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Abstract

In the past years, techniques from different areas of mathematics have been

successfully applied in extremal combinatorics problems. Examples include applica-

tions of number theory, geometry and group theory in Ramsey theory and analytical

methods to different problems in extremal combinatorics.

By providing an analytic point of view of many discrete problems, the theory

of combinatorial limits led to substantial results in many areas of mathematics and

computer science, in particular in extremal combinatorics.

In this thesis, we explore the connection between combinatorial limits and

extremal combinatorics. In particular, we prove that extremal graph theory prob-

lems may have unique optimal solutions with arbitrarily complex structure, study a

property closely related to Sidorenko’s conjecture, one of the most important open

problems in extremal combinatorics, and prove a 30-year old conjecture of Győri

and Tuza regarding decomposing the edges of a graph into triangles and edges.
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Chapter 1

Introduction

A typical problem in extremal combinatorics asks to maximize or minimize the size

of a set given certain constraints. Two of the most classical results in the area are

Mantel’s theorem (1907) and Turán’s theorem (1941), a generalization of the first.

Turán’s theorem states that any Kk-free n-vertex graph has at most
(

1− 1
k−1

) (
n
2

)
edges. Examples of extremal questions are ‘Given a set, what is the maximum size

of a subset without some particular substructure?’,‘What is the largest number of

edge-disjoint copies of a graph H in a n-vertex graph with m edges?’ and ‘What is

the minimum density of a graph H in a graph with edge density p?’.

Two well known problems of the last type are the minimal density of triangles

in graphs and Sidorenko’s Conjecture. It is easy to see that there are graphs with

edge density p ≤ 0.5 with no triangles just by taking a balanced bipartite graph

with edge density 2p between its parts. For p = 1, we have a complete graph and

we have that the density of triangles is 1. The minimal density of triangles problem

was open for around forty years and several researchers, among them Bollobás [9],

Fisher [30], Goodman [40], Lovász and Simonovits [66, 67], made improvements

towards the answer but only recently it was solved by Razborov [78] using the flag

algebra method. More details on the flag algebra method and an application of it

are giving in Chapter 4.

Likewise, Sidorenko’s Conjecture is one of the most famous problems in ex-

tremal combinatorics. The conjecture asserts that the density of every bipartite

graph is minimized by a quasirandom graph with the same edge density. In Chap-

ter 3, we give an introduction to the topic and study a stronger version of the

conjecture.

Going back to extremal combinatorics, the asymptotic version of extremal

problems are also interesting on their own. Quite often they are the first step towards
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understanding the specific problem but they can also show the general behavior by

not taking into account lower order terms.

One of the motivations behind the development of the theory of combinatorial

limits was to create a theory that deals with asymptotic behavior of combinatorial

structures and potentially, using tools from different branches of mathematics, be

able to say something/solve extremal problems. The theory made new connections

between analysis, combinatorics, computer science, ergodic theory, group theory and

probability theory.

Graph limits can be mostly divided into two regimes: the sparse one and

the dense one. The best understood branch is limits of dense graphs which is

the one that we will be concern in this thesis. We say that a sequence of graphs

converge if all its subgraph densities converge. The limit object corresponding to

a convergent sequence of dense graphs is called a graphon which is defined as a

symmetric measurable function from the unit square to the unit interval. For a

comprehensive introduction to the theory of graph limits, we refer the reader to the

monograph of Lovász [65].

When the limits of convergent sequences of dense graphs are uniquely de-

termined by finitely many density constraints, we call them finitely forcible graph

limits. Such objects are closely related to problems in extremal combinatorics and

they correspond to unique extremal configurations of problems from extremal graph

theory. Indeed, extremal graph theory questions can be cast as optimization prob-

lems over the graph limit space with optimal solutions being the extremal points.

We delve further into this theory in Chapter 2.

Closely related to graph limits is the flag algebra method, mentioned earlier.

The method developed by Razborov provides a uniform framework for standard

counting techniques used in extremal combinatorics and its application resulted in

substantial progress on many long standing open problems in the area, e.g. [23, 29,

35, 38, 39, 48, 51, 60, 62, 64]. We give a brief introduction to the flag algebra method

in Chapter 4, where we also show an application of the method in extremal graph

theory.

Next, we give a short description of the main topics covered in the thesis.

Further details are given in the introduction of its respective chapter.

Universality of finitely forcible graphons. We devise a unified framework to

construct finitely forcible graphons with complex properties, such as non-compactness

or large regularity partitions by showing that every graphon is a subgraphon of some

finitely forcible graphon. The paper is available on arXiv and it was accepted for
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publication on Advances in Mathematics [21].

Triangle and edge decomposition. We prove a conjecture of Györi and Tuza

which states that the edges of every n-vertex graph G can be decomposed into edges

and triangles graphs C1, . . . , Ck such that |C1| + . . . + |Ck| ≤ (1/2 + o(1))n2. The

paper is available on arxiv and it was accepted for publication at Combinatorics,

Probability and Computing [57].

Step Sidorenko property of graphs. We study the step Sidorenko property of a

graph H. We show that many bipartite graphs fail to have the step Sidorenko prop-

erty and use our results to show the existence of a bipartite edge-transitive graph

that is not weakly norming; this answers a question of Hatami [Israel J. Math. 175

(2010), 125–150]. The paper is available on arxiv and it was accepted for publication

on the Journal of Combinatorial Theory, Series A [61].

This thesis is based on joint work with my coauthors: J. W. Cooper, D.

Král’, B. Lidický, P. P. Pach, Y. Pehova and M. Wrochna.

1.1 Preliminaries

In this section, we introduce part of the notation used throughout this thesis. No-

tation used only in a particular chapter can be found in the corresponding chapter.

The set of integers from 1 to k will be denoted by [k], the set of all positive

integers by N and the set of all non-negative integers by N0. All measures considered

in this paper are the Borel measures on Rd, d ∈ N. If a set X ⊆ Rd is measurable,

then |X| denotes its measure, and if X and Y are two measurable sets, then we

write X v Y if |X \ Y | = 0.

In general, we follow standard graph theory notation. All graphs considered

are simple and without loops. We sometimes consider graphs with vertices and

edges assigned non-negative weights; when this is the case, we refer to such a graph

as a weighted graph. The order of a graph G, i.e., its number of vertices, will be

denoted by |G| and the size of a graph G, i.e., its number of edges, by ‖G‖.

1.1.1 Graph limits

The theory of graph limits offers analytic tools to study large graphs. We present

here only those notions that we need further, and refer the reader to the monograph

of Lovász [65] on the subject for a comprehensive introduction to the theory. Graph
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limits also generated new tools and perspectives on many problems in mathematics

and computer science. For example, the flag algebra method of Razborov [77], which

bears close connections to convergent sequences of dense graphs, catalyzed progress

on many important problems in extremal combinatorics, e.g. [1–3, 41, 49, 58, 60, 75–

79]. In relation to computer science, the theory of graph limits shed new light on

property and parameter testing algorithms [70].

Given two graphs H and G, the density of H in G is the probability that a

uniformly chosen |H|-tuple of vertices of G induces a subgraph isomorphic to H; the

density of H in G is denoted by d(H,G). We adopt the convention that if |H| > |G|,
then d(H,G) = 0.

A sequence of graphs (Gn)n∈N is convergent if the sequence d(H,Gn) con-

verges for every graph H. We will require that the orders of graphs in a convergent

sequence tend to infinity. A convergent sequence of graphs can be associated with

an analytic limit object, which is called a graphon. A graphon is a symmetric mea-

surable function W from the unit square [0, 1]2 to the unit interval [0, 1], where

symmetric refers to the property that W (x, y) = W (y, x) for all x, y ∈ [0, 1]. One

can think (although very imprecisely) of a graphon as a continuous version of the

adjacency matrix of a graph and view the values of W (x, y) as the density between

different parts of a large graph represented by W .

To aid the transparency of our ideas, we often include a visual representation

of graphons that we consider: the domain of a graphon W is represented as a unit

square [0, 1]2 with the origin (0, 0) in the top left corner, and the values of W are

represented by an appropriate shade of gray (ranging from white to black), with 0

represented by white and 1 by black. As an example, the following graphons are

depicted in Figure 1.1: W1 which value is 1/2 almost everywhere; W2 with value 1

for almost every pair (x, y) where x ≤ 0.5, y > 0.5 and x > 0.5, y ≤ 0.5, and 0,

otherwise; and W3 with 1 for almost every (x, y) where 1− x ≤ y and 0 otherwise.

(a) W1 (b) W2 (c) W3

Figure 1.1: Examples of graphons.

Given a graphon W , a W -random graph of order n is a graph obtained from

4



W by sampling n vertices v1, v2, . . . , vn ∈ [0, 1] independently and uniformly at

random and joining vertices vi and vj by an edge with probability W (vi, vj) for all

i, j ∈ [n]. The density of a graph H in a graphon W , denoted by d(H,W ), is the

probability that a W -random graph of order |H| is isomorphic to H. Note that the

expected density of H in a W -random graph of order n ≥ |H| is equal to d(H,W ).

We say that a convergent sequence (Gn)n∈N converges to a graphon W if

lim
n→∞

d(H,Gn) = d(H,W )

for every graph H. It is not hard to show that if W is a graphon, then the sequence

of W -random graphs with increasing orders is convergent with probability one and

the graphon W is its limit.

Two graphons W1 and W2 are weakly isomorphic if d(H,W1) = d(H,W2)

for every graph H. Borgs, Chayes and Lovász [10] have shown that two graphons

W1 and W2 are weakly isomorphic if and only if there exist measure preserving

maps ϕ1, ϕ2 : [0, 1] → [0, 1] such that W1(ϕ1(x), ϕ1(y)) = W2(ϕ2(x), ϕ2(y)) for

almost every (x, y) ∈ [0, 1]2. Graphons that can be uniquely determined up to a

weak isomorphism by fixing the densities of a finite set of graphs are called finitely

forcible graphons and are the central object of Chapter 2. Observe that a graphon

W is finitely forcible if and only if there exist graphs H1, . . . ,Hk such that if a

graphon W ′ satisfies d(Hi,W
′) = d(Hi,W ) for i ∈ [k], then d(H,W ′) = d(H,W )

for every graph H.

A less obvious characterization of finitely forcible graphons that follows from

flag algebra is the following.

Proposition 1. A graphon W is finitely forcible if and only if there exist graphs

H1, . . . ,Hk and reals α1, . . . , αk such that

k∑
i=1

αid(Hi,W ) ≤
k∑
i=1

αid(Hi,W
′)

for every graphon W ′ and the equality holds only if W and W ′ are weakly isomorphic.

5



Chapter 2

Finitely forcible graph limits are

universal

Central to dense graph convergence is the analytic representation of the limit of a

convergent sequence of dense graphs, known as a graphon [11–13,69]; In this chapter,

we are interested in graphons that are uniquely determined (up to isomorphism) by

finitely many graph densities, which are called finitely forcible graphons. As men-

tioned in Chapter 1, such graphons are related to various problems from extremal

graph theory and from graph theory in general. For example, for every finitely

forcible graphon W , there exists a linear combination of graph densities such that

the graphon W is its unique minimizer. Another example is the characterization

of quasirandom graphs in terms of graph densities by Thomason [86, 87] which is

essentially equivalent to stating that the constant graphon is finitely forcible by den-

sities of 4-vertex graphs; also see [15,80] for further results on quasirandom graphs.

Lovász and Sós [68] generalized this characterization by showing that every step

graphon, a multipartite graphon with quasirandom edge densities between its parts,

is finitely forcible. Other examples of finitely forcible graphons are given in [71].

Early examples of finitely forcible graphons indicated that all finitely forcible

graphons might possess a simple structure, as formalized by Lovász and Szegedy,

who conjectured the following [71, Conjectures 9 and 10].

Conjecture 1. The space of typical vertices of every finitely forcible graphon is

compact.

Conjecture 2. The space of typical vertices of every finitely forcible graphon has

finite dimension.

Both conjectures were disproved through counterexample constructions [36, 37]. A

6



stronger counterexample to Conjecture 2 was found in [20]: Conjecture 2 would

imply that the number of parts of a weak ε-regular partition of a finitely forcible

graphon is bounded by a polynomial of ε−1 but the construction given in [20] almost

matches the best possible exponential lower bound from [16].

The purpose of this chapter is to show that finitely forcible graphons can

have arbitrarily complex structure. Our main result reads as follows.

Theorem 1. For every graphon WF , there exists a finitely forcible graphon W0 such

that WF is a subgraphon of W0, and the subgraphon is formed by a 1/14 fraction of

the vertices of W0.

Theorem 1 contrasts with [71, Theorem 7.12], which states that the set of

finitely forcible graphons is meager in the space of all graphons. In addition, since

every finitely forcible graphon is the unique minimizer of some linear combination

of densities of subgraphs (see Proposition 1), Theorem 1 also shows that optimal

solutions of problems seeking to minimize a linear combination of densities of sub-

graphs, which are among the simplest stated problems in extremal graph theory,

may have unique optimal solutions with highly complex structure.

Theorem 1 also immediately implies that both conjectures presented above

are false since we can embed graphons not having the desired properties in a finitely

forcible graphon. By considering a graphon containing appropriately scaled copies

of graphons corresponding to the lower bound construction of Conlon and Fox

from [16], which were described in [20], we also obtain the following.

Corollary 1. For every non-decreasing function f : R → R tending to infinity,

there exist a finitely forcible graphon W and positive reals εi tending to 0 such that

every weak εi-regular partition of W has at least 2
Ω

(
ε−2
i

f(ε−1
i

)

)
parts.

Since every fixed graphon has weak ε-regular partitions with 2o(ε
−2) parts,

Corollary 1 gives the best possible dependance on ε−1.

The proof of Theorem 1 builds on the methods introduced in [37], which

were further developed and formalized in [36]. In particular, the proof uses the

technique of decorated constraints, which we present in Subsection 2.1.1. The main

idea of the proof is the following. The graphon WF is determined up to a set of

measure zero by its density in squares with coordinates being the inverse powers

of two. The countable sequence of such densities can be encoded into a single real

number between 0 and 1, which will be embedded as the density of a suitable part

of the graphon W0. We then set up the structure of W0 in a way that this encoding

restricts the densities inside another part of W0 rendering WF unique up to a set

7



of measure zero. While this approach seems uncomplicated upon first glance, the

proof hides a variety of additional ideas and technical details. The reward is a

result enabling the embedding of any graphon in a finitely forcible graphon with no

additional effort.

2.1 Preliminaries

In this section we introduce additional notation used throughout the chapter. We

start by presenting graphon analogues of several graph theoretic notions. The degree

of a vertex x ∈ [0, 1] is defined as

degW (x) =

∫
[0,1]

W (x, y) dy.

Note that the degree is well-defined for almost all vertices of W and if x is chosen

to be a vertex of an n-vertex W -random graph, then its expected degree is (n −
1) · degW (x). When it is clear from the context which graphon we are referring to,

we will omit the subscript, i.e., we just write deg(x) instead of degW (x). We define

the neighborhood NW (x) of a vertex x ∈ [0, 1] in a graphon W as the set of vertices

y ∈ [0, 1] such that W (x, y) > 0. In our considerations, we will often analyze a

restriction of a graphon to the substructure induced by a pair of measurable subsets

A and B of [0, 1]. If W is a graphon and A is a non-null measurable subset of [0, 1],

then the relative degree of a vertex x ∈ [0, 1] with respect to A is

degAW (x) =

∫
AW (x, y) dy

|A|
,

i.e., the measure of the neighbors of x in A normalized by the measure of A. Simi-

larly, NA
W (x) = NW (x)∩A is the relative neighborhood of x with respect to A. Note

that degAW (x) · |A| ≤ |NA
W (x)| and the inequality can be strict. Again, we drop the

subscripts when W is clear from the context.

2.1.1 Finite forcibility and decorated constraints

Decorated constraints have been introduced and developed in [36, 37] as a method

of showing finite forcibility of graphons. This method uses the language of the flag

algebra method of Razborov, which, as we have mentioned earlier, has had many

substantial applications in extremal combinatorics. We now present the notion of

decorated constraints, partially following the lines of [36] in our exposition.

A density expression is iteratively defined as follows: a real number or a

8



graph are density expressions, and if D1 and D2 are density expressions, then so are

D1 +D2 and D1 ·D2. The value of a density expression with respect to a graphon W

is the value obtained by substituting for each graph its density in the graphon W .

A constraint is an equality between two density expressions. A graphon W satisfies

a constraint if the density expressions on the two sides of the constraints have the

same value. If C is a finite set of constraints such that there exists a unique (up to

weak isomorphism) graphon W that satisfies all constraints in C, then the graphon

W is finitely forcible [37]; in particular, W can be forced by specifying the densities

of graphs appearing in the constraints in C.
A graphon W is said to be partitioned if there exist k ∈ N, positive reals

a1, . . . , ak with a1 + · · · + ak = 1, and distinct reals d1, . . . , dk ∈ [0, 1], such that

the set of vertices in W with degree di has measure ai. The set of all vertices with

degree di will be referred to as a part ; the size of a part is its measure and its degree

is the common degree of its vertices. The following lemma was proved in [36,37].

Lemma 1. Let a1, . . . , ak be positive real numbers summing to one and let d1, . . . , dk ∈
[0, 1] be distinct reals. There exists a finite set of constraints C such that any graphon

satisfying all constraints in C is a partitioned graphon with parts of sizes a1, . . . , ak

and degrees d1, . . . , dk, and every partitioned graphon with parts of sizes a1, . . . , ak

and degrees d1, . . . , dk satisfies all constraints in C.

We next introduce a formally stronger version of constraints, called decorated

constraints. Fix a1, . . . , ak and d1, . . . , dk as in Lemma 1. A decorated graph is a

graph G with m ≤ |G| distinguished vertices labeled from 1 to m, which are called

roots, and with each vertex assigned one of the k parts, which is referred to as the

decoration of a vertex. Note that the number m can be zero in the definition of a

decorated graph, i.e., a decorated graph can have no roots. Two decorated graphs

are compatible if the subgraphs induced by their roots are isomorphic through an

isomorphism preserving the labels (the order of the roots) and the decorations (the

assignment of parts). A decorated constraint is an equality between two density

expressions that contain decorated graphs instead of ordinary graphs and all the

decorated graphs appearing in the constraint are compatible.

Consider a partitioned graphon W with parts of sizes a1, . . . , ak and degrees

d1, . . . , dk, and a decorated constraint C. Let H0 be the (decorated) graph induced

by the roots of the decorated graphs in the constraint; let v1, . . . , vm be the roots

of H0. We say that the graphon W satisfies the constraint C if the following holds

for almost every m-tuple x1, . . . , xm ∈ [0, 1] such that xi belongs to the part that

vi is decorated with, W (xi, xj) > 0 for every edge vivj and W (xi, xj) < 1 for every

9



non-edge vivj : if each decorated graph H in C is replaced with the probability that a

W -random graph is the graph H conditioned on the event that the roots are chosen

as the vertices x1, . . . , xm and they induce the graph H0, and that each non-root

vertex is randomly chosen from the part of W that is decorated with, then the left

and right hand sides of the constraint C have the same value.

We now give an example of evaluating a decorated constraint. Consider a

partitioned graphon W , which is depicted in Figure 2.1, with parts A and B each

of size 1/2; the graphon W is equal to 1/2 on A2, to 1/3 on A × B, and to 1 on

B2. Let H be the decorated graph with two adjacent roots both decorated with A

and two adjacent non-root vertices v1 and v2 both decorated with B such that v1

is adjacent to only one of the roots and v2 is adjacent to both roots; the decorated

graph H is also depicted in Figure 2.1. If H appears in a decorated constraint, then

its value is independent of the choice of the roots in the part A and is always equal

to 2/81, which is the probability as defined in the previous paragraph.

A

A

B

B A

B

A

B

= 2
81

Figure 2.1: An example of evaluating a decorated constraint. The root vertices are
depicted by squares and the non-root vertices by circles. The graphon is equal to
1/2 on A2, to 1/3 on A×B, and to 1 on B2.

Note that the condition on the m-tuple x1, . . . , xm is equivalent to that there

is a positive probability that a W -random graph with the vertices x1, . . . , xm is H0.

Also note that, unlike in the definition of the density of a graph in a graphon, we

do not allow permuting any vertices. For example, if W is the graphon (with a

single part) that is equal to p ∈ [0, 1] almost everywhere, then the cherry K1,2 with

each vertex decorated with the single part of W would be replaced in a decorated

constraint with p2(1− p).
The next lemma, proven in [37], asserts that every decorated constraint is

equivalent to a non-decorated constraint.

Lemma 2. Let k ∈ N, let a1, . . . , ak be positive real numbers summing to one, and

let d1, . . . , dk be distinct reals between zero and one. For every decorated constraint

C, there exists a constraint C ′ such that any partitioned graphon W with parts of

sizes a1, . . . , ak and degrees d1, . . . , dk satisfies C if and only if it satisfies C ′.

10



In particular, if a graphon W is a unique partitioned graphon up to weak

isomorphism that satisfies a finite collection of decorated constraints, then it is a

unique graphon satisfying a finite collection of ordinary constraints by Lemmas 1

and 2, and hence W is finitely forcible.

We will visualize decorated constraints using the convention from [20], which

we now describe and have already used in Figure 2.1. The root vertices of decorated

graphs in a decorated constraint will be depicted by squares and the non-root vertices

by circles; each vertex will be labeled with its decoration, i.e., the part that it should

be contained in. The roots will be in all the decorated graphs in the constraint in

the same mutual position, so it is easy to see the correspondence of the roots of

different decorated graphs in the same constraint. A solid line between two vertices

represents an edge, and a dashed line represents a non-edge. The absence of a

line between two root vertices indicates that the decorated constraint should hold

for both the root graph containing this edge and not containing it. Finally, the

absence of a line between a non-root vertex and another vertex represents the sum

of decorated graphs with this edge present and without this edge. If there are k

such lines absent, the figure represents the sum of 2k possible decorated graphs with

these edges present or absent.

We finish this subsection with two auxiliary lemmas. The first is a lemma

stated in [20], which essentially states that if a graphon W0 is finitely forcible in its

own right, then it may be forced on a part of a partitioned graphon without altering

the structure of the rest of the graphon.

Lemma 3. Let k ∈ N, m ∈ [k], let a1, . . . , ak be positive real numbers summing to

one, and let d1, . . . , dk be distinct reals between zero and one. If W0 is a finitely

forcible graphon, then there exists a finite set C of decorated constraints such that

any partitioned graphon W with parts of sizes a1, . . . , ak and degrees d1, . . . , dk sat-

isfies C if and only if there exist measure preserving maps ϕ0 : [0, 1] → [0, 1] and

ϕm : [0, am]→ Am such that W (ϕm(xam), ϕm(yam)) = W0(ϕ0(x), ϕ0(y)) for almost

every (x, y) ∈ [0, 1]2, where Am is the m-th part of W .

Note that Lemma 2 implies that the set C of decorated constraints from Lemma 3

can be turned into a set of ordinary (i.e., non-decorated) constraints.

The second lemma is implicit in [71, proof of Lemma 3.3]; its special case

has been stated explicitly in, e.g., [20, Lemma 8].

Lemma 4. Let X,Z ⊆ R be two measurable non-null sets, and let F : X×Z → [0, 1]

11



be a measurable function. If there exists C ∈ R such that∫
Z
F (x, z)F (x′, z) dz = C

for almost every (x, x′) ∈ X2, then∫
Z
F (x, z)2 dz = C

for almost every x ∈ X.

2.1.2 Regularity partitions and step functions

A step function W : [0, 1]2 → [−1, 1] is a measurable function such that there exists

a partition of [0, 1] into measurable non-null sets U1, . . . , Uk that W is constant on

Ui×Uj for every i, j ∈ [k]. A non-negative symmetric step function is a step graphon.

If W is a step function (in particular, W can be a step graphon) and A and B two

measurable subsets of [0, 1], then the density dW (A,B) between A and B is defined

to be

dW (A,B) =

∫
A×B

W (x, y) dx dy .

We will omit W in the subscript if W is clear from the context. Note that it always

holds that |d(A,B)| ≤ |A| · |B|. A step function W ′ refines a step function W

with parts U1, . . . , Uk, if each part of W ′ is a subset of one of the parts of W and

the density dW (Ui, Uj) between Ui and Uj is equal to the weighted average of the

densities between the pairs of those parts of W ′ that are subsets of Ui and Uj ,

respectively.

We next recall the notion of the cut norm. If W is a step function, then the

cut norm of W , denoted by ||W ||�, is

sup
A,B⊆[0,1]

∣∣∣∣∫
A×B

W (x, y) dx dy

∣∣∣∣ ,

where the supremum is taken over all measurable subsets A and B of [0, 1]. The

supremum in the definition is always attained and the cut norm induces the same

topology on the space of step functions as the L1-norm; this can be verified following

the lines of the analogous arguments for graphons in [65, Chapter 8]. It can be shown
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that if H is a k-vertex graph and W and W ′ are two graphons, then

∣∣d(H,W )− d(H,W ′)
∣∣ ≤ (k

2

)
||W −W ′||� .

We will say that two graphons W and W ′ are ε-close if ||W −W ′||� ≤ ε.
A partition of [0, 1] into measurable non-null sets U1, . . . , Uk is said to be

ε-regular if ∣∣∣∣∣∣d(A,B)−
∑
i,j∈[k]

d(Ui, Uj)

|Ui||Uj |
|Ui ∩A||Uj ∩B|

∣∣∣∣∣∣ ≤ ε
for every two measurable subsets A and B of [0, 1]. In other words, the step graphon

W ′ with parts U1, . . . , Uk that is equal to
d(Ui,Uj)
|Ui||Uj | on Ui × Uj is ε-close to W in the

cut norm metric. In particular, the step graphon W ′ determines the densities of

k-vertex graphs in W up to an additive error of
(
k
2

)
ε.

The Weak Regularity Lemma of Frieze and Kannan [34] extends to graphons

as follows (see [65, Section 9.2] for further details): for every ε > 0, there exists

K ≤ 2O(ε−2), which depends on ε only, such that every graphon has an ε-regular

partition with at most K parts. This dependence of K on ε is best possible up to a

constant factor in the exponent [16]. We will need a slightly stronger version of this

statement, which we formulate as a proposition; its proof is an easy modification of a

proof of the standard version of the statement, e.g., the one presented in [65, Section

9.2].

Proposition 2. For every ε > 0 and k ∈ N, there exists K ∈ N such that for every

graphon W and every partition U1, . . . , Uk of [0, 1] into disjoint measurable non-null

sets, there exist an ε-regular partition U ′1, . . . , U
′
K′ of [0, 1] with K ′ ≤ K such that

every part U ′i , i ∈ [K ′], is a subset of one of the parts U1, . . . , Uk.

For a step function W , we define d(Γ4,W ) to be the following integral:

d(Γ4,W ) =

∫
[0,1]4

W (x, y)W (x′, y)W (x, y′)W (x′, y′) dx dx′ dy dy′ .

Note that if W is a graphon, then

d(Γ4,W ) =
1

3
d(C4,W ) +

1

3
d(K−4 ,W ) + d(K4,W ) ,

where K−4 is the graph obtained from K4 by removing one of its edges. In particular,

d(Γ4,W ) can be understood as the density of non-induced C4 in the graphon W ,

since it is equal to the expected density of non-induced copies of C4 in a W -random
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graph. If W is a step function, then d(Γ4,W ) ≤ 4||W ||�. However, the converse

also holds: d(Γ4,W ) ≥ ||W ||4�; we refer e.g. to [65, Section 8.2], where a proof for

symmetric step functions W is given and this proof readily extends to the general

case. Lemma 7, which we present further, aims at a generalization of this statement

to step graphons. Before we can state this lemma, we need to prove two auxiliary

lemmas, which we state for matrices rather than step functions for simplicity.

Lemma 5. Let M be a K ×K real matrix and let i, j ∈ [K]. Define N to be the

following K ×K matrix:

Nx,y =

{
Mi,y+Mj,y

2 if x = i or x = j, and

Mx,y otherwise.

It holds that Tr MMTMMT ≥ Tr NNTNNT .

Proof. Set M(x, y), x, y ∈ [K], to be the following quantity:

M(x, y) =
K∑
z=1

Mx,zMy,z ,

and define N(x, y), x, y ∈ [K], in the analogous way. Observe that

Tr MMTMMT − Tr NNTNNT =
K∑

x,y=1

M(x, y)2 −N(x, y)2 .

We now analyze the difference on the right hand side of the equality by grouping

the terms on the right hand side into disjoint sets such that the sum of the terms

in each set is non-negative.

The terms with x, y ∈ [K] \ {i, j} form singleton sets; note that M(x, y) =

N(x, y) for each such term. Fix x ∈ [K] \ {i, j} and consider the two terms corre-

sponding to y = i and y = j. It follows that

M(x, i)2 +M(x, j)2 −N(x, i)2 −N(x, j)2 =

M(x, i)2 +M(x, j)2 − 2

(
K∑
z=1

Mxz
Mi,z +Mj,z

2

)2

=

M(x, i)2 +M(x, j)2 − 1

2
(M(x, i) +M(x, j))2 =

1

2
M(x, i)2 +

1

2
M(x, j)2 −M(x, i)M(x, j) =

1

2
(M(x, i)−M(x, j))2 .

14



Hence, the sum of any pair of such terms is non-negative. The analysis of the terms

with y ∈ [K] \ {i, j} and x = i or x = j is symmetric.

The remaining four terms that have not been analyzed are the terms corre-

sponding to the following pairs (x, y): (i, i), (i, j), (j, i) and (j, j). In this case, we

obtain the following:

M(i, i)2 + 2M(i, j)2 +M(j, j)2 −N(i, i)2 − 2N(i, j)2 −N(j, j)2 =

M(i, i)2 + 2M(i, j)2 +M(j, j)2 − 4

(
M(i, i) + 2M(i, j) +M(j, j)

4

)2

=

1

4
(M(i, i)−M(j, j))2 +

1

2
(M(i, i)−M(i, j))2 +

1

2
(M(j, j)−M(i, j))2 .

Hence, the sum of these four terms is also non-negative, and the lemma follows.

The next lemma follows by repeatedly applying Lemma 5 to pairs of rows of

the matrix M with indices from the same set Ai and to pairs of rows of the matrix

MT with indices from the same set Bi, and considering the limit matrix N .

Lemma 6. Let M be a K ×K real matrix. Further, let X1, . . . , Xk be a partition

of [K] into k disjoint sets and let Y1, . . . , Y` be a partition of [K] into ` disjoint sets.

Define the K ×K matrix N as follows. If x ∈ Xi, y ∈ Yj, then

Nx,y =
1

|Xi| · |Yj |
∑

x′∈Xi,y′∈Yj

Mx′,y′ .

It holds that Tr MMTMMT = Tr MTMMTM ≥ Tr NNTNNT = Tr NTNNTN .

The following auxiliary lemma can be viewed as an extension of [65, Lemma

8.12], which states that d(Γ4,W ) ≥ ||W ||4� for every graphon W , from the zero

graphon to general step graphons (consider the statement for W0 being the zero

graphon). We remark that we have not tried to obtain the best possible dependence

on the parameter ε in the statement of the lemma. The lemma also holds in a more

general setting, where the parts of graphons are not required to be of the same size.

Lemma 7. Let W0 be a step graphon with all parts of the same size, and W a step

graphon refining W0 such that all parts of W have the same size. If ||W−W0||� ≥ ε,
then d(Γ4,W ) ≥ d(Γ4,W0) + ε4/8.

Proof. Since ||W −W0||� ≥ ε, there exist two measurable subsets A and B of [0, 1]

such that ∣∣∣∣∫
A×B

W (x, y)−W0(x, y) dx dy

∣∣∣∣ ≥ ε . (2.1)
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Let U be one of the parts of the graphon W . Depending whether
∫
U×BW−W0 dx dy

is positive or negative, replacing A with either A∪U or A \U does not decrease the

integral in (2.1). Hence, we can assume that each part of W is either a subset of A

or is disjoint from A, and the same holds with respect to B (but different parts U

of W may be contained in A and B).

Let k be the number of parts of W0 and K the number of parts W . Further,

let M be the K × K matrix such that the entry Mi,j , i, j ∈ K, is the density of

W between its i-th and the j-th parts, and let P be the K ×K matrix such that

Pi,j , i, j ∈ K, is the density of W0 between the i-th and the j-th parts of W . Let

Ui, i ∈ [k], be the subset of [K] containing the indices of the parts of W contained

in the i-th part of W0. Observe that both matrices M and P are symmetric and

the matrix P is constant on each submatrix indexed by pairs from Ui×Uj for some

i, j ∈ [k]. Since d(Γ4,W ) = Tr M4 and d(Γ4,W0) = Tr P 4, our goal is to show that

Tr M4 − Tr P 4 ≥ ε4/8. Finally, let A′ be the indices of parts of W contained in A,

and let B′ be the indices of parts of W contained in B. Observe that (2.1) yields

that the sum of the entries of the matrix M −P with the indices in A′×B′ is either

at least ε or at most −ε.
Let N be the matrix from the statement of Lemma 6 for the matrix M ,

Xi = {i}, i ∈ [K], and Yj = Uj , j ∈ [k]. Let ε1 be the sum of the entries of the matrix

M−N with the indices in A′×B′, and let ε2 be the sum of the entries of the matrix

N−P with the indices in A′×B′. Note that |ε1+ε2| ≥ ε, which implies that |ε1|+|ε2|
is at least ε. By Lemma 6, it holds that Tr M4 −Tr NNTNNT ≥ 0. Since P T can

be obtained from the matrix NT by applying Lemma 6 with Xi = {i}, i ∈ [K], and

Yj = Uj , j ∈ [k], it follows that Tr NTNNTN−Tr P 4 = Tr NNTNNT −Tr P 4 ≥ 0.

We now show that Tr M4 − Tr NNTNNT ≥ ε4
1. Let Q = M −N . We now

want to analyze the entries of the matrix (N + αQ)(N + αQ)T for α ∈ [0, 1]. Fix

x, y ∈ [K] and observe that the entry in the x-th row and the y-th column of the

matrix (N + αQ)(N + αQ)T is equal to

k∑
j=1

∑
z∈Uj

(N + αQ)x,z(N + αQ)y,z .

The definition of the matrix N implies that∑
z∈Uj

Qx,z =
∑
z∈Uj

Qy,z = 0

for every j ∈ [k]. It also holds that Nx,z = Nx,z′ and Ny,z = Ny,z′ for any z
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and z′ from the same set Uj , j ∈ [k], which implies that the entry of the matrix

(N + αQ)(N + αQ)T in the x-th row and the y-th column is

K∑
z=1

Nx,zNy,z + α2Qx,zQy,z .

Hence, we conclude that (N + αQ)(N + αQ)T = NNT + α2QQT . It follows that

Tr (N + αQ)(N + αQ)T (N + αQ)(N + αQ)T =

Tr NNTNNT + 2α2Tr NNTQQT + α4Tr QQTQQT . (2.2)

By Lemma 6 applied with M = N + αQ and the same sets Xi and Yj as earlier,

Tr (N + αQ)(N + αQ)T (N + αQ)(N + αQ)T − Tr NNTNNT ≥ 0

for every α ≥ 0, which implies that Tr NNTQQT ≥ 0. In particular, we obtain

from (2.2) for α = 1 that

Tr M4 − Tr NNTNNT =

Tr (N + αQ)(N + αQ)T (N + αQ)(N + αQ)T − Tr NNTNNT ≥

Tr QQTQQT . (2.3)

Since the cut-norm of the step graphon corresponding to Q is at least ε1, it follows

that Tr QQTQQT ≥ ε4
1.

Applying the symmetric argument to the matrices P T and NT = N , we

obtain that

Tr NNTNNT − Tr P 4 ≥ Tr (N − P )(N − P )T (N − P )(N − P )T ≥ ε4
2 . (2.4)

Since Tr M4 − Tr NNTNNT ≥ 0 and Tr NTNNTN − Tr P 4 ≥ 0, we obtain from

(2.3) and (2.4) using |ε1| + |ε2| ≥ ε that Tr M4 − Tr P 4 ≥ ε4
1 + ε4

2 ≥ ε4/8, as

desired.

2.2 General setting of the proof of Theorem 1

In this section, we provide a general overview of the structure of the graphon W0

from Theorem 1 and the proof of Theorem 1. The visualization of the structure

of the graphon W0 can be found in Figure 2.2. The proof of Theorem 1 is spread

through Sections 2.2–2.5, with this section containing its initial steps.
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Figure 2.2: The sketch of the graphon W0 from Theorem 1.
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Fix a graphon WF . The graphon W0 is a partitioned graphon with 10 parts

denoted by capital letters from A to R. Each part except for Q has size 1/14, and

the size of Q is 5/14. If X,Y ∈ {A, . . . , G, P,Q,R} are two parts, the restriction of

the graphon W0 to X × Y will be referred to as the tile X × Y . The graphon WF

will be contained in the tile G×G of the graphon W0. The degrees of the parts (i.e.,

the degrees of the vertices forming the parts) are given in Table 2.1; the degree of

Q is at least 5/14 + 8/252, i.e., larger than the degree of any other part, and will be

fixed later in the proof.

Part A B C D E F G P Q R

Degree 90
252

91
252

92
252

93
252

94
252

95
252

96
252

97
252 > 98

252
77
252

Table 2.1: The degrees of the vertices in the parts of the graphon W0 from the proof
of Theorem 1.

Rather than giving a complex definition of the graphon W0 at once, we

decided to present the particular details of the structure of W0 together with the

decorated constraints fixing the structure of W0 in Sections 2.2–2.5. Table 2.2 gives

references to subsections where the individual tiles of the graphon W0 are considered

and the corresponding decorated constraints are given.

We now start the proof of the finite forcibility of the graphon W0. Let W

be a graphon that satisfies the constraints from Lemma 1 with respect to the sizes

and degrees of the parts of W0 and that satisfies all the decorated constraints given

in Sections 2.2–2.5. It will be obvious that the graphon W0 also satisfies these

constraints. So, if we show that W is weakly isomorphic to W0, then we will have

established that W0 is finitely forcible. We will achieve this goal by constructing a

measure preserving map g : [0, 1] → [0, 1] such that W (x, y) = W0(g(x), g(y)) for

almost every (x, y) ∈ [0, 1]2.

Let A, . . . , G, P,Q,R be the parts of the graphon W . To make a clear dis-

tinction between the parts of W and W0, we will use A0, . . . , G0, P0, Q0, R0 ⊆ [0, 1]

to denote the subintervals forming the parts of W0. The Monotone Reordering The-

orem [65, Proposition A.19] implies that, for every X ∈ {A, . . . , G, P,Q,R}, there

exist a measure preserving map ϕX : X → [0, |X|) and a non-decreasing function

f̃X : [0, |X|)→ R such that

f̃X(ϕX(x)) = degPW (x) =
1

|P |

∫
P

W (x, y) dy

for almost every x ∈ X. The function g maps the vertex x ∈ X, X ∈ {A, . . . , G, P,Q,R},
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A B C D E F G P Q R

A 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.1 2.5.1 2.5.2
B 2.2.2 2.2.3 2.2.3 2.2.3 2.2.3 2.3.1 2.5 2.2.1 2.5.1 2.5.2
C 2.2.3 2.2.3 2.2.3 2.2.3 2.2.3 2.4.3 2.5 2.2.1 2.5.1 2.5.2
D 2.2.2 2.2.3 2.2.3 2.2.3 2.3.3 2.3.2 2.5 2.2.1 2.5.1 2.5.2
E 2.2.2 2.2.3 2.2.3 2.3.3 2.4.1 2.4.1 2.4.2 2.2.1 2.5.1 2.5.2
F 2.2.2 2.3.1 2.4.3 2.3.2 2.4.1 2.4.1 2.4.2 2.2.1 2.5.1 2.5.2
G 2.2.2 2.5 2.5 2.5 2.4.2 2.4.2 2.4.4 2.2.1 2.5.1 2.5.2
P 2.2.1 2.2.1 2.2.1 2.2.1 2.2.1 2.2.1 2.2.1 2.2.1 2.5.1 2.5.2
Q 2.5.1 2.5.1 2.5.1 2.5.1 2.5.1 2.5.1 2.5.1 2.5.1 2.5 2.5.2
R 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2

Table 2.2: Subsections where the structure of the tiles are presented and the related
decorated constraints then given.

of W to the vertex ηX(ϕX(x)/|X|) where ηX is the bijective linear map from [0, 1) to

the part X0 of the graphon W0 of the form ηX(x) = |X0| ·x+cX for some cX ∈ [0, 1]

(we intentionally define ηX in this way, instead of defining ηX as a linear measure

preserving map from [0, |X0|) to X0, since this definition simplifies our exposition

later). In addition, we define a function fX : X → [0, 1] as fX(x) = f̃X(ϕX(x)) for

every x ∈ X. Clearly, g is a measure preserving map from [0, 1] to [0, 1]; hence, we

“only” need to show that W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ [0, 1]2.

2.2.1 Coordinate system

In this subsection, we analyze the tile P ×P and the tiles P ×X (and the symmetric

tiles X×P ) where X ∈ {A, . . . , G}. The half-graphon W4 is the graphon such that

W4(x, y) is equal to 1 if x + y ≥ 1 and equal to 0 otherwise; the half-graphon is

finitely forcible as shown by Diaconis and Janson [74] and Lovász and Szegedy [71].

Consider the decorated constraints from Lemma 3 forcing the tile P × P to be

weakly isomorphic to the half-graphon. This implies that f̃P (x) = ϕP (x)/|P | for

every x ∈ [0, |P |), where ϕP and f̃P are the functions from the Monotone Reordering

Theorem used to define the function g. Lemma 3 and the finite forcibility of the

half-graphon yield that W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ P 2.

Next consider the decorated constraints depicted in Figure 2.3 and fix X ∈
{A, . . . , G}. The first constraint in Figure 2.3 implies that W (x, y) ∈ {0, 1} for

almost every (x, y) ∈ P × X and that NX
W (x) v NX

W (x′) or NX
W (x′) v NX

W (x) for

almost every pair (x, x′) ∈ P 2. It follows that there exists a function hX : P →
[0, 1] such that it holds for almost every (x, y) ∈ P × X that W (x, y) = 1 if and
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Figure 2.3: Decorated constraints forcing the tiles X × P where X ∈ {A, . . . , G},
Y ∈ {E,F,G} and Z ∈ {A,B,C,D}.

only if ϕX(y)/|X| ≥ 1 − hX(x). If X ∈ {E,F,G}, then the second constraint in

Figure 2.3 implies that degX(x) = |NX(x)| = degP (x) for almost every x ∈ P ,

i.e., hX(x) = fP (x). Since it holds that W (x, y) = 1 if and only if ϕX(y)/|X| ≥
1− hX(x) for almost every (x, y) ∈ P ×X, we obtain that f̃X(y) = ϕX(y)/|X| for

y ∈ [0, |X|), W (x, y) = 1 for almost every (x, y) ∈ P ×X with fP (x) + fX(y) ≥ 1

and W (x, y) = 0 for almost every (x, y) ∈ P × X with fP (x) + fX(y) < 1. It

follows that W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ P ×X, where X ∈
{E,F,G}. The analogous argument using the third constraint in Figure 2.3 implies

that degX(x) = |NX(x)| = |X| − degP (x) for almost every x ∈ P , which yields that

W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ P ×X, where X ∈ {A,B,C,D}.
We conclude this subsection by observing that degPW (x) = fX(x) for almost

every x ∈ X, where X ∈ {A, . . . , G} ∪ {P}. In particular, we may interpret the

relative degree of a vertex with respect to P as its coordinate. Also observe that

NP
W (x) v NP

W (x′) for almost every pair (x, x′) ∈ X ×X such that fX(x) ≤ fX(x′).

2.2.2 Checker tiles

We now consider the tiles A × X where X ∈ {A, . . . G}. The argument follows

the lines of the analogous argument presented in [20, 36, 37], however, we include

the details for completeness. The checker graphon WC is obtained as follows: let

Ik = [1− 2−k, 1− 2−(k+1)) for k ∈ N0 and set WC(x, y) equal to 1 if (x, y) ∈
∞⋃
k=0

I2
k ,

i.e., both x and y belong to the same Ik, and equal to 0 otherwise. The checker

graphon WC is depicted in Figure 2.4. We remark that we present an iterated

version of this definition in Subsection 2.2.3. We set W0(ηA(x), ηX(y)) = WC(x, y)

for x, y ∈ [0, 1)2 where X ∈ {A, . . . G}.
Consider the decorated constraints in Figure 2.5, which we claim to force

the structure of the tile A×A. The first constraint in Figure 2.5 implies that there

exists a collection JA of disjoint measurable non-null subsets of A such that the

following holds for almost every (x, y) ∈ A× A: W (x, y) = 1 if and only if x and y

belong to the same set J ∈ JA, and W (x, y) = 0 otherwise.

The second constraint in Figure 2.5 implies that almost every triple (x, x′, x′′) ∈
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Figure 2.4: The checker graphon WC .
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Figure 2.5: The decorated constraints forcing the structure of the tile A×A.

A3 satisfies that if x and x′′ belong to the same set J ∈ JA and fA(x) < fA(x′) <

fA(x′′), then x′ also belongs to the set J (since x and x′ cannot be non-adjacent).

This implies that for every J ∈ JA, there exists an open interval J ′ such that J

and f−1
A (J ′) differ on a null set. Let J ′A be the collection of these open intervals for

different sets J ∈ JA; since fA is a measure preserving map and the sets in JA are

disjoint, the intervals in J ′A must be disjoint.

The third constraint in Figure 2.5 implies that almost every pair (x, x′) ∈ A2

satisfies that if x and x′ belong to the same set J ∈ JA and fA(x) < fA(x′), then

|NA
W (x) ∩NA

W (x′)| = |J | is the measure of the set Y of the points y ∈ A such that

y 6∈ J and fA(y) > fP (x′′) for almost every x′′ ∈ P with fA(x) < fP (x′′) < fA(x′).

Observe that if J is fixed and J = f−1
A (J ′) for J ′ ∈ J ′A, then the set Y differs

from f−1
A ([sup J ′, 1)) on a null set. It follows that the measure |J | = |J ′| is equal

to 1 − sup J ′. Hence, each interval in J ′A is of the form (1 − 2γ, 1 − γ) for some

γ ∈ (0, 1/2]; let Γ be the set of all the values of γ for that there is a corresponding

interval in J ′A. Note that if γ ∈ Γ, then Γ∩ (γ/2, γ) = ∅, which implies in particular

that the set Γ is countable. Let γk be the k-th largest value in the set Γ and in case

that Γ is finite, set γk = 0 for k > |Γ|. It follows that

1

|A|2

∫
A×A

W (x, y) dx dy =
∑
J ′∈J ′A

(
sup J ′ − inf J ′

)2
=
∑
k∈N

γ2
k .
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The last constraint in Figure 2.5 implies that the integral on the left hand side of

the above equality is equal to 1/3, which is possible only if γk = 2−k for every k ∈ N.

It follows that W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ A2.

A X

A

= 0
A

A

A

X

=
X X X

A P P

= 0

X P X X P X

X XA A

=

Figure 2.6: The decorated constraints forcing the structure of the tiles A×X where
X ∈ {B, . . . , G}.

We now consider the decorated constraints from Figure 2.6. FixX ∈ {B, . . . , G}.
The first constraint in Figure 2.6 implies that for every J ∈ JA, there exists

a measurable set Z(J) ⊆ X such that the following holds for almost every pair

(x, y) ∈ A × X: W (x, y) = 1 if x ∈ J and y ∈ Z(J), and W (x, y) = 0 otherwise.

Note that the sets Z(J) need not be disjoint. The second constraint in Figure 2.6

yields that degAW (x) = degXW (x) for almost every x ∈ A, which implies that the sets

J and Z(J) have the same measure. The third constraint implies that the following

holds for almost every triple (y, y′, y′′) ∈ X3: if fP (y) < fP (y′) < fP (y′′), y ∈ Z(J)

and y′′ ∈ Z(J), then y′ ∈ Z(J). Consequently, for every Z(J), there exists an open

interval Z ′(J) such that Z(J) differs from the set g−1
X (Z ′(J)) on a null set. Finally,

the last constraint in Figure 2.6 yields that the following holds for almost every

x ∈ J : the measure of NX
W (x) = Z(J), which is |Z(J)| = |Z ′(J)|, is equal to the

measure of the set containing all y 6∈ Z(J) with fX(y) ≥ supZ ′(J). It follows that

the interval Z ′(J) is equal to (1− 2γ, γ) for some γ ∈ (0, |X|/2]. Since the measures

of J and Z ′(J) are the same, it must hold that Z ′(J) = J ′ where J ′ ∈ J ′A is the

interval corresponding to J . It follows that W (x, y) = W0(g(x), g(y)) for almost

every (x, y) ∈ A×X.

2.2.3 Iterated checker tiles

The checker graphon WC represents a large graph formed by disjoint complete

graphs on the 1/2, 1/4, 1/8, . . . fractions of its vertices. We now present a fam-

ily of iterated checker graphons. Informally speaking, we start with the checker

graphon WC and at each iteration, we paste a scaled copy of WC on each clique

of the current graphon. The formal definition is as follows. Fix k ∈ N0. If k = 0,
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Figure 2.7: The iterated checker graphons W 0
C , W 1

C and W 2
C .

define Ij0 , j0 ∈ N0, to be the interval

Ij0 =
[
1− 2−j0 , 1− 2−j0−1

)
.

If k > 0, we define Ij0,...,jk for (j0, . . . , jk) ∈ Nk0 as

Ij0,...,jk =
[
sup Ij0,...,jk−1

− 2−jk |Ij0,...,jk−1
|, sup Ij0,...,jk−1

− 2−jk−1|Ij0,...,jk−1
|
)
.

The k-iterated checker graphon W k
C is then defined as follows: W k

C(x, y) is equal to 1

if there exists a (k+ 1)-tuple (j0, . . . , jk) ∈ Nk0 such that both x and y belong to the

interval Ij0,...,jk , and it is equal to 0 otherwise. The iterated checker graphons W 0
C ,

W 1
C and W 2

C are depicted in Figure 2.7. Note that W 0
C = WC and the definition of

Ij0 coincides with that given in Subsection 2.2.2. We will also refer to an interval

Ij0,...,jk as to a k-iterated binary interval.

For X ∈ {B,C} and Y ∈ {X, . . . , E}, we set

W0(ηX(x), ηY (y)) =

{
W 1
C(x, y) if X = B, and

W 2
C(x, y) if X = C

for all x, y ∈ [0, 1)2. We also set the tile D ×D to be such that

W0(ηD(x), ηD(y)) = W 3
C(x, y)

for all x, y ∈ [0, 1)2. This also defines the values of W0 in the symmetric tiles, i.e.,

the values for the tile X × Y determine the values for the tile Y ×X.

Consider the decorated constraints depicted in Figures 2.8 and 2.9. We first

analyze the structure of the tile B × B, then all the tiles B × Y , Y ∈ {B, . . . , E},
then the tile C ×C, then all the tiles C × Y , Y ∈ {C, . . . , E}, before finishing with

the tile D × D. Fix (X,Y ) to be one of the pairs (A,B), (B,C) or (C,D). We

assume that W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ X ×X and almost

every (x, y) ∈ X × Y , and our goal is to show that W (x, y) = W0(g(x), g(y)) for
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Figure 2.8: The decorated constraints forcing the structure of the tiles B2, C2, and
D2, where (X,Y ) ∈ {(A,B), (B,C), (C,D)}.
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Figure 2.9: The decorated constraints forcing the structure of the iterated checker
graphons on the non-diagonal tiles, where (X,Y ) ∈ {(A,B), (B,C)} and Z ∈
{C,D,E, F} if X = A and Z ∈ {D,E, F} if X = B.
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almost every (x, y) ∈ Y × Y .

The first two constraints on the first line in Figure 2.8 imply that there exists

a collection J ′Y of disjoint open intervals such that the following holds for almost

every (x, y) ∈ Y 2: W (x, y) is equal to 1 if and only if fY (x) and fY (y) belong to the

same interval J ′ ∈ J ′Y , and it is equal to 0 otherwise. The third constraint on the

first line in Figure 2.8 yields that each interval in J ′Y is a subinterval of an interval

in J ′X .

The first constraint on the second line in Figure 2.8 yields that the following

holds for almost every triple (x, y, y′) ∈ X × Y × Y such that fY (y) and fY (y′) are

from the same interval J ′Y ∈ J ′Y and fX(x) is from the interval J ′X ∈ J ′X that is a

superinterval of J ′Y : the measure of J ′Y (which is equal to the left hand side of the

equality) is the same as the measure of the set of all y′′ such that fY (y′′) ∈ J ′X and

fY (y′′) > sup J ′Y (which is equal to the right hand side). It follows that

J ′Y = (sup J ′X − 2γ, sup J ′X − γ)

for some γ ∈ (0, |J ′X |/2]. The very last constraint in Figure 2.8 yields for every

J ′X ∈ J ′X that ∑
J ′Y ∈J

′
Y ,J
′
Y ⊆J

′
X

|J ′Y |2 =
1

3
|J ′X |2.

However, this is only possible if the set J ′Y contains all intervals of the form (supJ ′X−
2γ, sup J ′X − γ) for every J ′X ∈ J ′X and every γ = |J ′X | · 2−i, i ∈ N. It follows that

W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ Y × Y .

We continue to fix a pair (X,Y ) ∈ {(A,B), (B,C)}, but in addition we

now fix Z ∈ {Y, . . . , E} \ {Y } where Y ∈ {B,C}. Our next goal is to show that

W (y, z) = W0(g(y), g(z)) for almost every (y, z) ∈ Y ×Z, which is achieved using the

decorated constrains given in Figure 2.9. The first constraint in Figure 2.9 implies

that it holds for almost every y ∈ Y that fZ(NZ
W (y)) v J ′X where J ′X is the unique

interval of J ′X containing fY (y). The second constraint in Figure 2.9 yields that

for almost every y ∈ Y , there exists an interval Jy such that NZ
W (y) and f−1

Z (Jy)

differ on a null set, W (y, z) = 1 for almost every z ∈ f−1
Z (Jy), and W (y, z) = 0 for

almost every z ∈ Z \ f−1
Z (Jy). The third constraint yields that degYW (y) = degZW (y)

for almost every y ∈ Y , i.e., the measure of Jy is the same as the measure of the

interval in JY containing fY (y).

Finally, the last constraint in Figure 2.9 implies that almost every quadruple

x ∈ X, y ∈ Y , z, z′ ∈ Z such that fZ(z) < fZ(z′), fZ(z) and fZ(z′) belong to the

interval Jy, which is a subinterval of J ′X ∈ J ′X with fX(x) ∈ J ′X , satisfies that the
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measure of NZ
W (y) (note that NZ

W (y) is a subset of f−1
Z (J ′X)) and the measure of all

z′ ∈ f−1
Z (J ′X)\NZ

W (y) with fZ(z′) > sup Jy are equal. In particular, the interval Jy is

of the form (sup J ′X−2γ, sup J ′X−γ) for almost every y ∈ Y , where J ′X is the unique

interval of J ′X containing fY (y). Hence, the interval Jy is equal to the interval in J ′Y
containing fY (y) for almost every y ∈ Y . It follows that W (y, z) = W0(g(y), g(z))

for almost every (y, z) ∈ Y × Z.

2.3 Encoding the target graphon

In this section, we describe how the densities in dyadic squares of the graphon WF

are wired in a single binary sequence, which will be encoded in the tile B × F . To

achieve this, we need to fix a mapping ϕ from N4
0 to N0. Let us define this mapping

as follows. The 4-tuples (a, b, c, d) with the same sum s = a + b + c + d of their

entries are injectively mapped to the numbers between
(
s+3

4

)
and

(
s+4

4

)
− 1 in the

lexicographic order. For example, ϕ(0, 0, 0, 1) = 1 and ϕ(0, 1, 0, 0) = 3.

2.3.1 Encoding dyadic square densities

The tile B × F encodes the edge densities on all dyadic squares of WF . Let Id(s)

be the interval
[
s
2d
, s+1

2d

)
, and define for d, s, t ∈ N0 the value δ(d, s, t) as

δ(d, s, t) = 22d ·
∫
Id(s)×Id(t)

WF (x, y) dx dy

if 0 ≤ s, t ≤ 2d − 1, and δ(d, s, t) = 0, otherwise. If WF is the one graphon, i.e., WF

is equal to 1 almost everywhere, we fix r = 1. Otherwise, we fix r ∈ [0, 1) to be the

unique real satisfying that

δ(d, s, t) =

∞∑
p=0

2−prϕ(d,s,t,p)+1 , and (2.5)

that for all d, s, t ∈ N0, the value of rϕ(d,s,t,p)+1 is equal to zero for infinitely many p ∈
N0, where rk is the k-th bit in the standard binary representation of r (with the first

bit following immediately the decimal point). The standard binary representation

is the unique representation with infinitely many digits equal to zero If WF is the

one graphon, we set rk = 1 for every k ∈ N. Observe that r is not a multiple of an

inverse power of two unless WF is the zero graphon or the one graphon (r ∈ {0, 1}
in these two cases).

We now define W0(ηB(x), ηF (y)) = rk+1 for x ∈ [0, 1] and y ∈ Ik, k ∈ N0,

27



B B

F

= 0
F

A F

B

= 0
B

F

= r

Figure 2.10: The decorated constraints forcing the structure of the tile B × F .

and force the corresponding structure of the tile B × F . Consider the decorated

constraints depicted in Figure 2.10. The first constraint implies that degBW (x) ∈
{0, 1} for almost every x ∈ F . In particular, W is {0, 1}-valued almost everywhere

on B×F . The second constraint implies that for every k ∈ N0 and for almost every

x, x′ ∈ f−1
F (Ik), degBW (x) = degBW (x′). Let r′k be the common degree degBW (x) of the

vertices x ∈ f−1
F (Ik−1), k ∈ N. The last constraint in the figure implies that∑

k∈N
2−krk =

∑
k∈N

2−kr′k .

Since r is not a non-zero multiple of an inverse power of two unless r ∈ {0, 1}, it

follows that rk = r′k for all k ∈ N. If r ∈ {0, 1}, it follows that rk = r′k = r trivially.

We conclude that W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ B × F .

2.3.2 Matching tile

In this subsection, we introduce and analyze the tile D × F . This tile is supposed

to link the 4-fold indexing to linear indexing. Formally, we define W0(ηD(x), ηF (y))

to be equal to 1 if x ∈ Ia,b,c,d and y ∈ Iϕ(a,b,c,d) for some (a, b, c, d) ∈ N4
0 and to be

equal to 0, otherwise.

Consider the decorated constraints in Figure 2.11. The first constraint im-

plies that W is {0, 1}-valued almost everywhere in D×F and that for almost every

x ∈ D, it holds that NF
W (x) = ∪k∈Kxf−1

F (Ik) up to a null set for some Kx ⊆ N0.

The second constraint implies that for almost every vertex of D, the set Kx has

cardinality 0 or 1. The third constraint yields that for every (a, b, c, d) ∈ N4
0, the set

Kx is the same for almost all x ∈ D with fD(x) ∈ Ia,b,c,d. Finally, the last constraint

in the first line implies that the sets Kx and Ky are disjoint for almost all x, y ∈ D
with fD(x) and fD(y) from different 3-iterated binary intervals.

Let τ(a, b, c, d) be the common degree degFW (x) of vertices x ∈ f−1
D (Ia,b,c,d).

If Kx is empty for almost all x ∈ f−1
D (Ia,b,c,d), then τ(a, b, c, d) = 0; otherwise,

τ(a, b, c, d) is 2−k−1, where k is the unique integer contained in Kx for almost all

x ∈ f−1
D (Ia,b,c,d). Note that the non-zero values of τ(a, b, c, d) are distinct for distinct
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=
∞∑
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2−a−b−c−d−4 · 2−a−1 · 2−ϕ(a,b,c,d)−1

Figure 2.11: The decorated constraints forcing the structure of the tile D × F .
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(a, b, c, d) ∈ N4
0. Observe that the edge density in the tile D × F is the following:∫

D×F
W (x, y) dx dy =

∑
(a,b,c,d)∈N4

0

|Ia,b,c,d|τ(a, b, c, d) =
∑
s∈N0

2−(s+4)
∑

(a,b,c,d)∈N4
0

a+b+c+d=s

τ(a, b, c, d).

The constraint in the second line in Figure 2.11 yields the following:∑
s∈N0

2−(s+4)
∑

(a,b,c,d)∈N4
0

a+b+c+d=s

τ(a, b, c, d) =
∑
s∈N0

2−(s+4)
∑

(a,b,c,d)∈N4
0

a+b+c+d=s

2−ϕ(a,b,c,d)−1 .

Since the non-zero values of τ(a, b, c, d) are mutually distinct, this equality can hold

only if

{τ(a, b, c, d) s.t. a+ b+ c+ d = s} = {2−ϕ(a,b,c,d)−1 s.t. a+ b+ c+ d = s}

for every s ∈ N0.

The constraint in the third line in Figure 2.11 implies that∑
(a,b,c,d)∈N4

0

2−a−b−c−d−4·2−a−b−c−3·τ(a, b, c, d) =
∑

(a,b,c,d)∈N4
0

2−a−b−c−d−4·2−a−b−c−3·2−ϕ(a,b,c,d)−1 .

Since it holds for every s ∈ N0 that

{τ(a, b, c, d) s.t. a+ b+ c+ d = s} = {2−ϕ(a,b,c,d)−1 s.t. a+ b+ c+ d = s} ,

we get that the following holds for all d ∈ N0 and s ∈ N0:

{τ(a, b, c, d) s.t. a+ b+ c = s} = {2−ϕ(a,b,c,d)−1 s.t. a+ b+ c = s} .

Similarly, the constraint in the fourth line implies that∑
(a,b,c,d)∈N4

0

2−a−b−c−d−4·2−a−b−2·τ(a, b, c, d) =
∑

(a,b,c,d)∈N4
0

2−a−b−c−d−4·2−a−b−2·2−ϕ(a,b,c,d)−1 ,

which yields that it holds for all c, d, s ∈ N0 that

{τ(a, b, c, d) s.t. a+ b = s} = {2−ϕ(a,b,c,d)−1 s.t. a+ b = s} .
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Finally, the constraint in the fifth line implies that∑
(a,b,c,d)∈N4

0

2−a−b−c−d−4·2−a−1·τ(a, b, c, d) =
∑

(a,b,c,d)∈N4
0

2−a−b−c−d−4·2−a−1·2−ϕ(a,b,c,d)−1 ,

which implies that τ(a, b, c, d) = 2−ϕ(a,b,c,d)−1 for all a, b, c, d ∈ N0. It follows that

W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ D × F .

2.3.3 Collating dyadic square densities

The tileD×E is designed to group the values of δ(d, s, t). We setW0(ηD(x), ηE(y)) =

rϕ(d,s,t,p)+1 for all x ∈ Id,s,t,p, y ∈ Id,s,t and (d, s, t, p) ∈ N4
0, and we setW0(ηD(x), ηE(y))

to be zero elsewhere. An example of a tile with this structure is depicted in Fig-

ure 2.12. Note that the density of the square ηD(Id,s,t) × ηE(Id,s,t) is equal to

δ(d, s, t).

D

E

δ(0, 0, 0)

δ(0, 1, 0)

δ(1, 0, 0)

Figure 2.12: An example of the D × E tile.

Consider the decorated constraints depicted in the Figure 2.13. The first

constraint implies that W (x, y) = 0 for almost every (x, y) such that x ∈ f−1
D (Id,s,t),

y ∈ f−1
E (Id′,s′,t′) and (d, s, t) 6= (d′, s′, t′). The second constraint yields that for

almost every x ∈ D such that x ∈ f−1
D (Id,s,t), degEW (x) is either 0 or 2−d−s−t−3. In

particular, W (x, y) ∈ {0, 1} for almost every (x, y) ∈ D × E.

D C

E

= 0
E

C E

D

= 0
D

C

F

B

=
D

E

F

Figure 2.13: The decorated constraints forcing the structure of the tile D × E.

We now analyze the last decorated constraint depicted in the Figure 2.13.

This constraint implies that the following holds for almost every choice of a D-root
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x and an F -root y such that fD(x) ∈ Id,s,t,p and fF (y) ∈ Iϕ(d,s,t,p):

2−d−s−t−3 · rϕ(d,s,t,p)+1 = degEW (x) .

It follows that W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ D × E.

2.4 Forcing the target graphon

In this section, we force the densities in each dyadic square of the tile G×G to be

as in the graphon WF and we argue that the graphon inside the tile is the graphon

WF . To achieve this, we first need to set up some auxiliary structures.

2.4.1 Dyadic square indices

We start with the tiles E × E, E × F and F × F , which represent splitting the 0-

iterated binary interval Ik into 2k and 22k equal length parts. Formally, W0(ηE(x), ηE(y))

is equal to 1 for x, y ∈ [0, 1) if x and y belong to the same 0-iterated binary interval

Ik and ⌊
x−min Ik
|Ik|

· 2k
⌋

=

⌊
y −min Ik
|Ik|

· 2k
⌋

,

and it is equal to 0 otherwise. Similarly, W0(ηF (x), ηF (y)) is equal to 1 for x, y ∈
[0, 1) if x and y belong to the same 0-iterated binary interval Ik and⌊

x−min Ik
|Ik|

· 22k

⌋
=

⌊
y −min Ik
|Ik|

· 22k

⌋
,

and it is equal to 0 otherwise. An illustration can be found in Figure 2.14. Finally,

we set W0(ηE(x), ηF (y)) = W0(ηE(x), ηE(y)) for all x, y ∈ [0, 1).

Figure 2.14: Representation of the tiles E × E and F × F .

Fix X ∈ {E,F} and consider the decorated constraints given in Figure 2.15.

The three constraints on the first line in Figure 2.15 imply that W (x, y) ∈ {0, 1}
for almost every pair (x, y) ∈ X × X and that there exists a collection of disjoint

open intervals JX , which are subintervals of 0-iterated binary intervals Ik, such that
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X X

X

= 0
X X X

P P

= 0
X A

X

= 0

E

E

= 2
E

A A

F

F

= 4
F

AA A

Figure 2.15: The decorated constraints forcing the tiles E × E and F × F , where
X ∈ {E,F}.

W (x, y) = 1 if and only if fX(x) and fX(y) belong to the same interval J ∈ JX
(except for a subset of X ×X of measure zero).

If X = E, then the first constraint on the second line in Figure 2.15 implies

that degEW (x) = 2−2k−1 for almost every x ∈ f−1
E (Jk), i.e., if J ∈ JE and J ⊆ Ik,

then |J | = 2−k|Ik|. Hence, the set JE is formed precisely by the intervals(
min Ik +

`− 1

2k
|Ik|,min Ik +

`

2k
|Ik|
)

for k ∈ N0 and ` ∈ [2k]. Hence, W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈
E × E. The analogous argument using the last constraint on the second line in

Figure 2.15 gives that JF is formed precisely by the intervals(
min Ik +

`− 1

22k
|Ik|,min Ik +

`

22k
|Ik|
)

for k ∈ N0 and ` ∈ [22k], which leads to the conclusion that W (x, y) = W0(g(x), g(y))

for almost every (x, y) ∈ F × F .

F E

E

= 0
F F F

E P P

= 0
E E

F

= 0
E

E

E

F

=

E P E

F P F

= 0

Figure 2.16: The decorated constraints forcing the structure of the tile E × F .
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It remains to analyze the tile E×F . Consider the decorated constraints given

in Figure 2.16. The first two constraints in Figure 2.16 imply that for every J ∈ JE ,

there exists an open interval K(J) such that the following holds for almost every

(x, y) ∈ E × F : W (x, y) = 1 if fE(x) ∈ J and fF (y) ∈ K(J) for some J ∈ JE , and

W (x, y) = 0 otherwise. The third constraint implies that the intervals K(J) and

K(J ′) are disjoint for J 6= J ′, and the fourth constraint yields that the measure of

K(J) is equal to |J |. Finally, the last constraint implies that if an interval J1 ∈ JE
precedes an interval J2 ∈ JE , then K(J1) precedes the interval K(J2). We conclude

that K(J) = J for every J ∈ JE . Consequently, W (x, y) = W0(g(x), g(y)) for

almost every (x, y) ∈ E × F .

2.4.2 Referencing dyadic squares

We now describe the tiles E × G and F × G, which allow referencing particular

dyadic squares by the intervals from JE and JF . Formally, W0(ηE(x), ηG(y)) = 1

for x, y ∈ [0, 1) if and only if x ∈ Ik and⌊
x−min Ik
|Ik|

· 2k
⌋

=
⌊
y · 2k

⌋
,

and it is equal to 0 otherwise.

In an intuitive level, the above formula express the following function: for

every k ∈ N0, split Ik on 2k ordered subintervals of same length (coordinate x) and

do the same with the unit interval (coordinate y). For each fixed value of k, the

function has value 1, on the product of two intervals with the same position in the

ordering given by k, and 0, otherwise.

Similarly, W0(ηF (x), ηG(y)) = 1 for x, y ∈ [0, 1) if and only if x ∈ Ik and⌊
x−min Ik
|Ik|

· 22k

⌋
≡
⌊
y · 2k

⌋
( mod 2k) ,

and it is equal to 0 otherwise.

Informally, the tile F × G, is constructed in the following way: for each

k ∈ N0, copy the function of E×G in Ik× [0, 1], scale it by 2−k and make 2k disjoint

copies on Ik × [0, 1]. The tiles are depicted in Figure 2.17.

Fix X ∈ {E,F} and set Y = A if X = E, and Y = E if X = F . Consider the

decorated constraints given in Figure 2.18. The first two constraints in Figure 2.18

imply that for every J ∈ JX , there exists an open interval KX(J) such that the

following holds for almost every (x, y) ∈ X × G: W (x, y) = 1 if fE(x) ∈ J and

fF (y) ∈ KX(J) for some J ∈ JX , and W (x, y) = 0 otherwise.
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Figure 2.17: The tiles E ×G and F ×G.

G X

X

= 0
G G G

X P P

= 0
Y

X

X

G

= 0

X

G

X

A

= 2
X P X

G P G

Y = 0

Figure 2.18: The decorated constraints forcing the structure of the tiles E ×G and
F ×G, where (X,Y ) ∈ {(E,A), (F,E)}.

If X = E, the third constraint on the first line in Figure 2.18 implies that if

J, J ′ ∈ JE and J and J ′ are subintervals of the same 0-iterated binary interval, then

KE(J) and KE(J ′) are disjoint; the second constraint on the second line implies

that if J precedes J ′ inside the same 0-iterated binary interval, then KE(J) precedes

KE(J ′). Likewise, if X = F , the third constraint on the first line gives that if

J, J ′ ∈ JF and J and J ′ are subintervals of the same interval contained in JE , then

KF (J) and KF (J ′) are disjoint, and the second constraint on the second line gives

that if J precedes J ′ inside the same interval of JE , then KF (J) precedes KF (J ′).

Finally, the first constraint on the second line implies that degGW (x) = 2degAW (x)

for almost every x ∈ X. This implies that if J is a subinterval of a 0-iterated binary

interval Jk, then |KX(J)| = 2−k. We conclude that W (x, y) = W0(g(x), g(y)) for

almost every (x, y) ∈ X ×G.

2.4.3 Indexing dyadic squares

We now describe the tile C×F , which allows referencing particular dyadic squares by

2-iterated binary intervals; the tile is depicted in Figure 2.19. Formally, W0(ηC(x), ηF (y)) =
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1 for x, y ∈ [0, 1) if and only if x ∈ Id,s,t, y ∈ Id, s < 2d, t < 2d, and⌊
y −min Id
|Id|

· 22d

⌋
= 2d · s+ t,

and it is equal to 0 otherwise. Informally, for each d ∈ N0, we pair, in an ordered

fashion, each interval Id,s,t, where s < 2d, t < 2d, with the ordered intervals produced

from splitting Id in 22d equal size subintervals. The function has value 1 in each of

these pairs, and 0 otherwise.

Figure 2.19: The tile C × F .

A C

F

= 0
C F

F

= 0
F C

C

= 0
C C

F

= 0

F F

C

= 0
C P C

F P F

= 0
F E F

C B C

A = 0

C

F

=
∞∑
d=0

2−(3d+1)
2d−1∑
i=0

2d−1∑
j=0

2−(d+i+j+3)

Figure 2.20: The decorated constraints forcing the structure of the tile C × F .

Consider the constrains given in Figure 2.20. The four constraints in the first

line in Figure 2.20 imply the following: there exists a function h : N3
0 → N0 ∪ {∞}

such that h(d, s, t) ∈ {0, . . . , 22d−1}∪{∞} and the following holds for almost every
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(x, y) ∈ C × F : W (x, y) = 1 if and only if fC(x) ∈ Id,s,t and⌊
fF (y)−min Id

|Id|
· 22d

⌋
= h(d, s, t) ,

W (x, y) = 0 otherwise. In particular, if h(d, s, t) =∞, then W (x, y) = 0 for almost

every x ∈ f−1
C (Id,s,t) and y ∈ F .

The first constraint in the second line in Figure 2.20 implies that if (d, s, t) 6=
(d, s′, t′), then h(d, s, t) 6= h(d, s′, t′) unless h(d, s, t) = h(d, s′, t′) = ∞. The second

constraint in the second line then implies that if h(d, s, t) and h(d, s′, t′) are both

different from ∞ and h(d, s, t) < h(d, s′, t′), then either s = s′ and t < t′ or s < s′.

Finally, the last constraint in the second line yields that if h(d, s, t) and h(d, s′, t′)

are both different from ∞ and s 6= s′, then bh(d, s, t)/2dc 6= bh(d, s′, t′)/2dc. Conse-

quently, for any d, there are at most 2d values of s such that h(d, s, t) 6=∞ for some

t ∈ N0, and for any d and s, there are at most 2d values of t such that h(d, s, t) 6=∞.

The density of the tile C × F is equal to the following:

∞∑
d=0

2−(3d+1)
∑
s,t∈N0

h(d,s,t)6=∞

2−d−s−t−3 (2.6)

Since for any d, there are at most 2d values of s such that h(d, s, t) 6= ∞ for some

t ∈ N0, and for any d and s, there are at most 2d values of t such that h(d, s, t) 6=∞,

the inner sum in (2.6) is at most

2d−1∑
s,t=0

2−d−s−t−3 .

The constraint on the third line in Figure 2.20 now yields that h(d, s, t) 6=∞ if and

only if s < 2d and t < 2d. Since it holds that if h(d, s, t) 6= ∞, h(d, s′, t′) 6= ∞
and h(d, s, t) < h(d, s′, t′), then either s = s′ and t < t′ or s < s′, it follows that

h(d, s, t) = 2d · s + t for all d, s < 2d and t < 2d. It follows that W (x, y) =

W0(g(x), g(y)) for almost every (x, y) ∈ C × F .

2.4.4 Forcing densities

We now focus on the tile G × G, which contains the graphon WF itself; we define

the value W0(ηG(x), ηG(y)) to be equal to WF (x, y) for every (x, y) ∈ [0, 1)2.

Consider the first decorated constraint given in Figure 2.21. Almost every

choice of the roots of the constraint satisfies the following: if x ∈ F is the F -root,
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=
GG

ECFE

GG

ECFE

C D

G

G

G

G

= d(Γ4,WF )

Figure 2.21: The decorated constraint forcing the G×G tile.

fF (x) ∈ Id, d ∈ N0, and⌊
fF (x)−min Id

|Id|
· 22d

⌋
= s× 2d + t ,

where s, t ∈ {0, . . . , 2d− 1}, then the left E-root y ∈ E satisfies that fE(y) ∈ Id and⌊
fE(y)−min Id

|Id|
· 2d
⌋

= s .

Moreover, the C-root y′ ∈ C and the right E-root y′′ ∈ E satisfy that fC(y′) ∈ Id,s,t,
and fE(y′′) ∈ Id,s,t. The left hand side of the density constraint is then equal to

2−d−s−t−3

∫
f−1
G (Id(s))×f−1

G (Id(t))
W (x, y) dx dy ,

and the right hand side of the density constraint is equal to

2−2d · degDW (y′′) = 2−2d · 2−d−s−t−3 · δ(d, s, t) .

It follows that

22d

∫
f−1
G (Id(s))×f−1

G (Id(t))
W (x, y) dx dy = δ(d, s, t) . (2.7)

Fix a measurable bijection ψ : [0, 1] → G such that |ψ−1(X)| = |X|/|G| for

every measurable X ⊆ G, and define a graphon WG as WG(x, y) = W (ψ(x), ψ(y))

and a graphonW ′F asW ′F (x, y) = WF (fG(ψ(x)), fG(ψ(y))). Observe thatW ′F (x, y) =

W0(g(ψ(x)), g(ψ(y))) for almost every (x, y) ∈ G × G. Note that the second con-

straint in Figure 2.21 implies that d(Γ4,WG) = d(Γ4,WF ), which is equal to d(Γ4,W
′
F ).

We now show that WG and W ′F are equal almost everywhere.

38



Suppose that ||WG −W ′F ||� = ε > 0; note that ε ≤ 1. For d ∈ N0, define a

graphon W d to be a step graphon with parts ψ−1
(
f−1
G

(
Id(k)

))
, k = 0, . . . , 2d − 1,

such that

W d(x, y) = δ(d, s, t) for x ∈ ψ−1
(
f−1
G

(
Id(s)

))
and y ∈ ψ−1

(
f−1
G

(
Id(t)

))
.

The sequence (W d)d∈N0 forms a martingale on [0, 1]2, and Doob’s Martingale Con-

vergence Theorem implies that W d converges uniformly to W ′F . Hence, there exists

d ∈ N0 such that ||W ′F −W d||� ≤ ε4/1800. Apply Proposition 2 to the graphon

WG and the partition ψ−1
(
f−1
G

(
Id(k)

))
, k ∈ {0, . . . , 2d − 1}, to obtain a step

graphon W ′G that refines W d and is ε4/1800-close to WG. Consequently, we get

||W ′G −W d||� ≥ ε− ε4/1800 ≥ ε/2, which implies that

d(Γ4,W
′
G)− d(Γ4,W

d) ≥ ε4/128 (2.8)

by Lemma 7. On the other hand, the choice of W ′G and W d implies that

∣∣d(Γ4,WG)− d(Γ4,W
′
G)
∣∣ ≤ ε4/300 and

∣∣∣d(Γ4,W
′
F )− d(Γ4,W

d)
∣∣∣ ≤ ε4/300 . (2.9)

The inequalities (2.8) and (2.9) now yield that d(Γ4,W
′
F ) > d(Γ4,WG). However,

this is impossible since d(Γ4,W
′
F ) = d(Γ4,WG). Hence, the graphons WG and W ′F

are equal almost everywhere, which implies that W (x, y) and W0(g(x), g(y)) are

equal for almost every (x, y) ∈ G×G.

2.5 Cleaning up

We now finish the description and the argument that the graphon W0 is finitely

forcible. Let us start with the remaining tiles between the parts A, . . . , G. Fix (X,Y )

to be one of the pairs (B,G), (C,G), or (D,G) and define W0(ηX(x), ηY (y)) = 0 for

all (x, y) ∈ [0, 1)2. Clearly, the first decorated constraint in Figure 2.22 forces W

to be equal to zero for almost every (x, y) ∈ X × Y . Hence, we can conclude that

W (x, y) = W0(g(x), g(y)) for almost every pair (x, y) ∈ (A ∪ · · · ∪G ∪ P )2.

Similarly, we define W0(ηQ(x), ηQ(y)) = 1 for all (x, y) ∈ [0, 1)2; this is easy

to force by the second constraint in Figure 2.22. Hence, W (x, y) = W0(g(x), g(y))

for almost every pair (x, y) ∈ Q×Q.
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X

Y

= 0
Q

Q

= 1

Figure 2.22: The decorated constraint forcing the tiles X × Y , where (X,Y ) is one
of the pairs (B,G), (C,G) and (D,G), and the decorated constraint forcing the tile
Q×Q.

2.5.1 Degree balancing

We use the tiles Q×X, where X ∈ {A, . . . , G} ∪ {P}, to guarantee that

degA0∪···∪G0∪P0∪Q0

W0
(x) =

5

13

for every vertex x ∈ A0 ∪ · · · ∪ G0 ∪ P0. It may seem counterintuitive to force the

degrees of the vertices in the parts A, . . . , G, P to be equal; however, it is simpler to

begin by enforcing the parts to be degree-regular (with the same degree) and then

enforce the different degrees of the parts.

First, note that degA0∪···∪G0∪P0
W0

(x) ≤ 5
8 for every x ∈ A0 ∪ · · · ∪G0 ∪ P0. Let

ξ(x) = 1− 8
5 · degA0∪···∪G0∪P0

W0
(x) for every such x; note that ξ(x) ∈ [0, 1]. We define

W0(x, y) = ξ(x) for every x ∈ A0 ∪ · · · ∪ G0 ∪ P0 and y ∈ Q0. Further, we define

W0(x, y) = 1 for all (x, y) ∈ Q2
0.

Q

X

Q

= 1
|X0|

∫
X0

ξ(x)2 dx

∑
Y ∈{A,...,G}∪{P}

X

Y

+5
X

Q

= 5

Figure 2.23: The decorated constraints forcing the tiles Q × X where X ∈
{A, . . . , G} ∪ {P}.

Fix X ∈ {A, . . . , G} ∪ {P} and consider the decorated constraints given in

Figure 2.23. The first constraint implies that almost every z and z′ from Q satisfy

that ∫
X

W (z, x)W (z′, x) dx =

∫
X0

ξ(x)2 dx .
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Lemma 4 implies that almost every z from Q satisfies that∫
X

W (z, x)2 dx =

∫
X0

ξ(x)2 dx .

In particular, when z is fixed and W (z, x) is viewed as a function of x, the L2-norm

of the function W (z, x) for almost every z ∈ Q is the same, and the inner product

of the functions W (z, x) and W (z′, x) for almost every pair z, z′ ∈ Q is also the

same and equal to the L2-norm. Hence, the Cauchy-Schwarz Inequality yields that

there exists a function h : X → [0, 1] such that W (z, x) = h(x) for almost every

x ∈ X and almost every z ∈ Q. It follows that W (x, z) = h(x) for almost every pair

(x, z) ∈ X ×Q.

Since degA∪···∪G∪PW (x) = degA0∪···∪G0∪P0
W0

(g(x)) for almost every x ∈ X, the

second constraint in Figure 2.23 implies that h(x) = ξ(g(x)) for almost every x ∈ X.

It follows that W (x, y) = W0(g(x), g(y)) for almost every pair (x, y) ∈ X × Q.

We now conclude that W (x, y) = W0(g(x), g(y)) for almost every pair (x, y) ∈
(A ∪ · · · ∪G ∪ P ∪Q)2.

2.5.2 Degree distinguishing

It remains to define and analyze the tiles X×R, X ∈ {A, . . . , G, P,Q,R}. Fix (X, k)

to be one of the pairs (A, 0), . . . , (G, 6), (P, 7), (Q, 8)(R, 9). We define W0(x, y) =

k/18 for all x ∈ X0 and y ∈ R0. It is easy to check that each vertex of X0 has the

same degree in W0, and this degree is equal to the one given in Table 2.1.

X

R

= k
18

X

R

X
=
(

k
18

)2
Figure 2.24: The decorated constraints used to force the structure of the tiles X×R
where (X, k) ∈ {(A, 0), . . . , (G, 6), (P, 7), (Q, 8), (R, 9)}.

Consider the two constraints given in Figure 2.24. The first constraint implies

that it holds for almost every x ∈ X that

1

|R|

∫
R

W (x, y) dy =
k

18
,

and the second constraint in Figure 2.24 implies that it holds for almost every pair
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(x, x′) ∈ X2 that

1

|R|

∫
R

W (x, y)W (x′, y) dy =

(
k

18

)2

.

We conclude using Lemma 4 that it holds that

1

|R|

∫
R

W (x, y)2 dy =

(
k

18

)2

for almost every x ∈ X. The Cauchy-Schwarz Inequality now yields that W (x, y) =

k/18 for almost every pair (x, y) ∈ X × R. We can now conclude that W (x, y) =

W0(g(x), g(y)) for almost every (x, y) ∈ X ×R.

We have shown that if a graphon W satisfies the presented decorated con-

straints, then W (x, y) = W0(g(x), g(y)) for almost every (x, y) ∈ [0, 1]2. Since all

the presented decorated constraints are satisfied by W0 and they can be turned into

ordinary constraints by Lemma 2, the proof of Theorem 1 is now finished.

2.6 Further remarks

The only constraints used to force the structure of the graphon W0 that depend

on the graphon WF are the last constraint in Figure 2.10, the last constraint in

Figure 2.21 and the first constraint in Figure 2.23. In each of the three constraints,

the structure of the graphon WF influences the numerical value of the right side of

the constraint only. Hence, Theorem 1 holds in the following stronger form.

Theorem 2. There exist graphs H1, . . . ,Hm with the following property. For every

graphon WF , there exist a graphon W0 and reals δ1, . . . , δm ∈ [0, 1] such that WF is

a subgraphon of W0 that is formed by a 1/14 fraction of the vertices of W0 and the

graphon W0 is the only graphon W , up to a weak isomorphism, such that d(Hi,W ) =

δi for all i ∈ [m].

In view of Theorem 2, one can wonder how much the fraction 1/14 could

be improved. Using similar techniques to the ones presented in this chapter, Král’,

Lovász Jr., Noel and Sosnovec, announced the following strengthening of Theorem 2:

Theorem 3. [59] For every ε > 0, there exist graphs H1, . . . ,Hmε with the following

property. For every graphon WF , there exist a graphon W0 and reals δ1, . . . , δmε ∈
[0, 1] such that WF is a subgraphon of W0 that is formed by a 1 − ε fraction of the

vertices of W0 and the graphon W0 is the only graphon W , up to a weak isomorphism,

such that d(Hi,W ) = δi for all i ∈ [mε].
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Notice that unlike Theorem 2, the set of graphs H1, . . . ,Hmε in Theorem 3

depends on ε > 0 and this is necessary as shown in [59].

The construction presented in the proof of Theorem 1 can be viewed as a

map from the space of all graphons to the space of finitely forcible graphons. The

particular map implied by the proof of Theorem 1 is not continuous with respect

to the cut norm topology (and we have not attempted to achieve this property).

However, the following weaker statement can be derived from the proof of Theorem 1

since the L1-distance between the functions defining the graphons W0 and W ′0 is at

most ε for a suitable value of k.

Proposition 3. For every ε > 0, there exists k ∈ N such that the following holds.

If WF and W ′F are two graphons such that the densities of their dyadic squares

of sizes 2−k agree up to the first k bits after the decimal point in the standard

binary representation, then the cut distance between the finitely forcible graphons

W0 and W ′0 containing WF and W ′F , respectively, that are constructed in the proof

of Theorem 1, is at most ε.

Using Theorem 2, Proposition 3 and several key new ideas, Grzesik, Král

and Lovász Jr. constructed a counterexample [42]to a conjecture of Lovász on the

finite forcibility of optimum solutions in extremal graph theory. The conjecture

states that every finite feasible set of subgraph density constraints can be extended

further by a finite set of density constraints so that the resulting set is satisfied by

an asymptotically unique graph. It was considered to be the second most important

problem on graph limits and the most important problem on dense graph limits.
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Chapter 3

The step Sidorenko property

and non-norming

edge-transitive graphs

Sidorenko’s Conjecture is one of the most important open problems in extremal

graph theory. A graph H has the Sidorenko property if a quasirandom graph mini-

mizes the density of H among all graphs with the same edge density. The beautiful

conjecture of Erdős and Simonovits [82] and of Sidorenko [81] asserts that every bi-

partite graph has the Sidorenko property (it is easy to see that non-bipartite graphs

fail to have the property). In this chapter, we consider a more general property,

the step Sidorenko property, and explore the link between this property and weakly

norming graphs to show the existence of a bipartite edge-transitive graph that is

not weakly norming. This answers a question of Hatami [47] whether such graphs

exist.

Sidorenko’s Conjecture has been a subject of a great amount of interest

inside extremal combinatorics. Sidorenko [81] confirmed the conjecture for trees,

cycles and bipartite graphs with one of the sides having at most three vertices; the

case of paths is equivalent to the Blakley-Roy inequality for matrices, which was

proven in [8]. Additional graphs, such as cubes and bipartite graphs with a vertex

complete to the other part, were added to the list of graphs with the Sidorenko

property by Conlon, Fox and Sudakov [17], by Hatami [47], and by Szegedy [85].

Recursively described classes of bipartite graphs that have the Sidorenko property

were obtained by Conlon, Kim, Lee and Lee [18], by Kim, Lee and Lee [56], by Li and

Szegedy [63] and by Szegedy [84]. In particular, Szegedy [84] has described a class of

graphs called thick graphs, which are amenable to showing the Sidorenko property
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using the entropy method argument that he developed. Sidorenko’s Conjecture is

known to hold in the local sense [65, Proposition 16.27], i.e., a small modification of

a quasirandom graph preserving its edge density does not decrease the number of

copies of any bipartite graph. A stronger statement of this type, which comes with

uniform quantitative bounds, has recently been proven by Fox and Wei [31].

Sidorenko’s Conjecture is also related to other well-studied problems in graph

theory. We would like to particularly mention the connection to quasirandom

graphs. We say that a graph H is forcing if all minimizers of the density of H

among graphs with the same edge density are quasirandom graphs. Note that if

H is forcing, then H has the Sidorenko property. The classical result of Thoma-

son [86], also see [15], says that the cycle of length four is forcing. This result was

generalized by Chung, Graham and Wilson [15], who showed that every complete

bipartite graph K2,n is forcing, and by Skokan and Thoma [83], who showed that

all complete bipartite graphs are forcing. A characterization of forcing graphs was

stated as a question by Skokan and Thoma [83] and conjectured by Conlon, Fox and

Sudakov [17]: a graph H is forcing if and only if H is bipartite and contains a cycle.

Another graph theoretic notion related to Sidorenko’s Conjecture is that of

common graphs. A graph H is common if a quasirandom graph minimizes the sum

of densities of H and the complement of H. An old theorem of Goodman [40]

says that the complete graph K3 is common. The conjecture of Erdős that the

complete graph K4 is also common was disproved by an ingenious construction of

Thomason [88]; counterexamples with a simpler structure were found by Franek and

Rödl in [33]. Jagger, Šťov́ıček and Thomason [52] showed that no graph containing

K4 is common. On the other hand, it is known that the graph obtained from K4 by

removing an edge [32] is common and so is the wheel W5 [48]. The classification of

common graphs remains a wildly open problem.

Our results are motivated by the relation of Sidorenko’s Conjecture to weakly

norming graphs, which are of substantial interest in the theory of graph limits. Due

to its technical nature, we defer the definition to Section 3.1. Intuitively, these are

graphs H such that the density of H in other graphs defines a norm on the space of

graphons (graph limits). Chapter 14.1 in Lovász’ book [65] gives an introduction to

this notion. Every weakly norming graph has the Sidorenko property [47]. However,

every weakly norming graph also has a stronger property [65, Proposition 14.13],

which we call the step Sidorenko property. Informally speaking, a graph H has the

step Sidorenko property if a multipartite quasirandom graph minimizes the density

among all multipartite graphs with the same density inside and between its parts;

we give a formal definition in Section 3.1. It is not hard to find a graph that has
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the Sidorenko property but not the step Sidorenko property; the cycle of length four

with an added pendant edge is an example (see Section 3.1).

In this chapter, we present techniques for showing that a bipartite graph

fails to have the step Sidorenko property. Our techniques allow us to show that

graphs as simple and symmetric as toroidal grids, i.e., Cartesian products of any

number of cycles, do not have the step Sidorenko property. The only exceptions

are hypercubes (and single cycles of even length), which were shown to be weakly

norming by Hatami [47] (see also [65, Proposition 14.2] for a concise presentation).

The fact that most of the toroidal grids are not weakly norming is surprising when

contrasted with the result of Conlon and Lee [19] that the incidence graphs of regular

polytopes are weakly norming. Since toroidal grids are edge-transitive, this answers

in the negative a question of Hatami [47] whether all edge-transitive bipartite graphs

are weakly norming.

3.1 Preliminaries

In this section, we introduce notation related to Cartesian product, graph homo-

morphisms and present notions from the theory of graph limits that we need for

our exposition. We also formally define the Sidorenko property, the step Sidorenko

property and weakly norming graphs.

The Cartesian product of graphs G1, . . . , Gk, denoted G1� · · ·�Gk, is the

graph with vertex set equal to the Cartesian product of the vertex sets of G1, . . . , Gk,

where two vertices (u1, . . . , uk) and (v1, . . . , vk) are adjacent if there exists 1 ≤ i0 ≤ k
such that ui0vi0 is an edge of Gi0 and ui = vi for all i 6= i0.

3.1.1 Graph homomorphisms

A homomorphism from a graph H to a graph G is a mapping f from V (H) to

V (G) such that if vv′ is an edge of H, then f(v)f(v′) is an edge of G. If f is

a homomorphism from H to G, |f−1(X)| for X ⊆ V (G) denotes the number of

vertices of H mapped to a vertex in X and |f−1(X)| for X ⊆ E(G) denotes the

number of edges mapped to an edge in X; for simplicity, we write |f−1(x)| instead

of |f−1({x})|.
We will need to consider homomorphisms extending a partial mapping be-

tween vertices of H and G and we now introduce notation that will be helpful

in this setting. If H is a graph with k distinguished vertices v1, . . . , vk, then we

write H(v1, . . . , vk). If H(v1, . . . , vk) and G(v′1, . . . , v
′
k) are two graphs with k dis-

tinguished vertices, then a homomorphism from H(v1, . . . , vk) to G(v′1, . . . , v
′
k) is a
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homomorphism from H to G that maps vi to v′i for i = 1, . . . , k.

We will also consider homomorphisms to graphs with vertex and edge weights.

As given earlier, a weighted graph is a graph G where each vertex and each edge of G

is assigned a non-negative weight; the mapping w from V (G) ∪ E(G) assigning the

weights will be referred to as a weight function of G. The weight of a homomorphism

f from H to a weighted graph G, denoted w(f), is defined as∏
v∈V (H)

w(f(v))
∏

vv′∈E(H)

w(f(v)f(v′)) =
∏

v∈V (G)

w(v)|f
−1(v)|

∏
e∈E(G)

w(e)|f
−1(e)| .

We will often speak about the sum of the weights of homomorphisms from a graph

H(v1, . . . , vk) to a weighted graph G(v′1, . . . , v
′
k); this sum will be denoted by

hom(H(v1, . . . , vk), G(v′1, . . . , v
′
k)) and we will understand it to be zero if no such

homomorphism exists.

We also use the just introduced notation for graphs with distinguished ver-

tices when talking about blow-ups of graphs. A k-blow-up of a graph H(v) is the

graph obtained from H by replacing the vertex v with k new vertices, which we refer

to as clones of v. The vertices different from v preserve their adjacencies, the clones

of v form an independent set and each of them is adjacent precisely to the neighbors

of v. Observe that if H is a weighted graph, then if the edges of the k-blow-up of

H(v) have the same weight as in H, the vertices of the k-blow-up except for the

clones have the same weights as in H and each clone has weight equal to 1/k of the

weight of v, then the sum of the weights of homomorphisms from G to H and the

sum of the weights of homomorphisms from G to the k-blow-up are the same for

every graph G.

3.1.2 Graph limits

Let t(H,G) be the normalized number of homomorphisms from a graph H to a graph

G, i.e., t(H,G) = hom(H,G)/|V (G)||V (H)| where G in hom(H,G) is understood to

have all the vertex and edge weights equal to one.

Recall from the introduction that d(H,G) is the probability that |H| uni-

formly and independently randomly chosen vertices of G induce a subgraph isomor-

phic to H. Observe that t(H,G) can be written in terms of d(H,G) and vice-versa.

Therefore, an equivalent way to define a convergent sequence is to say that a se-

quence (Gn)n∈N of graphs is convergent if the sequence t(H,Gn) converges for every

graph H.

Throughout this chapter, we will refer to t(H,G) as the density of H in G

rather than the homomorphism density. All the statements could be cast in terms
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of the induced density but for simplicity, we use the homomorphism density in this

scenario.

As we have seen a convergent sequence of graphs can be represented by a

graphon and one can think (although very imprecisely) of a graphon as a continuous

version of the adjacency matrix of a graph. Led by this intuition, we can define the

(homomorphism) density of a graph H in a graphon W as

t(H,W ) =

∫
[0,1]V (H)

∏
vv′∈E(H)

W (xv, xv′) dxV (H) .

Note that the definition of t(H,W ) does not requireW to be non-negative and we can

define t(H, f) in the same way for any bounded measurable function f : [0, 1]2 → R.

The density t(K2,W ) of K2 is equal to the L1-norm of a graphon W as a

function from [0, 1]2. This leads to the question which graphs H can be used to

define a norm on the space of measurable functions on [0, 1]2 or, more restrictively,

on the space of graphons. That is, we say that a graph H is weakly norming if

the function ‖W‖H = |t(H,W )|1/‖H‖ is a norm on the space of graphons, i.e.,

‖W‖H = 0 if and only if W is equal to zero almost-everywhere and the triangle

inequality ‖W1 + W2‖H ≤ ‖W1‖H + ‖W2‖H holds for any two graphons W1 and

W2. Observe that H is weakly norming if and only if ‖ |f | ‖H is a norm on the set

of all bounded symmetric functions f from [0, 1]2 to R (if we required that ‖f‖H ,

without the absolute value, is a norm on all such functions, we would get the slightly

stronger notion of norming graphs).

It is not hard to show that every weakly norming graph must be bipartite.

Hatami [47] showed stronger statements as corollaries of his characterization of

weakly norming graphs as those satisfying a certain Hölder type inequality. First,

every weakly norming graph H must be biregular, i.e., all vertices in the same part

of its bipartition have the same degree. Second, every subgraph H ′ of a connected

weakly norming graph H must satisfy that

‖H ′‖
|H ′| − 1

≤ ‖H‖
|H| − 1

.

Known examples of weakly norming graphs include complete bipartite graphs (in

particular, stars), even cycles and hypercubes.

Every weighted graph G with a weight function w that assigns edges weights

between 0 and 1 can be associated with a graphon WG as follows. Each vertex v

of G is associated with a measurable set Jv with measure w(v)/w(V (G)) in such

a way that the sets Jv, v ∈ V (G), form a partition of the interval [0, 1]; w(V (G))

48



denotes the sum of the weights of the vertices of G. For x ∈ Jv and y ∈ Jv′ , we

set W (x, y) = w(vv′) if vv′ ∈ E(G) and W (x, y) = 0 otherwise (in particular, we

set W (x, y) = 0 if v = v′). It is not hard to observe that hom(H,G) is equal

to t(H,WG) · w(V (G))|H|; in particular, if the sum of the weights of vertices of G

is one, then hom(H,G) = t(H,WG). This correspondence will allow us to study

weakly norming graphs in terms of weighted homomorphisms.

3.1.3 Step Sidorenko property

We now use the language of graph limits to describe the Sidorenko property and to

formally define the step Sidorenko property. A graph H has the Sidorenko property

if

t(K2,W )‖H‖ ≤ t(H,W ) (3.1)

for every graphon W . The letft hand side can also be written as t(H,Up), where

Up ≡ p is the constant graphon with the same edge density p = t(K2,W ) as W .

A graph H is forcing if it has the Sidorenko property and (3.1) holds with equality

only if W is equal to some p ∈ [0, 1] almost everywhere. As we have presented

earlier, Sidorenko’s Conjecture asserts that every bipartite graph has the Sidorenko

property and the Forcing Conjecture asserts that every bipartite graph with a cycle

is forcing.

Let P be a partition of the interval [0, 1] into finitely many non-null measur-

able sets. We now define the stepping operator . If W is a graphon, then the graphon

WP is defined for (x, y) ∈ [0, 1]2 as the ‘step-wise average’:

WP(x, y) =
1

|J‖J ′|

∫
J×J ′

W (s, t) ds dt

where J and J ′ are the unique parts from P such that x ∈ J and y ∈ J ′, and |X|
denotes the measure of a measurable subset X ⊆ [0, 1]. Note that the graphon WP

is constant on J × J ′ for any J, J ′ ∈ P, i.e., the graphon WP is a step graphon.

Let P0 be the partition with a single part being the interval [0, 1] itself.

A graph H has the Sidorenko property if and only if t(H,WP0) ≤ t(H,W ) for

every graphon W . This motivates the following definition. A graph H has the step

Sidorenko property if and only if

t(H,WP) ≤ t(H,W )

for every graphon W and every partition P of [0, 1] into finitely many non-null mea-

surable sets. Since all weakly norming graphs [65, Proposition 14.13] have the step
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Sidorenko property, it follows that complete bipartite graphs, even cycles, hyper-

cubes and more generally reflection graphs defined by Conlon and Lee [19] all have

the step Sidorenko property. In fact, all connected graphs with the step Sidorenko

property are weakly norming [26].

The definition of the step Sidorenko property yields that every graph that

has the step Sidorenko property also has the Sidorenko property. However, the

converse is not true in general as we now demonstrate in our following example.

Let C+
4 be the 5-vertex graph obtained from a cycle of length four by adding a

single vertex adjacent to one of the vertices of the cycle. The graph C+
4 has the

Sidorenko property because, e.g., it is a bipartite graph with a vertex complete to the

other part [17]. On the other hand, C+
4 does not have the step Sidorenko property.

Consider the partition P = {[0, 2
5), [2

5 , 1]} and the graphon W that is defined as

follows (the symmetric cases of (x, y) are omitted).

W (x, y) =



0.9 if (x, y) ∈ [0, 1
5)× [0, 1

5),

0.85 if (x, y) ∈ [0, 1
5)× [1

5 ,
2
5),

0.2 if (x, y) ∈ [0, 1
5)× [2

5 , 1],

1 if (x, y) ∈ [1
5 ,

2
5)× [1

5 ,
2
5), and

0 otherwise.

A straightforward computation yields that

t(C+
4 ,W ) ' 0.007453 and

t(C+
4 ,W

P) ' 0.007508 > t(C+
4 ,W ) .

Hence, the graph C+
4 does not have the step Sidorenko property.

3.2 Grids

In this section, we demonstrate our techniques from Section 3.3 in a less general

setting. We believe that this makes our presentation more accessible.

Intuitively, we consider a graph G with distinguished vertices u0, u1, u2 such

that u0u1 and u0u2 are edges. The idea is to blow-up u0 into two copies and slightly

perturb weights only on edges corresponding to u0u1 and u0u2, increasing weights of

edges for one copy and decreasing it for the other proportionally to a parameter α,

resulting in a weighted graph Gα. A partition P on the corresponding graphon Wα

is then defined so that the stepping operator only averages out this perturbation,
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returning to the original graph: WPα = WG. The difference in homomorphism

densities t(H,WPα ) − t(H,Wα) is then analyzed in the limit of small perturbations

α: first order changes (those linear in α) cancel out; second order changes result in

a condition that can be expressed fairly concisely as positive semidefiniteness of a

matrix whose entries count certain constrained homomorphisms.

The more powerful setting in Section 3.3 uses essentially the same idea,

only blowing up more vertices, resulting in a larger matrix and allowing to further

constraint the homomorphisms we have to count. We turn to choosing the starting

weighted graph G and interpreting these counts in later corollaries.

Theorem 4. Let H be a graph and let G be a weighted graph with three distinguished

vertices u0, u1 and u2 such that u0u1 and u0u2 are edges. For i, j ∈ {1, 2}, let Mij be

the sum of the weights of homomorphisms from H(v0, v1, v2) to G(u0, ui, uj) summed

over all choices of vertices v0, v1 and v2 in H such that v0v1 and v0v2 are edges,

i.e.,

Mij =
∑

v0v1,v0v2∈E(H)

hom(H(v0, v1, v2), G(u0, ui, uj)) .

If the (2 × 2)-matrix M is not positive semidefinite, i.e., M11M22 < M12
2, then H

does not have the step Sidorenko property.

Proof. Let w be the weight function of G. We assume that the sum of the weights

of vertices of G is one (if needed, we multiply the weights of all vertices by the same

constant). Consider the step graphon WG associated with the weighted graph G.

Let Ju be the measurable set corresponding to a vertex u of G and set P = {Ju, u ∈
V (G)}.

Suppose that the matrix M associated with G is not positive semidefinite

and fix a vector a = (a1, a2)T such that aTMa < 0. We next define a weighted graph

Gα with a parameter α ≥ 0 as follows. The graph Gα is a 2-blow-up of G(u0); let

u+
0 and u−0 be the clones of u0. Each of the clones u+

0 and u−0 has weight w(u0)/2.

The weight of the edge u+
0 ui is w(u0ui)(1 +αai) and the weight of the edge u−0 ui is

w(u0ui)(1− αai), i = 1, 2. The remaining vertices and edges have weights equal to

their counterparts in G. Let Wα be the step graphon associated with the weighted

graph Gα such that the set corresponding to a vertex u 6= u0 is Ju and the sets

corresponding to the vertices u+
0 and u−0 are subsets of Ju0 . Observe that WG = Wα

for α = 0 and that WG = WPα for any α.

Our aim is to show that t(H,Wα) < t(H,WG) for some α ∈ (0, 1). To do so,

we analyze the density t(H,Wα) as a function of α. Note that t(H,Wα) is actually
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a polynomial in α. We next wish to determine the coefficients c1 and c2 such that

t(H,Wα) = t(H,WG) + c1α+ c2α
2 +O(α3) . (3.2)

The coefficient c1 can be determined as follows:

c1 =
∑

v0v1∈E(H)

a1 hom(H(v0, v1), G0(u+
0 , u1))− a1 hom(H(v0, v1), G0(u−0 , u1)) +

a2 hom(H(v0, v1), G0(u+
0 , u2))− a2 hom(H(v0, v1), G0(u−0 , u2)) .

Since hom(H(v0, v1), G0(u+
0 , ui)) = hom(H(v0, v1), G0(u−0 , ui)) for all edges v0v1 ∈

E(G) and all i ∈ {1, 2}, we conclude that c1 = 0.

We next analyze the coefficient c2. In this case, we need to count homomor-

phisms mapping two edges, say v0v1 and v′0v
′
1, of H to edges u+

0 ui and to u−0 ui of

G0, i = 1, 2. If v0 6= v′0, then the contributions of the homomorphisms mapping the

edge v0v1 to u+
0 ui and u−0 ui have opposite signs and cancel out. Hence, we obtain

the following formula for c2:

c2 =
∑

v0v1,v0v2∈E(H)

2∑
i,j=1

aiaj
(
hom(H(v0, v1, v2), G0(u+

0 , ui, uj)) +

hom(H(v0, v1, v2), G0(u−0 , ui, uj))
)

.

The definition of the matrix M now yields that

c2 =
2∑

i,j=1

aiaj ·Mij = aTMa < 0 .

Since c1 = 0 and c2 < 0, we conclude using WG = WPα and (3.2) that t(H,Wα) <

t(H,WG) for small enough α > 0. It follows that the graph H does not have the

step Sidorenko property.

The setting of Theorem 4 is sufficient to prove that the only two-dimensional

toroidal grid that is weakly norming is C4�C4 (note that the toroidal grids C`�C`
with ` odd are not Sidorenko, and hence also not weakly norming, because they are

not bipartite).

The idea is to consider homomorphisms from the grid to itself: the identity

homomorphisms then contributes to the off-diagonal entry of the matrix from Theo-

rem 4. Homomorphisms corresponding to diagonal entries have to “fold” two edges

onto one. We show this forces some vertices to be mapped closer together or at

certain distinct positions; changing weights in the target grid accordingly allows us
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u0 u1

u2

b1

b2

b3
b4

Figure 3.1: Notation used in the proof of Corollary 2. The edges b1, b2, b3 and b4
are drawn bold.

to make the contribution of such homomorphisms smaller, making the matrix not

positive semidefinite.

Corollary 2. Let ` ≥ 6 be an even integer. The Cartesian product C`�C` does not

have the step Sidorenko property.

Proof. Fix ` ≥ 6 and let G and H be both equal to the graph C` � C`; we denote

the vertices of G and H by (i, j), 0 ≤ i, j ≤ ` − 1, in such a way that two vertices

are adjacent if they agree in one of the coordinates and differ by one in the other

(all computations with the entries are computed modulo ` throughout the proof).

Let u0 be the vertex (0, 0), u1 the vertex (1, 0) and u2 the vertex (0, 1). Further, let

b1 be the edge (1, 0)(1,−1), b2 the edge (1, 0)(2, 0), b3 the edge (0, 1)(−1, 1) and b4

the edge (0, 1)(0, 2) (see Figure 3.1).

We next define the weights of the vertices and the edges of G; to do so, we

use a parameter γ ∈ N, which will be fixed later. The weight w(v) of a vertex v is

γdist(u0,v) for v 6= u0, u1, u2, w(u0) = γ−3 and w(ui) = γdist(u0,ui)−3 = γ−2, i = 1, 2.

The weights of all edges of G are equal to one except for the edges b1, b2, b3 and b4

that have weight γ−1/4.

We wish to apply Theorem 4 with the graphs H and G, and the distinguished

vertices u0, u1 and u2. Instead of verifying that the matrix M from the statement

of Theorem 4 is not positive semidefinite, we consider the matrix M such that

Mij =
∑

v1,v2∈NH(u0)

hom(H(u0, v1, v2), G(u0, ui, uj)) .
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Since H is vertex-transitive, the considered matrix M is positive semidefinite if and

only if the matrix from the statement of Theorem 4 is. Observe that M1,1 = M2,2

and M1,2 = M2,1.

Consider a homomorphism f from H(u0, v1, v2) to G(u0, ui, uj) for some

i, j ∈ {1, 2}. Observe that the weight of the homomorphism f is equal to

γ

∑
v∈V (H)

dist(u0,f(v))−3|f−1({u0,u1,u2})|− 1
4 |f−1({b1,b2,b3,b4})|

.

Note that if f is the identity, then the weight of f is equal to γW where

W =
∑

v∈V (H)

dist(u0, v)− 10 .

Since the identity is a homomorphism from H(u0, ui, uj) to G(u0, ui, uj) for i 6= j,

it follows that the entries M1,2 and M2,1 are of order Ω(γW ), as functions of γ. We

next show that both M1,1 and M2,2 are of order o(γW ). Since M1,1 = M2,2, it is

enough to argue that M1,1 = o(γW ) once we can make γ sufficiently large.

We show that every homomorphism f from H(u0, v1, v2) to G(u0, u1, u1) has

weight at most γW−
1
2 ; this will imply that M1,1 = o(γW ). Fix a homomorphism f

from H(u0, v1, v2) to G(u0, u1, u1) with weight at least γW . By symmetry, we may

assume that v1 = (1, 0) and v2 ∈ {(−1, 0), (0, 1)}. Note that
∣∣f−1({u0, u1, u2})

∣∣ ≥ 3.

Since f is a homomorphism, any shortest path from u0 to v is mapped by f to a walk

of at most length dist(u0, v) from f(u0) = u0 to f(v), it follows that dist(u0, f(v)) ≤
dist(u0, v) for every vertex v. Also observe that the parities of dist(u0, f(v)) and

dist(u0, v) are the same since the graph G = H is bipartite. Since the weight of f is

at least γW , the following holds:
∣∣f−1({u0, u1, u2})

∣∣ = 3, dist(u0, f(v)) = dist(u0, v)

for every vertex v of H and
∣∣f−1({b1, b2, b3, b4})

∣∣ ≤ 4. Since
∣∣f−1({u0, u1, u2})

∣∣ = 3,

no vertex other than u0, v1 and v2 is mapped by f to any of u0, u1 and u2; in

particular, no vertex is mapped to u2.

To finish the proof, we distinguish two cases based on whether v2 = (−1, 0)

or v2 = (0, 1). We start with analyzing the case v2 = (−1, 0). Let i ∈ {1, 2}
and let v be a neighbor of vi different from (0, 0) and vi + vi. If f(v) = (1, 1) or

f(v) = (2, 0), then the common neighbor of (0, 0) and v different from vi must be

mapped to u1 or u2, which is impossible. Hence, f(v) = (1,−1). Since the choice

of i and v was arbitrary, it follows that all the four edges (1, 0)(1, 1), (1, 0)(1,−1),

(−1, 0)(−1, 1) and (−1, 0)(−1,−1) are mapped to the edge b1; in particular, no other

edge is mapped to b1 or b2. This implies that the vertex (2, 0) is mapped by f to

(1, 1). It follows that the vertex (2, 1), which is a common neighbor of (1, 1) and
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(2, 0), must be mapped to the unique common neighbor u1 = (1, 0) of the vertices

f((1, 1)) = (1,−1) and f((2, 0)) = (1, 1), which is impossible. This finishes the

analysis of the case v2 = (−1, 0).

It remains to analyze the case that v2 = (0, 1). If the vertex (1,−1) was

mapped to (2, 0) or (1, 1), then the vertex (0,−1), which is a common neighbor of

(1,−1) and (0, 0), would have to be mapped to (1, 0) or (0, 1), which is impossible.

Hence, the vertex (1,−1) is mapped by f to itself and the vertex (0,−1) is also

mapped to itself. Since swapping coordinates is a symmetry mapping v1 and v2

between each other, a symmetric argument yields that the vertex (−1, 0) is mapped

to (0,−1).

Next, if the vertex (2, 0) was mapped to the vertex (1, 1), then the vertex

(2,−1), which is a common neighbor of (2, 0) and (1,−1), would have to be mapped

to (1, 0), which is impossible. It follows that the vertex (2, 0) must be mapped to

(2, 0) or (1,−1). We conclude that the edge b1 is mapped to itself and the edge b2

to either b1 or b2. A symmetric argument yields that the edge b3 is mapped to b1

and the edge b4 to b1 or b2. In particular, no other edges of G are mapped to any

of the edges b1, b2, b3 and b4. This implies that the vertex (1, 1) is mapped by f to

itself. Consequently, the vertex (2, 0) is also mapped to itself (otherwise, the vertex

(2, 1) would have to be mapped to (1, 0)).

We now prove the following statement for r = 1, . . . , `/2 − 1 by induction

on r: all the vertices (r, 1), (r,−1) and (r + 1, 0) are mapped by f to themselves.

We have already established this statement for r = 1, so it remains to present the

induction step. Fix r = 2, . . . , `/2 − 1 and assume that all the vertices (r − 1, 1),

(r−1,−1) and (r, 0) are mapped to themselves. The vertex (r, 1), which is a common

neighbor of (r−1, 1) and (r, 0), must be mapped to a common neighbor of (r−1, 1)

and (r, 0) at the distance r + 1 from (0, 0). However, the only such vertex is (r, 1).

A symmetric argument yields that the vertex (r,−1) is mapped to itself. Since the

vertex (r + 1, 0) must be mapped to a neighbor of (r, 0) at distance r + 1 from

(0, 0), it can only be mapped to one of the vertices (r, 1), (r + 1, 0) and (r,−1). By

symmetry, it is enough to exclude that it is mapped to (r, 1). If this was the case,

then the vertex (r + 1,−1), which is a common neighbor of (r,−1) and (r + 1, 0),

must be mapped to (r, 0), which is impossible. Hence, the vertex (r+1, 0) is mapped

to itself, concluding the proof of the statement.

We have just shown that the vertex (`/2, 0) = (−`/2, 0) is mapped to itself;

earlier, we have shown that the vertex (−1, 0) is mapped to (0,−1). However, the

path (−1, 0)(−2, 0) · · · (−`/2, 0) must be mapped by f to a walk with at most `/2

vertices but there is no such walk between the vertices (0,−1) and (−`/2, 0). Hence,
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there is no homomorphism from H(u0, v1, v2) to G(u0, u1, u1) with weight at least

γW .

3.3 General Condition

We now present our general technique for establishing that certain graphs do not

have the step Sidorenko property. One difference is that instead of considering only

two neighbors of a distinguished vertex u0, we can choose any number of neighbors

u1, . . . , uk, giving a larger matrix. More importantly, we are able to restrict counted

homomorphism to only those that map the neighborhood of each ui bijectively (to

the neighborhood of the image of ui, or a chosen subset of it).

The proof extends the arguments presented in the proof of Theorem 4. The

main new idea is that by blowing up ui, and appropriately choosing weights on

copies of the edges to its neighbors, we can obtain an expression that is counting

homomorphisms to the original graph, but with a weight that is an arbitrary function

of how many neighbors of ui map to each neighbor of the image of ui. We choose

this function to enforce that exactly one neighbor of ui (or exactly zero) must map

to each neighbor of its image.

Theorem 5. Let H be a graph and let G be a weighted graph with k+1 distinguished

vertices u0, u1, . . . , uk such that u0u1, . . . , u0uk are edges and u1, . . . , uk form an in-

dependent set. Further, let Ui, i = 1, . . . , k, be a subset of neighbors of ui containing

u0, and let M be the (k×k)-matrix such that the entry Mij is the sum of the weights

of homomorphisms from H(v0, v1, v2) to G(u0, ui, uj), where the sum runs over all

choices of vertices v0, v1 and v2 in H, such that the neighbors of v1 are one-to-

one mapped to Ui and the neighbors of v2 to Uj. If the matrix M is not positive

semidefinite, then H does not have the step Sidorenko property.

Proof. Suppose that the matrix M is not positive semidefinite and fix a vector a such

that aTMa < 0. Let w be the weight function of G. As in the proof of Theorem 4,

we assume that the sum of the weights of vertices of G is one. Similarly, we assume

that the weight of each edge is at most 1/2 (if needed, we can multiply the weights

of all edges by the same constant).

We next define a weighted graph Gε,α, which is parameterized by ε > 0 and

α ∈ R. The structure of the graph is independent of ε and α and is the following.

Let n be the number of vertices of H. We consider the 3-blow-up of a vertex u0

and
(
n|Ui|−1 + 1

)
-blow-up of a vertex ui. The three clones of u0 will be denoted

by u′0, u+
0 and u−0 ; one of the n|Ui|−1 + 1 clones of ui will be denoted by u′i and
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the remaining ones by ui,j1,...,j|Ui|−1
where 1 ≤ j1, . . . , j|Ui|−1 ≤ n. We next remove

every edge going from the vertex ui,j1,...,j|Ui|−1
to a vertex outside the set Ui that is

not u+
0 or u−0 , i.e., the vertex ui,j1,...,j|Ui|−1

is adjacent to u+
0 , u−0 and the vertices of

Ui \ {u0}.
The weight of the vertex u′0 is (1 − 2ε)w(u0) and the weight of each of the

vertices u+
0 and u−0 is εw(u0). The weight of the vertex u′i is (1−n|Ui|−1ε)w(ui) and

the weight of each of the vertices ui,j1,...,j|Ui|−1
is εw(ui). The remaining vertices of

Gε,α have the same weights as in G.

Before defining the weights of the edges, we define an auxiliary matrix B.

The matrix B has n rows and n columns and Bij = 2(i−1)(j−1). Note that B is a

Vandermonde matrix. Since the matrix B is invertible, there exists a vector b such

that Bb = (0, 1, 0, . . . , 0)T . The weight of the edge between u+
0 and ui,j1,...,j|Ui|−1

is

equal to

w(u0ui)

1 + aiα

|Ui|−1∏
m=1

bjm

 ,

and the weight of the edge between u−0 and ui,j1,...,j|Ui|−1
is equal to

w(u0ui)

1− aiα
|Ui|−1∏
m=1

bjm

 .

The weights of the edges incident with u′0 and the remaining edges incident with u+
0

and u−0 are equal to the weights of their counterparts in G. Fix i ∈ {1, . . . , k} and let

z1, . . . , z|Ui|−1 be the vertices of Ui different from u0. The weight of the edge between

the vertices ui,j1,...,j|Ui|−1
and zm is equal to 2jm−1w(uizm). The weights of the edges

incident with the vertex u′i are the same as the weights of their counterparts in G.

We have just defined the weights of all edges incident with at least one clone. The

weights of the remaining edges are the same as in G.

We analyze t(H,Wε,α) as a function of α for α, ε ∈ (0, 1). In particular, we

will show that

t(H,Gε,α) = t(H,Gε,0) + cεε
3α2 +O(ε4α2) (3.3)

for a coefficient cε, which we will estimate. Since the coefficient cε depends on ε, it

is important to emphasize that the constants hidden in big O notation in (3.3) are

independent of ε and α, i.e., the equality (3.3) represents that there exists K > 0,

which is independent of ε, and a coefficient cε for every ε ∈ (0, 1) such that the value

of t(H,Gε,α) differs from t(H,Gε,0) + cεε
3α2 by at most Kε4α2 for every α ∈ (0, 1).

We now proceed with analyzing the function t(H,Wε,α). As in the proof of
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Theorem 4, we observe that t(H,Wε,α) is a polynomial in α and the linear terms in

α cancel out by pairing homomorphisms using u+
0 and those using u−0 . Hence, only

quadratic and higher order terms remain. To estimate cε, we need to consider the

terms corresponding to homomorphisms mapping exactly three vertices of H to the

vertices of Gε,α with weight ε and these vertices must induce a 2-edge path with the

middle vertex mapped to u+
0 or to u−0 (the contribution of other homomorphisms

cancels out by pairing those using u+
0 and those using u−0 , similarly as in the proof

of Theorem 4). We arrive at the following identity.

cεε
3 =

∑
v0v1,v0v2∈E(H)

k∑
i,i′=1

∑
j∈[n]|Ui|−1

∑
j′∈[n]|Ui′ |−1

aiai′

|Ui|−1∏
m=1

bjm

|Ui′ |−1∏
m=1

bj′m ·

·
(

hom(H(v0, v1, v2), Gε,0(u+
0 , ui,j1,...,j|Ui|−1

, ui′,j′1,...,j′|Ui′ |−1
)) +

hom(H(v0, v1, v2), Gε,0(u−0 , ui,j1,...,j|Ui|−1
, ui′,j′1,...,j′|Ui′ |−1

))

)
It follows that

lim
ε→0

cε =
∑

v0v1
v0v2 ∈E(H)

k∑
i,i′=1

∑
h

2aiai′w(h)
∑

j∈[n]|Ui|−1

∑
j′∈[n]|Ui′ |−1

|Ui|−1∏
m=1

bjm2(jm−1)h(v1↪→zm)

|Ui′ |−1∏
m=1

bj′m2(j′m−1)h(v2↪→z′m)

where the sum is taken over all homomorphisms h from H to G such that h(v0) = u0,

h(v1) = ui and h(v2) = ui′ , and w(h) denotes the weight of the homomorphism

h, h(v1 ↪→ zm) denotes the number of neighbors of v1 mapped to zm ∈ Ui and

h(v2 ↪→ z′m) denotes the number of neighbors of v2 mapped to z′m ∈ Ui′ . Observe

that b was chosen so that the expression

n∑
j1,...,j|Ui|−1=1

|Ui|−1∏
m=1

bjm2(jm−1)h(v1↪→zm) =

|Ui|−1∏
m=1

n∑
jm=1

bjm2(jm−1)h(v1↪→zm)

is one if h(v1 ↪→ zm) = 1 and it is zero otherwise. Hence, it follows that

lim
ε→0

cε =
∑

v0v1,v0v2∈E(H)

k∑
i,i′=1

∑
h

aiai′w(h)
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where the sum is taken over homomorphisms h from H to G such that h(v0) = u0,

h(v1) = ui, h(v2) = ui′ , all neighbors of v1 are one-to-one mapped to Ui and all

neighbors of v2 are one-to-one mapped to Ui′ . The definition of the matrix M now

implies that

lim
ε→0

cε =
k∑

i,i′=1

Mii′aiai′ = aTMa < 0 . (3.4)

The expressions (3.3) and (3.4) imply that there exist ε > 0 and α > 0 such that

t(H,Gε,α) < t(H,Gε,0). Fix such ε and α for the rest of the proof.

Consider the graphons W0 and Wα associated with the weighted graphs Gε,0

and Gε,α, respectively. Let Ju be the measurable set corresponding to the vertex u

of Gε,0; we can assume that the measurable set corresponding to the vertex u of Gε,α

is also Ju. Let P be the partition of [0, 1] formed by Ju+0
∪ Ju−0 and Ju, u 6= u+

0 , u
−
0 .

Observe that W0 = WPα . Since t(H,W0) = t(H,Gε,0) and t(H,Wα) = t(H,Gε,α),

we conclude that the graph H does not have the step Sidorenko property.

Theorem 5 yields immediately the following corollary, which rules out many

non-biregular graphs to be weakly norming. Note that the assumptions of the

corollary are easy to verify.

Corollary 3. Let H be a graph and DH the set of degrees of its vertices. Further

let M be the matrix with rows and columns indexed by the elements of DH such that

the entry Mdd′ is equal to the number of 2-edge paths from a vertex of degree d to a

vertex of degree d′ in H. If the matrix M is not positive semidefinite, then H does

not have the step Sidorenko property.

Proof. We can assume without loss of generality that H is bipartite; if not, H does

not even have the Sidorenko property. Let n = |H|, let d1 < · · · < dk be the degrees

of vertices of H, i.e., DH = {d1, . . . , dk}, and let D = d1 + · · · + dk. We next

construct a weighted bipartite graph Gε with weights depending on a parameter

ε > 0. One part of Gε has k+1 vertices, which are denoted by u1, . . . , uk+1, and the

other part has D− k+ 1 vertices. One of the vertices of the second part is denoted

by u0 and the remaining D − k vertices are split into disjoint sets U1, . . . , Uk such

that |Ui| = di − 1, i = 1, . . . , k. The vertices u0 and uk+1 have weight one, each

of the vertices ui has weight ε
1
|Ui| and each vertex contained in a set Ui has weight

ε
1
|Ui| /(|Ui| − 1)!, i = 1, . . . , k. The weights of all edges of Gε are equal to one.

We will apply Theorem 5 with the weighted graph Gε, vertices u0, . . . , uk

and sets U1 ∪ {u0}, . . . , Uk ∪ {u0}. Let Mε be the matrix from the statement of

Theorem 5 for the graph Gε. Fix i, j ∈ {1, . . . , k} and a 2-edge path v1v0v2 such

59



that the degree of v1 is di and the degree of v2 is dj . Let h be a mapping such

that h(v0) = u0, h(v1) = ui and h(v2) = uj . The mapping h can be extended to

(|Ui| − 1)!(|Uj | − 1)! homomorphisms from H to G such that

• the neighbors of v1 are one-to-one mapped to Ui ∪ {u0},

• the neighbors of v2 are one-to-one mapped to Uj ∪ {u0}, and

• all other vertices of H are mapped to u0 or to uk+1.

Each such homomorphism has weight ε2

(|Ui|−1)!(|Uj |−1)! , i.e., their total weight is ε2.

Any other extensions of h to a homomorphism from H to G such that the neighbors

of v1 are one-to-one mapped to Ui ∪ {u0} and the neighbors of v2 to Uj ∪ {u0} has

weight at most ε2+1/dk . We conclude that the entry of the matrix Mε in the i-th

row and the j-th column is equal to Mijε
2 +O(ε2+1/dk). It follows that there exists

ε > 0 such that the matrix Mε is not positive semidefinite. Theorem 5 now yields

that H does not have the step Sidorenko property.

The weights of vertices and edges of the graph G in Theorem 5 can be set

to lower the weight of specific homomorphisms, as we did in Corollary 2. We first

formalize the ideas used there, so that we can focus on just the existence of very

restricted homomorphisms, without counting or weights.

Lemma 8. Let H be a vertex-transitive graph. Let u0, u1 and u2 be (distinct)

distinguished vertices in H such that u0u1 and u0u2 are edges. Suppose that for each

distinct neighbors v1 and v2 of u0, there is no homomorphism f from H(u0, v1, v2)

to H(u0, u1, u1) that simultaneously satisfies the following:

• neighbors of vi are one-to-one mapped to neighbors of u1 for i = 1, 2,

• distances from u0 are preserved, i.e., dist(v, u0) = dist(f(v), u0) for each v ∈
V (H), and

• no vertex other than u0, v1 and v2 is mapped to any of u0, u1 and u2.

Then H does not have the step Sidorenko property.

Proof. We start with constructing a weighted graph Gγ where the weights depend on

a parameter γ ∈ N. The graph Gγ is obtained from H by setting w(v) := γdist(u0,v)−1

for v ∈ {u0, u1, u2} and w(v) := γdist(u0,v) for each vertex v 6= u0, u1, u2. The weights

of all edges of Gγ are one. We apply Theorem 5 to H and Gγ with the distinguished

vertices u0, u1 and u2. Since H is vertex-transitive, we will analyze the matrix

M such that Mij is the sum of weights of homomorphisms from H(u0, v1, v2) to
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Gγ(u0, ui, uj) such that the neighbors of v1 and v2 are mapped one-to-one to the

neighbors of ui and uj , respectively, where the sum runs over all choices of v1 and v2

in H. Note that the matrix from the statement Theorem 5 is the considered matrix

M with each entry multiplied by |G|, in particular, it is enough to show that the

considered matrix M is not positive semidefinite for some γ.

Let W :=
∑

v∈V (H) dist(v, u0) − 3. We show that M1,1 = o(γW ), M1,2 =

M2,1 = Ω(γW ) and M2,2 = O(γW ) (as functions of the parameter γ). Hence, if γ

is large enough, the matrix M is not positive semidefinite and H does not have the

step Sidorenko property by Theorem 5.

By the definition, the entry M1,2 contains a summand corresponding to the

identity homomorphism from H(u0, v1, v2) to Gγ(u0, u1, u2); the weight of this sum-

mand is exactly γW . It follows M1,2 = M2,1 = Ω(γW ).

Consider a homomorphism f contributing to the sum defining the entry Mi,i

for i ∈ {1, 2}. Observe that f satisfies
∣∣f−1({u0, u1, u2})

∣∣ ≥ 3 (at least the three

vertices u0, v1 and v2 are mapped to u0 and ui) and dist(u0, f(v)) ≤ dist(u0, v) for

every vertex v (a shortest walk from u0 to v is mapped by f to a walk of at most the

same length from u0 to f(v)). Hence, it holds that w(f(v)) ≤ w(v) for every vertex

v, and the equality holds for all vertices v if and only if dist(u0, f(v)) = dist(u0, v)

for every vertex v of H and
∣∣f−1({u0, u1, u2})

∣∣ = 3. In particular, the equality does

not hold for any homomorphism f contributing to the sum defining the entry M1,1.

It follows that each summand in the sum defining the entry M1,1 is of order O(γW−1)

and each summand in the sum defining the entry M2,2 is of order O(γW ). Since the

number of the summands is independent of γ, we conclude that M1,1 = o(γW ) and

M2,2 = O(γW ).

We conclude by using Lemma 8 to show that all multidimensional grids other

than hypercubes are not weakly norming.

Corollary 4. Let k ≥ 2. The Cartesian product C`1� · · ·�C`k has the step Sidorenko

property if and only if the length of each cycle in the product is four, i.e., `1 = · · · =
`k = 4.

Proof. Let H = C`1� · · ·�C`k . By symmetry, we can assume that `1 is the largest

and `2 is the smallest among `1, . . . , `k. If `1 = · · · = `k = 4, the graph H is iso-

morphic to the 2k-dimensional hypercube graph, which is weakly norming, see [47]

and [65, Proposition 14.2]; this implies implies that H has the step Sidorenko prop-

erty [65, Proposition 14.13]. If `i is odd for some i, then the graph H is not bipartite,

which implies that it fails to even have the Sidorenko property. Hence, we can as-

sume that all `i are even and `1 > 4.
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We will view the vertices of H as the elements of Z`1 ×· · ·×Z`k and perform

all computations involving the i-th coordinate modulo `i. Let ei be the i-th unit

vector. Note that two vertices of H are adjacent if their difference is equal to ei or

−ei for some i = 1, . . . , k. Also observe that if v is a vertex of H and `i > 4, then v

is the only common neighbor of v + ei and v − ei.
We apply Lemma 8 with u0 = (0, . . . , 0) and ui = ei for i = 1, 2. Suppose that

for some distinct vertices v1 and v2, there is a homomorphism f from H(u0, v1, v2)

to H(u0, e1, e1) contradicting the assumption of Lemma 8, i.e.,

1. the neighbors of vi are one-to-one mapped to neighbors of e1, for i = 1, 2,

2. dist(u0, v) = dist(u0, f(v)) for each v ∈ V (H), and

3. no vertex other than u0, v1 and v2 is mapped to any of the vertices u0, e1 and

e2.

We will show that the existence of such a homomorphism f leads to a contradiction.

By symmetry, we can assume that v1 = ei1 for some i1 and either v2 = −ei1 or

v2 = ei2 for some i2 6= i1.

Note that the neighbors of v1 are one-to-one mapped to the neighbors of e1,

and let i′ be such that f(ei1 + ei′) = e1 + e1. If i′ 6= i1, both common neighbors

of u0 and ei1 + ei′ , which are ei1 and ei′ , must be mapped to the unique common

neighbor of u0 and e1 + e1, which is the vertex e1 (note that `1 > 4). However, this

would contradict 3. Hence, i′ = i1, i.e., f(v1 +v1) = f(ei1 +ei1) = e1 +e1. It follows

that there exists a bijection π between {±ei′ | i′ 6= i1} and {±ej′ | j′ 6= 1} such that

f(ei1 + e) = e1 + π(e) for e ∈ {±ei′ | i′ 6= i1}. Observe that a symmetric argument

to the one that we have just presented yields that f(v2 + v2) = e1 + e1.

To exclude the case that v2 = −ei1 , let e = π−1(e2), i.e., f(ei1 + e) = e1 + e2.

Note that e 6= ±ei1 . It follows that the vertex e, which is a common neighbor of u0

and ei1 + e, must be mapped to a common neighbor of u0 and e1 + e2, i.e., either

to e1 or to e2. The first case would contradict 3, hence e is mapped to e2, meaning

v2 = e. We conclude that v2 = ei2 for some i2 6= i1 and that f(ei1 + ei2) = e1 + e2.

Suppose that `2 = 4 and recall that f(v2 + v2) = e1 + e1. If additionally

`i2 = 4, then −ei2 , which is a common neighbor of u0 and ei2 +ei2 , must be mapped

to the unique common neighbor of u0 and e1 + e1, i.e., to the vertex e1; this is

impossible by 3. Hence, `i2 6= 4.

Let us call two vertices v and v′ close if they have at least two common

neighbors. Observe that two close distinct neighbors v and v′ of ei1 must be mapped

to close neighbors of e1; otherwise, all common neighbors of v and v′ would be
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mapped to ei1 , contradicting 3. Since the neighborhood of ei1 is one-to-one mapped

to the neighborhood of e1 and the number of pairs of close neighbors of ei1 is the

same as the number of pairs of close neighbors of e1, it follows that pairs of close

neighbors of ei1 are one-to-one mapped to pairs of close neighbors of e1 and pairs

of non-close neighbors of ei1 are one-to-one mapped to pairs of non-close neighbors

of e1. Since `i2 6= 4, the neighbors ei1 + ei2 and ei1 − ei2 of ei1 are not close. On the

other hand, since `2 = 4, the vertex f(ei1 + ei2) = e1 + e2 has a common neighbor

other than e1 with each neighbor of e1. In particular, f(ei1 + ei2) and f(ei1 − ei2)

are close, which is impossible. We conclude that `2 6= 4. Since `2 is the smallest

among `1, . . . , `k, it follows that each `i is at least six.

As the final step of the proof of the corollary, we prove the following statement

for r = 1, . . . , `i1/2 by induction on r:

f((r − 1)ei1) = (r − 1)e1, f(rei1) = re1, and

f(rei1 + e) = re1 + π(e) for e ∈ {±ei′ | i′ 6= i1}. (3.5)

The case r = 1 follows from the definition of i1 and π. We assume that the above

statement holds for r and prove it for r+1 ≤ `i1/2. We first show that f((r+1)ei1) =

(r+ 1)e1. Note that f(rei1 + ei1) cannot be re1− e1 by 2. If f(rei1 + ei1) is re1 + ej

for some j 6= 1, then the common neighbor rei1 + ei1 + π−1(−ej) of rei1 + ei1

and rei1 + π−1(−ej) must be mapped to the unique common neighbor of re1 + ej

and re1 − ej , which is re1, contradicting 2. An analogous argument excludes that

f(rei1 + ei1) is re1 − ej for some j 6= 1. Since the vertex f((r + 1)ei1) must be a

neighbor of f(rei1) = re1, it follows that f((r + 1)ei1) = (r + 1)e1.

We next analyze f((r+1)ei1 +e) for e 6= ±ei1 . Since the vertex (r+1)ei1 +e =

rei1 + ei1 + e is a common neighbor of rei1 + ei1 and rei1 + e, it must be mapped to

a common neighbor of re1 + e1 and re1 + π(e), i.e., to re1 or re1 + e1 + π(e). Since

the former is excluded by 2, it follows that f((r+ 1)ei1 + e) = (r+ 1)e1 +π(e). This

concludes the proof of (3.5).

The statement (3.5) implies that f(`i1/2 · ei1) = `i1/2 · e1, in particular

`i1 ≥ `1 by 2. Since the path u0,−ei1 ,−2ei1 , . . . ,−`i1/2 · ei1 must be mapped to

a path from u0 to f(−`i1/2 · ei1) = f(`i1/2 · ei1) = `i1/2 · e1 and the vertices of

the path must be mapped to vertices at distances 0, 1, . . . , `i1/2 from u0 by 2, the

path can be mapped only to the path u0, e1, 2e1, . . . , `i1/2 · e1 or, if `1 = `i1 , to the

path u0,−e1,−2e1, . . . ,−`i1/2 · e1 The former case is impossible since −ei1 cannot

be mapped to e1 by 3. It follows that `1 = `i1 and f(−ei1) = −e1. Hence, the

vertex ei2 − ei1 6= u0, which is a common neighbor of ei2 and −ei1 , must be mapped
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to the unique common neighbor of f(ei2) = e1 and f(−ei1) = −e1, which is u0.

However, this contradicts 3. We conclude there is no homomorphism f satisfying

1–3. Lemma 8 now implies that H does not have the step Sidorenko property.

3.4 Further remarks

Corollary 2 and Corollary 4 give an infinite class of edge-transitive graphs that

are not weakly norming, which answers in the negative a question of Hatami [47].

Conlon and Lee [19, Conjecture 6.3] present a large class of weakly norming graphs,

which they call reflection graphs, and conjecture that a bipartite graph is weakly

norming if and only if it is edge-transitive under a subgroup of its automorphism

group (generated by so called ‘cut involutions’). In particular, this would imply that

all weakly norming graphs are edge-transitive.

Finally, it is natural to wonder about the Forcing Conjecture in the setting

of the step Sidorenko property. Let us say that a graph H has the step forcing

property if and only if

t(H,WP) ≤ t(H,W )

for every graphon W and every partition P of [0, 1] into finitely many non-null

measurable sets and the equality holds if and only if WP and W are equal almost

everywhere. All even cycles have the step forcing property. Graphs with the step

forcing property are related to the proof of the existence of graphons via weak∗ limits

given by Doležal and Hladký [25]; in particular, if H has the step forcing property,

minimizing the entropy of W in the arguments given in [25] can be replaced by

maximizing t(H,W ).
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Chapter 4

Decomposing graphs into edges

and triangles

Results on the existence of edge-disjoint copies of specific subgraphs in graphs are

a classical theme in extremal graph theory. Motivated by the following result of

Erdős, Goodman and Pósa [27], we study the problem of covering edges of a given

graph by edge-disjoint complete graphs.

Theorem 6 (Erdős, Goodman and Pósa [27]). The edges of every n-vertex graph

can be decomposed into at most bn2/4c complete graphs.

In fact, they proved the following stronger statement.

Theorem 7 (Erdős, Goodman and Pósa [27]). The edges of every n-vertex graph

can be decomposed into at most bn2/4c copies of K2 and K3.

The bounds given in Theorems 6 and 7 are best possible as witnessed by

complete bipartite graphs with parts of equal sizes.

Theorem 6 actually holds in a stronger form that we now present. Chung [14],

Győri and Kostochka [45], and Kahn [53], independently, proved a conjecture of

Katona and Tarján asserting that the edges of every n-vertex graph can be covered

with complete graphs C1, . . . , C` such that the sum of their orders is at most n2/2.

In fact, the first two proofs yield a stronger statement, which implies Theorem 6 and

which we next state as a separate theorem. To state the theorem, we define πk(G) for

a graph G to be the minimum integer m such that the edges of G can be decomposed

into complete graphs C1, . . . , C` of order at most k with |C1|+ · · ·+ |C`| = m, and

we let π(G) = mink∈N πk(G).

Theorem 8 (Chung [14]; Győri and Kostochka [45]). Every n-vertex graph G sat-

isfies π(G) ≤ n2/2.
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Observe that Theorem 8 indeed implies the existence of a decomposition

into at most bn2/4c complete graphs. McGuinnes [72, 73] extended these results

by showing that decompositions from Theorems 6 and 8 can be constructed in the

greedy way, which confirmed a conjecture of Winkler of this being the case in the

setting of Theorem 6.

In view of Theorem 7, it is natural to ask whether Theorem 8 holds under

the additional assumption that all complete graphs in the decomposition are copies

of K2 and K3, i.e., whether π3(G) ≤ n2/2. Győri and Tuza [46] provided a partial

answer by proving that π3(G) ≤ 9n2/16 and conjectured the following.

Conjecture 3 (Győri and Tuza [89, Problem 40]). Every n-vertex graph G satisfies

π3(G) ≤ (1/2 + o(1))n2.

We prove this conjecture. Our result also solves [89, Problem 41], which we

state as Corollary 5. We remark that we stated the conjecture in the version given

by Győri in several of his talks and by Tuza in [89, Problem 40]; the paper [46]

contains a version with a different lower order term.

We would also like to mention a closely related variant of the problem sug-

gested by Erdős, where the cliques in the decomposition have weights one less than

their orders. Formally, define π−(G) for a graph to be the minimum m such that

the edges of a graph G can be decomposed into complete graphs C1, . . . , C` with

(|C1| − 1) + · · · + (|C`| − 1) = m. Erdős asked, see [89, Problem 43], whether

π−(G) ≤ n2/4 for every n-vertex graph G. This problem remains open and was

proved for K4-free graphs only recently by Győri and Keszegh [43, 44]. Namely,

they proved that every K4-free graph with n vertices and bn2/4c+ k edges contains

k edge-disjoint triangles.

4.1 Preliminaries

We follow the terminology presented in Chapter 1. We review here some less

standard notation necessary for this chapter and briefly introduce the flag algebra

method.

In our arguments, we often consider fractional decompositions. A fractional

k-decomposition of a graph G is an assignment of non-negative real weights to

complete subgraphs of order at most k such that the sum of the weights of the

complete subgraphs containing any edge e is equal to one. The weight of a fractional

k-decomposition is the sum of the weights of the complete subgraphs multiplied by

their orders, and the minimum weight of a fractional k-decomposition of a graph G

is denoted by πk,f (G). Observe that πk,f (G) ≤ πk(G) for every graph G.
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4.1.1 Flag algebra method

The flag algebra method introduced by Razborov [77] has changed the landscape of

extremal combinatorics. It has been applied to many long-standing open problems,

e.g. [2–7, 22, 24, 28]. The method is designed to analyze asymptotic behavior of

substructure densities and we now briefly describe it.

We start by introducing some necessary notation. The family of all finite

graphs is denoted by F and the family of graphs with ` vertices by F`. If F and

G are two graphs, then p(F,G) is the probability that |F | distinct vertices chosen

uniformly at random among the vertices of G induce a graph isomorphic to F ; if

|F | > |G|, we set p(F,G) = 0. A type is a graph with its vertices labeled with

1, . . . , |σ| and a σ-flag is a graph with |σ| vertices labeled by 1, . . . , |σ| such that the

labeled vertices induce a copy of σ preserving the vertex labels. In the analogy with

the notation for ordinary graphs, the set of all σ-flags is denoted by Fσ and the set

of all σ-flags with exactly ` vertices by Fσ` .

We next extend the definition of p(F,G) to σ-flags and generalize it to pairs

of graphs. If F and G are two σ-flags, then p(F,G) is the probability that |F | − |σ|
distinct vertices chosen uniformly at random among the unlabeled vertices of G

induce a copy of the σ-flag F ; if |F | > |G|, we again set p(F,G) = 0. Let F and F ′

be two σ-flags and G a σ-flag with at least |F | + |F ′| − |σ| vertices. The quantity

p(F, F ′;G) is the probability that two disjoint |F | − |σ| and |F ′| − |σ| subsets of

unlabeled vertices of G induce together with the labeled vertices of G the σ-flags F

and F ′, respectively. It holds [77, Lemma 2.3] that

p(F, F ′;G) = p(F,G) · p(F ′, G) + o(1) (4.1)

where o(1) tends to zero with |G| tending to infinity.

Let ~F = [F1, . . . , Ft] be a vector of σ-flags, i.e., Fi ∈ Fσ. If M is a t × t
positive semidefinite matrix, it follows from (4.1), see [77], that

0 ≤
t∑

i,j=1

Mijp(Fi, G)p(Fj , G) =

t∑
i,j=1

Mijp(Fi, Fj ;G) + o(1). (4.2)

The inequality (4.2) is usually applied to a large graph G with a randomly chosen

labeled vertices in a way that we now describe. Fix σ-flags F and F ′ and a graph G.

We now define a random variable p(F, F ′;Gσ) as follows: label |σ| vertices of G with

1, . . . , |σ| and if the resulting graph G′ is a σ-flag, then p(F ′, F ′;Gσ) = p(F, F ′;G′);

if G′ is not a σ-flag, then p(Fi, Fj ;G
σ) = 0. The expected value of p(F, F ′;Gσ)
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can be expressed as a linear combination of densities of (|F | + |F ′| − |σ|)-vertex

subgraphs of G [77], i.e., there exist coefficients αH , H ∈ F|F |+|F ′|−|σ|, such that

E p(F, F ′;Gσ) =
∑

H∈F|F |+|F ′|−|σ|

αH · p(H,G) (4.3)

for every graph G. It can be shown that αH = E p(F, F ′;Hσ).

Let ~F = [F1, . . . , Ft] be a vector of `-vertex σ-flags and let M be a t × t

positive semidefinite matrix. The equality (4.3) yields that there exist coefficients

αH such that

E
t∑

i,j=1

Mijp(Fi, Fj ;G
σ) =

∑
H∈F2`−|σ|

αH · p(H,G) (4.4)

for every graph G, which combines with (4.2) to

0 ≤
∑

H∈F2`−|σ|

αH · p(H,G) + o(1) (4.5)

for every graph G, where

αH =
t∑

i,j=1

Mij · E p(Fi, Fj ;H
σ)

In particular, the coefficients αH depend only on the choice of ~F and M .

4.2 Main result

We start with proving the following lemma using the flag algebra method.

Lemma 9. Let G be a weighted graph with all edges of weight one. It holds that

EWπ3,f (G[W ]) ≤ 21 + o(1)

where W is a uniformly chosen random subset of seven vertices of G.

Proof. We use the flag algebra method to find coefficients cU , U ∈ F7, such that

0 ≤
∑
U∈F7

cU · p(U,G) + o(1) (4.6)
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and

π3,f (U) + cU ≤ 21 (4.7)

for every U ∈ F7. The statement of the lemma would then follow from (4.6) and

(4.7) using
∑

U∈F7
p(U,G) = 1 as we next show.

EWπ3,f (G[W ]) =
∑
U∈F7

π3,f (U) · p(U,G)

≤
∑
U∈F7

(π3,f (U) + cU ) · p(U,G) + o(1)

≤
∑
U∈F7

21 · p(U,G) + o(1) = 21 + o(1).

We now focus on finding the coefficients cU , U ∈ F7, satisfying (4.6) and

(4.7). Let σ1 be a flag consisting of a single vertex labeled with 1 and consider the

following vector ~F = (F1, . . . , F7) of σ1-flags from Fσ14 (the single labeled vertex is

depicted by a white square and the remaining vertices by black circles).

~F =

(
, , , , , ,

)

Let M be the following 7× 7-matrix.

M = 1
12·109



1800000000 2444365956 640188285 −1524146769 1386815580 −732139362 −129387078

2444365956 4759879134 1177441152 −1783771230 2546923788 −1397639394 −143552208

640188285 1177441152 484273772 −317303211 1038156300 −591902130 −6783162

−1524146769 −1783771230 −317303211 1558870290 −651906630 305728704 154602378

1386815580 2546923788 1038156300 −651906630 2285399634 −1283125950 −10755036

−732139362 −1397639394 −591902130 305728704 −1283125950 734039016 −1621938

−129387078 −143552208 −6783162 154602378 −10755036 −1621938 23860164


.

The matrix M is a positive semidefinite matrix with rank six; the eigenvector cor-

responding to the zero eigenvalue is (1, 0, 3, 1, 0, 3, 0). Let

cU =
7∑

i,j=1

MijE p(Fi, Fj ;U
σ1) .

The inequality (4.5) implies that

0 ≤
∑
U∈F7

cU · p(U,G) + o(1),

which establishes (4.6). The inequality (4.7) is verified with computer assistance

by evaluating the coefficient cU and the quantity π3,f (U) for each U ∈ F7. Since
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|F7| = 1044, we do not list cU and π3,f (U) here. The computer programs that we

used and their outputs have been made available on arXiv as ancillary files and are

also available at http://orion.math.iastate.edu/lidicky/pub/tile23.

The following lemma can be derived from the result of Haxell and Rödl [50]

on fractional triangle decompositions or from a more general result of Yuster [93].

Lemma 10. Let G be a graph with n vertices. It holds that π3(G) ≤ π3,f (G)+o(n2).

We now use Lemmas 9 and 10 to prove our main result.

Theorem 9. Every n-vertex graph G satisfies π3(G) ≤ (1/2 + o(1))n2.

Proof. Fix an n-vertex graph G. By Lemma 10, it is enough to show that π3,f (G) ≤
(1/2 + o(1))n2.

Fix an optimal fractional 3-decomposition of G[W ] for every 7-vertex subset

W ⊆ V (G), and set the weight w(e) of an edge e to the sum of its weights in the

optimal fractional 3-decomposition of G[W ] with e ⊆W multiplied by
(
n−2

5

)−1
, and

the weight w(t) of a triangle t to the sum its weights in the optimal fractional 3-

decomposition of G[W ] with t ⊆W also multiplied by
(
n−2

5

)−1
. Since each edge e of

G is contained in
(
n−2

5

)
subsets W , we have obtained a fractional 3-decomposition

of G. The weight of this decomposition is equal to

1(
n−2

5

) ∑
W∈(V (G)

7 )

π3,f (G[W ]) ≤
(
n
7

)(
n−2

5

)(21 + o(1)) = n2/2 + o(n2) ,

where the inequality follows from Lemma 9. We conclude that π3,f (G) ≤ n2/2 +

o(n2), which completes the proof.

The next corollary follows directly from Theorem 9.

Corollary 5. Every n-vertex graph with n2/4 +k edges contains 2k/3−o(n2) edge-

disjoint triangles.

4.3 Alternative proof

In this section we present the original proof of Theorem 9 which combined the flag

algebra method and regularity method arguments. In particular, we proved the

fractional relaxation of Conjecture 3 in the setting of weighted graphs and with

an additional restriction on its support; this statement was then combined with a

blow-up lemma for edge-decompositions recently proved by Kim, Kühn, Osthus and
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Tyomkyn [55]. It was then brought to our attention that the results from [50, 93]

allow obtaining our main result directly from the fractional relaxation, which is the

proof that we presented earlier and submitted to the journal. We believe that the

argument combining the flag algebra method and the blow-up lemma of Kim et

al. [55] can be of independent interest and so we present the original proof of our

result and its idea here.

We start by reviewing some non-standard definitions necessary for the proof.

4.3.1 Designs

An (n, q, r, λ)-design is a collection B of q-element subsets of an n-element set such

that every r-element subset is in exactly λ elements of B. When λ is equal to one,

the design is called a Steiner system. Designs do not exist for all choices of the

parameters n, q, r and λ. In particular, the parameters must satisfy that
(
q−i
r−i
)

divides λ
(
n−i
r−i
)

for every 0 ≤ i ≤ r − 1. It was a long-standing open problem

whether these necessary divisibility conditions are also sufficient for the existence of

a design when n is large. The case where r = 2 was solved by Wilson in a series of

papers [90–92] in the 1970’s. However, the whole problem was settled only recently

in a breakthrough paper by Keevash [54].

4.3.2 Regularity method

In this subsection, we review the basic notions related to the Szemerédi Regularity

Lemma and the blow-up lemma for edge-decompositions of Kim, Kühn, Osthus and

Tyomkyn [55].

We start with presenting three definitions that we use further in our expo-

sition. Let G be a graph and V and W two disjoint subsets of its vertices. The

density of the pair (V,W ) is equal to

d(V,W ) :=
e(V,W )

|V ||W |
,

where e(V,W ) is the number of edges between V and W .

Let G be a graph, V and W two disjoint subsets of its vertices, and ε ∈ (0, 1).

We say that the pair (V,W ) is ε-regular if the following holds for all subsets V ′ ⊂ V
and W ′ ⊂W with |V ′| ≥ ε|V | and |W ′| ≥ ε|W |:

∣∣d(V,W )− d(V ′,W ′)
∣∣ ≤ ε.

Let G be a graph, V and W two disjoint subsets of its vertices, and ε ∈ (0, 1).
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We say that the pair (V,W ) is ε-super-regular if

• (V,W ) is ε-regular,

• every vertex of V has at least (d(V,W )− ε)|W | and at most (d(V,W ) + ε)|W |
neighbors in W , and

• every vertex of W has at least (d(V,W )− ε)|V | and at most (d(V,W ) + ε)|V |
neighbors in V .

The Szemerédi Regularity Lemma reads as follows.

Lemma 11 (Regularity Lemma). For every real ε > 0 and integer k0 > 0, there

exists an integer K such that the vertices of every graph G with at least k0 vertices

can be partitioned into k + 1 subsets V0, . . . , Vk where k0 ≤ k ≤ K such that

• |V0| ≤ ε|G|,

• the sets V1, . . . , Vk have the same size, and

• all but at most εk2 pairs (Vi, Vj) are ε-regular.

Any partition V0, . . . , Vk with the three properties given in Lemma 11 is called an

ε-regular partition.

Let G be a graph and V0, . . . , Vk an ε-regular partition. The regularity graph

RG with respect to the partition V0, . . . , Vk is the graph with k vertices such that

the i-th and the j-th vertex, 1 ≤ i, j ≤ k, are adjacent if and only if (Vi, Vj) is an

ε-regular pair.

The following result was proven by Kim, Kühn, Osthus and Tyomkyn [55,

Theorem 1.3]; we state the result in a version for non-spanning subgraphs, which is

equivalent to the original statement.

Theorem 10. For all 0 < d0, α0 ≤ 1 and ∆, r ∈ N there exist ε0 > 0 and n0 ∈ N
such that the following holds for all n ≥ n0. Let H1, . . . ,Hs be r-partite graphs such

that each of them has r parts, each of size at most n, and its maximum degree is

at most ∆. If G is an r-partite graph with parts of sizes n such that every pair

of its parts is ε0-super-regular with density at least d0, and ||H1|| + · · · + ||Hs|| ≤
(1− α0)||G||, then G contains edge-disjoint copies of H1, . . . ,Hs.

The following proposition is a direct corollary of Theorem 10.

Proposition 4. For every α ∈ (0, 1) and every d ∈ (0, 1], there exists ε > 0 and

N ∈ N with the following property. If G is a graph and V1, V2 and V3 disjoint

72



n-vertex subsets of its vertices, n ≥ N , such that (Vi, Vj) is an ε-regular pair with

density at least d for 1 ≤ i < j ≤ 3, then G contains at least dn2−αn2 edge-disjoint

triangles with one vertex in V1, one in V2 and one in V3.

Proof. Let ε = ε0/3 and N = dn0/(1 − 2ε)e, where ε0 and n0 are the values from

Theorem 10 applied with r = 3, ∆ = 2, d0 = d/2 and α0 = α/4. We can assume

that ε ≤ α
8 , d− 4ε ≥ d0 and n0 ≥ 4/α.

For i = 1, . . . , 3, let V ′i be the set of all vertices v ∈ Vi such that v has at

least (d(Vi, Vj)− ε)|Vj | and at most (d(Vi, Vj) + ε)|Vj | neighbors in Vj , j 6= i. Since

all the pairs (Vi, Vj) are ε-regular, it follows that |V ′i | ≥ (1− 2ε)|Vi|. Let V ′′i be any

d(1− 2ε)ne-element subset of V ′i .

Let G′ be the subgraph of G with the vertex set V ′′1 ∪ V ′′2 ∪ V ′′3 and all edges

between V ′′i and V ′′j with i 6= j. Note that every pair (V ′′i , V
′′
j ) is ε0-super-regular

with density at least d− 4ε. Set Hi = K3, where i = 1, . . . , s and

s = d(d− 4ε− α/2)n2e ≤ (d− 4ε− α/2)n2 + 1 ≤ (d− 4ε− α0)n2 .

Theorem 10 now implies that G′ has at least s ≥ (d − 4ε − α/2)n2 ≥ (d − α)n2

edge-disjoint triangles.

4.3.3 Main result

We start by proving two auxiliary results: the first one, a fractional version of Con-

jecture 3 with and additional restriction; and the second one, a simple application

of the probabilistic method which we include it for completeness.

Theorem 11. Every n-vertex weighted graph G has a fractional 3-decomposition of

weight at most n2/2+o(n2) such that each edge is contained in at most five triangles

with positive weight.

Proof. We can assume
(

7
2

)
divides

(
n
2

)
and 6 divides n − 1 (if this were not the

case, we would just add at most 42 isolated vertices to G). It follows that there

exists (n, 7, 2, 1)-design. Let m be the number of edges of G and d1, . . . , dm their

weights in the non-decreasing order; set d0 = 0. Let Gi, 1 ≤ i ≤ m, be the spanning

unweighted subgraph of G formed exactly by the edges of weight at least di.

We construct a fractional 3-decomposition of G using the following random

procedure. We first choose a (n, 7, 2, 1)-design B uniformly at random among all

(n, 7, 2, 1)-designs on the vertex set of G; it follows that every 7-vertex subset is

included in B with the same probability, which is equal to n(n−1)
42 ·

(
n
7

)−1
. Note that

each pair of vertices of G is included in exactly one set contained in B.
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Fix an optimal fractional 3-decomposition of Gi[B] for every subset B in B
and every i = 1, . . . ,m. For every edge e of the graph G, we consider the unique

subset of B containing both end vertices of e and define wi(e), i = 1, . . . ,m, to be

the weight of e in the fractional 3-decomposition of Gi[B] if the weight of e in G is

at least di and to be zero otherwise. We next define weights wi(t) for each triangle

t of the graph G. If there is a subset B in B containing all the three end vertices of

t and the weights of all three edges of t are at least di, i = 1, . . . ,m, then wi(t) is

the weight of t in the fractional 3-decomposition of Gi[B]. Otherwise, wi(t) is equal

to zero.

We set the weight w(e) of an edge e of G to be

w(e) =

m∑
i=1

(di − di−1)wi(e)

and the weight w(t) of a triangle of G to be

w(t) =

m∑
i=1

(di − di−1)wi(t) .

The definition of the graphs Gi yield that w is a fractional 3-decomposition of G.

Moreover, if w(t) > 0 for a triangle t of G, then all the three vertices of t lie in the

common subset B in B. In particular, each edge of G is contained in at most five

triangles of positive weight.

We now show that the expected weight of the fractional 3-decomposition w

is at most n2/2 + o(n2). We use that every 7-vertex subset of vertices is included in

B with the same probability, which implies that

E
∑
e

2w(e) + E
∑
t

3w(t) =
m∑
i=1

(di − di−1)
n(n− 1)

42
EUπ3,f (Gi[U ]), (4.8)

where U is a uniform random subset of seven vertices of G. We next use Lemma 9

to derive the following from (4.8).

E
∑
e

2w(e) + E
∑
t

3w(t) ≤
m∑
i=1

(di − di−1)
n(n− 1)

42
(21 + o(1))

=
m∑
i=1

(di − di−1)
n2

2
+ o(n2)

= (dm − d0)

(
n2

2
+ o(n2)

)
≤ n2

2
+ o(n2) .
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Hence, the expected weight of the fractional 3-decomposition w is at most n2/2 +

o(n2).

Lemma 12. For every integer r ∈ N and reals ε ∈ (0, 1/4) and δ ∈ (0, 1), there

exists n0 such that the following holds. For every graph G, every ε-regular pair

(V,W ) of vertices of G with |V | = |W | ≥ n0, and all non-negative reals d1, . . . , dr

such that d1 + · · · + dr ≤ d(V,W ), there exists a partition E1, . . . , Er of the edges

between V and W such that the pair (V,W ) when restricted to the edges in Ei,

i = 1, . . . , r, is an 3ε-regular with density at least di − δ.

We use the Chernoff Bound to prove the lemma, which we now state for

reference.

Proposition 5 (Chernoff Bound). Let X be the sum of n independent random

zero-one variables, each being one with probability p. It holds

P[|X − pn| ≥ a] < 2e
− a2

3pn

for every real a ∈ R.

We are now ready to prove Lemma 12.

Proof of Lemma 12. Fix r, ε and δ, and consider a graph G together with an ε-

regular pair (V,W ) and reals d1, . . . , dr as in the statement of the lemma. We can

assume without loss of generality that d1 + · · ·+ dr = d(V,W ) and that δ ≤ ε. Also

let n = |V | = |W |.
We randomly partition the edges between V and W into sets E1, . . . , Er in

such a way that each edge is included in Ei with probability pi = di
d(V,W ) indepen-

dently of the other edges. The probability that Ei contains fewer than (di − δ)n2

edges or more than (di + δ)n2 edges is at most

2e
− δ2n4

3pin
2 ≤ 2e−

δ2n2

3 (4.9)

by Proposition 5. Next consider subsets V ′ ⊆ V and W ′ ⊆W with |V ′|, |W ′| ≥ 3εn.

The probability that the density of the pair (V ′,W ′) restricted to Ei differs from

pid(V ′,W ′) by more than ε is at most

2e
− ε2|V ′|2|W ′|2

3pid(V
′,W ′)|V ′||W ′| ≤ 2e−

ε2|V ′||W ′|
3 ≤ 2e−3ε4n2

(4.10)

by Proposition 5. Since the pair (V,W ) is ε-regular, it holds that |d(V,W ) −
d(V ′,W ′)| ≤ ε. It follows that the probability that the density of the pair (V ′,W ′)
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restricted to Ei differs from di by more than 2ε is at most 2e−3ε4n2
. The union

bound applied with the estimate (4.10) yields that the probability that there exist

such subsets V ′ and W ′ for some i is at most

r · 22n+1 · e−3ε3n2
. (4.11)

We now choose n0 such that each of the estimates (4.9) and (4.11) is at most 1/2r

for every n ≥ n0. Hence, there is a positive probability that every Ei, i = 1, . . . , r,

contains between (di − δ)n2 and (di + δ)n2 edges (inclusively), i.e., the density of

(V,W ) restricted to Ei is between di− δ and di+ δ, and that all subsets V ′ ⊆ V and

W ′ ⊆ W , |V ′|, |W ′| ≥ 3εn, satisfy that the density of the pair (V ′,W ′) restricted

to Ei differs from di by at most 2ε. Since such a partition satisfies that the pair

(V,W ) restricted to Ei is 3ε-regular (we use that δ ≤ ε) for every i = 1, . . . , r, the

statement of the lemma follows.

We are now ready to prove the main result of the paper.

Theorem 12. Every n-vertex graph G satisfies that π3(G) ≤ (1/2 + o(1))n2.

Proof. We show that for every δ > 0, there exists N such that π3(G) ≤ n2/2 + δn2

for every graph G with n ≥ N vertices. Fix δ > 0. We can assume without loss of

generality that δ−1 is an integer.

Let εa and Na be the values of ε and N from Proposition 4 applied for

α = δ/20 and d = aδ/20 where a = 1, . . . , 20δ−1. Next set

ε = min {δ/20, ε1/3, . . . , ε20δ−1/3} .

Let nf be such that the o(n2) term in Theorem 11 is at most δn2/20 for all n ≥
nf . We apply the Szemerédi Regularity Lemma (Lemma 11) with ε and k0 =

max{20δ−1, nf} to get an integer K and Lemma 12 with r = 6, ε and δ/20 to get

an integer n0, and set N to be any integer larger than n0K(1−ε)−1 and larger than

NaK(1− ε)−1 for a = 1, . . . , 20δ−1.

Let G be a graph with n ≥ N vertices. By the Szemerédi Regularity Lemma,

there exists an ε-regular partition V0, . . . , Vk of the vertex set of G, where k0 ≤ k ≤
K. Let RG be the regularity graph with respect to the partition V0, . . . , Vk and

let vi be the vertex of RG corresponding to the part Vi, i = 1, . . . , k. If (Vi, Vj) is

ε-regular, assign the edge joining vivj the weight equal to d(Vi, Vj).

By Theorem 11, the graph RG has a fractional 3-packing of total weight at

most k2/2 + δk2/20 (since k ≥ nf ). Fix such a fractional 3-packing, let w(t) be

the weight of a triangle t of RG in the packing and w(e) the weight of an edge e.

76



Consider an edge vivj of RG. By Theorem 11, there are at most five triangles t

containing vivj with w(t) > 0. Lemma 12 yields that there exist disjoint subsets Etij
of the edges between Vi and Vj , where t ranges through the at most five triangles

containing vivj with w(t) > 0, such that Etij contains at least (w(t) − δ/20)|Vi||Vj |
edges and the pair (Vi, Vj) restricted to Etij is 3ε-regular. Fix such sets Etij for all

ε-regular pairs (Vi, Vj).

Let nV be the number of vertices contained in each of the parts V1, . . . , Vk;

note that nV ≥ n0 by the choice of N . For every triangle t = vivi′vi′′ with w(t) > 0,

we construct a large family of edge-disjoint triangles with edges from Etii′ , E
t
ii′′ and

Eti′i′′ . Let a be the largest integer such that w(t) ≥ (a+ 1)δ/20. Note that nV ≥ Na

and that each of the sets Etii′ , E
t
ii′′ and Eti′i′′ has density at least aδ/20 between the

corresponding vertex parts. We apply Proposition 4 for the sets Vi, Vi′ and Vi′′ with

edges from Etii′ , E
t
ii′′ and Eti′i′′ and with α = δ/20 and d = aδ/20. This yields a

family of at least dn2
V − αn2

V ≥ (w(t) − δ/10)n2
V edge-disjoint triangles with edges

from Etii′ , E
t
ii′′ and Eti′i′′ . Consider such a family of at least (w(t)− δ/10)n2

V and at

most w(t)n2
V triangles for each triangle t with w(t) > 0 and let T be the union of

all such families for t with w(t) > 0. Note that the number of triangles contained

in T is at most ∑
t

w(t)n2
V ≤

n2

k2

∑
t

w(t) . (4.12)

Since each edge vivj of RG is contained in at most five triangles with positive weight,

we obtain that if (Vi, Vj) is an ε-regular pair, then the triangles contained in T cover

all but at most (w(vi, vj) + δ/2)n2
V edges between Vi and Vj .

We next estimate the number of edges that are not between (Vi, Vj) forming

an ε-regular pair. There are three kinds of such edges: those incident with a vertex

from V0, those with both end vertices inside Vi for some i = 1, . . . , k and those

between parts Vi and Vj , 1 ≤ i < j ≤ k, such that (Vi, Vj) is not ε-regular. The

number of edges incident with a vertex from V0 is at most

|V0|n ≤ εn2 ≤ δn2/20 . (4.13)

The number of edges with both end vertices inside the same part Vi for some i =

1, . . . , k is at most

k

(
nV
2

)
≤ n2

2k
≤ n2

2k0
≤ δn2/40 . (4.14)

Finally, the number of edges between parts Vi and Vj , 1 ≤ i < j ≤ k, such that
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(Vi, Vj) is not ε-regular is at most

εk2n2
V ≤ εn2 ≤ δn2/20 . (4.15)

Using (4.13), (4.14) and (4.15), we conclude that the number of edges not contained

in a triangle in T is at most

5δn2

40
+
∑
e

(w(vi, vj) + δ/2)n2
V ≤ δn2

8
+
δn2

4
+
n2

k2

∑
e

w(vi, vj)

=
3δn2

8
+
n2

k2

∑
e

w(vi, vj) . (4.16)

Since the total weight of the fractional 3-packing of RG is at most k2/2+δk2/20, we

get from (4.12) and (4.16) that the triangles from T and the edges not covered by

T (viewed as complete graphs of order two) form a 3-packing of G of total weight

at most

3δn2

4
+
n2

k2

(∑
e

2w(vi, vj) +
∑
t

3w(t)

)
≤ 3δn2

4
+
n2

k2

(
k2

2
+ δ

k2

20

)
≤ n2

2
+ δn2 .

The proof of the theorem is now finished.

4.4 Further remarks

We tried to prove Lemma 9 in the non-fractional setting, i.e., to show that

EWπ3(G[W ]) ≤ 21+o(1). Unfortunately, the computation with 7-vertex flags yields

only that EWπ3(G[W ]) ≤ 21.588 + o(1). We would like to remark that if it were

possible to prove Lemma 9 in the non-fractional setting, we would be able to prove

Theorem 9 without using additional results as a blackbox: we would consider a ran-

dom (n, 7, 2, 1)-design on the vertex set of an n-vertex graph G as in the alternative

proof in Section 4.3 and apply the non-fractional version of Lemma 9 to this design.

Finally, we would also like to mention two open problems related to our

main result. Theorem 9 asserts that π3(G) ≤ n2/2 + o(n2) for every n-vertex

graph G. However, it could be true (cf. the remark after Problem 41 in [89]) that

π3(G) ≤ n2/2 + 2 for every n-vertex graph G. The second problem that we would

like to mention is a possible generalization of Corollary 5, which is stated in [89] as

Problem 42. Fix r ≥ 4. Does every n-vertex graph with r−2
2r−2n

2 + k edges contain
2
rk − o(n

2) edge-disjoint complete graphs of order r?
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