16 research outputs found

    An approximate version of Sidorenko's conjecture

    Get PDF
    A beautiful conjecture of Erd\H{o}s-Simonovits and Sidorenko states that if H is a bipartite graph, then the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density. This conjecture also has an equivalent analytic form and has connections to a broad range of topics, such as matrix theory, Markov chains, graph limits, and quasirandomness. Here we prove the conjecture if H has a vertex complete to the other part, and deduce an approximate version of the conjecture for all H. Furthermore, for a large class of bipartite graphs, we prove a stronger stability result which answers a question of Chung, Graham, and Wilson on quasirandomness for these graphs.Comment: 12 page

    The step Sidorenko property and non-norming edge-transitive graphs

    Get PDF
    Sidorenko's Conjecture asserts that every bipartite graph H has the Sidorenko property, i.e., a quasirandom graph minimizes the density of H among all graphs with the same edge density. We study a stronger property, which requires that a quasirandom multipartite graph minimizes the density of H among all graphs with the same edge densities between its parts; this property is called the step Sidorenko property. We show that many bipartite graphs fail to have the step Sidorenko property and use our results to show the existence of a bipartite edge-transitive graph that is not weakly norming; this answers a question of Hatami [Israel J. Math. 175 (2010), 125-150].Comment: Minor correction on page

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat

    Off-Diagonal Commonality of Graphs via Entropy

    Full text link
    A graph HH is common if the limit as n→∞n\to\infty of the minimum density of monochromatic labelled copies of HH in an edge colouring of KnK_n with red and blue is attained by a sequence of quasirandom colourings. We apply an information-theoretic approach to show that certain graphs obtained from odd cycles and paths via gluing operations are common. In fact, for every pair (H1,H2)(H_1,H_2) of such graphs, there exists p∈(0,1)p\in(0,1) such that an appropriate linear combination of red copies of H1H_1 and blue copies of H2H_2 is minimized by a quasirandom colouring in which p(n2)p\binom{n}{2} edges are red; such a pair (H1,H2)(H_1,H_2) is said to be (p,1−p)(p,1-p)-common. Our approach exploits a strengthening of the common graph property for odd cycles that was recently proved using Schur convexity. We also exhibit a (p,1−p)(p,1-p)-common pair (H1,H2)(H_1,H_2) such that H2H_2 is uncommon.Comment: 29 pages. Several results and open problems which appear here appeared in early arXiv versions of the paper 'Common Pairs of Graphs' arXiv:2208.02045 which was later split into two papers, of which this is the secon

    Theory of combinatorial limits and extremal combinatorics

    Get PDF
    In the past years, techniques from different areas of mathematics have been successfully applied in extremal combinatorics problems. Examples include applications of number theory, geometry and group theory in Ramsey theory and analytical methods to different problems in extremal combinatorics. By providing an analytic point of view of many discrete problems, the theory of combinatorial limits led to substantial results in many areas of mathematics and computer science, in particular in extremal combinatorics. In this thesis, we explore the connection between combinatorial limits and extremal combinatorics. In particular, we prove that extremal graph theory problemsmay have unique optimal solutions with arbitrarily complex structure, study a property closely related to Sidorenko's conjecture, one of the most important open problems in extremal combinatorics, and prove a 30-year old conjecture of Gyori and Tuza regarding decomposing the edges of a graph into triangles and edges

    Recent developments in graph Ramsey theory

    Get PDF
    Given a graph H, the Ramsey number r(H) is the smallest natural number N such that any two-colouring of the edges of K_N contains a monochromatic copy of H. The existence of these numbers has been known since 1930 but their quantitative behaviour is still not well understood. Even so, there has been a great deal of recent progress on the study of Ramsey numbers and their variants, spurred on by the many advances across extremal combinatorics. In this survey, we will describe some of this progress
    corecore