840 research outputs found

    Building self-optimized communication systems based on applicative cross-layer information

    Get PDF
    This article proposes the Implicit Packet Meta Header(IPMH) as a standard method to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams using legacy and proprietary streams’ headers (e.g. Real-time Transport Protocol headers). The use of IPMH by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet selfoptimization of communication services regarding the actual application requirements. A case study showing how IPMH is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach

    Cross layer techniques for flexible transport protocol using UDP-Lite over a satellite network

    Get PDF
    Traditional real-time multimedia and streaming services have utilised UDP over RTP. Wireless transmission, by its nature, may introduce a variable, sometimes high bit error ratio. Current transport layer protocols drop all corrupted packets, in contrast, protocols such as UDP-Lite allow error-resilient applications to be supported in the networking stack. This paper presents experimental quantitative performance metrics using H.264 and UDP Lite for the next generation transport of IP multimedia, and discusses the architectural implications for enhancing performance of a wireless and/or satellite environment

    Format-independent media delivery, applied to RTP, MP4, and Ogg

    Get PDF
    The current multimedia landscape is characterized by a significant heterogeneity in terms of coding and delivery formats, usage environments, and user preferences. This paper introduces a transparent multimedia content adaptation and delivery approach, i.e., model-driven content adaptation and delivery. It is based on a model that takes into account the structural metadata, semantic metadata, and scalability information of media bitstreams. Further, a format-independent multimedia packaging method is proposed based on this model for media bitstreams and MPEG-B BSDL. Thus, multimedia packaging is obtained by encapsulating the selected and adapted structural metadata within a specific delivery format. This packaging process is implemented using XML transformation filters and MPEG-B BSDL. To illustrate this format-independent packaging technique, we apply it to three packaging formats: RTP, MP4, and Ogg

    Evaluation of cross-layer reliability mechanisms for satellite digital multimedia broadcast

    Get PDF
    This paper presents a study of some reliability mechanisms which may be put at work in the context of Satellite Digital Multimedia Broadcasting (SDMB) to mobile devices such as handheld phones. These mechanisms include error correcting codes, interleaving at the physical layer, erasure codes at intermediate layers and error concealment on the video decoder. The evaluation is made on a realistic satellite channel and takes into account practical constraints such as the maximum zapping time and the user mobility at several speeds. The evaluation is done by simulating different scenarii with complete protocol stacks. The simulations indicate that, under the assumptions taken here, the scenario using highly compressed video protected by erasure codes at intermediate layers seems to be the best solution on this kind of channel

    Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media

    Full text link
    The bitstream structure of layered media formats such as scalable video coding (SVC) or multiview video coding (MVC) opens up new opportunities for their distribution in Mobile TV services. Features like graceful degradation or the support of the 3-D experience in a backwards-compatible way are enabled. The reason is that parts of the media stream are more important than others with each part itself providing a useful media representation. Typically, the decoding of some parts of the bitstream is only possible, if the corresponding more important parts are correctly received. Hence, unequal error protection (UEP) can be applied protecting important parts of the bitstream more strongly than others. Mobile broadcast systems typically apply forward error correction (FEC) on upper layers to cope with transmission errors, which the physical layer FEC cannot correct. Today's FEC solutions are optimized to transmit single layer video. The exploitation of the dependencies in layered media codecs for UEP using FEC is the subject of this paper. The presented scheme, which is called layer-aware FEC (LA-FEC), incorporates the dependencies of the layered video codec into the FEC code construction. A combinatorial analysis is derived to show the potential theoretical gain in terms of FEC decoding probability and video quality. Furthermore, the implementation of LA-FEC as an extension of the Raptor FEC and the related signaling are described. The performance of layer-aware Raptor code with SVC is shown by experimental results in a DVB-H environment showing significant improvements achieved by LA-FEC. © 2011 IEEE.Hellge, C.; Gómez Barquero, D.; Schierl, T.; Wiegand, T. (2011). Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media. IEEE Transactions on Multimedia. 13(3):551-562. doi:10.1109/TMM.2011.2129499S55156213

    High definition H.264/AVC subjective video database for evaluating the influence of slice losses on quality perception

    Get PDF
    Prior to the construction or validation of objective video quality metrics, ground-truth data must be collected by means of a subjective video database. This database consists of (impaired) video sequences and corresponding subjective quality ratings. However, creating this subjective database is a timeconsuming and expensive task. There is an ongoing effort towards publishing such subjective video databases into the public domain. This facilitates the development of new objective quality metrics. In this paper, we present a new subjective video database consisting of impaired High Definition H. 264/AVC encoded video sequences and associated quality ratings gathered from a subjective experiment. This database can be used freely to determine impairment visibility or estimate overall quality of a video in the case of lost slices due to network impairments

    Unequal error protection of H.264/AVC video transmitted over wireless network

    Get PDF
    This work focus on the problem linked to the transmission of real time video over packet wireless network.Our objective is to define mechanism able to insuring a quality of video in spite to the problems of packet losses and transmission delays characterizing this type of network.The proposed mechanism is based Forward Error Correction (FEC) compatible with the H.264/AVC standard.This mechanism relies on a ratedistortion algorithm controlling the channel rates under a global rate constraint given by the network.This optimization takes into account the type of packet and his length; the tool of data portioning is used in our proposition.This mechanism leading to an unequal error protection of different units of coded sequence.A Reed-Solomon channel coding in application layer is adapted to unequal protected data.The experimentation results indicate the efficiency of our proposition compared to the equal error protection
    corecore