123 research outputs found

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Underwater swarm robotics: Challenges and opportunities

    Full text link
    Underwater swarm robotics today faces a series of challenges unique to its aquatic environment. This chapter explores some possible applications of underwater swarm robotics and its challenges. Those challenges include the environment itself, sensor types required, problems with communication and the difficulty in localisation. It notes the serious challenges in underwater communication is that radio communications is practically non-existent in the underwater realm. Localisation also becomes problematic due to the lack of radio waves as GPS cannot be used. It also looks at the platforms required by underwater robots and includes a possible low-cost platform. Also explored is a method of swarm robotics control known as consensus control. It shows possible solutions to the challenges and where swarm robotics may head

    Autonomous Swarm Navigation

    Get PDF
    Robotic swarm systems attract increasing attention in a wide variety of applications, where a multitude of self-organized robotic entities collectively accomplish sensing or exploration tasks. Compared to a single robot, a swarm system offers advantages in terms of exploration speed, robustness against single point of failures, and collective observations of spatio-temporal processes. Autonomous swarm navigation, including swarm self-localization, the localization of external sources, and swarm control, is essential for the success of an autonomous swarm application. However, as a newly emerging technology, a thorough study of autonomous swarm navigation is still missing. In this thesis, we systematically study swarm navigation systems, particularly emphasizing on their collective performance. The general theory of swarm navigation as well as an in-depth study on a specific swarm navigation system proposed for future Mars exploration missions are covered. Concerning swarm localization, a decentralized algorithm is proposed, which achieves a near-optimal performance with low complexity for a dense swarm network. Regarding swarm control, a position-aware swarm control concept is proposed. The swarm is aware of not only the position estimates and the estimation uncertainties of itself and the sources, but also the potential motions to enrich position information. As a result, the swarm actively adapts its formation to improve localization performance, without losing track of other objectives, such as goal approaching and collision avoidance. The autonomous swarm navigation concept described in this thesis is verified for a specific Mars swarm exploration system. More importantly, this concept is generally adaptable to an extensive range of swarm applications

    Classification and Management of Computational Resources of Robotic Swarms and the Overcoming of their Constraints

    Get PDF
    Swarm robotics is a relatively new and multidisciplinary research field with many potential applications (e.g., collective exploration or precision agriculture). Nevertheless, it has not been able to transition from the academic environment to the real world. While there are many potential reasons, one reason is that many robots are designed to be relatively simple, which often results in reduced communication and computation capabilities. However, the investigation of such limitations has largely been overlooked. This thesis looks into one such constraint, the computational constraint of swarm robots (i.e., swarm robotics platform). To achieve this, this work first proposes a computational index that quantifies computational resources. Based on the computational index, a quantitative study of 5273 devices shows that swarm robots provide fewer resources than many other robots or devices. In the next step, an operating system with a novel dual-execution model is proposed, and it has been shown that it outperforms the two other robotic system software. Moreover, results show that the choice of system software determines the computational overhead and, therefore, how many resources are available to robotic software. As communication can be a key aspect of a robot's behaviour, this work demonstrates the modelling, implementing, and studying of an optical communication system with a novel dynamic detector. Its detector improves the quality of service by orders of magnitude (i.e., makes the communication more reliable). In addition, this work investigates general communication properties, such as scalability or the effects of mobility, and provides recommendations for the use of such optical communication systems for swarm robotics. Finally, an approach is shown by which computational constraints of individual robots can be overcome by distributing data and processing across multiple robots

    Aerial collective systems

    Get PDF
    Deployment of multiple flying robots has attracted the interest of several research groups in the recent times both because such a feat represents many interesting scientific challenges and because aerial collective systems have a huge potential in terms of applications. By working together, multiple robots can perform a given task quicker or more efficiently than a single system. Furthermore, multiple robots can share computing, sensing and communication payloads thus leading to lighter robots that could be safer than a larger system, easier to transport and even disposable in some cases. Deploying a fleet of unmanned aerial vehicles instead of a single aircraft allows rapid coverage of a relatively larger area or volume. Collaborating airborne agents can help each other by relaying communication or by providing navigation means to their neighbours. Flying in formation provides an effective way of decongesting the airspace. Aerial swarms also have an enormous artistic potential because they allow creating physical 3D structures that can dynamically change their shape over time. However, the challenges to actually build and control aerial swarms are numerous. First of all, a flying platform is often more complicated to engineer than a terrestrial robot because of the inherent weight constraints and the absence of mechanical link with any inertial frame that could provide mechanical stability and state reference. In the first section of this chapter, we therefore review this challenges and provide pointers to state-of-the-art methods to solve them. Then as soon as flying robots need to interact with each other, all sorts of problems arise such as wireless communication from and to rapidly moving objects and relative positioning. The aim of section 3 is therefore to review possible approaches to technically enable coordination among flying systems. Finally, section 4 tackles the challenge of designing individual controllers that enable a coherent behavior at the level of the swarm. This challenge is made even more difficult with flying robots because of their 3D nature and their motion constraints that are often related to the specific architectures of the underlying physical platforms. In this third section is complementary to the rest of this book as it focusses only on methods that have been designed for aerial collective systems

    Towards 6G IoT : tracing mobile sensor nodes with deep learning clustering in UAV networks

    Get PDF
    Unmanned aerial vehicles (UAVs) in the role of flying anchor nodes have been proposed to assist the localisation of terrestrial Internet of Things (IoT) sensors and provide relay services in the context of the upcoming 6G networks. This paper considered the objective of tracing a mobile IoT device of unknown location, using a group of UAVs that were equipped with received signal strength indicator (RSSI) sensors. The UAVs employed measurements of the target’s radio frequency (RF) signal power to approach the target as quickly as possible. A deep learning model performed clustering in the UAV network at regular intervals, based on a graph convolutional network (GCN) architecture, which utilised information about the RSSI and the UAV positions. The number of clusters was determined dynamically at each instant using a heuristic method, and the partitions were determined by optimising an RSSI loss function. The proposed algorithm retained the clusters that approached the RF source more effectively, removing the rest of the UAVs, which returned to the base. Simulation experiments demonstrated the improvement of this method compared to a previous deterministic approach, in terms of the time required to reach the target and the total distance covered by the UAVs

    Models and Algorithms for Ultra-Wideband Localization in Single- and Multi-Robot Systems

    Get PDF
    Location is a piece of information that empowers almost any type of application. In contrast to the outdoors, where global navigation satellite systems provide geo-spatial positioning, there are still millions of square meters of indoor space that are unaccounted for by location sensing technology. Moreover, predictions show that people’s activities are likely to shift more and more towards urban and indoor environments– the United Nations predict that by 2020, over 80% of the world’s population will live in cities. Meanwhile, indoor localization is a problem that is not simply solved: people, indoor furnishings, walls and building structures—in the eyes of a positioning sensor, these are all obstacles that create a very challenging environment. Many sensory modalities have difficulty in overcoming such harsh conditions when used alone. For this reason, and also because we aim for a portable, miniaturizable, cost-effective solution, with centimeter-level accuracy, we choose to solve the indoor localization problem with a hybrid approach that consists of two complementary components: ultra-wideband localization, and collaborative localization. In pursuit of the final, hybrid product, our research leads us to ask what benefits collaborative localization can provide to ultra-wideband localization—and vice versa. The road down this path includes diving into these orthogonal sub-domains of indoor localization to produce two independent localization solutions, before finally combining them to conclude our work. As for all systems that can be quantitatively examined, we recognize that the quality of our final product is defined by the rigor of our evaluation process. Thus, a core element of our work is the experimental setup, which we design in a modular fashion, and which we complexify incrementally according to the various stages of our studies. With the goal of implementing an evaluation system that is systematic, repeatable, and controllable, our approach is centered around the mobile robot. We harness this platform to emulate mobile targets, and track it in real-time with a highly reliable ground truth positioning system. Furthermore, we take advantage of the miniature size of our mobile platform, and include multiple entities to form a multi-robot system. This augmented setup then allows us to use the same experimental rigor to evaluate our collaborative localization strategies. Finally, we exploit the consistency of our experiments to perform cross-comparisons of the various results throughout the presented work. Ultra-wideband counts among the most interesting technologies for absolute indoor localization known to date. Owing to its fine delay resolution and its ability to penetrate through various materials, ultra-wideband provides a potentially high ranging accuracy, even in cluttered, non-line-of-sight environments. However, despite its desirable traits, the resolution of non-line-of-sight signals remains a hard problem. In other words, if a non-line-of-sight signal is not recognized as such, it leads to significant errors in the position estimate. Our work improves upon state-of-the-art by addressing the peculiarities of ultra-wideband signal propagation with models that capture the spatiality as well as the multimodal nature of the error statistics. Simultaneously, we take care to develop an underlying error model that is compact and that can be calibrated by means of efficient algorithms. In order to facilitate the usage of our multimodal error model, we use a localization algorithm that is based on particle filters. Our collaborative localization strategy distinguishes itself from prior work by emphasizing cost-efficiency, full decentralization, and scalability. The localization method is based on relative positioning and uses two quantities: relative range and relative bearing. We develop a relative robot detection model that integrates these measurements, and is embedded in our particle filter based localization framework. In addition to the robot detection model, we consider an algorithmic component, namely a reciprocal particle sampling routine, which is designed to facilitate the convergence of a robot’s position estimate. Finally, in order to reduce the complexity of our collaborative localization algorithm, and in order to reduce the amount of positioning data to be communicated between the robots, we develop a particle clustering method, which is used in conjunction with our robot detection model. The final stage of our research investigates the combined roles of collaborative localization and ultra-wideband localization. Numerous experiments are able to validate our overall localization strategy, and show that the performance can be significantly improved when using two complementary sensory modalities. Since the fusion of ultra-wideband positioning sensors with exteroceptive sensors has hardly been considered so far, our studies present pioneering work in this domain. Several insights indicate that collaboration—even if through noisy sensors—is a useful tool to reduce localization errors. In particular, we show that our collaboration strategy can provide the means to minimize the localization error, given that the collaborative design parameters are optimally tuned. Our final results show median localization errors below 10 cm in cluttered environments
    • …
    corecore