similarity can then be calculated, dependent on length and edge map
strength at that point. Equation 4.1 shows one possible measure.

L
Z PEir
dEgis

Sedge = =2 7 (4.1)

Sedge 1s the edge’s calculated persistence, L is the length of the current edge, Py,

is an individual edge’s persistence ! and dE,;, is the difference in edge strength

!This is simply the value of the accumulated edge map, through time, for a particular

pixel.
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through time. Unfortunately, the computation of Equation 4.1 involves division
and multiplications which would be unreasonable in a final CMQS sensor systern.
However, adaptations are possible. Instead of dividing the overall sum by the total
length, the edge can be sub-sampled to allow a power-of-two divisor. Also in the
current implementation values of dE,;, are not used, removing a multiplication.

This has been achieved without an appreciable reduction in performance.

4.2.3 Thresholding

Some threshold techniques were reviewed in Section 2.3. Most of the described
algorithms can be dismissed on grounds of their arithmetic complexity. Exceptions
to this are the P-tile and mode methods [77]. Although not reviewed in Chapter

Two, local mean thresholding was also considered for this application.

The P-tile method useé a priori knowledge of the size of the object and choos-
es a threshold to achiéve it. Once a moving object is being accurately tracked
thresholds can be chosen to maintain a particular size within allowed limits. This
has several problems. Objects may suddenly change, in size, when two separate
clusters merge. The resultant threshold will wrongly increase to separate the clus-
ters. An even poorer threshold at the next frame will result. This process can
cause large jumps in the applied threshold and tracking is likely to fail. Another
difficulty arises in establishing, for three dimensional scenes, a correct estimate of
object size. Although implemented, the P-tile method is not applied in the cur-
rent DETECT system. The problem of finding an initial size estimate together
with the likely tracking errors are the main reasons. However, with longer test
sequences, recorded at faster rates, it might be feasible to- make better estimates
of the correct cluster size. Such a tracking technique, based on known cluster

sizes, is a possible line for future research for this type of low cost system.

A second possibility is the use of local means as adaptive thresholds. Figure
4-6 shows an example where a difference image has been thresholded according
to the local mean. However this technique tends to extract poorly connected

clusters which fall below relevant size thresholds. The basic problem with mean
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Figure 4-6: Mean Thresholding Applied to a Difference Image

thresholding is that it takes no account of global information and tends to work
best if sub-regions can be scaled with a known object size. This situation does

not arise in this application where objects move and change size with time.

As an alternative, to the above, one can classify pixels using histogram analysis
. The histogram of a difference image should, theoretically, consist of two clear
foreground and background peaks. Thresholds are chosen to be at the bottom of
the valley between the two peaks. Problems occur with this type of threshold-
ing when there are multiple peaks, multip}e'va.lleys and different sized frequency

amplitudes.

The current implementation of DETECT uses the fraction of<the global mean
as an initial threshold. After four frames of tracking, the grey level distribution,
of the previous frames main tracked cluster, was extracted. The mean of this
distribution was used to calculate a higher bound. A second distribution was cal-
culated by subtracting the previous cluster é/histogram from the current frame's
overall difference distribution. A mean is again taken from this new distribution

and used as a lower bound. A threshold can be chosen somewhere between the

Histogram techniques are often referred to as mode methods



Chapter 4. The DETECT System and Initial Segmentation 99

Frequency

2000

1500

1000

‘&x’\"’l‘\

0N

\\\\\‘sq.w

TR )

OV
R

SRS 4’- R
T —
s
R

.
] o
R

= 3B
AR
“‘\:‘.\\\\\\\\\\“\‘\

h
500 | '
SR
\\\\\\\\\\\\ RN
A T T S aaaa....
R R
R T R R
A T
o

40 30

Grey Level Difference

60 30

Figure 4-7: Overall Difference Histograms Through Time

two boundaries. The advantages of this technique are several. Firstly, it is based
on histograms which can easily be implemented as accumulators in hardware.
Computation of means from the histogram is simpler than calculating local in-
formation for every neighbourhood. Secondly, account is taken of the difference
distribution specific to a tracked cluster. An example thresholded image with its
main cluster marked is shown in Figure 4-10. This image is extracted from the
Sequence 9, from the test data described in Chapter Six. Difference histograms,
for sequence 9, are shown in Figures 4-7, 4-8 and 4-9. Figure 4-7 shows the com-
plete difference histogram through time. Figure 4-8 shows the complete difference
histogram, minus the cluster distribution, from the previous frame and Figure 4-9
shows the distribution of the major changing clusters through time. Overall, the
calculation of these statistics can be implemented efficiently using hardware accu-
mulators on a VLSI chip. Mean calculations could be performed, on an associated
microprocessor, using these histograms as input. It seems clear that custom VLSI
is efficient at collating data, into a format suitable for a microprocessor, although

not performing the final calculations.
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4.2.4 Clustering

There are many definitions and meanings of the word "cluster”[22]. In this work,-
the term cluster is used to define a connected area of the thresholded difference
image. This can be used to connect disparate edge segments into one object and

extract a combined outline from both the cluster data and the edge data.

As with thresholding, the cluster algorithm was written to expose hardware
implementation problems. Thus, procedures have been written without recursion
in order to expose the true storage requirements for a hardware implementation.
The routine's basis is a local search which pushes thresholded pixels from each
neighbourhood onto a stack. The pixel in the input image is then set to zero.
Once done for a locality, another pixel is "popped” off the stack and used as
the next search centre. The following pseudo-code, Figure 4-11, illustrates the
code used to generate Figure 4-10. Although not mentioned in Section 4.2.3, it
18 possible, with minor alterations to the above code, to perform thresholding at

the same time as the connectivity search. More sophisticated adaptive difference
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- XOR thresholded image to find cluster edges
for a = 0 to IMAGESIZE{

for b = 0 to IMAGESIZE{
if (binaryimagefa][b] is an edge of a cluster){
currentrow = a
currentcol = b
continuecluster = TRUE
while (continuectuster){
forc=-1to1{
ford=-1tol{
if (binaryimage[currentrow + c][currentcol + d]
is an edge of a cluster) then
- push (currentrow + c, currentcol + d).
- set binaryimage[currentrow+c|[currentcol+d] = 0.
- update cluster max/min left /right boundaries.
} end of d loop
} end of c loop
if stack is not empty pop (currentrow, currentcol)
else{
- create new cluster structure.
- store cluster parameters eg. size, boundaries etc.
- continuecluster = FALSE
} end of while loop
} end of main if condition

} end of b loop

} end of a loop.

Figure 4-11: The Cluster Algorithm

102
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Figure 4-12: Cluster Expansion (White) with Core Cluster (Grey)

thresholds could then be used, using parameters such as cluster size and shape, -
running totals of grey level differences and the cluster’s position in the scene. In
this work, a hysteresis technique was implemented. Thus, a cluster search only
started if a pixel exceeded an upper threshold and stopped when the current value
had no untouched neighbours above a lower threshold. However, after combining
thresholding and clustering in this manner, there was little difference in the overall

performance of the DETECT system and this technique is not currently used.

Another adaptation attempted was a form of cluster expansion. Currently
multiple sources of information are used to decide which edges are outline and
which are not. Thus it is better to choose a more severe threshold to ensure
that clusters are well separated. Once the outlines are known they can be used
as seed points in a lateral expansion, at a lower threshold, or until an edge is
met. Figure 4-12 shows a core cluster with its lateral expansion marked in white.
Although a slight improvement in overall segmentation was achieved, the current
implementation does not employ this routine. As is discussed in Section 4.2.6
cluster outlines are used to extract relevant edges. If a individual edge coincides
with the cluster outline it is used for matching. Such a lateral expansion tended

to "connect” with noise edges and reduce the number of correct stereo matches.
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Overall, accurate extraction of clusters is not a crucial part of the system
as the results are combined with edge information to provide a more complete

- segmentation.

4.2.5 Background Update and Extraction

The thresholding/clustering algorithms just described, assume a previously stored
and continuously updated background image. We wish to store all areas of the
stationary background which are not covered by the tracked object. This task
is similar to many problems in the computation of motion flow and image cod-
ing[30}{26][36], where one wishes to quantise those blocks of the image which have
changed. |

As an iniruder in an alarm system is likely to be an unusual event, it should
be possible to completely update the background during the normal operation of
the system. Attaining this goal requires clear discrimination between an object’s
presence in the scene and a general change in luminosity. Changes in luminosity
can be caused by slow effects such as clouds and day light, or higher frequency
effects such as sine waves, in time, produced by mains strip lighting. These ef-
fects must be eliminated or prevented from affecting the tracking and detection

algorithms.

Discrimination between global and local luminosity changes can be based on
edge information. They measure relative and not absolute changes in luminosity.
Edges will remain constant in position and, often, in strength. Thus, the sudden
appearance of significant moving edges provides a better indicator of an intruder’s

presence than frame to frame luminosity differences.

Figure 4-13, shows the ratio of the number of changed edges to the number of
background edges through time. This sequence was created artificially by merging
two half sequences, such that a person suddenly appears in Frame 6. Clearly the
ratio of new erdges to old increases as a person appears in the scene. A more

realistic example of how the number of edges change, as an intruder enters the
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Figure 4-13: Graph Showing the Ratio of New Edges to Background Edges

Against Time for Artificial Sequence

scene, is given sequence 10 3 In all three sequences an intruder enters gradually
through a door. A graph showing the new to old edge ratio is shown in Figure

4-14. The ratio increases as the person moves towards the camera.

Such a new to old edge ratio parameter is largely independent of absolute light
changes and is therefore a good measure of physical changes in the scene. In a
final implementation: experiments would have to be conducted to establish the

optimal ratio at which complete backgrounds would be captured.

Once detection has been achieved, background extraction and update can be
restricted to areas outside the main regions of interest determined by the cluster-
ing/thresholding routines. In DETECT, the background is renewed everywhere,
every frame, except within the main clusters boundaries. This is performed on a
simple pixel for pixel substitution without smoothing or neighbourhood averaging

and provides a satisfactory low cost solution for the current data.

3The details of Sequence 10 can be found in Chapter Six.
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Errors in update will inevitably occur, due to shadows and reflections. These
are dealt with in several simultaneous ways. Most local lighting changes are
restricted to small areas and can be eliminated using a minimum cluster size.

Thus if the cluster is insignificant the background, in this area, will update.

4.2.6 Edge and Cluster Combination

At this stage in the system we now have two sets of data representing the scene.
Firstly the thresholded and clustered regions of the image and, secondly, the list
of vertically oriented edges. As shown in Figure 4-2, these two sets of data are

combined to extract the relevant edges for stereo matching.

The problem is one of establishing which of the disconnected edges are from the
same ob ject. Section 2.4 discussed the different approaches. Maximal cliques can
be used to find strengths of connection between different edges. Such strengths
could be based on edge orientation, edge strength and proximity. The computation

involved rules this avenue out of bounds.
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For this work, a modified ”connection strength” technique was attempted.
Edges from the foreground image were compared with the difference image. Lat-
- eral scanning started from each edge pixel in a direction determined by the sur-
rounding pixels in the difference image. If the difference pixels on the left were
larger, then the scan would proceed to the left and vice versa. The scan continues
across the difference image, following the pixels of largest value, until a connection

is established with an edge of the opposite difference sign.

Edges were grouped on the number of connections and grey level difference
strength between edges. There are several fundamental problems associated with
this approach. The maxima, in the difference image, are based on- foreground to
background differences and not on the connectivity of the object. Additionally,
there is no explicit way to separate outline edges from any other type of edge.

Due to these deficiencies this technique was not pursued.

The technique used in DETECT, eliminates edges which are not attached
to the outline of the tracked cluster. Each cluster outline is represented by the
number of the cluster from which it is derived. If an edge pixel is on a particular
cluster outline then the reference number is used, as an index, to increment the
appropriate bin of a histogram. The edge is assumed to be part of the cluster with
the largest accumulator value. The following pseudo-code, Figuré 4-15, 1llustrates
the method. The above technique simply attaches each proposed edge to the
outline with the most similar path. Also, the number of pixels which correspond
to each overlap between the edge and the cluster must exceed a threshold. This will
eliminate alll the edges which are not attached to any cluster and those which only
just touch. An advantage of this technique is that it allows, at a reasonable cost,
both cluster and foreground edges to be incomplete and partial, without the entire
procedure failing. Additionally, the combination of two separate sources of data
can control the errors of an imperfect segmentation. For example, thresholding
is unlikely to be perfect and some extracted clusters will exceed the significance
threshold. However it is improbable that a significant moving edge will also be
attached to that cluster. A further defence against false edges being used for

matching is implicit in the use of multiple cameras. If a false edge has attached to
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while {notendofedgelist)

{

- set cluster accumulators to zero
while (notendofpixellist)

{

- extract the cluster number from a reference image of significant clusters.
- increment a cluster accumulator using the reference value as an index.
} end pixel tracking loop
- search accumulator array and find the maximum valued index.
- search cluster list for the cluster with equivalent index value.
- add a pointer from that cluster to this particular edge.
} end of edge loop

Figure 4-15: Extraction of Outline Edges

a false cluster then the same error must occur in either two or three cameras for
a correct disparity match. These two "filters” reduce the number of false matches

to a minimum.

4.3 The Software Environment and Data Rep-

resentation

A more detailed explanation of the DETECT software can be found in Appendix
B. The DETECT system was entirely written in C, operating under UNIX, on
SUN 3 and 4 Work Stations. Demonstration and debugging software was written
using sunview libraries, allowing results to be displa.yéd in both the SUNTOOLS
and OPENWINDOWS colour graphics environments. All the initial operations
of segmentation are performed on 256x256 raster scan images. As described in
Section 6.2, these were captured using custom framegrabber hardware linked to
a P'C. Each pixel was digitised to 256 grey levels requiring 64k for each image.
The lower levels of processing required the most storage due to the requirement

of a background image and intermediate images. In a hardware system only the
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background would have to be stored completely and intermediate storage could

be compressed to smaller on-chip buffers.

Data storage can also be reduced at the higher levels when using edges, thresh-
olded images and clusters. These features can all be given a binary representation.
Edge storage can be further compressed if it is known that there will not be more
than one column between rows. In this case, the largest possible edge, from top to
bottom, would require only 64 bytes (512 bits) for the column data plus 2 bytes
for the starting offsets. Also, as will become clear in tHe next chapter, disparity
histograms are required for each non-background edge. The range of possible dis-
parities is unlikely to exceed 30 requiring a similar number of § bit accumulation

registers. Each histogram could be stored with the edge as a suffix.

Cluster data structures are also fairly compact, only requiring boundaries to be
stored with pointers to attached edges. Again limited storage has to be reserved
for the clusters own histograms for grey level distribution and disparily. However
it is unlikely that more than ten significant cluster structures will have to be stored

for each frame.

Overall, the storage requirements for the above data structures are small when
compared to that necessary for the background image, of which parts will have to
be updated every frame. In addition, a record must be kept of stationary edges
for comparison with those of the current frame. In the current software this is
done by updating a list of edges, but in a hardware implementation the stationary
edge map is likely to be maintained as a one bit array. This is simpler to access

and has a reduced storage overhead.

4.4 Discussion of a Hardware Implementation
and Storage Requirements
Section 2.5 considered some of the memory architectures pos.sible in an image

processing system such as this. A reasonable observation was that most digital

chips had memory close to the processing elements to assemble regions of interest.
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It seems clear that storage is a prime consideration for this type of vision system.
Brief consideration is now given to possible architectural implementations of the
algorithms discussed in Section 4.2. For a final system a more detailed analysis
between functionality and architecture would have to be performed. Such low
level algorithms are the most likely to be implemented in custom hardware, as
most operations are based on neighbourhoods. Thus, caches can be used to C)lrcle

through the image, reducing access time and memory storage.

A boint, which is of relevance for a hardware implementation, is the simplic-
ity of the downwards tracking technique. If tracking is conducted in a square
neighbourhood then problems arise when edges cross each other’and go round
in circles. Mechanisms must be employed to ensure that no endless loops and
re-tracking occur. Obviously this can be done by setting tracked pixels to zero.
However this would require a separate memory to store the original image being
tracked. Setting tracked pixels to zero would also have to be done after the min- .
imum edge length had been achieved, otherwise a considerable number of other
edges would be wrongly broken. Also, with a downward technique there is a well
defined limit to edge length: the height of the image. Thus edge storage can be
reduced to a simple starting row and column, followed by a stream of binary data
defining the position of the current pixel in relation to the previous. This sort
of structure could be stored and accessed in off-chip FIFO buffers. Control and

extraction logic could be implemented on the CMOS sensor.

In contrast to the above, the current implementation of clustering is a random
process and the theoretical maximum stack possible is limited only by the size of
the image. In an efficient implementation one would want to restrict the possible
stack size to avoid off-chip interfaces. To this end, the clustering algorithm has
been altered to track around, rather than through, a cluster. This allows the stack
to be restricted to two pixel positions, one for each end of the current line: Cluster
significance is now dependent on perimeter length rather than absolute size. The
trials, described in Chapter Six, indicate that this does not appear to seriously

increase the number of false clusters.

We still require storage of a complete thresholded image in memory. An im-
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Figure 4-16: Possible Implementation of Shift Memory for Clustering

provement would allow the processing to be performed on several complete raster
scans or bands as described in Figure 4-16. Every cluster will be assigned a num-
ber, which together with the boundary, will be recorded for all "live” threshold
regions. Raster scans can be loaded and shifted upwards as they are produced
by the sensor/ADC/thresholding circuitry. The register bank can be searched for
connected regions and the boundaries extracted. An advantage of this technique
is that, depending on the number of rows stored, many of the smaller insignificant
clusters could be eliminated without having.to store its details. A problem is
that areas, of the same cluster, which are connected, on a lower row will be given
different reference numbers. The simple solution is to produce a list of reference

numbers indicating which clusters have become connected further down the image.

The last part of the DETECT system described in this chapter was the group-

ing of extracted edges with significant clusters. Three possible implementations

could be:

1. Clusters and edges held as raster scan data: Processing would
be performed on two images, one of which contained the edges, stored
as reference numbers, and the other, the clusters, aéain stored using
references. The relevant pixel values could be used as indexes to a
numbered array of accumulators. Unfortunately the array sizes are

unpredictabie and dependent on edge thresholds, difference thresholds
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and the scene. However in the current system there are usually about

ten clusters and, up to, 300 significant edge segments.

2. One data source held as raster scan and the other in list for- -
mat: This has the advantages of reducing the required storage for
either the cluster or edge lists. The processor would store one in raster
format and the other as a list. The lists would then be fed in and com-
pared to the raster scan. Which was stored as which would depend on

the architectural experiments together with expected operating thresh-

olds.

3. Both clusters and edges stored as lists: Of the possible three
combinations this technique requires the least storage. However, as
usual, the price for reduced memory is an increase in processing. For
each ecige pixel the entire cluster list, with associated outline edges,
has to be searched. Again, reference numbers would be used to index

an array of accumulators.

4.4.1 Conclusion

This chapter has described the early segmentation stages of the DETECT sys-
tem. These are aimed at providing a low cost solution allowing extraction of
outline edges in stationary scenes. These cost considerations are particularly im-
portant at the pixel levels of computation where the largest number of calculations
are required. At this level the DETECT system employs no multiplications, di-
visions or floating point calculations, eliminating the need for expensive silicon
implementations of these functions. Consideration has also been given to possible
architectures. As mentioned in Chapter Two, most image processors have local
memory close to the processing elements to allow neighbourhoods to be assem-
bled. It seems clear that the problems of memory organisation would need to be

considered in any architectural study.

Further, and implicit to the idea of simple hardware, is the combination of

different sources of data, to provide the outline of the clusters for matching. This
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is important as, often, machine vision researchers apply different processing mod-
ules, blindly, without considering possible savings inherent in the overall problem.
From a practical engineering point of view systems should be specialised to an

application’s requirements.

The next chapter will describe how the edges and cluster outlines are used
to provide estimates of interocular disparity. Although discussed, in a separate
chapter, the matching process is essentially a continuation of the segmentation
sta,ges.described here. Matching should be considered in terms of the outlines

produced by the low level segmentations described in this chapter.
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5.1 Introduction

This chapter will describe the stereo matching and disparity estimation techniques
used in the DETECT software. As described in Chapter Three, there are many
different ways to solve the stereo correspondence problem. Two types appear to
be evident; those based on correlation searches and those on feature matching.
For reasons of complexity reduction a feature based matching system has been
implemented. It is now intended to describe one such system which makes use of
the fact that under certain camera configurations and object dimensions an image
overlap occurs when local coordinate systems of the two cameras are aligned.
Thus, if the outline edges of the abject can be separated from the surrounding
features then the matching problem is reduced to a computationally simple one
way search along the epipolar raster scans. There is no requirement to solve the
stereo carrespondence problem for all types of edge. In this manner, the matching
algorithms described are interlinked with the segmentation techniques discussed
in Chapter Four. In particular, segmentation was designed to extract only the

outline edges of a moving object.

Following on from the techniques used to match left and right features, Section
3.3 describes how a sub-pixel measure of disparity is extracted from moving objects
in large scenes. Such scenes require the use of wide angle lenses resulting in
significant pixel quantisation. Techniques are presented to reduce and control
this problem. Brief consideration will also be given to the problems of calibration
although, as suggested in Chapter Seven, this is an area for future research. As in
previous chapters, hardware constraints have been taken into consideration. Here,
the problems are likely to be less severe, given the reduced data rates required
once segmentation has been performed. Thus, in the calculation of disparities
and in filtering operations, more complex arithmetic operations are feasible. The
speeds required for this type of calculation are not excessive, at frame rates of

25Hz. The chapter will end with some conclusions.
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5.2 The Matching Process

Stereo matching is the process of finding corresponding features from two or more
views of the same scene. It has many simila.riti-es with the problem of tracking
features through time except that stereo disparities are caused by a spatial sep-
aration of the cameras whereas time disparities are caused by movement of the
object or camera. In addition stereo disparities have predictable directions par-
allel to the camera displacements. Some stereo vision algorithms[54][53][76] were
described in Chapter Three. However, many are computationally intensive and
have been developed to imitate the human vision system. The constraints im-
posed by possible commercial VLSI and hardware implementations suggest that
a reduction in processing would be advantageous. In effect, control of the search

space for stereo matches is required.

Chapter Three also covered the various constraints which can be used to help
solve the stereo correspondence problem. The two major, published, search con-

straints of use in this work are:

1. The Epipolar Constraint: If cameras are separated by a lateral
translation then a feature from one camera will have its correspondent.
on the same raster in-the other camera. Clearly, this constraint can
reduce the problem of finding corresponding features to one dimension.
In reality, raster scans from two spatially separated cameras will never
be perfectly aligned. Some form of calibration is required to allow

equivalent rasters to be compared.

2. The Disparity Gradient Limit: The disparity gradient limit has
been shown to be an effective technique in eliminating incorrect match-
es[84][66]. Figure 3-4, in Chapter Three, illustrates this constraint. As
the edge is tracked, disparity is calculated by simply scanning across
from one edge to the other. If the disparity from one match to the next

exceeds a threshold then that match can be rejected.



Chapter 5. Stereo Matching and Time Domain Filtering 117

/™ Stage One */
while (hotendofsignificantrightclusterlist)

{

- set reference image to zero
while (notendofattachededgestocurrentcluster)

{

if edge is the left cluster edge then code = 1
if edge is the right cluster edge then code = 2
if edge is a left edge segment then code = 3
if edge is a right edge segment then code = 4
while(notendofpixellist)

{

- calculate the calibrated row and column values

for this particular pixel. In the current system

this simply involves adding a translational offset.

- set reference image pixel, using the above row and

column to the correct code. \
} end of pixel list
} end of attached edge loop
} end of right cluster list

Figure 5-1: Matching Algorithm: Stage 1

In addition to the above two general stereo matching constraints, assistance is also
extracted from what is called in this work, the overlap constraint. This is described
in Section 5.2.1. This allows the entire object to be taken into consideration when

matching is performed.

Figure 5-3 shows a block diagram of the matching procedure described in

Figures 5-1 and 5-2.

Matching begins with the transfer of all the edges extracted from the main
right hand clusters into a reference image. Edges are recorded in the reference
image under four different codes, to represent the left and right outlines coming
from the separate cluster and edge detection algorithms. It is also important to
note that the edges are transferred on a cluster by cluster basis. Thus only the
largest clusters with attached edges are used for matching. Following the definition

of the edge types, calibration information can be added when setting the reference
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/* Stage Two */
while (notendofsignificantleftclusterlist)

{

while (notendofattachededgestocurrentcluster)
{
- set disparity histogram, for this edge, to zero
while(notendofpixellist)
{
- row = row of this pixel
- col = column of this pixel
- startcol = column of this pixel
while (code of the current pixel is not equal
to the code of the reference image pixel and col | IMAGESIZE)

{

- Increment col
}
- disparity = col - startcol
- update this edges histogram using "disparity” as an index.
- disparitygradient = lastdisparity - disparity
- lastdisparity = disparity
if (disparitygradient > DISPARITYGRADIENTLIMIT)
{
- break edge at this point
- create new edge from the remainder
- add new edge to list end
- notendofpixellist = TRUE
} .
} end of pixe] list
} end of attached edge loop
} end of left cluster list

]

Figure 5-2: Matching Algorithm: Stage 2
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image. In the current system this involves a simple (x,y) translation added to the
edge coordinates. Calculating such an offset will be done by the calibration stage
when the system is installed. For the applications being considered in this work,
it should be possible to calculate these offsets using the trial and error approach,

discussed in Section 5.6.

The second stage in the matching process involves scanning, in the x direction,
from a known start point, and then finding the first pixel with the same code as
that edge. The length of the scan is a measure of the disparity. As the edge is
b‘eing tracked downwards, the disparity gradient limit is applied. If this exceeds a
limit, usually one pixel, then the edge is re-segmented and a new edge formed from
the remainder. It is unlikely that false matches will track with a low disparity
gradient and a re-segmentation allows a later separation of good matches from
false. Such a "goodness” calculation would complicate custom hardware due to
the likely divisions involved. It has therefore been kept separate from the main

matching algorithm and would be implemented on a microprocessor.

Several techniques, inherent in the above two stages, reduce the possibilities
of false matches. The use of codes ensures that edges only match their own kind:
an edge attached to the left hand side of a cluster will only match with another
edge attached to the left hand side of a cluster. In addition, some edges are
directly extracted from the cluster itself. The significance of these in the final
disparity calculation can vary depending on the segmentation for a particular
frame. However they add an extra layer of safety to the final results. In summary,
-once the outline edges have been extracted, matching can be performed by a simple
scan from a left image edge to a right image. Thus the correspondence problem has
been transflerred to the segmentation stages of processing and explicit matching

searches have been avoided.

Attention is now turned to the geometry which allows this type of matching.
In particular the geometry required to ensure that an object s images in the left

and right cameras overlap when their local origins are aligned.
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Figure 5—4: Overlap Matching

5.2.1 The Overlap Constraint

The above technique, which has not appeared in the surveyed literature, employs
the fact that an object’s image in two spatially separated cameras will overlap
when their local origins are aligned. Figure 5-4 shows two simplified images where
a blob is pr'O jected onto both cameras. The cameras are assumed, unrealistically,
to be perfectly calibrated and spatially separated. Thus a simple translation will
allow the local origins to be aligned. Such a matching algorithm requires that
corresponding edges from two cameras be positioned, in the reference image, as
close to one another as possible. The chances of other false edges "getting in the
way” obviously increases as edges are separated either by translational offsets or
by genuine disparity. In this respect it is important to be able to calculate the
geometric conditions when an overlap will not occur and ensure that the camera

is set up correctly.
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The following analysis derives a general formula to calculate the disparity-
overlap ratio for two idealised images of the same object. Figure 3-1, in Chapter
Three, shows a general two camera stereo arrangement. For simplicity we will
assume that there is no rotation around the x or z axis and reduce the problem to
that in Figure 5-5. The problem is now two dimensional and the left coordinate
system can be projected onto the right using Equation 5.1. 6 represents the
angle of rotation between the two coordinate systems and (zr, zr) the translation
between the two origins.

’

T cosd  sinf z T
) + (5.1)
z —sinl cosl z 2T

An object of width W is now placed in the scene and its end points, L and R
are projected onto the two camera image planes through the focal points LF and
RF. L has coordinates (X LL; Zrr) in the left hand camera coordinate system and
(XmL, Zrr) in the right hand coordinate system. R has coordinates (Xir, Zrr)
in the left hand camera coordinate system and (XRR, Zrg) in the right hand
coordinate system. The projected points are LR (zppr,zrr), LL (zrr.200), RR
(zrR, zrr) and RL (zpr,2zr). The following equations represent these projec-
tions, through focal lengths of F', onto the image plane. |

FXig FXpp FXrr _ FXgg

RSP 7 T FZi T T Znm

(5.2)

Before the parameters, which define disparity are used, it is necessary to translate

the right hand camera coordinate system onto the left using Equation 5.1. Thus,

o F(Xpreos® + Zppsind + z7)
RR™ F 4 X, psinf — Zypcosh — 27

(5.3)

:Cr _ F(XLL0089 + Zrrsind + a:T)
RL™ F 4 Xppsin® — Zrrcosl — zp

(5.4)

Figure 5-6 shows the position, in a combined image, of the above parameters,
TLR, TLL, Trp, Tpp. 1t allows a definition of both overlap, O,p, and disparities,

6, and é,, as in Equations 5.5 and 5.6.
o = ﬂf;m — LR, O3= $}qL — TLL (5'5)

Ola;o =ZXLR — m’RL (56)
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Figure 5-5: Stereo arrangement with no roll nor tilt
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Figure 5-6: Overlap and Disparity Definition
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When the object is thin, in relation to the range, then the two values of disparity,
&1 and &;, may be assumed identical. This assumption is true for the scenes and
equipment employed in this work where an alarms requirements will likely lead to

short focal lengths and longer ranges. We can now say that §; = &, = 6.

The geometry can again be simplified by assuming that § = 0 and zy = 0 as
shown in Figure 5-7. For mechanical reasons this is the camera geometry used
in the trials, described in the next chapter. Equations 5.3 and 5.4 now reduce to

Equations 5.7 and 5.8.

‘ F(Xip+ z7)
—_ — — '7
IRR F— Zin (5.7)
and
/ F(X[_,L + :ET)
= 5.8
'TRL F _ ZLL ( )

If the angle, ¢, which the object makes with the imaging plane, is zero, and
W = Xyp — Xi1, then Z;, = Zrp = Z and Equation 5.6 can be replaced by
Equation 5.9.

Olp = ——————2 (5.9)

Also, disparity can be represented by Equation 5.10.

F:L‘T

b=F—7

(5.10)

From Equation 5.9 it can be seen that an overlap will always occur if the interoc-
ular distance, zr, is less than the width of the object, W . Further, Equations
9.9 and 5.10 can be combined to calculate the overlap/disparity ratio, R.

_ Olap _ W'i‘xT
- ) - T

R (5.11)

The important point to note is that R is constant throughout the entire scene. It
1s dependent entirely on the geometry of the camera and ob ject and is independent

of position in the scene.

One must now consider what happens to an overlap, and therefore the match-

ing algorithm, when an object rotates in the scene. If the object width parallel

10\qp becomes negative at this point.
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to the imaging plane is greater than the translation between the cameras, the in-
terocular distance, then overlap will always occur. However, if an object rotates,
by some angle ¢, the object will eventually separate in the two images. Equation
5.12 is the limiting condition for overlap to occur when an object rotates. This
is extracted from the geometry shown in Figure 5-7. Thus D, is the interocular
distance where there is no overlap and zr;, = zgpp. D, is constructed by subtract-
ing s from the distance Wcosg, where s is found using similar triangles, such that
s = &J‘%ﬂ’ﬁ‘? The main point to note is that, due to the sine term, overlap is

now position dependent.

D,=W (cos é— % sin ¢) (5.12)

The general conclusion from the above analysis is that, for this algorithm, it
will thus be impossible to match objects for which the width parallel to the imaging
plane is narrower than the distance between the cameras. In the experiments .
described in Chapter Six the camera rig was set up with this in mind. Such a
restriction is notra, serious problem in this application and is, in fact, an advantage.
It prevents the extraction of disparities for spurious objects which fall below a

physical size threshold. The extraction of such disparities is now described.

5.3 Disparity Extraction

"The previous section dealt with the mechanics of finding correspondences for out-
line edges between two different images. Explanations of the disparity gradient
limit and overlap were also provided. The result of the above matching process is
a collection of clusters with attached edges and associated disparity histograms.
These histograms are now used to provide estimates, to sub-pixel accuracy, of
the current main cluster’s overall disparity. Section 3.5.2 discussed some of the
accuracy issues related to the extraction of disparity. Pixel quantisation noise
and mis-matches will cause the disparity to spread over several values of the his-
togram. As we are using short focal lengths, these errors become more significant,

especially, when tracking longer range objects.
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Figure 5-8: Edge Disparity Histograms for One Cluster

Figure 5-8 shows the disparity distributions for the three edges from an ex-
tracted cluster. To improve the cluster’s disparity distribution, measures of con-

fidence can be assigned to each individual edge.

The current implementation of DETECT uses the mean and variance of rele-
vant parts of the disparity histogram as measurements and associated confidence.
Once a cluster has been detected in the scene and is being tracked, disparities from
previous frames are used to restrict those allowed in the current frame. Thus the
means are calculated on a specific band of the histogram around the major peak.
Provided enough pixels are matched and the usual Gaussian assumptions appli-
cable, the mean provides a sub-pixel disparity measurement for the entire -object.
Figure 5-9 describes how this is done for the edge clusters. Example disparity
histograms, plotted through time for each of the three ﬁleasurements, are shown

in Section 6.3.2.

Consideration was also given to weighting match frequencies according to their
distance from the previous frames disparity and in relation to other edges in that

cluster. A problem associated with this type of weighting is that, while reducing
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Figure 5-9: Disparity Extraction from Matching Histograms.

the contribution of x disparities, Bt distorts the distribution for a particular edge.

Thus it is not currently used.

An important feature of this work is that a measure of the error is inherently
provided by the calculation of the variance of the disparity. This not only takes
into consideration the errors caused by quantisation but also those caused by
inaccurate feature matching. Such combined measures, as discussed in the next

section, can be utilised in the tracking filters described in Section 5.5.

5.4 Disparity Histogram Error Analysis

With the three camera rig suggested, by Figure 3-15 in Chapter Three, three
disparities can be extracted: two from the inner pairings and one from the outer
cameras. The error PDF’s shown in Figure 3-15 cover the entire scene. However
as described in Section 3.5.2 errors vary with distance from the camera. Thus

different points in the scene will have different PDI’s. Probably, in any final
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system, it would be necessary to calculate PDF’s for separate range bands in
the scene. This would allow confidence envelopes to be calculated for particular

disparities.

In view of the error considerations, described in Chapter Three, the DETECT
system has employed three cameras to estimate an overall disparity. This reduces
the combined effects of pixel quantisation noise and the matching errors of an

individual point in the scene,

Con;ﬁ;ideration is now given to estimation of combilned errors for the three
stereo measurements from a triple camera rig. The disparities from each possible
measurement from three cameras are not independent. This is clear from the fact
that a poorly extracted edge from the left camera will cause inaccuracies in two
out of the three measurements. In this application we assume that the errors in
feature ertraction are independent and calculate our error covariance matrix for
feature matching on this assumption. The adva.ntage‘ of this approach is that it

provides a combined variance for quantisation errors and feature matching errors.

The three possible disparity measurements are represented by
Si=aitm—zo=—m  S=zptm—ws—ns & =zatm-mi—m (5.13)

where z; is the edge position with respect to the local coordinates and 7; is noise.
61 is the disparity between the left and middle cameras, 6, is the disparity between
the middle and right cameras and &5 is the disparity between the two outer cam-
eras. A false match is considered part of the noise. Thus the errors in disparity,

Az;, can be summarised as
Azy=m—m Azg=m—n Azg=ns—mn (5.14)

and considered as combinations of independent noise sources 7;. From this an
error covariance matrix can be derived based on the experimentally calculated

values of Az;. The error covariance matrix can be represented by

Cov(e) = E[AxAX] (5.15)
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where the main diagonal elements, t;;, are E[A%zr;]. The other elements in the

matrix are
taz — fy1 — tag
tiz =1ty = — s (5.16)
oty — -1
fog = gy = 2L 227 738 t;z 33 (5.17)
tog — b33 — ¢
tig =ty = =—20 1 ;3 = (5.18)

It is important to note that the values of ¢; are simply the variances of the
extracted disparities. They can be extracted from the disparity histograms and
then used to calculate the other elements of the matrix. We have used the Cov(e)
matrix in the Kalman formulation where the disparity velocity is modelled as

signal noise.

5.5 Filtering Techniques

Figure 5-10 shows the disparity output curves from a 16 frame sequence. In the
main the results are fine. However there are problems with sudden large spikes
and errors in particular frames. This section is about the control of such errors and
the combination of the three disparities such that these spikes are eliminated in
the final averaged disparity trace. Additionally, it would be useful if a confidence
measure could be provided to allow the calculation of alarm thresholds. Adaptive
filtering techniques can be used to combine current information with that from

previous frames and from other measurements.
Several common techniques have been developed to smooth such time depen-

dent data series. The two considered here are:

1. Least Mean Squares

2. Kalman Filtering

The Least Means Squares, (LMS), algorithm has been applied generally in

many areas of signal processing[31]. The following equations represent the basic



Chapter 5. Stereo Matching and Time Domain Filtering

20 T T T T T

15

10 r

Disparity (Pixels)

132

Figure 5-10: Extracted Raw Disparities for Sixteen Frame Sequence

structure of the algorithm:

Filter output,

Estimation Error,

Tap-Weight Adaptation,

W(n +1) = W(n) + pu(n)e(n)

(5.19)

(5.20)

(5.21).

where y(n) is the estimated output signal for time step n, W(n) is the vector

of weights to produce y(n). u(r) is the input vector of measurements. The

estimation error, e(n), is calculated from the difference between the training signal,

d(n), and the current estimate. It is then used to calculate the next set of weights

with respect to a convergence parameter, s.
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In terms of the current application of stereo tracking, problems arise with the
LMS formulation. The first and most significant problem is that a training signal
is required to calculate the initial values of the filter weights. In any practical
installation, it will be ver‘y difficult to calculate true disparities for the current ob-
ject position. Secondly, the calculated weights will only be valid for a single series
of disparities, ie. the ones that were used as the training signal. In wide angle
systems it 1s likely, that the object in the scene will be free to move anywhere, and
in any direction. One set of weights will not be sufficient for the many possible
tracks through an individual scene and no account is taken of the current velocity
or acceleration. The third problem associated with the LMS, and similar algo-
rithms, is that it is difficult to combine information from different measurements.

It therefore does not utilise all the available information.

Kalman filtering provides an alternative to the LMS algorithm which can ex-
piicitly model the object’s motion in a scene. it can also be formulated to take
account of interdependencies between the three extracted disparities. It is a recur-
sive technique which uses a prior: knowledge about the uncertainties associated
with particular measurements of the state vector. In this work the state vector
could be a measurement of the three possible disparities; or depths, from a three
camera stereo rig. Fach of these measurements has a variance associated with
it. An estimate of the current state, based on the measurement error covariarnce
matrix is maintained, with the system error matrix which models the likelihood
of changes in acceleration. The formulation applied in this project is based upon
examples and theory presented by Haykin [31], Matthies [55], Hwang [12] and

Bozic [11]. The equations for a vector implementation are stated below:

Estimate

R(k) = A%(k — 1) + K(k)[y(k) — CAR(k — 1)] (5.22)

Filter Gain

K(k) = P1(k)CT[CP;CT + R(k)]™ (5.23)

Pi(k) = AP(k — 1)AT + Q(k—1) (5.24)
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Error Covariance Matriz
P(k) =Py (kyK(k)C(k)P1(k) (5.25)
The & matrix is the state vector being estimated at a time step represented by
k. In this application it consists of the three possible disparities extractable from
a three camera rig and is therefore a 3x1 vector. y is the measurement vector and
K the Kalman gain matrix, which is calculated from 5.23 and 5.24. In reference
to Equations 5.22 to 5.25, we can approximate the change in disparity, between

frames, using the following vector equation.

F
|

x(k) = Az(k — 1) + w(k — 1) W (5.26)

A is the state transition or signal dynamics matrix. The w vector is a 3x1 vector
containing the expected disparity changes between frames. This is dependent on
the speed and depth of the moving object and can theoretically be altered as
the system is running. However sudden jumps in the system error are liable to
make the filter unstable. Thus in the current implementation the values of w are
kept constant. These could be extracted, from raw disparities, during equipment
installation with a person walking backwards and forwards in the scene. Equation

5.27 re-expresses Equation 5.26 in it's matrix form.

Slk+1) |=10 10 Sa(k) |+ | we (5.27)
b5k + 1) 00 1 83(k) w3

The second part of the Kalman formulation is the measurement equation. This
can be defined as shown in Equation 5.28 and expanded to the matrix system

shown in Equation 5.29.

y(k) = Cx(k) + v(k) (5.28)
b1(k) 100 61 (k) "
&y [=]01 0 bo(k) |+ | w2 (5.29)
§a(k) 000 1/ \ &k v '

The values of v are the variances of the disparity measurements and represent the
expected noise in the value of y. Again, these can be extracted from the raw dis-

parity histograms by averaging disparity variances over a series of measurements.
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Using the matrices described in the Equations 5.27 and 5.29 a Kalman filter was
programmed to estimate the three possible disparities for which the results are

described in the next chapter and Appendix A.

Apart from the above, where the system matrices are defined with velocities
included as noise, two other formulations were attempted on the basis that they
model reality more accurately. The first included a single common velocity as
part of the state vector X. Acceleration, Aé, of this velocity was then defined as
the system noise. Equation 5.30 describes the situation where w is an expected

change in acceleration with zero mean.

Si{k+1) 1 001 61(k) 0
Sa(k+1 0101 8, (k 0
2(k + 1) _ 2(k) (5.30)
o3(k + 1) 0011 8a(k) 0
Ab(k+ 1) 000 1/ Adk) w )

The second system attempted used a different velocity state for each estimated
disparity. Both these systems were programmed and tested on the trial data.
However the results were not satisfactory and tended to be unstable. Better

results may be achievable for longer sequences of images.

At this point it is worth considering the non-stationary nature of the stereo
system. Measurement variances will change through time as an object crosses dif-
ferent backgrounds and mis-matches come and go. Such variances could, in theory,
be used to constantly update the error covariance matrix. Unfortunately, vari-
ances will tend to stay constant and then suddenly jump as different backgrounds
are crossed. These are likely to cause the Kalman Gain Matrix to become un-
stable. The integration of non-stationary time series into the Kalman and other

filter formulations is a possible future area of research.
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5.6 Calibration

The problems of accurately calibrating spatially separated cameras and automat-
ically establishing the true translations and rotations were discussed in Section
3.6. Apart from the algorithm’s unreliability, it is clear that a low cost VLSI
implementation of the techniques described would be impractical, due to the re-
quired arithmetic. One possibility would be to provide an interface to a portable
computer which would perform the necessary arithmetic and then download the
appropriate calibration offsets. However, for this application accurate camera cal-
ibration and explicit extraction of metric distances is not required and processing

can be done in disparity space.

This still leaves the problem of calibrating translational and, possibly, ro_ﬁation—
al offsets necessary before matching can be started. Dealing first with rotation,
it is the experience of the experiments in the next chapter that rotation was less
of an inhibition to matching than at first thought. In all cases the matching al-
gorithm managed to provide a disparity trace which correlated with the person’s
movement through the scene. The main reason for this is that we are extract-
ing an average disparity for the entire object and not for any particular edge.
Compared to the accuracy in alignment possible when using a PCB with three
mounted sensors the equipment used in this work was relatively crude. Thus, in
a final implementation it is likely that rotation will not be a significant source of

error.

In contrast, translational offsets were required in the trials described in Chap-
ter Six?. Depending on the architecture and mechanical set-up they may or may
not be required in a final system. One possible technique, which could be an area

for future research, would be to repeatedly try different offsets on a sequence of

“Translational offsets can, sometimes, be used to increase the chances of an accurate

match.
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images where the object motion was known. This could be done until a consis-
tent series of disparities were extracted from the sequence. Using a more accurate
camera rig, ie., PCBs, the number of possible offsets could be limited, reducing

the search.

An extension to the above, which is described in Section 6.4.3, is to run the
algorithm or installation with objects of known position. This could be performed
for several points in the scene and used to build up a rough disparity map of the

scene. Section 6.4.3 described experiments where this was done.

5.7 Hardware Implementation

"This section will discuss a possible hardware implementation of the above match-
ing algorithm and attendant time domain analysis. It follows on from Section 4.4
in the last chapter, where implementation in VLSI was considered for the lower
level processing. To complete the picture, Figure 5-11 shows a possible archi-
tecture using a microprocessor and three ASIS processors. Not included on this
diagram are the DAC’s and ADC’s required. These are shown with the correct
relationships, to other processing elements, in Figure 5-12. The basic idea behind
such an architecture is that all the low level processing up to stereo matching
would be performed on specialised hardware. This has been made possible by the
fact that there are no multiplications, divisions or floating point calculations dur-
ing these processing stages. Further efficiencies can be obtained by implementing
some functions, which act exclusively on local areas of the image, in analogue.
The shaded areas in Figure 5-12 show this for edge detection, differencing and
difference thresholding. The algorithms described in Chapter Four have been
adapted to allow this. For example, edge detection has been reduced to a later-
al scan which is ideal for processing raster scan data. Other functions, such as
tracking and clustering, are less likely to be developed in analogue due to the un-
predictable neighbourhoods upon which this type of processing has to be carried
out. However, experiments with regions of interest and addressing random parts

of the imaging array may allow an analogue implementation of these functions as
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Figure 5-11: Hardware Overview of a Possible Detect Implementation

well. Locational information could be fed back from the higher levels of processing
directly to the imager array. There appears to be little in the hardware literature

describing such an approach and it could be a fruitful area of future research.

A crucial area in such an architecture will be the required memory and how
it is organised. By implementing the lower functions in analogue, the system will
avoid costly storage and processing of grey level pixels. The processing of binary
information instead of grey levels may also allow the use of an on-chip memory for
outline extraction and stereo matching. An interesting trade-off would be between
the techniques used to store edges and the required on-chip memory. A 256x256
array is indicated in Figure 5-12. However this could be reduced if some form of
spatial organisation was imposed on the edge storage. In the DETECT software,

edges are stored as lists of displacements from an initial row and column. The
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obvious way to store these lists is in a FIFO. In an implementation these edges
would be ioaded into the on-chip array for outline extfaction with clusters and
‘stereo scan matching. To reduce the size of this on-chip buffer, edges from the
four quarters of the image could be stored and processed separately. In this
situation the on-chip memory could be reduced from 8Kb to 2Kb. Clearly, more
reductions could be made, at the likely expense of functionality, by dividing the

edge information further.

Use of the same on-chip memory could be made by the scan matching part
of the algorithm. In this case, edges from other cameras will have to be loaded
with those from the current sensor. Unfortunately the matching algorithm works
better if different types of edge, ie., left and right are matched separately. The
current DETECT software uses codes to differentiate between types of edge. Due
to the one bit nature of the above memory it is likely that this option will not be .
available. Different types of edge will have to be loaded into ihe array separately.
Also, at this stage, calibration offsets require to be added to each edge location

before being recorded in the array.

As said above, Figure 5-11 shows the overall architecture with connections
between microprocessors, background, edge and disparity memories and ASIS
processors. To allow all processors to perform scan matching it is necessary to
pass edges between the different cameras. Some form of communication link
will be required to accept and transmit edges. Also, shown in both figures are
interfaces to the controlling microprocessor. This will be used to implement the
threshold calculations based on integer statistics and histograms from the sensors
themselves. The arithmetic required should not be too severe at a maximum of 25
frames per second, if the statistics from the processing are presented in a compact
manner. It may also be possible to perform the Kalman filter matrix operations
using the same microprocessor, again due the relatively low calculation speeds of

25Hz.

In conclusion to this section, several general points are worth stating. Firstly, it
seems very important that local processing of grey levels is performed in analogue

avoiding the space costs of large busses and temporary registers. Secondly, there
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is a trade-off between the compactness of the data storage for edges and the use
of on-chip buffers for temporary storage. As the on-chip memory is likely to cost
more than the standard off-chip edge store, it would make sense to group edges in
memory according to their position in the overall image. The third feature involves
the techniques required to calculate thresholds, image statistics and perform time
domain filtering. It will not be worthwhile implementing this type of calculation
on chip. However relatively simple processing can be used to accumulate the
statistics required by a microprocessor into compact histogram forms. The above
discussion gives a good idea of what sections of the algorithm are implementable on
the sensor and what would be best left to more general purpose microprocessors.
Although, in a final implementation, the designer would have go into more detail,
it is-hoped that this description will give some idea of general possibilities of the

DETECT algorithms.

5.8 Conclusions

An original stereo matching algorithm has been developed with the aim of being
implementable in VLSI hardware. The matching process is interlinked with the
segmentation stages of the lower level processing described in Chapter Four. Only
outline edges are used as matching primitives. The matching algorithm takes
advantage of the fact that for cameras on the same imaging plane objects overlap
when there local origins are aligned. With this camera geometry, an overlap
will occur provided the object is wider than the lateral translation separating
the cameras. Further to the overlap constraint, the disparity gradient is applied
as edges are being matched, pixe! by pixel. Edges are re-segmented at points
which break a disparity gradient limit. This, together with limits on the allowed

disparities should remove the vast majority of false matches.

Following the matching of the extracted outlines, disparity histograms are cal-
culated for edges. These can allow the elimination of poorly matched edges, on
the basis of disparity variance and amplitude. False and unmatched edges created

by the application of the disparity gradient limit, can also be eliminated using the
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same variance and amplitude thresholds. The final part of the current DETECT
system uses the confidences and error estimates available from the disparity mea-
surements in a Kalman filter. Estimates are extracted experim‘entally from the

trial data and combine both matching and localisation errors.

Later sections of this chapter discussed calibration and hardware issues relating
to the DETECT system. Compared to other stereo applications, calibration is less
of an issue, as accurate metric estimates of distance are not required. It appears
from the results in the next chapter, that simple translational offsets are adequate.
Finally, hardware was dealt with in Section 5.7 with a general description of those
parts of the system which would be implemented on an ASIS sensor and those,

for which, it would be more sensible to use a microprocessor.
L3
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6.1 Introduction

Whereas the last two chapters have dealt with algorithmic concepts, this chap-
ter will consider ‘the system’s operation. In particular, a series of trials will be
described, showing DETECT’s ability to track and estimate disparity for moving

objects.

The chapter will start with a description of the hardware and software used to
capture the images. A significant part of this work involved the design and con-
struction of equipment capable of simultaneously capturing stereo pictures from
CMOS cameras. CMOS cameras, mentioned in Chapter One, allow application
specific processing on the same substrate as the sensor. Pixel aspect ratios can
also be altered a,ccording to an implementation’s requirements. For example, if
the expected edges are vertically oriented it might b-e sensible to have a similar-
ly oriented pixel. One other advantage of the ASIS architecture, is the on-chip
generation of signals, such as "pixel valid” and ”{rame start”, useful in image digi-
tisation. Most frame grabbers have to estimate when a pixel should be sampled
using video line signals. The pixel valid signal, from the ASIS sensor, emanates
directly from the chips own clock and is automatically synchronised with the video
waveform. Sampling errors can therefore be reduced at a minimal cost in frame

grabber hardware.

When capturing stereo pictures, synchronisation of separate video sources and
framegrabbers is also necessary. The majority of low cost commercially available
framegrabbers allow, incoming video signals to be multiplexed into the same grab-
ber on a frame by frame basis. However, parts of human hands and legs can move
significantly in one frame. Stereo mismatches and disparity errors will inevitably
occur between frames captured at different time intervals. As an alternative,
several boards can be run together on the same computer with synchronisation
being performed by the computer. Such a technique is limited by the fact that
each framegrabber board will have to be addressed separately. Synchronisation is

limited by the speed of the computer and operating system. Another major re-

¥
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striction was that reasonably costed commercial boards are limited by the memory

available to store sequences of image, usually around 4 frames per card.

Video signals must : also be synchronous. Most commercial, and non-
expensive, CCD video cameras do not allow the input of a synchronisation signal.
The ASIS range of CMOS cameras have been designed to allow both the input
and generation of a SYNC pulse. In the current system, a fourth camera generates
the SYNC pulse which is then fed, in parallel, to the other three cameras. The
above considerations led to the design and construction of custom image capture

hardware for the ASIS camera series.

Following the hardware description, Section 6.4 will present a worked example
and summary of results obtained from applying the DETECT algorithms to se-
quences obtained from CMOS cameras and framegrabbers. The full set of results,
for the twelve sequences tested, can be found in Appendix A. Appendix A in-
cludes graphs of the raw and averaged disparities extracted through time, Kalman
estimates of disparity over time, disparity histograms and measures of confidence.
Also included in Section 6.4 are some general statistics extracted from the data in
Appendix A. The last section of this chapter will discuss these results and provide

conclusions.

6.2 Equipment Description and Operation

Figure 6-1 shows a diagrammatic representation of the capture apparatus. CMOS
cameras surrounded by test-jig PCBs were attached to aluminium lens mountings.
Plastic screws were used to adjust the sensor’s focal length and distance from the
lens. The cameras were then mounted on a track and adjusted as described in
Section 6.2.3. Video signals were synchronised using a fourth camera in SYNC
generation mode. Also shown in Figure 6-1 are the power supply, exposure control,
video and digitisation connections to the PC frame grabbers. These connections,
and the fact that the cameras are powered directly from the PC make the sys-

tem easier to use and more portable. Exposure can be explicitly defined in the
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framegrabber software. Further, signals such as ”pixel valid” and "frame start”
allowed a simplification of the frame grabber hardware avoiding noisy synchroni-

sation circuits.

6.2.1 The ASIS Camera

The ASIS cameras were developed after several years research in the Departmen-
t of Electrical Engineering at Edinbufgh University culminating in commercial
applications. Over the last three years sensors have been designed for different
applications. For example, a finger print recognition system has been implement-
ed on the same chip as the video sensor [1]. For the tests performed in this work

the ASIS1010 sensor was used.

ASIS1010 was a prototype 256x256 pixel array and was designed to be the first
video camera with sensor and video generation circuitry on the same substrate[17].
The video circuitry also included both automatic and manual exposure control
circuitry. The manual control of exposure allowed sensitivity mismatches, between
different cameras, to be corrected; a feature which is useful when sensors respond
differently to the same scene. Since the initial prototypes several cameras have
been produced with increasing performance. Problems such as fixed pattern noise
and blooming have been to a large extent resolved and current ASIS versions are

now comparable, in performance, to existing CCD sensors [17].

6.2.2 Framegrabber Design

Development of the custom framegrabber started with a fourth year projecf by
Ramsay [71]. The author expanded the design to include a PC interface and also
to power the cameras directly from the computer[23]. Additions were also made
to the analogue amplifier to improve the signal to noise ratio and extra memory
was added, allowing sequences of up to sixteen frames to be captured per board.
Signals to control exposure and a flash are also produced by the frame grabber.
After developing the above circuit on prototype cards the design was implemented

as a plug in PCB for the PC/AT bus. Ten frame grabbers in all were assembled. In
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Figure 6-2: Frame Grabber Design

the trial apparatus three cards were used in parallel. These could be synchronised
using a single write command from the computer, but read independently. Each

board had a common address for writing, but an individual address for reading.

A block diagram of the system is shown in Figure 6-2. The analogue circuitry
consisted of amplification and level shift on the incoming video signal before being
fed into the video ADC. Potentiometers were positioned at the rear of the board
allowing access through the PC’s back. These allowed the gain and DC voltage
level to be controlled, allowing variation of the contrast and absolute luminosity.
As indicated above, the cameras provide several useful signals. The two most
important are PVB, indicating when a pixel is valid, and FST, indicating when
the frame is about to start. PVB and FST have allowed the elimination of "lock-
on” circuitry to estimate when a video signal should be sampled. In particular,
a delayed PVB is used, indirectly, as the sampling signal to the ADC. The delay
has been made variable to allow sampling on the least noisy part of the incoming

video signal.

In parallel with the above hardware development, menu driven PC software



Chapter 6. Results _ , 149

was written. The software set up the appropriate board logic to grab images
into the frame grabber’s memory, save the captured images to disk, display those
pictures on the screen and allow calibration of analogue offsets using grey level
histograms. Further to this, separate routines were developed to capture, read

and align three individual cameras. Alignment is discussed in the next section.

6.2.3 Camera Setup

Once the three frame grabbers were installed in a PC, the stereo cameras could
be adjusted to minimise misalignment. This was done using a white cross on
a black background and differencing between pairs of cameras. Adjustment was
done by repositioning the sensors behind the fixed lens. Once a pair were correctly
aligned the difference image would have no horizontal white bands. The rest of the
image should be black except for vertical white columns representing the disparity
between the cameras. In practice, the cameras could never be perfectly aligned and
corrections had to be made using software offsets. Calibration and translational
offset techniques are considered in Sections 3.6, 5.6 and 6.4.3. The rig was then
mounted on a trolley, together with a PC, and taken to various scenes for sequence
capture. Capturing triple sequences of sixteen images presents problems for disk

storage with a single sequence require 3 Mbytes.

All sequences were digitised at 5 frames/second. A higher frame rate was not
chosen, as a final implementation would be more expensive at 25 frames/second.
Further, each frame grabber can only capture 16 frames. The three seconds of
- capture time, provided at 5 frames/second allow a person to walk a sensible dis-
tance between frames. For a person walking at 2m/s this ensures 40cm, frame
to frame. It is a good test of the system to measure disparity differences to a

resolution of 40cm.
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Scene | Length | Width

1 12m im
2 17m 1.5m
3 6m Tm

Table 6-1: Scene Dimensions

6.3 System Simulation

The DETECT algorithms, described in Chapters Four and Five, were implement-
ed in software, the details of which are described in Section 4.3 and Appendix B.
This section will describe the scenes used to test these algorithms and provide a

worked example.

6.3.1 Description of Scenes

‘Three scenes were chosen for comparison. In all, twelve sequences were captired.
The backgrounds are shown in Figures 6-3, 6-4 and 6-5 with their dimensions in

Table 6-1.

Figure 6-3 shows an entry hall scene with a bright outdoor background. The
outdoor light is dominant compared to the indoor strip lighting. The camera
points directly at the light source. Figure 6-4 shows a long 17 metre corridor
bathed in artificial light and a generally dark background. This background pro-
vides a contrast to scene 1. A problem encountered with this scene was camera
blooming caused by strip lighting. To reduce this problem the camera contrast
has been considerably reduced. Such a contrast reduction provides a stiffer lest
for the segmentation algorithms. Figure 6-5 shows the third background of a

scene lit with outdoor lighting coming from behind the camera.
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Figure 6—3: Scene 1: Entrance Hall with Bright Outdoor Background.

Figure 6—4: Scene 2: Indoor Corridor with Artificial Light

Figure 6-5: Scene 3: Room with Table and Lit with Outdoor Light.

|
]
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6.3.2 Worked Example of the DETECT System in Op-

eration

In order to provide a fuller explanation of the DETECT system a worked example
18 now provided. Sequence 7 is typical with the intruder walking away from the
camera. Sequence 7 was taken in Scene 2, Figure 6-4 where the problems of

blooming and attendant contrast reduction were at their worst.

The first stage of the algorithm is the determination and storage of a back-
ground image and establishing a lack of movement in the scene. Change in the
number of detected edges from frame to frame can be used to indicate when there
is no intruder. The techniques to indicate presence, with example sequences, are
described in Section 4.2.5 as they are interrelated with the problem of background

update.

Once é,n initial background is established it can be updated when current
object positions are known. In the current version of DETECT, this is done
for regions greater than ten pixels in the x-direction from a significant cluster.
No updating was done above or below the main cluster as legs and heads are
particularly vulnerable to fragmentation and separation. Using the background
we can calculate the thresholded difference and combine with the tracked edges
to provide an estimate of an object’s outline. Overall this provides segmentation
results which are not dependent on a single source of data. Thus if the edge
detection is poor in a particular part of the image, cluster outlines can be used

instead and vice versa.

To illustrate, Figure 6-6 shows the eighth frame of sequence 7. Edges were
extracted according to their length, connectivity and whether they exceeded a
minimum noise threshold. Thresholding was performed globally on the difference
image using an experimentally estimated fraétion of the mean. In many systems
such values are critical and changes in histogram distribution cause segmentation
failures. The advantage, of using different sources of segmentation information, is
that individual thresholds are less critical. Figures 6-7 and 6-8 show the resultant

edge detected and thresholded images.
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Figure 6-6: Sequence 7: Example Left, Middle and Right Foreground Images

Figure 6-7: Sequence 7: Edge Detected Images Before Background Edge Re-

moval

Figure 6-8: Sequence 7: Thresholded Difference Image Showing Significant

Clusters
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Figure 6—9: Sequence 7: Qutline Edges Extracted by Comparison with Previous
Edges and Thresholded Clusters

Explicitly extracted edges are compared to cluster outlines and if they corre-
late are used in the matching process. The resultant edges, before matching is
attempted, are shown in Figure 6-9. In this particular frame the outline edges
come mostly from the cluster segmentation whereas in other frames and sequences,
from the trial, the reverse is true. In general, it a,ppearé that cluster outlines are
better for matching at longer ranges and directly extracted edges better nearer

the camera or when the object is large.

We now discuss DETECT’s computationally simple solution to the correspon-
dence problem. There are three possible pairings using three cameras: left and
middle (left image), middle and right (middle image) and left and right (right
image). After correction with translational offsets the extracted outlines from the
two images are overlayed as in Figure 6-10. Possible matches are shown as scan
lines between the overlayed left and right camera edges. Continuous bands, of
similar width, represent correct matches. At this point the disparity gradient and
overlap constraints apply. If the width of a band suddenly jumps, ie. exceeds the
disparity gradient limit, it is likely that there is a false match at that point and
one of the matches, either side of that point, will be wrong. The application of
such a gradient limit, in this way, requires that the entire object be assumed at
the same depth. As we are working with wide angle systems, at longer ranges,
this assumption is valid. The disparity gradient and the particular segmentation
of outline edges eliminate the majority of false matches. An additional concern,

in reducing the number of false matches, are the translational offsets used to align
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Figure 6—10: Sequence 7: Three Matching Measurements Possible from a Triple

Camera Rig

the left and right images. These offsets are significant due to the likely clutter
of "in-between” edges. Thus, if the spacing, between the true matches, is too
large then more matches will be erroneous. Alternatively, if the edges are too
close together then there is no room for any disparity variation. In this situation
lens distortion and other types of calibration error will cause some parts of over-
layed edges to cross one another and invert. A reduction in the number of correct
disparities will again result. In view of such error considerations, translational
offsets can be varied to achieve an optimum for a particular camera set up. This
could be done automatically using objects moving in a known direction and the
measures of disparity confidence described in Section 5.4. Also important in the
control of false matches is the maximum allowed disparity between two edges.
Long lines across the images in Figure 6-10 show matches eliminated on the basis

of an absolute disparity limit.

Having estimated the correspondences for a particular cluster, edges can now
be weighted according to "goodness” .factors. The overall variation of disparity as
the edge is tracked can be used as can the amplitude of the dispdrity histogram
for a particular edge. Using the weighted disparities each match is entered in a
c'luster histogram. Normalised histograms, for this example frame, are shown in
Figures 6-11, 6-12 and 6-13 and for the entire sequence, through time, in Figures
6-14, Figure 6-15 and Figure 6-16.

After some histogram smoothing the main peak is found and the mean around



Chapter 6. Results 156
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Figure 6-11: Sequence 7: Disparity Histograms Extracted from the Matching

Frames Shown in Figure 6-10, Measurement 1
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Figure 6-12: Sequence 7: Disparity Histograms Extracted from the Matching

Frames Shown in Figure 6-10, Measurement 2
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Hiatogram of Disparity Measurement 3
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Figure 6-13: Sequence 7: Disparity Histograms Extracted from the Matching

Frames Shown in Figure 6-10, Measurement 3
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Figure 6-14: Sequence 7: Disparity Histograms Shown Through Time, Mea-

surement 1
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Figure 6-15: Sequence 7: Disparity Histograms Shown Through Time, Meéa-

surement 2
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Figure 6-16: Sequence 7: Disparity Histograms Shown Through Time, Mea-

surement 3



Chapter 6. Results | 159

that peak calculateci. The proportions of disparities, either side of the peak, give
an estimate to sub-pixel precision. The calculation of peaks is carried out on the
entire 16 frame sequence. Thus, the outlying values, away from the main peaks,
are not included in the calculation of disparity. The final disparity estimates are
done through time using the Kalman filter, described in Section 5.5, followed by
confidence weighted averaging. The calculations are based on the assumption that

the disparity distribution for a particular measurement is Gaussian.

6.3.3 Sequence 7: Results

The results shown in this section are purely for Sequence 7, Scene 2. Figure 6-17
shows the disparities calculated as described above, and before any further Kalman
calculations have been performed!. They show a clear reduction in disparity as
the intruder walks away from the camera. In addition the third disparity, frem the
outside cameras, has roughly twice the gradient of the two inner pairings.. Absolute
values of disparity cannot be compared due to translational offsets. However the
trend is clearly correct and the gradients would be sufficient to reliably activate

an alarm for some disparity threshold.

The raw data was then used as input data to a Kalman filter, where the initial
error covariance matrices are calculated from raw error variances for all twelve
sequences. The Kalman filter output is shown in Figure 6-18. In this graph the
third measurement has been halved before being input to the Kalman filter to
allow a proper comparison. The final graph, Figure 6-19, shows the weighted
average of the three Kalman estimates, where the weights are calculated using the

disparity frequency of the peak.

1t should be noted that the disparity scale has been increased to 30 to show the

whole graph. This differs from the graphs shown in Appendix A, which have a reduced

¥

scale Mﬂime disparity gradients to be shown more clearly.
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Figure 6-17: Raw Disparities
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Figure 6-18: Disparities OQutput from the Kalman Filter
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Figure 6-19: Averaged Kalman Disparity

6.4 General Results

Appendix A shows, for each sequence, the raw, Kalman and averaged Kalman dis-

parity traces. Following this are graphs of the measurement strength and variance.

For completeness the disparity histograms are also presented.

In all twelve sequences, a human was detected and tracked with disparity
trends in the correct direction, ie. inversely to the range. Theoretically, 'the
outside disparity should be twice the two inside values. However this is not always
the case due to translational offset variations. The important point to note is that
the time gradient, not the absolute value, of the disparity through time, for the

outside cameras, should be twice that of the internal pairings.
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6.4.1 Time Gradient Comparison

Table 6-2 shows the gradients of linear regression best fit lines for each of the
twelve raw disparity traces. Also shown are the intruder starting ranges from the
camera and the direction in which he is moving. Calculation of gradients, for these
traces, presents problems, in that an intruder will not always be walking at the
same speed. Often the person accelerated as the sequence progressed. Therefore
a straight best fit line will not follow the data exactly and results for a particular
sequence should not be taken in isolation. However, the best fit line does provide
overall measures of movement through the scene without being solely dependent

on the first and last disparities.

As expected, there are clear differences in best fit gradients between those
sequences where the "walker” starts near the camera, at 4m, and those where
the "walker” starts at 17m. Time disparity gradients are less for the sequences
where the person is further away. If the number of frames, while a particular
disparity threshold is breached is used as an alarm threshold, it might be sensible
to increase this number of frames in line with the boundary depth. The only .
exception to the gradient variations described above is sequence three, where a
person walks, parallel to the camera, but outside the window of scene 1. In this

case the disparity gradient should be small anyway.

In the case of sequences 2,5,7,9 and 11 the third measurement gradient is
roughly twice that of the inner pairing. For the other sequences there is less
of a difference. There are three reasons for this discrepancy. Firstly the errors
associated with the longer range sequences are bouﬁd to be larger. Secondly,
in sequences 3 and 4, the individual is not moving, in depth, very much at all.
Thirdly, the measurements extracted from the best fit analysis, in Table 6-2, only
provide a rough guide to the general direction of motion. For individual traces, a

more accurate picture can be found in Appendix A.
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Sequence

Time Disparity
Gradient (Pixels)

1 2 3

0.26 | 0.10 | 0.29
0.14 | 0.11 | 0.21
0.00 : 0.03 | 0.00

0.03 | 0.06 | 0.08.

-0.25 | -0.23 | -0.47
0.06 |-0.11.| 0.14
-0.20 | -0.13 | -0.31
0.03 | 0.04 | 0.06
-0.32 | -0.20 | -0.31
0.05 | 0.09 | 0.10
0.16 | 0.13 | 0.25
-0.00 | -0.00 | 0.04
0.12 | 0.10 { 0.20

163

Table 6-2: Best Fit Disparity Gradients, (Through Time), of Image Sequences,

T = towards the camera, A = away from the camera
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Sequence | Meas. 1 | Meas. 2 | Meas. 3
0.46 0.45 0.33
2 0.51 0.36 0.37
3 0.67 0.39 0.38
4 0.43 0.52 0.40
3 0.31 0.40 0.24
6 0.45 (.68 0.53
7 0.33 0.45 0.27
8 0.40 0.49 0.41
9 0.33 0.39 0.28
10 0.45 0.42 0.48
11 0.41 0.65 0.57
12 ) 0.39 0.38 0.32 .
Ave, 0.43 0.46 0.38

Table 6-3: Averaged Disparity Measurement Variances for the Twelve Sequences

6.4.2 Amplitude and Variance Comparison

This section discusses some of the noise measurements obtained from the 12 se-
quences used in the trial data. Section 5.5 described how a Kalman filter could be
applied to make estimates of disparity. Also, Section 5.4 described the calculation
of an initial covariance matrix based on variances from the disparity histogram.
In effect, only the central diagonal values of the 3x3 matrix need be calculated
experimentally. Others elements can be derived from these three initial values.
As was stated in Section 5.4, such variances combine both the matching errors
and locational errors for the entire system and can be used in the initialisation of
the Kalman measurement error matrix. Table 6-3 shows the averaged variances
for each of the twelve sequences and their three measurements. Measurement 1 is
the variance from the left and middle cameras, Measurement 2 is from the middle

and right cameras and Measurement 3 is from the left and right camera.

Also mentioned in Section 5.4 was the independence of the errors, or confi-
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dence measures, between the three disparity measurements. In a final application
of the DETECT algorithms, for an alarm application, such error measures, and
their relative independence, would be important in a decision to alert the atten-
tion of a controller. The two most obvious measures of confidence are amplitude
and variance. Amplitude suffers from the problem that its value will vary with
distance. Clearly, objects nearer the camera are more likely to produce larger
matched edges and a higher amplitude in the disparity histogram. However, a
larger amplitude does mean that there are more matches and better sub-pixel
accuracy. It is worthwhile comparing the independence of the disparity histogram
amplitudes with the independence of the disparity histogram variances. This can
be done using the correlation coeflicient between two data series x and y. This is

defined in Equation 6.1.

.r _ o il — &)(y = 7) ] (6.1)

V@i~ 22 Tulyi - 9)%

The independence of the errors between measurements 1 and 2, measurements 2

‘and 3 and between 1 and 3 are shown in Tables 6-4 and 6-5. Using the definition
of the correlation coefficient, described above, values of r can vary between -1
and 1. 0 represents no correlation, neither positive or negative. The averaged
values for r for both amplitude and variance are all positive indicating the level
of dependence between the measurements. However they are still low enough to
allow large accuracy improvements to be made by combining the results from the

three measurements.

6.4.3 Calibration Data

Calibration was discussed in Sections 3.6 and.5.6. For the applications being con-
sidered in this thesis, ie., intruder detection, accurate calibration is not required.
Indeed for computational reasons it is undesirable. The presence or absence of
a person within a set boundary only requires a disparity threshold to be defined
which, if crossed, will activate the alarm. Thus the calibration of an alarm system
could be reduced even further, by walking around at the required boundary and

extracting disparities only at that distance.
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Sequence Correlation Coefficient
Meas. 1 | Meas. 2 | Meas. 3
1 010 | 027 | -0.09
2 0.47 -0.08 0.18
3 -0.00 0.41 0.13
4 0.26. 0.29 0.38 : :
5 -0.00 0.34 0.20
6 -0.43 0.89 -0.25
17 0.11 | 043 | 045
8 0.00 0.62 0.00
9 0.22 0.36 0.77
10 0.82 0.68 0.79
11 0.37 0.03 -0.10
12 0.31 0.37 0.96
Ave, 0.24 0.38 0.28

Table 6—4: Correlation Between Measurement Variances
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Sequence Correlation Coefficient
Meas. 1 | Meas. 2 | Meas. 3

1 0.07 0.54 0.26
2 0.89 0.82 0.91
3 0.39 0.61 0.22
4 0.84 0.80 0.83
5 0.06 0.52 0.40
6 0.47 0.63 0.55
7 0.30 0.37 0.32
8 -0.04 0.83 -0.12
9 0.03 0.02 0.43
10 0.77 0.69 0.50
11 0.92 0.74 0.79
12 0.77 0.69 0.80
Ave. 0.45 0.60 0.49

Table 6-5: Correlation Between Measurement Amplitudes
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Figure 6-20: Disparity (Pixels) versus Measured Distance (Meters)

This section presents a simple technique which avoids the problems of numeri-
cal analysis and its associated computation. Disparities were extracted for known
ranges marked in the scene. If the camera rig is stable these can be used in a
look-up-table to estimate absolute distances for each disparity. Figures 6-20 and
6-21 show plots of estimated disparity against measured distance. Figure 6-20 is
taken from known distances in Scene | whereas Figure 6-21 is taken from known
distances in Scene 2. They show a clear inverse relationship between distance and
disparity and the expected difference in gradient between measurements 1/2 and

3. The same measurements were not taken in scene 3 due to furni\ture.
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Figure 6-21: Disparity (Pixels) versus Measured Distance (Meters) ‘

6.5 Discussions and Conclusions

This chapter started with a review of the equipment used in this research. A
frame grabber was designed to allow the simultaneous capture of video pictures
from the ASIS cameras into a PC. The techniques used to set up the cameras
were also described. For these éxperiments a simple black and white cross was
used and the left and right cameras were adjusted accordingly. Software was
written to perform this and othet camera calibration functions. Twelve sequences
were captured from three scenes and used to simulate the system as described
in Section 6.3. For explanation of the algorithms described in Chapters Four
and Five a worked example is provided in Section 6.3.2. This goes through the
separate stages of the DETECT system with intermediate images.

The final section of this chapter summarises the results data shown in Ap-
pendix A. Tables were extracted for best fit time disparity gradients, variances

and amplitudes, and the correlations between the three possible measurements
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from three cameras. The variances were extracted and averaged for each se-
quence’s disparity measurement. They were used as the starting measurement
- error covariance matrix in the Kalman formulation described in the last chapter.
Variances, together with amplitude, can be used as measures of confidence in a
final alarm system. As such it is important to know the correlation between the
variances of the three measurements. These can be found in Tables 6—4 z;.nd 6-5.
As expected, and stated in Section 5.4, amplitude and variance are not indepen-
dent. Clearly, lighting conditions are likely to cause.similar matching problems
in each of the three disparity. measures. However the average correlation for both
amplitude and variance is still low enough to allow the combination of the infor-
mation from the three sources using a weighted average. Again, such information

wqgld fbr_e_ _c_)fr use iﬂg_@ﬁpa.l installation.

C e e e - .

A few final comments are worthwhile on the su bject of computation. As said
in Section 4.3, the a,lg;)rithms were written on Sparc 1 work stations. ‘The current
software takes about 5 minutes to process a 16 image trinocular sequence. This
time includes all the processing from loading images, through early segmentation .
~and stereo nla't;chiﬁ};,"{o the final stages of higher level processing. As the software
- was developed over a period of time, considerable imjprovementslcou]d be expected
" aftzsr a rewrite. Due to the restrictions placed on the allowed arithmetic, there is
no reason why low cost commercially viable hardware could not be developed to

e
operafe at standard frame rates.

—— e i e,
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7.1 Introduction

Stereo and machine vision problems have been studied extensively over the last
twenty years, as atternpts have been made to imitate the human system. Despite
this, relatively few commercial vision applications have been developed. There
are several reasons for this, the most obvious being that general machine vision
problems are difficult. As a result, researchers have divided the problems into
separate vision functions and attacked each independently. This approach has had
some success. For example, the tradeoffs involved in edge detection and multi-scale
feature extraction are now generally agreed. However the interactions between
these modules in larger systems, are not well understood. There are few rules and
most artificial intelligence systems use functions such as edge detection and stereo
matching algorithms in a "black box” manner. It seems likely that efficiency

savings can be made if different vision modules can be considered together.

The work described in this thesis provides an example of how stereo corre-
spondence has been simplified by segmenting only certain types of edges. We are
also aiming at a specific type of implementation using the recently developed low
cost ASIS sensor/processors, described in the introduction. This differs from the
approach taken by Hakkarainen (28] who describes part of a general stereo vision
algorithm developed in more expensive CCD technology. The main problem here
1s the integration of other image processing functions onto a single substrate. They
would all have to be developed in analogue CCD. CMOS sensors with appropri-

ately adapted algorithms, provide an alternative implementation architecture.

In view of the above, we have considered alarm systems as a possible appli-
cation of vision algorithms, together with CMOS technology. The question asked
here, and answered, for this application, is: Can machine vision algorithms be
developed, for low cost implementations, without a problematic loss of function?
Chapters Four and Five describe such a system which employs no floating point
calculations, multiplications or divisions at the lower levels of processing. Due

to the data rates required by pixel based operations, a microprocessor implemen-
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tation is impossible and parallel floating point processor arrays are prohibitively

expensive.

Having defined the initial aim, a review of current image processing and ma-
chine vision techniques was undertaken. Chapter Two surveyed low level tech-
niques. Edge detection, thresholding and segmentation were described in the
context of recognition techniques such as graph matching and the generalised
Hough transform. Chapter Three considered the current theories of stereo vision
and what constraints are normally used to solve the correspondence problem, in
the light of the likely errors inherent in the geometry of the system. The impor-
tant problem of calibration was discussed with a description of current solutions.
The calibration techniques, surveyed, were considered to be too computationally .
complex for an alarm installation where accurate metrics might not be necessary.
Here, a disparity threshold could be used as an invisible boundary and the system
offsets and thresholds arranged to activate the alarm wheﬁ an iﬁtruder crosses the

boundary for some number of frames.

The second half of the thesis described the DETECT algorithms and their
possible hardware implementations in detail. Chapter Four described the seg-
mentation stages used to extract only outline edges for stereo matching. Other
savings have been made by acknowledging that stereo matching does not work
well with horizontal edges, and that a moving human intruder is likely to con-
sist of, mainly, vertical edges. Edge detection can then be reduced to a lateral
differentiation followed by a vertical track along peaks. Apart from the relation-
ship between extracted edges and the stereo matching algorithms, emphasis was
placed on the interdependencies between the different processing modules. For
example, outline edges are found by combining the cluster extraction with verti-
cal edge detection. Finally, for the segmentation stages, it is also important to
note that effort was directed at extracting the relevant image information from
the raw images as quickly as possible. Apart from storage, there are consider-
able computational advantages to be gained by acting, only, on relevant parts of

binarised and segmented images.

Following on from Chapter Four, Chapter ?’i.v";;described the stereo matching
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algorithms. In particular, an original low cost correspondence algorithm was de-
veloped. Notice was taken of the fact that, for laterally symmetric stereo camera
geometries, with imaging sensors on the same plane, objects will always overlap
when their images are overlayed. Qverlap will occur no matter where the object is
positioned in the scene. Scan matching was followed by the creation of disparity
histograms for each significant edge and cluster. In an ASIS implementation it is
likely that disparity histograms would be the final output of the chip. Due to it’s
compact nature further statistical processing could be developed using a micro-
processor to perform floating point calculations to provide the required accuracy
in disparity measurements. The final part of the DETECT system calculates the
disparity for the three possible measurements available from a three camera rig.
Confidences can be extracted from the disparity histograms and used in a Kalman
formulation to correct for obvious errors and integrate the three measurements in
time and with each other. In this application Kalman measurement and system
error covariance matrices are kept constant to prevent the gain becoming unsta-
ble. However, as can be seen in Appendix A, the reality is different and variances
change in time and between different scenes. As mentioned in the next section,

non-stationary filtering is a possible area for future research in the stereo field.

'7.2 Future Research

The work described in this thesis has been aimed at evaluating possibilities of low
cost stereo systems with wider than normal angles of vision. Having developed a.
system capable of detecting and tracking a moving intruder, three specific areas

of future research are now open.

Firstly, a trial could be conducted on a larger number of sequences from a
variety of different scenes. Also, in order to test alarm disparity thresholds and
Kalman filter convergence it \J;fould be desirable to analyse longer sequence lengths.
The main problem with a larger trial would be storage and capture of the required
number of longer image sequences. This is especially so with stereo vision, where

multiple sequences of matched images require to be processed. It is clear from the
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literature that the capture and storage of such large amounts of data is a major
restriction on current image processing work. Most of the published work appears
to describe results from only one or two sequences of trial data. As was shown
by the finger print work described by Anderson et. al. [1] such large trials are

necessary before a final implementation is qualified for acceptance.

The second direction for future research would be a hardware implementation
of the algorithms using the CMOS sensors. As discussed in Section 5.7 considera-
tion would have to be given to what functions were most suitable for integration on
the sensor substrate. The DETECT algorithms have been developed to make this
task easier. For example, as edge detection is basically a lateral differentiation, it
could be performed on raster scans without any local storage. Also, investigations
could be conducted into combining thresholding and ADC conversion and more
consideration would have to be given as to the best techniques for storing and

processing edges.

A third problem area is calibration. In this work the issue has been avoided
due to the application under consideration. Calibration can be simplified to a
person moving around at the threshold depth at the time of camera installation.
If a more complicated calibration were required it might be possible to perform
the necessary calculations on a portable computer attached to the installation. In
this case the standard numerical techniques could be applied. However, there is
considerable doubt about the accuracy of these techniques, over individual frames.
Thus, several researchers have developed algorithms which integrate calibration
parameters over a sequence of images. There is scope for improvement here, in-
cluding using the three measurements possible from a triple rig to further constrain
calibration. Indeed, it should be possible to vary rotation and translation param-
eters, in a sequence, until a consistent series of disparities was achieved from the

three measurements.
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7.3 Concluding Remarks

A stereo vision image processing system has been developed which can allow the
detection and distance tracking of large vertical moving intruders in a scene. An
original stereo matching algorithm has been -developed which maps into low cost
integrated sensing and processing hardware, linked to a microprocessor. Results
have been presented showing the rsystem working and confidence statistics ex-
tracted fof use in a Kalman tracking filter. It is the author’s view that the work
presented in this thesi-s would provide a sound basis for further development of

hardware efficient vision systems.
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Appendix A

Trial Results

This appendix described the results when the DETECT algorithms were applied
to twelve triple stereo image sequences. These results should be viewed in con-
junction with the discussions presented in Chapter Six. The capture and storage
of the sixteen frame sequences was described in Section 6.2 and the dimensions
and details of the direction in which the person was moving can be found in Tables
6-1 and 6-2. Backgrounds for each scene can be found in Figures 6-3, 6—4 and
6-5. A worked example is described in Section 6.3.2.

There are two pages of results for each sequencé. The first page shows the
raw disparities, Kalman filtered disparities and the weighted averaged Kalman
disparities. Also shown are the variances and the amplitudes of the disparity

measurements. In all graphs time, in frames, is along the x axis.

The second page of results shows the disparity histograms for each sequence
through time. It is from these graphs that the sub-pixel disparity measurements,
shown in the first page, are extracted. Confidences can also be extracted from the

disparity histograms.
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Appendix B

The DETECT System Software

This appendix describes the function of the main procedures used to test the
DETECT algorithms on the trial sequences. The main procedure is contained
in detect.c which handles all file loading and saving operations. Each time step
consists of three 256x256 images for the left, middle and right cameras requiring
considerable disk storage for the 12 trial sequences. Due to the storage require-

ments, the image archives are stored over two disk systems.

Separate files contain routines which implement different aspects of the algorithm:-

1. cluster.c: cluster.c: contains the routines, clusters, mergeclusters: and
expandclusters which, respectively, extract connectivity from the input
images, combine smaller regions into larger ones and expand cluster
outlines. The task of these routines is to find significant connected
areas of the difference image. The boundaries of the connected region
are output, together with its size and grey level histogram, as a size
sorted linked list. Each cluster structure is defined to allow direct
connections to individual items in the edge list. The code is written
without recursion to make the memory and re;‘sources required explicit

for implementation in hardware.

2. edgediff.c: Routines to laterally differentiate, latedge, and calculate
the difference between current background and foregrounds, diff. Lat-

eral non-maximal suppression is also applied in the latedge routine.
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3. group.c: A routine which combines cluster information with the edges
provided by tracking.c. Direct connections, dependent on proximity,
are established between the cluster list and the, normally, longer edge

list.

4. kalman.c: Provides all the necessary matrix arithmetic and proce-
dures to maintain Kalman estimates of the current disparity. The ini-

tial covariance matrices are also defined in this file.

5. matching.c: This file contains several routines to perform stereo match-
ing, disparity histogram extraction and time domain disparity analysis.
These are contained, respectively, in matchingclusters:, disparitypro-
cessing and postprocessing. Also implemented, but not currently used,

is a routine to match edges through time, timematching.

6. tracking.c: A downward tracking algorithm using hysteresis thresh-
olding, frackpeaks, is defined in this file. Criteria for an edge’s existence
such as strength and length are also defined in trackpeaks and associ-

ated sub-routines, edgestart, edgecont and edgecontl.

7. defs.h: Definitions of data structures such as edges, lists of pixels and

clusters.

8. gendefs.h: The various thresholds used throughout the system are
defined in this file.

The segmentation stages produce candidate edges and possible clusters, both

stored as linked lists. The main features included in edge list elements are:

1. Reference Number.

2. Starting Row and Column.

3. List of pixels in this edge.

4. Length.

5. Cluster with which this edge is grouped.

6. Histogram to compile disparity frequencies as edge is matched.
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7. Total changes in disparity as the edge is tracked.

The main components of the cluster list are:

—

. Cluster number.

2. Size.

3. Cluster boundaries.

4. List of outline pixels.

5. List of attached edges.

6. Combined disparity histograms of attached edges.

7. Histogram of grey level difference values

Although a list of background edges has to be retained at each frame, the
storage requirements, in this software, for the above data structures are small

when compared to that necessary for the background and intermediate images.
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CORSIM: A Two Dimensional Simulator for Contacts with Arbltrary
Geometries

K.W.J. Findlay, W.J.C. Alexander and A.J. Walton

Edinburgh Microfabrication Facility
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Edinburgh
EH9 3JL.

ABSTRACT

A program has been written which can simulate the contact resistance of arbitrarily
shaped contacts between different resistivity materiais. The simulator uses triangular finite
elements and overcomes the restrictions of previous software. The effects of geometry,
contact window misalignment, sheet resistivity and specific contact resistance have been
examined for circular contacts and compared to previous results for square ones. Fmallv

the accuracy of the simulator under various extremes was investigated.



1. INTRODUCTION

As geometries used in integrated circuits have reduced the ohmic contact resistance
has become more important and starts to limit circuit performance. This paper describes
the development of a program that can simulate contacts that become circular due to
fringing effects which occur during optical lithography. This is effect is illustrated in figure
1 as contact geometries are reduced.

The 2-D contact simulator FECORS [1] can only model square contacts and has been
used 1o examine the limitations of the Kelvin structure shown in figure 2. It uses two mesh
planes connected by a set of vertical resistors which model the contact resistivity. The
square element employed is ideally suited to modelling rectangular contact windows and
collars. The simulator CORSIM is based on a similar concept except that it uses triangular

-elements for the two conductor levels. This gives it the ability to simulate contacts with
curved boundaries.

2. CORSIM: A GENERALISED CONTACT RESISTANCE SIMULATOR

2.1 Generation

The mesh generator used was adapted from a program called GRID [12, 13] which
defines the region to be simulated using eight noded super elements. The contact to be
simulated is divided up into several super elements as shown in figure 3. The program uses
a curvilinear coordinate system which is capable of representing the curved boundaries of
the contact region. GRID proceeds through each region in turn and generates the
individual triangular elements. An example of a low density mesh generated from the
super clements in figure 3 is illustrated in figure 4.

2.2 The Calculation of the Interface Resistance

Once the mesh for the two conducting layers has been generated the next step is to
calculate the values of the resistors used to model the interfacial contact resistance. The
interface resistance (R, ) can be calculated using

p.=R, A (1)
where p, is the specific contact resistivity in (Uem? and A is the area in em? [9].

When the element mesh within the contact region is a regular series of squares the
calculation of the interconnect resistors for each node is simple since there is.only a set
number of conditions. However, with triangular elements there are an infinite number of
possible variations. This requires a more complicated calculaton which takes into
consideration the area adjacent to each node. Every node can be considered to relate to a
surrounding area bounded by the perpendicular bisectors of the midpoints of each element
side as illustrated in figure 5(a). Figure 5(b) shows an example of the area associated with
a node and once this area has been calculated, the contact resistor associated with that node
can be evaluated. The only restriction is that obtuse triangles are not permitted within the
contact region because, in this case, the point of intersection berween the bisectors lies
outside the element. The value for each resistor is given by

chodr = P (2)

Anodc

where 4, is the area associated with an individual node. This approach gives good
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agreement when compared with FECORS.

2.2 Stiffness Matrix Solution

After the calculation of the interfacial contact resistors CORSIM generates the
stiffness matrix and the solution is performed using the frontal method [14]. There are
several issues which arise relating to the accuracy of the final output resistances.

2.3 Accuracy

It was noted during the initial testing that the convergence of simulations with metal
(0.05 /) to diffusion (27.0 (V/C) contacts resulted in a degree of instability as the number
of elements were increased. This did not occur with the polvsilicon (30.0 Q/0) diffusion
contacts which indicates that resistivity differences between the contact resistors and sheet
resistance was causing rounding errors. The use of the double precision variables overcame
this problem provided a suitable mesh was chosen.

With metal - diffusion contacts there is a negligible voltage drop in the metal which is
shown in the field plot of figure 6. In contrast the voltage drop in the diffusion layer can
be observed along with the two dimensional current flow. This two dimensional current
flow leads to inaccuracies in the extracted value of contact resistance and js one of the
problems associated with the Kelvin structure, Another one can be seen in figure 7 which
compares the extracted contact resistivity with the true value of interface resistivity. This
shows how, at high values of p_, the specific contact resistance can be extracted. However,
at lower values of p, the sheet Tesistivity of the conducting layers dominates the
measurement and the extracted resistivity p,, becomes independent of the specific contact
resistance. This agrees with results obtained using FECORS. One of the advantages of
using triangular elements is that the density of elements may be varied in an appropriate
manner for the voltage gradients which are present in the structure. This is a very useful
feature especially when current flow in 90° contacts is being considered. ’ '

3 COMPARISONS OF CIRCULAR AND SQUARE CONTACTS

3.1 The Effects of Shape and Size on Lateral Current Crowding

The Kelvin structure is widely used for the measurement of contact resistance but the
value extracted assumes uniform current flow. There have been a number of papers
dealing with the inaccuracies introduced by the fringing fields [1.2.4.5]. Correction factors
for 2-D effects have been proposed but these have all assumed square contacts. It is also
worth considering what proportion of the correction factor is due to the change in current
flow as opposed to contact area reduction as the contacts move from a square to circular
geometry. :

Figure 8 shows a comparison between square [1.5] and circular contact windows for
various mesh densities, This shows that the measured value of R, for a circular contact is
higher than that for the equivalent square when the contact’s diameter is the same as the
square’s dimensions. However, the extracted values of p. which takes into account the
difference in area are much closer in value as shown in Table 1. As the collar size is
reduced, contact geometry has a larger influence on current flow. Table 2 shows the
extracted values of p, for different collar sizes when both layers have a sheet resistance of
30 Q2/C. It can be observed that the relative values of p_ for square and circular contacts
change as the collar size vares. The extracted contact resistivity for circular contacts is the
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Contact Type | Qorc | R. () | Area {(um?) | p. (Qem™)
Metal O 8.84 19.6 1.74x 10~

to
Diffusion o 7.06 25.0 1.77x10°¢
Poly @] 12.13 19.6 2.38x107%

to
Diffusion o Q.66 25.0 2.42x10-%

Table 1. Comparison of square and circular contact parameters extracted from a Kelvin
structure with 5um contacts and a Spm collar. The specific contact resistivity is
1x107¢ Qem 1.

Collar Size | QorQ | R, (Q) | Area (um?) | p. (Qem 1)
24.7 19.6 1.70x10-%

Sum
Q 29.3 25.0 1.83x10%
@ 17.8 19.6 1.25x10°%

Ipm
o 16.5 25.0 1.19x10°¢
O 17.1 19.6 1.17x 107

0.25um

c 9.66 25.0 1.07x107%

Table 2. Comparison of square and circular contact parameters extracted from a Kelvin

structure with a 3um contacts and a variable size collars. The specific contact resistivity is
1x107% Nlem !,

smaller of the two for large collar sizes but the situation is reversed as the contact collar
reduces below 1 um. This is because the circular contact still distorts the current flow even
when the collar width is zero whereas for the square contact the current flow would be
totally one dimensional. current flow. as the collar size increases.

For circular and square contacts with the same area and a collar size of 5um (see
figure 9) the simulated values of R, were 10.08 Q and 9.88 ) for the circle and square
respectively. For a circular contact with the diameter the same size as the dimensions of
the square contact R, was 12.1 Q. It can be concluded that for structures with large collars
Fhe shape of the contact has little effect on the measured values. The important parameter
is area.

The second comparison examines upon how vaniations between collar and window
size influence the measured value of R.. This is illustrated in figure 10 and in all cases the
resistance increases with both collar and window size. As the window size reduces the
difference between the two types of contact (polysilicon - diffusion and metal - diffusion)
increases. The value of R, for polysilicon - diffusion is always greater due -to the voltage
drop, which in this case, occurs on both layers. As expected the circular contacts always
have a higher value of R, associated with them because of their smaller contact areas.

3.2 Misalignment Comparison

The comparison of misaligned polysilicon - diffusion contacts shown in figure 11
lqdlcatc_es that the same trends apply to both square and circular contacts for these
dimensions. The only difference is that the values of R., will be greater due to the size of
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the contact window and larger collar area.

3.3 The Effects of Sheet Resistance Variation Directly Under the Contact

It has been stated [10] that the sheet resistance directly under the contact window may
vary from that in the surrounding area and reference [1] simulated the effect of changing
the value of R, under the contact. The simulations performed by CORSIM for circular
windows give similar results with higher values of R, than those for square contacts as
shown in figure 12. As the gradient is linear and the same for both the square and circular
contacts the error in any Kelvin measurements will be the same for both shapes.

4. CONCLUSIONS

A finite clement program that can model arbitranrily shaped contacts has been
developed. It can be used to evaluate the effect that changes in geometry, specific contact
resistivity, sheet resistivity and the modification of sheet resistivity under the contact have
upon contact systems. The Kelvin test structure has been used to illustrate some of its
capabilities. It is intended to use this software to develop correction curves for Kelvin
structures that do not have rectangular contacts.
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Figure 1. The fringing effect which occurs during optical lithography.
The arrow indicates decreasing size.
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Figure 2. D-Resistor Kelvin device. Current is forced from !/, to I, and the Kelvin poten-
tial is measured at V, with respect to V,,
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Figure 5(b). The area associated with each contact node and used in the calculation of the
contact resistors.
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THE EFFECT OF CONTACT GEOMETRY ON THE VALUE OF CONTACT
RESISTIVITY EXTRACTED FROM KELVIN STRUCTURES

K.W.J. Findiay, W.J.C. Alexander and A.J. Walton

Edinburgh Microfabrication Facility
Department of Electrical Engineering
King’s Buildings
University of Edinburgh,
Edinburgh, EH9 3J1., UK.

Abstract: The effects of geometry, contact misalignment and
sheet resistivity on the extracted values of specific contact
resistance have been simulated for both circular and square
contacts. These results have been used to detail the errors
involved in extracting contact resistivity from Kelvin structures
with rectangular and circular contacts.

1. INTRODUCTION

As the geometries used in integrated circuits reduce, the’

ohmic contact resistance becomes more important and starts to
become a limiting Factor in circuit performance. Contacts
with these reduced dimensions also become more circular due
to the fringing which occurs during optical lithography. This
trend is illustrated in figure 1 and any test structure which is
used to measure contact resistance for a small geometry
process will obviously . have rounded contacts. It s
consequently important that the effect of contact shape on the
extracted value of contact resistance is quantified. This paper
describes the development and application of a program that
can simulate contacts with non-rectangular shapes.

2, CORSIM: A CONTACT RESISTANCE SIMULATOR

2.1 Introduction

The 2-D contact simulator FECORS {1] has been
previously used to to examine the limitations of the Kelvin
structure shown in figure 2. It uses two resistor mesh planes
which are connected by a set of resistors which mode! the
contact resistivity. The square element employed is ideally
suited to modelling structures with rectangular contacts and
collars as are the other contact simulators reported elsewhere
(2-7]. The simutator CORSIM which is detailed in this work,
is based on a similar concept except that it uses triangular
elements for the two conductor levels. This gives it the ability
to simulate contacts with curved boundaries and the element
size can easily be graded in regions of high current density.

2.1 Element Generation

To reduce the amount of data input required by
CORSIM a mesh generator has been implemented. This was
adapted from a program called GRID [8,9] which uses eight
noded super elements to define the region to be simulated.
The contact system to be modelled is divided up into several
super elements as shown in figure 3 and their x,y coordinates

provide the input data. The program uses a curvilinear
coordinate system which is capable of representing the curved
boundaries of the contact region. GRID proceeds through

. each region in turn and generates the individual triangular

elements. An example of a low density mesh generated from
the super elements of figure 3 is illustrated in figure 4.

One of the limitations of FECORS, with its square grid,
is that element density can not be varied over the structure.
An advantage of using triangular elements is that they may be
graded in a manner appropriate to the voltage gradients which
are present. This is a very useful feature especially when
current flow for 90° contacts is being considered.

() O

Decreasing Size

Figure 1. The fringing effect which occurs during optical
lithography. -
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Figure 2. D-Resistor Kelvin device. The four arms have_
width, W, and a collar, C, which surrounds the square or
circular contact, L. Current is forced from I; to 1, and the
potential is measured between V; and V.
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Figure 3. The division of the Kelvin structure inte super
elements before mesh generation.

Figure 4. A low density mesh generated using using the
super elements illustrated in figure 3.

2.2 The Calculation of the Interface Resistance

Once the mesh for the two conducting layers has been
generated the next step is to calculate the values of the
resistors used to model the interfacial contact resistance. The
interface resistance (R, ) can be calculated using

pe=R, A 0

where p. is the specific contact resistivity in Qem? and A is
the area in em? [10]. '

When the element mesh within the contact region is a
regular series of squares the calculation of the interconnect
resistors for each node is simple since there arc only a set
number of conditions [1]. However, with triangular elements
there are an infinite number of possible variations. This
requires a more complicated calculation which takes into
consideration the area adjacent to cach node. Every node can
be considered to relate to a surrounding area bounded by the

perpendicular bisectors of the midpoints of each clement side
as illustrated in figure 5(a). Figure 5(b) shows an example of
the area associated with a node and having calculated this
area, the contact resistor associated with that node can be
evaluated. The only restriction is that obtusc triangles are not
permitted within the contact region because, in this case, the
point of intersection between the bisectors lies outside the
element. The value for each resistor is simply given by

[
Rmode =A ; (2)
node

where A,,; is the area associated with an individual node.
This approach gives good agreement when c¢ompared with
results generated using FECORS.

T Y-axis

1

-
X-axis

Figure 5(a). The subdivision of each element according to
the intersection of the perpendicular bisectors of each side.

&
Y-Axis

>
X-axis

Figure 5(b). The area associated with each contact node and
used in the catculation of the contact resistors.

2.3 Solution

After the calculation of the interfacial contact resistors
CORSIM generates the admittance matrix and the solution
then performed using the frontal methed [11]. This gives the
node voltages and currents which can then be used to calculate
the contact resistance. The solution can also be displayed as a
contour plot of the equipotentials to provide further
information. Figurc 6 and 7 show an cxample of thesc types
of plots for Kelvin structures with circular and square contacts.
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(b}

Figure 6. Voltage contour plots for a metal (0.05 {}/m) to
diffusi(ll‘?l (30.0 {/m) 3pm circular contact with a 2pm collar
(pc=10"%Cem?). (a) diffusion. (b) metal.

3. COMPARISONS OF CONTACT GEOMETRY

3.1 Introductioh

The Kelvin structure [12-13] is widely used for the
measurement of contact resistance but the valuc extracted
assumes uniform current flow. The parasitic resistance drops
obviously reduce the accuracy of the device and in certain
circumstances can -totally mask the measured value [1]. It is
therefore important that these limitations are understoed in
order that the structure can be employed to its-full potential.

3.2 The Effects of Shape and Size

There have been a number of papers dealing with the
inaccuracies introduced by the fringing fields [1-6].
Correction factors for 2-D) effccts have been proposed but
these have all assumed square contacts. When considering the
relationship between square and circular contacts therc are two
options which can be used for comparisons. These arc when
the diameter of the circle is the same as the dimension of the
square and the case when the area of both contacts are equal.
These conditions are illustrated in figure 8. In all the
following comparisons, the specific contact resistivity in the
simulations has been fixed at 1076 Qem? with the extracted
value being calculated from the voltage and current evaluated
by CORSIM.

Obviously the measurced value of R, for a circular contact
will be higher than that for the cquivalent square when the

« [
i

Figure 7. Voltage contour plots for a metal (0.05 /m) to
diffusion (30.0 (/m) 3um square contact with a 2pm collar
(pc=10_6.(bcm2). (a) diffusion. (b) metal.

)_i
o
\/

—»
Collar

Figure 8. The three contact areas used for comparisons. L,
is the diameter of a circle with the same area as the square
and L, is the diameter of the circular contact with the same
dimensien as the square.

contact’s diameter is the same as the square’s dimensions.
Howgver the extracted values of p., which takes into account
the difference in arca, will be much closer. Table 1 gives ¢
comparison of these results for a 5pm contact with a Spr
collar. Table 2 gives the extracted values of p, for circula
and square contacts with the same dimensions while table :
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Contact Type | QorC | R, () | Area (mm?) | p, (Qem?)
Metal ) 8.84° 19.6 1.74%1076
to
Diffusion = 7.06 25.0 1.77x107%
Polysilicon 0 12.13 19.6 2.38x 10~
to
Diffusion o] 9.66 25.0 2.42x10-6

Table 1, Compariscn of square and circular contact parame-
ters extracted from a Kelvin structure with Spum contacts
and a Sum collar. The specific contact resistivity for the
simulation was 10~% (cm?,

Dimension of Coilar Size
| square contact | QorC | Sum | 3pm | lpm | 0.25um

C 2.29 | 1.88 | 1.48 1.4

S5pm
[ 2.4 1.87 | 1.32 1.18
O 1.69 | 1.51 | 1.25 L.16

3um
m] 1.78 1.5 1.2 1.09
O 112 | 110 | 102 |- 102

1pm
D 1.16 -; 1.13 1.06 1.02
: O 1.01 1.01 1.01 1.00

0.25pm

D 1.01 1.01 1.01 1.01

Table 2. Comparison of square and circular contact resis-
tivity (x10% extracted from a poly-diffusion Kelvin structure
with variable contact and’ collar sizes. The diameter of the
circular contact is the. same as the dimension of the square
one. The specific contact resistivity for the simulations was
107% Oem?, Ry = 27(Vm and Ry = 30(/a,

Dimensions of Collar Size-
square contact | OorC | Spm Ium lpm | 0.250m
O 2.46 1.93 1.37 -
Spm
] 2.4 1.87 1.32 1.18
O 1.80 | 1,55 | 1.06 -
3pm
u] 1.78 1.5 1.2 1.09°
Q 1.16 | 1.13 | 1.06 -
lpm *
] 1.16 1.13 1.06 1.02
O |101] 14 | 11 -
0.25um
] 1.01 1.01 1.01 -

Table 3. Comparison of square and circular contact resis-
tivity (x105) extracted from a poly-diffusion Kelvin structure
with variable contact and collar sizes. Both contact shapes
have equal areas and the specific contact resistivity for the
simulations . was 107 Qem?, Rypoly) = 27¢V/m  and

Rs(diﬂ) = 30{V/m.

.gives the values for circular and square contacts with identical
areas. Figure 9 summarises some of the data given in tables 2
and 3. It can be observed that for circular and square contacts
with the same dimensions the extracted contact resistivity for
circular contacts is smaller when the collar is large. However,
for ‘small collar sizes the situation is reversed as the contact

n
(L]
Q
-]

S

v
8
I

-
1]
]

1

1.8 [~

EXTRACTED CONTACT RESISTIVITY (1E-6)

COLLAR SIZE (MICRONS)

Figure 9. Extracted specific contact resistivity for various
collar and window sizes of a polysilicon to diffusion contact.
The circular and square contacts both had the same
dimensions with different areas and the specific contact
resistivity was 107%0cem?, Ren(poly)=27.0{V/a and
Rsh(dll‘f): 30-0\(}/.4

collar reduces below 1 pm. This is because the circular
contact still distorts the current flow even when the collar
‘width’ is zero whereas for the square contact the current flow
becomes totally one dimensional.

From the above results it can be deduced that, for the
Kelvin structure, the exact geometry of the contact is not of
primary importance when extracting contact resistivity. By far
the most important parameter is the area. Kelvin structures
with equal area contacts result in very similar values of contact
resistivity being extracted.

Figure 10 shows a comparison of the extracted vawes of
R, as window and collar size vary. In all cases the resistance
increases with both collar and window size. As the window
size reduces the difference between the two types of contact
{polysilicon - diffusion and metal - diffusion) increases. The
value of R, for polysilicon - diffusion is always greater due to
the voltage drop, which in this case, occurs on both layers.
As expected the circular contacts always have a higher value of
R, associated with them because of their smaller contact areas.

POLY~DIFFUSION CONTACTS 0 CIRCULAR
—_— METAL-DIFFUSION CONTRCTS + SQUARE
15e.8 .
o ——— —0
= ( 6—G—8—06— L=1.Bum
G 128.8 || L
PP e amg
se.9 |
‘_
mn
5 g=t——f————3|..
E 8.8 | —_— — 0 lL-l.Sum
%ﬂ
@ [L~2.8um
o 30.8 |- —
& [L=9.Bum
E a.8 . = [L=5. Bum
a 1 2 3 4 5 6
COLLAR SIZE (MICRONS)
Figure 10, Extracted contact resistance, R, for a range of

collar and window sizes for both circular and square
contacts. The specific contact resistivity was 1075Qcm?,
Rsh(mt)=0.050.fl, Rsh(poly)=27.0()/ m and Rsh(dim=30.0\0/l.
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Table 4 shows-a comparison of the extracted value of p,
for circular and square contacts with the same dimensions. In
this case the contacts arc metal to diffusion and it can be
observed that the effect of the parasitic voltage drops are
smaller due to the lower sheet resistance of the metal.

Dimensions of Collar Size
square contact | Qor® | Spm | 3pm | lpm 0.25um
O 1.73 1.51 1.26 1.21
Spimn
o 1.76_| 1.48 | 1.17 1.0 7
O 1.38 1.27 1.13 1.08
3pm
a 1.42 1.28 1.11 1.05
@] 1.07 1.06 1.03 1.01
lpm
[w] 1.09 1.07 1.03 1.01
C 1.01 1.01 1.00 1.00
0.25um
O 1.01 1.01 1.01 1.01

Table 4. Comparison of square and circular contact resis-
tivity (X10% extracted from a metal-diffusion Kelvin struc-
ture with variable contact and collar sizes. The diameter of
the circular contact is the same as the dimension of the
square one, The sgeciﬁc contact resistivity for the simula-
tions was 10~% Qem?, Ry = 005V and Rgqym = 30(V/m.

33 Misa]ignment"(/lomparison

It is well recognised that misalignment of the contact
window within the collar [1,4] is a source of error in a Kelvin
measurement. Figure 11 shows the effect of misalignment on
the extracted values of resistivity for both circular and square,
contacts with the same dimensions. The difference in area for
the two contact geometries is accounted for by p. and the
error in the measurement for both of them can be observed to
be very similar. The shape of the contact obviously has a less
significant influence on the measurement then the degree of
misalignment. It is perhaps of interest to note that for the
geometries used in this example the circular contact always
results in an extracted contact resistivity closest to the value set
in the data that was used as input to CORSIM.

3.4 Sheet Resistance Variation Directly Under the Centact

It has been stated [10] that the sheet resistance directly
under the contact window may vary from that in the
surrounding area. Reference [1] simulated the effect on the
value of R. when the value of R; under. the contact was
varied. The simulations performed by CORSIM for circular
windows gives similar results with higher values of R. than
those for square contacts as shown in figure 12. With the
gradient- being the same for both the square and circular
contacts the error in any Kelvin measurements will be the

.. same for both cases.

4, CONCLUSIONS

A finite element program that can model arbitrarily
shaped contacts has been developed. It can be used to
evaluate the effect that changes in geometry, specific contact
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T
2 20 1.99 | 1.87 | 19
-
=
E 00 | 206|187 | 1.78 | 1.82 | 1.96
T 2.0 1.9 | 1.8 1.9
=
4.0 | 2.8 1.96 276
(a) 40 20 00 0 40
Misalignment in X {pm}
]
4.0 | 2.59 . 1.9 24
%
2 20 1.88 | 1.77 | 1§
o
£
g 0019217 17 | 174} 18
IS
=]
B
s 28 18 174 | 18
&
-4.0 | 2.46 1.84 274
4.0  -20 0.0 2.0 4.0
(b) - .
Misalignment in x (um)
Figure 11. Extracted specific contact resistivity for

misaligned polysilicon (30.00/m) to diffusion (27.0(/m)
contacts with p,=107% and L=3pm and C=5um. (a) square
contact (b) circular contact )
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EXTRRCTED RESISTANCE

B 5 18 15 20 25 38 35 48 45 58 55 68
Rsheet UNDER CONTACT .

Figure 12. Extracted contact resistance for a 3um
polysilicon to diffusion contact over a range of collar sizes as
a functién of the modified sheet resistance under the contact.
The specific contact resistivity was 1075, Ravaun=27.0(/m
and Rsh(dlm=30.l)ﬂ/l.
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resistivity, sheet resistivity and the modification of sheet
resistivity under the contact have upon contact systems. The
Kelvin test structure has been used to illustrate sdme of its
capabilities. This work has shown that the contact area of this
test structure is of primary importance. The contact shape has
little influence on the the extracted value of p.. It is intended
to use this software to further examine the effect of contact
geometry on a range of different test structures to develop
correction curves for non-rectangular contacts.
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ABSTRACT

Over the years a considerable amount of research has been conducted in the area of pé_ssive stereo vision. Usually
attempts have been made to solve the stereo correspondence problem in its most general sense and build an all purpose
stereo module. Possible matches are proposed for all parts or edges of the image.

The above general approach is not always necessary. Indeed: there is evidence that the human vision system only
attempts to match a small number of possible edges in a particular scene. In this paper we describe a computationally
simple algorithm which takes advantage of the nature of the object being tracked. Disparity measurements are made
for the entire edge and statistics used to provide subpixel accuracy. This approach reduces the problems caused by
quantisation noise when attempts are made to rectify the depth information. We show that stereo algorithms can be
used and adapted in an application specific manner to construct viable systems in the areas of alarms and *invisible
wall” detection. Results are presented to show the effectiveness of the algorithm in a number of both difficult and
simple sequences. In conclusion, we believe our work demonstrates an industrially viable vision system requiring
minimal hardware for implementation. -

1 INTRODUCTION

Vision algorithms have been developed to solve both general and specific problems. However there are relatively few
practical vision systems in use, either in an industrial or consumer environment. Those that have been successful have
normally been restricted to recognition tasks on an assembly line or character recognition in places such as post offices.
An important reason for this is cost. We aiin to design further working vision systems using a minimum of hardware.

In this paper we describe an alarm system which will detect and track a human moving around a scene from stationary
cameras. It uses trinocular vision. The system has many applications in situations where ”invisible” boundaries are
required and could replace or complement systems where light beams and active electronics are currently in use. Two
possible applications are automatic door and burglar alarm systems. In the case of doors it is desirable that the position
of an approaching object is known. A more sensible decision can then be made as to when the door should be opened.

Stereo vision is a possible solution to the position and size problem and a low cost algorithm has been developed
which will utilise constraints particular to this application. It is based on the fact that, provided certain conditions are
satisfied, two images of the same object will overlap, ! if the width of the object is greater than the distance between the
cameras. Using this constraint allows stereo matching, without comparing large numbers of features or performing area
based correlation.

However a problem with alarm systems is the requirement for wide angle lenses and pixel errors in stereo are inversely
proportional to the product of the focal length and the distance between the cameras. Wider angle lenses require shorter
focal lengths, increasing the significance of individual pixels. A method using disparity histograms and a basic assumption
about the objects nature is described. Using disparity histograms for individual objects and edges allow probabilities to
be calculated for each possible disparity. This allows a disparity estimate to be made to sub-pixel precision. Results are
presented which employ this technique in tracking a man through a scene.

The final application will use recently developed low cost CMOS cameras [3]. These have all the advantages that
fabrication with a standard CMOS process allows.

IWhen their local origins are aligned
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Figure 1: Overview of System Blocks

The structure of this paper will be a discussion of the important algorithmic points in section 2. This will be followed
by comments on calibration and accuracy in section 3. Section 4 will briefly discuss a possible hardware implementation
while section b will provide examples of trials performed over fifteen d]ﬂ'erent. sequences. Finally, section 6 will provide
general conclusions.

2 THE SYSTEM

This section will give a summary of the system from the lower pixel based representation to the higher level edge grouping,
stereo matching and false alarm elimination. An overview of the entire algorithm is shown in figure 1. Data flows from
the three cameras into the initial segmentation modules before the matching algorithm is applied. It should be noted
that these modules are not considered in isolation. Significant computational savings can be made in one by considering
them together and in relation to the overall application. After stereo matching between the three cameras we utilise each
edge’s statistics and apply the disparity gradient limit, Pollard [6]. Decisions about the reliability of a particular match
can be made at this stage. The disparity results are then extracted and considered in terms of recent frames and analysed
over time. Statistics from this module can be used to alter thresholds at lower levels and provide some indication of the

reliability of the current measurement

2.1 Low Level Segmentation

There is no requirement to build a depth map for the entire scene. Only the outline edges of an object {ie. a human)
are desired. The segmentation algorithm can be manipulated to this end. Segmentation is based on combining a roughly
thresholded and clustered difference image with the output from a simplified edge detector. Edge detection is also
simplified as the multiplications, divisions and floating point calculations, associated with correlation based methods such
as Canny [2], are too computationally expensive in terms of hardware. In the case of edge detection one has to pay the

price of an increase in noise and false edge generation. However as we only require matching in a small number of edges



a disparity gradient limit [6] effectively eliminates most false erroneous edges.

We also take advantage of the fact that only edges with a substantial vertical component need be extracted. There
are two reasons for this. Firstly matching becomes difficult for edges parallel to the base line of the stereo camera rig.
This unsurprising conclusion has been proven in a more general sense by Skifstad and Jain [7] who show that matching is
impossible for surfaces with no luminosity gradient. Secondly by their very nature humans have more significant vertical
edges and short horizontal edges. These two facts allow us to restrict edge detection to a horizontal differentiation across
the image. Further, a map is maintained of stationary edges. This allows the separation of significant moving edges from
the background edges and reduces the effects of noise. Over a sequence of frames we build up an accurate picture of the
non-moving vertical background edges which can be used to extract relevant foreground edges. A proposed edge is only
accepted for matching if it is attached to a significant cluster edge.

Overall, the above method provides a reasonably robust segmentation and works sufficiently well on our present data.
In larger trials alterations may have to be made to take account of possible unforeseen failures. However in this application
we are attempting to extract a general trend over a period of time. Failures in any one frame can be compensated for
over time and by the use of three cameras.

2.2 Computationally Simple Stereo

There have been many algorithms and constraints developed to solve the correspondence problem in its general sense [6]
[5]. However it is not the aim of this work to generate a complete 23 D sketch for an entire scene. This would unnecessarily
complicate the detection algorithm and require more recognition functionality at a higher level. We note from previous
work in the form of the PMF stereo algorithm [6] that a disparity gradient limit is effective when attempting to find
correct matches. One further constraint which is particularly suited to this application is overlap. We try to avoid
explicit searches as much as possible. The system is therefore orientated to extracting only the relevant information from
the initial raw image data. In this case, that is the outline edge of a human body. Other information is irrelevant and
regarded as noise. The burden of correspondence is thus transferred to earlier stages of processing.

2.2.1 The Overlap Constraint

Use is made of the fact that we only require a single averaged disparity for the entire object. As alarm systems normally
use short focal lengths, limiting accuracy, this approach has considerable advantages here. Outline features are assumed
to be at a constant depth and statistical techniques used to estimate disparity to sub-pixel accuracy.

The interocular distance is constrained, by the matching algorithm which we employ. In effect, the distance between
adjacent cameras cannot be greater than the width 2 of the object, ie. a human, for which we are extracting depth.
Thus if the outline edges for an cbject are known then matching can be performed by aligning the local origins of the
images and simply scanning from an edge in one image to the nearest edge in the other image. The standard calibration
problem applies here. However we are not attempting to- directly extract depth and are only locking for a trend in the
disparity. An alarm can be activated if the human crosses a disparity threshold for some number of frames. Also, in the
test equipment which we employed, the rotation and lens distortion are not significant enough to prevent a correct match
and a trend being extracted. Therefore, with the exception of translational offsets, no calibration is required.

Figure 2 represents the stereo arrangement where two idealised cameras are on the same plane. The above method
of scan matching depends on the fact that the two segmented views of the human overlap when their local origins are
aligned. Also shown in figure 2 is the limiting condition for overlap to occur. That is when the object in the scene has
precisely the same parallel width as the interocular distance. At this point the two ohjects will lie beside each other and
do not overlap. The following equation,

X
D=W Fsin€+cos€ (1)

is extracted from the geometry of the situation in figure 2 and represents what happens, to the overlap, when an object
rotates by an angle 8 in the scene. Ii is important to note that the disparity/width ratio only remains constant when
the cameras have the same focal length and are positioned on the same plane. The ratio is position dependent in these
situations.

2The width parallel to the camera plane



Figure 2: Two Camera Stereo Arrangement

2.3 Disparity Estimation

Quantisation errors in stereo analysis are inversely proportional to the product of the baseline and the focal length [1}.
They are also inversely proporticnal to the range in the scene at which an feature is located. If the pixel size for an imager
array is P then the RMS error in position, for a single measurement, is 7 and in disparity - 7 As we are using short
focal lengths these errors become more significant. However when an edge can be assumed to be at constant depth then
its disparity can be estimated more accurately. Fdge location will tend to wind around its true location in the image,
thus as an edge is tracked and matched we can build up a histogram of disparities.- At this stage the edges can also be
segmented according to the disparity gradient limit. The mean and variance of relevant parts of the disparity histogram
are then used as estimates of disparity and associated confidence. Provided enough pixels are matched and the usual
(Gaussian assumptions are made a sub-pixel measurement for the entire object can then be calculated. At this level it is
quite reasonable to calculate variances and disparities using floating points as the data rates are fairly low, for example,
20 edges per frame.

An important feature of this work is that a measure of the error is inherently provided by the calculation of the
variance of the disparity. This not only takes into consideration the errors caused by quantisation but also those caused
by inaccurate feature matching. These values can be utilised in any tracking filters which may be employed. This is
described in the next section.

2.4 Error Analysis

We have used three cameras in order to estimate comparative disparities. This reduces the combined effects of pixel
quantisation noise and the matching errors of a point. Errors which can be particularly significant in alarm systems
where wide angle lenses are required. Large distances may also be expected.

The disparities from each possible measurement from three cameras are not independent. This is clear from the fact
that a poorly extracted edge from the left camera will cause inaccuracies in two out of the three measurements possible
from a triple camera stereo rig. In this application we assume that the errors in feature eztraction are independent and
calculate our error covariance matrix for feature matching on this assumption. The advantage of this approach is that it
provides a combined variance for quantisation errors and feature matching errors.

The three possible disparity measurements,(6;), are represented by

h=zi+m—22— 12 bo=zy+m—23—1a da=a3+m—z1—1m (2)

where #; is the edge position with respect to the local coordinates and 7; is noise. A false mat.ch is considered part of the
noise. Thus the errors in disparity can be summarised as

Ari=m—n2 Azxg=n3—m Azz=m-—-m (3)

and considered as combinations of independent noise sources 7;. From this an error covariance matrix can be derived
based on the experimentally calculated values of A;. The error covariance matrix can be represented by

Cov(e) = E[AxAbx] (4)



where the main diagonal elements, t;;, are E[A?z]. The other clements in the matrix are

tag — {11 — 12 tyy —toa — L33 tag ~t3z — i1y

tip =ty = ——F—— Iyy=igg=—-"7—— tiz=iy = —F7— (5)
2 2 . 2

It is important to note that the values of ¢;; can be extracted from the measurement process and used to calculate the

other elements of the matrix. We have used the above measurement error matrix in the Kalman formulation where

disparity velocity is modelled as the signal noise.

3 CALIBRATION

As with all stereo systems it is difficult to align cameras with no unwanted translation, rotation or pan. Algorithms have
been developed which attempt to correct for these distortions (8] [9] [4]. In this system we use three cameras in order to
reduce error and increase our chances of a correct match being found. These cameras are arranged as closely as possible
to be on the same imaging plane.

The apparatus was fairly crude and only adjusted as best as possible by hand using a white cross on black background
and subtracting the images one from another until there was no fringe around the edges. It appears from our results
that rotation was far less of a problem than at first thought and that the translation could be easily corrected for using
simple offsets. Also we have taken advantage, in this system, of the fact that only a threshold disparity need be crossed to
activate the alarm. If this is consistently breached over a number of frames the alarm is sounded. Full three dimensional
rectification is not required. The disparity threshold can be calculated automatically when the system is imstalled or
manufactured.

Using three cameras opens possibilities of being able to correct for translational misalignments automatically. Different
offset combinations could be attempted until consistency is obtained over a sequence of frames with a person walking
around at the same depth. Alternatively for more accurate distance measurements the installation could be linked to a
computer and the calibration parameters calculated using more accurate technigues.

4 HARDWARE

It is the intention that the above algorithms be easily implemented in cost effective hardware. The central feature of the
system is the camera. There is little point in developing a commercial piece of processing hardware only to be defeated
by the cost of CCD cameras.

Implementation should be possible using a CMOS sensor with some on-chip processing to perform low level segmen-
tation and edge detection. This processing would also be required to maintain histograms and edge maps. The above
circuitry could then be interfaced to a general microprocessor to perform the more complicated calculations of thresholds,
means and variances. Finally an interface to memory for storage of edge maps and background images will also be
necessary,

5 RESULTS

Trials and experiments have been conducted on 15 trinocular image sequences, from scenes of varying difficulty. We
present examples of the systemn working in three scenes with different lighting conditions. Also presented is the output
from the Kalman filter and the confidence weighted average of the three Kalman estimates. Absolute values are not
signficant in this application as we are only interested in a trend for a particular installation. However it should be noted
that the disparity from the two outside cameras is halved before being input to the tracking filter.

Each sequence is sixteen images long captured from CMOS cameras [3] of 256x256 pixels. The images are digitised
to eight bits at five frames per second using in-house frame grabbers. Figure 3 shows the results extracted from sequence
1, figure 6, as a man walks towards the camera from 12m.

Figure 4 is derived from sequence 2, figure 7 as a man walks towards the camera from 17m. This scene is different
from sequence 1 in that background is dark. Figure 5 is derived from sequence 3, figure 8, as a man walks away from the
camera. He started at 6m.

In all sequences the human is detected and tracked through the scene. Inevitably there are frames when matching
becomes difficult as can be seen in the raw data graphs in figure 4 and figure 5. The large spikes are the result of matching



Figure 3: Sequence 1: Disparity against Time (Frames)
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Figure 4: Sequence 2: Disparity against Time (Frames)
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failures and poor extraction. However they are very obvious in relation to the disparities extracted from the previous and
next frames. The filter manages to eliminate the worst effects of these spikes.

We intend to expand the trial to include a greater number of sequences. It is only by such an experimental process
that the system can be refined and knowledge gained as to when it will fail. This knowledge can be incorporated in
an iterative manner by changes in thresholds and small changes in the algorithm. Although tedious this experimental
approach has proven its worth in the systems designed by Anderson [3] and Vellacot [10].

6 CONCLUSIONS

We have developed a stereo alarm system which employs the fact that for stereo cameras on the same plane a constant
disparity to width ratio exists for the entire scene. This has allowed considerable savings in computational cost which
would allow implementation using CMOS cameras with on-chip processing.

A summary of the trials conducted has been described and accuracy examined. Measures of accuracy are extracted
directly from the data and used in calculating confidences. This technique, combined with Kalman filtering and three
camera stereo, has been used to calculate disparities to sub-pixel accuracy. Finally the system could be of use in automatic
alarm systems and door opening and further trials could be performed to this end.
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Figure 5: Sequence 3: Disparity against Time (Frames)
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Figure 8: Triple Stereo: Sequence 1 : - ) "
16 Frames at 5 frames/second.

Each camera was separated by an interocular distance of 10cm. The focal length was 16mm and the resclution 256x256
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Figure 7: Triple Stereo: Sequence 2
16 Frames at 5 frames/second.

Each camera was separated by an interocular distance of 10cm.
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Figure 8: Triple Stereo: Sequence 3

16 Frames at 5 frames/second.
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AN INTELLIGENT ALARM SYSTEM

K W J Findlay, D Renshaw and P B Denyer
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1 Introduction

Over the years considerable research effort has been
directed towards the theory and practice of Al tech-
niques. Much of this work has been directed at solv-
ing vision problems and algorithms have been de-
veloped to solve both general and specific problem-
s. However there are relatively few practical vision
systems in use, either in an industrial or consumer
environment. Those that have been successful are
normally restricted to recognition tasks on an as-
sembly line or character recognition in places such
as post offices. A mam reason for this is cost. We
alm to design further working vision systems using
minimum hardware at the lower levels of processing.
These systems are directed at specific applications.

In this paper we describe an alarm system which will
detect and track a human moving around a scene
from stationary cameras. The system has many ap-
plications in situations where *invisible” boundaries
are required and could replace or complement the
light beams and active electronics which are current-
ly in use.

Stereo vision is a possible solution to the position
and size problem and a low cost algorithm has been
developed which will utilise constraints particular to
this problem. It is based on the fact that ! two views
of the same object will overlap when their local ori-
gins are aligned. Using this constraint it allows us to
solve the so called correspondence problem 2 without
correlation or extensive searching.

The final application will use recently developed low
cost CMOS cameras [2]. There is little point in e-
conomising in other areas of processing only to be
defeated by the current cost of CCD cameras. An-
other major advantage of this technology is the ca-
pability of placing processing on-chip together with
the sensor array. Pixel sizes and shapes can also be
manipulated. A CMOS camera’s use with on-chip
processing has been demonstrated by Anderson et.

!Provided an objects width is greater than the distance
between the two cameras.

2Solving the correspondence problem involves finding a
scene feature in one image and trying to find the same, or
corresponding, feature in the other image.

al. [3] in a finger print recognition system.

The structure of this paper will be an explanation of
the important points of the algorithm in section 2.
This will be followed by discussion about the systems
calibration and accuracy, section 3. Also explained,
in section 3, are the reasons for using three cameras
as opposed to two. Section 4 gives examples of the
algorithm applied to trial sequences. Finally section
5 will provide general conclusions.

2 The System

Here we provide a summary of the system from the
lower pixel based representation to the higher lev-
el edge grouping and stereo matching. An overview
of the entire algorithm is shown in figure 1. Data
flows from the three cameras into the initial segmen-
tation modules before the stereo matching algorith-
m is applied. It should be noted that these mod-
ules are not treated independently. We have found
that significant computational savings can be made
in one by considering it in relation to the other. Af-
ter stereo matching, between the three cameras, we
utilise edge statistics and apply the disparity gradien-
t limit [4]. This allows a decision about a particular
edges "goodness’ to be made. The disparity result-
s are then extracted, considered in terms of recent
frames, and analysed over time. The statistics from
this module can then be used to alter the thresholds
at lower levels of processing.

2.1 Low Level Segmentation

In this work edge detection is based on difference
techniques since the multiplications, divisions and
floating point calculations, associated with correla-
tion based methods such as Canny [1], are too com-
putationally expensive in terms of hardware. The
main problem caused by reducing complexity at the
pixel level is false edge generation. These will cause
incorrect stereo matches. However it has been shown
[4] that a disparity gradient himit 1s an effective con-
trol in determining correct matches between the two



views. Also, inaccurate matches tend to become ob-
vious over a period of time.

Further savings can be made in edge detection by
taking account of the nature of the human form.
Humans tend to have long vertical edges and short,
insignificant, horizontal edges. As we are using lat-
erally displaced sterec cameras we do not attempt
matching for horizontal edges. Edge extraction can
therefore be confined to lateral differentiation.

The edge information is combined with segmentation
information from a clustering/thresholding algorith-
m which again does not employ the more computa-
tionally complex arithmetic described above.

2.2 Computationally Simple Stereo Tracking
and Control

The correspondence problem is well known in most
vision applications and many constraints have been
devised as attempts to solve it in its most general
sense. We note from previous work in the form of
the PMI stereo algorithm [4] that a disparity gradi-
ent fimit is an effective constraint when attempting
to find correct matches. We also take note of the
possibly obvious but nevertheless important fact that
depth information cannot be extracted from a scene
or area where there is not a luminosity gradient {3]
and make our algorithm edge based. Edges have the
highest luminosity gradient. There are many other
advantages in using edges one of which is their con-
tinuing presence when shadows are cast. A further
constraint which is particularly suited to this appli-
cation 1s what we call the overlap constraint. As
said before we are trying to avoid explicit searches
or correlation. The system is therefore orientated
to extracting only the relevant information from the
initial raw image data. In this case that is the out-
line edge of a human body. Other information is
irrelevant and regarded as noise. We thus transfer
the burden of correspondence to the segmentation
stages of early image processing. Also it is only nec-
essary to find a small part of that outline reliably in
order to estimate depth. The segmentation and edge
detection modules can therefore be fairly crude. Ob-
viously the more correct edges that are found the
better the accuracy of disparity estimation for the
whole object.

2.2.1 The Overlap Constraint

Once the candidate outline edges have been extract-
ed it 1s a simple matter of scanning along a raster
until the first edge in the other camera is found.
The distance between these two edges i1s the dis-

parity. Figure 2 represents the stereo arrangemen-
t where two cameras are on the same plane. The
above method of scan matching depends on the fact
that the two segmented views of the human overlap
when their local origins are aligned with respect to
their calibration offsets. Also shown in figure 2 is the
limiting condition for overlap to occur. That is when
the object in the scene is precisely the same width
as the interocular distance, D. At this point the t-
wo objects will lie beside each other and not overlap.
The following equation,

D:W’%sin9+cosﬂ (1)

is extracted from the geometry of the situation in
figure 2 and represents what happens to the overlap
when an object rotates by an angle # in the scene.

2.3 Error Control

Histogram analysis is used to form an estimate of
the disparity of each edge. The advantage of this
technique is that it reduces the effect of pixel quan-
tisation, a factor significant in alarm systems due
to the effect of wide angle lenses. Also, large dis-
tances may be expected, reducing the actual size of
the object in the image and increasing the impor-
tance of an individual matched pixel. If the correct
disparity for an edge is somewhere between two pix-
el measurements an estimate for the entire edge can
be calculated from the proportions of pixels at each
disparity. We assume that for all practical situations
where this system will be used the entire human is
at one depth. Floating points can be used here as an
inexpensive microprocessor should be fast enough to
calculate a mean for the small number of difference
clusters per frame.

In this application we have used three cameras in or-
der to estimate comparative disparities. This also re-
duces the effects of pixel quantisation noise. Figure 3
shows the normalised error probability distribution-
s for both two and three camera rigs. In the later
there are three possible depth measurements which
are averaged. The simulations were performed using
the camera parameters described in sections 4 and
involved rectifying the depth from 100000 randomly
generated points in a scene with depth 20 meters.
The errors generated were caused by both quantisa-
tion noise, dependent on camera geometry, and addi-
tional simulated noise, (¢ = 0.5). It should perhaps
be noted that the error probability functions vary
with distance and that the p.d.f.’s shown in Figure 3
are for the complete simulated area. This factor will
have to be taken into account when alarm thresholds
are considered.



3 Calibration

As with all stereo systems it is extremely difficult to
align cameras with no unwanted translation, rotation
or pan. Algorithms have been developed which at-
tempt to correct for these distortions [6}. However,
accurate calibration is not required in this system
as a simple threshold can be utilised to determine
invisible distance boundaries. Translational offsets
are sufficient. We have taken advantage of the fact
that only a disparity value need be crossed to acti-
vate the alarm. If this is consistently breached over a
number of frames the alarm is scunded. The dispari-
ty threshold could be calculated automatically when
the system is installed, or manufactured, by people
moving at a known distance.

Also as an alternative to the above, more accurate
distance measurements could be extracted if the sys-
temn is calibrated accurately. The installation could
be linked to a computer and the calibration param-
eters calculated using the more accurate teqniques
described in the literature.

4 Results

Trials and experiments have been conducted on fif-
teen trinocular image sequences of varying difficuity.
These have been largely successful in detection and
relative depth estimation. In all sequences the mov-
ing human has been detected, and then tracked for
most of its "walk” through the scene.

We present examples of the system working in three
different scenes with varying lighting conditions. The
apparatus employed was mechanically fairly crude
and only adjusted as best as possible, by hand, using
a white cross on black background and subtracting

the images one from another until there was no fringe’

around the edges. It appears that rotation was far
less of a problem than at first thought and translation
could be easily corrected using simple offsets.

Each sequence is sixteen images long and captured
from CMOS cameras [2] of 256x256 pixels. The im-
ages are digitised to eight bits at five frames per sec-
ond using in-house frame grabbers.

Figure 4 shows comparative depths extracted from
three sequences. Figure 4(a) is derived from sequence
1, Figure 5, and consists of a man walking towards
the camera from 12m. The spike around frame 5 is
caused by a sudden change in background. Howev-
er the system is capable of compensating within 2
frames. Figure 4(b) is derived from sequence 2, Fig-
ure 6 and shows a man walking away from the camera
from 5m. This scene is different from sequence 1 in

that background is dark. Figure 4(c) is derived from
sequence 3, Figure 7, and consists of a man walking
through a door towards the camera from 8m.

In all cases the traces tend in the correct direction
and have sufficient gradient to set off an alarm once
a threshold is crossed.

We intend to expand the trial to include a greater
number of sequences and refine the system to track
these examples. It is only by such an experimental
process that the system can be refined and knowl-
edge gained as to when it will fail. This knowl-
edge can be incorporated in an iterative manner by
changes in thresholds and small changes in the algo-
rithm. Although tedious this experimental approach
has proven its worth in the systems designed by An-
derson [2].

5 Conclusions

A low cost vision system which could be utilised in
the arca of alarm verification and deiection has been
developed. The stereo system has been designed to
provide distance measurements which counld be u-
tilised as "invisible” barriers. Considerable savings
in complexity have been achieved at the lower levels
of processing which would allow a simpler hardware
implementation.
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Figure 4: Disparity against Time (Frames) Solid traces are distance extracted from between the two outside

cameras; broken lines are distances extracted between the inside camera pairings.
Sequence 1 (a) Sequence 2 (b) . Sequence 3 (c)

Figure 5: Triple Stereo: Sequence 1

16 Frames at 5 frames/second.
Each camera was separated by an interocular distance of 10cm. The focal length was 16mm and the resolution

256x256 pixels

Figure 6: Triple Sterec: -Sequence 2
16 Frames at 5 frames/second.
Each camera was separated by an interocular distance of 10¢m. The focal length was 16mm and the resolution

256x256 pixels




Figure 7: Triple Stereo: Sequence 3
16 Frames at 5 frames/second.

Pach camera was separated by an interocular distance of 10cm. The focal length was Iﬁmm and the resolution
256x256 pixels
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Abstract

QOver the years considerable research has been conduct-
ed in the area of passive stereo vision. Most of the algo-
rithms are designed to extract a complete 2 %D sketch
over the entire image. The above approach is not always
necessary when a general vision system is not required.
This paper describes an original algorithm which utilis-
es a priori knowledge about an object’s width to reduce
the matching search to a simple X-axis scan. In effec-
t it transfers the complexity from the matehing process
to the segmentation stage which can be performed using
traditional difference techniques.

The algorithm is adapted for VLSI implementation us-
ing a low cost CMOS image sensor and requires no mul-
tiplications, divisions or fioating point ealculations at the
pixel level of the image hierarchy, This wiil allow a more
commercially viable implementation.

1 Introduction

Much research effort has been directed towards the theory and
practice of image processing and vision. However a great inany
systems require massive processing power in order 1o operate in
real time. This hardware is both expensive and time consum-
ing to design, limiting both the research effort and the range of
practical systems which can be implemented. Few vision 5¥s-
tems are working today in a commercial environment and one
major reason for this is the cost of hardware. It is an aim of our
work to demonstrate systems which are commercially viable in
terms of the hardware required. This has been done by placing
restrictions on the algorithm design to eliminate the more expen-
sive parts. In effect this is an algorithm for a target architecture
rather than hardware aimed at computing an algorithm. The
architectures aimed for are Jow cost CAQS VLSI implementa-
tions of both image sensor and processing. This technology has
.been developed by Denyer ét.al. [3] [5] and an example, showing
both processing and sensor, is given in fignre 1.

The above CMOS techniques can be exploited to reduce the
final implementation cost, eliminating the need for expensive C-
CD technology. However, chip space restrictions require that
constraints be placed on a particnlar algorithm’s arithmetic. In
effect, the more complex arithmetic has to he excluded from
the lower levels of pracessing. An example of this is given by
Anderson (3] in a fingerpsint recognition system. In this ar-
chitecture a CMOS sensor was mtegraied on-chip with all the
necessary recognition processing. An important consideration in
such a system is the problem of analogue to digital conversion.
In this case, the video output from the sensor was thresholded
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Figure 1: An ASIS Image Sensor With On-Chip Processing

and digitised at the same time. The following stereo algorith-
m has been developed with the above hardware constraints in
mind and there are no multiplications, divisions or floating point
calculations at the pixel level of processing.

In view of the above, the work presented in this paper is the
design of a low cost alarm system wiiich will detect and track
a human moving around a scene viewed from stationary cam-
eras. We have chosen stereo vision as a possible solution 1o the
above problem and have developed an algorithm which will u-
tilise constraints particular to this application. Notice is taken
of the fact that for cameras on the same plane an overlap will
occur if the width, {parallel 1o the image plane}, of the object is
greater than the interocular distance, no matter where the object
is positioned in the scene. This constraint is further explained
in section 2.2.

The paper will start with a discussion of the important points of
the algorithm, section 2, followed by comments on the calibration
of the system in section 3. Section 4 will deal with hardware
considerations while the last 1wo sections will summarise results
and present general conclusions,

2 The System

This section will give a summary of the system from the low-
er pixel based representation to the higher level edge grouping,
stereo matching and false alarin elitnination. Data flows from
three cameras into the initial segmeniation modules belore the
matching algorithm is applied. It shoull be noted that vision
modules are not considered in isolation. Significant computa-



tional savings ¢an be made in one module by considering them
together and in relation to the overall application. After stereo
matching between the three cameras we ulilise the statistics of
each edge and apply the disparity gradient limit, Pollard [6]. De-
cisions about the reliability of a particular match can be made at
this stage. The disparity results are then extracted and consid-
ered in terms of recent frames and analysed over time. Statistics
from this module can be used to alter thresholds at lower lev-
els and provide some indication of tie reliability of the current
measurement.

2.1 Low Level Segmentation

There s no requirement to build a depth map for the entire
scene. Only the outline edges of an object (ie. a human) are de-
sited. The segmentation algorithm can be manipulated to this
end. Segmentation is based on combining a roughly thresholded
and clustered difference image with the cutput from a simplified
edge. detector. Edge detection is also simplified as the multi-
plications, divisions and floating point calculations, associated
with correlation based methods such as Canny [2], are too com-
putationally expensive in terms of hardware. In the case of edge
detection, one has to pay the price of an increase in noise and
false edge generation. However, as we only require matching in
a small number of edges a disparity gradient limit [6] effectively
eliminates most false matches.

Ye also take advantage of the fact that only edges with a sub-
stantial vertical component need be extracted. There are two
reasons for this. Firstly, matching becomes difficult for edges
parallel to the base line of the stereo camera rig. This unsur-
prising conclusion has been proven in a more general sense by
Skifstad and Jain [7] who show that matching is impossible for
surfaces with no luminosity gradient. Secondly, by their very
nature humans, have more significant vertical edges and short
horizontal edges. These two facts allow us 1o restrict edge detec-
tion to a horizontal differentiation across the image. Further, a
map is maintained of stationary edges allowing foreground fea-
tures to be separated and reducing the effects of noise. Qver
a sequence of frames we build up an accurate picture of the
non-moving vertical background edges which can be used to ex-
tract relevant foregronnd. A proposed edge is only accepted for
matching if it is attached to a significant cluster. Overall, the
above method provides a reasonably robust segmentation and
works sufficiently well on our present data.

2.2 Computationally Simple Stereo

There have been many algorithms and constraints developed to
solve the correspotidence problem in its genera! sense. Howev-
er it is not the aim of this work to generate a complete 23D
sketch for an entire scene. This would unnecessarily complicate
the detection algorithm and require more recognition function-
ality at a higher level. We note from previous work in the form
of the PMF stereo algorithm [6] that a disparity gradient it
is eflective when attempting to find correct matches. One fur-
ther constraint which is particularly suited 1o this application is

Figure 2: Two Camera Stereo Arrangement

overlap. We try to avoid explicit searches as much as possible.
The system is therefore arientated to extracting only the relevant
information from the initial raw image data. In this case, the
relevant information is the outline edge of a human body. Other
information is irrelevant and regarded as noise. The burden of
correspondence is thus transferred to earlier stages of processing.

2.2,1 The Overiap Constraint

Use is made of the fact that, for this application, we only re-
quire a single averaged disparity for the entire object. As alarm
systems normally use short focal Jengths, limiting accuracy, this
approach has considerable advantages here. Outline features are
assumed to be at a constant depth and statistical techniques are
to estimate disparity to sub-pixel accuracy.

The interocular distance is constrained, by the matching.algo-
rithm which we employ. In effect, the distance between adjacent
cameras cannot be greater than the width ! of the object, ie. a
human, for which we are extracting depth. Thus, if the outline
edges for an object are known then matching can be performed
by aligning the local origins of the images and simply scanning
from an edge in one image to the nearest edge in the other image.
The standard calibration problem applies here. However, we are.
not attempting to directly extract depth and are only looking,
for a trend in the disparity. An alarm can be activated if the
humar crosses a disparity threshold for some number of frames.
Also, in the test equipment which was employed,

the rotation and lens distortion are not significant enough to
prevent a correct match and a trend being extracted. There-
fore, with the exception of translational offsets, no calibration is
required.

Figure 2 represents the stereo arrangement where two idealised
cameras are on the same plane. The ahove method of scan

!The width parallel to the camera plane



Figure 3: Disparity Histograms, X axis, Represented in Time, Y
axis

matching depends on the fact that the two segmented views
of the human overlap when their local origins are aligned. Also
shown in figure 2 is the limiting condition for overlap to occur.
That is when the object in the scene has precisely the same
parallel width as the interocular distance.. At this point the t.
wo objects will lie beside each other and do not overlap. The
following equation,

D =W (1)

::—, siné + cos#

is extracted from the geometry of the situation in figure 2 and
represents what happens, to the overlap, when an object rotates
by an angle @ in the scene. It s important to note that the
disparity /width ratio only remains constant when the cameras
have the same focal length and are positioned on the same plane.
The ratio is position dependent in these situations.

2.3 D{sparity Estimation

Quantisation errors in stereo analysis are inversely proportional
to the product of the baseline and the focal length [1}. They are
also inversely proportional to the range at which an feature js
located. If the pixel size for an imager array is P then the RMS
error in position, for a single Ineasuremment, is % and in dispar-

ity 55. As we are using short focal lengths these errors become
more significant. However, when an edge can be assumed to be
at constant depth then its disparity can be estimated more accu-
rately. Edge location will tend to wind aromnd its true lecation
in the image, thus as an edge is tracked and maiched we can
build up a histogram of disparities for the entire edge. At this
stage the edges can also be segmented aceording to the dispar-
ity gradient limit. The mean and variance of relevant parts of
the disparity histogram are then used as estimates of disparity
and associated confidence. Provided encugh pixels are matched
and the usual Gaussian asswinptions are made a. sub-pixel mea-
surement for the entire ohject can now be calculated. Example
“isparity histograms, plotted through time, for each of the three
possible measurements, are shown in figure 3. At this level it
is quite reasonable to calculate variances and disparities using
floating points as the data rates are fairly low, for example, 20
edges per frame.

An important feature of this work is that a measure of the er-

for is inherently provided by the calculation of the variance of
the disparity. This not only takes into consideration the er-
rors caused by quantisation but also those caused by inaccurate
feature matching. These values can be utilised in any tracking
filters which may be employed as described in the next section.

2.4 Error Analysis

We have used three cameras in order to estimate comparative
disparities. This reduces the combined eflects of pixel quantisa-
tion noise and the matching errors of a point. These errors can
be particularly significant in alarm systems where wide angle
lenses are required. Large distances may also be expected.

The disparities from each possible measurement from three cain-
eras are not independent. This is clear from the fact that a
poorly extracted edge from the left camera will cause inaccura-
cies in two out of the three measurements possible from a triple
camera stereo rig. In this application we assume that the errars
in feature extraction are indepiéndent and calculate our error co-
variance matrix for feature matching on this assumption. The
advantage of this approach is that it provides a combined vari-
ance for quantisation and feature maiching errors.

The three possible disparity measurements.(§;), are represented
by

bi=zitm—z—m & = 234 m-23-1 63 = atm-1-m

(2)
where z; is the edge position with respect to the local coordinates
and 7 is noise. A false match is considered part of the noise,
Thus the errors in disparity can be summarised as

Ani=m-m Sza=m-m Aza=m-m (3)

and considered as combinations of independent naise sources 7
From this an error covariance matrix can be derived based on
the experimentally calculated values of A;. The error covariance
;né.trix can be represented by

Cov(e) = ElaxA'x] (4)

where the main diagonal elements, ;. are E[A%z). The other
elements in the matrix are

fag — U — Ing
iz =ty = — {3)
. it — i — I .
taa =13 = j;_?_ (6)
192 — 133 — Iy
hiy3 =13 = —_— {7)

It is important to note that the values of 1;; can be extracted
from the measurement process and used to calculate the other
elements of the matrix. We have used the above measurement er-
ror matrix in a Kalman formulation where the disparity velocity
is modelled as the signal noise. Again, in a final implementa-
tion the frame rates required will allow these caiculations using
‘limited hardware.



3 Calibration

As with all stereo systems it is extremely difficult to align cam-
eras with no unwanted translation, rotation or pan. Algorithms
have been developed which attempt to correct for these distor-
tions (8] [9) [4). In this system we use three cameras in order
to reduce the possibility of error and increase our chances of
a correct match being found. We have taken advantage of the
fact that only a threshold disparity need be crossed to activate
the alarm. As a result full three dimensional rectification is not

required.

The apparatus used in the experiments was fairly crude and
only adjusted as best as passible using a white cross on a black
background and subtracting images from one another until theve
was no unwanted fringe around the edges, With this equipment,
rotation was far less of a problem that at first thought and trans-
lation could easily be corrected using simple offsets. For more
accurate calibration, including corrections for fens distortion, the
final equipment could be linked to a computer and parameters
calculated using more computational techniques,

4 Hardware

The central feature of the system is the camera. There is little
point in developing a commercial piece of processing hardware
only to be defeated by the cost of CCD cameras. To this end
we intend to utilise a CMOS sensor[3},which can be customised
to a particular application, including changing pixel array sizes
and altering aspect ratios.

it is the intention of the above algorithms that they be easily
implemented in cost-eflective hardware. As a result they have
been designed to have no multiplications, divisions or floating
point calculations at the pixel level. Floating point calculations
can be used in deciding thresholds and object disparities, pro-
vided that the data is accuinulated by the lower level processing
and presented in a suitable forin to the microprocessor. Stan-
dard microprocessors are capable of caleulating such arithmetic,
at video rates.

5 Results

Trials and experiments have been conducted on fifteen trinocular
image sequences, from scenes of varying difficulty. We present
examples of the systemn working in three scenes with differen-
t lighting conditions. Also presented is the output from the
Kalman filter and the confidence weighted average of the three
Kalman estimates. Absolute values are not significant in this
application as we are onlv interested in a trend for a particu-
lar installation. However it should be noted that the disparity
from the two outside cameras is halved helore being input to the
tracking filter.

Each sequence is sixteen iwmages long captured from CMQS can-
eras [3] of 256x256 pixels. The nnages are digitised to eight hits
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Figure 4: Sequence 1: Disparity (y) against Time (x), frames
Raw Filtered Weighted Average
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Figure 5: Sequence 2: Disparity (y) against Time {x), frames
Raw Filtered Weighted Average
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at five frames per second using in-house frame grabbers. Figure
4 shows the results extracted from sequence 1, figure 7, as a man
walks towards the camera from 12m.

Figure 5 is derived from sequence 2, figure 8 as a man walk-
ing towards the camera from 17m. This scene is different {rom
sequence 1 in that the background is dark. Figure 6 is derived
from sequence 3, figure 9, as a man walks away from the camera.
He started at 6m.

In all sequences the human is detected and tracked through the
scene. Inevitably there are frames when matching becomes diffi-
cult as can be seen in the raw data grapls in figure 5 and figure
6. The large spikes are the result of matching failures and poor
extraction. However they are very obvious in relation to the dis-
parities extracted from the previous and next frames, The filter
manages to eliminate the worst effects of these spikes.
&

We intend to expand the trial to include a greater number of
sequences. It is only by such an experimental process that the
system can be refined and knowledge gained as to when jt will
fail. This knowledge can be incorporated in an iterative manner
by changes in thresholds and small changes in the algorithm. Al-
though tedious this experimental approach has proven its worth
in the systems designed by Anderson 3] and Vellacot [10].

Figure 6:" Sequence 3: Disparity (v) against Time (x}, frames
Raw Filtered Weighted Average
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6 Conclusions

A low cost stereo vision alarm system has been developed. To
the best of our knowledge the above overlap constraint has not
been published explicitly in the stereo vision literature. Its use
has allowed considerable savings in complexity and transferred
the burden of correspondence, for an object's outside edges, into
the segmentation stage.

Results have been presented here which show the effectiveness of
the algorithm in different scenes. We have also extracted mea-
sures of accuracy directly from the data which car be used in
calculating confidences and tracking filters. Finally, hardware
implementation would be a viable option in a commercial envi-
ronment.
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Figure 7: Triple Stereo: Sequence 1

16 Frames at 5 frames/second.

Fach camera was separated by an interocular distance of 10cm.
The focal length was 16

g

Figure 8: Triple Stereo: Sequence 2

16 Frames at 5 frames/second.

Each camera was separated by an interocular distance of 10cm.
The focal length was 16mm and the resolution 256x256 pixels

Figure 9: Triple Stereo: Sequence 3

16 Frames at 5 frames/second.

Each camera was separated by an interocular distance of 10cm.
The focal length was 16mm and the resolution 256x256 pixels
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Abstract

We aim to track, in three dimensions, humans and other
moving objects using wide angle lenses. This has caused prob-
lems with quantisation noise which increases as focal lengths
reduce. In order to control these etrors the assumption, that
all the extracted edges from the tracked object are at the same
depth, 15 made.

An original siereu vision matching/segmentation algorith-
m has been developed which minimises the problems caused
by quantisation noise in wide angle stereo ranging systems.
It is intended that this algorithm be implemented in cost-
effective hardware using recently developed CMOS cameras.
It could have many applications in the areas of general track-
ing systems and passive alarms.

1 Introduction

Usually attempts are made to solve the stereo correspondence prob-
lem in its most general sense and build an all purpose stereo module.
Possible matches are proposed for all parts or edges of the image.
The above general approach is not necessary, in this and other ap-
plications.

We aim to track, in three dimensions, humans and other moving ob-
jects using wide angle lensea. This has caused problems with quan-
tisation noise which are inversely proportional to the product of the
focal length and interocular distance. In order to control these errors
the assumption, that all the extracted edges from the difference im-
age are at the same depth, is made. This is justified by the range in
which we operate the system and by the fact that we do not require
a complete 2 %-D sketch for the entire scene. Using this constraint a
strict disparity gradient limit can be applied and statistics gathered
for the "goodness” of a particular match. These are used to provide
sub-pixel accuracy and compensate for the problems of quantisation
noise. Edges are then grouped and an overall disparity extracted.

In the correspondence stage of the system we take advantage of the
overlap which occurs between two views of the same object and
match only outline edges. Outline edge detection and early segmen-
tation are based on computationally simple, difference, and cluster-
ing techniques, combined with time domain information. This allows
the elimination of low level multiplications, divisions and floating
point calculations and makes a commercial implementation feasible,
using ASIS imaging technology developed by Denyer et. al. {6]. ASIS
technology allows implementation of camera sensor and processing,
on the same chip, using low-cost CMOS fabrication.

Camera 1

Camecra 2

Segmentation

Disparity Analysis

s oo
Feedback
-
Current Frame

Figure 1: Overview of System Blocks

Time Domain Analysis

The structure of this paper will be a discussion of the important
algorithmic points in section 2. Section 3 will provide the results of
trials performed over different image sequences. Finally, section 4
will draw general conclusions.

2 The System

An overview of the entire algorithm is shown in Figure 1. As said
in the introduction one of the aims of this work is an efficient imple-
mentation in hardware to allow commercial applications. Restric-
tions have been, necessarily, placed on the arithmetic allowed at the
pixel level of representation. To this end, we have taken advantage
of certain application specific features:

1. The vertical nature of a moving human allows edge detection
to be restricted to a lateral scan across the image followed by
downwards tracking. This simplification is also justified by the
lateral separation of the cameras.

2. Only a disparity threshold is required to activate an alarm.
Thus accurate camera calibration is not required, If the thresh-
old is crossed, for a number of frames, the alarm can be acti-
vated.

Cv-7.3.1



Further simplification, of any future hardware implementation, has
been achieved by employing only difference techniques at the pixel
level. The multiplications, divisions and ftoating point calculations,
associated with correlation based methods such as Canny [1], are too
computationally expensive. The main problem, caused by reducing
complexity at the lower levels of processing, is false edge genera-
tion. These will cause incorrect stereo matches. However it has
been shown [5] that a disparity gradient limit is an effective control
in determining correct matches between two views. Also inaccurate
matches tend to become obvious over a period of time.

Edge informatiou is combined with segmentation information from a
clustering/thresholding algorithm which again does not employ the
more computationally complex arithmetic described above. Thresh-
olding is performed on differences between background and fore-
ground images and is initially chosen to be some fraction of the
mean. As time progresses, tracking confidence will increase, and
the threshold can be altered. Grey level difference distributions, of
the extracted connected regions, are then used to estimate an ap-
propriate threshold. Thresholded regions are extracted on a nearest
neighbour basis and used to group edges into relevant objects. This
has the advantage that the overall system becomes system less de-
pendent on one source of data. Also, we need only consider moving
edges. Edge maps, based on previous frames, are maintained and
used to eliminate stationary features. Overall the above segmenta-
tion techniques will almost always provide some part of the outline
of a moving object in the scene.

Turning now to stereo matching, this is based on the simple fact that
the images of an object in the scene can overlap if their local origins
are aligned. This will oceur if an object in the scene is wider than
the interocular distance and the cameras are on the same imaging
plane [2]. Once the candidate ocutline edges have been extracted it
is a simple matter of scanning along a raster until ihe first edge in
the other camera is found. The distance between these two edges is
the disparity.

Obviously, the above form of matching requires knowledge of equiva-
lent epipolar lines and rotational translations. Algorithms have been
developed which attempt to find these cotrections(8] {9] [3] and cal-
ibrate the cameras. In the equipment employed in the trials we are
conducting rotation is not a significant factor. Thus, translatioral
corrections, and the alarm threshold, can be calculated using a man
walking about at a known distance. Different offsets can be attempt-
ed until consistency is achieved. We have taken advaniage of the fact
that only a disparity value need be crossed to activate the alarm. If
this is consistently breached over a number of frames the alarm will
be sounded.

2.1 Quantisation Error Control

Quantisation errors in stereo are inversely proportional to the prod-
uct of the baseline and the focal length {7]. They are also inversely
proportional to the range at which an object is positioned. The
extent to which distance, focal length and interocular distance are
significant depend, also, on the pixel size, and the RMS error, in
position, for a single measurement is ﬁ'ﬁ and for disparity 53. As
we are using short focal tengths, quantisation errors are large. In
addition, we must also expect the system to function at distances of
up to 20 meters.

In this work an assumption is made that each matched edge is at
one depth., We can use histogram analysis to form an estimate of the
disparity of each edge. Edge location will tend to wind around its
true location in the image, thus as an edge is tracked and matched

Figure 2: Disparity Histograms(X Disparity, ¥ Time, Z Frequency)

Figure 3: PDF errot distributions
Two Camera Rig

[
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Three Camera Rig

we can build up a histogram of disparities. Examples of these are
shown, plotted through time, in Figure 2.

Three histograms are plotted for the three measurements possible
from a triple camera stereo rig. The advantage of histogram analysis
is that it reduces the effect of quantisation and provides a sub-pixel
acuity estimate of the disparity.

At this stage the edges can alsobe segmented accotding to the dispar-
ity gradient limit [5] eliminating the vast majority of false matches.
The mean and variance of relevant parts of the disparity histogram
are then used as estimates of disparity and associated confidence.
These confidences not only take into account the errors caused by
quantisation but alsé those caused by inaccurate feature natching.
This information can be utilised in any tracking filters which may be
employed. Also it is, now, possible to calculate variances and dispar-
ities using fioating point caleulations. Data rates, at this level, are
fairly low, for example, 20 edges per frame and calculations could be
performed using simple microprocessors.

Three cameras have been used as a further attempt to reduce the
expected error by averaging. -Figure 3 shows the simulated depth
error probability distributions for both two and three camera rigs.
The three camera rig, where the disparity measurenents are aver-
aged before inversion to depth, has a clearly improved PDF. The
simulations were generated, using the camera parameters described
in section 3, from 100000 randomly generated points in a scene with
a depth of 20 meters. It should, perhaps, be noted that the error
probability functions vary with distance and that the p.d.f.’s shown
in Figure 3 are for the complete simulated ares. For example, the
PDF between 15m and 20m will be flatter than the PDF between £
and 10m. This factor wiil have to be taken into account when alarm,
thresholds are considered.
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Figure 4: Disparity against Time (Frames)
{a) Seq. 1 ‘ (b) Seq. 2 (¢) Seq. 3

>

Figure 5: Triple Stereo: Sequence 1

16 Frames at 5 frames/second.

Each camera was separated by an interocular distance of 10cm. The
focal length was 16mm and the resolution 256x256 pixels

3 Results

Examples are presented from a trial on fifteen image sequences cap-
tured in several different scenes. Each sequence was sixteen images
long, captured from three CMOS cameras [6) of 256x256 pixels. The
images were digitised to eight bits at five frames per second using
in-house frame grabbers.

Figure 4(a) shows the results extracted from sequence 1, Figure 5, as
a man walks towards the camera from 12m. Figure 4(b) is derived
from sequence 2, Figure 6, as a man walks away from the camera.
Figure 4(c) is derived from sequence 3, Figure 7, as & man walks
initially parallel to the camera’s image plane and then towards it.
The top trace in all three graphs is the disparity extracted from the
outer two cameras. The lower two traces are measurements from
the inner pairings. Naturally, the outer measurement haas a steeper
gradient than that from the inner cameras.

In all sequences the humanis detected and tracked through the scene.
Inevitably there are frames when matching becomes difficult as the
large spikes indicate. However they are very obvious in reiation to the
disparities extracted from the previous and next frames and would
be controlled using tracking filters such as th= Kalman formulation
[2]. Tt can also be seen that, overall, disparity through time varies
reasonably smoothly and does not juinp as pixe! quantisation bound-
aries are crossed. The gradient are steep enoigh to allow disparity
tl -ssholds to activate alarms.

Figure §: Triple Stereo: Sequence 2

16 Frames at 5 frames/second.

Each camera was separated by an interocular distance of 10cm. The
focal length was 18mm and the resolution 256x256 pixels

Figure 7: Triple Steteo: Sequence 3

16 Frames at 5 frames/second.

Each camera was separated by an interocular distance of 10cm. The
focal length was 186mm and the resolution 256x256 pixels

4 Conclusions

An original stereo vision matching/segmentation algorithm has been
developed which minimises the problems caused by quantisatich
noise in wide angle stereo ranging systems. It is intended that the
algorithm be implemented in cost-effective hardware using recently
developed CMOS cameras and has been optimised to this end. It
could have many applications in thé areas of general tracking sys-
tems and passive alarms. Further trials would allow the system to
be tested in a wider context and allow incremental improvements as
problems arise. This method of experimental design has ptoven its
worth in systems described by Anderson 4] and Vellacot [10].
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