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Abstract

This paper presents a study of some reliability mechanisms which may be put at work in the context

of Satellite Digital Multimedia Broadcasting (SDMB) to mobile devices such as handheld phones.

These mechanisms include error correcting codes, interleaving at the physical layer, erasure codes at

intermediate layers and error concealment on the video decoder. The evaluation is made on a realistic

satellite channel and takes into account practical constraints such as the maximum zapping time and the

user mobility at several speeds. The evaluation is done by simulating different scenarii with complete

protocol stacks. The simulations indicate that, under the assumptions taken here, the scenario using

highly compressed video protected by erasure codes at intermediate layers seems to be the best solution

on this kind of channel.
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Amine Bouabdallah and Jérôme Lacan are with ENSICA/TéSA and with LAAS/CNRS, 1, place E. Blouin, 31056 Toulouse

Cedex, Toulouse, France (e-mail : {amine.bouabdallah, jerome.lacan}@ensica.fr). Michel Kieffer, Galina Sabeva and Pierre
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I. INTRODUCTION

There is currently a growing demand for good-quality and location-independent access to

multimedia contents. Applications such as video on demand or TV on mobile devices such as

handheld phones, PDA, or notebooks should develop widely in the near future. Solutions based

on radio access networks (RAN) such as GPRS, UMTS, or CDMA–2000 are well-adapted for

unicast communications but not viable for the long term, since such networks are not likely to

support, e.g., massive consultations of several TV channels in parallel.

The third-generation partnership project (3GPP) is currently investigating Multimedia Broad-

cast/Multicast Services (MBMS) extensions to these 2G and 3G RAN [1]. Nevertheless, MBMS

seems currently still not suited for the broadcasting of many TV channels over a wide area.

Satellite Digital Multimedia Broadcasting (SDMB) represents an interesting proposal to respond

to this demand, as well as some other alternatives such as Terrestrial DMB [2] and Digital

Video Broadcasting-Handheld (DVB–H) [3]. SDMB is especially interesting to ensure coverage

of rural and small towns environments, for which it provides moderate deployment costs, when

compared to T-DMB or DVB-H.

In this context, the SDMB project conducted by CNES, connected with the Unlimited Mobile

TV project of Alcatel, aims at delivering live TV channels directly to mobile handheld phones

through an hybrid infrastructure composed of a satellite offering a broad coverage of a large

area and terrestrial repeaters for urban complementary coverage (see Figure 1). The objective

is to broadcast QVGA or CIF encoded video with a typical throughput of about 250 kbps per

channel.

Typical issues that have to be addressed in such SDMB application are in part similar to those

encountered in any wireless multimedia transmission context, see [4]. The characteristics of the

wireless channel are location-dependent and thus time-varying when the receiver moves. The

receiver has to comply with signals varying in a large dynamical range, from good conditions,

when the satellite or a repeater is in Line Of Sight (LOS), to quasi-loss of the received signal,

when deep satellite shadowing occurs out of repeater coverage [5]. Automatic Repeat reQuest

(ARQ) mechanisms are very difficult to implement in SDMB, mainly due to the potentially high

number of receivers. The transmitter has thus to provide a signal which may be well decoded by

the largest proportion of receivers. Transmission delays are less critical than in conversational
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Fig. 1. Representation of the SDMB system

applications. More important is the zapping time, i.e., the time necessary to switch between two

channels, which has to remain as small as possible and is a specific constraint of DMB.

Redundancy introduction and error concealment are the tools of choice for addressing these

issues. In [4], several application-layer mechanisms, parts of the H.264/AVC standard [6], are

presented to provide efficient video transmission over wireless error-prone channels. In the

context of SDMB, the satellite propagation channel is such that redundancy has also to be

introduced at lower protocol layers in order to cope with fading and possible deep shadowing.

The optimization of the allocation of redundancy between physical, intermediate and application

layers is then a natural question which arises in this context [7]. Nevertheless, the absence of

feedback channel in the context of SDMB imposes a worst-case optimization in the place of

continuous adaptations suggested by [7]. These questions have also been considered in [8] in

the context of MBMS.

The aim of this paper is to present a solution for SDMB combining redundancy introduction at
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the physical, network, and application layers. Redundancy introduction and error concealment at

the application layer concur to mitigate the effects of transmission channel variations, allowing

good video quality for a given bit-budget with a reasonable zapping time. Performance evalu-

ations are done on a realistic satellite channel model. Some interactions between the different

protocol layers will be illustrated, evidencing the need for a cross-layer optimisation of the

robustness introduction. More sophisticated tools such as robust decoders taking into account

the redundancy left within the encoded video stream [9], [10] will not be considered here.

Possible places where these techniques may be helpful are pointed out.

The channel model presented in Section II evidences the previously mentioned difficulties

which have to be faced in the context of SDMB. The proposed protocol stack and system

architecture are then detailed in Section III. The various techniques involved in the protocol stack

to increase the robustness of the compressed video to variations of the channel characteristics

are presented in Section IV. Section V provides some simulation results for the whole system,

before drawing some conclusions.

II. CHANNEL MODEL

The satellite transmission channel model largely determines the design and dimensioning of

the different layers of the protocol stack employed for SDMB. In this paper we focus on the

case of satellite-only reception. This situation represents a worst-case study, as repeaters may

reduce the occurrence of loss of signals.

The satellite link budget is the most important constraint in the design of a SDMB system.

It determines the received signal-to-noise ratio in LOS. Usually, shadowing and blocking phe-

nomena on the satellite link have a low coherence distance. An accurate determination of this

distance is useful for dimensioning interleavers at the physical layer or at intermediate layers.

Contrary to propagation channel of repeaters, the satellite channel is usually considered as flat in

the signal bandwidth of 5 MHz. To cope with frequency selectivity of the transmission channel

in repeaters areas, selection of adapted waveforms such as OFDM is necessary. On satellite link,

different physical layer options are possible depending on the frequency band used. For a system

privileging frequency efficiency by the use of the same frequency band for both satellite and

repeater links, the same type of OFDM signal may be used. If the two links use separate bands,

a better optimisation of satellite link is possible and the use of a more classical TDM signal can
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be preferred for its better resistance to non-linear satellite amplification.

The propagation part of the channel model considered in the paper is a three-states model

(LOS/Shadowing/Blockage) based on Markov chains integrating three scales of propagation

effects [11], [5]. The large scale effects correspond to the changes between the three states. The

mid scale effect or ”Slow” fading corresponds to shadowing. The small scale effect or ”Fast”

fading is due to multipath. Based on extensive measurement campaigns, [5] defines transition

matrices between the three states for five environments (Open, Intermediate tree shadowed,

Heavy tree shadowed, Suburban, and Urban), for elevation angles above 40°. The environment

selected in this paper is the Intermediate tree shadowed, which is rather severe in terms of

shadowing attenuations compared with the open and even with the Suburban cases. For each

state, slow fading and fast fading variations are defined according to a Loo distribution [12]. The

Loo distribution considers that the received signal is made up of the sum of two components,

the direct signal and multipaths. Within one state, the dynamics of the shadowing affecting the

direct path is given by its correlation distance, equal in Intermediate tree shadowed environment

to 1.5 m.

Moreover, a perfect demodulation is assumed. Simulations are done with a TDM signal, which

is expected to be representative for both TDM and OFDM cases. Indeed, for OFDM signals, the

symbol duration is equal to a few hundreds of micro-seconds, which corresponds to a rather stable

propagation attenuation even for the highest speed considered. Noise level adjustment compared

with LOS signal level is based on the assumption of a margin of 10 dB, which corresponds to

a typical link budget, as detailed in [13].

The receiver carrier-to-noise ratio (C/N ) is simulated over a distance of 1 km, in order to

limit the duration of the simulations performed in the upper layers. The simulator accounts for

the modulation, the propagation part, and the demodulation. The considered simulation distance

is split into 220000 segments of 0.004545 m each. The simulated data, represented in Figure 2,

cannot be considered as perfectly representative for the complete environment but give a good

idea of the channel behavior. The distance may then be covered at various speeds.

As can be seen on Figure 2, the received carrier-to-noise ratio ranges from approximatively

10 dB to less than −25 dB during deep shadowing. Moreover, deep shadowing effects appear

sometimes over distances larger than 50 m. Such situations are particularly challenging, especially

when the receiver moves slowly.
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Fig. 2. Evolution over 1 km of the receiver signal-to-noise ratio for the Intermediate tree shadowed scenario

III. PROTOCOL STACK FOR SDMB

The considered protocol stack, represented on Figure 3, has been largely inspired from DVB–

H [3], in order to improve interoperability with this broadcast technique and minimize terminal

chipset modifications. This choice is well-suited for a signal which may be received either directly

from the satellite or from a repeater. However, modifications of the DVB–H stack are proposed

in order to improve the robustness to fading and shadowing of SDMB.

The next sections detail the protocol layers of Figure 3. The reliability mechanisms which

may be integrated on these layers are considered in Section IV.

A. Application layer

The considered video coder, H.264 [6], consists of two parts. The Video Coding Layer (VCL)

is responsible for the video compression. The Network Abstraction Layer (NAL) performs the

interface between the VCL and the lower protocol layers. The NAL produces NAL Units

(NALUs) which may be concatenated in order to form a bitstream suitable for storage or

encapsulation into Real-time Transport Protocol (RTP) [14] packets according to the RTP payload

specification for H.264 [15].

The VCL divides each frame n of the video sequence into macroblocks of 16 × 16 pixels.

A group of macroblocks forms a slice of the frame. Each slice is encoded independently. For
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Fig. 3. Considered protocol stack

the m-th macroblock Mn,m of a slice, a prediction Pn,m is evaluated and subtracted from the

original macroblock Mn,m. The result is referred to as a difference macroblock Dn,m and is

passed through a video processing module, performing discrete cosine transform, quantization

and finally entropy coding. There are two types of prediction: intra and inter. For intra prediction,

the encoder uses only information from the current slice. For inter prediction, data from the other

encoded frames may also be used. Inter-encoded frames may be of types P and B. For P frames,

only the previously encoded frames are used for prediction, whereas for B frames, bidirectional

prediction is performed. Usually, B frames do not serve as reference. Within P or B frames,

macroblocks may be encoded in intra mode.

The most common NALU organisation is to place one slice per NALU. Loosing a NALU,

except when it corresponds to a slice of a B frame results in errors in the corresponding frame,

but also in the frames which use it as reference for prediction. The probability of loosing a

NALU mainly depends of the size of the NALU and of the packets provided by the lower

protocol layers. The optimization of the size of the NALU will be discussed in Section IV-A.

November 10, 2006 DRAFT



IEEE TRANS. ON BROADCASTING, VOL. X, NO. Y, JULY 2006 8

B. Intermediate Layers

The convergence of the different network technologies in the next few years is now established.

For this reason, the main next generation networks are designed to transport IP data. In this

context, the DVB consortium has introduced the IP Datacast architecture [16] defining the

protocol stacks to transmit IP data over DVB-H. The proposed Transport and Network layers

comply with this architecture.

1) Transport and Network layers: As seen in Section III-A, RTP packets are provided by

the NAL of H.264. Even if it is possible to encapsulate several NALUs in a single RTP packet,

in the context of this work where relatively high packet loss rate may be encountered, the

encapsulation of a single NALU per RTP packet is more efficient. The main function of RTP

is to add a timestamp, a sequence number and to identify the payload type. The length of the

RTP header (with only fixed fields) is 16 bytes. Note that SDMB does not consider RTCP [14],

which would require a feedback channel not realistic for satellite broadcast.

Since SDMB considers unidirectional broadcast, the transport layer is not in charge of the

reliability nor the congestion control and UDP [17] is used. The length of the UDP header is

8 bytes, including the sender and receiver port and a 16-bit checksum detecting errors on the

whole packet.

The network protocol is IP, two versions of which, IPv4 [18] and IPv6 [19] may be used.

Their header are respectively 20 and 40 bytes long.

The RTP, UDP, and IP encapsulations add thus headers of 44 bytes (with IPv4) and 64 bytes

(with IPv6) per NALU. As will be seen in Section IV-A.1, the desirable length of the NALU in

the context of SDMB is between 100 and 400 bytes. The headers thus represent an extremely

large proportion of the IP packets. For this reason, the use of header compression mechanisms

is recommended. For the protocols used here, ROHC [20] is the best candidate since it is able

to consider together the RTP, UDP and IP headers in the compression process. Initially designed

for bi-directional links, ROHC integrates an unidirectional mode that may also be used in the

present broadcasting context, as detailed in [21].

In the simulations, we chose to implement ROHC instead of RTP, UDP and IP. Since it is very

difficult to estimate the average length of the ROHC header in unidirectional links, we fixed the

header length to 20 bytes (estimated from the results of [21]). In practice, this header is directly

added to the NALUs provided by the H.264 video codec. At the decoder side, this header is
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simply erased.

2) Link layer: Since the MPEG2 Transport Stream (MPEG2 TS) packets [22] are the data

units handled by most of the DVB physical layers, the adaptation layer must be used to map

variable-length IP packets onto fixed-length MPEG2 packets. Even if the ULE protocol [23] may

be used, DVB recommends the use of Multi-Protocol Encapsulation (MPE) [24]. The header

added by MPE to each IP packet is 12 bytes long, a 4 bytes long CRC is also appended. For

transmissions toward handheld devices, two optional mechanisms are proposed: time-slicing and

MPE-FEC [24].

The concept of time slicing is to send data in bursts. Between each burst, data of the elementary

stream are not transmitted, allowing other elementary streams to use the bandwidth otherwise

allocated. This enables a receiver to stay active only for a fragment of the time, while receiving

bursts of the service it requests. Time slicing thus limits the receiver power consumption. The

structure of the MPE-FEC erasure code is described in Section IV-B.

The aim of MPEG2 is to multiplex several sources of compressed data. As already explained,

the packets provided by MPE are organized into MPEG2 packets of 188 bytes. Among the 188

bytes, 4 are dedicated to the packet header.

In the simulations, MPE uses the section-packing algorithm to build MPEG2 packets, i.e., it

allows MPEG2 packets to carry parts of several MPE packets. The optional time-slicing was

not implemented since the power consumption is not one of the main objectives of this work.

The second optional mechanism, MPE-FEC, was not used either, because an erasure code at

transport level was preferred (see the justification in Section IV-B).

C. Physical layer

The modulation and channel model used by SDMB has been described in Section II. Here,

we focus on the construction of the transport stream and on the channel code of the physical

layer.

In DVB–H, which uses the same channel coding as DVB–T [25], convolutional codes are

concatenated with Reed-Solomon codes. Several solutions may be considered to improve the

decoding efficiency and thus increase the throughput of the physical layer for a fixed link budget.

One may consider turbo codes, such as those proposed by the 3GPP for W-CDMA [26] or by

the 3GPP2 for CDMA2000 [27]. LDPC codes [28] such as those adopted in DVB S2 [29] are
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also a potential alternative. Moreover, the use of a long interleaving at physical layer may be

considered to enhance the air interface performance and to mitigate satellite channel impairments.

The increase of this physical layer interleaving has to be kept compatible with zapping time

constraints.

In this paper, the rate 1/3 turbo code specified by [26] is considered. It processes each

188-byte MPEG2 packet independently to generate a codeword of 564 bytes. The rate of the

channel code is one of the constraints of the ”SDMB” and ”Unlimited Mobile TV” projects

respectively conducted by CNES and Alcatel Alenia Space, and we did not consider other

options. Nevertheless, the opportunity to use long interleavers at the physical layer will be

discussed in Section V.

IV. INCREASING ROBUSTNESS

At receiver side, a noisy version of the transmitted bitstream is fed to the turbo decoder. The

output of the turbo decoder is put into MPEG2 packets which are delivered to the upper protocol

layers. In the proposed scheme, as Reed-Solomon codes concatenated with convolutional codes

have been replaced by turbo codes, it is not easy to determine whether an MPEG2 packet is

erroneous, see [30].

The MPE layer implements a CRC protecting the whole MPE sections to detect residual errors.

Any MPE section detected as erroneous is discarded. The error channel is then transformed into

a packet erasure channel. The aim of this section is to describe several robustness tools to recover

or conceal lost packets.

A. Application layer

At application layer, the redundancy introduction and error-concealment mechanisms put at

work are the same as those used in wireless conversational applications. They are briefly recalled

here. For more details, see [4].

1) Optimizing the size of the NALU: H.264 does not allow to get NALUs, and thus RTP

packets, with a constant size. Nevertheless, using slice-structured coding [6], it is possible to

limit the size of each NALU. This may be helpful for controlling the proportion of lost RTP

packets due to erroneously received MPEG2 packets.
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A lost MPEG2 packet may result in the loss of one to several NALUs, depending of the

size of the NALUs. When large NALUs are considered, the loss of a small MPEG2 packet

may result in the loss of a large amount of data. From a NALU-loss point of view, using small

NALUs is thus recommended. However, as NALUs are encoded independently, the probability

counts of the adaptive entropy coders of H.264 are reinitialized at the beginning of each NALU,

which is detrimental for the coding efficiency. Moreover, small NALUs result in RTP packets

with poor ratios payload over total packet size. The size limit of the NALUs has thus to be

carefully optimized. Note that the problem of optimization of the application-layer packet size

as a function of the channel condition has been previously considered in [31] in the context of

video transmission over 802.11 WLANs. Here, it will be studied as a function of the MPEG2

packet loss rate.

A sequence of NALUs is randomly generated according to a gaussian probability distribution

with mean µ and variance σ2 = 100, truncated at µ + 10 to account for the size limit imposed

by H.264. As seen in Section III-B, the average length of the ROHC headers is estimated to

20 bytes. Additionally, the header and CRC of the MPE layer have a total length of 16 bytes.

Thus headers of 36 bytes are appended to the generated NALUs. The resulting packets are then

mapped to MPEG2 packets. Packet loss rates of 5%, 10%, and 15% are considered. Figure 4 gives

the goodput, i.e., the ratio between the number of correctly received information bits (headers

and CRC have been removed) and the number of bits sent into MPEG2 packets as a function

of the packet-size limit (µ + 10). Each point is simulated with bitstreams of 2.104 NALUs.

The optimal NALU size limit depends on the MPEG2 packet-loss rate. For 15% of lost packets,

a NALU size limit of about 190 bytes provides the best goodput. For a loss rate of 10%, NALU

size limits between 150 and 350 bytes perform almost similarly, whereas for 5% of lost packets,

NALUs of more than 200 bytes may be used.

The previous study does not consider the loss in coding efficiency when the NALU gets

smaller. To study the effect of size limits, the JM 10.2 implementation of H.264 in its high

profile has been used. The frames of the foreman.cif video sequence are encoded at 15

frames per second (fps) according to the following scheme: IBPBP... An intra-coded (I) frame

is inserted every 16 frames. The quantization parameters for each frame type are QI = 36,

QP = 34, and QB = 30. Slice-structured encoding is performed with NALUs limited to 120,

160, and 180 bytes. The reference is the unlimited case, in which a NALU consists of a whole
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Fig. 4. Proportion of transmitted information bits for various NALU size limit

encoded frame. The evolution of the size of the bitstream generated by the H.264 video coder

is illustrated by Table I. Even for very small NALU (120 bytes), the redundancy is relatively

small (10.6%). The conclusions obtained from Figure 4 are thus unchanged. Nevertheless, an

optimisation of the NALU size limit taking into account the effect of concealment performed

by the video decoder would provide more accurate results.

NALU size SNR-Y(dB) Bitstream size Extra bits

frame 33,87 2176384 bits

180 bytes 33,82 2328976 bits 9640 (6.8%)

160 bytes 33,83 2338320 bits 19240 (7.4%)

120 bytes 33,82 2407712 bits 52776 (10.6%)

TABLE I

REDUNDANCY INTRODUCED WHEN LIMITING THE SIZE OF NALUS (FIRST 197 FRAMES OF FOREMAN.CIF)
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2) Error concealment: When a NALU has been lost, error concealment techniques may

be used to limit the visual impact of the lost slices on the reconstructed video stream. Most

concealment techniques rely on the hypothesis that the video sequence is spatially and temporally

correlated. Good reviews of such techniques may be found in [32], [33].

Two concealment techniques have been implemented in the JM 10.2 of H.264. First, all

received NALUs corresponding to a given frame are decoded. All macroblocks that were not

decoded due to losses of NALU are marked and error concealment is performed. A first con-

cealment technique consists in estimating the pixels of a lost macroblock in such a way that they

are as close as possible to the pixels of their neighboring macroblocs, as suggested by [34]. An

alternative approach, suited for inter-encoded frames consists in estimating the motion vector of

the macroblock to conceal with the motion vectors of the surrounding macroblocks and to use

the previously decoded frames to perform motion reconstruction, as suggested by [35], [36].

Both concealment techniques are satisfying when there are only few consecutive lost slices

and more generally when the lost macroblocks are spread on the frame. Picking the macroblocks

randomly to fill a slice, as allowed by the Flexible Macroblock Ordering option of H.264, may

help to improve the concealment efficiency.

B. Intermediate layers: Erasure codes

On the packet erasure channel seen by the intermediate layers, erasure codes can be used

at several levels. First, since MPE has defined his own MPE-FEC erasure code [24], the link

layer could be the right place to implement it. MPE-FEC is a Reed-Solomon erasure code of

dimension 191 and length 255. Its input is a set of 191 columns of fixed-length obtained by

segmenting the stream of the IP packets. It produces 255−191 = 64 redundant columns that are

considered as MPE packets. The number of rows of the matrix is a parameter determining the

level of interleaving which is adapted to the context. It should be noted that the parameters of

the erasure code can be modified by shortening and puncturing operations. The main drawback

of this code is the limited maximum length. Indeed, the more the erasure code combines packets,

the more efficient it is.

Longer codes, such as Raptor codes [37], LDGM codes [38], or simply longer Reed-Solomon

erasure codes [39], which are candidates for standardization by DVB and/or IETF organisms,

can be used. They are used between application and transport layers and directly work on the
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data units produced by the application layer.

Since our goal is to evaluate the potential of the different mechanisms, Reed-Solomon erasure

codes have been implemented between application and transport layers, which allows much more

freedom on the length of the code. The parameter Tblock represents the time needed to transmit

all the packets belonging to a given codeword and thus determines the length of the code. For

example, H.264 encoding a video at 150 kbps with NALUs limited to 120 bytes, produces

roughly 180 NALUs per second. For Tblock = 1, the erasure code builds then 120 redundant

packets and the 180 + 120 = 300 resulting packets constitute a codeword, see Figure 5. The

length of each redundant packet is the size limit of the NALUs.

RS( , )n k

n encoded NALUsk H264 NALUs

Padding data
(not transmitted)H264 NALUs

M
ax

. 
N

A
L
U

 s
iz

e

Redundant
data

Fig. 5. Construction of the redundant packets using the Reed-Solomon erasure code

The performance of the erasure code strongly depends on the parameter Tblock because a code

with long codewords is less sensitive to bursts of lost packets. However, the choice of a high

value of Tblock has several negative consequences. The main drawback is that the lost packets can

be recovered only when the whole block is received. Therefore, the real-time constraints of the

application must be taken into account to the choice of the value of Tblock. A strong constraint

is the zapping time, which is between Tblock and 2Tblock. Long codes also need more CPU and

memory resource to encode and decode the messages. However, it has been shown in [40] that

the CPU resource needed to decode the erasure code can be neglected compared to that used

for video decoding, especially for erasure codes based on sparse matrices.
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C. Physical layer: Interleaving

One of the main characteristics of the channel described in Section II is a strong spatial

correlation (characterized by a correlation distance of 1.5 m). A direct consequence is that a

moving receiver observes bursts of erroneous bits or of packet losses. A classical solution to

cope with these bursts is to use interleaving or spreading techniques in order to distribute in time

(and thus in space for a moving receiver) the erased packets or erroneous bits of the codewords.

The spreading consist in organizing the emission of a codeword in order to send its different

parts in different time slots. In practice, spreading is often implemented through interleaving

techniques which allow to send simultaneously several codewords in order to keep an equivalent

throughput. Figure 6 illustrates the use of an interleaving of depth 2 (the spreading factor is also

equal to 2). As shown in Figures 6 (b) and (c), the use of a spreading factor of 2 for a receiver

distance (m)
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)
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a
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No interleaving
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Speed: 2
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v

Fig. 6. Relation between (a) sequential transmission with mobile at speed v, (b) interleaved transmission with mobile at speed

v and (c) sequential transmission with mobile with speed 2 ∗ v

with speed v leads to bursts equivalent to those observed by a receiver with speed 2v (without

spreading). Actually, it can be observed that two receivers observe bursts with similar parameters

if they have the same product speed × spreading factor. This observation is confirmed by the

simulation results presented below.
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The spreading with possible interleaving may be implemented at several layers. First, the

DVB-H physical layer can mimic UMTS by distributing the data of a codeword into different

time slots. Related to the bursty nature of the channel, this solution may be a good candidate

to improve the global reliability, provided that the interleaving level complies with the limit on

the zapping time.

Interleaving may also be used at MPE layer with MPE-FEC which encodes the rows of a

matrix whose columns are filled by consecutive IP packets. If the columns are chosen sufficiently

large, the FEC codes encodes data belonging to non consecutive IP packets.

However, it is well known that long codes are more efficient in terms of correction capability

than interleaved short codes [41]. Thus, we choose to use long erasure codes between application

and transport level instead of a short code and interleaving at MPE layer. Actually, the use of

long codes, which combines a large number of packets (and thus packets spaced in the time),

can be considered as a form of spreading.

V. SIMULATIONS

The protocol stack presented in Section III, serves as a reference for the simulations. The

influence of the reliability mechanisms described in Section IV is evaluated with four scenarii.

The section starts with a description of the common parts for all scenarii: the video coder and

decoder and the description of simulations on the physical and intermediate layers.

A. Conditions

1) Video coder and decoder: For the simulations, the same video coder as in Section IV-A.1

is employed. The frame rate (15 fps), slide structure (IBPBP...), and frequency of I frames (1

every 16 frames) are also the same. This high frequency of I frames is necessary to limit the

zapping time (here, about 1 s). Loops built with the 190 first frames of foreman.cif are

encoded at a rate R between 100 kbps and 250 kbps depending on the scenario. The initial

values of QI, QP, and QB are adjusted in such a way that there is no large variation of their

value during the regulation of the rate at the beginning of encoding. Slice-structured encoding

is enabled. NALUs are limited to 120 bytes in most of the cases, which allow an efficient error

concealment, for a satisfying goodput at the cost of a reasonable redundancy introduction, see

Section IV-A.1. Error concealment is activated at the decoder for all scenarii.
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Speed (m/s) BER PLR BERLP

1.5 3.13% 12.8% 24%

15 2.18% 19.6% 11%

31 1.52% 21.9% 8.0%

TABLE II

BIT ERROR RATE AT THE OUTPUT OF THE TURBO DECODER, PACKET LOSS RATE AT THE OUTPUT OF MPE, AND BET ERROR

RATE IN THE ERRONEOUS MPE PACKETS.

At decoder output, to evaluate the image quality, the mean squared error σ2
n between the

luminance of the n-th original frame and that of the reconstructed frame is evaluated. The

PSNR for the n-th frame is then given by

PSNRn = 10 log10

2552

σ2
n

(in dB).

The average mean squared error σ2 is evaluated for the N frames of the video sequence and the

average PSNR is

PSNR = 10 log10

2552

σ2
(in dB).

2) Intermediate layers: The CRC of the MPE packets is used to detect erroneous MPE packets

which are consequences of noisy MPEG2 packets provided by the physical layer.

Table II shows the average bit error rates (BER), packet loss rates (PLR), and bit error rates

in the lost packets (BERLP) as a function of the speed. Though the average output BER is lower

for high speeds than for low speeds, the number of erroneous blocks after processing by MPE is

larger for high speeds than for low speeds. For low speeds, each erroneous packet contains more

errors than for high speeds. This can be explained by remembering that an increase of the speed

plays a role similar to an increase of the interleaving depth, see Section IV-C. Increasing the speed

improves the performance of the turbo decoder in terms of bit-error probability. Nevertheless, as

long as the spreading is not efficient enough to obtain a vanishing error probability at the output

of the turbo decoder, bit errors will remain present and will be distributed in more packets than

without spreading, see [42] for more details. A further analysis of the influence of speed and

interleaving is provided in Section V-C.
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3) Common physical layer: Simulations for the modulation, the propagation part, and the

demodulation are described in Section II. The bits forming the MPEG2 packets are encoded

using the turbo code described in Section III-C. Each pair of encoded bits is then mapped to a

QPSK symbol. The variance of the noise corrupting this symbol is adjusted using the C/N of

the location this symbol has been received. Remember that the C/N has been evaluated over a

distance of 1 km with a spatial resolution of 0.004545 m. Assuming a bitrate of 250 kbps at the

output of the application layer and a header overhead of 20%, the number of bits received in

each 0.004545 m-long space interval depends of the constant speed v of the receiver (1.5 m/s,

15 m/s, and 31 m/s) and is given in Table III.

Speed (m/s) 1.5 15 31

Number of received bits 2727 273 132

TABLE III

NUMBER OF RECEIVED BITS IN AN SPACE INTERVAL OF 0.004545 M

At low speed, several MPEG2 packets are received in the same space interval. When the

corresponding C/N is bad, several MPEG2 packets may thus be lost.

The bit error rate (BER) at the input and output of the turbo decoder have been represented

on Figure 7. For all speeds, results have been averaged over 1 s. There is a high variation of

the BER with the location of the receiver. The C/N varies by several dB between two points

distant of few centimeters. The consequence is that the input BER for each turbo codeword is

highly variable. It follows that, though the average input BER (about 6.3 10−2) is acceptable

for the considered turbo code, the average output BER is relatively high (see Table II). As a

result, many MPEG2 packets will be received without error and some will contain many errors.

Figure 7 also shows that for high speeds, a smoother channel is seen by the receiver. This effect

is similar to that obtained with the use of interleavers at the physical layer.

B. Scenario 1: Reference

In this scenario, the video is encoded at 250 kbps. Channel coding is only in charge of the

turbo code at physical layer. The protocol stack is exactly that described in Section III. No

erroneous packet is transmitted by MPE to the upper layers.
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v=1.5 m/s

v=15 m/s

v=31 m/s

Fig. 7. BER before and after the turbo code for various speeds

Figure 8 presents the PSNR evaluated for the luminance of each received video frame. There

is always a degradation of the PSNR when long shadowing occurs. Moreover, since there are

v=1.5 m/s, average PSNR = 27.28 dB

v=15 m/s, average PSNR = 25.64 dB

v=31 m/s, average PSNR = 24.77 dB

Fig. 8. Scenario 1, PSNR of each frame of the received video sequence

more discarded packets at high speed, error concealment has to be more intensively employed

than at low speed. This has a direct impact on the PSNR of the reconstructed video sequences.

It is generally admitted that the error concealment mechanisms of H.264 may compensate a

PLR of 10%. The PLR of Table II are all larger than this limit, which explains the resulting

bad but still acceptable video quality at v = 1.5 m/s in contrast with the unacceptable quality at
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v = 15 m/s and v = 31 m/s.

Figure 9 represents the PSNR of the luminance of each decoded video frame as a function of

the average C/N observed during the transmission of its corresponding compressed bistream.

This illustrates that when the channel has a C/N above 5 dB, the received video is of good

quality (PSNR larger than 32 dB).

C N/ (dB)

P
S
N

R
 (

d
B

)

Average PSNR = 27.28 dB

Fig. 9. PSNR of the reconstructed image as a function of the average C/N observed during its transmission for v = 1.5 m/s

In order to reduce the proportion of low quality frames, several solutions are investigated in the

next sections. In the second scenario, presented in Section V-C, some spreading at the physical

layer is introduced, in order to improve the efficiency of the turbo code. Next, one may think

allowing some erroneously decoded packets to reach the upper layers, as suggested e.g. by [43]

or UDP-lite, recently standardized [44], which modify the areas protected by the checksum to

allow erroneous data to reach the application layer. Nevertheless, this option will not be presented

here: experimentations have shown that the reconstructed video quality is not acceptable, the

current implementations of the H.264 decoder being particularly prone to transmission errors.

Robust video decoders taking into account source constraints have to be employed in this context

[10]. The second scenario, described in Section V-D, thus considers a packet-erasure code, such
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as that detailed in Section IV-B, to recover lost RTP packets. Section V-E illustrates a facet

of the various cross-layer optimisation solutions for the redundancy introduction in the protocol

stack and focuses on the distribution of redundancy between the intermediate and the application

layers.

C. Scenario 2: Spreading at physical layer

The high potential of the spreading at physical layer is evident when considering the error-

correction capabilities of the turbo-code. Indeed, with an average input BER of about 6.3×10−2,

a rate 1/3 turbo code should perform well. If the bursts of errors evidenced in Scenario 1 can

be transformed into quasi-independent errors, the turbo code will produce quasi error-free data.

It has been shown in Section IV-C that the diversity of the data in the space, when the receiver

moves, is function of the product spreading × speed. Clearly, the speed is not a parameter that

can be modified by the system. Additionally, the results provided in Section V-B show that the

maximum speed (31 m/s) is not sufficient to ensure a satisfying level of diversity.

It follows that the only way to improve the diversity is to spread data at the physical layer.

This is done by transmitting the data of a turbo codeword in different time slots, and possibly

by interleaving several codewords. This solution is used, e.g., by the UMTS physical layer.

This technique has been implemented in the simulator by spreading the data belonging to

a codeword over a duration larger than its natural duration. For example, for the video rate

R = 250 kbps, each turbo codeword (of 3 × 188 bytes) is sent in roughly 4.7 ms. Thus, a

spreading of the codewords over a duration of Ts = 100 ms is done by interleaving 21 codewords.

The influence of the spreading duration Ts on the PSNR is provided in Figure 10. In order

to compare the received video quality at various speeds, the PSNR has been represented as a

function of the product Tsv for v = 1.5 m/s and v = 15 m/s.

These results are compatible with the analysis of the interleaving performance provided in [42],

which shows that after a given threshold for the interleaving time, the maximum performance

of the coding system is reached. From Figure 10, one may observe that for Tsv > 9 m, it is

possible to reach a level of diversity such that the turbo code corrects almost all the errors,

allowing a good reconstructed video quality. This distance is of the same order of magnitude as

the correlation distance of the channel of 1.5 m (see Section II).
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Fig. 10. Influence of the product Tsv on the average PSNR of the reconstructed video sequence (R = 250 kbps)

Quasi error-free MPEG2 packets can be provided by the physical layer for all the speeds

(including the pedestrian case) provided that Tsv > 9 m. Keeping in mind that the maximum

zapping time is twice the spreading time, this leads to a good Ts = 300 ms for v = 31 m/s

and an acceptable Ts = 600 ms for v = 15 m/s. Nevertheless, for v = 1.5 m/s, a spreading

time Ts > 6 s would be required, which is not acceptable. Alternative solutions have thus to be

considered.

D. Scenario 3: Packet erasure codes

This third scenario includes erasure codes between application and ROHC layers as described

in Section IV. Rate 3/5 Reed-Solomon erasure codes are employed and the rate of the coded

video is reduced to R = 150 kbps, to get a total rate of 250 kbps after the packet erasure code,

identical to the rate without erasure code in Scenarii 1 and 2. No spreading at physical layer

has been considered in this scenario.

Figure 11 shows the influence of the erasure code by comparing the evolution of the PSNR

for Tblock = 1, 2 and 3 s for v = 15 m/s to the case without erasure code but with a video with
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R = 250 kbps.

Fig. 11. PSNR for v = 15 m/s and for (a) Tblock = 0 s (no erasure code, but with a video rate at 250 kbps), (b) Tblock = 1 s,

(c) Tblock = 2 s and (d) Tblock = 3 s,

The average PSNR and corresponding PLR for all combinations of Tblock and v are given

in Table IV. The characteristics of the code employed are also indicated. The reference case

(without erasure code) is the first column.

Tblock 0 s 1 s 2 s 3 s

Speed - no FEC RS(261, 157) RS(521, 313) RS(782, 469)

1.5 m/s 27.28 (0.12) 28.80 (0.07) 29.16 (0.07) 29.39 (0.07)

15 m/s 25.64 (0.17) 27.84 (0.10) 30.08 (0.06) 32.68 (0.02)

31 m/s 24.77 (0.18) 29.41 (0.09) 30.51 (0.05) 31.73 (0.04)

TABLE IV

AVERAGE PSNR (PLR) FOR v = 1.5, v = 15 AND v = 31 M/S AND FOR TBLOCK = 0 (NO FEC), 1, 2 AND 3 SECONDS.

The erasure code clearly improves the performance of the system. Indeed, for all speeds, the

performance with a video rate of 250 kbps is lower than that for a video rate of 150 kbps and

an erasure code of rate 3/5. Additionally, except for the speed equal to 1.5 m/s, the quality of
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the video is significantly improved (about 2.5 dB for v = 15 m/s) each time the value of Tblock

is increased. This is confirmed by Figure 12 showing the cumulative distribution of the frame

PSNR for various Tblock. For Tblock = 1 s, about 30% of the frames have a PSNR lower than

30 dB; for Tblock = 2 s and Tblock = 3 s, this proportion reduces to 17% and 8% respectively.
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Fig. 12. Cumulative distribution of the frame PSNR for various Tblock, v = 15 m/s

The better performance of the erasure code in this scenario may be explained by the bursty

erasure patterns of the channel. Indeed, concealment techniques are efficient in the presence of

randomly spaced erasures and much less in the presence of bursts of erasures. On the contrary,

an erasure code is able to correct bursts of erasures provided that the burst length is lower than

its correction capability.

The mean burst length explains the relatively poor performance of the erasure code for v =

1.5 m/s. Indeed, as explained in Section II, the channel considered in our simulations shows

areas with different levels of reception. A mobile crossing an area with a bad reception level at

1.5 m/s observes a burst erasure length equal to 10 times the burst erasure length of a mobile

crossing this area at 15 m/s. The simulations shows that bursts of erasures experimented by a

receiver moving at 1.5 m/s are too long for the implemented erasure codes.
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Even if the spreading at physical layer outperforms the solution proposed in this section for

v = 15 m/s and v = 31 m/s, introducing redundancy at the intermediate layers turns out to

provide more robustness at v = 1.5 m/s, while keeping an acceptable quality at higher speeds.

Nevertheless, the required zapping times, 1.5Tblock in average, between 1.5 s and 4.5 s are still

large. Here again, robust source decoders may allow the use of a shorter Tblock at low speeds.

E. Scenario 4: Cross-layer redundancy optimization

Section V-D shows that using erasure codes at intermediate layer significantly improves the

received video quality. Further improvements may be obtained by optimizing the redundancy

introduced at intermediate layer for a given Tblock. Increasing the redundancy improves robustness,

but requires a reduction of the rate R at the output of the video coder, leading to a reduction of

the maximum expectable video quality.

New simulations have been performed with erasure codes with rates 2/5, 3/5, and 4/5. The

output rate R of the video coder has been adjusted accordingly, in order to keep the rate at the

output of the packet erasure coder at 250 kbps. In this scenario, the size of the NALUs has been

limited to 160 bytes.

Tblock (s)

R 0 1 2 3 Noise-free

250 kbps 24.5 36.8

200 kbps 24.6 26.2 26.5 27.5 35.8

RS(261, 157) RS(521, 313) RS(782, 469)

150 kbps 23.9 28.2 30.1 30.8 34.4

RS(196, 118) RS(391, 235) RS(586, 252)

100 kbps 23.1 28.4 30.1 30.1 32.3

RS(131, 79) RS(261, 157) RS(391, 233)

TABLE V

AVERAGE PSNR (IN DB) FOR v = 15 M/S AND FOR VARIOUS COMBINATIONS OF THE VIDEO CODING RATE R AND OF

TBLOCK .

Table V summarizes the results obtained for v = 15 m/s. For small values of Tblock, increasing

the redundancy improves the reconstructed video quality. For larger values of Tblock, it is better
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to use less redundancy to get an increased video quality. A trade-off between redundancy

introduction and compression has thus to be attained and this trade-off depends on the value

Tblock. At fixed redundancy, only an increase of Tblock allows an increase of the nominal video

quality.

VI. CONCLUSION

This paper compares several reliability mechanisms built around a protocol stack for a reliable

satellite digital mobile video broadcast application. Several conclusions may be drawn from this

study.

First, it was shown that the spreading/interleaving of the data on the physical layer obtained

definitely the best performance in terms of packet loss rate. Provided that the turbo codewords

are spread over a distance of more than 9 m, the turbo code obtains its best performance by

generating a packet loss rate lower than 1%. Nevertheless, for a pedestrian moving at 1.5 m/s,

this corresponds to the spreading of a codeword over a duration of 6 s, which results in an

unacceptable average zapping time of 9 s. Another limitation of this solution is the increase

of the hardware complexity. Indeed, the receiver has to store and process an amount of data

corresponding to the spreading duration.

Second, it has been mentioned that allowing erroneous data to reach the application layer is

not a viable solution. Indeed, even if the recent video standards such H.264 are able to cope

with packets corrupted with few errors, the satellite channel is too bursty and the channel code

generates a level of bit errors at the output of the physical layer that are not supported by the

video decoder. Whether robust decoding of video can play a useful role in this situation is still

an open question. This conclusion holds temporarily with the actual JM 10.2 decoder.

Third, Scenarii 1, 3, and 4 have shown that reducing the nominal video quality to allow some

redundancy introduction at lower protocol layers is necessary to achieve satisfying performance.

The error concealment mechanisms of H.264 have a performance limit, and may only account

for a moderate proportion of lost packets. Erasure codes, evaluated in Scenarii 3 and 4, obtained

good performance in all the simulated cases. Even if they have some drawbacks, such as

the increase of the CPU and storage resources, they improved the final PSNR of the video

for each speed and for each length of codes. Their main limitation is the zapping constraint

which indirectly limits their length and thus their performance in terms of correction capability.
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However, this mechanism offers several advantages. Indeed, their software implementation on

higher layers allows a global flexibility (easy updates, reception of the data for terminals which

do not implement the mechanism, easy activation/deactivation...) which can be of great interest

in the SDMB system.

Extensions of this work include more cross-layer interactions, in order to provide richer

information from the physical layer to the upper layer. This may allow to use error-correcting

codes at intermediate layers in place of erasure codes. Soft decoding of the video taking into

account the redundancy left by the video coder, as illustrated in [10], may also significantly

increase the performance. Finally, the use of the scalable extension of H.264 [45], in order to

be able to broadcast video to receivers with various display and computing capabilities, using a

single video stream may also be interesting.

This paper has studied a set of solutions to improve the reliability in satellite-mobile trans-

missions. These techniques were evaluated and their strengths, the drawbacks and their relations

with the constraints of the system were presented. It seems difficult to advocate a technique

related to the others since their use strongly depends on the choices made on the system at the

different layers. However, the results presented in this paper should be useful for the designers

of such systems.
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