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Abstract

Goodman proved that the sum of the number of triangles in a graph on n
nodes and its complement is at least n3/24; in other words, this sum is minimized,
asymptotically, by a random graph with edge density 1/2. Erdős conjectured that
a similar inequality will hold for K4 in place of K3, but this was disproved by
Thomason. But an analogous statement does hold for some other graphs, which
are called common graphs. A characterization of common graphs seems, however,
out of reach.

Franek and Rödl proved that K4 is common in a weaker, local sense. Using
the language of graph limits, we study two versions of locally common graphs.
We sharpen a result of Jagger, Štov́ıček and Thomason by showing that no graph
containing K4 can be locally common, but prove that all such graphs are weakly
locally common. We also show that not all connected graphs are weakly locally
common.

1 Introduction

Let inj(F,G) denote the number of embeddings of the graph F in the graph G. The
following inequality was proved by Goodman [6]:

inj(K3, G) + inj(K3, G) ≥
1

4
|V (G)|3, (1)
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where equality holds asymptotically if G is a random graph with edge density 1/2.
Erdős conjectured that a similar inequality will hold for K4 in place of K3, but this
was disproved by Thomason [17] (see also Thomason [18] for a more “conceptual”
proof). More generally, one can ask which graphs F satisfy

inj(F,G) + inj(F,G) ≥
(

1 + o(1)
)

21−|E(F )||V (G)||V (F )| (2)

for every graph G, where the o(1) refers to |V (G)| → ∞. Such graphs F are called
common graphs. So the triangle is common, but K4 is not. (Throughout the paper,
we are going to assume that the graphs are simple and, unless stressed otherwise, have
no isolated nodes.)

Many classes of bipartite graphs are common, and it is conjectured that they all
are. Among non-bipartite graphs, very few are known to be common. Franek and
Rödl [5] proved that deleting an edge from K4 we get a common graph. More recently
Hatami, Hladky, Král, Norine and Razborov [7] proved that the 5-wheel is common,
thus providing the first common graph with chromatic number 4. In the opposite
direction, Jagger, Štov́ıček and Thomason [8] proved that no graph containing K4 is
common.

It will be more convenient to count homomorphisms instead of embeddings or
copies of F . Let hom(F,G) denote the number of homomorphisms from F into G.
We are interested in the case when |V (G)| → ∞, when inj(F,G) = hom(F,G) +
O(|V (G)||V (F )|−1, and so we could replace inj by hom in the definition of common
graphs (2). It will be even better to consider the normalized version t(F,G) =
hom(F,G)/|V (G)|k, which can be interpreted as the probability that a random map
φ : V (F ) → V (G) preserves adjacency. With this notation, common graphs are those
graphs F for which

t(F,G) + t(F,G) ≥
(

1 + o(1)
)

21−|E(F )|

for simple graphs G with |V (G)| → ∞.
Sidorenko [15] studied various “convexity” properties of graphs, one of which is

closely related to common graphs. Let us say that a graph F has the Sidorenko
property, if for every graph G,

t(F,G) ≥ t(K2, G)|E(F )|.

It is easy to see that non-bipartite graphs do not have this property, and Sidorenko
conjectured that all bipartite graphs do. A closely related conjecture, in a different lan-
guage, was formulated earlier by Simonovits [16]. For us, the significance of this work
is that the Sidorenko property implies that the graph is common. So the Sidorenko–
Simonovits conjecture would imply that all bipartite graphs are common. Sidorenko’s
conjecture has been proved for several rather broad classes of bipartite graphs [9, 4];
for a description of these classes, we refer to these publications.

Franek and Rödl [5] proved that K4 is common in a “local” sense: the original
conjecture of Erdős said that the number of K4’s in a graph and in its complement is
minimized asymptotically by a random graph, and Franek and Rödl showed that this
is true at least for graphs coming from a random graph by a small perturbation. A
more natural formulation of this result was given in [11], using notions of graph limit
theory (see below).
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Somewhat surprisingly, it turns out that whether or not a graph is “locally” com-
mon depends on the topology we consider on graph limits. This leads to (at least) two
different versions of this notion: “locally common” and “weakly locally common”.

More recently Lovász [10] proved a “local” version of Sidorenko’s conjecture, and
characterized those graphs satisfying the weak local Sidorenko property [11]. If a graph
is [locally, weakly locally] Sidorenko, then it is [locally, weakly locally] common, and so
these (partial) results about the Sidorenko property have implications about common
graphs. In particular, all bipartite graphs are locally common.

The goal of this paper is to show that every graph containing K4 is locally common
in the weakest sense, but not in a stronger sense. We give a rather general sufficient
condition for a graph to be weakly locally common, and show that not all connected
graphs are weakly locally common.

2 Preliminaries

2.1 Graph limits

We need some definition from the theory of graph limits; see [11] for more detail. A
kernel is a symmetric bounded measurable function W : [0, 1]2 → R. (Instead of [0, 1]
we could use any other standard probability space here, and we shall do so if it is more
convenient.) A graphon is a kernel with values in [0, 1]. We denote the set of kernels
by W , the set of graphons by W0, and the set of kernels with values in [−1, 1] by W1.

The significance of graphons is that they provide limit objects for convergent graph
sequences. We call a sequence (G1, G2, . . . ) of (finite) simple graphs convergent, if the
numerical sequence t(F,Gn) is convergent for every simple graph F [1]. It was proved
in [12] that for every convergent graph sequence there is graphon W such that

t(F,Gn) → t(F,W ) (n → ∞),

where

t(F,W ) =

∫

[0,1]V (F )

∏

ij∈E(F )

W (xi, xj)
∏

i∈V

dxi. (3)

Conversely, every graphon represents the limit of a convergent graph sequence.
These results make it possible to formulate our problems in a remainder-term-free

form. A simple graph F is common if and only if

t(F,W ) + t(F, 1 −W ) ≥ 21−|E(F )| = 2t
(

F,
1

2

)

(4)

for every graphon W (where 1/2 means the identically-1/2 graphon). We can multiply
by 2|E(F )|, and write W = (1 + U)/2 (where U ∈ W1) to get the inequality

t(F, 1 + U) + t(F, 1− U) ≥ 2.

We call a simple graph F locally common for perturbation ε > 0, if t(F, 1 + U) +
t(F, 1 − U) ≥ 2 for every U ∈ W1 with ‖U‖∞ ≤ ε. We say that F is locally common,
if there is an ε > 0 such that F is locally common for perturbation ε.
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A related notion is that the graph F is weakly locally common1: this means that
for every U ∈ W1 there is an εU > 0 such that t(F, 1 + εU) + t(F, 1 − εU) ≥ 2 for all
0 ≤ ε ≤ εU .

It is clear that every common graph is locally common, and every locally common
graph is weakly locally common. In the other direction, there are weakly locally
common graphs which are not locally common, but it is still open whether there are
locally common graphs which are not common.

Bipartite graphs are locally common, but not known to be common. As cited
above, Thomason [17] proved that the graph K4 is not common, while Franek and
Rödl [5] proved (in a different language) that K4 is weakly locally common. It will
follow from our results that K4 is not locally common. Jagger, Štov́ıček and Thomason
[8] proved that no graph containing K4 as a subgraph is common. We are going to
prove that a graph containing K4 is always weakly locally common, but never locally
common.

Similarly to common graphs, we can define “local” and “weakly local” versions
of other extremal problems. We say that a simple graph F has the local Sidorenko
property for perturbation ε, if t(F, 1 + U) ≥ 1 for every U ∈ W1 with

∫

U = 0 and
‖U‖∞ ≤ ε. It was proved in [10] that every bipartite graph F is locally Sidorenko for
perturbation ε = 1/(4|E(F )|).

We call a simple graph F weakly locally Sidorenko, if for every U ∈ W1 with
∫

U = 0
there is an εU > 0 such that t(F, 1 + εU) ≥ 1 for every 0 ≤ ε ≤ εU . The weak local
Sidorenko property is even easier to treat, as noted in [11], Section 16.5.3: A simple
graph has the weak local Sidorenko property if and only if it is a forest or its girth is
even.

These results immediately imply some facts about locally common graphs: every
bipartite graph F is locally common for perturbation 1/(4|E(F )|), and every graph
with even girth is weakly locally common. We are going to prove a more general
sufficient condition for being weakly locally common.

2.2 Subgraph densities

We call a graph mirror-symmetric, if it is obtained by the following construction: we
take a graph G, select a set S of mutually nonadjacent nodes in it, and glue together
two copies of G along S.

The following simple fact has been noted in [3]:

Lemma 2.1. If F is mirror-symmetric, then t(F,U) ≥ 0 for every kernel U .

(It is conjectured in [3] that this property characterizes mirror-symmetric graphs.)

Proof. No matter how we fix the variables in the definition of t(F,U) corresponding
to nodes in S, integrating the rest gives a square, which is nonnegative.

We say that a kernel U is balanced, if
∫ 1

0 U(x, y) dy = 0 for almost all x ∈ [0, 1].
Analogously, an edge-weighted graph is balanced, if for every node v, the sum of weights
of edges incident with v is 0.

Lemma 2.2. A kernel U is balanced if and only if t(P3, U) = 0). If U is a balanced
kernel, and F has a node of degree 1, then t(F,U) = 0.

1In [11], only this version was defined and called “locally common”.

4



Proof. Lemma 2.1 implies that t(P3, U) ≥ 0 for every kernel U . The case of equality
easily follows from the proof of the inequality.

If degF (u) = 1, and v is its neighbor, then fixing xi for i 6= u, integrating with
respect to u gives 0, by the definition of being balanced.

Let sub(H,F ) denote the number of subgraphs of F without isolated nodes iso-
morphic to H . The densities in the “perturbed” graphons can be expanded:

t(F, 1 + U) =
∑

F ′⊆F

t(F ′, U) =
∑

H

sub(H,F )t(H,U). (5)

Hence

t(F, 1 + U) + t(F, 1 − U) = 2
∑

H: |E(H)| even

sub(H,F )t(H,U) = 2 + 2p(F,U), (6)

where
p(F,U) =

∑

H: 0<|E(H)| even

sub(H,F )t(H,U). (7)

Using this notation, we get the following rephrasing of the definitions of different
versions of the common property.

Proposition 2.3. (a) A graph F is common if and only if p(F,U) ≥ 0 for all U ∈ W1.

(b) A graph F is locally common if and only if there is a number ε > 0 such that
p(F, εU) ≥ 0 for all U ∈ W1.

(c) A graph F is weakly locally common if and only if for every U ∈ W1 there is a
number γU > 0 such that p(F, εU) ≥ 0 for all 0 < ε ≤ γU .

Defining

cr(F,U) =
∑

H: |E(H)|=r

sub(H,F )t(H,U) (r = 0, 1, . . . ), (8)

we can express p(F, εU) as a polynomial in ε:

p(F, εU) =

⌊|E(F )|/2⌋
∑

r=1

ε2rc2r(F,U). (9)

Using this expansion, assertion (c) in Proposition 2.3 can be rephrased as follows: A
graph F is weakly locally common if and only if for every U ∈ W1, either c2(F,U) =
c4(F,U) = · · · = 0, or the first nonzero number in the sequence c2(F,U), c4(F,U), . . .
is positive.

For a short proof of the result of Franek and Rödl [5] that the graph obtained from
K4 by deleting an edge is common, using this language, see [11], Section 16.5.4.

3 Locally common graphs

Our goal is to prove the following strengthening of the result of Jagger, Štov́ıček and
Thomason [8], asserting that graphs containing K4 are never common.
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Theorem 3.1. No graph containing K4 is locally common.

Proof. We start with some general consequences of the expansion formulas in the
previous section. Let us introduce two operations on kernels: for a kernel U and
0 < δ ≤ 1, define a kernel Uδ ∈ W1 by

Uδ(x, y) =

{

U(x/δ, y/δ), if x, y ≤ δ,

0, otherwise.

For a kernel U and positive integerm, we define the “tensor power” kernel U⊗m : [0, 1]m×
[0, 1]m → [−1, 1] by

U⊗m
(

(x1, . . . , xm), (y1, . . . , ym)
)

= U(x1, y1) · · ·U(xm, ym).

It is straightforward that if U ∈ W1 is balanced, then so are Uδ and U⊗m. Furthermore,
t(F,Uδ) = δ|V (F )| t(F,U) and t(F,U⊗m) = t(F,U)m. (We will use an odd m in this
construction, so that the sign of t(F,U) is preserved.)

Substituting these expressions, we get the expansion

p(F, ε(U⊗m)δ) =
∑

H: 0<|E(H)| even

sub(H,F ) ε|E(H)| δ|V (H)|t(H,U)m

=

|V (F )|
∑

q=2

δq
∑

H: |E(H)| even
|V (H)|=q

sub(H,F )ε|E(H)|t(H,U)m. (10)

Suppose that F is locally common for perturbation ε. Then p(F, εU) ≥ 0 for every
kernel U ∈ W1, including every kernel of the form (U⊗m)δ. The parameter ε is fixed,
but we can play with the parameters δ and m.

Letting δ → 0, we get that the first nonzero term in the outer sum must be positive.
There is only one term with q ≤ 3, namely H = P3, and by Lemma 2.2, t(P3, U) > 0
unless U is balanced. So let us assume that U is balanced. Then Lemma 2.2 implies
that only those terms are nonzero where all degrees in H are at least 2. There are
only two such graphs with q = 4, namely H = C4 and H = K4. Thus (simplifying by
δ4ε2) we get a necessary condition for being locally common for perturbation ε:

sub(C4, F )t(C4, U)m + ε2sub(K4, F )t(K4, U)m ≥ 0. (11)

for every balanced kernel U ∈ W1. Here t(C4, U) > 0, so the condition is trivially
satisfied if F contains no K4. Our goal is to prove the converse.

Letting m → ∞, this implies that

t(C4, U) ≥

{

−t(K4, U), if sub(K4, F ) > 0,

0, otherwise.
(12)

This strange conclusion, which is independent of ε and almost independent of F ,
says the following: either t(C4, U) + t(K4, U) ≥ 0 for every balanced U ∈ W1, or no
locally common graph contains K4. We show that the second alternative occurs, by
constructing a kernel U violating the first inequality. The construction is carried out
in several steps.
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Figure 2/c: lim
n→∞

Kn ×G1

In Figures 1/a and 1/b, solid blue lines indicate edges with weight 1, red dashed lines
indicate edges with weight −1. Figures 2/a and 2/b show their adjacency matrices,
blue, grey and red represent 1, 0, −1, respectively. In Figures 1/b and 2/b, we used
n = 3, namely, G2 = K3 ×G1. In the language of graph limits, Figure 2/c shows the
graphon of Kn ×G1 in the limit n → ∞.

Claim 1. There exists a looped-simple graph G1 with edgeweights ±1 such that t(C4, G1)+
t(K4, G1) = −1/4.

Let G1 obtained from K4 by adding a loop with weight −1 at every node. Then
t(C4, G1) + t(K4, G1) = −1/4 by direct calculation. Note that t(C4, G1) ≥ 0, so
t(K4, G1) < 0.

Claim 2. There exists an arbitrarily large simple graph G2 (without loops) with edgeweights
±1 such that t(C4, G2) + t(K4, G2) ≤ −1/5.

Indeed, consider any looped-simple graph G with the properties of Claim 1, and
take its categorical product G2 = Kn×G, where Kn is a large complete graph (without
loops). Then G2 has no loops, and

t(C4, G2) + t(K4, G2) = t(C4,Kn)t(C4, G1) + t(K4,Kn)t(K4, G1)

→ t(C4, G1) + t(K4, G1) = −
1

4
(n → ∞).

So t(C4, G2) + t(K4, G2) ≤ −1/5 if n is large enough.

Claim 3. There exists a simple graph G3 with balanced edgeweights ±1 such that
t(C4, G3) + t(K4, G3) < 0.

Let G2 be a graph in Claim 2, and let V (G2) = [r]. Note that r can be arbitrarily
large.
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Figure 3: The local structure of the hypergraph H for r = 4. The hyperedges Ai and
Bj are shown by blue solid ellipses and red dashed ellipses, respectively.

There is an r-uniform r-partite hypergraphH with two families of edges {A1, . . . , AN}
and {B1, . . . , BN} such that the sets Ai as well as the sets Bi form a partition of V (H),
and H has girth at least 5. (The dual hypergraph of an r-regular bipartite graph with
large girth has these properties.) Let V1, . . . , Vr be the partition classes of H . We glue
a copy of G2 on every Ai and every Bi (node u of G2 is glued onto the node of Ai

in Vu). In the sets Ai, we keep the original weighting of the edges; in the sets Bi, we
multiply them by −1.

It is clear that the weighted graph G3 constructed this way is balanced. Further-
more, every homomorphism K4 → G3 maps K4 into one of the Ai or into one of the
Bi, and hence hom(K4, G3) = 2N hom(K4, G2). This is not quite true for C4 in place
of K4, but the difference is small: it counts those homomorphisms C4 → G3 for which
two opposite nodes of C4 are mapped onto the same node v of G3, and the other two
nodes are mapped into different copies of G2 containing v. Hence

hom(C4, G3)− 2N hom(C4, G2) ≤ 2r3N,

and for r > 5,

t(C4, G3) + t(K4, G3) =
1

r4N4

(

hom(C4, G3) + hom(K4, G3)
)

≤
1

r4N3

(

2 hom(C4, G2) + 2 hom(K4, G2) + 2r3
)

=
2

N3

(

t(C4, G2) + t(K4, G2) +
1

r

)

< 0.

This proves Claim 3.

4 Weakly locally common graphs

We have seen that every forest and every graph with even girth is weakly locally
common. We prove more in the next Theorem. Let geven(F ) denote the length of the
shortest even cycle of F , where geven = ∞ if F has no even cycle.

Theorem 4.1. If F is not weakly locally common, then F has two (odd) cycles with
at most one node in common, of lengths g1 and g2, such that either g1 < g2 and
g1 + g2 ≤ geven(F ) or g1 = g2 and g1 + g2 < geven(F ).

8
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Figure 4/a: The graph F .
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v

c

d

Figure 4/b: The graph G with k = 3.

In particular, if the length of the shortest even cycle in F is at most twice of the
length of the shortest odd cycle in F , or F has no odd cycle, then F is weakly locally
common.

Proof. Suppose that F is not weakly locally common. Then the sequence c2(F,U),
c4(F,U), . . . has a nonzero term, and its first nonzero term, say c2p(F,U), is negative.
We know that c2(F,U) ≥ 0 by Lemma 2.1, so p > 1. Hence c2(F,U) = 0, which
implies that U is balanced. In this case, t(H,U) = 0 for every graph H having a node
of degree 1 by Lemma 2.2.

Let r be the smallest positive integer for which F has a subgraph H with 2r edges
and t(H,U) < 0 (the inequality c2p(F,U) < 0 implies that such a subgraph exists and
r ≤ p). We know by the above that 2 ≤ r. Lemma 2.2 implies that all degrees in H
are at least 2. We have t(F ′, U) = 0 for every subgraph F ′ of F with |E(F ′)| < 2r
and |E(F ′)| even. Since U is not almost everywhere zero, Lemma 2.1(a) implies that
geven ≥ 2r and since H is not an even cycle, it cannot contain an even cycle.

It is a well-known elementary exercise that every block (2-connected component)
of such a graph is an odd cycle. So H contains two odd cycles C and C′ of lengths g1
and g2 intersecting in at most one node. Therefore, g1 + g2 ≤ |E(H)| = 2r ≤ geven.

To complete the proof, we have to exclude the case g1 = g2 = r. In this case H =
C ∪ C′, and H is mirror-symmetric, which implies by Lemma 2.1 that t(H,U) ≥ 0.

Corollary 4.2. Every graph containing C4 or C6 is weakly locally common.

Proposition 4.3. There exist connected graphs that are not weakly locally common.

Proof. Let F consist of a triangle and a pentagon, attached to each other at one node
u. (Figure 4/a.) We construct a balanced edge-weighted graph G with edgeweights
±1 such that t(F,G) < 0. (Figure 4/b.) We start with a 4-star with center node v
and endnodes a, b, c, d. Let k be a large positive integer. We connect a and b by an
edge; we attach k openly disjoint paths Q1, . . . , Qk of length 3 and k+1 further openly
disjoint paths R1, . . . , Rk+1 of length 5 connecting c and d. We weight the following
edges with −1: the edges va and vb; the middle edge of every path Qi; and every
second edge of each path Ri, starting at the end. The remaining edges are weighted
with 1. It is clear that the weighting is balanced.

We claim that
t(F,G) < 0. (13)

The normalization is irrelevant, so it suffices to show that hom(F,G) < 0. Let
φ : V (F ) → V (G) be a homomorphism. The triangle in F must be mapped onto
the triangle in G. If the pentagon in F is mapped into the subgraph G[S] induced
by S = {v, a, b, c, d}, then the contribution of φ is positive, but the number of these
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maps is independent of k (52, in fact). If the image of the pentagon contains a node
outside S, then it must contain one of the paths Qi, and then u must be mapped onto
v. The contribution from such a map is −1, and the number of such maps is 4k. Thus
hom(F,G) = 52− 4k, which is negative if k > 13. This proves (13).

The condition that G is balanced implies that t(F ′,WG) = 0 if F ′ has a node
with degree 1. The only subgraph of F with an even number of edges and with all
degrees at least 2 is F itself, and hence c2(F,WG) = c4(F,WG) = c6(F,WG) = 0 but
c8(F,WG) = t(F,WG) < 0. Thus F is not weakly locally common.

5 Open problems

In the definition of locally common graphs, we can consider various norms on the space
W instead of the L∞ norm. Can the results above be extended to other norms? An
important candidate is the cut norm, defined by

‖W‖� = sup
S,T⊆[0,1]

∣

∣

∣

∣

∫

S×T

W (x, y) dx dy

∣

∣

∣

∣

,

playing an important role in the theory of graph limits. It was proved in [10] that
every bipartite graph is locally Sidorenko with respect to the cut norm. Since the
cut norm is continuous with respect to every “reasonable” norm on W (for an exact
formulation of this fact see [11], Theorem 14.10), it follows that every bipartite graph
is locally Sidorenko in every “reasonable” norm on W .

Similarly to common graphs and Sidorenko graphs, we can define “local” and
“weakly local” versions of other extremal properties, but little is known in this di-
rection.

Are there any non-common graphs that are locally common in the cut norm or the
L∞ norm? Is there a graph that is locally common with respect to the L∞ norm, but
not with respect to the cut norm? Can weakly locally common graphs be characterized
similarly as weakly locally Sidorenko graphs?
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Synergy grant No. 810115.
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