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Abstrat

Sidorenko's Conjeture asserts that every bipartite graph H has the

Sidorenko property, i.e., a quasirandom graph minimizes the density of

H among all graphs with the same edge density. We study a stronger

property, whih requires that a quasirandom multipartite graph minimizes

the density of H among all graphs with the same edge densities between

its parts; this property is alled the step Sidorenko property. We show that

many bipartite graphs fail to have the step Sidorenko property and use our

results to show the existene of a bipartite edge-transitive graph that is not

weakly norming; this answers a question of Hatami [Israel J. Math. 175

(2010), 125�150℄.
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1 Introdution

Sidorenko's Conjeture is one of the most important open problems in extremal

graph theory. A graph H has the Sidorenko property if a quasirandom graph

minimizes the density of H among all graphs with the same edge density. The

beautiful onjeture of Erd®s and Simonovits [21℄ and of Sidorenko [20℄ asserts

that every bipartite graph has the Sidorenko property (it is easy to see that

non-bipartite graphs fail to have the property). In this paper, we onsider a

more general property, the step Sidorenko property, and explore the link between

this property and weakly norming graphs to show the existene of a bipartite

edge-transitive graph that is not weakly norming. This answers a question of

Hatami [13℄ whether suh graphs exist.

Sidorenko's Conjeture is one of the entral problems in extremal ombina-

toris. Sidorenko [20℄ on�rmed the onjeture for trees, yles and bipartite

graphs with one of the sides having at most three verties; the ase of paths is

equivalent to the Blakley-Roy inequality for matries, whih was proven in [1℄.

Additional graphs, suh as ubes and bipartite graphs with a vertex omplete to

the other part, were added to the list of graphs with the Sidorenko property by

Conlon, Fox and Sudakov [3℄, by Hatami [13℄, and by Szegedy [24℄. Reursively

desribed lasses of bipartite graphs that have the Sidorenko property were ob-

tained by Conlon, Kim, Lee and Lee [4℄, by Kim, Lee and Lee [16℄, by Li and

Szegedy [17℄ and by Szegedy [23℄. In partiular, Szegedy [23℄ has desribed a

lass of graphs alled thik graphs, whih are amenable to showing the Sidorenko

property using the entropy method argument that he developed. More reently,

Conlon and Lee [6℄ showed that bipartite graphs suh that one of the parts has

many verties of maximum degree have the Sidorenko property. Sidorenko's Con-

jeture is also known to hold in the loal sense [18, Proposition 16.27℄, i.e., a small

modi�ation of a quasirandom graph preserving its edge density does not derease

the number of opies of any bipartite graph. A stronger statement of this type,

whih omes with uniform quantitative bounds, has reently been proven by Fox

and Wei [9℄.

Sidorenko's Conjeture is also related to other well-studied problems in graph

theory. We would like to partiularly mention the onnetion to quasirandom

graphs. We say that a graph H is foring if all minimizers of the density of H
among graphs with the same edge density are quasirandom graphs. Note that if

H is foring, then H has the Sidorenko property. The lassial result of Thoma-

son [25℄, also see [2℄, says that the yle of length four is foring. This result was

generalized by Chung, Graham and Wilson [2℄, who showed that every omplete

bipartite graph K2,n is foring, and by Skokan and Thoma [22℄, who showed that

all omplete bipartite graphs are foring. A haraterization of foring graphs was

stated as a question by Skokan and Thoma [22℄ and onjetured by Conlon, Fox

and Sudakov [3℄: a graph H is foring if and only if H is bipartite and ontains

a yle.
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Another graph theoreti notion related to Sidorenko's Conjeture is that of

ommon graphs. A graph H is ommon if a quasirandom graph minimizes the

sum of densities of H and the omplement ofH . An old theorem of Goodman [12℄

says that the omplete graph K3 is ommon. The onjeture of Erd®s that the

omplete graph K4 is also ommon was disproved by an ingenious onstrution of

Thomason [26℄; ounterexamples with a simpler struture were found by Franek

and Rödl in [11℄. Jagger, �´oví£ek and Thomason [15℄ showed that no graph

ontainingK4 is ommon. On the other hand, it is known that the graph obtained

from K4 by removing an edge [10℄ is ommon and so is the wheel W5 [14℄. The

lassi�ation of ommon graphs remains a wide open problem.

Our results are motivated by the relation of Sidorenko's Conjeture to weakly

norming graphs, whih are of substantial interest in the theory of graph limits.

Due to its tehnial nature, we defer the de�nition to Setion 2. Intuitively,

these are graphs H suh that the density of H in other graphs de�nes a norm

on the spae of graphons (graph limits). Chapter 14.1 in Lovász' book [18℄ gives

an introdution to this notion. Every weakly norming graph has the Sidorenko

property [13℄. However, every weakly norming graph also has a stronger prop-

erty [18, Proposition 14.13℄, whih we all the step Sidorenko property. Informally

speaking, a graph H has the step Sidorenko property if a multipartite quasiran-

dom graph minimizes the density of H among all multipartite graphs with the

same density inside and between its parts; we give a formal de�nition in Setion 2.

It is not hard to �nd a graph that has the Sidorenko property but not the step

Sidorenko property; the yle of length four with an added pendant edge is an

example (see Setion 2).

In this paper, we present tehniques for showing that a bipartite graph fails to

have the step Sidorenko property. Our tehniques allow us to show that graphs

as simple and symmetri as toroidal grids, i.e., Cartesian produts of any number

of yles, do not have the step Sidorenko property. The only exeptions are

hyperubes (and single yles of even length), whih were shown to be weakly

norming by Hatami [13℄ (see also [18, Proposition 14.2℄ for a onise presentation).

The fat that most of the toroidal grids are not weakly norming is surprising

when ontrasted with the result of Conlon and Lee [5℄ that the inidene graphs

of regular polytopes are weakly norming. Sine toroidal grids Cn�Cn are edge-

transitive, this answers in the negative a question of Hatami [13℄ whether all

edge-transitive bipartite graphs are weakly norming.

2 Preliminaries

In this setion, we introdue the notation that is used throughout the paper.

In general, we follow standard graph theory notation. All graphs onsidered in

this paper are simple and without loops. We sometimes onsider graphs with

verties and edges assigned non-negative weights; when this is the ase, we refer
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to suh a graph as a weighted graph. The order of a graph G, i.e., its number

of verties, will be denoted by |G| and the size of a graph G, i.e., its number of

edges, by ‖G‖. If v and w are two verties of G, then dist(v, w) is the distane

between v and w, i.e., the number of edges of the shortest path from v to w. The
Cartesian produt of graphs G1, . . . , Gk, denoted G1� · · ·�Gk, is the graph with

vertex set equal to the Cartesian produt of the vertex sets of G1, . . . , Gk, where

two verties (u1, . . . , uk) and (v1, . . . , vk) are adjaent if there exists 1 ≤ i0 ≤ k
suh that ui0vi0 is an edge of Gi0 and ui = vi for all i 6= i0.

In the rest of this setion, we introdue notation related to graph homomor-

phisms and present notions from the theory of graph limits that we need for our

exposition. We also formally de�ne the Sidorenko property, the step Sidorenko

property and weakly norming graphs.

2.1 Graph homomorphisms

A homomorphism from a graph H to a graph G is a mapping f from V (H) to
V (G) suh that if vv′ is an edge of H , then f(v)f(v′) is an edge of G. If f is

a homomorphism from H to G, |f−1(X)| for X ⊆ V (G) denotes the number

of verties of H mapped to a vertex in X and |f−1(X)| for X ⊆ E(G) denotes
the number of edges mapped to an edge in X ; for simpliity, we write |f−1(x)|
instead of |f−1({x})|.

We will need to onsider homomorphisms extending a partial mapping be-

tween verties of H and G and we now introdue notation that will be handful in

this setting. We write H(v1, . . . , vk) for a graph H with k distinguished verties

v1, . . . , vk. If H(v1, . . . , vk) and G(v′1, . . . , v
′
k) are two graphs with k distinguished

verties, then a homomorphism from H(v1, . . . , vk) to G(v′1, . . . , v
′
k) is a homo-

morphism from H to G that maps vi to v′i for i = 1, . . . , k.
We will also onsider homomorphisms to graphs with vertex and edge weights.

As given earlier, a weighted graph is a graph G where eah vertex and eah

edge of G is assigned a non-negative weight; the mapping w from V (G) ∪ E(G)
assigning the weights will be referred to as a weight funtion of G. The weight of

a homomorphism f from H to a weighted graph G, denoted w(f), is de�ned as

∏

v∈V (H)

w(f(v))
∏

vv′∈E(H)

w(f(v)f(v′)) =
∏

v∈V (G)

w(v)|f
−1(v)|

∏

e∈E(G)

w(e)|f
−1(e)|

.

We will often speak about the sum of the weights of homomorphisms from a

graph H(v1, . . . , vk) to a weighted graph G(v′1, . . . , v
′
k); this sum will be denoted

by hom(H(v1, . . . , vk), G(v′1, . . . , v
′
k)) and we will understand it to be zero if no

suh homomorphism exists.

We also use the just introdued notation for graphs with distinguished verties

when talking about blow-ups of graphs. A k-blow-up of a graph H(v) is the graph
obtained from H by replaing the vertex v with k new verties, whih we refer
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to as lones of v. The verties di�erent from v preserve their adjaenies, the

lones of v form an independent set and eah of them is adjaent preisely to the

neighbors of v. Observe that if H is a weighted graph, then if the edges of the

k-blow-up of H(v) have the same weight as in H , the verties of the k-blow-up
exept for the lones have the same weights as in H and eah lone has weight

equal to 1/k of the weight of v, then the sum of the weights of homomorphisms

from G to H and the sum of the weights of homomorphisms from G to the

k-blow-up are the same for every graph G.

2.2 Graph limits

The theory of graph limits o�ers analyti tools to study large graphs. We present

here only those notions that we need further, and refer the reader to the mono-

graph of Lovász [18℄ on the subjet for a omprehensive introdution to the theory.

Let t(H,G) be the normalized number of homomorphisms from a graph H
to a graph G, i.e., t(H,G) = hom(H,G)/|V (G)||V (H)|

where G in hom(H,G)
is understood to have all the vertex and edge weights equal to one. A sequene

(Gn)n∈N of graphs is onvergent if the sequene t(H,Gn) onverges for every graph

H . A onvergent sequene of graphs an be represented by an analyti objet

alled a graphon. A graphon is a (Borel) measurable symmetri funtion W
from [0, 1]2 to [0, 1], i.e., W (x, y) = W (y, x) for all (x, y) ∈ [0, 1]2. One an think

(although very impreisely) of a graphon as a ontinuous version of the adjaeny

matrix of a graph. Led by this intuition, we an de�ne the density of a graph H
in a graphon W as

t(H,W ) =

∫

[0,1]V (H)

∏

vv′∈E(H)

W (xv, xv′) dx
V (H)

.

Note that the de�nition of t(H,W ) does not require W to be non-negative and

we an de�ne t(H, f) in the same way for any bounded measurable funtion

f : [0, 1]2 → R.

We say that a graphon W is a limit of a onvergent sequene (Gn)n∈N of

graphs if t(H,W ) is the limit density of t(H,Gn) for every graph H . It is not

hard to show that for every graphon W , there exists a onvergent sequene of

graphs suh that W is its limit. The onverse statement is also true as shown

by Lovász and Szegedy [19℄, i.e., for every onvergent sequene of graphs, there

exists a graphon that is its limit.

The density t(K2,W ) of K2 is equal to the L1-norm of a graphon W as a

funtion from [0, 1]2. This leads to the question whih graphs H an be used to

de�ne a norm on the spae of measurable funtions on [0, 1]2 or, more restritively,

on the spae of graphons. That is, we say that a graph H is weakly norming if

the funtion ‖W‖H = t(H,W )1/‖H‖
is a norm on the spae of graphons, i.e.,

‖W‖H = 0 if and only if W is equal to zero almost-everywhere and the triangle
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inequality ‖W1 +W2‖H ≤ ‖W1‖H + ‖W2‖H holds for any two graphons W1 and

W2. Observe that H is weakly norming if and only if ‖ |f | ‖H is a norm on the

set of all bounded symmetri funtions f from [0, 1]2 to R (if we required that

‖f‖H , without the absolute value, is a norm on all suh funtions, we would get

the slightly stronger notion of norming graphs).

It is not hard to show that every weakly norming graph must be bipartite.

Hatami [13℄ showed stronger statements as orollaries of his haraterization of

weakly norming graphs as those satisfying a ertain Hölder type inequality. First,

every weakly norming graph H must be biregular, i.e., all verties in the same

part of its bipartition have the same degree. Seond, every subgraph H ′
of a

onneted weakly norming graph H must satisfy that

‖H ′‖

|H ′| − 1
≤

‖H‖

|H| − 1
.

Weakly norming graphs inlude omplete bipartite graphs (in partiular, stars),

even yles and hyperubes [13℄; later, Conlon and Lee [5℄ presented a large lass

of weakly norming graphs, whih they refer to as re�etion graphs.

Every weighted graph G with a weight funtion w that assigns edges weights

between 0 and 1 an be assoiated with a graphon WG as follows. Eah vertex v
of G is assoiated with a measurable set Jv with measure w(v)/w(V (G)) in suh

a way that the sets Jv, v ∈ V (G), form a partition of the interval [0, 1]; w(V (G))
denotes the sum of the weights of the verties of G. For x ∈ Jv and y ∈ Jv′ , we

set W (x, y) = w(vv′) if vv′ ∈ E(G) and W (x, y) = 0 otherwise (in partiular, we

set W (x, y) = 0 if v = v′). It is not hard to observe that hom(H,G) is equal to
t(H,WG) · w(V (G))|H|

; in partiular, if the sum of the weights of verties of G
is one, then hom(H,G) = t(H,WG). This orrespondene will allow us to study

weakly norming graphs in terms of weighted homomorphisms.

2.3 Step Sidorenko property

We now use the language of graph limits to desribe the Sidorenko property and

to formally de�ne the step Sidorenko property. A graph H has the Sidorenko

property if

t(K2,W )‖H‖ ≤ t(H,W ) (1)

for every graphon W . The left hand side an also be written as t(H,Up), where
Up ≡ p is the onstant graphon with the same edge density p = t(K2,W ) as W .

A graph H is foring if it has the Sidorenko property and (1) holds with equality

only ifW is equal to some p ∈ [0, 1] almost everywhere. As we have presented ear-

lier, Sidorenko's Conjeture asserts that every bipartite graph has the Sidorenko

property and the Foring Conjeture asserts that every bipartite graph with a

yle is foring.
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Let P be a partition of the interval [0, 1] into �nitely many non-null measur-

able sets. We now de�ne the stepping operator . If W is a graphon, then the

graphon WP
is de�ned for (x, y) ∈ [0, 1]2 as the `step-wise average':

WP(x, y) =
1

|J‖J ′|

∫

J×J ′

W (s, t) ds dt

where J and J ′
are the unique parts from P suh that x ∈ J and y ∈ J ′

, and |X|
denotes the measure of a measurable subset X ⊆ [0, 1]. Note that the graphon

WP
is onstant on J × J ′

for any J, J ′ ∈ P, i.e., the graphon WP
is a step

graphon.

Let P0 be the partition with a single part being the interval [0, 1] itself. A

graph H has the Sidorenko property if and only if t(H,WP0) ≤ t(H,W ) for every
graphon W . This motivates the following de�nition. A graph H has the step

Sidorenko property if and only if

t(H,WP) ≤ t(H,W )

for every graphon W and every partition P of [0, 1] into �nitely many non-null

measurable sets. Sine all weakly norming graphs [18, Proposition 14.13℄ have the

step Sidorenko property, it follows that omplete bipartite graphs, even yles,

hyperubes and more generally re�etion graphs de�ned by Conlon and Lee [5℄

all have the step Sidorenko property.

The de�nition of the step Sidorenko property yields that every graph that

has the step Sidorenko property also has the Sidorenko property. However, the

onverse is not true in general as we now demonstrate. Let C+
4 be the 5-vertex

graph obtained from a yle of length four by adding a single vertex adjaent

to one of the verties of the yle. The graph C+
4 has the Sidorenko property

beause, e.g., it is a bipartite graph with a vertex omplete to the other part [3℄.

On the other hand, C+
4 does not have the step Sidorenko property. Consider the

partition P = {[0, 2
5
), [2

5
, 1]} and the graphon W that is de�ned as follows (the

symmetri ases of (x, y) are omitted).

W (x, y) =































0.9 if (x, y) ∈ [0, 1
5
)× [0, 1

5
),

0.85 if (x, y) ∈ [0, 1
5
)× [1

5
, 2
5
),

0.2 if (x, y) ∈ [0, 1
5
)× [2

5
, 1],

1 if (x, y) ∈ [1
5
, 2
5
)× [1

5
, 2
5
), and

0 otherwise.

A straightforward omputation yields that

t(C+
4 ,W ) ≃ 0.007453 and

t(C+
4 ,W

P) ≃ 0.007508 > t(C+
4 ,W ) .

Hene, the graph C+
4 does not have the step Sidorenko property.
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3 Grids

In this setion, we demonstrate our tehniques from Setion 4 in a less general

setting. We believe that this makes our presentation more aessible.

Intuitively, we onsider a graph G with distinguished verties u0, u1, u2 suh

that u0u1 and u0u2 are edges. The idea is to blow-up u0 into two opies and

slightly perturb weights only on edges orresponding to u0u1 and u0u2, inreas-

ing weights of edges for one opy and dereasing it for the other proportionally

to a parameter α, resulting in a weighted graph Gα. A partition P on the or-

responding graphon Wα is then de�ned so that the stepping operator averages

out this perturbation, returning to the original graph: WP
α = WG. The di�er-

ene in homomorphism densities t(H,WP
α ) − t(H,Wα) is then analyzed in the

limit of small perturbations α: �rst order hanges (those linear in α) anel out.
Seond order hanges result in a ondition that an be expressed fairly onisely

as positive semide�niteness of a matrix whose entries ount ertain onstrained

homomorphisms.

The more powerful setting in Setion 4 uses essentially the same idea, only

blowing up more verties, resulting in a larger matrix and allowing us to fur-

ther onstraint the homomorphisms we have to ount. We turn to hoosing the

starting weighted graph G and interpreting these ounts in later orollaries.

Theorem 1. Let H be a graph and let G be a weighted graph with three dis-

tinguished verties u0, u1 and u2 suh that u0u1 and u0u2 are edges. For i, j ∈
{1, 2}, let Mij be the sum of the weights of homomorphisms from H(v0, v1, v2) to
G(u0, ui, uj) summed over all hoies of verties v0, v1 and v2 in H suh that v0v1
and v0v2 are edges, i.e.,

Mij =
∑

v0v1,v0v2∈E(H)

hom(H(v0, v1, v2), G(u0, ui, uj)) .

If the (2 × 2)-matrix M is not positive semide�nite, i.e., M11M22 < M12
2
, then

H does not have the step Sidorenko property.

Proof. Let w be the weight funtion of G. We assume that the sum of the weights

of verties of G is one (if needed, we multiply the weights of all verties by the

same onstant). Consider the step graphon WG assoiated with the weighted

graph G. Let Ju be the measurable set orresponding to a vertex u of G and set

P = {Ju, u ∈ V (G)}.
Suppose that the matrix M assoiated with G is not positive semide�nite and

�x a vetor a = (a1, a2)
T
suh that aTMa < 0. We next de�ne a weighted graph

Gα with a parameter α ≥ 0 as follows. The graph Gα is a 2-blow-up of G(u0);
let u+

0 and u−
0 be the lones of u0. Eah of the lones u+

0 and u−
0 has weight

w(u0)/2. The weight of the edge u+
0 ui is w(u0ui)(1 + αai) and the weight of the

edge u−
0 ui is w(u0ui)(1 − αai), i = 1, 2. The remaining verties and edges have

8



weights equal to their ounterparts in G. Let Wα be the step graphon assoiated

with the weighted graph Gα suh that the set orresponding to a vertex u 6= u0

is Ju and the sets orresponding to the verties u+
0 and u−

0 are subsets of Ju0 .

Observe that WG = Wα for α = 0 and that WG = WP
α for any α.

Our aim is to show that t(H,Wα) < t(H,WG) for some α ∈ (0, 1). To do

so, we analyze the density t(H,Wα) as a funtion of α. Note that t(H,Wα) is

atually a polynomial in α. We next wish to determine the oe�ients c1 and c2
suh that

t(H,Wα) = t(H,WG) + c1α + c2α
2 +O(α3) . (2)

The oe�ient c1 an be determined as follows:

c1 =
∑

v0v1∈E(H)

a1 hom(H(v0, v1), G0(u
+
0 , u1))− a1 hom(H(v0, v1), G0(u

−
0 , u1)) +

a2 hom(H(v0, v1), G0(u
+
0 , u2))− a2 hom(H(v0, v1), G0(u

−
0 , u2)) .

Sine hom(H(v0, v1), G0(u
+
0 , ui)) = hom(H(v0, v1), G0(u

−
0 , ui)) for all edges v0v1 ∈

E(G) and all i ∈ {1, 2}, we onlude that c1 = 0.
We next analyze the oe�ient c2. In this ase, we need to ount homomor-

phisms mapping two edges, say v0v1 and v′0v
′
1, of H to edges u+

0 ui and to u−
0 ui of

G0, i = 1, 2. If v0 6= v′0, then the ontributions of the homomorphisms mapping

the edge v0v1 to u+
0 ui and u−

0 ui have opposite signs and anel out. Hene, we

obtain the following formula for c2:

c2 =
∑

v0v1,v0v2∈E(H)

2
∑

i,j=1

aiaj
(

hom(H(v0, v1, v2), G0(u
+
0 , ui, uj)) +

hom(H(v0, v1, v2), G0(u
−
0 , ui, uj))

)

.

The de�nition of the matrix M now yields that

c2 =

2
∑

i,j=1

aiaj ·Mij = aTMa < 0 .

Sine c1 = 0 and c2 < 0, we onlude using WG = WP
α and (2) that t(H,Wα) <

t(H,WG) for small enough α > 0. It follows that the graph H does not have the

step Sidorenko property.

The setting of Theorem 1 is su�ient to prove that the only two-dimensional

toroidal grid that is weakly norming is C4�C4 (note that the toroidal grids Cℓ�Cℓ

with ℓ odd are not Sidorenko, and hene also not weakly norming, beause they

are not bipartite).

We apply Theorem 1 with G = H = Cℓ�Cℓ. The identity homomorphism

ontributes to the o�-diagonal entry of the matrix from Theorem 1 while the

9



u0 u1

u2

b1

b2

b3
b4

Figure 1: Notation used in the proof of Corollary 2. The edges b1, b2, b3 and b4
are drawn bold.

homomorphisms ontributing to the diagonal entries have to �fold� two edges onto

one. We hoose weights in the target grid in suh a wat that the ontribution of

the former homomorphisms beomes smaller, whih makes the matrix not to be

positive semide�nite.

Corollary 2. Let ℓ ≥ 6 be an even integer. The Cartesian produt Cℓ�Cℓ does

not have the step Sidorenko property.

Proof. Fix ℓ ≥ 6 and let G and H be both equal to the graph Cℓ � Cℓ; we denote

the verties of G and H by (i, j), 0 ≤ i, j ≤ ℓ−1, in suh a way that two verties

are adjaent if they agree in one of the oordinates and di�er by one in the other

(all omputations with the entries are omputed modulo ℓ throughout the proof).
Let u0 be the vertex (0, 0), u1 the vertex (1, 0) and u2 the vertex (0, 1). Further,
let b1 be the edge (1, 0)(1,−1), b2 the edge (1, 0)(2, 0), b3 the edge (0, 1)(−1, 1)
and b4 the edge (0, 1)(0, 2) (see Figure 1).

We next de�ne the weights of the verties and the edges of G; to do so, we

use a parameter γ ∈ N, whih will be �xed later. The weight w(v) of a vertex v is

γdist(u0,v)
for v 6= u0, u1, u2, w(u0) = γ−3

and w(ui) = γdist(u0,ui)−3 = γ−2
, i = 1, 2.

The weights of all edges of G are equal to one exept for the edges b1, b2, b3 and
b4 that have weight γ−1/4

.

We wish to apply Theorem 1 with the graphs H and G, and the distinguished

verties u0, u1 and u2. Instead of verifying that the matrixM from the statement

of Theorem 1 is not positive semide�nite, we onsider the matrix M suh that

Mij =
∑

v1,v2∈NH (u0)

hom(H(u0, v1, v2), G(u0, ui, uj)) .

10



Sine H is vertex-transitive, the onsidered matrix M is positive semide�nite

if and only if the matrix from the statement of Theorem 1 is. Observe that

M1,1 = M2,2 and M1,2 = M2,1.

Consider a homomorphism f from H(u0, v1, v2) to G(u0, ui, uj) for some i, j ∈
{1, 2}. Observe that the weight of the homomorphism f is equal to

γ

∑

v∈V (H)

dist(u0,f(v))−3|f−1({u0,u1,u2})|− 1
4 |f

−1({b1,b2,b3,b4})|
.

Note that if f is the identity, then the weight of f is equal to γW
where

W =
∑

v∈V (H)

dist(u0, v)− 10 .

Sine the identity is a homomorphism from H(u0, ui, uj) to G(u0, ui, uj) for i 6= j,
it follows that the entries M1,2 and M2,1 are of order Ω(γW ), as funtions of γ.
We next show that both M1,1 and M2,2 are of order o(γ

W ). Sine M1,1 = M2,2, it

is enough to argue that that M1,1 = o(γW ).
We show that every homomorphism f from H(u0, v1, v2) to G(u0, u1, u1) has

weight at most γW− 1
2
; this will imply that M1,1 = o(γW ). Fix a homomorphism f

from H(u0, v1, v2) to G(u0, u1, u1) with weight at least γW
. By symmetry, we may

assume that v1 = (1, 0) and v2 ∈ {(−1, 0), (0, 1)}. Note that |f−1({u0, u1, u2})| ≥
3. Sine f is a homomorphism, any shortest path from u0 to v is mapped by f
to a walk of at most length dist(u0, v) from f(u0) = u0 to f(v), it follows that
dist(u0, f(v)) ≤ dist(u0, v) for every vertex v. Also observe that the parities of

dist(u0, f(v)) and dist(u0, v) are the same sine the graph G = H is bipartite.

Sine the weight of f is at least γW
, the following holds: |f−1({u0, u1, u2})| = 3,

dist(u0, f(v)) = dist(u0, v) for every vertex v of H and |f−1({b1, b2, b3, b4})| ≤ 4.
Sine |f−1({u0, u1, u2})| = 3, no vertex other than u0, v1 and v2 is mapped by f
to any of u0, u1 and u2; in partiular, no vertex is mapped to u2.

To �nish the proof, we distinguish two ases based on whether v2 = (−1, 0)
or v2 = (0, 1). We start with analyzing the ase v2 = (−1, 0). Let i ∈ {1, 2}
and let v be a neighbor of vi di�erent from (0, 0) and vi + vi. If f(v) = (1, 1) or
f(v) = (2, 0), then the ommon neighbor of (0, 0) and v di�erent from vi must be

mapped to u1 or u2, whih is impossible. Hene, f(v) = (1,−1). Sine the hoie
of i and v was arbitrary, it follows that all the four edges (1, 0)(1, 1), (1, 0)(1,−1),
(−1, 0)(−1, 1) and (−1, 0)(−1,−1) are mapped to the edge b1; in partiular, no

other edge is mapped to b1 or b2. This implies that the vertex (2, 0) is mapped

by f to (1, 1). It follows that the vertex (2, 1), whih is a ommon neighbor of

(1, 1) and (2, 0), must be mapped to the unique ommon neighbor u1 = (1, 0) of
the verties f((1, 1)) = (1,−1) and f((2, 0)) = (1, 1), whih is impossible. This

�nishes the analysis of the ase v2 = (−1, 0).
It remains to analyze the ase that v2 = (0, 1). If the vertex (1,−1) was

mapped to (2, 0) or (1, 1), then the vertex (0,−1), whih is a ommon neighbor of

11



(1,−1) and (0, 0), would have to be mapped to (1, 0) or (0, 1), whih is impossible.

Hene, the vertex (1,−1) is mapped by f to itself and the vertex (0,−1) is also
mapped to itself. Sine swapping oordinates is a symmetry mapping v1 and

v2 between eah other, a symmetri argument yields that the vertex (−1, 0) is

mapped to (0,−1).
Next, if the vertex (2, 0) was mapped to the vertex (1, 1), then the vertex

(2,−1), whih is a ommon neighbor of (2, 0) and (1,−1), would have to be

mapped to (1, 0), whih is impossible. It follows that the vertex (2, 0) must be

mapped to (2, 0) or (1,−1). We onlude that the edge b1 is mapped to itself and

the edge b2 to either b1 or b2. A symmetri argument yields that the edge b3 is

mapped to b1 and the edge b4 to b1 or b2. In partiular, no other edges of G are

mapped to any of the edges b1, b2, b3 and b4. This implies that the vertex (1, 1)
is mapped by f to itself. Consequently, the vertex (2, 0) is also mapped to itself

(otherwise, the vertex (2, 1) would have to be mapped to (1, 0)).
We now prove the following statement for r = 1, . . . , ℓ/2− 1 by indution on

r: all the verties (r, 1), (r,−1) and (r + 1, 0) are mapped by f to themselves.

We have already established this statement for r = 1, so it remains to present the

indution step. Fix r = 2, . . . , ℓ/2− 1 and assume that all the verties (r− 1, 1),
(r − 1,−1) and (r, 0) are mapped to themselves. The vertex (r, 1), whih is a

ommon neighbor of (r−1, 1) and (r, 0), must be mapped to a ommon neighbor

of (r − 1, 1) and (r, 0) at the distane r + 1 from (0, 0). However, the only suh

vertex is (r, 1). A symmetri argument yields that the vertex (r,−1) is mapped

to itself. Sine the vertex (r + 1, 0) must be mapped to a neighbor of (r, 0) at
distane r + 1 from (0, 0), it an only be mapped to one of the verties (r, 1),
(r+1, 0) and (r,−1). By symmetry, it is enough to exlude that it is mapped to

(r, 1). If this was the ase, then the vertex (r+1,−1), whih is a ommon neighbor

of (r,−1) and (r + 1, 0), must be mapped to (r, 0), whih is impossible. Hene,

the vertex (r + 1, 0) is mapped to itself, onluding the proof of the statement.

We have just shown that the vertex (ℓ/2, 0) = (−ℓ/2, 0) is mapped to itself;

earlier, we have shown that the vertex (−1, 0) is mapped to (0,−1). However,

the path (−1, 0)(−2, 0) · · · (−ℓ/2, 0) must be mapped by f to a walk with at most

ℓ/2 verties but there is no suh walk between the verties (0,−1) and (−ℓ/2, 0).
Hene, there is no homomorphism from H(u0, v1, v2) to G(u0, u1, u1) with weight

at least γW
.

4 General Condition

We now present our general tehnique for establishing that ertain graphs do not

have the step Sidorenko property. One di�erene is that instead of onsidering

only two neighbors of a distinguished vertex u0, we an hoose any number of

neighbors u1, . . . , uk, giving a larger matrix. More importantly, we are able to

restrit homomorphisms onsidered in the statement to only those that map the
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neighborhood of eah ui bijetively (to the neighborhood of the image of ui, or a

hosen subset of it).

The proof extends the arguments presented in the proof of Theorem 1. The

main new idea is that by blowing up ui, and appropriately hoosing weights on

opies of the edges to its neighbors, we an obtain an expression that is ounting

homomorphisms to the original graph, but with a weight that is an arbitrary

funtion of how many neighbors of ui map to eah neighbor of the image of ui.

We hoose this funtion to ensure that exatly one neighbor of ui (or exatly

zero) must map to eah neighbor of its image.

Theorem 3. Let H be a graph and let G be a weighted graph with k + 1 distin-

guished verties u0, u1, . . . , uk suh that u0u1, . . . , u0uk are edges and u1, . . . , uk

form an independent set. Further, let Ui, i = 1, . . . , k, be a subset of neighbors

of ui ontaining u0, and let M be the (k × k)-matrix suh that the entry Mij

is the sum of the weights of homomorphisms from H(v0, v1, v2) to G(u0, ui, uj),
where the sum runs over all hoies of verties v0, v1 and v2 in H, suh that the

neighbors of v1 are one-to-one mapped to Ui and the neighbors of v2 to Uj. If the

matrix M is not positive semide�nite, then H does not have the step Sidorenko

property.

Proof. Suppose that the matrix M is not positive semide�nite and �x a vetor

a suh that aTMa < 0. Let w be the weight funtion of G. As in the proof

of Theorem 1, we assume that the sum of the weights of verties of G is one.

Similarly, we assume that the weight of eah edge is at most 1/2 (if needed, we

an multiply the weights of all edges by the same onstant).

We next de�ne a weighted graph Gε,α, whih is parameterized by ε > 0 and

α ∈ R. The struture of the graph is independent of ε and α and is the following.

Let n be the number of verties of H . We onsider the 3-blow-up of a vertex u0

and

(

n|Ui|−1 + 1
)

-blow-up of a vertex ui. The three lones of u0 will be denoted

by u′
0, u

+
0 and u−

0 ; one of the n|Ui|−1 + 1 lones of ui will be denoted by u′
i and

the remaining ones by ui,j1,...,j|Ui|−1
where 1 ≤ j1, . . . , j|Ui|−1 ≤ n. We next remove

every edge going from the vertex ui,j1,...,j|Ui|−1
to a vertex outside the set Ui that

is not u+
0 or u−

0 , i.e., the vertex ui,j1,...,j|Ui|−1
is adjaent to u+

0 , u
−
0 and the verties

of Ui \ {u0}.
The weight of the vertex u′

0 is (1 − 2ε)w(u0) and the weight of eah of the

verties u+
0 and u−

0 is εw(u0). The weight of the vertex u′
i is (1−n|Ui|−1ε)w(ui) and

the weight of eah of the verties ui,j1,...,j|Ui|−1
is εw(ui). The remaining verties

of Gε,α have the same weights as in G.

Before de�ning the weights of the edges, we de�ne an auxiliary matrix B.

The matrix B has n rows and n olumns and Bij = 2(i−1)(j−1)
. Note that B is a

Vandermonde matrix. Sine the matrixB is invertible, there exists a vetor b suh
that Bb = (0, 1, 0, . . . , 0)T . The weight of the edge between u+

0 and ui,j1,...,j|Ui|−1
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is equal to

w(u0ui)



1 + aiα

|Ui|−1
∏

m=1

bjm





,

and the weight of the edge between u−
0 and ui,j1,...,j|Ui|−1

is equal to

w(u0ui)



1− aiα

|Ui|−1
∏

m=1

bjm





.

The weights of the edges inident with u′
0 and the remaining edges inident with

u+
0 and u−

0 are equal to the weights of their ounterparts in G. Fix i ∈ {1, . . . , k}
and let z1, . . . , z|Ui|−1 be the verties of Ui di�erent from u0. The weight of the

edge between the verties ui,j1,...,j|Ui|−1
and zm is equal to 2jm−1w(uizm). The

weights of the edges inident with the vertex u′
i are the same as the weights of

their ounterparts in G. We have just de�ned the weights of all edges inident

with at least one lone. The weights of the remaining edges are the same as in G.

We analyze t(H,Wε,α) as a funtion of α for α, ε ∈ (0, 1). In partiular, we

will show that

t(H,Gε,α) = t(H,Gε,0) + cεε
3α2 +O(ε4α2) (3)

for a oe�ient cε, whih we will estimate. Sine the oe�ient cε depends on

ε, it is important to emphasize that the onstants hidden in big O notation in

(3) are independent of ε and α, i.e., the equality (3) represents that there exists

K > 0, whih is independent of ε, and a oe�ient cε for every ε ∈ (0, 1) suh
that the value of t(H,Gε,α) di�ers from t(H,Gε,0) + cεε

3α2
by at most Kε4α2

for

every α ∈ (0, 1).
We now proeed with analyzing the funtion t(H,Wε,α). As in the proof

of Theorem 1, we observe that t(H,Wε,α) is a polynomial in α and the linear

terms in α anel out by pairing homomorphisms using u+
0 and those using u−

0 .

Hene, only quadrati and higher order terms remain. To estimate cε, we need

to onsider the terms orresponding to homomorphisms mapping exatly three

verties of H to the verties of Gε,α with weight ε and these verties must indue

a 2-edge path with the middle vertex mapped to u+
0 or to u−

0 (the ontribution

of other homomorphisms anels out by pairing those using u+
0 and those using

u−
0 , similarly as in the proof of Theorem 1). We arrive at the following identity.

cεε
3 =

∑

v0v1,v0v2∈E(H)

k
∑

i,i′=1

∑

j∈[n]|Ui|−1

∑

j′∈[n]|Ui′
|−1

aiai′

|Ui|−1
∏

m=1

bjm

|Ui′ |−1
∏

m=1

bj′m×

(

hom(H(v0, v1, v2), Gε,0(u
+
0 , ui,j1,...,j|Ui|−1

, ui′,j′1,...,j
′
|U

i′
|−1

)) +

hom(H(v0, v1, v2), Gε,0(u
−
0 , ui,j1,...,j|Ui|−1

, ui′,j′1,...,j
′
|U

i′
|−1

))
)
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It follows that

lim
ε→0

cε =
∑

v0v1
v0v2 ∈E(H)

k
∑

i,i′=1

∑

h

2aiai′w(h)
∑

j∈[n]|Ui|−1

∑

j′∈[n]|Ui′
|−1

|Ui|−1
∏

m=1

bjm2
(jm−1)h(v1 →֒zm)

|Ui′ |−1
∏

m=1

bj′m2
(j′m−1)h(v2 →֒z′m)

where the sum is taken over all homomorphisms h from H to G suh that h(v0) =
u0, h(v1) = ui and h(v2) = ui′ , and w(h) denotes the weight of the homomorphism

h, h(v1 →֒ zm) denotes the number of neighbors of v1 mapped to zm ∈ Ui and

h(v2 →֒ z′m) denotes the number of neighbors of v2 mapped to z′m ∈ Ui′ . Observe

that b was hosen so that the expression

n
∑

j1,...,j|Ui|−1=1

|Ui|−1
∏

m=1

bjm2
(jm−1)h(v1 →֒zm) =

|Ui|−1
∏

m=1

n
∑

jm=1

bjm2
(jm−1)h(v1 →֒zm)

is one if h(v1 →֒ zm) = 1 and it is zero otherwise. Hene, it follows that

lim
ε→0

cε =
∑

v0v1,v0v2∈E(H)

k
∑

i,i′=1

∑

h

aiai′w(h)

where the sum is taken over homomorphisms h fromH to G suh that h(v0) = u0,

h(v1) = ui, h(v2) = ui′, all neighbors of v1 are one-to-one mapped to Ui and all

neighbors of v2 are one-to-one mapped to Ui′ . The de�nition of the matrix M
now implies that

lim
ε→0

cε =
k

∑

i,i′=1

Mii′aiai′ = aTMa < 0 . (4)

The expressions (3) and (4) imply that there exist ε > 0 and α > 0 suh that

t(H,Gε,α) < t(H,Gε,0). Fix suh ε and α for the rest of the proof.

Consider the graphons W0 and Wα assoiated with the weighted graphs Gε,0

and Gε,α, respetively. Let Ju be the measurable set orresponding to the vertex

u of Gε,0; we an assume that the measurable set orresponding to the vertex

u of Gε,α is also Ju. Let P be the partition of [0, 1] formed by Ju+
0
∪ Ju−

0
and

Ju, u 6= u+
0 , u

−
0 . Observe that W0 = WP

α . Sine t(H,W0) = t(H,Gε,0) and

t(H,Wα) = t(H,Gε,α), we onlude that the graph H does not have the step

Sidorenko property.

Theorem 3 yields immediately the following orollary, whih in partiular rules

out many non-biregular graphs to have the step Sidorenko property. Note that

the assumptions of the orollary are easy to verify.
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Corollary 4. Let H be a graph and DH the set of degrees of its verties. Further

let M be the matrix with rows and olumns indexed by the elements of DH suh

that the entry Mdd′ is equal to the number of 2-edge paths from a vertex of degree

d to a vertex of degree d′ in H. If the matrix M is not positive semide�nite, then

H does not have the step Sidorenko property.

Proof. We an assume without loss of generality that H is bipartite; if not, H
does not even have the Sidorenko property. Let n = |H|, let d1 < · · · < dk be

the degrees of verties of H , i.e., DH = {d1, . . . , dk}, and let D = d1 + · · ·+ dk.
We next onstrut a weighted bipartite graph Gε with weights depending on a

parameter ε > 0. One part of Gε has k + 1 verties, whih are denoted by

u1, . . . , uk+1, and the other part has D − k + 1 verties. One of the verties of

the seond part is denoted by u0 and the remaining D − k verties are split into

disjoint sets U1, . . . , Uk suh that |Ui| = di − 1, i = 1, . . . , k. The verties u0 and

uk+1 have weight one, eah of the verties ui has weight ε
1

|Ui|
and eah vertex

ontained in a set Ui has weight ε
1

|Ui|/(|Ui| − 1)!, i = 1, . . . , k. The weights of all
edges of Gε are equal to one.

We will apply Theorem 3 with the weighted graph Gε, verties u0, . . . , uk

and sets U1 ∪ {u0}, . . . , Uk ∪ {u0}. Let Mε be the matrix from the statement of

Theorem 3 for the graph Gε. Fix i, j ∈ {1, . . . , k} and a 2-edge path v1v0v2 suh
that the degree of v1 is di and the degree of v2 is dj. Let h be a mapping suh

that h(v0) = u0, h(v1) = ui and h(v2) = uj. The mapping h an be extended to

(|Ui| − 1)!(|Uj | − 1)! homomorphisms from H to G suh that

• the neighbors of v1 are one-to-one mapped to Ui ∪ {u0},

• the neighbors of v2 are one-to-one mapped to Uj ∪ {u0}, and

• all other verties of H are mapped to u0 or to uk+1.

Eah suh homomorphism has weight

ε2

(|Ui|−1)!(|Uj |−1)!
, i.e., their total weight is

ε2. Any other extensions of h to a homomorphism from H to G suh that the

neighbors of v1 are one-to-one mapped to Ui ∪ {u0} and the neighbors of v2 to

Uj ∪ {u0} has weight at most ε2+1/dk
. We onlude that the entry of the matrix

Mε in the i-th row and the j-th olumn is equal to Mijε
2+O(ε2+1/dk). It follows

that there exists ε > 0 suh that the matrix Mε is not positive semide�nite.

Theorem 3 now yields that H does not have the step Sidorenko property.

The weights of verties and edges of the graph G in Theorem 3 an be set to

lower the weight of spei� homomorphisms, as we did in Corollary 2. We �rst

formalize the ideas used there, so that we an fous on just the existene of very

restrited homomorphisms, without ounting or weights.

Lemma 5. Let H be a vertex-transitive graph. Let u0, u1 and u2 be (distint)

distinguished verties in H suh that u0u1 and u0u2 are edges. Suppose that
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for eah distint neighbors v1 and v2 of u0, there is no homomorphism f from

H(u0, v1, v2) to H(u0, u1, u1) that simultaneously satis�es the following:

• neighbors of vi are one-to-one mapped to neighbors of u1 for i = 1, 2,

• distanes from u0 are preserved, i.e., dist(v, u0) = dist(f(v), u0) for eah

v ∈ V (H), and

• no vertex other than u0, v1 and v2 is mapped to any of u0, u1 and u2.

Then H does not have the step Sidorenko property.

Proof. We start with onstruting a weighted graph Gγ where the weights depend

on a parameter γ ∈ N. The graph Gγ is obtained from H by setting w(v) :=
γdist(u0,v)−1

for v ∈ {u0, u1, u2} and w(v) := γdist(u0,v)
for eah vertex v 6= u0, u1, u2.

The weights of all edges of Gγ are one. We apply Theorem 3 to H and Gγ with

the distinguished verties u0, u1 and u2. Sine H is vertex-transitive, we will

analyze the matrixM suh thatMij is the sum of weights of homomorphisms from

H(u0, v1, v2) to Gγ(u0, ui, uj) suh that the neighbors of v1 and v2 are mapped

one-to-one to the neighbors of ui and uj, respetively, where the sum runs over all

hoies of v1 and v2 in H . Note that the matrix from the statement Theorem 3

is the onsidered matrix M with eah entry multiplied by |G|, in partiular, it

is enough to show that the onsidered matrix M is not positive semide�nite for

some γ.
Let W :=

∑

v∈V (H) dist(v, u0) − 3. We show that M1,1 = o(γW ), M1,2 =

M2,1 = Ω(γW ) and M2,2 = O(γW ) (as funtions of the parameter γ). Hene, if γ
is large enough, the matrix M is not positive semide�nite and H does not have

the step Sidorenko property by Theorem 3.

By the de�nition, the entry M1,2 ontains a summand orresponding to the

identity homomorphism from H(u0, v1, v2) to Gγ(u0, u1, u2); the weight of this

summand is exatly γW
. It follows M1,2 = M2,1 = Ω(γW ).

Consider a homomorphism f ontributing to the sum de�ning the entry Mi,i

for i ∈ {1, 2}. Observe that f satis�es |f−1({u0, u1, u2})| ≥ 3 (at least the three

verties u0, v1 and v2 are mapped to u0 and ui) and dist(u0, f(v)) ≤ dist(u0, v) for
every vertex v (a shortest walk from u0 to v is mapped by f to a walk of at most

the same length from u0 to f(v)). Hene, it holds that w(f(v)) ≤ w(v) for every
vertex v, and the equality holds for all verties v if and only if dist(u0, f(v)) =
dist(u0, v) for every vertex v of H and |f−1({u0, u1, u2})| = 3. In partiular, the

equality does not hold for any homomorphism f ontributing to the sum de�ning

the entry M1,1. It follows that eah summand in the sum de�ning the entry M1,1

is of order O(γW−1) and eah summand in the sum de�ning the entry M2,2 is

of order O(γW ). Sine the number of the summands is independent of γ, we
onlude that M1,1 = o(γW ) and M2,2 = O(γW ).

We onlude the paper with applying Lemma 5 to show that all multidimen-

sional grids other than hyperubes are not weakly norming.
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Corollary 6. Let k ≥ 2. The Cartesian produt Cℓ1� · · ·�Cℓk has the step

Sidorenko property if and only if the length of eah yle in the produt is four,

i.e., ℓ1 = · · · = ℓk = 4.

Proof. Let H = Cℓ1� · · ·�Cℓk . By symmetry, we an assume that ℓ1 is the

largest and ℓ2 is the smallest among ℓ1, . . . , ℓk. If ℓ1 = · · · = ℓk = 4, the graph H
is isomorphi to the 2k-dimensional hyperube graph, whih is weakly norming,

see [13℄ and [18, Proposition 14.2℄; this implies implies that H has the step

Sidorenko property [18, Proposition 14.13℄. If ℓi is odd for some i, then the graph

H is not bipartite, whih implies that it fails to even have the Sidorenko property.

Hene, we an assume that all ℓi are even and ℓ1 > 4.
We will view the verties of H as the elements of Zℓ1 × · · ·×Zℓk and perform

all omputations involving the i-th oordinate modulo ℓi. Let ei be the i-th unit

vetor. Note that two verties of H are adjaent if their di�erene is equal to ei
or −ei for some i = 1, . . . , k. Also observe that if v is a vertex of H and ℓi > 4,
then v is the only ommon neighbor of v + ei and v − ei.

We apply Lemma 5 with u0 = (0, . . . , 0) and ui = ei for i = 1, 2. Suppose that
for some distint verties v1 and v2, there is a homomorphism f fromH(u0, v1, v2)
to H(u0, e1, e1) ontraditing the assumption of Lemma 5, i.e.,

(i) the neighbors of vi are one-to-one mapped to neighbors of e1, for i = 1, 2,

(ii) dist(u0, v) = dist(u0, f(v)) for eah v ∈ V (H), and

(iii) no vertex other than u0, v1 and v2 is mapped to any of the verties u0, e1
and e2.

We will show that the existene of suh a homomorphism f leads to a ontradi-

tion. By symmetry, we an assume that v1 = ei1 for some i1 and either v2 = −ei1
or v2 = ei2 for some i2 6= i1.

Note that the neighbors of v1 are one-to-one mapped to the neighbors of e1,
and let i′ be suh that f(ei1 + ei′) = e1 + e1. If i

′ 6= i1, both ommon neighbors

of u0 and ei1 + ei′ , whih are ei1 and ei′ , must be mapped to the unique ommon

neighbor of u0 and e1+e1, whih is the vertex e1 (note that ℓ1 > 4). However, this
would ontradit (iii). Hene, i′ = i1, i.e., f(v1 + v1) = f(ei1 + ei1) = e1 + e1. It
follows that there exists a bijetion π between {±ei′ | i

′ 6= i1} and {±ej′ | j
′ 6= 1}

suh that f(ei1 +e) = e1+π(e) for e ∈ {±ei′ | i
′ 6= i1}. Observe that a symmetri

argument to the one that we have just presented yields that f(v2+ v2) = e1+ e1.
To exlude the ase that v2 = −ei1 , let e = π−1(e2), i.e., f(ei1 + e) = e1 + e2.

Note that e 6= ±ei1 . It follows that the vertex e, whih is a ommon neighbor of

u0 and ei1 + e, must be mapped to a ommon neighbor of u0 and e1 + e2, i.e.,
either to e1 or to e2. The �rst ase would ontradit (iii), hene e is mapped

to e2, meaning v2 = e. We onlude that v2 = ei2 for some i2 6= i1 and that

f(ei1 + ei2) = e1 + e2.
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Suppose that ℓ2 = 4 and reall that f(v2 + v2) = e1 + e1. If additionally

ℓi2 = 4, then −ei2 , whih is a ommon neighbor of u0 and ei2 + ei2 , must be

mapped to the unique ommon neighbor of u0 and e1 + e1, i.e., to the vertex e1;
this is impossible by (iii). Hene, ℓi2 6= 4.

Let us all two verties v and v′ lose if they have at least two ommon

neighbors. Observe that two lose distint neighbors v and v′ of ei1 must be

mapped to lose neighbors of e1; otherwise, all ommon neighbors of v and v′

would be mapped to ei1 , ontraditing (iii). Sine the neighborhood of ei1 is

one-to-one mapped to the neighborhood of e1 and the number of pairs of lose

neighbors of ei1 is the same as the number of pairs of lose neighbors of e1, it
follows that pairs of lose neighbors of ei1 are one-to-one mapped to pairs of lose

neighbors of e1 and pairs of non-lose neighbors of ei1 are one-to-one mapped

to pairs of non-lose neighbors of e1. Sine ℓi2 6= 4, the neighbors ei1 + ei2
and ei1 − ei2 of ei1 are not lose. On the other hand, sine ℓ2 = 4, the vertex

f(ei1 + ei2) = e1+ e2 has a ommon neighbor other than e1 with eah neighbor of

e1. In partiular, f(ei1 + ei2) and f(ei1 − ei2) are lose, whih is impossible. We

onlude that ℓ2 6= 4. Sine ℓ2 is the smallest among ℓ1, . . . , ℓk, it follows that
eah ℓi is at least six.

As the �nal step of the proof of the orollary, we prove the following statement

for r = 1, . . . , ℓi1/2 by indution on r:

f((r − 1)ei1) = (r − 1)e1, f(rei1) = re1, and

f(rei1 + e) = re1 + π(e) for e ∈ {±ei′ | i
′ 6= i1}. (5)

The ase r = 1 follows from the de�nition of i1 and π. We assume that the above

statement holds for r and prove it for r + 1 ≤ ℓi1/2. We �rst show that f((r +
1)ei1) = (r+1)e1. Note that f(rei1+ei1) annot be re1−e1 by (ii). If f(rei1+ei1)
is re1 + ej for some j 6= 1, then the ommon neighbor rei1 + ei1 + π−1(−ej) of
rei1 + ei1 and rei1 + π−1(−ej) must be mapped to the unique ommon neighbor

of re1 + ej and re1 − ej , whih is re1, ontraditing (ii). An analogous argument

exludes that f(rei1+ei1) is re1−ej for some j 6= 1. Sine the vertex f((r+1)ei1)
must be a neighbor of f(rei1) = re1, it follows that f((r + 1)ei1) = (r + 1)e1.

We next analyze f((r+1)ei1+e) for e 6= ±ei1 . Sine the vertex (r+1)ei1+e =
rei1 +ei1 +e is a ommon neighbor of rei1 +ei1 and rei1 +e, it must be mapped to

a ommon neighbor of re1+e1 and re1+π(e), i.e., to re1 or re1+e1+π(e). Sine
the former is exluded by (ii), it follows that f((r+1)ei1 + e) = (r+1)e1 + π(e).
This onludes the proof of (5).

The statement (5) implies that f(ℓi1/2 · ei1) = ℓi1/2 · e1, in partiular ℓi1 ≥ ℓ1
by (ii). Sine the path u0,−ei1 ,−2ei1, . . . ,−ℓi1/2 · ei1 must be mapped to a path

from u0 to f(−ℓi1/2 · ei1) = f(ℓi1/2 · ei1) = ℓi1/2 · e1 and the verties of the path

must be mapped to verties at distanes 0, 1, . . . , ℓi1/2 from u0 by (ii), the path

an be mapped only to the path u0, e1, 2e1, . . . , ℓi1/2 · e1 or, if ℓ1 = ℓi1, to the

path u0,−e1,−2e1, . . . ,−ℓi1/2 ·e1 The former ase is impossible sine −ei1 annot
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be mapped to e1 by (iii). It follows that ℓ1 = ℓi1 and f(−ei1) = −e1. Hene,

the vertex ei2 − ei1 6= u0, whih is a ommon neighbor of ei2 and −ei1 , must be

mapped to the unique ommon neighbor of f(ei2) = e1 and f(−ei1) = −e1, whih
is u0. However, this ontradits (iii). We onlude there is no homomorphism f
satisfying (i)�(iii). Lemma 5 now implies that H does not have the step Sidorenko

property.

5 Conlusion

Corollary 2 and Corollary 6 give an in�nite lass of edge-transitive graphs that

are not weakly norming, whih answers in the negative a question of Hatami [13℄.

Conlon and Lee [5, Conjeture 6.3℄ present a large lass of weakly norming graphs,

whih they all re�etion graphs, and onjeture that a bipartite graph is weakly

norming if and only if it is edge-transitive under a subgroup of its automorphism

group (generated by so alled `ut involutions'). In partiular, this would imply

that all weakly norming graphs are edge-transitive.

Sine every weakly norming graph has the step Sidorenko property, it is nat-

ural to ask whether the onverse is true for onneted graphs, i.e., whether every

onneted graph with the step Sidorenko property is weakly norming. This ques-

tion has been very reently answered in the a�rmative by Doleºal et al. [7℄ who

showed the following: a onneted graph G is weakly norming if and only if it

has the step Sidorenko property.

Finally, it is natural to wonder about the Foring Conjeture in the setting

of the step Sidorenko property. Let us say that a graph H has the step foring

property if and only if

t(H,WP) ≤ t(H,W )

for every graphon W and every partition P of [0, 1] into �nitely many non-null

measurable sets and the equality holds if and only if WP
and W are equal almost

everywhere. It an be shown that all even yles have the step foring property

(while an ad ho argument an be given, this also follows from [7, Theorem 3.14℄).

Graphs with the step foring property are related to the proof of the existene

of graphons via weak

∗
limits given by Doleºal and Hladký [8℄; in partiular, if

H has the step foring property, minimizing the entropy of W in the arguments

given in [8℄ an be replaed by maximizing t(H,W ).
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