171 research outputs found

    Miniaturized spectrometer radiometer based on MMIC technology for tropospheric water vapor profiling, A

    Get PDF
    Includes bibliographical references.The fabrication of a miniaturized ground-based water vapor profiling radiometer demonstrates the capability of monolithic microwave and millimeter-wave integrated circuit technology to reduce the mass and volume of microwave remote sensing instrumentation and to reduce substantially the necessary operational power consumption and size of the radiofrequency and intermediate-frequency sections. Since those sections comprise much of the mass and volume of current microwave receivers, the fabrication of this system represents an important contribution to the design of microwave radiometers. This miniaturized radiometer implementation is particularly well suited to benefit from the cost savings associated with mass production. The small size of the radiometer (24 × 18 × 16 cm) reduces the power required by the temperature control system and allows a rapid warm-up to the temperature set point as well as maintenance of a highly stable internal temperature. Exhibiting very similar statistical properties, the four channels of the radiometer have measured Allan times of greater than 40 s. Measurement results demonstrate that the instrument achieves a sensitivity of better than 0.2 K for 3 s of integration time. Preliminary comparisons of measured brightness temperatures with simulation results based on radiosonde data show good agreement, which are consistent with previously reported results.This work was supported by the National Science Foundation under Grant ATM-0456270 to Colorado State University and Grant ATM-0239722 to the University of Massachusetts Amherst

    On the amount of information content in microwave radiometry for wet delay estimation

    Get PDF
    This paper aims at determining the set of optimum frequencies to be used in the companion microwave radiometers in future synthetic aperture radar altimeters, to provide higher spatial resolution of the atmospheric water-vapor state, so as to improve the wet delay correction in the coastal regions. The channel selection is based on the study of the frequencies that provide the largest amount of information, as defined by the largest information entropy change from a prior knowledge state. It is found that four frequencies, one close to the 22-GHz peak and three other ones around 175.188 GHz, provide a near optimum compromise between the amount of information measured, and the instrument's complexity.Peer ReviewedPostprint (author's final draft

    Millimeter and sub-millimeter wave radiometers for atmospheric remote sensing from CubeSat platforms

    Get PDF
    2018 Fall.Includes bibliographical references.To view the abstract, please see the full text of the document

    Development of a Ground Based Remote Sensing Approach for Direct Evaluation of Aerosol-Cloud Interaction

    Full text link
    The possible interaction and modification of cloud properties due to aerosols is one of the most poorly understood mechanisms within climate studies, resulting in the most significant uncertainty as regards radiation budgeting. In this study, we explore direct ground based remote sensing methods to assess the Aerosol-Cloud Indirect Effect directly, as space-borne retrievals are not directly suitable for simultaneous aerosol/cloud retrievals. To illustrate some of these difficulties, a statistical assessment of existing multispectral imagers on geostationary (e.g., GOES)/Moderate Resolution Imaging Spectroradiometer (MODIS) satellite retrievals of the Cloud Droplet Effective Radius (Reff) showed significant biases especially at larger solar zenith angles, further motivating the use of ground based remote sensing approaches. In particular, we discuss the potential of using a combined Microwave Radiometer (MWR)—Multi-Filter Rotating Shadowband Radiometer (MFRSR) system for real-time monitoring of Cloud Optical Depth (COD) and Cloud Droplet Effective Radius (Reff), which are combined with aerosol vertical properties from an aerosol lidar. An iterative approach combining the simultaneous observations from MFRSR and MWR are used to retrieve the COD and Reff for thick cloud cases and are extensively validated using the DoE Southern Great Plains (SGP) retrievals as well as regression based parameterized model retrievals. In addition, we account for uncertainties in background aerosol, surface albedo and the combined measurement uncertainties from the MWR and MFRSR in order to provide realistic uncertainty estimates, which is found to be ~10% for the parameter range of interest in Aerosol-Cloud Interactions. Finally, we analyze a particular case of possible aerosol-cloud interaction described in the literature at the SGP site and demonstrate that aerosol properties obtained at the surface can lead to inconclusive results in comparison to lidar-derived aerosol properties near the cloud base

    SIRTA, a ground-based atmospheric observatory for cloud and aerosol research

    Get PDF
    Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA), an atmospheric observatory with these goals in mind. Today SIRTA, located 20km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO). SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe

    Passive ground-based remote sensing of radiation fog

    Get PDF
    Accurate boundary layer temperature and humidity profiles are crucial for successful forecasting of fog, and accurate retrievals of liquid water path are important for understanding the climatological significance of fog. Passive ground-based remote sensing systems such as microwave radiometers (MWRs) and infrared spectrometers like the Atmospheric Emitted Radiance Interferometer (AERI), which measures spectrally resolved infrared radiation (3.3 to 19.2 µm), can retrieve both thermodynamic profiles and liquid water path. Both instruments are capable of long-term unattended operation and have the potential to support operational forecasting. Here we compare physical retrievals of boundary layer thermodynamic profiles and liquid water path during 12 cases of thin (LWP<40 g m−2) supercooled radiation fog from an MWR and an AERI collocated in central Greenland. We compare both sets of retrievals to in-situ measurements from radiosondes and surface-based temperature and humidity sensors. The retrievals based on AERI observations accurately capture shallow surface-based temperature inversions (0–10 m a.g.l.) with lapse rates of up to −1.2 ∘C m−1, whereas the strength of the surface-based temperature inversions retrieved from MWR observations alone are uncorrelated with in-situ measurements, highlighting the importance of constraining MWR thermodynamic profile retrievals with accurate surface meteorological data. The retrievals based on AERI observations detect fog onset (defined by a threshold in liquid water path) earlier than those based on MWR observations by 25 to 185 min. We propose that, due to the high sensitivity of the AERI instrument to near-surface temperature and small changes in liquid water path, the AERI (or an equivalent infrared spectrometer) could be a useful instrument for improving fog monitoring and nowcasting, particularly for cases of thin radiation fog under otherwise clear skies, which can have important radiative impacts at the surface

    Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    Get PDF
    Presented in this study are the results of controlled partially polarimetric measurements of thermal emission at 91.65 GHz from a striated water surface as corroborated by a geometrical optics radiative model. The measurements were obtained outdoors using a precision polarimetric radiometer which directly measured the first three modified Stokes' parameters. Significant variations in these parameters as a function of azimuthal water wave angle were found, with peak-to-peak variations in T(sub u) of up to approximately 10 K. The measurements are well corroborated by the GO model over a range of observations angles from near nadir up to approximately 65 degrees from nadir. The model incorporates both multiple scattering and a realistic downwelling background brightness field
    • …
    corecore