16 research outputs found

    Multimedia congestion control: circuit breakers for unicast RTP sessions

    Get PDF
    The Real-time Transport Protocol (RTP) is widely used in telephony, video conferencing, and telepresence applications. Such applications are often run on best-effort UDP/IP networks. If congestion control is not implemented in these applications, then network congestion can lead to uncontrolled packet loss and a resulting deterioration of the user's multimedia experience. The congestion control algorithm acts as a safety measure by stopping RTP flows from using excessive resources and protecting the network from overload. At the time of this writing, however, while there are several proprietary solutions, there is no standard algorithm for congestion control of interactive RTP flows. This document does not propose a congestion control algorithm. It instead defines a minimal set of RTP circuit breakers: conditions under which an RTP sender needs to stop transmitting media data to protect the network from excessive congestion. It is expected that, in the absence of long-lived excessive congestion, RTP applications running on best-effort IP networks will be able to operate without triggering these circuit breakers. To avoid triggering the RTP circuit breaker, any Standards Track congestion control algorithms defined for RTP will need to operate within the envelope set by these RTP circuit breaker algorithms

    Guidelines for Use of the RTP Monitoring Framework

    Full text link

    Protocols and Algorithms for Adaptive Multimedia Systems

    Get PDF
    The deployment of WebRTC and telepresence systems is going to start a wide-scale adoption of high quality real-time communication. Delivering high quality video usually corresponds to an increase in required network capacity and also requires an assurance of network stability. A real-time multimedia application that uses the Real-time Transport Protocol (RTP) over UDP needs to implement congestion control since UDP does not implement any such mechanism. This thesis is about enabling congestion control for real-time communication, and deploying it on the public Internet containing a mixture of wired and wireless links. A congestion control algorithm relies on congestion cues, such as RTT and loss. Hence, in this thesis, we first propose a framework for classifying congestion cues. We classify the congestion cues as a combination of: where they are measured or observed? And, how is the sending endpoint notified? For each there are two options, i.e., the cues are either observed and reported by an in-path or by an off-path source, and, the cue is either reported in-band or out-of-band, which results in four combinations. Hence, the framework provides options to look at congestion cues beyond those reported by the receiver. We propose a sender-driven, a receiver-driven and a hybrid congestion control algorithm. The hybrid algorithm relies on both the sender and receiver co-operating to perform congestion control. Lastly, we compare the performance of these different algorithms. We also explore the idea of using capacity notifications from middleboxes (e.g., 3G/LTE base stations) along the path as cues for a congestion control algorithm. Further, we look at the interaction between error-resilience mechanisms and show that FEC can be used in a congestion control algorithm for probing for additional capacity. We propose Multipath RTP (MPRTP), an extension to RTP, which uses multiple paths for either aggregating capacity or for increasing error-resilience. We show that our proposed scheduling algorithm works in diverse scenarios (e.g., 3G and WLAN, 3G and 3G, etc.) with paths with varying latencies. Lastly, we propose a network coverage map service (NCMS), which aggregates throughput measurements from mobile users consuming multimedia services. The NCMS sends notifications to its subscribers about the upcoming network conditions, which take these notifications into account when performing congestion control. In order to test and refine the ideas presented in this thesis, we have implemented most of them in proof-of-concept prototypes, and conducted experiments and simulations to validate our assumptions and gain new insights.

    Multimedia Congestion Control: Circuit Breakers for Unicast RTP Sessions

    Full text link

    Rate-control for conversational H.264 video communication in heterogeneous networks

    Get PDF
    The transmission bit rate available along a communication path in a heterogeneous network is highly variable. The wireless link quality may vary due to interference and fading phenomena and, peered with radio layer reconfiguration and link layer protection mechanisms, lead to varying error rates, latencies, and, most importantly, changes in the available bit rate. And in both fixed and wireless networks, varying amounts of cross traffic from other nodes (i.e., the total offered load on the individual links of a network path) may lead to fluctuations in queue size (reflected again in a path latency) and to congestion (reflected in packet drops from router quenes). Senders have to adapt dynamically to these network conditions and adjust their sending rate and possibly other transmission parameters (such as encoding or redundancy) to match the available bit rate while maximizing the media quality perceived at the receiver. We investigate congestion indicators and their characteristics in different multimedia environments. Taking these characteristics into account, we propose a rate-adaptation algorithm that works in the following environments: a) Mobile-Mobile, b) Internet-Internet and c) Heterogeneous, Mobile-Internet scenarios. Using metrics such as Peak Signal-to-Noise Ratio (PSNR), loss rate, bandwidth utilization and fairness, we compare the algorithm with other rate-control algorithms for conversational video communication

    Quality aspects of Internet telephony

    Get PDF
    Internet telephony has had a tremendous impact on how people communicate. Many now maintain contact using some form of Internet telephony. Therefore the motivation for this work has been to address the quality aspects of real-world Internet telephony for both fixed and wireless telecommunication. The focus has been on the quality aspects of voice communication, since poor quality leads often to user dissatisfaction. The scope of the work has been broad in order to address the main factors within IP-based voice communication. The first four chapters of this dissertation constitute the background material. The first chapter outlines where Internet telephony is deployed today. It also motivates the topics and techniques used in this research. The second chapter provides the background on Internet telephony including signalling, speech coding and voice Internetworking. The third chapter focuses solely on quality measures for packetised voice systems and finally the fourth chapter is devoted to the history of voice research. The appendix of this dissertation constitutes the research contributions. It includes an examination of the access network, focusing on how calls are multiplexed in wired and wireless systems. Subsequently in the wireless case, we consider how to handover calls from 802.11 networks to the cellular infrastructure. We then consider the Internet backbone where most of our work is devoted to measurements specifically for Internet telephony. The applications of these measurements have been estimating telephony arrival processes, measuring call quality, and quantifying the trend in Internet telephony quality over several years. We also consider the end systems, since they are responsible for reconstructing a voice stream given loss and delay constraints. Finally we estimate voice quality using the ITU proposal PESQ and the packet loss process. The main contribution of this work is a systematic examination of Internet telephony. We describe several methods to enable adaptable solutions for maintaining consistent voice quality. We have also found that relatively small technical changes can lead to substantial user quality improvements. A second contribution of this work is a suite of software tools designed to ascertain voice quality in IP networks. Some of these tools are in use within commercial systems today

    Understanding the performance of Internet video over residential networks

    Get PDF
    Video streaming applications are now commonplace among home Internet users, who typically access the Internet using DSL or Cable technologies. However, the effect of these technologies on video performance, in terms of degradations in video quality, is not well understood. To enable continued deployment of applications with improved quality of experience for home users, it is essential to understand the nature of network impairments and develop means to overcome them. In this dissertation, I demonstrate the type of network conditions experienced by Internet video traffic, by presenting a new dataset of the packet level performance of real-time streaming to residential Internet users. Then, I use these packet level traces to evaluate the performance of commonly used models for packet loss simulation, and finding the models to be insufficient, present a new type of model that more accurately captures the loss behaviour. Finally, to demonstrate how a better understanding of the network can improve video quality in a real application scenario, I evaluate the performance of forward error correction schemes for Internet video using the measurements. I show that performance can be poor, devise a new metric to predict performance of error recovery from the characteristics of the input, and validate that the new packet loss model allows more realistic simulations. For the effective deployment of Internet video systems to users of residential access networks, a firm understanding of these networks is required. This dissertation provides insights into the packet level characteristics that can be expected from such networks, and techniques to realistically simulate their behaviour, promoting development of future video applications

    Flexible Macroblock Ordering for Context-Aware Ultrasound Video Transmission over Mobile WiMAX

    Get PDF
    The most recent network technologies are enabling a variety of new applications, thanks to the provision of increased bandwidth and better management of Quality of Service. Nevertheless, telemedical services involving multimedia data are still lagging behind, due to the concern of the end users, that is, clinicians and also patients, about the low quality provided. Indeed, emerging network technologies should be appropriately exploited by designing the transmission strategy focusing on quality provision for end users. Stemming from this principle, we propose here a context-aware transmission strategy for medical video transmission over WiMAX systems. Context, in terms of regions of interest (ROI) in a specific session, is taken into account for the identification of multiple regions of interest, and compression/transmission strategies are tailored to such context information. We present a methodology based on H.264 medical video compression and Flexible Macroblock Ordering (FMO) for ROI identification. Two different unequal error protection methodologies, providing higher protection to the most diagnostically relevant data, are presented
    corecore