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Abstract

Video streaming applications are now commonplace among home Internet users, who

typically access the Internet using DSL or Cable technologies. However, the effect of these

technologies on video performance, in terms of degradations in video quality, is not well

understood. To enable continued deployment of applications with improved quality of ex-

perience for home users, it is essential to understand the nature of network impairments and

develop means to overcome them.

In this dissertation, I demonstrate the type of network conditions experienced by Inter-

net video traffic, by presenting a new dataset of the packet level performance of real-time

streaming to residential Internet users. Then, I use these packet level traces to evaluate the

performance of commonly used models for packet loss simulation, and finding the models to

be insufficient, present a new type of model that more accurately captures the loss behaviour.

Finally, to demonstrate how a better understanding of the network can improve video quality

in a real application scenario, I evaluate the performance of forward error correction schemes

for Internet video using the measurements. I show that performance can be poor, devise a

new metric to predict performance of error recovery from the characteristics of the input, and

validate that the new packet loss model allows more realistic simulations.

For the effective deployment of Internet video systems to users of residential access net-

works, a firm understanding of these networks is required. This dissertation provides insights

into the packet level characteristics that can be expected from such networks, and techniques

to realistically simulate their behaviour, promoting development of future video applications.
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Glossary

Application Layer Forward Error Correction (AL-FEC) : Forward error correction, ap-

plied at the application layer; often used in real-time applications to provide resilience

to packet loss.

Asymmetric Digital Subscriber Line (ADSL) : A variant of DSL where the upstream and

downstream capacities are not equal; typically, the downstream capacity is greater than

the upstream.

Cable Modem Termination System (CMTS) : A network device used to connect the Ca-

ble modems located at customers’ premises (via the Cable access link) to the network

of the Cable operator, and to interconnect with the rest of the Internet.

Content Distribution Network (CDN) : A distributed system of caching proxy servers used

to deliver Internet content, usually containing servers located throughout the Internet,

to provide efficient and fast access to content.

Data Over Cable Service Interface Specification (DOCSIS) : A technology for providing

Internet service to existing Cable television networks, which is commonly used to pro-

vide Internet access to residential users.

Digital Subscriber Line (DSL) : A technology that allows digital data to be transferred

over traditional telephone lines, which is commonly used to provide Internet access

to residential users.

Digital Video Broadcasting (DVB) : A set of standards relating to digital television, and

the organisation that maintains those standards.
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DSL Access Multiplexer (DSLAM) : A network device connected via telephone lines to

the DSL modems located at customers’ premises, used to connect customers to the

network of the Internet service provider.

Extended Gilbert Model (EGM) : A statistical model for packet loss, which directly mod-

els packet loss bursts up to a given length.

Forward Error Correction (FEC) : A technique for reducing errors in information sent

over unreliable channels, by adding redundant information that can be used to correct

errors in the original stream.

Hidden Markov Model (HMM) : A statistical model where the process being modelled

is described by “hidden” states (which cannot be directly observed), each of which

generate visible observations. The acronyms 2HMM and 3HMM are used here to

refer to HMMs with two and three hidden states, respectively.

Hypertext Transfer Protocol (HTTP) : An application-layer protocol used for the transfer

of data in the world wide web, including text, audio, and video.

Internet Control Message Protocol (ICMP) : A network-layer protocol used for transmit-

ting control messages, such as error codes and diagnostic messages, used in tools such

as ping and traceroute.

Internet Engineering Task Force (IETF) : An organisation that develops protocols and stan-

dards for the Internet.

Internet Protocol (IP) : A network-layer protocol used to connect networks together to

form an internet that can deliver packets to hosts, irrespective of what network they

use to connect.

Internet Protocol Television (IPTV) : A technology for delivering multimedia services over

managed IP networks, typically with a required level of quality.

Interquartile Range (IQR) : A statistic describing the dispersion of a set of data, defined

as the difference between the upper and lower quartiles of the data.

Kolmogorov-Smirnov (K-S) Distance : A statistic that describes the distance between two

cumulative distribution functions; either between two sets of data, or between a set
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of data and a particular probability distribution. The Kolmogorov-Smirnov test is a

hypothesis test that tests whether two sets of data are drawn from the same distribution,

or whether a single data set is consistent with a given probability distribution.

Multicast : A term that refers to the delivery of data to multiple destinations using a single

transmission from the source.

Packet Loss Rate : A statistic describing the probability of packet losses; the packet loss

rate for a measurement trace is defined here as the number of packets lost divided by

the number of packets transmitted.

Quality of Experience (QoE) : A term that refers to the quality experienced by the end-

user when, for example, watching an IPTV service. In contrast to QoS, QoE is a

subjective measure, since it relates to human perception.

Quality of Service (QoS) : A term that refers to objective measures of quality in networks,

such as packet loss, throughput, latency, and jitter. More generally, QoS refers to

efforts to engineer networks to provide a given level of service, as defined by some

objective measure.

Real-time Transport Protocol (RTP) : An application-layer protocol designed for the trans-

port of multimedia data across the Internet (e.g., in telephony, video-conferencing, and

video streaming).

Simple Gilbert Model (SGM) : A statistical model for packet loss that models errors using

a Markov chain containing two states: GOOD, which never produces packet losses,

and BAD, which always produces packet losses.

Transmission Control Protocol (TCP) : A transport-layer protocol that provides reliable

transport in the Internet, ensuring that lost packets are retransmitted, and packets ar-

riving at the receiver are in the correct order.

User Datagram Protocol (UDP) : A transport-layer protocol that provides unreliable trans-

port in the Internet. UDP is often preferred to TCP for transport of real-time data, since

TCP retransmissions can introduce unpredictable latency for real-time applications.

Video On-Demand (VoD) : A technology for delivering pre-recorded video content, such

as catch-up TV, associated with other Internet video services like IPTV.
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Chapter 1

Introduction

There has been wide deployment of Internet streaming video to residential users, both by In-

ternet service providers (ISPs) as managed Internet Protocol Television (IPTV) services, and

by content producers as “over-the-top” streaming video services. However, the performance

of video streaming on end-to-end paths which include residential broadband links can be

poor, and is often unpredictable. For example, when a home user watches a video streaming

service, the video quality they experience can be highly variable. Relatively little is known

about the performance characteristics of residential broadband networks, compared with the

numerous measurement studies that have been performed on academic and backbone net-

works. Moreover, evaluation studies of new video streaming systems typically use models

for packet loss developed for these academic and backbone networks, which remain untested

on residential networks. Therefore, this work seeks to understand the characteristics of these

types of networks and their effect on Internet video streaming, and to provide more accurate

simulation models that better reflect the actual performance. Understanding the packet level

loss and delay behaviour of these networks is essential to do this.

Currently, a number of Markov-chain models are widely used for modelling Internet

packet loss. They are also widely used for packet loss simulation, where sequences of losses

are generated randomly using the models and applied to the evaluation of multimedia sys-

tems, reducing the need for full-scale deployment of the systems on the Internet. These mod-

els were found to be suitable in describing the loss characteristics of academic networks, and

have since been used in numerous performance evaluation studies for multimedia applica-

tions, such as error recovery mechanisms and video quality monitoring systems. However,

the models have not been validated in terms of their accuracy in expressing the packet loss
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characteristics of residential broadband networks (i.e., ADSL and Cable networks). Since

the majority of home users use ADSL or Cable to access the Internet and deliver streaming

video, to ensure that evaluations of application performance are realistic, it is important to

validate the accuracy of existing models in representing the packet loss characteristics seen

by residential Internet users.

1.1 Thesis Statement

I assert that packet loss simulation for streaming over residential networks is inaccurate be-

cause existing models do not capture the bursty nature of packet loss on these networks. To

demonstrate this assertion, I will show the inaccuracy of existing Markov chain models un-

der bursty packet loss by testing their goodness-of-fit against real packet loss data. Then, to

overcome the limitations of existing models, I will develop a new model that more accurately

models bursty packet loss.

As a first step towards demonstrating this assertion, I will capture the packet loss and

delay characteristics of residential networks by performing new measurements. Then, using

these measurements I will:

� Evaluate existing models for simulating packet loss, and show that these models can

be inaccurate since they generate synthetic sequences that have different properties to

the real data. This is important since when the models are used for simulation, the

results obtained will not reflect reality. Moreover, I will explain what types of network

performance cannot be accurately represented by existing models.

� Develop a new, more accurate model for packet loss simulation that explicitly models

changes in packet loss and delay behaviour. This new model will demonstrate that by

better understanding the network performance, simulation accuracy can be improved.

� Evaluate the performance of forward error correction (FEC) schemes for Internet video

under real packet loss conditions, and show that more realistic simulation of FEC

performance is possible by using the new packet loss model. This will demonstrate

that the new model can be applied to a realistic application, and show the benefits of

doing so.
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1.2 Contributions

The contributions of this work are as follows:

� A new dataset of performance measurements from RTP streaming of high bit-rate

video-like traffic to residential ADSL and Cable users. Unlike previous measurement

studies that have either focused on performance within the core or ISP networks, or

only obtained summary statistics of performance from residential links, the measure-

ments presented here give in-depth insight into packet level performance. This allows

more detailed analysis and, importantly, evaluation of packet loss models.

� Analysis of these new measurements, in terms of the packet loss, delay, and end-to-

end capacity observed over time, at different sending rates, and between different link

types. From this analysis, it is clear that there are no obvious high-level differences

between packet loss and delay on ADSL and Cable links, with links of both types

showing a wide range of behaviour.

� A comparison of existing widely used packet loss models using this dataset, showing

that neither the widely used Gilbert models nor Hidden Markov Models can capture

the extent of packet loss behaviour present in the measurements. In particular, the

correlated, bursty loss patterns seen in some traces cannot be captured by the existing

models.

� A new hierarchical model for packet loss, which takes into account both loss and delay

data to better understand the state of the network, and uses this to more accurately

model the packet loss conditions revealed by the measurements. The loss patterns

obtained by using this new model for simulation are shown to more closely match the

real trace data than when the existing models are used.

� An evaluation study of application-layer FEC performance, using the packet loss mea-

surements to study the behaviour of three FEC schemes under loss conditions mea-

sured in a realistic video streaming scenario. The accuracy of packet loss models are

compared within this scenario, showing that when the new two-level model is used to

simulate packet loss, FEC performance is closer to the real data than when existing

models are used (since existing models over-estimate the possibility of FEC recovery).
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1.3 Publications

The work in this dissertation has been presented in the following papers:

� M. Ellis and C. Perkins. Packet Loss Characteristics of IPTV-like Traffic on Residential

Links. In CCNC 2010: Proceedings of the 7th Annual IEEE Consumer Communica-

tions & Networking Conference, Workshop on Emerging Internet Video Technologies,

Las Vegas, NV, USA, January 2010. [60]

� M. Ellis, C. Perkins, and D. P. Pezaros. End-to-End and Network-Internal Measure-

ments of Real-Time Traffic to Residential Users. In MMSys ’11: Proceedings of the

2nd Annual ACM SIGMM Conference on Multimedia Systems, San Jose, CA, USA,

February 2011. [61]

� M. Ellis, D. P. Pezaros, and C. Perkins. Performance Analysis of AL-FEC for RTP-

based Streaming Video Traffic to Residential Users. In PV 2012: Proceedings of the

19th International Packet Video Workshop, Munich, Germany, May 2012. [63]

� M. Ellis, D.P. Pezaros, T. Kypraios, and C. Perkins. Modelling Packet Loss in RTP-

based Streaming Video for Residential Users. In LCN 2012: Proceedings of the 37th

Annual IEEE Conference on Local Computer Networks, Clearwater, FL, USA, Octo-

ber 2012. [62]

1.4 Outline

The remainder of this dissertation is structured as follows.

Chapter 2 describes how Internet video systems are constructed, the technologies used, and

the problems that exist when using these systems over residential access networks. The

chapter discusses different approaches to implementing Internet video systems, and the

mechanisms used to ensure video quality.

Chapter 3 presents previous work on measuring video performance, and Internet measure-

ment in general. Then, it documents the reasons for and process of collecting mea-

surement data for use in analysing the packet level performance characteristics of real-

time streaming over end-to-end Internet paths including residential broadband links.



1.4. OUTLINE 17

Finally, it describes the dataset collected in this work and used throughout this disser-

tation.

Chapter 4 presents analysis of the packet level characteristics of the dataset collected in

Chapter 3, discussing the packet loss and delay behaviour, as well as the end-to-end

capacity estimates obtained from packet-pair measurements. This analysis compares

the differences between the different access technologies and other effects like time-

of-day, and investigates whether network congestion is present.

Chapter 5 applies Markov models for packet loss, including the classical Gilbert model

and Hidden Markov Models. This chapter evaluates the accuracy of these models for

capturing packet loss on residential broadband networks, and explains the reasons for

the inaccuracies when the packet loss is bursty.

Chapter 6 shows that bursty packet loss behaviour can be more accurately modelled by

explicitly taking into account the transitions between the underlying states of the net-

work. A two-level model that uses packet loss and delay information to classify net-

work state is presented, and shown to improve modelling accuracy.

Chapter 7 applies the findings of the preceding chapters, by firstly evaluating performance

of FEC schemes under the measured packet loss characteristics, and secondly by com-

paring the performance of the FEC schemes using different packet loss models, show-

ing that the two-level model of Chapter 6 improves on previous models.

Chapter 8 provides a summary of the contributions and findings of this dissertation, and

explores avenues for future work.
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Chapter 2

Architecture of Internet Video Systems

Internet video services are now ubiquitous, having seen widespread deployment across the

world in a number of forms. These include large-scale commercial offerings of traditional

telecoms and Cable operators (e.g., AT&T U-verse, Telefónica Imagenio), to video on-

demand and catch up TV services from ISPs (e.g., BT Vision), content providers (e.g., BBC

iPlayer, Hulu), and peer-to-peer video services (e.g., PPLive). With millions of home users

regularly using these services, it is clear that content delivery over IP networks is now a

key component of the broadcasting world. However, given the inherent limitations of the

best-effort IP infrastructure comprising the Internet (including the DSL or Cable last-mile

into the user’s home), ensuring delivery of acceptable quality video for this diverse range

of services is a non-trivial task. To address this, techniques have been developed for various

Internet video architectures to provide acceptable levels of service to users (known as quality

of experience).

In this chapter, I describe the different architectures currently used to provide Internet

video services, including managed IPTV, over-the-top video, and peer-to-peer video. I dis-

cuss the difficulties faced by these applications in terms of network impairments, and outline

some of the techniques used to overcome them. Finally, I present the need for measurement

of streaming video traffic on residential networks, and suggest how this should be conducted.

This chapter is structured as follows. Section 2.1 presents the various system designs

typically used to deliver video over IP. Section 2.2 presents a model of the network over

which these applications are used, describing the problems it introduces, and the effect these

are likely to have. Section 2.3 describes the techniques used to overcome these limitations

and monitor video quality. Section 2.4 explains why measurement of residential broadband
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networks is needed to evaluate the performance of these techniques (and to help in the de-

velopment of new ones), and provides a summary of the chapter.

2.1 System Designs

A number of different approaches have been taken to the design of Internet video systems,

depending on the intended audience and type of content being delivered. Each of these

approaches have their own benefits and drawbacks, in terms of user-perceived quality, in-

frastructure costs, bandwidth usage, and other considerations. In this section, I present three

such approaches to delivering video content to home users over the Internet. Section 2.1.1

describes the managed IPTV systems typically deployed by ISPs, followed by Section 2.1.2,

which discusses unmanaged services that run “over-the-top” of the ISP networks (i.e., us-

ing best-effort data services). Section 2.1.3 gives an overview of peer-to-peer based video

services, followed by a summary in Section 2.1.4.

2.1.1 Managed IPTV

One example of Internet video is IPTV, a broad term that is used here to refer specifically to

a managed service operated by ISPs. IPTV is defined by the ITU as: “Multimedia services

such as television/video/audio/text/graphics/data delivered over IP-based networks managed

to support the required level of QoS/QoE, security, interactivity and reliability” [92]. In

practice, IPTV is a service provided by ISPs, telecoms companies and cable operators to

replace or compete with existing broadcast television services (i.e., cable or satellite TV).

Since IPTV services are completely managed by the ISP, they typically operate using

intra-domain source-specific multicast [22] for live TV services, with the IPTV source being

the single sender at the root of the multicast tree, the set-top boxes as the receivers, and TV

channels corresponding to multicast groups. When users want to watch a particular channel,

the set-top box joins the appropriate multicast group to obtain the content. Video on-demand

(VoD) content is also available, and is provided over unicast streams from video caches

located within the network (as close to the receivers as possible). The IPTV traffic is often

prioritised above other traffic on the network (i.e., using DiffServ [153]) to prevent video

packets being queued behind bulk data traffic.
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The multimedia data is typically MPEG compressed video and audio [85, 89, 74], carried

within MPEG transport stream (MPEG-TS) packets [86]. These packets are carried within

UDP packets for transport over the IP network. Some IPTV systems also use the Real-

time Transport Protocol (RTP) [184], which provides mechanisms for the synchronisation

of received data, feedback reporting via the RTP Control Protocol (RTCP), and support for

retransmission requests [178]. However, not all IPTV systems use RTP, with some operators

preferring to encapsulate the MPEG-TS packets directly into UDP [137, 200].

This approach to Internet video is a fully-featured system, with large infrastructure re-

quirements. To ensure excellent video quality is delivered, each part of the distribution

network needs to be optimised [38, 65], including the backbone network [32, 51] and ac-

cess networks [210, 211]. Other aspects including channel-change time and failure recovery

also need to be considered (these will be discussed in depth in Section 2.3). Although these

requirements increase the cost of deploying an IPTV system for the operator, IPTV deploy-

ment is still increasing, with telecoms operators entering the market for TV, and existing

Cable operators seeking to upgrade their existing networks to IPTV. By deploying IPTV, the

operators can expand their services, offering more content with improved user experience

(e.g., interactivity), while converging their networks into completely IP-based infrastructure

to reduce costs.

2.1.2 “Over-The-Top” Video

An alternative approach to managed IPTV is simply to send streams “over-the-top” of best-

effort IP services. This allows third parties or content providers themselves to offer ser-

vices to end users, independently of the ISPs. In recent years, this type of streaming has

been widely used to offer catch-up TV services, video on-demand, and (in some cases)

live streaming. Much recent work has focused on developing TCP-based video streaming

[213, 31], despite the unpredictability in timing caused by TCP’s retransmission behaviour.

The perceived advantages of using TCP transport are that TCP provides built-in congestion

control, and may provide easier traversal of network address translation devices, making

end-to-end communication with home users easier.

Many of the over-the-top video streaming applications use HTTP to transport the me-

dia, allowing the content to be easily watched using a web browser. Another advantage of

this approach is that existing HTTP caching infrastructure and content distribution networks
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can be used (rather than requiring additional infrastructure dedicated to video distribution).

Examples of such services include YouTube, BBC iPlayer, and Hulu. This commercial ac-

tivity has stimulated research in the area, with studies into how HTTP streaming might be

improved by using parallel connections [118], better rate adaptation algorithms [117], and

whether better performance can be achieved with rate adaptation being done at the client or

server.

Efforts to make HTTP video streaming more adaptive to changes in network perfor-

mance, and allow heterogeneous receivers to view the same content, have come together as

Dynamic Adaptive Streaming over HTTP (DASH) [202], which is in the process of stan-

dardisation [87]. This is an architecture for streaming where the video content is split up

into small files (chunks) corresponding to a particular time period in the stream, which are

recorded in a manifest file describing the order of the chunks. To allow bit-rate adaptation,

each chunk is usually encoded at a number of bit-rates (e.g., low, medium, and high qual-

ity). The clients request chunks as they play the video, and monitor the throughput of the

downloads; if throughput drops, they can adapt their behaviour by requesting a lower quality

version of the future chunks, reducing the bandwidth requirement, and allowing playback to

continue.

Adaptive streaming players have become quite popular recently, and are used in services

like Netflix, as well as in Apple’s HTTP Live Streaming (HLS) [156]. There has also been

interest in industry in using DASH-like services to compete with Cable TV services, rather

than deploying a managed IPTV system, due to the lower infrastructure costs of DASH

systems. However, there is still active research on how these players should estimate bit-

rate and adapt their chunk requests [6, 116, 139], the effect on performance when multiple

players compete for bandwidth [5], and how peer-to-peer technology might be incorporated

into adaptive streaming [122]. A dataset of DASH content, including descriptions and chunk

encodings, has also been recently published [121], and is likely to facilitate further research

into these systems.

Recently, a measurement study of a range of over-the-top streaming services showed

that the user experience from these systems is “far from perfect” [127], with many sessions

experiencing stalls in playback. Moreover, the high start-up time (which is often over five

seconds) means that it cannot yet compete with the fast channel-change provided by IPTV

systems.
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2.1.3 Peer-to-Peer Video

Various examples of peer-to-peer (P2P) based video systems exist (e.g., PPLive, PPStreams,

SOPCast, and TVAnts, which were analysed in [7, 192]), distributing content between peers

using overlay networks in an over-the-top fashion. These systems have been widely used

to distribute video on-demand (i.e., non-live content) [80], but have also been used for live

content such as sporting events [192, 193]. Other work has looked at how IPTV-like func-

tionality, such as “time-shifting” (i.e., moving forwards or backwards to different parts of the

video) can be implemented in peer-to-peer video systems [79]. The success of commercial

peer-to-peer video systems such as Voddler [10] show that adequate performance (in terms

of user experience) can be achieved using peer-to-peer video.

A related topic is the use of peer-to-peer technology to improve the performance of IPTV

systems. Cooperation between ISPs and peer-to-peer applications is discussed in [222],

which presents P4P: a “provider portal for applications”, a technique to make routing in-

formation available to applications to improve efficiency of overlays. Without this informa-

tion, it is easy to construct a peer-to-peer overlay that actually degrades performance, rather

than enhancing it. It is stressed in [35] that the use of peer-to-peer technology within IPTV

systems must take careful note of the physical network infrastructure; an ill-designed P2P

system might involve multiple transmissions over backbone links, causing increased con-

gestion and poor performance. This problem has been identified by the Application-Layer

Traffic Optimization (ALTO) working group of the IETF [185], and work is ongoing to

develop a service that will allow peer-to-peer applications to develop overlays with “better-

than-random” peer selection.

A VoD system using P2P to assist delivery was proposed in [96]; this aims to make use

of the potentially large amount of local storage in set-top boxes to enhance users’ quality of

experience (QoE). This system takes advantage of the locality of content access by viewers,

allowing set-top boxes to serve content to their peers. The paper observes that non-popular

content will likely still have to be served from video servers (since there are no local peers

holding the content). However, since the demand for this is, as stated, comparatively low,

the additional load on infrastructure will likely not be too great. Using a similar approach,

[34] discusses how a “rewind function” can be provided for live TV content to users joining

a channel, allowing them to view a programme from the beginning by receiving the content

they are missing from local peers. Since the watching preferences of users exhibit locality
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(i.e., nearby users are likely to be viewing the same content), a large portion of the bandwidth

required for “rewinding” can be served by peers within the user’s DSLAM. Indeed, it is

claimed that “with the assistance of a P2P system, the video server load dramatically reduces

to 5%” [34]. Other work has looked at how peers can be used to provide error repair for lost

packets in IPTV [124], showing that the load on the retransmission servers (which would

otherwise be used to recover lost packets at the set-top boxes) can be reduced by using peer-

assisted repair. This approach can also exploit locality of preference, allowing the scheme to

scale well with an increasing number of set-top boxes.

It should be noted that there are issues present (aside from the technical ones) in dis-

cussing localised P2P IPTV. Specifically, the privacy of users is potentially at risk, given that

information on their TV viewing patterns will be accessible on the network (and potentially

to their neighbours). Legal and ethical considerations in this regard are definitely worth tak-

ing into account, and it is possible that reservations on the part of ISPs might actually limit

the deployment of this kind of technology.

2.1.4 Summary

In this section, I have discussed three approaches to implementing Internet video; managed

IPTV, HTTP-based over-the-top streaming, and peer-to-peer video. Each of these approaches

has advantages and disadvantages. Managed IPTV delivers high quality video, but needs a

large investment in dedicated infrastructure. HTTP-based over-the-top streaming is more

cost effective since existing web caching infrastructure can be used, but does not yet deliver

the same high quality user experience, and often relies on clients storing large buffers (which

increase the start-up and channel-change time, and limit its applicability to broadcasting live

TV). Peer-to-peer approaches reduce the infrastructure costs, but can have potentially poor

performance due to inefficiencies in the overlay networks used to distribute the content.

For the remainder of this work, I will focus on high quality RTP-based video, as the best

of the available services, in terms of user experience. Although RTP streaming is widely

used in intra-domain IPTV, the effect of the residential broadband networks on its perfor-

mance have not been widely studied. Understanding these effects is important for future

deployment of high quality inter-domain RTP streaming (this is likely to use unicast, since

inter-domain multicast is not available at the moment). Since RTP streaming traffic is trans-

ported using UDP, its behaviour can be more closely associated with network performance
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(unlike TCP, where mechanisms like retransmissions and congestion control can obscure

the effect of the network on streaming performance). Moreover, since RTP streaming has

similar traffic characteristics to other applications such as high quality video conferencing

and telepresence, the results obtained from studying RTP streaming should be more general.

Note however that studying the impact of access networks on HTTP streaming is an inter-

esting prospect for future work, and insights gained in this study of RTP streaming provide

a useful starting point for such an effort.

2.2 A Model for RTP-Based IPTV Systems

In this section, I describe the network model that will be referred to throughout this disserta-

tion. This description will explain the different components of the network that end-to-end

streaming video traffic will encounter, and highlights the main sources of impairments that

might be present. The main elements of the network are shown in Figure 2.1. These include

the video source, which might be located within the ISP network (for intra-domain systems)

or on content producer or distribution networks (for inter-domain systems), the Internet and

ISP networks, the ISP edge router, access link, and video receiver (e.g., set-top box).

The video source sends traffic towards the receivers from either within the ISP network,

the network of a content provider, or from a content distribution network (CDN). The ar-

chitecture of these core networks for IPTV systems have been discussed in survey papers

including [221, 52]. The networks are typically built using IP multicast or multiprotocol

label switching (MPLS), running over fibre or high-speed Ethernet links. At this part of the

network, redundancy is important to ensure that it is possible to recover from link failures

(this will discussed further in Section 2.3.1). Measurement studies of similar commercial

ISP backbone networks have shown that these tend to be quite reliable in terms of packet

loss [95], suggesting that typical traffic engineering techniques are effective, provided that

the network is provisioned appropriately for the levels of traffic present.

At the edge of the ISP network, access routers will connect the core network to the

access links of residential customers. The most common residential broadband Internet ac-

cess technologies are Digital Subscriber Line (DSL) and Cable, which together account for

86% of OECD Broadband Subscriptions [154]. DSL is extensively used to provide IPTV

service, as discussed in [210]. In its most common form, Asymmetric DSL (ADSL), a
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Figure 2.1: End-to-End IPTV Network Architecture: The video sender is the root of a source-

specific multicast tree, transmitting TV content for different channels in separate multicast

groups, which the receivers join to receive the content.

downstream bandwidth up to 24Mb/s is available (using the ADSL2+ standard), while up-

stream speeds are far lower. It is worth noting that the mostly asymmetric nature of DSL

upstream/downstream speeds suits the IPTV model, since domestic receivers are likely to be

consumers of content, rather than producers. Very high bit-rate DSL (VDSL) technology of-

fers even higher speeds (up to 50Mb/s downstream); deploying this may allow the provision

of even wider IPTV offerings.

Traditional cable TV networks (using hybrid fibre coax) can clearly deliver broadcast

quality television, as well as IP data using DOCSIS [91, 90]. IPTV service is a natural

progression for these networks [211]. The main difference between Cable and DSL (from

the perspective of IP data transport) is that while DSL provides a point-to-point link between

the DSL modem and the DSL access multiplexer (DSLAM) at the ISP premises, this is not

the case for Cable. Instead, all the cable modems connected to the same Cable Modem
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Termination System (CMTS) share the same medium, with downstream traffic being shared

in time slices, and the cable modems requesting access to transmit upstream. This difference

has important implications for the timing of packets, since the time scheduling may lead to

packets being delayed until the next available slot, rather than being transmitted immediately.

Another access technology likely to make an impact on the IPTV industry is optical

fibre, since fibre-to-the-premises/curb/home (FTTx) can provide high bandwidth directly to

the consumer. Again, these high-bandwidth deployments will allow further deployment of

high-definition TV and other bandwidth-intensive services. Some incarnations of FTTx,

such as fibre-to-the-neighbourhood, or fibre-to-the-curb, involve deploying fibre-optic links

to within a certain distance (less than 1km) of the customer’s premises, and using another

technology (e.g., coax or Ethernet) to bridge the final distance. Such a technique can reduce

the cost of a fibre-based system, while retaining some of the speed.

Failures and anomalous behaviour at any point of the path between sender and receiver

can lead to impairments in the video quality. These include:

1) Link failures causing route changes, which will manifest themselves as large bursts of

packet loss. Although this could happen anywhere (including the access link), it will

only be recoverable within the core network, using techniques like fast re-route [52].

2) Congestion within network core, the effect of the video flow interacting with all the

other flows being passed through large routers with a high degree of statistical multi-

plexing. The video flow will often make up a small fraction of the overall traffic, so

the congestion may not be noticeable in the queueing delay experienced by the flow

[166].

3) Congestion at the access router, the effect of the video flow interacting with the other

flows passing through the ISP edge router (i.e., DSLAM for DSL, or CMTS for Cable).

Here, the video flow makes up a much larger proportion of the link bandwidth, and is

likely to have a larger effect on the queues than in the core. Congestion here is more

likely to be visible in the end-to-end queueing delay.

4) Line noise; this is mostly expected on the access link, since these are generally believed

to be have poorer performance than backbone links, which have shown to have very

low packet loss rates [95].
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5) Traffic shaping; mostly expected on access link, since such conditions are common

features of residential broadband contracts.

Any of the failures described above can occur on the end-to-end video path. Therefore,

it is important that for a particular network (where IPTV will be deployed), the probability

of these failures can be well estimated, and their effect on video quality is understood. The

effect of link failures is quite well-known, and there are established approaches to dealing

with these (as Section 2.3.1 will discuss). Similarly, the effect of traffic shaping is also well-

known, since it is introduced by network policy. However, the effects of congestion and noise

are less well-known, and distinguishing between them is non-trivial. Understanding these is

important for determining the state of the network and its effect on video performance.

This section has presented a model of the network that is used to transport end-to-end

Internet video traffic, describing the technologies used and the types of problems that might

occur to degrade the quality of experience of end-users. Since these impairments can be

expected to appear on most networks, Internet video systems need to be prepared to cope

with them. Section 2.3 describes existing techniques to cope with problems at various points

in the network, and later chapters will investigate how prevalent these effects are in real

measurements.

2.3 Techniques for Ensuring Video Quality

The network impairments described in the previous section will have a negative impact on

user experience, from visual artefacts disrupting picture quality (due to packet losses) to

complete frame freezes when links fail. Therefore, operators and developers of video sys-

tems build mechanisms to cope with the problems introduced by the network.

In this section, I describe some of these techniques. Section 2.3.1 describes techniques

to deal with link failures in the core networks, providing redundancy that can take effect

before the customer experiences quality degradation. Section 2.3.2 discusses approaches

to repairing packet loss, including both proactive (FEC) and reactive (retransmission) tech-

niques. Section 2.3.3 examines techniques to provide consistently fast channel changes in

video systems, since this is one of the most important elements of user-perceived quality.

Section 2.3.4 discusses monitoring of video quality in video systems, including mechanisms

used in commercial IPTV services. Section 2.3.5 gives a summary of these techniques.
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2.3.1 Preventing Network Outages

Lots of work has been done on designing IPTV architectures to reduce the effects of network

outages [32, 105, 51, 221, 38, 52]. Two common mechanisms for dealing with network

outages, reconvergence and link-layer fast reroute (FRR), are discussed in [51, 52]. Recon-

vergence involves waiting for the routing protocols to recover from a link failure. That is,

allowing the routing tables to be recomputed to account for the lost link, then rebuilding the

multicast distribution tree. This approach can be time-consuming, with outages lasting ten

seconds or more “not uncommon” [51]. Clearly, delays of this magnitude are unacceptable

for multimedia delivery, and other mechanisms are required to provide acceptable delay. Fast

reroute involves providing a backup path (ideally independent from the primary path) that

can carry data should the primary path fail, reducing the impact of single link failures. Im-

provements to the FRR approach, providing resilience to multiple link failures by using the

backup path to forward traffic during primary link failures, while simultaneously initiating

reconvergence, are proposed in [51]. In this way, the primary path recovers using the normal

reconvergence mechanisms of the routing protocols, but the traffic does not suffer during the

time this process takes (since it is forwarded using the backup).

In another study, various architecture alternatives (different technologies and topologies,

as well as the role of multicast) are compared in terms of infrastructure costs [32]. In their

comparison of unicast versus multicast, clear cost benefits of using multicast are highlighted,

assuming a scenario where multicast can be deployed (e.g., within a single ISP). Various

alternatives in IP backbone design are also compared, including the use of an existing IP

network to carry IPTV, the use of a dedicated overlay on top of the existing network, or the

construction of an entirely new IP network. While construction of a new network is clearly

more expensive, the advantages of traffic isolation gained by use of a dedicated network (i.e.,

routers and links), or a dedicated overlay (dedicated links, shared routers) may be worth

the expense, especially when excellent video quality is so important for acceptable user

experience. This illustrates the trade-off between cost and service capability that must be

considered in the design of IPTV deployments. It is also noted that the design of the network

infrastructure is very closely related to the applications that use it. For example, broadcast

TV requires high priority QoS to ensure interactivity, while VoD systems do not require the

same real-time guarantees.

An important consideration when designing backbone networks is to consider the de-
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mand for bandwidth that will be placed on them. Bandwidth demand for IPTV services is

discussed in the context of VoD in [194], where a cost model is developed to determine the

optimum positioning of VoD content to ensure bandwidth levels within metropolitan area

networks remain at acceptable levels. By caching some VoD content closer to the edge of

the network, bandwidth on the backbone links can be reduced. The study also compares the

additional storage cost of caching with the bandwidth costs of having all content stored at

the regional video hub offices (VHOs), looking for the optimum level of caching. Note that

since VoD is typically transported over unicast (rather than services replacing traditional TV,

which use multicast), it requires more bandwidth. The bandwidth demand of channel surf-

ing is studied in [195], noting that the peak demand during a commercial break is twice the

steady state multicast demand. Note that this effect is likely to be amplified by the fact that

many channels typically take their breaks around the same time, suggesting that the capacity

of the network should be provisioned for these “worst-case” periods. As Section 2.3.3 will

discuss, the use of rapid channel-change increases the bandwidth requirements still further.

Capacity management is also discussed in [105], alongside other topics in IPTV service

assurance. A trade-off between the number of channels that are served by a single multicast

group is outlined. Fewer channels per group means higher bandwidth overhead, but can

provide finer-grained control. Automated management of IPTV networks is also discussed

in [105], including quality monitoring systems that can alert the network operator to issues

before the customers report problems. Other work on video quality monitoring is discussed

in Section 2.3.4.

This section has summarised the techniques that are used to provide resilience against

link failures. These techniques have now become quite established, and the various options

were compared in a recent survey article [65].

2.3.2 Repairing Packet Loss

The techniques described in Section 2.3.1 are used to deal with link failures occurring in the

core networks. However, the loss of individual packets (which can occur at any point on

the end-to-end path) must still be managed so that receivers can correctly decode the video

content and play this to the end users. In this section I discuss two approaches for error

recovery, forward error correction (FEC) and retransmission, and show how these approaches

have been applied to improving Internet video performance. Techniques for packet loss
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recovery have been described in surveys, including [47, 65]. The costs and benefits of both

approaches are discussed, including the extra capacity needed to provide redundancy, the

delays introduced, and the likely effect on user quality, as well as practical considerations.

The use of FEC involves sending redundant information alongside the video data, so that

in the case of packets carrying video being lost, some of the (successfully received) repair

packets can be used to reconstruct the original data. For Internet video, application-layer

FEC is often used; this means that the FEC protection is applied at the level of application-

layer payloads (e.g., the contents of RTP packets), and the recovery is determined by which

packets arrive successfully.

Numerous FEC schemes have been proposed and applied to Internet video. The FEC

Framework (FECFrame) working group of the IETF has defined a number of these schemes

for use in multimedia applications. These include simple parity codes [196, 15], where the

packets are arranged into grids (either one- or two-dimensional), and rows and columns of

FEC packets are calculated by applying exclusive-OR to the data packets in the columns and

rows, respectively. More complex schemes exist, such as Reed-Solomon codes [177, 119],

which guarantee recovery if any k packets are received (out of n packets sent, where there are

k data packets and n − k repair packets). Another FEC scheme is Raptor codes, originally

described by Shokrollahi [186], and described for use in IPTV in [129]. This approach

implements the idea of a digital fountain, where the FEC encoder can produce an endless

stream of repair packets for a given set of video data packets. This is an attractive approach,

and has recently been standardised by the IETF [214]. Raptor codes are also part of a hybrid

FEC scheme standardised by DVB [64], alongside 2D parity codes. One potential drawback

of Raptor codes, however, is that they are patented, which may limit their use. In response

to the proprietary nature of many FEC techniques, the OpenFEC project (http://openfec.

org) has developed alternative open-source schemes that aim to match the performance of

schemes such as Raptor codes. These include implementations of Reed-Solomon codes

[119], and LDPC-Staircase codes [180], which were evaluated in a lab setting in [134].

Retransmission-based approaches to error recovery allow receivers to report which pack-

ets were lost, and ask for these to be resent (e.g., using RTCP feedback [155] and RTP

retransmissions [178]). Obviously, each time a retransmission is requested, there will be a

delay (equal to the round-trip time between receiver and retransmission server). As discussed

http://openfec.org
http://openfec.org
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in [47, 65] it is possible to engineer the system so that this is not a problem (e.g., by placing

retransmission servers close to the receivers).

2.3.3 Reducing Channel Change Time

Another important aspect of the user experience in video systems is the time taken to change

channels. It is important to remember that user expectations for channel change time are typ-

ically based on their experiences of traditional broadcast television, where changing channels

(“zapping”) is very fast (almost instant for analogue systems), and fairly predictable.

However, unlike broadcast TV, where switching channels requires simply changing to

a different input signal, multicast IPTV requires a more complicated process. As soon as

the channel change request is initiated, the set-top box signals a request to change multicast

groups. Once this is completed, and the new multicast stream is being received, the stream

must be decoded using the appropriate MPEG decoding algorithm, as explained in [74].

Detailed analyses of the different elements of channel change times are given in [17, 187].

Essentially, when joining a multicast video stream, certain key data needs to be obtained

before the video can be decoded and displayed. Once the receiver starts receiving the multi-

cast stream, it needs to wait until it receives all the key information before it can decode the

video.

The problem for user experience is that the time taken is larger than for traditional TV, and

more importantly, the time is not consistent (it might be sometimes fast, sometimes slow).

Experiments into subjective assessment of video quality were described in [114], aiming to

determine a mapping between channel “zapping” time and the Mean Opinion Score metric

(MOS), as defined in [88]. This study suggests that channel change time should be no longer

than 430ms.

Efforts to improve channel change times in IPTV are discussed in [17, 18]. Their ap-

proach involves sending a rapid (faster than normal) burst over unicast while the multicast

join is taking place. This allows the receiver to start decoding and displaying the video be-

fore the multicast stream is available. This approach has been standardised by the IETF as

“Rapid Acquisition of Multicast Sessions” [212]. Since this technique involves using caches

close to the receivers to provide bursts of video content, it is integrated with the retransmis-

sion servers that are used to provide recovery from packet losses, as discussed in [17]. A
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case study of the performance of this solution on an operational IPTV network is described

in [138], where the challenges of deploying this mechanism in the real world are explained.

2.3.4 Monitoring Video Quality

As the previous sections have discussed, ensuring acceptable video quality is a key challenge

for Internet video systems, and is vital to maintain customer satisfaction. However, when us-

ing the techniques described earlier, it is also important to monitor the network to understand

the impairments that receivers have to cope with, and the quality experienced by end users.

Some approaches that have been proposed include monitoring of RTP-based IPTV sys-

tems using the RTCP reports [19], and possibly exploiting the tree-based structure of IPTV

multicast to use network tomography techniques to isolate faults [20]. Another study that

describes a quality monitoring system used within a commercial IPTV network is described

in [130]. In this system, data from various sources, including low-level network statistics,

video quality reports, and customer service tickets are correlated to give insight into the over-

all network performance, and isolate the location of problems. Similar proposals have also

been made for mobile networks [43] and for networks with both voice over IP and IPTV

traffic [4].

Other work has proposed monitoring the user-perceived video quality, rather than just the

network-level effects. A system to measure the user-perceived quality, taking into account

the distortions in quality caused by losing particular packets, is discussed in [206]. This

system, which was designed to operate in real-time, aims to provide fairly lightweight mon-

itoring without having to inspect the video packets in depth (i.e., since the overhead of deep

inspection would make the system unscalable). A summary of standardisation efforts for

video quality metrics is described in [218]. While some progress has been made on objec-

tive assessment of video quality (i.e., understanding the quality only by looking at measured

network conditions such as packet loss and delay), this remains an area of active research

[39].

2.3.5 Summary

In this section, I have discussed techniques used to improve, maintain, and monitor qual-

ity in Internet video systems. Within the core networks, the effect of link failures can be
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reduced by employing redundant links with fast reroute and other traffic engineering ap-

proaches, and careful design of the networks and planning the capacity usage can ensure the

networks are able to cope with demand. At the ISP edge, and on the access networks, where

there tends to be more problems due to packet loss, loss recovery techniques like FEC and

retransmission are applied. The application of these recovery techniques also needs to be

carefully planned, since both can have significant overhead (FEC has a constant bandwidth

overhead, while retransmission has a cost in terms of both bandwidth and delay, but only

when repairs are needed). The same infrastructure used for retransmissions can also be used

to provide rapid channel change, addressing one of the most important requirements for good

IPTV service. Monitoring the quality of the service is also important for ensuring customer

satisfaction in commercial IPTV services. Quality monitoring systems work both in terms

of network-level metrics, identifying the sources of network failures, as well as high-level

metrics, understanding the absolute video quality as perceived by customers. Awareness of

both the low-level network performance and the user-perceived quality (and the correlation

between these) is critical to providing excellent IPTV user experience.

2.4 Discussion & Summary

In this chapter I have discussed the increasing popularity of Internet video systems, and

described the different approaches taken to implementing these systems. I have shown a

model describing the end-to-end path between sender and receiver, and discussed the various

sources of failures along this path. I have also discussed the mechanisms used to cope with

these failures, including redundancy and rerouting in core networks, and packet loss recovery

techniques like FEC and retransmissions to deal with end-to-end packet losses (which may

be due to noise on the access links, or congestion elsewhere in the network, if it is not

provisioned appropriately).

While all these techniques are understood (particularly by the operators themselves),

there is very little public measurement data available on the performance of these networks,

and on the impact of network-level impairments on video quality. Moreover, the develop-

ment of new loss recovery techniques for streaming video is limited by this lack of data,

and although simulation models are often used to evaluate performance (e.g., for FEC, as

Chapter 7 will discuss), their accuracy has not been widely tested. Developers of new video



2.4. DISCUSSION & SUMMARY 34

systems and error recovery techniques need to understand the performance characteristics of

the networks that will carry their applications and be able to realistically simulate these char-

acteristics, so that they can test and optimise the applications. Since there is little network

performance data already available, it is clear that to understand the performance of the video

systems, networks, and error recovery techniques described in this chapter, it is necessary to

take measurements of streaming performance, as Chapter 3 will discuss in more detail.
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Chapter 3

Measuring Packet-Level Characteristics

of Streaming to Residential Users

Despite the widespread deployment of Internet video and IPTV, little published performance

data currently exists for streaming high quality Internet video to residential users. Data

on streaming performance will provide valuable input to the design of new protocols and

applications, such as congestion control and error correction schemes, and sizing playout

buffers in video receivers. Since no suitable data are already available, I have collected a

set of measurements, which give insight into the network effects experienced by streaming

video traffic received by residential Internet users. Analysis of these measurements will

provide insight into the effect of the network on streaming video applications, develop more

accurate network simulation models, and therefore provide the means to improve Internet

video performance for residential users. An anonymised version of the dataset, including

full packet traces, can be downloaded at http://martin-ellis.net/research/datasets.

In this chapter, I introduce my dataset of the packet level characteristics of end-to-end

synthetic video traffic. The traffic was transmitted using UDP over the open Internet from a

well-connected server to residential hosts connected via a number of ISPs, using both ADSL

and cable modem connections, in the UK and Finland. First, I present background on the

existing work on measurement of video streaming, performance measurements of packet

loss and delay on the Internet (including residential broadband networks), and techniques

to estimate link capacities. Then, I outline the approach I have taken to measuring stream-

ing performance, describe the traffic characteristics and the links measured, and explain the

formats of the measurement traces themselves (including post-processing steps).

http://martin-ellis.net/research/datasets
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This chapter is structured as follows. Background on measurements of streaming video

systems, and more general work on Internet measurement, is presented in Section 3.1. The

rationale and approach taken to conducting the measurements is presented in Section 3.2.

The trace formats used are described in Section 3.3. Section 3.4 describes the post-processing

applied to the raw data for later analysis. Section 3.5 summarises the chapter.

3.1 Background

In this section, I describe previous work on Internet measurements. Specifically, I focus on

measurements of Internet video and IPTV systems in Section 3.1.1, measurements of packet

loss and delay in the Internet in Section 3.1.2, and work on estimating capacity and available

bandwidth on the Internet in Section 3.1.3. Section 3.1.4 gives a summary of the section.

3.1.1 Internet Video Measurement

A number of studies have looked at the performance of video streaming over access networks

(such as dial-up, DSL, and Cable). The authors of [128] study streaming of low bit-rate

videos to dial-up users across the United States, investigating the packet loss, delay, and

reordering behaviour of a large number of short (ten minute) measurement sessions. This

study found that packet loss was typically quite low, with 38% of traces seeing no loss, and

75% of traces showing less than 0.3% loss. Moreover, their analysis of loss run-lengths (i.e.,

the number of packets lost consecutively) shows that a large number of loss runs consist of

a single packet. Further analysis showed that the distribution of loss run-lengths is heavy-

tailed, suggesting that there are a large number of short loss runs, and a small number of

very large ones (this concept will be discussed in more detail in Chapter 4). This study also

examined the round-trip time (RTT) calculated between sender and receiver, again finding

evidence of heavy-tailed distributions, with most RTTs being less than one second, but with

a minority of very large RTTs (more than 30 seconds). More recently, video streaming

performance from home users towards a well-connected server was investigated in [176]. In

this study, the senders were connected to home networks over 802.11 home wireless routers,

which were in turn connected to the Internet via DSL and Cable access links. Their results

of packet loss, which look at the wireless and wired segments of the path separately, show

that wired loss run-lengths are quite short (as in [128]), although not dominated by single
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packet losses. The losses on the wireless segment, on the other hand, show much longer loss

runs, with 90% longer than five packets. The clear differences between wired and wireless

performance re-iterate the importance of isolating the effects of wireless networks, which

tend to have less predictable performance than wired links.

Since the introduction of IPTV services, there have also been studies that measure their

performance. These include passive measurements of IPTV network performance taken

within the network [84, 137], passive measurements taken by receivers [219, 220], and active

measurements conducted within the networks [13]. The studies that measure performance

within the network tend to conclude that performance is very good, with few distortions (e.g.,

[84] states that no packet loss was encountered throughout their measurement period). How-

ever, these findings may be due to the observation points in the measurements (i.e., [84, 137]

measure at the at the ISP edge, rather than at subscriber premises), or the access technology

used (the network measured in [13] uses an Ethernet last-mile, which might be expected to

provide better performance than either DSL or Cable). In contrast, studies of IPTV services

using DSL and Cable, measured at the customer premises (e.g., [220, 219, 200]), tend to

show that performance is quite good, although not perfect. These measurements show that

there will be periods where the video quality experienced by end-users will drop, and will

require appropriate recovery mechanisms.

Another area of Internet video that has been widely measured is peer-to-peer (P2P) based

video streaming, as discussed in Section 2.1.3. Numerous studies of P2P video streaming

systems have been conducted. One of the largest of these systems, PPLive, was extensively

studied in [80]. Some of the requirements for a successful P2P video streaming system

identified by this study include the need for rapid channel change times to maintain user

satisfaction (as discussed in Chapter 2). They also identify the importance of having peers

with a high enough data rate to maintain the system. In the typical user environment of

upload-restricted residential links, this implies some fixed infrastructure may be required to

fill the gap (note that this complements the idea described in [3], where the performance

of managed IPTV systems is improved by working with P2P systems). The performance

of PPLive is studied alongside another P2P streaming video system, SOPCast, in [7]. This

study highlights some of the drawbacks in using peer-to-peer distribution for video, such

as lack of fairness (where peers with higher upload capacity end up contributing the most

to the system), and inefficiencies (where a sub-optimal overlay network is created, leading
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to increased latency and bandwidth use). A similar comparison study, of four P2P video

streaming systems (PPLive, PPStream, SOPCast, and TVAnts) is described in [192]. The

study discusses the transport protocols used (SOPCast uses mainly UDP, while the others

are TCP-dominated), as well as the varying overheads and video download policies of each

system. An interesting point about this study is that it measures video streams of a live event

(i.e., world cup football matches). This is much closer to broadcast TV than many other stud-

ies that have been conducted in this field. A later study by the same authors [193] compared

the performance of P2P live streaming in both France and Japan, noting that live streaming

creates additional challenges for finding appropriate peers (i.e., peers in Europe may have

particular content, but cannot share it with peers in Asia because the latency incurred in

transferring it means it would arrive too late to be useful).

Some measurement studies have also been conducted for over-the-top video streaming

services. The majority of these have looked at YouTube, aiming to understand user behaviour

and system organisation (e.g., [33], [1]). Other studies have looked at traffic measurements

too, such as [230], which passively measured all YouTube traffic on a university network,

and [169], which monitored traffic from YouTube and DailyMotion (another video sharing

site) within an ISP network. The results of [169] are particularly interesting, since they dis-

cuss per-flow measurements of round-trip time, transmission rate, and packet loss. Their

packet loss results are differentiated between the access link and the rest of the network,

and show that most flows experience less than 1% loss on the access link, but higher loss

elsewhere. The higher loss seen on the backbone suggest that over-the-top video flows expe-

rience congestion, with 60–80% of flows experiencing more than 1% packet loss. A recent

study of Apple’s HTTP Live Streaming (HLS) in a commercial mobile Internet TV system

[123] showed that performance was reasonably good, although 4.5% of streams experienced

stuttering (i.e., buffer under-runs), which is known to be one of the most important factors

for user satisfaction [50]. Moreover, the start-up times for HLS were found to be fairly

high (60% of video playbacks were longer than five seconds). Start-up time and time spent

buffering are also discussed two wider studies of a large number of video content providers.

In [50], the authors found that the most important metric for video quality was the “rebuffer-

ing ratio” (i.e., time spent buffering), looking at the short-term and long-term effects on user

engagement. A later study with new data from the same authors [127] suggests there are still

significant challenges in delivering acceptable quality in over-the-top streaming, with 40%
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of videos spending at least 1% of the time buffering, with start-up times being more than five

seconds in 23% of cases. Their conclusions are that further network coordination is needed,

to allow the video clients to make more informed decisions about adaptation (i.e., which

bit-rates to choose, or whether to change the CDN from which the content is accessed).

3.1.2 Internet Loss/Delay Measurement

Packet loss and delay are two of the most important characteristics of the network from the

perspective of real-time applications like streaming video. Since receivers running these

applications require a steady stream of packets, packet losses and large variations in delays

are likely to be disruptive to application performance. Therefore, understanding the loss and

delay characteristics of the target network is important before deploying applications. These

metrics are not only important for streaming video applications, since they also affect other

Internet applications. As this section will discuss, they can be measured independently of

video streaming systems.

Measurements of Internet performance have been conducted since the early days of the

ARPANET, with experiments studying packet sizes, utilisation, loss rates, and delay [107].

Later, as early multimedia applications such as audio streaming and conferencing started

to be deployed, a number of studies investigated the performance of the Internet at that

time when carrying such traffic [25, 27, 26]. Other work focused specifically on measuring

network performance, with the intention of understanding problems in applications such as

audio streaming [223, 141, 224] and TCP performance [159, 12]. Measurement and analysis

results have also been presented in order to better understand the performance of the Internet,

in terms of packet loss [28], delay [146, 83, 29], and routing performance [158].

A number of projects have been conducted to measure the Internet at a larger scale

than these previous studies. These include the National Internet Measurement Infrastructure

(NIMI) [165, 163], a distributed system designed to facilitate network measurements, which

was used by various academic sites to perform distributed measurements, similar to those

using the earlier network probe daemon [160]. Another project looking into real-time pas-

sive measurement of commercial Internet backbone traffic was carried out by Sprint Labs.

This effort resulted in a number of interesting studies giving insight into the behaviour of

commercial networks (in contrast to the prior work, which typically focused on academic

networks). These include studies of traffic loads and packet sizes [67], delay within a single
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router [157], delay between routers [37], out-of-sequence (i.e., loss and reordered) packets

[95], and network failures [133].

Although measurement studies of backbone networks are useful, they do not necessarily

represent the network conditions faced by typical end-users of streaming video applications

(i.e., home users). A number of measurement studies of residential broadband networks

have also been conducted, which give some insight into this. The TCP traffic of around 1300

ADSL users was passively measured over a 24-hour period in [188]. The results describe

the user activity as quite low, and highly skewed in terms of volume and duration (i.e., while

many users use very little of their bandwidth, others are “heavy hitters”, consuming far more

and using peer-to-peer file sharing applications more extensively). This study notes that link

utilisation across the range of clients (including the heavy hitters) is typically far less than

capacity. Their explanation is that individual users limit the bandwidth available to their peer-

to-peer file sharing applications, preventing large levels of bandwidth usage. A later study

conducted on a different ISP [131] found different behaviour, with HTTP traffic, rather than

peer-to-peer, being the most common. 25% of the HTTP traffic was found to be Flash video

(i.e., YouTube and similar web video) traffic, and this paper may provide some evidence of

a shift from P2P downloading of videos to streaming, a trend confirmed in [168]. Another

important finding in this study is that the delay experienced by DSL hosts is dominated by

the delay on the access link. This is important, since it has implications for the design of

applications that require low delay, such as streaming video.

An active measurement approach was used to do large-scale uncooperative measurement

of residential broadband users in [49]. In this work, streams of probe packets were sent to

ranges of IP addresses, allowing measurements of bandwidth and delay to be calculated.

This study found that there are large differences between the performance of different ISPs,

reflecting the different policies employed on their networks. Other interesting findings were

that there are quite large latencies on access links (possibly due to large buffers at access

routers [72]), and that packet loss rates were usually quite low. Another active measurement

project, which uses cooperative measurements, is Netalyzr [115]. This allows users to access

a website, and perform a number of tests that estimate the performance of the connection to

the server. This study has been able to collect a large amount of information on the per-

formance of different ISPs, including IPv6 availability, bandwidth and latency, packet loss

and reordering, as well as performance of applications such as HTTP. Another wide-scale
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measurement study of access network performance, supported by the US Federal Communi-

cations Commission [204] combined wide-scale measurements for breadth (involving over

4000 residential subscribers across 16 ISPs), and augmented these with more detailed mea-

surements of 16 subscribers on 3 ISPs to give depth. This study found that the last-mile (i.e.,

the DSL or Cable access link) dominates the delay, with DSL links showing higher delays.

This is somewhat surprising, since Cable is a shared access medium, but the increased delay

seen on DSL lines is likely due to the use of interleaving for protection from physical layer

noise.

In [101], passive measurements of home users’ Internet performance were augmented

by a questionnaire in which the participants gave feedback on their perception of network

performance, which was then correlated with the low-level measurement data [102]. By

recording the user’s subjective opinion of network performance, the effect of network im-

pairments on user experience can be better understood, and might lead to the development

of better objective metrics for network performance.

As levels of interest in Internet measurement have increased, attempts have been made to

document and standardise best practices across the discipline [162, 42]. The IP Performance

Metrics (IPPM) working group of the IETF have produced number of documents pertaining

to particular metrics of Internet performance. RFC 2330 [164] specifies a framework for

the other documents, outlining and defining key concepts related to Internet measurement,

and highlighting important issues (for example, the complexities of dealing with time in

measurements, sampling and statistics, and dealing with errors). Documents dealing with

various metrics have been developed by the IPPM group, including packet loss (RFC 2680

[9]), loss patterns (RFC 3357 [113]), loss burstiness (RFC 6534 [57]), one-way delay (RFC

2679 [8]), packet delay variation (RFC 3393 [48]), and packet reordering (RFC 4737 [145]).

Other work on assessing measurement accuracy [197, 198] aims to improve the performance

of packet loss measurements by using a probing strategy that more effectively samples the

loss process (specifically, using probes with geometrically distributed inter-packet intervals,

rather than Poisson distributed intervals as previous work has suggested). Similarly, other

work has focused on calibrating and improving the accuracy of one-way delay measurement

[161, 46], which is prone to difficulties due to issues with lack of clock synchronisation

between the machines sending and receiving measurement traffic. A widely used solution,

allowing estimation and removal of clock skew in one-way delay measurements, was pro-
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posed in [142], and later improved upon in [106]. A range of issues affecting measurement

accuracy, and best practices to adopt are discussed in detail in [42].

3.1.3 Bandwidth Estimation Techniques

In many Internet applications, it is important to know the bandwidth available between a

sender and receiver. For example, in a streaming video application, the sender may want to

know how fast to send the stream, so as not to cause congestion for the receiver. However,

this is rarely known beforehand and can vary over time, so a number of techniques have been

developed to estimate the bandwidth of a particular Internet path.

Two related yet distinct metrics associated with the bandwidth on a path are capacity

and available bandwidth. The capacity of a path is the minimum transmission rate of all the

links in the path (i.e., the maximum rate that can be transmitted end-to-end). The available

bandwidth at a particular time is the minimum spare capacity available of all the links in the

path (i.e., the maximum rate that can be transmitted at that time, given the other traffic using

the links on the path). Precise definitions of these metrics are given in [54].

A large number of methods, techniques, and tools have been proposed to measure both

capacity and available bandwidth. Surveys of these techniques include [173, 93, 41, 75].

End-to-end capacity estimation techniques tend to focus on the timing dispersion of packets

sent in back-to-back sequences, either in packet-pairs, longer packet trains, or variants such

as trains of packet pairs [136], as discussed in depth in [173]. These work by comparing

the difference between sender timestamps between groups of packets (which should be close

to zero, since they are sent back-to-back) with the difference in receiver timestamps. The

dispersion in timestamp differences is caused by queueing at the bottleneck link of the path.

The capacity of this link can be estimated by dividing the packet size (the number of bytes

to be transferred) by the dispersion (the time taken to transfer those bytes). A detailed expla-

nation of this process, and the advantages of using shorter trains (i.e., just packet-pairs) are

discussed in [53, 54]. In short, packet-pairs are preferable since they are less sensitive to the

cross-traffic present on Internet paths. Another technique augments the timing dispersion by

also studying the changes in delay between probe packets [104].

A range of tools for estimating available bandwidth have been presented, including [203,

179, 40, 76]. Surveys and comparisons of the effectiveness of these techniques include [173,

41, 75]. An interesting use of available bandwidth estimation is to choose paths in overlay-
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based video streaming using available bandwidth estimates, as discussed in [94]. Although

path selection may not be an option for residential users connected by ADSL or Cable, this

approach might allow applications to avoid congestion elsewhere in the network, or to adapt

other aspects of the video stream (e.g., reduce to a lower quality) based on feedback about

the available bandwidth.

3.1.4 Summary

In this section, I have looked at measurement studies of video streaming applications, more

general Internet measurement studies considering packet loss and delay, and techniques to

estimate bandwidth on Internet paths. These techniques provide useful insight for their par-

ticular applications, but have not been applied together in understanding the performance

of streaming video applications as experienced by residential Internet users. Furthermore,

although some of the measurement studies have provided access to their datasets, these are

generally quite limited (e.g., reporting only summary statistics of measurement traces, rather

than full packet traces). In the remainder of this chapter, I describe my approach to conduct-

ing a measurement study of real-time streaming to residential users, and describe the format

of the data that is available to the research community.

3.2 Methodology

To measure performance of real-time streaming to residential users, I use an active mea-

surement approach, sending RTP traffic [184] (containing video-like payloads) over UDP/IP.

This gives precise control of packet size and timing, allowing generation of traffic patterns

that match commonly used video formats (standard- and high-definition MPEG video [81]).

To perform the measurements, I have used a dedicated platform that can be deployed into

residential premises. This platform is built using Soekris net5501 single-board computers

running FreeBSD 7 with a custom measurement application. These devices are low-power,

easily transported, and can be connected to a home network with zero configuration. This

provides an environment with known timing behaviour to reduce the variability in perfor-

mance of home computers with differing configurations and running a variety of other appli-

cations.
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I focus primarily on end-to-end packet loss and delay performance, since this is what

applications experience, and what drives user perception of the video quality. The mea-

surements also include hop-by-hop probing, using low-rate TTL-limited packets to solicit

ICMP responses from intermediate routers, to attempt to give some insight into the location

of loss events, and how timing disruptions evolve across a network path. Finally, one-way

packet-pair probing is also used to estimate the capacity of the network path. Packet pair has

well-known limitations [54], but because of its ease of implementation, it has been widely

deployed in some commercial streaming systems. With these results, it is possible to explore

the accuracy of the technique on paths where the edge link capacity is known.

I describe two datasets, dataset-A and dataset-B, collected between July 2009 and Septem-

ber 2010. The same general methodology was used for each, although specific details

evolved over time. Tables 3.1 and 3.2 show the residential links hosting receivers, the rates

measured, trace schedules, and durations. Link adsl5 is the same physical link as adsl1, but

was upgraded by the ISP during the course of the study; the others are distinct links. All the

links are located in the UK, with the exception of finadsl0 and fincable0, which are located

in Finland. The server is a well-connected machine at the University of Glasgow. In total,

around 146 million packets were sent in dataset-A within∼2300 traces; in dataset-B, around

96 million packets were sent within ∼1600 traces.

The measurement traffic is constant bit rate RTP/UDP flows where the RTP sequence

number and logical timestamp are augmented with accurate transmission timestamps. Trans-

mission and reception times are logged at the receiver for later analysis. Sender and receiver

clocks are synchronised using NTP, allowing measurement of one-way delay variation, but

not accurate one-way delay, as discussed in Section 3.4.

Most of the participants hosting the measurement devices have monthly-limited or time-

of-day-capped bandwidth usage quotas imposed by their ISPs. Extreme connection throttling

(to a few kb/s) and excess use fees are possible on exceeding the quota. While this was not

considered before the collection of dataset-A, in dataset-B the bandwidth consumption of

the traces was limited to around 2GB per day for each link, a value that avoids exceeding the

volunteers’ quotas. Given the video rates being simulated, the total bandwidth consumed per

day Bday may be calculated as Bday = N × T × (B1Mb/s + B2Mb/s + B5Mb/s), where N is

the number of traces per rate per day, and T is trace length.

To give a snapshot of activity at each time, and capture the variation over different times
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Dates Link Rate Time Trace Length

(Mb/s) (minutes)

2009/06/27- adsl1 1 Hourly at :50 1

2009/07/18 8Mb/s 2 03:15 10:15 15:15 20:15 10

4 05:15 12:15 17:15 22:15 10

6 05:35 12:35 17:35 22:35 10

2009/07/07- adsl2 1 Hourly at :30 1

2009/07/13 2Mb/s 2 04:15 11:15 16:15 21:15 10

2009/06/27- cable1 1 Hourly at :30 1

2009/07/04 2Mb/s 2 04:15 11:15 16:15 21:15 10

2009/07/16- cable2 1 Hourly at :05 1

2009/07/22 10Mb/s 2 04:10 11:10 16:10 21:10 5

4 04:20 11:20 16:20 21:20 5

6 04:30 11:30 16:30 21:30 5

8.5 04:40 11:40 16:40 21:40 5

2009/09/12- adsl1 1 Hourly at :50 1

2009/09/18 8Mb/s 2 03:12 10:12 15:12 20:12 5

4 03:20 10:20 15:20 20:20 5

6 03:32 10:32 15:32 20:32 5

2009/09/12- adsl3 1 Hourly at :05 1

2009/09/18 2Mb/s 2 04:12 11:12 16:12 21:12 5

2009/09/22- adsl4 1 Hourly at :05 1

2009/09/28 8Mb/s 2 04:12 11:12 16:12 21:12 5

4 04:20 11:20 16:20 21:20 5

6 04:32 11:32 16:32 21:32 5

2009/10/07- adsl5 1 Hourly at :50 1

2009/10/13 24Mb/s 2 03:12 10:12 15:12 20:12 5

4 03:20 10:20 15:20 20:20 5

6 03:32 10:32 15:32 20:32 5

2009/10/07- adsl6 1 Hourly at :05 1

2009/10/13 8Mb/s 2 04:12 11:12 16:12 21:12 5

4 04:20 11:20 16:20 21:20 5

6 04:32 11:32 16:32 21:32 5

Table 3.1: Measurement Schedule (dataset-A)
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Dates Link Rate Time Trace Length

(Mb/s) (minutes)

2010/04/25- adsl5 1 (02,05,08,11,14,17,20,23) at :22 4

2010/05/01 24Mb/s 2 (02,05,08,11,14,17,20,23) at :28 4

5 (02,05,08,11,14,17,20,23) at :34 4

adsl6 1 (02,05,08,11,14,17,20,23) at :40 4

8Mb/s 2 (02,05,08,11,14,17,20,23) at :46 4

5 (02,05,08,11,14,17,20,23) at :52 4

2010/05/13- finadsl0 1 (02,05,08,11,14,17,20,23) at :04 4

2010/05/19 8Mb/s 2 (02,05,08,11,14,17,20,23) at :10 4

5 (02,05,08,11,14,17,20,23) at :16 4

cable2 1 (02,05,08,11,14,17,20,23) at :22 4

10Mb/s 2 (02,05,08,11,14,17,20,23) at :28 4

5 (02,05,08,11,14,17,20,23) at :34 4

2010/05/25- cable3 1 (02,05,08,11,14,17,20,23) at :22 4

2010/05/31 20Mb/s 2 (02,05,08,11,14,17,20,23) at :28 4

5 (02,05,08,11,14,17,20,23) at :34 4

2010/06/12- fincable0 1 (02,05,08,11,14,17,20,23) at :04 4

2010/06/18 5Mb/s 2 (02,05,08,11,14,17,20,23) at :10 4

5 (02,05,08,11,14,17,20,23) at :16 4

cable4 1 (02,05,08,11,14,17,20,23) at :22 4

20Mb/s 2 (02,05,08,11,14,17,20,23) at :28 4

5 (02,05,08,11,14,17,20,23) at :34 4

cable5 1 (02,05,08,11,14,17,20,23) at :40 4

20Mb/s 2 (02,05,08,11,14,17,20,23) at :46 4

5 (02,05,08,11,14,17,20,23) at :52 4

2010/08/01- adsl4 1 (02,05,08,11,14,17,20,23) at :22 4

2010/08/07 8Mb/s 2 (02,05,08,11,14,17,20,23) at :28 4

5 (02,05,08,11,14,17,20,23) at :34 4

2010/08/28- adsl7 1 (02,05,08,11,14,17,20,23) at :22 4

2010/09/04 8Mb/s 2 (02,05,08,11,14,17,20,23) at :28 4

5 (02,05,08,11,14,17,20,23) at :34 4

Table 3.2: Measurement Schedule (dataset-B)
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Rate (Mb/s) Size (bytes) Spacing (ms)

1 1316 10

2 1316 5

4 1128 2

5 1316 2

6 752 1

8.5 1128 1

Table 3.3: Sending Rates, Packet Sizes and Spacings

of day,N was chosen to be 8; this allows T to be as long as 240 seconds. The eight traces per-

day capture enough of the diurnal variation seen in the short, hourly traces used previously,

and their increased length gives better insight into the packet delay distributions and the

variations in loss and delay within a trace.

Both datasets used a range of transmission rates, chosen to be representative of both

standard-definition and high-definition video. Due to limited scheduling granularity in the

measurement system, different packet sizes were required to achieve certain transmission

rates (see Table 3.3). In dataset-A the chosen rates cover the full range of bandwidth of the

links; dataset-B used a more limited set of rates, matching common MPEG-TS packetisation

rates, that were achievable with fixed packet size. This gives less coverage of the extremes of

link capacity, but removes the influence of packet size on the results. Similarly, trace lengths

are also standardised in dataset-B.

TTL-limited hop-by-hop probes and packet pair measurements were taken as part of

dataset-B; dataset-A is end-to-end only. Logs of which packets were sent with reduced TTL

were kept by the sender, along with records of the timing of the corresponding ICMP re-

sponses. The TTL-limited packets were sent at a rate of once per second to each of the

responsive routers on the path (determined by probing each of the routers on the path before

starting the measurement). This low rate was chosen to avoid overloading routers, and to en-

sure that only one ICMP response was outstanding at any time, to ease matching of response

packets to probes.

The packet-pairs were sent every ten seconds, by generating two packets back-to-back,

then leaving a gap of twice the usual interval before the next packet to maintain the average
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sending rate. The server logs the timestamps when both packets were sent, as well as the log-

ical RTP timestamps of each of the packets. These are combined with the arrival timestamps

to estimate the path capacity [54].

3.3 Trace Formats

The datasets are arranged hierarchically, with a directory for each link, and within these,

a directory for each rate. The log files are found within these “rate” directories. Re-

ception log files are named according to the time at which they were captured (e.g., -

20100501-0222.log was captured on May 1st 2010, at 02:22). For each trace, an-

other file shows the anonymised output of a traceroute from the receiver to the sender,

taken at the end of the trace. These are named according to the time of capture, with suffix

.rs.traceroute (e.g., 20100501-0222.rs.traceroute).

In dataset-B, the sender also generates log files, named similarly based on the start time

of the trace. The file extension represents the type of file (either .path, .pathprobes,

.packetpairs, or .icmp). Additionally, dataset-B includes traceroutes from sender to

receiver, stored with file extension .sr.traceroute.

The format of the packet trace files captured at the receiver and present in both datasets is

shown in Figure 3.1a. Each line begins with the capture timestamp (all timestamps measure

seconds since 1970). The first line is a header line. The following (rtp...) lines report

capture of each RTP packet, giving the decimal values of the RTP header fields [184] with

a 1MHz RTP timestamp clock. The sender ts fields is the transmission time inserted by

the sender.

Figure 3.1b shows the format of the additional trace files present in dataset-B relating to

packet-pair and hop-by-hop probing. In particular:

� Before the start of the trace, the sender sends five RTP packets to each hop in turn,

checking for multiple IPs per hop, logging the IP addresses of the responses, and

timing out if no response is received after one second. Files with the .path extension

show this mapping from TTLs to (anonymised) router IP addresses; this is used to

match the received ICMP messages to the correct TTL-limited packets, as discussed

in Section 3.4.2.
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c
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b
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b
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re
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v
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b
y

th
e

a
rr

iv
a
l

d
is

p
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b
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c
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p
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a
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a
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p
er

si
o
n

in
se

co
n
d
s

b
et

w
ee

n
th

e
a
rr

iv
a
l
a
n
d

d
ep

a
rt

u
re

ti
m

es
,
re

sp
ec

ti
v
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h
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a
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re
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a
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a
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p
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ra
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a
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a
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b
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p
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c
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a
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b
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a
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p
a
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a
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a
ce

s
a
re

ty
p
ic

a
ll
y

v
er

y
lo

w
,

w
it

h
m

a
n
y

o
f

th
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a
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.
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p
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(
t
s
0
)
(
s
s
r
c
4
7
5
8
3
2
2
9
4
)
(
s
e
n
d
e
r
_
t
s
1
2
7
2
6
7
6
9
2
1
.
2
7
6
8
9
2
)
)

1
2
7
2
6
7
6
9
2
1
.
3
0
7
4
1
0
(
r
t
p
(
v
2
)
(
p

0
)
(
x

1
)
(
c
c
0
)
(
m
0
)

(
p
t
1

u
n
k
n
o
w
n
)
(
s
e
q
4
4
9
5
5
)
(
t
s
1
0
0
0
0
)
(
s
s
r
c
4
7
5
8
3
2
2
9
4
)
(
s
e
n
d
e
r
_
t
s
1
2
7
2
6
7
6
9
2
1
.
2
8
7
1
1
4
)
)

.
.
.

F
ig

u
re

1
:

F
o
rm

a
t

o
f
R

e
c
e
iv

e
r

T
ra

c
e

F
il
e
s

d
a
t
a
s
e
t
-
B
/
a
d
s
l
5
/
c
b
r
1
.
0
/
2
0
1
0
0
5
0
1
-
0
2
2
2
.
p
a
t
h
:

H
o
p

1
:

g
l
a
s
g
o
w
u
n
i
-
3

g
l
a
s
g
o
w
u
n
i
-
3

g
l
a
s
g
o
w
u
n
i
-
3

g
l
a
s
g
o
w
u
n
i
-
3

g
l
a
s
g
o
w
u
n
i
-
3

H
o
p

2
:

g
l
a
s
g
o
w
u
n
i
-
4

g
l
a
s
g
o
w
u
n
i
-
4

g
l
a
s
g
o
w
u
n
i
-
4

g
l
a
s
g
o
w
u
n
i
-
4

g
l
a
s
g
o
w
u
n
i
-
4

.
.
.

d
a
t
a
s
e
t
-
B
/
a
d
s
l
5
/
c
b
r
1
.
0
/
2
0
1
0
0
5
0
1
-
0
2
2
2
.
i
c
m
p
:

i
c
m
p

r
e
c
v
_
t
s
1
2
7
2
6
7
6
9
2
1
.
3
4
0
0
1
8
i
c
m
p
_
s
r
c
g
l
a
s
g
o
w
u
n
i
-
3

i
c
m
p

r
e
c
v
_
t
s
1
2
7
2
6
7
6
9
2
1
.
4
0
8
6
9
9
i
c
m
p
_
s
r
c
g
l
a
s
g
o
w
u
n
i
-
4

.
.
.

d
a
t
a
s
e
t
-
B
/
a
d
s
l
5
/
c
b
r
1
.
0
/
2
0
1
0
0
5
0
1
-
0
2
2
2
.
p
a
t
h
p
r
o
b
e
s
:

p
a
t
h
p
r
o
b
e

s
e
n
d
_
t
s

1
2
7
2
6
7
6
9
2
1
.
3
3
7
3
7
0
r
t
p
_
t
s

6
0
0
0
0
t
t
l
1

p
a
t
h
p
r
o
b
e

s
e
n
d
_
t
s

1
2
7
2
6
7
6
9
2
1
.
4
0
7
7
8
5
r
t
p
_
t
s

1
3
0
0
0
0
t
t
l
2

.
.
.

d
a
t
a
s
e
t
-
B
/
a
d
s
l
5
/
c
b
r
1
.
0
/
2
0
1
0
0
5
0
1
-
0
2
2
2
.
p
a
c
k
e
t
p
a
i
r
s
:

p
a
c
k
e
t
p
a
i
r

s
e
n
d
_
t
s
1
1
2
7
2
6
7
6
9
3
2
.
0
2
4
4
6
0
r
t
p
_
t
s
1
1
0
6
9
0
0
0
0
s
e
n
d
_
t
s
2
1
2
7
2
6
7
6
9
3
2
.
0
2
4
5
0
8
r
t
p
_
t
s
2
1
0
7
0
0
0
0
0

p
a
c
k
e
t
p
a
i
r

s
e
n
d
_
t
s
1
1
2
7
2
6
7
6
9
4
2
.
7
8
3
3
5
7
r
t
p
_
t
s
1
2
1
3
9
0
0
0
0
s
e
n
d
_
t
s
2
1
2
7
2
6
7
6
9
4
2
.
7
8
3
4
0
3
r
t
p
_
t
s
2
2
1
4
0
0
0
0
0

.
.
.

F
ig

u
re

2
:

F
o
rm

a
t

o
f
S
e
n
d
e
r

T
ra

c
e

F
il
e
s

(d
se

t-
B

o
n
ly

)

re
ce

iv
er

.
H

ow
ev

er
,
si

n
ce

w
e

h
av

e
o
n
ly

th
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b
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b
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p
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b
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p
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b
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p
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p
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c
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b
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b
er

,
a
n
d

th
e

2
n
d

a
n
d

3
rd

fi
el

d
s

sh
ow

th
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v
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b
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p
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c
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p
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a
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a
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p
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h
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p
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a
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a
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p
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a
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b
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p
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a
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a
ce

s
sh

ow
in

g
n
o

lo
ss

a
t

a
ll
.

S
o
m

e
va

ri
-

(b
)F

or
m

at
of
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b
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p
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� Files with the .icmp extension contain a line for each of the ICMP messages received

by the sender within the trace. The 3rd field shows the receive timestamp (seconds

since 1970). The 5th field shows the anonymised address of the router that generated

the ICMP packet.

� Files with the .pathprobes extension contain a line for each of the TTL-limited

packets sent within the trace. The 3rd field shows the timestamp (seconds since 1970)

just before the TTL-limited packet was sent. The 5th field shows the RTP timestamp

([184], Section 5.1). The 7th field shows the TTL with which the packet was sent.

When processing the receiver log file, this log file is consulted to make sure the TTL-

limited packets (which stop at the designated router rather than reaching the receiver)

are not counted as lost. It is also processed to calculate per-hop loss rates and round-

trip times for TTL-limited probes.

� Files with the .packetpairs extension contain a line for each of the packet-pairs

sent within the trace. The 3rd and 5th fields show the sender and RTP timestamps

of the first packet in the pair, and the 7th and 9th fields show the sender and RTP

timestamps of the second packet in the pair.

To anonymise the trace files, they are passed through a script that replaces IP addresses

and hostnames with a token; these have been selected to distinguish, but not identify, the

ISPs. The home routers have been named according to the link ID to which they correspond.

3.4 Post-Processing

This section describes some of the post-processing applied to the traces to extract metrics

of interest, including how clock skew is removed from the traces, how one-way delay is

calculated, how the logs of TTL-limited packets and received ICMP messages are processed

to produce round-trip times, and how the packet-pair measurements are used to estimate

capacity. The processed data discussed in this section are also available in the dataset; each

of the following sections describe the processing and file formats used. Figure 3.1c shows

an example of these output files.
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3.4.1 Skew Removal / One-way Delay

Conceptually, one-way delay is obtained by simply subtracting send timestamp from receive

timestamp. This approach assumes that both clocks are running at the same constant rate,

and have zero relative offset. In reality, these assumptions are typically not true, and there-

fore some external clock synchronisation mechanism is required (as considered in [46]).

Although the clients and server are synchronised using NTP [140], the synchronisation is

not perfect, and their clocks are still subject to an unknown relative offset β (the difference

between the values of the clocks), and relative skew α (the ratio of the rates of the clocks).

End-to-end delays are made up of propagation (fixed), serialisation and queueing (vari-

able) components. The true end-to-end delay of a packet i, di (which includes all three

components), is the difference between the sender and receiver timestamps (tsi and tri ) cal-

culated with perfect knowledge of the relative clock offset and skew between sender and

receiver. However, since only the measured timestamps t̃ri and t̃si are available, and the offset

and skew are unknown, the measured end-to-end delay d̃i must be used instead.

This d̃i is subject to the relative offset (β) and skew (α) between receiver and sender

clocks. Since α and β are unknown, they need to estimated from the data; to do this, the

approach proposed by Moon et al. [143] and implemented by Kohno et al. [110] has been

applied. This uses a linear programming technique to generate estimates for the clock skew

and offset, α̂ and β̂. Using these estimates, skew can be corrected as shown in Equation 3.1,

producing the corrected end-to-end delay d̂i as an approximation of di:

d̂i = d̃i − (α̂− 1)t̃si + β̂ (3.1)

Assuming the minimum observed delay d̂min corresponds to a packet that experienced

minimal queueing delays at the routers along the path, the variation of other packets above

d̂min can be seen as a measure of the extent of queueing these packets experienced. d̂min can

be subtracted from the other d̂i values to approximate queueing delay:

DQi = d̂i − d̂min (3.2)

The output of this process is logged in files with the .qdelay extension, as shown in

Figure 3.1c. The first shows the relative arrival time (in seconds, since the start of the trace);

the second shows DQi, calculated as shown in Equation 3.2.
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3.4.2 Matching ICMP Responses

The timestamp and target hop of each TTL-limited probe are obtained from files with the

.pathprobes extension. The timestamp of each received ICMP message is obtained from

the corresponding .icmp file, and the .path file is consulted to identify the hop number

of the sending router. Using these, each probe is matched to its ICMP response by checking

the timestamps of messages received from the router being probed. Since the probes are

spaced at one second intervals (larger than the highest observed RTT), the ICMP message

following a probe is counted as its response, and the RTT is calculated from the send and

receive timestamps. Losses are identified as cases where a sent probe is not followed by an

ICMP response.

The output of this process is logged in files with the .pathprobe rtt extension, as

shown in Figure 3.1c. Each line in this file represents a sent probe and ICMP response.

The 1st field shows the hop number, and the 2nd and 3rd fields show the send and receive

timestamps, respectively. The 4th field contains the RTT for this probe.

Initial analysis of these results suggests that the variability of the RTT measurements

obtained using the TTL-limited probes is high. For example, the variance in the RTT mea-

surements from some routers on the paths show higher variation than the overall end-to-end

delay for that path. This may be due to the variation in ICMP processing times at the routers

(which is done in software, rather than the hardware “fast-path” for normal traffic), or might

be due to traffic shaping of ICMP responses by the routers. Due to this high variability, these

“end-to-middle” RTT results are not studied any further in this dissertation. However, since

the TTL-limited probe and ICMP response traces are available in the published dataset, the

rationale for taking the measurements and their trace formats are included in this chapter for

completeness.

3.4.3 Calculating Capacity with Packet-Pairs

As described in [54], the estimate of capacity, Ĉ is obtained by dividing packet size L (in

this case, 1316 bytes) by the arrival dispersion between the packets in the pair, δ.

Ĉ =
L

δ
(3.3)

Note that this estimate assumes that there is no network cross-traffic, and therefore there
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will be some error in this estimate. Also, since the dispersion δ depends only on the arrival

timestamps (which are local to the receiver), there are no issues relating to clock skew here.

The output of the calculation described in Equation 3.3 is contained in files with the

.packetpair dispersion extension, as shown in Figure 3.1c. The 1st field shows the

arrival time of the second packet in the pair (in seconds since the start of the trace). The

2nd and 3rd fields show the dispersion in seconds between the arrival and departure times,

respectively. The 4th field shows the capacity estimate from this pair, in Mb/s.

3.5 Discussion & Summary

In this chapter, I have introduced new measurements of RTP-based streaming to residential

Internet users (the first such dataset publicly available). This improves upon previous In-

ternet measurement work by integrating performance measurement of real-time application

traffic to residential ADSL and Cable links. I have explained my measurement approach,

which uses a dedicated measurement platform to send and receive RTP streams with the

characteristics of video streams, and outlined the format of the trace data that are available

at http://martin-ellis.net/research/datasets.

With these measurements, it is now possible to study the effect of the packet loss and

delay conditions of residential networks on real-time video streaming. This allows more re-

alistic simulation work and evaluation of application performance. In Chapter 4, I analyse the

high-level characteristics of the packet loss, delay, and capacity measurements, to understand

how streaming traffic is affected by residential ADSL and Cable networks. The packet loss

traces will be examined in more depth in Chapter 5, and the accuracy of existing models used

for packet loss simulation will be tested. In Chapter 6, the delay and loss measurements will

be combined to give a more complete view of the network behaviour (particular in terms of

network state and congestion), and give a more accurate model for packet loss. The packet

loss measurements are used again in Chapter 7 to show the performance of forward error

correction (FEC), an important element of streaming video performance.

http://martin-ellis.net/research/datasets
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Chapter 4

Analysis of Packet-Level Characteristics

The measurements presented in Chapter 3 contain data on the performance of inter-domain

RTP streaming from the perspective of residential users, giving insight into the performance

of streaming video applications. Using these measurements, the typical performance of

streaming video running over ADSL and Cable links can be understood. Three important

metrics for the performance of these applications are packet loss (since this determines the

quantity of data that successfully arrives at the receiver), delay (since real-time applications

require a relatively predictable packet arrival rate so that the video can be smoothly decoded

and played out), and capacity (since this determines the rate at which video can be transmit-

ted, and therefore its quality).

In this chapter, I present a high-level analysis of the packet level characteristics of the

measurement traces presented in Chapter 3, to describe the loss and delay characteristics of

residential networks. I investigate patterns in performance due to time-of-day, sending rates,

and link type, and examine the relationship between packet loss and queueing delay. I also

discuss the performance of packet-pair measurements in estimating the capacity of ADSL

and Cable links, and investigate the feasibility of using packet-pairs to identify whether res-

idential receivers are connected to either ADSL or Cable links.

This chapter is structured as follows. Section 4.1 describes the packet loss characteristics

seen in the measurement traces, focusing on the effect of time-of-day, sending rate, and link

type. This section also gives a high-level overview of the loss and receive run-length distribu-

tions seen in the measurements, and investigates the relationship between loss and queueing

delay. Section 4.2 presents results of queueing delay, including variation over time-of-day

and different sending rates, and studies the variability present in the queueing delay distri-
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butions of the traces. Section 4.3 describes the results of the packet-pair capacity estimation

in the measurements of Chapter 3, explaining why these are inaccurate for Cable links, and

outlining a possible technique to use this to classify ADSL and Cable links. Section 4.4 gives

a summary of the chapter.

4.1 Packet Loss

This section discusses the packet loss characteristics seen in the measurements of residential

links. Understanding packet loss is important since it is a key factor in the quality perceived

by the users of streaming video systems. For example, techniques to improve performance

such as FEC need to be tuned to work with the particular loss patterns and characteristics

of the networks to which they are applied. Section 4.1.1 describes loss rates seen in the

measurements, comparing variation between different links (and access types), sending rate,

and time of day. Section 4.1.2 analyses the burstiness of packet loss in more detail, examining

the typical lengths of loss bursts and gaps between losses. Section 4.1.3 looks at how the

sources of different losses might be identified, allowing the classification of losses as being

either “congestive” or “non-congestive”. Section 4.1.4 summarises the findings of analysing

the packet loss measurements.

4.1.1 Comparing Loss Rates

In this section, the loss rates of the different links, and time-of-day variation in loss rates are

examined. Previous studies of residential Internet performance have found diurnal variation

in packet loss [49]; this section seeks to see if such behaviour is also present in dataset-A

and dataset-B. Figures 4.1 and 4.2 show the packet loss over times of day, for the links in

dataset-A and dataset-B, respectively (the measurement schedules were described in Section

3.2). Differences between the links are obvious, with some links (e.g., adsl3 and adsl7)

showing time-of-day variation, and others showing very little (with either occasional spikes

of packet loss, or low loss rates throughout). For link adsl7, the time-of-day variation in loss

rates is more pronounced at higher sending rates (i.e., at higher sending rates, more loss is

observed). This suggests there is congestion within the ISP network, since loss rates increase

when the network is more heavily loaded.
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Figure 4.1: Loss Rate Time-Series (dataset-A)
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Figure 4.2: Loss Rate Time-Series (dataset-B)
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Some links show time-of-day variation in packet loss, while others appear fairly stable

throughout the measurement period. Interestingly, link adsl6 shows this variation in dataset-

A, but did not in dataset-B, showing that the performance of the links can also change over

long timescales.

Another pattern in the loss rates can be seen for links cable1 at 2Mb/s and fincable0

at 5Mb/s. In both these cases, there is a mostly consistent non-zero loss rate throughout

the entire measurement period. These loss events occur periodically within the traces, sug-

gesting that the packet loss is due to traffic shaping being employed by the ISPs to enforce

the bandwidth allocations in the customers’ subscriptions. Since the sending rates of these

streams (2Mb/s and 5Mb/s) are close to the subscription bandwidths reported in Tables 3.1

and 3.2, it appears the measurement streams are slightly exceeding the allowance, causing

packet loss. Since these losses are artificial, and are caused by ISP policy rather than network

performance, the affected traces (cable1 at 2Mb/s, and fincable0 at 5Mb/s) are excluded from

further study. However, it is worth noting that this type of behaviour is present, and applica-

tions such as over-the-top video streaming should take this into account, possibly providing

mechanisms to adapt to such long-term limitations in network performance.

4.1.2 Loss Burstiness

This section examines the “burstiness” of packet loss (i.e., looking at the lengths of loss

bursts, and the frequency of their occurrence). Understanding this behaviour is important

since the effect of packet losses on the performance of streaming video and FEC is related to

packet loss burstiness [70, 103].

Figures 4.3 and 4.4 show the loss run-length distributions of each of the links in dataset-

A and dataset-B. These figures show the complementary cumulative distribution function

(CCDF), showing the fraction of loss bursts longer than that of the x value. This is commonly

used in analysing network data, since it allows the plot to be easily understood with a log-

scale to show the differences between small values.

Most links show a relationship between the sending rate and the frequency of longer loss

run-lengths. This is likely due to the fact that at higher rates, more packets are being sent

within a fixed period of time (i.e., the inter-packet spacing is smaller), so that more packets

are affected by periods of loss in the network. This might be due to periods of link noise or

periods of network congestion that are present for a fixed length of time. This can be seen
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Figure 4.3: Aggregate Loss Run-Length Distributions (dataset-A)
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Figure 4.4: Aggregate Loss Run-Length Distributions (dataset-B)
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Figure 4.5: Aggregate Receive Run-Length Distributions (dataset-A)



4.1. PACKET LOSS 62

10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000

C
C

D
F

 (
F

ra
ct

io
n

 >
 x

)

Receive Run Length (packets)

adsl4 : 1.0Mb/s

adsl4 : 2.0Mb/s

adsl4 : 5.0Mb/s
10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000

C
C

D
F

 (
F

ra
ct

io
n

 >
 x

)

Receive Run Length (packets)

cable2 : 1.0Mb/s

cable2 : 2.0Mb/s

cable2 : 5.0Mb/s

10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000

C
C

D
F

 (
F

ra
ct

io
n

 >
 x

)

Receive Run Length (packets)

adsl5 : 1.0Mb/s

adsl5 : 2.0Mb/s

adsl5 : 5.0Mb/s
10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000
C

C
D

F
 (

F
ra

ct
io

n
 >

 x
)

Receive Run Length (packets)

cable3 : 1.0Mb/s

cable3 : 2.0Mb/s

cable3 : 5.0Mb/s

10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000

C
C

D
F

 (
F

ra
ct

io
n

 >
 x

)

Receive Run Length (packets)

adsl6 : 1.0Mb/s

adsl6 : 2.0Mb/s

adsl6 : 5.0Mb/s
10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000

C
C

D
F

 (
F

ra
ct

io
n

 >
 x

)

Receive Run Length (packets)

cable4 : 1.0Mb/s

cable4 : 2.0Mb/s

cable4 : 5.0Mb/s

10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000

C
C

D
F

 (
F

ra
ct

io
n

 >
 x

)

Receive Run Length (packets)

adsl7 : 1.0Mb/s

adsl7 : 2.0Mb/s

adsl7 : 5.0Mb/s
10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000

C
C

D
F

 (
F

ra
ct

io
n

 >
 x

)

Receive Run Length (packets)

cable5 : 1.0Mb/s

cable5 : 2.0Mb/s

cable5 : 5.0Mb/s

10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000

C
C

D
F

 (
F

ra
ct

io
n

 >
 x

)

Receive Run Length (packets)

finadsl0 : 1.0Mb/s

finadsl0 : 2.0Mb/s

finadsl0 : 5.0Mb/s
10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000  10000  100000

C
C

D
F

 (
F

ra
ct

io
n

 >
 x

)

Receive Run Length (packets)

fincable0 : 1.0Mb/s

fincable0 : 2.0Mb/s

Figure 4.6: Aggregate Receive Run-Length Distributions (dataset-B)
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by looking at the loss run-length distributions for cable2 at 6Mb/s and 8.5Mb/s in Figure

4.3. Recall from Table 3.3 that both these sending rates have a 1ms inter-packet spacing,

and only vary in their packet size. In Figure 4.3, their loss run-length distributions almost

overlap, while the lower sending rates (with larger inter-packet spacing) are disjoint.

In Figures 4.3 and 4.4, the distributions show that most loss bursts are short, and in al-

most all cases, single packet loss bursts are the most common, by a large margin. This result

is consistent with prior Internet loss measurements [30, 224, 28, 128]. Some of these studies

suggest that loss burst distributions follow a heavy-tailed distribution, with the possibility

of extremely large values [128]. Considering the tail behaviour of a variable or dataset es-

sentially means examining how its probability density function decays as it approaches zero.

Light-tailed distributions are said to decay at least as rapidly as the exponential distribution

(e.g., the normal distribution). On the other hand, subexponential distributions decay less

rapidly than the exponential. This class of distributions include heavy-tailed distributions,

which have a distinctive power-law shape. A random variable X follows a heavy-tailed

distribution if it satisfies:

P [X > x] ∼ kx−α as x→∞

When the complementary cumulative distribution function of X is plotted on log-log

axes (an LLCD plot), it will appear as a straight line with gradient −α (in this context, α

is often called the tail index). For further detail on the study of heavy-tailed behaviour in

Internet traffic, see [42, 2].

In [128], this technique is used as evidence that the packet loss bursts follow a heavy-

tailed distribution. However, since these the results in Figures 4.3 and 4.4 show distributions

aggregated from a number of traces taken at different times, it is somewhat misleading to

discuss the run-length distributions in this way. Instead, these figures show the relative pro-

portions of different lengths of loss bursts throughout the datasets. Since the traces exhibit a

widely varying range of loss behaviours (as Chapter 5 will explain in detail), I do not believe

it makes sense to describe the loss run-length distributions seen across the whole dataset as

being heavy-tailed. The obvious non-stationarity seen at different times of day (and even

within individual traces) shows that a number of different processes at responsible for the

loss behaviour.

Figures 4.5 and 4.6 show receive run-length distributions across the same links. These

show a wide variation in receive run-lengths (i.e., loss-free runs), from single packets, up to



4.1. PACKET LOSS 64

runs of tens of thousands. The high frequency of single packet receive runs highlights that

there are periods where packets are received between bursts of lost packets. The extremely

long receive runs show cases where all or most of the trace was received with no loss. There

are traces where both extremes exist, with very short receive runs between loss bursts, and

very long receive runs. The presence of these differing types of behaviour has important

implications for video performance and tuning, as well as developing packet loss models, as

will be discussed in more detail in Chapter 5.

The loss run-length distributions in Figures 4.3 and 4.4 show that while most loss bursts

are short, there are rare cases of very large loss bursts over 100 packets. For most links,

larger maximum loss burst lengths are seen at higher sending rates. Figures 4.5 and 4.6 show

that there is a wide range in receive run-lengths. Many of the receive runs contain fewer than

ten packets, indicating that there are periods where losses occur close together, separated by

just a few received packets. This finding shows that although most loss bursts are short, it

does not necessarily mean that most lossy periods are short; there may instead be multiple

loss bursts, separated by a few received packets (the implications of this will be discussed in

detail in later chapters).

4.1.3 Congestive and Non-Congestive Loss

As discussed in Section 2.2, packet losses may be due to a number of sources, such as lower-

layer errors (e.g., noise on at the physical layer causing checksum failures), or packets being

discarded at routers due to congestion or network policy (i.e., traffic shaping). A character-

istic of packet loss due to congestion is that the previous packets will often experience larger

queueing delay as the queue at the congested router fills. In this section, I show examples of

the relationship between queueing delay and packet loss, and using a simple classification,

give a breakdown of how often packets are lost during congested periods.

Figure 4.7 shows an example of congestive packet loss, where the queueing delay DQ

sharply increases from a steady period of around 0.02s to more than 0.2s. After this, the DQ

eventually falls (alongside packet losses) before returning to normal. These packet losses are

likely to be caused by the router discarding packets with a drop-tail policy.

With this, a simple method to gain insight into the types of losses seen on different links

and at different sending rates is to compare the queueing delay experienced before each

loss event to the average queueing delay for that trace, and estimate whether that loss was
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Figure 4.7: Example of Congestive Packet Loss

congestive (i.e., caused by congestion) or non-congestive. Figures 4.8 and 4.9 show the

results of classifying each loss event in dataset-A and dataset-B, respectively. For each loss

event, if the DQ of the previous packet received before the loss is greater than twice the

median DQ for the trace, the loss is classified as congestive; otherwise, it is considered to

be non-congestive. The figures show differences between the links, but again do not show a

clear distinction between ADSL and Cable, suggesting that more in-depth analysis is needed.

4.1.4 Summary

This section has illustrated some of the high-level features in the packet loss measurements.

From the measurements analysed here, it is clear that there are differences between links,

with some showing time-of-day variation and others not, a range of shapes of loss and receive

run-length distributions, and differing degrees of congestive and non-congestive packet loss.

However, there does not appear to be a clear distinction between ADSL and Cable, with

different links of the same type behaving differently. Although Cable links appear to have

generally lower packet loss, link cable3 appears to be more lossy than the others, and while

most Cable links experienced no loss bursts longer than ten packets, cable3 showed some

loss bursts of more than 100 packets). For this reason, in further analysis I will treat each

link separately, rather than aggregating links of the same type.
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4.2 Queueing Delay

This section describes the characteristics of queueing delay (DQ) in the measurement data.

Understanding queueing delay is relevant since this is an important indicator of network

performance (i.e., whether there are signs of congestion), and also because video applications

tend to be sensitive to variability in delay. First, I examine the effect of time-of-day on

queueing delay in Section 4.2.1, and then describe the distributions of queueing delay in

Section 4.2.2, both for individual traces, and aggregated over all the traces for each link.

4.2.1 Effect of Time-of-Day

Figures 4.10 and 4.11 show time-series of queueing delay over time for dataset-A and

dataset-B. These show, for each trace, the median and inter-quartile range (IQR) of the de-

lays, to give a sense of the average and variation in DQ. Median and IQR are used instead

of other statistics (e.g., mean and standard deviation), since they are more robust in cases of

skewed (or non-symmetric) distributions (Section 4.2.2 will discuss how the delay distribu-

tions are skewed).

As with the loss time-series seen earlier in Figures 4.1 and 4.2, there are clear differences

between the links, with some showing evidence of time-of-day variation (e.g., cable3), and

others showing consistent values of delay (e.g., cable5). Links adsl7 and cable3 also showed

time-of-day variation in packet loss, as seen in Figure 4.2, with the periods of high packet

loss matching those with higher queueing delay. However, link adsl3, which showed time-

of-day variation in packet loss, does not show the same variation in queueing delay.

Another interesting observation is that there are differences in some of the links measured

in both dataset-A and dataset-B, between the first and second measurement periods. For

example, in dataset-A, link adsl4 shows very stable DQ behaviour (the most stable of all the

links in dataset-A), while in dataset-B, it has changed to be more variable both within traces

(i.e., higher IQR per-trace) and between traces (i.e., showing some time-of-day variation).

Similarly, link adsl6 has changed, going from the most variable in dataset-A, to among the

most stable in dataset-B. This illustrates that the performance of links can change (e.g.,

due to changes in the ISP network and customer demand), and that although application-

layer performance may be good at one measurement point, it can degrade (or, conversely,
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Figure 4.10: Queueing Delay Time-Series (dataset-A)
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Figure 4.11: Queueing Delay Time-Series (dataset-B)



4.2. QUEUEING DELAY 71

improve) over time. Therefore, being able to monitor performance in deployed systems is

vital to ensure they can be adjusted to cope with changes in network performance.

4.2.2 Queueing Delay Distributions

The variable queueing delay behaviour seen for some links in Figures 4.10 and 4.11 suggests

that understanding the queueing delay characteristics may not be straightforward, and that

looking at the wholeDQ distribution (rather than just summary statistics) may give important

insight. Understanding the whole range of delay characteristics is important, since video

streaming applications rely on understanding the delay characteristics of the network so they

can tune their own behaviour (e.g., determining the appropriate size for de-jitter buffers at

video receivers). Therefore, this section studies the distributions of DQ, to understand how

variable the delay behaviour is within particular traces, and to compare this between traces

(over time and between different links).

Investigations into the queueing delay distributions show that many have a Gamma-like

shape, with strong left peak, and a right-skewed tail; this corresponds to most delays being

close to a baseline value, with peaks appearing from time to time (e.g., Figures 4.12a and

4.12c). Some other traces also have a less skewed distribution (sometimes appearing more

Normal-like), corresponding to queueing delay fluctuations around a central point (e.g., Fig-

ure 4.12b), while others have a completely different shape that is hard to define (e.g., Figure

4.12d). These different “classes” of distribution are consistent with previous studies of de-

lay [83, 29], where a large fraction of measured traces showed Gamma-like distributions for

queueing delay.

The inter-quartile range (IQR) of each trace is examined to identify traces with high

variability, such as the one in Figure 4.12d. The distribution of IQRs across all the traces is

shown in Figure 4.13. The DQ IQR is quite low for the majority of traces, although there

is a long tail in the aggregate IQR distribution containing traces with higher IQRs. These

traces will show a large degree of variability in DQ, and are therefore worth examining in

more detail. To identify the traces with more variability, a threshold of 5ms is chosen using

the distributions in Figure 4.13 as a guide.

For these traces with higher IQR, some show a Gamma-like shape, while others show

a quite different shape (including more “symmetric” distributions, “bimodal” distributions,

and others). The traces with Gamma-like shape (i.e., strong left peak, and right tail) in the
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delay distribution show traces with most delays close to zero, with occasional spikes, as

shown in Figures 4.14a and 4.14b. These spikes sometimes coincide with loss periods, with

losses often (although not always) occurring during periods of increased delay. A few of the

traces show “mode switches” between less variable and more variable delay (typically asso-

ciated with more bursty, higher packet loss). This queueing behaviour is probably present

when queues along the end-to-end path are not full, and occasional spikes indicate the queue

filling (and losses occur when the queues overflow). All the time-series with more symmet-

ric shapes in the delay distribution (e.g., the example in Figures 4.14c and 4.14d) have a

more variable delay, but there is not an obvious relationship to higher packet loss. Although

there is more variability, the values are oscillating around a middle value, rather than spiking

up from a lower value (as with the traces with Gamma-like distributions). In these traces,

packet losses tend to be spread out throughout, rather than grouped into bursts. This sug-

gests that the queues in the network are quite full, and losses (frequently) occur due to queue

overflows. The traces do not show long periods of low delay since the queues do not drain.

The traces with delay distributions appearing to be bimodal tend to be fairly similar to the

symmetric ones, as well as having periods of low loss like those with the left-peaked distri-

bution. This group is somewhere between the left-peaked and symmetric traces, since the

traces are exposed to both types of behaviour (periods of unloaded queueing and almost full

queues). Figures 4.14e and 4.14f show an example of this behaviour. Finally, the traces with

“other” distributions seem to be the most interesting, although these are quite rare. These

traces show examples of delay “sawtooths”, with delay spiking up to some value, then some

period of loss, followed by a drop in delay. There are also examples of clear mode switches

between low loss, low delay to high loss, high delay, as shown in Figures 4.14g and 4.14h.

Many of the traces with highest loss rates appear in this group.

Among the traces with lower IQR (which make up most of the traces), the vast majority

appear to have a Gamma-like shape similar to the example in Figure 4.12a. This is consistent

with the queues in the network being unloaded most of the time, with occasional spikes in

DQ due to cross-traffic. These findings are indicative of the dataset as a whole, in that much

of the time conditions are good, while occasionally poor performance is encountered (either

with periods of packet loss, spikes in delay, or both).

The distributions obtained by aggregating the queueing delays observed for each link

and rate are shown in Figures 4.15 and 4.16. These are shown as CCDFs (as in [128]), to
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Figure 4.15: Aggregate Queueing Delay Distributions (dataset-A)
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Figure 4.16: Aggregate Queueing Delay Distributions (dataset-B)
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see the types of distribution (and whether these are heavy-tailed). The “straight-line on log-

log axes” often cited as being indicating heavy-tailed behaviour is not present for the delay

distributions shown here. However, since the individual delay distributions seen in Figures

4.12 and 4.14 show very different behaviour, the aggregate distributions just show the range

of this variation (for particular links and sending rates). As with packet loss it is clear that the

links have different behaviour (the distribution shapes are very different), and that it is not

possible to group the links together as either ADSL or Cable links. Furthermore, it is again

clear that the performance of some of the links changed between dataset-A and dataset-B,

with the shape of the DQ distributions for adsl4, adsl6, and cable2 changing between the

datasets (probably due to upgrades or configuration changes by the ISPs). These results

suggest that since the distributions change over time (both with time-of-day variation, and

differences year-by-year), looking at the aggregate distributions is less useful than studying

the in-depth performance of the traces.

4.2.3 Summary

This section has discussed the queueing delay behaviour present in the measurement data

presented in Chapter 3. As with packet loss, some obvious patterns like time-of-day varia-

tion were present, although not on all links. Also like packet loss, it appears that there are

no obvious differences in performance due to the link type, but that the performance of the

individual links can vary widely. Furthermore, examination of the queueing delay distribu-

tions at the trace level (i.e., plotting the DQ distribution from each trace separately, as seen

in Figures 4.12 and 4.14) shows that the performance can vary even within traces. Therefore,

further work should focus on understanding the variability within traces and the underlying

behaviour of the network, such as congestion state, as discussed in Section 4.1.3.

4.3 Analysis of Packet-Pair Measurements

This section discusses the results of estimating the capacity of the end-to-end path between

the sender and residential receiver using the packet-pair technique, as outlined in Section

3.2. I show the results obtained from the estimates, discuss their accuracy, and highlight

interesting differences between the performance of the estimation from the ADSL and Cable

links. Some further work investigating these differences is also presented.
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4.3.1 Initial Packet-Pair Results

As discussed in Section 3.4.3, the arrival times of the two packets send back-to-back can be

used to calculate an estimate of the capacity, as discussed in detail in [54]. The estimates

from each link and rate were calculated using Equation 3.3. Figure 4.17 shows the capacity

estimates obtained from each link. There are differences between some of the ADSL and

Cable links, with the estimates obtained from the ADSL being fairly close to what they

are expected to be, based on the speeds reported by the participants (between 8Mb/s and

24Mb/s), while the estimates for Cable are much higher, between 30Mb/s and 50Mb/s. This

illustrates a clear difference between ADSL and Cable links. For the ADSL links, the packet

pair capacity estimates match the values stated by the participants in Table 3.2 (except adsl5

and adsl6), while the Cable links are not close at all. Further examination of the adsl5 and

adsl6 links, looking at the downstream ADSL line rate as reported by the ADSL modem,

shows that the packet-pair estimates shown in Figure 4.17 are actually fairly accurate. For

adsl5, Figure 4.17 shows a strong mode between 5 and 10Mb/s; this is much lower than the

24Mb/s quoted in Table 3.2, but is close to the 6Mb/s reported by the modem. Although the

service is marketed by the ISP as “up to 24Mb/s”, lower rates are actually achieved in practice

(e.g., due to noise on the line, or distance from the exchange). For adsl6, the modes in the

packet-pair capacity estimate distribution are around 15-20Mb/s, which is close to 15Mb/s,

the rate reported by the modem. However, although the packet-pair estimates appear quite

accurate for ADSL links, the estimates obtained from Cable links are not.

One possible explanation for this is that since Cable uses a time-shared downstream chan-

nel, the estimates of 50Mb/s are due to both packets in the pair passing through in a single

time slice. Therefore, although lower rates are achievable over the long-term (according to

the fraction of time allocated to the user’s subscription), the packet-pair estimates suggest

that capacity is higher. In this sense, what is being estimated is not the capacity of the user’s

link, but rather the overall capacity of the shared downstream channel. This explanation is

consistent with the findings of [120], which observed similar behaviour when sending packet

pairs over Cable links. Since ADSL does not use this kind of time-shared access, this feature

is not present for the ADSL links, and so in that case, the packet-pair estimates are more

accurate.
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Figure 4.17: Packet-Pair Capacity Estimate Distributions (dataset-B)
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Figure 4.18: Capacity Estimate Distributions from Packet Trains (initial results)

4.3.2 Additional Measurements using Packet Trains

To validate the hypothesis that the erroneous capacity estimates obtained from Cable links are

due to the downstream link scheduling in Cable, further experiments using packet trains (i.e.,

longer runs of back-to-back packets [54]) were conducted. The aim of these experiments was

to show that, due to the lower-layer link scheduling on the Cable links, some packet-pairs

pass through on a single time-slice at a higher instantaneous transmission rate, while others

are separated between two time slices (separated on arrival by a large spacing).

In an initial study, conducted in Autumn 2010, packet trains of five 1316-byte packets

were sent to one ADSL and one Cable link, from the same university-based host as in Chapter

3. The trains were separated by one second (so that their results are independent), and the

packets within the train were sent as close together as possible. For each packet, the send and

receive timestamps were recorded. Using this data, four pairs were identified in each train,

from packet IDs (0,1), (1,2), (2,3), and (3,4), and capacity estimates were derived from each

pair. Note that the per-pair capacity estimates are used, rather than the estimates obtained

from the timestamps at the start and end of the whole train, since that approach exposes the

timing to more variability due to cross-traffic [54].

These initial results are shown in Figure 4.18. For the ADSL link (Figure 4.18a), the

results are as before, with the capacity estimates from different pairs falling around the same

range. However, for the Cable link (Figure 4.18b), the capacity estimates depend on which

packet-pair they are calculated from. The estimates obtained from the (2,3) pair are far lower

than those from the other pairs, which show the higher-than-expected capacity seen in Figure

4.17. This supports the theory that the higher capacity estimates obtained from Cable links
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Figure 4.19: Capacity Estimate Distributions from Packet Trains (further results)

in the original dataset-B packet-pair measurements are due to both packets in the pair being

transmitted in a single lower-layer time slice. The lower estimates obtained from the (2,3)

pair correspond to the case where the pair is split between two time slices.

Since these preliminary experiments implied a difference between the performance of

capacity estimation using packet trains, it is possible that these might be used as part of a

technique to identify access network types (e.g., as in [217], but using capacity estimates

instead of inter-arrival times). Having an accurate technique to uncooperatively estimate

access network type would be useful for over-the-top streaming video (e.g., allowing video

parameters to be tweaked based on the access network type).

To investigate the feasibility of using packet trains as a link classification technique,

some further measurements were collected, to determine whether the phenomenon in Figure

4.18b holds for Cable links in general. In these subsequent experiments (taken in Spring

2011), trains of packets were sent from the same university-based host as in Chapter 3 to

four Cable receivers. The results of these experiments are shown in Figure 4.19. The results

for two receivers, cable1 and cable6, appear similar to before, with the (2,3) pair showing
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much lower capacity estimates than the rest. However, the estimates from the other receivers

(cable2 and cable3) are different, no longer showing clear differences between the (2,3) pair

and the others. Note that since the initial experiments also included receiver cable2, it is clear

that something about the link changed during the measurement periods (such as an upgrade

to the infrastructure, or a change in configuration). These results suggest that there is some

promise to using packet trains for link identification, but that further work is required to

investigate its feasibility, and the relationship between the Cable network configuration (i.e.,

sizes of lower-layer time slices) and the accuracy of the packet trains.

4.3.3 Summary

This section has discussed the results of estimating the capacity of end-to-end Internet paths

traversed by residential broadband traffic. I have shown that for ADSL links, the packet-pair

approach is fairly accurate, giving results quite close to the true capacity of the ADSL line.

I have also confirmed previous findings about the inaccuracy of packet-pair based capacity

estimates for Cable lines, and showed using additional packet train measurements that the

downstream link scheduling policy used in Cable is responsible for this inaccuracy. An

interesting avenue for future work would be for a sender to exploit this difference in accuracy

to determine the type of access link (i.e., ADSL or Cable) being used by an arbitrary receiver.

Initial investigations have showed that this might be possible, but that more work is needed,

particularly in understanding the effect of Cable network configuration on this technique.

4.4 Discussion & Summary

In this chapter, I have studied the high-level characteristics of the measurement data intro-

duced in Chapter 3, looking at results of packet loss, queueing delay, and capacity estimation.

I have shown that for packet loss and queueing delay, there is a large amount of variation

present between different links, on different traces for the same link, and in some cases even

within the same trace. Some links show time-of-day variation in loss rates and queueing

delay (as seen in other studies), but others do not. Similarly, the different sending rates used

in the measurements affect loss rates, loss run-length distributions, and queueing delay for

some of the links. An important issue is that these differences between rates tend not to be
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related to the access technology (i.e., ADSL and Cable links do not always behave the same).

As such, further analysis will treat each link separately.

One exception to this finding is the results of packet-pair based capacity estimation,

where there is a clear difference between ADSL and Cable links. The results of this esti-

mation are interesting, since the capacity estimates obtained for ADSL links are reasonably

accurate, while the estimates obtained for Cable tend to be over-estimates with large vari-

ance. The reason for the inaccuracy on Cable links is due to the underlying mechanism used

to control access to the shared physical medium. Although this may prevent estimation of

link capacity using packet-pairs, it may be possible to exploit this inaccuracy in capacity es-

timation to classify the access network type as either ADSL or Cable, although further work

is needed to investigate this.

The packet loss and delay behaviour observed in the measurements, particularly the con-

gestive loss discussed in Section 4.1.3, suggest a difference between these measurements

of end-to-end paths towards residential users and previous measurements of backbone net-

works. Previous work on measuring the performance of backbone networks suggested that

there was low loss and not much variability in delay, indicating that “there was little conges-

tion along the end–end path” [95]. However, the results presented in this chapter have shown

evidence of congestive packet loss (Figure 4.7), as well as highly variable queueing delay

(Figure 4.12d). Therefore, at least in some cases, the conditions experienced by residential

users are different from those in backbone networks.

The large variation between the links and between traces of the links themselves indicate

that for the following chapters, working on a per-trace basis is the most appropriate. Since

these chapters will look at how to model, simulate, and evaluate application performance, it

makes sense to focus on understanding the characteristics of a particular link at a particular

time, rather than trying to consider the performance of the links as a whole. Once the be-

haviour during the relatively short periods of time seen in the measured traces is understood,

conclusions can be drawn about the behaviour of the links in general.
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Chapter 5

Evaluating Markov Models for Packet

Loss

Packet loss in residential broadband networks can disrupt end-user experience for many real-

time network applications used in the home, such as Internet video and conferencing, and

has highly variable behaviour, as described in Chapter 4. Using statistical models to cap-

ture the behaviour of these packet loss processes allows analytic and simulation studies to

evaluate the performance of new applications and services, without the need for full-scale

deployments. Moreover, by using models, network performance can be represented using

only a set of model parameters, rather than relying on full packet traces (which may require

a large amount of memory or storage capacity), or summary statistics, which tend to give a

limited perspective.

Many studies have used Markov-chain models such as the classical Gilbert model to

simulate packet loss processes; however, the accuracy of these models for characterising

packet loss on residential broadband networks remains untested. Since the technologies,

configuration, and usage of residential networks differs from those of academic or enterprise

networks, different loss characteristics can be seen, as discussed in Chapter 4.

In this chapter, I apply a number of well-known Markov models to the measurements

of packet loss described in Chapter 3, to evaluate the accuracy of these models in captur-

ing real-world packet loss behaviour as seen by residential broadband users. The evaluation

process consists of two parts. First, I evaluate model performance by generating a small

number of synthetic sequences from the model for each trace. I compare these to the original

trace sequence, looking at metrics important to the application, and visualise the packet loss
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sequences themselves, for some representative example traces. Then, I use a more general

approach, generating a larger number of synthetic sequences from each trace, and apply a

goodness-of-fit test to validate whether each particular model captures a range of statistics

of the packet loss traces. The results show that while in many cases these well-known mod-

els capture the measured loss conditions, there are also periods where distinctly different

behaviour is present, which cannot be captured using these models. I explain why the loss

behaviour in the traces varies, and why the models are unable to capture the range of be-

haviour in the loss patterns. Chapter 6 will incorporate packet delays into the modelling,

but this chapter will focus on loss alone. This allows the introduction of the modelling tech-

niques on the simpler case, and establishes how much can be understood about the network

using existing models that use only loss observations. Also, since there is a larger body

of existing work on loss modelling, although not for residential broadband networks, this

provides a more suitable starting point.

This chapter is structured as follows. Section 5.1 describes the Markov models that will

be evaluated in this chapter. Section 5.2 details the first part of the approach I will use to

evaluate models, including performance and comparison metrics. Section 5.3 presents the

results of the first part of the evaluation, showing how each model captures the performance

metrics described in Section 5.2. Section 5.4 presents the second part of the evaluation,

examining the overall performance of the models across all the traces, by generating a large

number of synthetic sequences in a process called parametric bootstrap. Section 5.5 explains

why the models perform as they do, and suggests how they can be improved. Section 5.6

discusses alternative approaches to modelling, and how these techniques might be applied

to the data to better understand network performance. Section 5.7 gives a summary of the

chapter.

5.1 Models for Packet Loss

This section describes the Markov models that will be evaluated in this chapter. For these

models, the parameters and parameter estimation process are described in detail, and their

benefits and drawbacks are compared.
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5.1.1 Gilbert Models

The simplest of the Markov models considered is a two-state Markov chain. The model first

proposed by Gilbert [73] and later expanded by Elliott [59] contains two states (GOOD and

BAD). As shown in Figure 5.1, in the Gilbert-Elliott model the GOOD state produces errors

with probability (1− k), and the BAD state produces errors with probability (1− h).

This can be simplified by setting h = 0, and k = 1, such that the GOOD state never

produces losses, while the BAD state always does, as shown in Figure 5.2. Hereafter, this will

be referred to as the Simple Gilbert Model (SGM). In this model, the observation sequence

Zi (i.e., a “bitmap” of packet loss) directly represents the state of the model.

The parameters of the SGM are p, the probability of losing a packet, given that the

previous packet was received (i.e., the “first loss” probability), and q, the probability of

receiving a packet, given that the previous packet was lost. To estimate these parameters, it

suffices to count the number of transitions between states nij and the number of received and

lost packets (n0 and n1, respectively), as described in [224]:
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The SGM has been heavily used for evaluating application performance, especially after

early work on academic networks found it to be reasonably suitable for describing loss pro-

cesses [24, 224]. Recent evaluations of network video streaming systems [208] and video

quality estimation tools [206] have used SGM models to simulate packet losses. A number

of analytical evaluations of FEC performance have also used the SGM as the basis for their

work [70, 71, 97, 225, 103]. Outside the multimedia area, the SGM has been used for simu-

lation of packet loss when evaluating network diagnosis and inference tools [229, 152, 199].

One of the drawbacks of the Simple Gilbert Model is that since there are only two states,

it does not capture longer bursts of packet loss. To address this, a new model, which will be

referred to as the Extended Gilbert Model (EGM) was proposed [183, 100]. In the EGM, the

number of states to capture loss is extended from one (as in the SGM) to m, as illustrated in

Figure 5.3. This allows the model to describe loss bursts of up to m packets, with each state

representing a loss burst of a particular length. That is, state i, i < m represents a loss burst

of i packets, while state m represents a loss burst of at least m packets. Received packets are

represented by state 0, and run-lengths of received packets are not captured by the model.

The parameters of the EGM are, as for the SGM, the probabilities of observing a lost

or received packet, for each of the states. To estimate these parameters, the number of

occurrences of run-lengths, ok (where k is the loss burst length), is counted. The probability

of moving from state (k − 1) to state k, p(k−1)(k) is then (as shown in [183]):

p(k−1)(k) =

∑∞
n=k on∑∞
n=k−1 on

(5.2)

In the special case of pmm, all on, n ≥ m, are counted to measure all loss run lengths of at

least m packets. In this analysis, m = 5 was chosen since more than 99% of the loss bursts
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in the data consist of 5 packets or fewer, as shown in the loss burstiness results presented in

Section 4.1.2. In their study of the EGM, Jiang & Schulzrinne [100] suggest that using the

EGM to capture loss burst lengths alongside the inter-loss period lengths metric proposed

by the IETF IPPM working group [113] to capture receive run-lengths is more effective than

the SGM, showing results using the same traces used to evaluate the SGM in [224].

Although Gilbert models have received some criticism [226], they are still widely used

(as discussed at the start of this section), since they are simple to compute and understand.

Therefore, I believe that it is appropriate to study the performance of Gilbert models, to

learn just how suitable they are for describing packet loss from paths including residential

broadband networks.

5.1.2 Hidden Markov Models

The extension to the original Gilbert model proposed by Elliott [59] allows both states to

produce errors, and with different probabilities. The motivation behind this approach is

that one of the states (GOOD) produces losses with a low probability, corresponding to

isolated loss events, whereas the other state (BAD) produces losses with a higher probability,

corresponding to packet loss bursts. One way to implement this model is with a Hidden

Markov Model (HMM), where only the observations of packet loss can be seen, and the

actual state (GOOD or BAD) is hidden. This allows correlations in the sequence of packet

loss observations Zi to be better captured, since in an HMM, the observation process being

modelled is no longer assumed to be Markov (i.e., memoryless), as is the case for the SGM.

That is, the states are hidden (just as the underlying state of the network is hidden from the

observer at an end-point), and transitions between states are inferred from the observations

of packet loss.

The two-state HMM contains states to capture two of the different types of loss that can

be expected; random, uncorrelated losses (possibly due to noise on the access link), and more

bursty, correlated losses (possibly due to congestion). The two-state case is introduced first,

partly because this seems an appropriate starting point before adding more states, but also

because this is how the Gilbert-Elliott model is structured. Figure 5.4 illustrates a two-state

HMM, with the parameters of the Gilbert-Elliott model (seen previously in Figure 5.1).

As Figure 5.4 shows, the parameters of such a two-state HMM are p, q, h, and k (i.e., the

same parameters of the Gilbert-Elliott model). These are the components of the transition
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Figure 5.4: Gilbert-Elliott Model as a Two-State Hidden Markov Model

probability matrix of the hidden states, A, and the state-dependent observation probabilities,

B (i.e., the probability of observing a lost packet in each of the hidden states). In terms of

the parameters of the Gilbert-Elliott model:

A =

(1− p) p

q (1− q)

 , B =
[
(1− h) (1− k)

]
(5.3)

When using HMMs, the transition probabilities between hidden states are estimated from

the observed data, although this is more complex than for the Gilbert models. This estimation

is commonly done using the Baum-Welch algorithm, an Expectation-Maximisation (EM)

algorithm that aims to converge on the parameters with the maximum likelihood. This works

by iteratively calculating the likelihood of the observation sequence, given parameters A and

B (the “expectation” step), and then maximising this expectation (the “maximisation” step).

This process repeats until either convergence is reached, or a specified maximum number

of iterations is performed. Note that in some cases, the EM process can fail to converge, or

can converge on a “local maximum” in the likelihood function that may not be the global

maximum. Further detail on HMMs, parameter estimation, and the EM algorithm can be

found in [175, 23], and a survey of HMM applications can be found in [45].

The approach described here can lead to issues with the parameter estimation, and may

be a problem for the accuracy of the models, since only a single set of parameters is being

estimated using EM (this is a particular problem since the estimation process may not con-

verge to a global maximum for the parameters). If more traces were available from each time

period, this would allow multiple sets of parameters to be estimated; if similar parameters are

estimated from multiple traces, this would give more confidence that the parameters are accu-
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rate. This issue should possibly be taken into account in future measurement work, allowing

for more measurement traces collected around the same time, to enhance confidence in the

results. Collecting a larger number of shorter traces at each time period will allow estimation

of multiple parameter sets, possibly improving the accuracy of modelling techniques. How-

ever, it is important to remember that this needs to be carefully balanced to ensure that the

traces themselves have enough observations to capture the events of interest in the measure-

ments (e.g., switches between different congestion states). Finally, these measurements will

also need to take into account the constraints on the measurement methodology (particularly

bandwidth usage limitations) as discussed in Chapter 3, and choose an appropriate trade-off

between the bandwidth usage, the insight into time-series behaviour, and the usefulness of

the traces for modelling

To do the parameter estimation, the R [174] package hmm.discnp [209] is used. This

provides functions to calculate A and B, as well as to simulate synthetic data from a given

HMM, which can be compared to the original data, as Section 5.2 will discuss. Using

hmm.discnp, the raw loss time-series (i.e., Zi) is passed into the function to estimate the

parameters of the HMM, which also uses this time-series to derive initial estimates for A

and B (these initial estimates are used since no single value for A and B will be appropri-

ate over all the traces). Once the HMM parameters have been estimated, these can then be

passed into a further function to simulate the transitions in the HMM (i.e., switching between

hidden states, and generating the synthetic loss sequence).

The HMM can be extended to contain more states, which will improve its accuracy,

although in practice the complexity of the estimation process limits the number of states. In

this work, I will focus on two- and three-state HMMs. In reference to the underlying network

conditions, the states of two-state HMM are expected to correspond to quiet loss periods

(only isolated packet losses due to electrical noise, which is expected to only occur on access

links), and bursty loss (where losses are due to buffer overflows and congestion). These

correspond to the GOOD and BAD states originally discussed by Gilbert [73] and Elliott

[59]. By adding another state, the three-state HMM should offer more resolution, with the

aim of being more precise about the underlying loss process. Thinking further about where

loss can occur, as discussed earlier in Section 2.2, distinguishing between congestion-based

losses within the core networks and at the ISP access routers implies that a three-state HMM

may be appropriate. While it is unclear whether the parameter estimation process of the
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HMMs will identify states in this way, the number of states is chosen with these distinctions

in mind. So, the two-state HMM has states corresponding to loss due to electrical noise on

the access link, or loss due to congestion, and the three-state HMM has states corresponding

to loss due to electrical noise on the access link, loss due to congestion in core networks, or

loss due to congestion at ISP access routers.

HMMs were first employed for modelling packet loss by Salamatian & Vaton [181],

where HMMs of varying numbers of states were applied to active measurement traces, find-

ing that in the majority of cases, two- and three-state HMMs were sufficient. The HMMs

were used to estimate the transitions between hidden states for these traces, and showed that

greater resolution can be obtained using HMMs than simpler Gilbert models. Wei et al. [215]

and Salvo-Rossi et al. [181] used HMMs to study the behaviour of both loss and delay within

their measurement traces. Silveira & de Souza e Silva [190] show results of using HMMs for

prediction of network conditions, and apply these to dynamic adaptation of FEC parameters.

5.1.3 Models to Compare

For the remainder of this chapter, I will study four models in detail; the Simple Gilbert

Model (SGM), Extended Gilbert Model (EGM), and two- and three-state Hidden Markov

Models (2HMM and 3HMM). The SGM is important to evaluate since it is so widely used

in analytical and simulation studies. Assessing its performance in capturing the loss patterns

perceived by residential streaming video customers is important for future studies of such

systems. Similarly, since the EGM was proposed to improve upon the SGM specifically in

Internet streaming media [100], I will study its performance (and particularly its improve-

ment over the SGM).

Since HMMs aim to model the “hidden states” of the network, they seem appropriate for

modelling packet loss in residential streaming video, since the residential end-points have

no knowledge of the state of the network, and the performance they see is dictated by the

“dominant” loss characteristic of the network. Moreover, previous work has shown HMMs

to be suitable for capturing the loss characteristics of backbone networks [181, 182], so in

this chapter I study their performance using the packet loss measurements from Chapter 3.

The choice of two- and three-state HMMs corresponds the level of detail that the model

perceives; either “congested” or “uncongested” (2HMM), or looking at “uncongested loss

due to noise”, “congestion in core network”, or “congestion at access routers” (3HMM).
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5.2 Evaluating Models

To evaluate the performance of the models, it is necessary to understand how closely they

capture particular features of the packet loss sequences. Therefore, Section 5.2.1 defines

performance metrics that will be calculated for the original data, and then obtained from

the model. These metrics will then be compared using measures of distance, which will be

described in 5.2.2, with their “closeness” representing how well the model fits. The process

to assess the model is as follows:

1) apply modelling process, and derive model parameters

2) generate synthetic data using the model parameters

3) calculate performance metrics for the original data

4) calculate performance metrics for the synthetic data

5) compare metrics between original and synthetic data

This involves deriving model parameters from the input trace data, then using the models

to simulate three synthetic sequences that are each compared to the original data. Three

sequences, rather than one, are generated: 1) to obtain a measure of the variability of the

sequences produced by the model, and; 2) to ensure that when loss rates are low, sequences

with some losses are available for comparison (since the synthetic sequences might otherwise

contain zero losses). For these purposes, three sequences are sufficient, and reduce the time

taken to apply the modelling process over all the traces. However, a more intensive process

where a larger number of sequences is calculated will be discussed in Section 5.4.

Generating synthetic data from the models is more attractive than alternative approaches

(e.g., numerically deriving performance metrics from the model parameters), since it pro-

duces actual sequences. This allows easy comparison between the original data and synthetic

data generated from a number of different models, using any number of possible performance

metrics, as well as allowing side-by-side visualisation of the original and synthetic data.

5.2.1 Performance Metrics

The most fundamental and easy to understand performance metric for packet loss is the mean

loss rate, the average rate of packet losses. Therefore, any model that seeks to capture loss
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behaviour must be able to accurately express the mean loss rate. For a sequence of packets,

where Zi represents whether packet i was lost or not (Zi = 0 if packet received, Zi = 1 if

packet lost), the mean loss rate is Z̄.

However, since the loss process is bursty, the mean loss rate is not sufficient to fully

describe the loss characteristics of the traces. For example, consider two sequences of length

10000 packets, which both have a loss rate of 1%. The first sequence loses roughly one

packet in every 100; the second has a long period with no loss, then a short period with 100

losses in short succession, followed by another long loss-free period. The difference between

these two loss sequences is important, since their effect on video quality are likely to be very

different. In the first case, a simple FEC scheme will easily cope with the loss, ensuring

the video is uninterrupted, while in the second case, the FEC is likely to be overwhelmed,

leading to a degradation in video quality.

Looking at the distribution of run-lengths (both runs of lost packets, Xi, and runs of re-

ceived packets, Yi) gives more insight into the loss behaviour by giving information about the

burstiness of the loss process. A second metric, therefore, is the complementary cumulative

distribution function (CCDF) of the loss run-lengths and the received run-lengths. CCDFs

are commonly used to visualise distributions of packet run-lengths (e.g., [128, 28]), since

they show on the y-axis the probability of seeing a run-length greater than the run-length on

the x-axis:

CCDFRL = Pr[RL > x] (5.4)

Previous work [224, 28, 60] has shown evidence of burstiness and correlation between

packet losses. Therefore, another feature of interest is the autocorrelation of the loss time-

series Zi. This gives a measure of the dependence in packet loss (i.e., if a packet is lost,

future packet losses are more likely).

Yajnik et al. [224] present a metric for comparing the extent of correlation in the loss

traces. The correlation timescale, c, described as follows: “the minimum lag, in terms of

time, such that Zi is uncorrelated at all lags, d”, where d ≥ c [224]. Since this metric has

been used in previous work to compare correlations, and is relatively simple to calculate, this

section will use it as a means of comparing raw and synthetic data, by examining the differ-

ences between the correlation timescales in original data, and those in the synthetic data. To

calculate the correlation timescale, I look at the autocorrelation values for the observation se-
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ries (either original or synthetic), starting with the maximum lag seen. If the autocorrelation

ρ(h) at lag h is significant, then the correlation timescale is at least h packets. Note that this

differs slightly from the definition given above; the calculation of the autocorrelation (using

the standard acf function in R [174]) requires a maximum lag, which means a lower bound

on the correlation timescale is obtained.

To test whether ρ(h) is significant, the procedure in [224] is followed to test that the

observation sequence Zi is independent and identically distributed (i.e., not correlated). The

null hypothesis H0 that Zi is uncorrelated implies that the sample autocorrelations of Zi,

ρ(h) follows a normal distribution with mean 0 and variance 1/n. If this is true, around 95%

of ρ(h) will fall in the range [−1.96√
n
, 1.96√

n
]. Therefore, if |ρ(h)| > 1.96√

n
, then H0 is rejected with

significance level 0.05, implying that significant correlation is present at lag h.

5.2.2 Comparing Metrics

To compare the mean loss rates for the original and synthetic traces (Z̄raw and Z̄synth, re-

spectively), I use two distance measures. The mean loss ratio RML captures the proportional

difference in loss rates, and the mean loss difference ∆ML captures the absolute difference:

RML =
Z̄synth
Z̄raw

(5.5)

∆ML = Z̄synth − Z̄raw (5.6)

There are cases where the loss rate is low (e.g., one packet lost out of ten thousand);

however, if a model generates two lost packets instead, the RML value will be 2, suggesting

the model is producing 100% higher loss rates than in the original data, which although true,

is somewhat misleading. By using the absolute and relative loss rates together (∆ML and

RML, respectively), a clearer picture can be obtained.

For the run-length distributions, however, it is not so simple. The CCDFs can be plotted

and compared visually, which gives a good way to compare the performance of a model on a

particular trace. However, applying such visual checks to all traces will be quite cumbersome

for a large dataset, and liable to inaccuracy. A more numeric approach is to use a distance

measure between the run-length distributions themselves, such as the Kolmogorov-Smirnov

(K-S) D statistic [201]:
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D = sup
x
|Fraw(x)− Fsynth(x)| (5.7)

where supS is the supremum of set S, and Fraw(x) and Fsynth(x) represent the empirical

distribution function of run-lengths from the original (raw) data and synthetic data, respec-

tively. This comparison measure is appropriate, since it is non-parametric (i.e., makes no

assumptions about the underlying distribution of the data). The D statistic has previously

been used to compare distributions of network data [77]. Although it is associated with a

hypothesis test (the Kolmogorov-Smirnov test), some problems exist with directly applying

the results of this test. Haddadi points out that “it is misleading to use this test to indicate

if two distributions are similar, as it is highly sensitive to large sample sizes” [77], and in-

stead just uses the D metric as a measure of relative closeness. Therefore, the results of

the Kolmogorov-Smirnov test, and associated p-value (which determines whether to reject

the null hypothesis that the samples come from the same distribution), should be used with

caution. For the evaluation of run-length distributions, I will calculate the K-S distances and

p-values, but also visualise the synthetic data generated by the models (as Section 5.2.3 will

discuss) to verify the K-S distance results.

To test how well the models capture the correlation in the traces, the difference between

the correlation timescale of each synthetic sequence craw and that of the original trace csynth

is calculated:

∆c = craw − csynth (5.8)

Using the difference in correlation timescales, ∆c, the extent to which the models capture

the correlation in the original traces can be assessed. When there is correlation in the original

trace that is not captured in the synthetic data, ∆c will be negative.

5.2.3 Visualising Model Results

In addition to the aggregate metrics already discussed, it is important to be able to visualise

exactly what synthetic sequences look like, on a per-trace level. Having this greater level of

detail is important to assess whether the aggregate metrics (e.g., the K-S D distance between

run-length distributions) are missing any details, since using aggregate statistics inevitably
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loses information (by collapsing all the detail from an entire trace into a single value). There-

fore, a visualisation of the model output will be used to complement the aggregate metrics.

The visualisation used shows loss and receive run-lengths from the packet loss sequences,

visualised as a plot where the black vertical bars represent loss runs, and grey vertical bars

represent receive runs, with the thickness of the bar representing the run-length. This pro-

vides a fairly compact representation of the packet loss observation series Zi generated by

the models, which can be displayed alongside their corresponding original packet loss traces

for ease of comparison.

5.2.4 Summary

This section has presented the process for evaluating models for packet loss, and described

performance metrics (mean loss rate, loss and receive run-lengths, and autocorrelation) that

the models need to capture in the raw data. It has also introduced “distance measures” that

will be used to compare the differences between the original and synthetic (model-generated)

data at a per-trace level. The mean loss ratio RML and mean loss difference ∆ML for com-

paring mean loss rates, the Kolmogorov-Smirnov D statistic for comparing run-length dis-

tributions, and ∆c, the difference in correlation timescales, for comparing correlation in the

loss time-series. Using these distance measures to look at model performance overall, and

per-trace visualisation on example traces to show in-depth model performance, the following

sections will report the extent to which the various models match the data.

5.3 Model Performance Results

This section presents results of applying the models described in Section 5.1 to the loss

data described in Chapter 3. Initially, the results of each of the metrics across all traces are

presented, according to the process described in Section 5.2.1. Then, a number of example

traces are visualised in detail, to explain the differences in the loss patterns, and how these

affect the accuracy of the models.
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Figure 5.5: Distributions of Mean Loss Ratios and Differences. Synthetic sequences are

generated from each trace, and RML and ∆ML from each of these is calculated.
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5.3.1 Mean Loss Rate

Figure 5.5 shows how closely each of the models capture the mean loss rates in the traces,

by aggregating the results of the RML and ∆ML metrics discussed in Section 5.2.1. These

figures show the aggregate performance over all traces. For each of the three synthetic traces

generated by the model (as discussed in Section 5.2), RML and ∆ML are calculated, and this

is repeated for all traces to get a set of values. Figures 5.5a and 5.5b show the distribution of

this set of values for each model.

Figure 5.5a shows a strong peak around 1, showing that many of the synthetic sequences

match the loss rate very closely. The peak around zero shows cases where the synthetic

sequence generated no losses, while there were losses in the original trace. However, as

Figure 5.5b shows, the absolute difference in loss rates is not large, mostly within 0.1%.

These results suggest that all models perform well on this metric, with no clear distinction

between their performance.

5.3.2 Run-Length Distributions

Figure 5.6 shows the K-S distances between the run-length distributions of the original traces

and the synthetic data, for loss run-lengths (Figure 5.6a) and receive run-lengths (Figure

5.6b). Note that only those traces where at least 100 run-lengths are present are shown, since

applying the Kolmogorov-Smirnov test to distributions with only a few values might lead

to inaccurate conclusions. Since a threshold is necessary, a value of 100 runs was chosen

after examining the data. Table 5.1 shows the percentage of trace runs (including all three

synthetic sequences per trace) that are well-modelled, according to the Kolmogorov-Smirnov

hypothesis test (as discussed in Section 5.2.1).

Figure 5.6a shows that for loss run-lengths, the Gilbert models perform well, with the

EGM being the most accurate. The HMMs, however, show poorer performance, with a

less pronounced peak around 0, and a longer tail. This means that for the HMMs, fewer

traces have a K-S distance close to zero, showing more traces in the 0.1–0.3 range. This

is also reflected by looking at the results of the K-S hypothesis tests in Table 5.1 (although

recall that these results have some caveats, as discussed in Section 5.2.1). For the SGM and

EGM, the percentage of traces being “well-modelled” (i.e., where the null hypothesis of the

original and synthetic model-generated loss run-length distributions being drawn from the
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Figure 5.6: Distributions of K-S Distances (D) Between Run-Lengths. Synthetic sequences

are generated from each trace, and D is calculated for those traces with at least 100 run-

lengths.
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Model Percentage of traces

Loss Run-Lengths Receive Run-Lengths

SGM 91.0% 20.2%

EGM 96.0% 19.6%

2HMM 55.2% 24.0%

3HMM 63.9% 27.5%

Table 5.1: K-S Hypothesis Test Results: percentage of traces where null-hypothesis of “same

distribution” cannot be rejected at a significance level of 0.05.

same distribution could not be rejected) is 91% (SGM) and 96% (EGM) of traces. For the

HMMs, these numbers are much lower; 55% (2HMM) and 64% (3HMM).

Figure 5.6b shows the distribution of K-S distances for receive run-length distributions.

In this case, the HMMs have higher proportion of traces with low K-S distances, showing

better performance than the SGM and EGM. However, the percentage of “well-modelled”

traces is lower for all models than was the case for loss run-lengths. The SGM and EGM

models capture the receive run-length distributions for only∼20% of traces, which improves

slightly to 24% for the 2HMM, and 28% for the 3HMM.

The results for both the loss and receive run-length distributions show rather poor perfor-

mance for all the models (with the exception of SGM/EGM performance in capturing loss

run-lengths). In particular, the poor performance of the HMMs is somewhat surprising since,

for example, the two-state HMM generalises the SGM, and might therefore be expected to

give performance at least as good as the SGM. Looking further into the run-length distribu-

tions obtained from each of the models, it is clear that the Gilbert models do indeed capture

the loss run-lengths more accurately than the HMMs. However, the SGM and EGM fail to

capture the long receive runs present in some of the traces, particularly when there are many

short receive runs (within bursty loss periods), as well as long receive runs within the same

trace. Section 5.3.4 will demonstrate this further by showing examples of the original traces,

comparing these against the sequences generated by the models.

Figures 5.7 and 5.8 show CCDF plots for two example traces, showing the original data

and each of the three synthetic sequences. In the first trace, losses occur frequently through-

out, while in the second, there are “on/off” bursty loss and loss-free periods. Figure 5.8
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Figure 5.7: Example CCDF Distributions (“non-bursty” loss) (same trace as Figure 5.13b)
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Figure 5.8: Example CCDF Distributions (“bursty” loss) (same trace as Figure 5.13d)
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shows that the HMMs do capture the receive run-length distributions better when there are

both “on/off” and loss-free periods, although they are not as good at capturing the loss run-

lengths, underestimating the number of single packet losses. As Section 5.3.4 will discuss in

more detail (by looking at the actual output of the models and comparing with the original

data) it is clear that although the SGM and EGM capture the loss run-length distributions

better, they do not actually generate similar traces. However, from examining the CCDFs

alone, it is not clear why these differences exist between the models, implying that the run-

length distributions alone (and measures of distance between such distributions, like the K-S

distance) are insufficient to characterise the loss patterns in the trace.

This section has shown that the Gilbert models are better at capturing the loss run-length

distributions, while the HMMs are better at capturing the receive run-length distributions.

However, more importantly, it shows that the run-length distributions themselves are not a

good indicator of loss behaviour within traces, since they cannot capture how well models

capture the on/off periods within the trace (a feature that is very important to understand).

Using the K-S D distance metric shows whether one model or another is “closer” to the

original run-length distribution, but using the K-S test to actually classify a match in the

distributions is not so useful. This is a reminder of the dangers of relying on a single metric,

without reference to the data being compared, or the context.

5.3.3 Loss Correlation

This section looks at how well the models capture the features of correlation in packet loss

within the traces, focusing on the correlation timescales of the binary loss observations Zi,

as discussed in Section 5.2.2. Looking at the correlation timescales (craw and csynth) shows

how the different models capture the degree of correlation in the packet loss events (i.e.,

how dependent the probability of packet loss in the time-series is to losses earlier in the

time-series).

Figure 5.9 shows the distribution of differences in correlation timescales ∆c, across all

traces, for each of the models. Here, positive values represent cases where the correlation

timescale in the synthetic trace is larger than that in the original trace, while negative values

show cases where the correlation timescale in the synthetic trace is smaller than in the raw

data. This distinction is important, since the distribution is asymmetric. The left-tail of

negative values contains cases where the models are not accurately capturing the size of the
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Figure 5.9: Distributions of Differences in Correlation Timescales (∆c). Synthetic sequences

are generated from each trace, and ∆c from each of these is calculated.
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correlation timescale (i.e., the original data shows more temporal dependence between losses

than the models capture).

The strong peak around ∆c = 0 represents the large number of traces for which there

is no difference in the correlation timescales, meaning that the models accurately capture

the extent of correlation in these traces. Since many of the traces have low levels of loss,

and appear not to be subject to the bursty loss conditions associated with congestive loss, it

might be that the traces where ∆c = 0 also have craw = 1 (i.e., the raw data is uncorrelated).

To check this, Figures 5.10 and 5.11 show heatmaps of the original correlation timescale

craw and correlation timescale difference ∆c, with the intensity of the colour representing

the frequency of each combination occurring. The clustering around (craw = 1,∆c = 0)

shows a high number of traces where the models capture low degrees of correlation in the

original data. The much brighter colour in the (craw = 1,∆c = 0) bin shows the extremely

high proportion of traces in this category, implying that the strong peaks around ∆c = 0 in

Figure 5.9 show the models capturing the lack of correlation in the original data.

The diagonal line present in all the sub-plots of Figures 5.10 and 5.11 corresponds to the

left tail of the distributions in Figure 5.9, showing that there are traces for which the extent

of correlation (the correlation timescale) is not captured by the models. Figure 5.9a shows

that in many cases, ∆c = −1 packets (i.e., the original trace showed correlation up to a lag

of h packets, while in the model-generated trace it was up to h− 1). Figure 5.10 shows that

these cases mostly occur when craw is low.

These figures suggest that there is little difference in the performance of the different

models, with all models performing well when there is little correlation in the original se-

quence, and tending to not capture the extent of correlation when it exists. Figure 5.10 shows

that the HMMs have less variation in the ∆c values they generate, giving more consistent

performance, although still not capturing the extent of correlation in the original traces.

Figure 5.12 gives further insight, showing that the peak in ∆c comes from traces with

15 losses or fewer (Figure 5.12a also showing a strong peak around 0), with the left tail

coming from traces with higher loss (the distribution of ∆c also showing a strong left tail).

The rationale for using “15 or fewer losses” to distinguish lossy traces will be discussed

in Section 5.3.4. Note that the HMMs show smaller ∆c values for the higher loss traces,

indicating that the correlation is being captured somewhat better by these models, although

only slightly.
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Figure 5.12: Differences in Correlation Timescales for Traces with Low/High Loss
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These results show that the correlation timescale in many traces is captured well (par-

ticularly when loss rates are low), but that there are a number of traces where the synthetic

sequences generated by the models do not exhibit correlation at the same timescales. It can

be argued that the more “interesting” traces are those showing cases of higher loss in the

network, since these are when FEC performance and video quality are most likely to be de-

graded. On this basis, the poorer performance of the models in capturing correlation in lossy

traces is disappointing.

5.3.4 Visualising Model Fit

The preceding sections showed aggregate results of performance metrics across all traces

(or in the case of K-S distance metric, those traces with a sufficient number of run-lengths),

representing each synthetic sequence as a single point. However, as already discussed, it is

also beneficial to examine in detail (i.e., visualise) the synthetic packet loss sequences gen-

erated by the models, alongside the corresponding original sequence. Choosing a subset of

the traces to show as examples requires some division into categories. This section discusses

how these categories were chosen, before actually examining the example traces in detail.

Initial manual examination of the loss traces showed they can be divided into three broad

groups, those with: i) zero or “low” packet loss; ii) “non-bursty” loss; or iii) “bursty” loss.

Separating traces with low levels of loss allows further analysis to be more meaningful,

focusing on bursty or non-bursty loss patterns, which does not make sense when there are

only sporadic packet losses. For the traces visually identified to have few loss events, over

90% had 15 or fewer lost packets, so the threshold was set at ≤ 15 losses. Among the traces

with higher loss, the distinction between bursty and non-bursty loss was made by examining

the sequence to see whether the loss is spread out in the trace (as in the top panel of Figure

5.13b), or confined in bursts separated by longer runs of received packets (as in the top panel

of Figure 5.13c). Table 5.2 presents the number of traces within each of these categories.

This section looks in more depth at the output of the models, and how they compare to the

original data. Figure 5.13 shows examples of original traces alongside synthetic sequences

generated by each of the models. These figures show the Zi sequences, with the x-axis

representing packet number (i.e., time), with grey and black regions representing receive and

loss run-lengths, respectively. The top panel of each sub-figure shows the original trace,

while the four below show a synthetic trace generated by each model.



5.3. MODEL PERFORMANCE RESULTS 110

Loss Type Number of Traces Percentage of Traces

no losses (zero loss) 1679 44.1%

1 — 15 losses (“low” loss) 1211 31.8%

> 15 losses (“non-bursty” loss) 486 12.8%

> 15 losses (“bursty” loss) 433 11.4%

Table 5.2: Percentage of Traces in Loss Categories
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Figure 5.13: Example Loss Traces and Synthetic Sequences from SGM, EGM and HMMs
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Figure 5.13a shows a trace with very few losses; here, each of the models generate se-

quences with similarly low loss rates. Figure 5.13b shows a trace with more frequent losses

that are fairly evenly spaced. Again, each of the models generate synthetic trace data that

appear similar. In contrast, Figure 5.13c shows a trace with a similar mean loss rate to Fig-

ure 5.13b, but where the losses occur in bursts. Note that for this trace, none of the models

appear capable of capturing the correlated loss patterns, generating completely different se-

quences with frequently occurring loss. Figure 5.13d shows another trace with correlated

packet loss, but where the loss rate is higher, and where the HMMs perform differently than

in Figure 5.13c. The SGM and EGM perform similarly to before, generating sequences with

frequent losses throughout (and failing to capture the correlation pattern). The HMMs do

perform a little better, generating some longer loss-free receive run-lengths as in the original

trace, although still not completely capturing the clearly delineated “lossy” and “non-lossy”

regions that are immediately visible in the original trace.

The important conclusion from these findings is that there are a non-trivial number of

traces that exhibit loss behaviour that cannot be captured by the models evaluated here.

Although there are a large number of traces where the models perform well (i.e., when

loss rates are low, and conditions are “good”), the most challenging cases, when the loss

processes are bursty, are not well modelled. In particular, the Simple Gilbert Model (which

has formed the basis of the experimental evaluations of a number of systems) has been shown

to be insufficient at capturing the bursty and correlated loss behaviour seen in the measured

packet loss.

5.4 Testing Goodness-of-Fit using Parametric Bootstrap

The previous sections describe how the models perform, in terms of relevant performance

metrics, and by showing examples of the sequences generated by each of the models. How-

ever, to more objectively test the accuracy of the models, a goodness-of-fit test that can be

applied over the whole dataset and all the models is necessary. The results of this test should

also be visualised together, for ease of comparison between different models. In this section,

I present such a goodness-of-fit test, which involves generating a large number of synthetic

sequences from the models, and comparing a range of statistics from the synthetic sequences

to those from the original trace. Since this technique generates new sequences using the pa-
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rameterised models, I refer to it as parametric bootstrap, in contrast to traditional bootstrap

techniques that involve resampling from within the existing data [36].

5.4.1 Comparing Statistics using Parametric Bootstrap

To test the goodness-of-fit of a model, model parameters are estimated from each trace, using

the process described in Section 5.1. Then, these parameters are used to simulate synthetic

sequences, which are compared to the original data to assess goodness-of-fit. 1000 synthetic

sequences per trace are generated from each model, and a set of statistics is calculated for

each sequence. For each of these statistics Si, the values obtained from calculating Si on

each of the synthetic sequences are then used to produce a distribution, Ssynthi , which is

compared to Srawi (the value of Si obtained from the raw data). This is a similar approach to

[55], which compared the “curvature” of distributions when testing for long-tailed behaviour

in Internet traffic.

To assess the model’s goodness-of-fit, this procedure tests the null hypothesis that the

observed value of Srawi is a typical draw from the distribution Ssynthi . If the null hypothesis

is not rejected, then this suggests that the model offers a good fit to the data, since the reali-

sations of the fitted model are similar to the observed data (always in terms of the summary

statistic Si). This hypothesis is tested by calculating a central 95% confidence interval and

checking if Srawi falls into that interval. This is equivalent to a hypothesis test at significance

level 5% where the probability of rejecting the null hypothesis given that the null hypothesis

is true is 5% [21]. Although setting 5% is a typical choice for statistical hypothesis testing, a

larger significance level that leads to a narrower interval does not alter the results consider-

ably. An example Ssynthi distribution, with Srawi and percentiles is shown in Figure 5.14. By

applying this process for a range of statistics of interest, the performance of each model on a

given trace can be obtained. Then, repeating this process for each of the models provides a

way to numerically compare the performance of the models against each other; for the same

trace, the performance of each model can be compared for each “statistic of interest”.

The statistics of interest for this work include those already discussed in Section 5.2.1,

as well as some others:

� Mean loss rate, Z̄;

� Correlation timescale, c;
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Figure 5.14: Ssynthi Distribution, with Srawi and Central 95%

� 5th, 25th, 50th, 75th, and 95th percentiles of the receive run-length distribution;

� Mean, median, and max loss run-lengths;

� Number of receive runs in each order of magnitude (i.e., number of runs of order 100,

101, 102, 103, 104, and 105).

These include percentiles of the receive run-length distributions, and mean, median and

max loss run-lengths, to assess whether the loss patterns of the raw data are matched by the

models. The statistics cover a large range of the receive run-length distribution, along with

the key points of the loss run-length distribution (which is less variable). Since the receive

run-lengths can range from very short (i.e., single packets) to tens of thousands of packets

within a single trace, it is important that the models can capture this range. To test this, the

number of receive run-lengths in each order of magnitude are counted.

5.4.2 Parametric Bootstrap Results

This section discusses the results of applying the parametric bootstrap technique, to validate

through simulation how similar the models are to the original data. As discussed in Section

5.4.1, this involves, for each of the models, and for each particular trace, simulating a large

number of synthetic sequences from that model using the parameters estimated from the

trace. By calculating a range of statistics on each of the synthetic sequences, and comparing
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Figure 5.15: Parametric Bootstrap Results (“non-bursty” traces)
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these to the same statistics calculated from the raw data, the “goodness-of-fit” of the model

can be tested.

The results of Section 5.3.4 showed that the HMMs had better performance for traces

classified as showing “bursty” packet loss; therefore, the parametric bootstrap is applied

separately to the “non-bursty” and “bursty” traces (as described in Section 5.3.4, these are

traces that show more than 15 losses). For each of the trace groups, the parametric bootstrap

is applied to each trace, calculating 1000 synthetic sequences using the model parameters

estimated from the trace.

Goodness-of-fit results from applying the parametric bootstrap technique to the SGM,

EGM, 2HMM, and 3HMM models are shown in Figures 5.15 (“non-bursty” traces) and 5.16

(“bursty” traces). These figures show, for each statistic Si (y-axis), the number of traces

where the model had “good fit”, in terms of Si. Visually, longer bars mean that the model

fits more traces. These figures show that all models appear to capture the mean loss rate, for

both the “bursty” and “non-bursty” traces (as seen earlier in Section 5.3.1).

The correlation timescale metric also seems to be well-captured by all of the models,

which is surprising since the Gilbert models do not really aim to capture correlation in the

loss process. Closer examination of the correlation timescale bootstrap results explains the

higher-than-expected fraction of traces identified as “well-modelled”. As described in Sec-

tion 5.4.1, the goodness-of-fit test assessing model fit tests whether Srawi falls within the

central 95% of Ssynthi . However, this test relies on the Ssynthi distribution being unimodal

(i.e., having its mass grouped together into one mode). The distribution of Ssynthi correlation

timescale appears to be multimodal, with one mode around 0, and another at higher values

(closer to 50). Examination of the Ssynthi distribution for the other metrics presented in Sec-

tion 5.4.1 suggests that correlation timescale is the only one of the Si statistics to show a

multimodal distribution (see Figure 5.17 for a representative example; observe that only the

correlation timescale metric is multimodal). Therefore, in this dissertation, the correlation

timescale metric is excluded from further discussion of parametric bootstrap results. Note

that future work might design a more sophisticated goodness-of-fit test, accounting for the

multimodality of correlation timescale (e.g., using a similar approach to [66]), but this is

beyond the scope of this work.

In terms of the receive run-lengths, both the SGM, EGM, and HMMs perform poorly

for the “bursty” traces, and a little better for the “non-bursty” traces. Recall in the example
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Figure 5.17: Examples of Ssynthi Distributions

in Figure 5.13 that bursty loss was not well captured by these models. Interestingly, there

are differences between the models for different types of trace. The SGM and EGM appear

to capture the receive run-lengths better in the “non-bursty” traces, while the HMMs are

slightly better for short receive run-lengths in the “bursty” traces. Since the HMMs aim to

capture the changes in loss states, they perform slightly better in “bursty” traces, but this

extra complexity does not help when the loss pattern is not bursty.

The patterns in the loss run-lengths results are similar for both “non-bursty” and “bursty”

traces (with better performance on “non-bursty” traces, as expected). The SGM and EGM

perform particularly well, capturing mean and median loss run-length for most traces. The

HMMs capture the mean loss run-lengths less well, although they do capture the median

(since most loss bursts consist of a single packet, the median loss run-length is likely to be

1; even in “bursty” periods, individual loss runs are short, but fall close together). Although

the loss run-length statistics are well-captured, this does not mean the trace is accurately

modelled (since the receive run-length statistics are not well-captured by the models), and

can lead to loss patterns that are quite different to the raw data, as seen in Figure 5.13.
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To summarise, the parametric bootstrap results show that although the SGM, EGM, and

HMMs perform adequately on certain types of traces and in terms of some metrics, the

important point is that they do not accurately capture the loss patterns of the most bursty

traces (as demonstrated in Figure 5.13c). Although bursty packet loss does not occur on

every trace, over 10% of traces were classified as “bursty”, and the implications for the

performance of streaming video are too important to be ignored (e.g., bursty packet loss

severely degrades the performance of FEC schemes [63]).

5.5 Understanding Model Performance

As Sections 5.3 and 5.4 showed, there are differences in performance between the different

models, and for the same model when applied to different traces. This section will discuss

the reasons for these differences in performance, and suggest improvements to allow accurate

modelling of all the cases identified in Section 5.3.4.

The results presented in Section 5.3.4 explain the differences in results seen in Section

5.3.2 for the K-S distance between run-length distributions. Since the raw traces do not al-

ways have losses interspersed throughout (traces instead often show on/off periods of bursty

loss and loss-free periods), the range of receive run-lengths within a trace can range across

several orders of magnitude, from below 10 to above 10000. Since the Gilbert models do

not capture the on/off behaviour of the loss process, they cannot generate long receive runs

when the loss probability is high, since this probability dictates that the receive run will be

cut short by a loss. However, this also explains why Gilbert models initially appear to per-

form better in capturing loss run-length distributions. During the bursty “on” loss periods,

there are frequent oscillations between loss and receive runs, giving rise to loss run-length

distributions similar to those generated by the Gilbert models. This can be viewed as a case

of the traces capturing the models, rather than the models capturing the traces.

As discussed in Section 5.3.2, although the Gilbert models capture the loss run-length

distributions more accurately (the EGM is particularly optimised to do this), they do not

capture the overall loss patterns in the trace, since they do not capture the on/off periods of

bursty loss and low loss, as shown in Figures 5.13c and 5.13d. Unlike the Gilbert models, the

HMMs try to capture the transitions between the “hidden” states in loss behaviour. By doing

this, they are able to give better performance in capturing receive run-length distributions
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than the Gilbert models, although this seems to cause the loss run-lengths to be less well-

captured, with the number of single packet losses being underestimated by the HMMs (as

shown in Figure 5.8 on page 102).

In terms of the correlation results, there is not such a clear difference in the performance

of the Gilbert models and HMMs. When loss rates are low, and the losses are uncorrelated,

all models capture this behaviour well, as demonstrated by the strong peaks in Figures 5.9a

and 5.9b (page 104). However, when there is correlation, this tends not to be captured very

well by the models, as illustrated in the left tails in Figures 5.9a and 5.9b, and the diagonal

line tailing off in Figures 5.10 and 5.11 (pages 106 and 107, respectively).

The reason for the poor performance of the Gilbert models when the loss is correlated

is because such models do not consider correlation in the input, since the next “state” (i.e.,

whether the next packet will be received or lost) only depends on the current state, regardless

of what is happening in the network. In other words, the Gilbert models see a received packet

as a renewal, or “reset”, where the network is assumed to be in a “good” state, and therefore

cannot distinguish the short receive runs between loss bursts from longer periods of received

packets where the network actually is in a good state. Section 5.3.4 illustrates this clearly,

showing that the SGM and EGM always produce a pattern of “frequent” losses (according

to the specified loss rate).

The HMMs capture the correlation better in some cases (e.g., in Figure 5.13d), since

the outcome of the next packet in the model depends not on whether the current packet was

received or lost, but on which hidden state the model is in (i.e., the underlying state of the

network). However, within each state, the choice of whether each packet is lost is made

independently of each other, meaning that correlations within hidden states are not captured.

The different behaviour of the HMMs observed in Figures 5.13c and 5.13d show that

although there are changes in “state” (i.e., oscillations between periods of bursty loss and

infrequent loss), the models do not always recognise these. One possible reason for this is

that the HMM parameter estimation algorithm fails to converge to the solution with maxi-

mum likelihood (meaning that the model is poorly trained). Table 5.3 shows the number of

traces for which HMM parameter estimation converged, or failed to converge, in both the

“bursty” and “non-bursty” trace groups. The low rates of convergence may partly explain

why the HMMs perform more poorly than expected. Another possible reason for the HMMs

not capturing the oscillations between different states of loss is that the distinction between
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Model Trace Group Converged Failed to Converge

2HMM “bursty” 44 (10.2 %) 389 (89.9 %)

“non-bursty” 56 (11.5 %) 430 (88.5 %)

3HMM “bursty” 70 (16.2 %) 363 (83.8 %)

“non-bursty” 51 (10.5 %) 435 (89.5 %)

Table 5.3: Convergence Rates in HMM Estimation

different states is not clear. Although looking at the Zi sequences in Figure 5.13 makes this

clearer, since the HMMs are trained with only the binary loss sequence Zi, the patterns ob-

vious in the plots may not be captured. A potential solution to this problem is to pre-process

the traces to identify bursty periods; this will be discussed further in Section 5.7.

This section has discussed the results of Section 5.3 and explained why the models per-

form as they do. The results show that where loss rates are low or uncorrelated (i.e., the

majority of cases), all models perform well. However, for the smaller (but still signifi-

cant) number of traces showing bursty loss behaviour (and oscillations between different

loss states), the Gilbert models cannot capture the loss patterns. Although the HMMs do

perform better in some cases, they are still limited, and need to be enhanced to completely

model the network characteristics.

5.6 Alternative Models

This section describes some alternative approaches to modelling packet loss, including vari-

ants and modifications to the Gilbert models, proposals for modelling errors in wireless net-

works, and techniques that extend the HMMs.

5.6.1 Variants of Gilbert Models

An early variant of the Gilbert model was proposed by Fritchman [69], a “partitioned” model

with separate states for loss and receive run-lengths. This can be viewed as a more general

version of the EGM, although as discussed in Section 5.1.1, the state-space of such a model

will be very large when the receive run-lengths are long (as is the case for the loss traces

modelled in this chapter).
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As well as applying the SGM to early measurements of Internet packet loss, Yajnik et

al. [224] examined the performance of higher-order Markov chains in capturing the measured

loss processes, finding that in some traces the estimated order of the Markov chain was as

high as 42. This means that to capture such loss processes, a Markov chain model will need

a large number of parameters, which will become unwieldy to use in practice.

More recently, the accuracy of Gilbert models has been questioned. Yu et al. [226]

found that the SGM underestimates FEC performance when compared to exact queueing

analysis for a single-multiplexer queuing system, although finding that using more states for

the receive run-lengths (i.e., the inverse of the EGM presented in [100]) performs better.

Becerra-Yoma et al. [14] found that the run-length distributions can be better modelled using

a Gamma distribution, and that a mixed Gilbert-Gamma model more accurately models their

measurements of packet loss from academic backbone networks.

Haßlinger & Hohlfeld [78, 82] studied the accuracy of Gilbert models in capturing the

second-order statistics (i.e., variability) of packet loss patterns over long time scales using

active measurements of real-time UDP traffic captured at the backbone of Deutsche Telekom.

They observed that by using Hidden Markov Models to implement a Gilbert-Elliott model,

they could generate data matching the second-order characteristics of their traces.

5.6.2 Models Proposed for Wireless Loss

Related models have been proposed to model frame errors in wireless networks. These in-

clude a four-state Markov model, which includes separate states for “long” and “short” loss

and receive run-lengths [135, 227]. In [227], this four-state Markov model is also expressed

as a “two-state run-length model”, where rather than having probabilities of moving between

good and bad states, it is the state durations (i.e., the run-lengths themselves) that are mod-

elled.

The Markov-based trace analysis (MTA) [111], and multiple-states MTA [112] tech-

niques proposed by Konrad et al. use a “data-preconditioning” approach, aiming to classify

a trace of GSM frame errors into sub-traces that are “lossy” or “loss-free”, then concatenat-

ing and modelling these separately. The MTA approach, as well as other Markov models

were evaluated by Ji et al. [99, 98] using the same trace as [111], finding that their proposed

alternative, the “extended On/Off model” (which contains loss and receive run-lengths with

lengths derived from mixtures of geometric distributions) is more suitable. However, al-
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though these results are compelling, the use of a single error trace throughout the evaluations,

casts a question as to how suitable these approaches are for large-scale use.

Poikonen & Paavola [171, 172] evaluate the performance of the SGM, four-state Markov

model and the MTA technique with measurements of error performance in digital video

broadcasting for hand-held terminals (DVB-H), finding that the four-state model and MTA

perform well. They conclude that the relative simplicity of the four-state model makes it

well-suited for simulation of DVB-H loss.

5.6.3 Extending HMMs

This section discusses extensions to the HMMs, to improve their performance on those traces

where the two- and three-state HMMs were insufficient. These extensions include adding ex-

tra states, relaxing the assumptions of the model, adding extra parameters, and using packet

delay information alongside the loss data.

The simplest approach to improving HMM performance might be to extend the HMMs

described in Section 5.1.2 with extra states. Adding more states into the model should im-

prove the fit, and more accurately describe the characteristics of that particular trace. How-

ever, the danger of this approach is that the model will become too specific, which will limit

its usefulness to be applied to other situations, as well as disconnecting it from the intuition

of how the model states relate to network conditions. The other drawback is the additional

computational complexity of using extra states, which increases the time for parameter esti-

mation [175].

Recently, Hidden Semi-Markov Models were applied to modelling packet loss in Plan-

etLab measurements by Nguyen & Roughan [150, 151], in order to validate estimates of In-

ternet packet loss (rather than for packet loss simulation). This approach extends the HMM

modelling technique, considering the packet loss process as an alternating on/off process

(i.e., receive runs and loss runs), but allowing the run-lengths themselves to be drawn from

non-exponential distributions (i.e., no longer having the Markov property). The semi-Markov

property means that “state-transitions are Markov, even if the times between transitions are

not” [151]. This approach gives promising results in packet loss estimation for the PlanetLab

traces.

Another interesting option is to develop a new variant of the HMM, extending it to incor-

porate loss probabilities depending on whether the previous packet was lost (following the
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approach of [108]). This approach is attractive, since it incorporates some extra information

about the correlation of losses (no longer assuming that losses within each hidden state are

independent). However, the autocorrelation results suggest that for the bursty traces, packet

losses are dependent not only on the outcome of previous packet, but also on packets before

that in the time-series; therefore, this approach may not be sufficient. More concretely, the

congestion state of the network, which has proven to be hard to capture in the models, is

more complex than just the fate of the preceding packet. An additional drawback is that

applying this technique will require development of new parameter estimation techniques.

A different approach is to follow the approach of other studies using HMMs, and to in-

corporate both delay and loss information into the model [215, 182]. This is also an attractive

option, since it matches well with the philosophy and motivation behind using HMMs (i.e.,

that the underlying state of the network is being captured by the models). Using delay, a bet-

ter picture of the congestion state of the network can be seen, since the delay due to queueing

is directly related to congestion. This approach is expected to give better performance, due

to the far greater insight into network conditions that can be gathered using the delay data.

Recall the discussion of loss/delay correlation from Section 4.1.3, and how this can be used

to estimate the sources of loss events (e.g., spikes or high variability in delay indicate a con-

gested network, implying that lost packets are due to queue overflows). Incorporating both

delay and loss into the model, therefore, can be expected to more accurately show the state

of the network, improving model performance.

5.7 Discussion & Summary

The results presented in this chapter show that there are cases where Gilbert models (i.e., the

SGM and EGM) perform well, and accurately capture the loss conditions seen in some of

the trace data. However, more importantly, there also exist traces where this is not the case.

This means that the assumptions of a number of multimedia systems papers, which evaluate

system performance using a Gilbert model for packet loss, are not valid when considering

residential users.

Applying more complex Hidden Markov Models to the problem allows the loss patterns

of some traces to be captured somewhat more accurately, while other traces remain unable to

be accurately modelled. The 3HMM shows better performance than the 2HMM, suggesting
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that higher-order HMMs might be able to capture the observed loss patterns. However, there

is of course some danger here of “over-fitting”, introducing models with ever more states,

while making these models ever less realistic. For example, in the extreme case, a model

might contain a large number of parameters, allowing it to memorise the input trace, and

generate identical traces as output. Such a model is, of course, not useful in generalising

the packet loss behaviour. An alternative approach to validating the accuracy of the models,

which does not suffer from this problem, is to collect a second dataset for validation purposes

(or only use a subset of the available data to train the models). In this way, the model

parameters trained using one trace can be compared to another for validation, which will

identify the over-fitting problems described above.

This presents a choice, whether to continue experimenting with more sophisticated mod-

els for loss, or to introduce the additional delay information into the model to gain further

resolution into the problem. Using data on the delay experienced by packets, greater insight

into the state of the network is available (i.e., since queueing delay is a proxy for queue oc-

cupancy throughout the end-to-end path). Using this insight also presents an opportunity to

understand the sources of loss (i.e., due to noise or congestion, and to isolate where in the

network the losses occur), as in the initial work presented in [60].

Since delay information is already available from the traces presented in Chapter 3, I

choose to take this approach. Chapter 6 will discuss how the modelling work presented in

this chapter can be extended to include delay, and to enable better modelling of network

conditions.
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Chapter 6

Improving Model Performance using

Packet Delay Data

The preceding chapter evaluated the performance of a number of previously proposed models

for Internet packet loss, using the measurements of streaming video-like traffic to residential

users presented in Chapter 3. The results of Chapter 5 showed that these previous models

were sufficient some of the time, but that a significant fraction of the measured traces showed

packet loss patterns that could not be captured by the existing Gilbert models and HMMs.

In this chapter, I introduce a new type of model, which incorporates the extra delay in-

formation captured in the measurement data to obtain a more accurate picture of the network

conditions. By understanding the network better (e.g., whether loss is due to access link

noise, or congestion), the models can more accurately capture the loss process.

This chapter is structured as follows. Section 6.1 gives background on different ap-

proaches to incorporating delay and loss data into models. Section 6.2 describes the chosen

approach of “pre-classifying” the state of the network, to improve the model performance,

and introduces the concept of a two-level model, first identifying network state, and second

modelling packet losses within each state. Section 6.3 describes the classification schemes

developed in this work. Section 6.4 recalls the packet loss models introduced in Chapter 5,

and how these are adapted to work within the new two-level model. Section 6.5 presents

results of the new models, showing the improvement over previous approaches. Section 6.6

gives a summary of the chapter.
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6.1 Modelling Delay and Loss

In this section, I will discuss existing approaches to modelling packet loss and delay, and

the relevance of these approaches to improving the loss models of Chapter 5. In particular, I

will look at: 1) techniques for modelling packet loss and delay, to characterise loss and delay

patterns (and generate synthetic sequences); and 2) techniques to identify the underlying

network state from the loss and delay observations (since this is so important in being able

to model what is happening, and how streaming video applications react).

6.1.1 Directly Modelling Loss and Delay with HMMs

Following on directly from the work in Chapter 5, one approach is to extend the HMMs

described in Section 5.1.2 to operate on observation sequences including both packet loss

and delay. This approach has been used in prior work such as [215, 216], which use HMMs

with “discretised” delay values (with a separate value for loss), and [182], which develops

a joint variable for loss and delay that contains a discrete part to represent loss (where the

variable = −1), and a continuous (Gamma-distributed) part to model the delays of received

packets (where the variable takes a continuous value > 0).

Both [182] and [215] describe their approach for estimating the model parameters using

Expectation-Maximisation techniques (i.e., a similar approach to the HMM learning proce-

dure in Chapter 5). However, these are more complicated than the technique described in

Section 5.1.2, since they involve a more complex observation sequence (a joint loss/delay

variable, rather than a binary sequence). As such, the estimation procedures are likely to

be more time-consuming. In [182], applying the HMM algorithm to a training sequence of

1000 observations took around 15 seconds (using a 600MHz Athlon processor). While it is

unclear without implementing the technique what the running times would be on a modern

host, it is clear that the estimation time is non-trivial, especially since the traces described in

Chapter 3 range from 6000 to 600000 observations.

The direct modelling approaches discussed here will, in a similar fashion to the HMMs

described in Chapter 5, identify states within each particular trace being modelled. How-

ever, as discussed earlier, using HMMs in this way means that the states are not particularly

well-defined (i.e., it is not clear what they represent, in terms of the underlying network

conditions), and there is not a “global” sense of what each state represents (e.g., the same
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subset of observations might be classified differently in different traces, depending on the

rest of the trace). For example, [182] discusses what the states automatically identified by

the HMM algorithm (for different numbers of hidden states) might correspond to, in terms

of loss and delay. However, between different traces (especially given the range of network

behaviour seen in the traces of Chapter 3), these states are likely to have quite different mean-

ings. Therefore, I feel it is more appropriate to seek an approach that more explicitly takes

into consideration the conditions on the underlying network in identifying states within the

observation sequence.

6.1.2 Identifying Network State using Loss and Delay

A slightly different approach is to not model the observations of loss and delay directly,

but rather to understand the network state at the time of observation. Understanding the

underlying network state is important for applications, for example in making choices about

adapting their performance (e.g., for streaming video applications, adjusting the transmission

rate or switching FEC parameters).

Identifying the sources of packet loss has been widely studied in prior work on improv-

ing TCP performance over wireless links, where being able to distinguish between non-

congestion-related wireless losses and losses due to congestion at the IP-layer is important

to maintain acceptable TCP throughput [126]. This work focused on modelling the RTTs

measured from loss pairs [125] using an HMM, estimating the most probable states for the

observation sequences, then examining the distributions of RTTs within each hidden state

to identify congestion-based or wireless losses. This idea has also been integrated into TCP

congestion control algorithms, to improve TCP throughput performance on wireless net-

works [11].

Online estimation of path performance was considered in [207], which looks at loss

measurements from probe streams sent across the Internet (using Internet2 and Cogent),

estimating the parameters of an HMM for packet loss, and predicting loss rates and loss

burst distributions for a window into the future. An interesting aspect of this work is that it

uses a “layered” model (described in [45] as a Hierarchical Hidden Markov Model, HHMM).

This involves looking at the loss observations over two timescales (giving two “layers”), with

the outer timescales representing windows of time, into which the observations are divided.

Within each of these windows, the loss observations are divided into periods corresponding
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to their loss rate: “no loss” (0%), “minor loss” (0–0.5%), “tolerable loss” (0.5–1%), “serious

loss” (1–5%), “very serious loss” (5–10%), “unacceptable loss” (> 10%). An HMM is

trained within each window, and the loss conditions within that window are used to predict

performance in the next.

Other work has looked at identifying current network characteristics using observations

of loss and predicting loss conditions for the short-term future, with the goal of adapting

FEC parameters [56], and other real-time applications [191, 189]. The approach of [191]

and [189] is also a hierarchical HMM, with the “inner” states being represented as an SGM,

capturing the short-term dynamics of loss, while the outer (hidden) states capture longer-term

shifts.

6.1.3 Summary

This section has looked at some of the options for incorporating the available observations

of packet delay, to improve the performance of the loss models of Chapter 5. Although the

HMMs provided the best performance in Chapter 5, an important drawback is that the states

identified by the HMM are determined purely according to the training data, and may not

necessarily reflect the underlying network states.

The alternative approach presented in Section 6.1.2, to identify the packet level condi-

tions associated with network conditions (such as congestion in different parts of the net-

work), and use these to pre-classify the states, is more appealing since the states in the data

are those of interest. Another advantage of this approach over a purely data-driven model like

the HMM is that knowledge of current network state can also be used for other applications,

such as adaptive FEC control, or playout buffer tuning.

6.2 Pre-Classifying Network State using Loss/Delay

The Hidden Markov Models used in Chapter 5 work by “learning” the states of the network,

and predicting based on conditions in each state. In this section, I will explain the state of

the network in the traces using the delay and loss characteristics throughout the trace, and

describe how these relate to network conditions (e.g., congestion at different parts of the

network).
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6.2.1 Network States

As described in Chapter 2, the end-to-end path experienced by streaming video flows con-

sumed by home users traverses a number of different “regions”, and can be subject to var-

ious conditions. These include the “core” of the Internet, from the media source (which is

either located on a content-distribution network, or within the ISP’s network), towards the

edge of the ISP network where residential customers are aggregated; the “edge” itself (i.e.,

the customer-facing routers at local exchanges and switching offices, to which customers are

connected); and the “access link”, which provides connectivity from the customer’s premises

to the DSL Access Multiplexer (DSLAM) for ADSL, or Cable Modem Termination System

(CMTS) for Cable. In this section, I will discuss how network conditions will affect these

different regions of the network, and how these are manifested in the end-to-end delay and

loss observations.

Within the “core”, it can be expected that there are many flows traversing the routers

at any given time, with a high degree of statistical multiplexing. Therefore, amongst these

flows, the flow containing the streaming video traffic being transmitted to the residential

user makes up a relatively small proportion of the overall traffic. If congestion occurs, all

flows will experience higher delays on average, and will have an increased probability of

loss. However, the correlation between jitter (i.e., delay variation) and packet loss is limited,

since the streaming video flow only makes up a small fraction of the overall traffic, and the

variation is spread across all these flows [166].

At the ISP “edge”, the streaming video flow can be expected to comprise a much larger

proportion of the available bandwidth than in the “core”, since the link capacities are lower.

In this case, there is a lower degree of statistical multiplexing (since fewer flows are multi-

plexed at ISP edges than in the core). As in “core” congestion, average delays and loss rates

will be higher in periods of congestion; however, there is likely to be a more noticeable effect

on jitter, and a clearer correlation between periods of increased jitter and congestion-induced

packet loss.

On the “access link”, the delay is likely to be relatively stable, although some variation

might be present if underlying error correction techniques are present (e.g., ADSL interleav-

ing or FEC), which can cause delay variation during periods where losses are being corrected.

This region of the network is also the most likely to see packet loss due to corruptions and

checksum failures, since the physical infrastructure in these “last-mile” links (twisted-pair
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telephone cable in ADSL, and coaxial cable for Cable) is typically older and harder to main-

tain [38, 16]. In contrast, studies of packet loss within backbone networks have shown that

packet loss events are extremely rare. For example, in [95], measured loss rates between

Amherst, Massachusetts, and Burlinghame, California (across an over-provisioned optical

backbone) were rarely more than 0.1%. When isolated losses occur with no change in delay

or jitter conditions, these packet losses are likely due to corruptions on the “access link”,

since they occur independently from congestion-induced losses elsewhere in the network.

This section has described the loss, delay, and jitter characteristics that can be expected

from impairments in different regions of the end-to-end path between the video sender and

receiver. Using these features (that can be measured at the receiver), a scheme to classify

network state can be defined. Such a scheme will be outlined in the following sections.

6.2.2 Two-Level Hierarchical Models

Using the results of pre-classification, a two-level hierarchical model can be constructed,

similar to that in [207]. In this two-level model, there is an “outer” level corresponding to

the underlying network state (identified by a classifier), and an “inner” level determining

whether packets are lost or received within these states (represented by a packet loss model).

So, using the network states presented in Section 6.2.1, the outer states of this hierarchical

model will correspond to the following network conditions (as discussed earlier in Section

2.2):

1) uncongested / access link noise, where issues with the physical layer cause IP-layer

packet loss;

2) edge congestion, where queue overflows at the ISP edge (i.e., DSLAM or CMTS)

cause packet loss, and;

3) core congestion, where routers within the “core” networks overflow.

In terms of the physical effects seen in the data, access link noise (1) will cause low levels

of uncongested loss, regardless of the levels of delay. Edge congestion (2) will cause higher

levels of loss, which will be associated with higher delay (since the building edge queues

will noticeably increase queueing delay DQ). Core congestion (3) will cause higher loss,
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Figure 6.1: Outer states of a hierarchical model, with states for different network conditions

but without the noticeable effect in DQ (since higher statistical multiplexing at core routers

means that the effects of queueing on DQ will be less obvious at the receiver).

These outer states, and the transitions between them, are shown in Figure 6.1. Within

each of the outer states, a packet loss model (e.g., the models discussed in Chapter 5) is used

to capture the packet loss process within each of the “outer” states. The two-level structure

allows different classifiers and packet loss models to be used together. For example, an SGM

model can be used for the “uncongested” outer state (since the results of Chapter 5 showed

that the SGM works well in uncongested conditions), while a more complex model can be

used for the “congested” outer states.

As Figure 6.1 shows, the model for the outer states is a three-state Markov chain. The

parameters of this “outer” model, therefore, can be represented as a transition probability

matrix, Aouter:

Aouter =


puncongested,uncongested puncongested,edge puncongested,core

pedge,uncongested pedge,edge pedge,core

pcore,uncongested pcore,edge pcore,core

 (6.1)

These parameters are estimated by counting the transitions between outer states (as de-

termined by the classifier). The probability of moving from state i to state j is calculated

using the number of transitions from i to j, nij , and total number of transitions from i, ni, as

described in [231]:

Aouter[i, j] =
nij
ni

(6.2)

This section has described how the two-level model is constructed, containing an outer

level representing the state of the network, and an inner level representing whether packets
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are being lost or not. The transitions between these outer states are governed by a Markov

chain, whose parameters are estimated by counting the transitions between states (as deter-

mined by the classifier). The two-level approach gives flexibility, allowing experimentation

with the inner packet loss models (which can be different for each outer state), and outer state

classifiers. The following sections introduce the classification schemes and corresponding

inner packet loss models that are used in this dissertation.

6.3 Classification Schemes for Outer States

Two classification schemes have been used; one based on thresholds for loss and delay (ld),

and another that looks for increasing trends in queueing delay before loss (ldbl). The schemes

consider one-second windows of time, and in each window examine the number of losses

(N ), number of loss bursts (M ), and median DQ (D̃Q). Using this information about packet

loss and delay, the classifier can identify the congestion state of the network within each

period of time, and associate the window with the appropriate outer state.

6.3.1 Loss/Delay Threshold (ld) Classifier

The ld classifier, shown in Algorithm 6.1, uses thresholds for N and M to identify periods

of high loss (which indicate congestion), and another threshold for D̃Q to identify between

“core” and “edge” congestion. The choice of loss thresholds (N > 2 or M > 2 indicating

congestion) is based on the assumption that non-congestive loss is unlikely to create more

than two separate loss events with a one second window, and that a loss burst of longer than

two packets is likely to be due to congestion, which appears valid for this dataset. The D̃Q

threshold (5ms) is also based on examination of the trace data; traces with “non-bursty” loss

typically exhibit DQ < 5ms.

6.3.2 Loss / Delay Before Loss (ldbl) Classifier

The ldbl classifier, described in Algorithm 6.2, aims to generalise the ld classifier by no

longer using a D̃Q threshold to distinguish between “edge” and “core” congestion. Instead,

when congestion is identified (as before, when N > 2 or M > 2), the ldbl classifier looks

at the median DQ from packets received before losses (D̃QBL), and compares this against
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Algorithm 6.1 Loss / Delay (ld) Classifier
if (state = “uncongested”) then

if (N > 2) or (M > 2) then # “high loss”

if (D̃Q > 5ms) then # “elevated DQ”

state← “edge congestion”

else

state← “core congestion”

end if

end if

else

if (N ≤ 2) and (M ≤ 2) and (D̃Q ≤ 5ms) then

state← “uncongested”

end if

end if

D̃Q. If D̃QBL is more than twice D̃Q (i.e., delays preceding losses are elevated above

the average), then the window is classified as “edge congestion”; otherwise, the window is

classified as “core congestion”. In the “core congestion” state, DQ doesn’t give insight into

congestion, so if N and M fall below their thresholds, the state returns to “uncongested”.

However, in the “edge congestion” state, DQ is important; so, an extra check is needed to

test for the slow fall in delay observed when the congested queue empties (i.e., at an ISP-

edge router). Once the losses from congestion have stopped, and D̃Q has fallen to 10%

above D̃Q in the last “uncongested” state (D̃QUC), the state switches back to “uncongested”

(Algorithm 6.2 tests D̃Q ≤ kD̃QUC , where k = 1.1). A final addition to the ldbl classifier

is to test for cases when DQ increases before any losses are observed (e.g., to detect the

increase in queue lengths at the edge router). If a sudden increase in DQ is detected within

a window (defined as 25% of the difference between maximum and minimum DQ for the

whole trace), the window is classified as showing “edge congestion”.

6.4 Packet Loss Models for Inner States

This section describes the “inner” packet loss models, which are used to actually describe

the loss process within each of the outer states. Two of the models evaluated in Chapter 5 are
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Algorithm 6.2 Loss / Delay Before Loss (ldbl) Classifier
if (state = “uncongested”) then

if (N > 2) or (M > 2) then # “high loss”

if (D̃QBL > 2D̃Q) then # “elevated DQ”

state← “edge congestion”

else

state← “core congestion”

end if

D̃QUC ← D̃Q

end if

else if (state = “edge congestion”) then

if (N ≤ 2) and (M ≤ 2) and (D̃Q ≤ kD̃QUC) then

state← “uncongested”

end if

else if (state = “core congestion”) then

if (N ≤ 2) and (M ≤ 2) then

state← “uncongested”

end if

end if

used here, the SGM and 2HMM. Using these allows evaluation of the two-level models using

both simple (SGM) and more complex (2HMM) models within the outer states, to understand

the improvement in accuracy made possible by using different models for different network

conditions.

6.4.1 Simple Gilbert Model (SGM)

As mentioned earlier, the results of Chapter 5 showed that the SGM model worked well in

low-loss conditions. Therefore, it seems appropriate to use this model to capture the packet

loss within the “uncongested” state of the two-level model. The SGM is described in detail

in Section 5.1.1; this section describes the differences in parameter estimation for use in a

hierarchical model.

The process for estimating the SGM parameters within the two-level model is as follows:
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1) go through binary loss sequences for the trace, noting the outer state determined by

the classifier for each window;

2) in each window, count the number of packets lost and received (and transitions be-

tween loss and receive runs), and add to a count for the current outer state;

3) use the transition counts and number of lost/received packets in each outer state to

estimate p̂ and q̂ for each outer state, using Equation 5.1.

The results of this process are estimates of p̂ and q̂ for each outer state that is modelled us-

ing the SGM. For example, estimates for p̂ and q̂ in the “uncongested” outer state, p̂uncongested

and q̂uncongested, are obtained.

6.4.2 Two-State Hidden Markov Model (2HMM)

The results of Chapter 5 showed that in traces where there is congestion, the SGM is not

particularly effective, due to the inherent correlations between congestion-induced losses.

Therefore, for the “congested” states, an HMM might be more appropriate, since it is some-

what more capable of capturing the correlations between losses. Since the performance of

two- and three-state HMMs in Chapter 5 was not radically different, this chapter focuses on

two-state HMMs.

In a similar fashion to the process for estimating SGM parameters in the hierarchical

model described in Section 6.4.1, the parameters for the 2HMM in the hierarchical model

are as follows:

1) go through the windows identified by the classifier;

2) for each window associated with the outer state being modelled, concatenate the binary

loss sequence for the window, Ziwindow
onto a new sequence for the outer state, Zistate;

3) pass the sequence Zistate into the HMM learning function from the hmm.discnp pack-

age [209], as described in Section 5.1.2.

For each of the outer states modelled using the 2HMM, the hidden state transition prob-

ability matrix, A, and the hidden state loss probabilities, B, are estimated as described in

Section 5.1. For example, using the 2HMM for the “core congestion” outer state, Acore and

Bcore are obtained.
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6.5 Two-Level Model Results

This section presents results of applying two-level models using the components described

in Sections 6.3 and 6.4, showing how these perform in terms of the metrics defined earlier

in Section 5.2. The models evaluated in this section use all of the classification schemes

and packet loss models described earlier, combined into four configurations of the two-level

model:

� ld, SGM/SGM/SGM; using the ld classifier, with SGMs in each of the outer states;

� ld, SGM/2HMM/2HMM; using the ld classifier, with SGMs in the “uncongested”

outer state, and two-state HMMs in the “congested” outer states;

� ldbl, SGM/SGM/SGM; using the ldbl classifier, with SGMs in each of the outer states;

� ldbl, SGM/2HMM/2HMM; using the ldbl classifier, with SGMs in the “uncongested”

outer state, and two-state HMMs in the “congested” outer states.

The approach is as follows: for each trace, classify the states using loss and delay infor-

mation, according to Section 6.2, into “uncongested”, “core congestion”, and “edge conges-

tion”. Then, for each of these outer states, the parameters of the inner models for packet loss

are estimated (as described in Section 5.1), leading to a separate set of parameters for each of

the outer states. Using these separate per-state models, synthetic sequences can be generated

according to the current outer loss/delay state, using the inner model for that state. This idea

is illustrated in Figures 6.2 and 6.3.

The reason for choosing both SGMs and HMMs within the SGM/2HMM/2HMM con-

figuration is to capture the loss burstiness present in congested outer states (i.e., although the

delay level indicates there is congestion across a number of windows, this does not imply

packet loss throughout the windows, since packet loss only occurs when queues overflow).

Within the “uncongested” outer state, the SGM remains sufficient, since the results of Chap-

ter 5 showed that non-bursty packet loss is captured sufficiently by the SGM.

Following the same approach as in Chapter 5, the parameters for each trace have been

calculated, and three synthetic sequences generated and stored for each. From these, the

mean loss rates and correlation timescales were obtained, and raw and synthetic RLEs gen-

erated. Since the K-S distance used in Chapter 5 was found to be of limited use, it is not
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Figure 6.2: Two-Level Model with SGM in each outer state (SGM/SGM/SGM).
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discussed here. Section 6.5.1 presents the aggregate results for mean loss rates and corre-

lation timescales (RML, ∆ML, and ∆c), and Section 6.5.2 shows in-depth examples of the

sequences generated by each of the two-level models. The parametric bootstrap process, de-

scribed earlier in Section 5.4.1, has also been applied, and the results of this are presented in

Section 6.5.3.

6.5.1 Aggregate Metrics

Figure 6.4 shows mean loss ratio RML and mean loss difference ∆ML, for each of the syn-

thetic sequences calculated from all the loss traces. Just as with the Gilbert models and

HMMs using only packet loss (seen in Figure 5.5), all the models appear to perform simi-

larly for these metrics. These results show that the loss rates are well-estimated by all the

models in the majority of cases.

Figure 6.5 shows the differences in correlation timescale ∆c (i.e., correlation timescale

in synthetic trace minus correlation timescale in original trace), as shown previously for

the loss models in Figure 5.9). The results from the two-level models are similar to those

from Chapter 5, with the majority of the traces showing that the correlation timescale is

well-captured by the model, but showing some traces where the correlation timescale is not

captured.

6.5.2 Visualising Example Traces

Figure 6.6 shows plots to visualise the synthetic sequences generated by the two-level mod-

els, alongside the corresponding raw traces. These are generated from the same example

traces as those shown in Figure 5.13.

As before, the example traces showing low loss and non-bursty loss are equally well

captured by all the models. However, as shown in Figure 6.6c, the two-level models per-

form much better at capturing bursty loss traces, with all of the two-level delay/loss models

showing an improvement on the loss-only models (recall from Figure 5.13c that none of

the Gilbert models or HMMs could adequately model this trace, due to the burstiness in

the packet loss). Interestingly, Figure 6.6d shows that there are differences between the

performance of the two-level models. For this trace, the ld, SGM/SGM/SGM model per-

forms very poorly, as bad as the SGM model in Chapter 5, while the others are better. The
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Figure 6.6: Example Loss Traces and Synthetic Sequences from Two-Level Models (same

example traces used with SGM, EGM and HMMs in Figure 5.13, page 110)
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reason for this is that the ld classifier has identified the whole of this trace are showing

“edge congestion”, due to high delay, meaning that the two-level model collapses to its “in-

ner” model, the SGM. However, the other models show better performance, with the ld,

SGM/2HMM/2HMM model showing similar performance to the 2HMM in Chapter 5 (for

the same reason), and the models using the ldbl classifier identifying different periods of

congestion within the traces. These results show that the versatility of the two-level models

are more suited to capturing bursty packet loss behaviour.

6.5.3 Parametric Bootstrap Results

This section discusses the results from testing the goodness-of-fit of the two-level models

using the parametric bootstrap technique described in Section 5.4. As in Section 5.4, the

goodness-of-fit test used is to compare whether the statistic calculated from the raw data

falls within the central 95% of the distribution of the synthetic statistics.

To demonstrate this improved performance over all the traces, Figures 6.7 and 6.8 show

the results of applying parametric bootstrap to the “non-bursty” and “bursty” traces identified

in Chapter 5. As before, the performance of the models on the “non-bursty” traces is better

than for the “bursty” traces. However, the two-level models also show improved performance

in terms of all the metrics, for both “non-bursty” and “bursty” traces, with more traces show-

ing good fit for these models than the previous models in Figures 6.7 and 6.8 (compared with

the SGM, EGM, and HMM results shown in Figures 5.15 and 5.16, on pages 114 and 115).

Both the ld and ldbl classifiers appear to have similar performance; however, the choice

of inner model configurations has a large impact on the performance of the two-level model.

The SGM/SGM/SGM configuration improves slightly on the SGM, EGM, and HMMs using

only loss data, with the percentiles of the receive run-length distribution still not being well-

modelled in the majority of traces. However, the SGM/2HMM/2HMM configuration shows

much improved performance over the previous models, with the majority of traces being

“well-modelled” in terms of every statistic of interest (and many showing over 75% of traces

as “well-modelled”). This is because they more accurately capture the different states in

packet loss, and use the most appropriate model for each (i.e., SGM for uncongested periods,

and HMM for congested periods).

These results show that the two-level delay/loss models (using the SGM/2HMM/2HMM

configuration) are more accurate than using the previous SGM, EGM, or HMMs. For the
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Figure 6.7: Parametric Bootstrap Results (“non-bursty” traces)
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Figure 6.8: Parametric Bootstrap Results (“bursty” traces)
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traces previously identified as “non-bursty”, the SGM/2HMM/2HMM configuration is suit-

able in almost all cases. In terms of the “bursty” traces, most of which were poorly modelled

by the previous models, the two-level models again show a clear improvement, as illustrated

in the examples of Section 6.5.2. Looking at the percentiles of the receive run-length distri-

bution (which the previous models failed to accurately model), the importance of the choice

of inner model is made clear. Two-level models with the SGM/SGM/SGM configuration

perform better than the SGM and EGM models for all the receive run-length percentiles,

but not as well as the HMMs do for the 5th and 25th percentiles. However, by using the

SGM/2HMM/2HMM configuration, the performance is better than the SGM, EGM, and

HMMs, for all the statistics.

6.6 Discussion & Summary

This chapter has presented a new technique for modelling packet loss, which incorporates

packet loss and delay data, and classifies the underlying network state to more accurately

capture the congestion state and resulting packet loss. Combining classification of the under-

lying network state with the models evaluated in Chapter 5, I developed a two-level model.

The “outer” model captures changes in network conditions (e.g., between different sources

of packet loss; access link noise, core congestion, and edge congestion), while the “inner”

models capture the packet loss process within each outer state.

The results indicate that both the classification schemes (ld and ldbl) give similar overall

model performance, but that the choice of “inner” packet level models determines the quality

of fit. Most importantly, by using the SGM/2HMM/2HMM configuration of inner models,

with HMMs for the “congested” states, better performance can be achieved than by just

using classification and separate SGM models for each state. This reason for this improved

performance is that, even within periods of time classified as “congested”, packet loss is

still bursty, with losses only occurring when queues overflow. By using the HMM, which

incorporates these different behaviours (within the congested state), better performance can

be achieved. Moreover, by using the SGM within non-congested periods, the complexity of

the modelling process is reduced. By explicitly capturing changes in the network state, the

problem of the lack of “constancy” [228] in Internet packet loss can be addressed.
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Chapter 7

Evaluating AL-FEC Performance under

Residential Packet Loss

As discussed in previous chapters, packet losses lead to degradation in the quality of stream-

ing video applications, unless error recovery mechanisms such as forward error correction

(FEC) are used, as described in Section 2.3. In IP-based streaming video and IPTV ap-

plications, FEC is generally deployed at the application level (AL-FEC), adding redundant

packets to the media stream that can be used to repair loss. To improve transmission effi-

ciency, and to reduce the risk of introducing congestion by increasing the overall data rate, it

is desirable to minimise the FEC overhead, while maintaining adequate protection. Finding

the correct balance can be difficult, and requires insight into the network conditions. With

ongoing deployment of streaming video and IPTV to residential Internet users, it is becoming

more important to understand how to tune FEC parameters to suit such services. In particu-

lar, it is important to understand how the loss patterns of ADSL and cable access links differ

from more widely studied backbone network links, and how this impacts media quality and

user experience. Since much of the existing work on FEC performance uses simulation with

models like the SGM, I evaluate the accuracy of the SGM and the two-level model presented

in Chapter 6 in capturing FEC performance.

This chapter will evaluate the performance of three application-layer FEC schemes ap-

plied to RTP-based streaming video. The FEC schemes, which have been standardised

by the IETF and implemented in the OpenFEC project (http://openfec.org) are: 2D parity

codes (2D) [196]; “Reed-Solomon codes for the erasure channel” (RSE) [119]; and LDPC-

Staircase codes [180]. The measurements from Chapter 3 are used to inform trace-driven

http://openfec.org
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simulations of FEC performance, studying residual packet loss rates and fraction of lost

packets successfully recovered. The contributions of this chapter are 1) a simulation-based

evaluation of application-layer FEC performance on real networks, using traces of unman-

aged Internet streaming to residential users (i.e., reflecting the conditions experienced by

“over-the-top” streaming video or video conferencing services); 2) an explanation of the

differences between these results and those of previous evaluations of these schemes under

random packet loss (particularly the effect of bursty packet loss); 3) guidelines for use of

FEC, to recommend which FEC schemes and parameter combinations work well under the

loss conditions common on residential networks; and 4) a validation of the results of Chapter

6, showing that the two-level model is also more accurate than previous models in terms of

FEC performance, a real application where packet loss simulation is used.

This chapter is structured as follows. Section 7.1 outlines related work on evaluating FEC

performance. Section 7.2 describes the FEC schemes in OpenFEC. Section 7.3 explains the

evaluation methodology, including discussion of FEC parameters and performance metrics.

Section 7.4 presents the results of the evaluation. Section 7.5 shows the relationship be-

tween trace burstiness and FEC performance, and introduces a new metric to capture this

relationship. Section 7.6 shows how the two-level models presented in Chapter 6 allow more

accurate simulation of FEC, compared to random loss, and previous models for packet loss.

Section 7.7 summarises the chapter.

7.1 Background

The OpenFEC library contains implementations of three FEC schemes; 2D parity codes

[196], Reed-Solomon Erasure codes [119], and LDPC-Staircase codes [180]. These schemes

were studied under uniform random packet loss from 0–51% by Matsuzono et al. [134]. In

that work, a lab-scale experiment was set up, with a sender and receiver running a Digital

Video (DV) application transmitting data over RTP/UDP/IP [184, 109]. The study evalu-

ated recovery capabilities, latency introduced, and CPU cost incurred by each of the FEC

schemes, concluding that LDPC codes with a source block size of (k = 170, r = 85) give

the best trade-off between recovery performance, latency, and CPU load. However, this does

not tell us about FEC performance under real-world packet loss conditions, which is what

this chapter investigates.
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A previous study looking at FEC performance on DSL networks was conducted by Be-

gen [16]; this compares the performance of 1D interleaved parity codes against Raptor codes

[186]. Begen uses typical DSL noise models to drive simulations of loss patterns, while this

chapter evaluates performance using measured loss traces. Similar models of packet loss

were used in a DVB study [58] to evaluate the performance of 1D parity and Raptor codes,

describing the relative strengths and weaknesses of both schemes. Luby et al. [129] discuss

AL-FEC for IPTV, including a discussion of different FEC schemes, and the “layered” ap-

proach using 1D parity and Raptor codes, discussed in [58]. Mammi et al. [132] investigate

SMPTE 1D and 2D parity FEC schemes [196], using a testbed setup and models of random

i.i.d. noise and repetitive electrical impulse noise. Kang & Loguinov [103] analytically stud-

ied the effect of packet loss on FEC for video streaming, using a number of models for packet

loss, but did not consider any Internet packet loss measurements. FEC performance for video

on optical backbone networks was studied in [147], finding that a suitable trade-off between

repair performance and latency can be hard to achieve. Older work examined performance

of FEC for packet audio over the academic backbones [26, 170, 167], using measured traces

and performance models.

This chapter focuses on FEC performance using measured data from residential broad-

band networks, since streaming video systems are often accessed by home users. Previous

chapters have shown that the characteristics of the packet loss on these networks has been

found to be quite different from uniform random loss, so FEC performance can be expected

to be different too.

7.2 Applying OpenFEC to IP-based Streaming Video

In this section, each of the FEC schemes implemented in the OpenFEC framework is dis-

cussed. Each of these schemes has been considered by the IETF FECFrame working group

for use in protecting media streams, and has received interest from both academia and indus-

try. This section discusses the operation of each of the schemes, describes the overhead and

latency they incur.
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Figure 7.1: Grid Format for Source and Repair Packets in 2D FEC

7.2.1 2D Parity Codes

2D parity codes work by arranging the source packets into a grid of D rows and L columns,

and adding repair packets for each row and column, as shown in Figure 7.1. Therefore, a

total of D+L repair packets are added to the source packets. If at most one packet is lost in

a row or column, then the remaining packets in the row (or column) can be used the recover

the loss. SMPTE 2022-1 [196] is a widely deployed example.

This scheme is simple, but has a limited capacity for recovery, since it is only resilient to

up to D consecutive losses (i.e., is able to recover from loss bursts up to length D, provided

that no other packets were lost within the grid). As there are constraints on the latency that a

real-time system can tolerate, the D and L parameters cannot grow too large. In OpenFEC,

the 2D codes use square grids (with D = L), and limit k to be ≤ 16.

7.2.2 Reed-Solomon Codes

RFC 5510 [119] defines Reed-Solomon FEC schemes for the Erasure channel (RSE codes);

the so-called packet-erasure channel implies that packets either arrive successfully or are

discarded, which matches the use-case of application-layer FEC running over IP networks.

Reed-Solomon codes (originally proposed in [177]) are maximum separable distance codes,

meaning that of the n encoding symbols sent (including k source symbols and n − k repair

symbols), any k can be used for recovery.

The computational cost of the mathematical operations (using Galois Fields) increases
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rapidly with the size of those fields, introducing a practical limitation on the block sizes that

can be used. Due to these limitations, this chapter will look only at RSE codes over GF(28)

(as in [134]).

7.2.3 LDPC-Staircase Codes

A third FEC scheme, LDPC-Staircase codes (defined in RFC 5170 [180]), is suitable for use

with large block sizes, and has a relatively low computational complexity. Similar to Raptor

codes [186], LDPC-Staircase codes require slightly more than k encoding symbols to be

received to allow recovery (i.e., these are not maximum separable distance codes). However,

in practice, the fraction of extra symbols required can be quite low when using an appropriate

decoding algorithm. Matsuzono et al. [134] state that (k × 1.05) is appropriate, based on

experimental evidence [44].

7.3 Evaluation Methodology

The OpenFEC framework provides implementations of the three FEC algorithms under

study, as well as a performance evaluation tool, eperftool. This tool allows the evaluation of

the FEC schemes on a single machine, simulating the transmission and reception of pack-

ets. It is configurable with a number of transmission schemes (which determine the order

of transmitted source and repair packets) and loss modes (which determine which packets

arrive at the receiver).

The FEC schemes are evaluated using the same binary loss sequences used in Chapters

5 and 6, obtained from the measurements in Chapter 3. To allow evaluation of the FEC

schemes with these loss traces, minor modifications were made to eperftool, as follows. A

new mode was added, which reads a given loss trace and uses the loss patterns within the

trace to decide whether packets will be received or lost. A new transmission mode (which de-

termines the order in which packets are sent) was also added, to support the source and FEC

packets for each block being sent together, rather than using the default sending arrangement

that sends all source packets (for all blocks) first, then all repair packets. This modification

is necessary to prevent large delays when recovering lost packets. Another minor modifica-

tion, to support the replication of the results of [134], was to add a maximum source block

size. This was necessary to support the different k values specified for the LDPC scheme.
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Finally, modifications have been made to profile the FEC decoding process, to enable more

fine-grained reporting of packet loss and repair than was previously available in eperftool.

To this end, the number of source and repair packets received within each block are recorded,

to allow calculation of per-block and overall packet loss statistics. When decoding of a block

fails, the number of source packets received (and lost) determine the residual loss rate. A

further metric of interest in FEC is the delay incurred by waiting for FEC packets to recover

lost packets. To capture this, profiling code was added to record the distance between lost

packets and the repair packets that recover them. The modifications to eperftool are available

at http://martin-ellis.net/research/fec.

7.3.1 FEC Parameters

To begin, I apply the same parameters as [134]; 2D parity with (k = 16, r = 8), RSE with

(k = 170, r = 85), LDPC with (k = 170, r = 85), (k = 500, r = 250), and (k = 1000,

r = 500), and code rate of 2
3
, (i.e., 50% overhead). These parameters are used so that

the experiments of [134] can be re-run to validate the experimental setup, and to compare

performance of the FEC schemes using real-world loss traces against simulated random loss.

When running a simulation, the total number of source (Tk) and repair (Tr) packets needs

to be specified. When re-running the experiments of [134], Tk = 10000 and Tr = 5000 are

chosen, to achieve a code rate of 2
3
, with a reasonable number of blocks for each of the FEC

schemes being tested. For the loss traces, the choice of Tk and Tr is determined by the trace

length, with 2
3

of the trace being allocated to the source packets, and the remainder to the

repair packets. So, for a trace of length T :

Tk =

⌊
T × 2

3

⌋
, Tr =

⌊
T × 1

3

⌋
. (7.1)

For 2D FEC, there are further limitations, such that Tk must be a multiple of 16 (the

largest 2D block size supported in OpenFEC), and Tr is Tk/2.

7.3.2 Performance Metrics

In [134], three metrics are used to evaluate performance; residual (post-repair) loss rate,

frame delay, and CPU usage. Since I am evaluating the algorithms using eperftool, rather

than a separate sender and receiver, I will look at residual loss rate and delay due to FEC.

http://martin-ellis.net/research/fec
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Measuring CPU usage is not so important, since the goal is not to measure the complexity of

the algorithms, but rather to observe how their repair performance is affected by measured

loss data from residential networks, and since FEC decoding cost is small relative to the cost

of decoding video.

To calculate the delay due to FEC, the number of packets received between the time when

the lost packet would have been received, and the receipt of the packet that repairs the loss, is

counted. This is more appropriate than the wall-clock time measured for delay in Matsuzono

et al. [134], since it makes no assumptions about sending rates (as the sending rate increases,

the time delay associated with a fixed number of packets decreases), and is not tied to the

particular processor or load of the machine doing the calculations. Although delay in terms

of packets does not consider the FEC decoding delay, in practice this is expected to be small

compared to the packet arrival delay, especially given the low packet sending rates available

on residential networks.

7.4 OpenFEC Performance

This section begins by evaluating the FEC schemes under simulated random loss, as in [134],

then presents results of applying the same parameters to the loss traces measured in Chapter

3. Then, the effect of applying FEC on delay (i.e., latency incurred by waiting for repair

packets to arrive) is considered in terms of time, with a typical packet transmission rate.

Finally, another set of FEC parameters, which ensure acceptably low FEC delay, are then

considered.

7.4.1 Applying FEC under uniform random loss

Figure 7.2 shows the input packet loss probability against residual (post-repair) packet loss

rate (the diagonal represents loss rate with no FEC). This shows that for low loss (up to

around 10%), all the schemes perform well, repairing almost all loss. Above 10%, 2D parity

FEC starts to show poorer performance, showing steadily higher residual loss rates as the

input loss probability increases. Up to around 30% loss, the other FEC schemes continue

to perform well. However, above 30%, they show a sharp degradation in performance, with

residual loss rates climbing sharply, eventually matching the input loss probability after 35%.

Beyond 35% loss, 2D FEC gives slightly lower residual loss rates (since the small block
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Figure 7.2: Random Loss Probability vs. Residual Packet Loss

sizes mean that some blocks will be repaired). However, residual loss rates of above 30%

will produce unusable video. These results are comparable with those in [134], which also

showed the early decline in 2D parity FEC performance, and the “cliff” in performance for

the other schemes.

Figures 7.3a and 7.3b show the mean and standard deviation of the FEC delay (in terms

of packets). At low loss rates, the delays are generally low (although related to the block

size), since most packets are received normally (i.e., with a delay of zero packets). As loss

rate increases, the mean (and variance) of the delays increase, with more packets in need of

repair, up to the threshold point discussed earlier and seen in Figure 7.2. After this point,

since fewer packets are actually recovered, the average delay due to FEC decreases.

The results presented in Figure 7.3 are independent of the packet transmission rate (which

will be discussed in more detail in Section 7.4.3). Therefore, they are comparable with, but

do not directly replicate those in [134], which assume a particular transmission rate, and

include the CPU processing time for the FEC. The impact of transmission rate is discussed

in Section 7.4.3.
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FEC Scheme Num traces Percentage

2D (k = 16, r = 8) 3264 85.6%

RSE (k = 170, r = 85) 3728 97.9%

LDPC (k = 170, r = 85) 3724 97.8%

LDPC (k = 500, r = 250) 3780 99.2%

LDPC (k = 1000, r = 500) 3789 99.5%

Table 7.1: Number of Traces with 0% Residual Loss Rate

7.4.2 Applying FEC to loss traces

Figure 7.4 shows results of applying the FEC schemes to the loss traces from Chapter 3.

Since most of the traces show quite low loss rates, the scale in Figure 7.4a is set to fo-

cus on the 0–25% range. Observe that unlike the random loss results (where all the FEC

schemes except 2D parity show almost full recovery under 25% loss), there are traces in this

range where not all loss is recovered. Table 7.1 gives the percentage of traces, for each FEC

scheme, which have 0% residual loss. Note that having such a high percentage of low loss

traces is not unusual for a well-engineered network. However, those traces that show signif-

icant loss are common enough to have a severe effect on user experience. A common target

for IPTV services is to have no more than one visible artefact per two hours (or fewer). This

corresponds to packet loss of ∼10−6 [16].

It is clear that the 2D parity code has the poorest performance, as in [134], since it has the

lowest fraction of traces being fully repaired (see Table 7.1). This lower fraction produces

the higher points on the 2D FEC graph in the top panel of Figure 7.4; some of these are

clustered near to the diagonal, showing that the performance is little better than it would be

without FEC.

The RSE and LDPC schemes perform equally well for (k = 170, r = 85), with LDPC

performing even better at larger block sizes. However, unlike the random loss results seen in

the previous experiments, there are cases of low loss (i.e., less than 10%) where the losses in

the trace data cannot be recovered, resulting in residual loss rates above zero. In these cases,

the loss traces contain loss patterns that overwhelm the capacity of FEC to recover within

certain blocks (e.g., large loss bursts). This result is a reminder that the relationship between

packet loss and FEC performance is not straightforward. It is also worth noting that there



7.4. OPENFEC PERFORMANCE 156

 0

 5

 10

 15

 20

 25

 

2D (k = 16, r = 8)

No FEC

 0

 5

 10

 15

 20

 25

 

RSE (k = 170, r = 85)

No FEC

 0

 5

 10

 15

 20

 25

R
e
si

d
u

a
l 

L
o

ss
 R

a
te

 (
%

)

LDPC (k = 170, r = 85)

No FEC

 0

 5

 10

 15

 20

 25

 

LDPC (k = 500, r = 250)

No FEC

 0

 5

 10

 15

 20

 25

0 5 10 15 20 25

 

Trace Loss Rate (%)

LDPC (k = 1000, r = 500)

No FEC

(a) Linear scale

10
-3

10
-2

10
-1

10
0

10
1

 

No FEC

2D (k = 16, r = 8)

10
-3

10
-2

10
-1

10
0

10
1

 

No FEC

RSE (k = 170, r = 85)

10
-3

10
-2

10
-1

10
0

10
1

R
e
si

d
u

a
l 

L
o

ss
 R

a
te

 (
%

) No FEC

LDPC (k = 170, r = 85)

10
-3

10
-2

10
-1

10
0

10
1

 

No FEC

LDPC (k = 500, r = 250)

10
-3

10
-2

10
-1

10
0

10
1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 

Trace Loss Rate (%)

No FEC

LDPC (k = 1000, r = 500)

(b) Log scale

Figure 7.4: Trace Loss vs. Residual Loss Rate
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Figure 7.6: Cumulative Distribution of FEC Delays from Loss Traces

are cases where none of the FEC schemes are able to repair the loss (even with a large FEC

overhead). In such cases, a retransmission-based recovery mechanism will be necessary.

Figure 7.5 shows trace loss vs. per-trace mean delay (in terms of packets, as discussed

in Section 7.3.2). A similar shape can be seen for all the schemes, with the overall trend

showing higher mean delays when the trace loss rate is higher (since more packets need to

be repaired). Moreover, the mean delay in terms of packets increases with the size of the

FEC blocks. The maximum per-trace mean delay is around one packet for 2D FEC (k = 16,

r = 8), around 10 packets for RSE and LDPC with (k = 170, r = 85), and between 50 and

100 packets for LDPC with (k = 500, r = 250) and (k = 1000, r = 500).

Mean delay, while useful, does not tell the whole story, since video quality depends not

only on the mean packet delay, but on how often packets exceed their deadline and cause

visible distortions to playback. Figure 7.6 shows the cumulative distribution of per-packet

delays for each of the FEC schemes. This shows the delays due to FEC repair, for each packet

that was repaired. Note that the point where all packets are repaired is close to the FEC block

size. This is because the FEC block size determines the worst case for the FEC delay (i.e.,

in the case where all the repair packets are required for recovery). Given the limitations on

time available for FEC recovery, the relatively high worst case delays for the LDPC schemes

with (k = 500, r = 250) and (k = 1000, r = 500) can limit their applicability.
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7.4.3 Calculating FEC Latency (in seconds)

To recommend which of these schemes is most appropriate for use on residential networks,

this section looks at their ability to recover from losses, and the delay they introduce. So

far, FEC delay has been considered in terms of the number of packets sent in the stream

between packets being lost and being recovered. However, by considering the sending rate

of these packets, FEC delays in terms of time can be calculated. Considering sending rates

of 5Mb/s, which can be received by the typical residential broadband user ([115] found that

average home downstream bandwidth was 6.2Mb/s), and 1316-byte RTP packets carrying

MPEG video, leads to a packet rate of 500 packets per second (pps). Using this rate, the

latency of the FEC can be estimated. To achieve the overall 430ms latency bound suggested

in [114], a constraint of 200ms for the FEC latency seems appropriate, allowing time for

other components of channel-change latency. Assuming this sending rate of 500pps, this

means that the upper bound on FEC delay is 100 packets.

Figure 7.6 shows that the fraction of repaired packets exceeding the 200ms limit for

FEC delay (100 packets at 500pps) is 50% for RSE (k = 170, r = 85), and 60% for LDPC

(k = 170, r = 85), although only 0.075% (RSE) and 0.09% (LDPC) of all packets exceed the

threshold. Recall that the worst case FEC delay is around the FEC block size k. Therefore,

to apply these schemes in a streaming application with real-time latency constraints, FEC

block sizes should be closer to the latency bound for the application (i.e., 100 packets).

7.4.4 Applying FEC to loss traces (using smaller FEC blocks)

This section presents results using parameters with smaller block sizes, to reduce the worst-

case delay and measure the effect on recovery performance. Although the RSE codes had

similar recovery and delay performance to LDPC, since [134] recorded much higher CPU

overhead for the RSE scheme, (due to the higher computational complexity of the Reed-

Solomon algorithm), I focus on the LDPC codes. The parameters used were (k = 67,

r = 33) and (k = 80, r = 20), with 50% and 25% overhead, respectively (since many traces

have low loss rates, I also look at the effect of reducing FEC overhead).

Figure 7.7 shows the loss rate of each trace, plotted against the residual loss rate obtained

after FEC recovery of that trace, as in Figure 7.4. This figure suggests that loss recovery

of LDPC with smaller FEC block sizes is not too much worse than with the larger LDPC



7.4. OPENFEC PERFORMANCE 160

 0

 5

 10

 15

 20

 25
R

e
si

d
u

a
l 

L
o

ss
 R

a
te

 (
%

)

LDPC (k = 67, r = 33)

No FEC

 0

 5

 10

 15

 20

 25

0 5 10 15 20 25

R
e
si

d
u

a
l 

L
o

ss
 R

a
te

 (
%

)

Trace Loss Rate (%)

LDPC (k = 80, r = 20)

No FEC

(a) Linear scale

10
-3

10
-2

10
-1

10
0

10
1

R
e
si

d
u

a
l 

L
o

ss
 R

a
te

 (
%

) No FEC

LDPC (k = 67, r = 33)

10
-3

10
-2

10
-1

10
0

10
1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
e
si

d
u

a
l 

L
o

ss
 R

a
te

 (
%

)
Trace Loss Rate (%)

No FEC

LDPC (k = 80, r = 20)

(b) Log scale

Figure 7.7: Trace Loss vs. Residual Loss Rate (smaller FEC blocks)
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Figure 7.8: Trace Loss vs. Mean FEC Delay (smaller FEC blocks)
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Figure 7.9: Cumulative Distribution of FEC Delays from Loss Traces (smaller FEC blocks)

FEC Scheme Num traces Percentage

LDPC (k = 67, r = 33) 3641 95.6%

LDPC (k = 80, r = 20) 3508 92.1%

Table 7.2: Number of Traces with 0% Residual Loss Rate (smaller FEC blocks)

(k = 170, r = 85) scheme. Table 7.2 shows the fraction of fully repaired traces using

these parameters with smaller FEC blocks; 96% for LDPC (k = 67, r = 33), and 92% for

(k = 80, r = 20). The results show that reducing the worst-case delay to acceptable levels

with smaller FEC blocks does not impact recovery too much; recall Table 7.1, which showed

the LDPC (k = 170, r = 85) scheme fully repaired 98% of traces.

Figures 7.8 and 7.9 show that, as expected, delays are lower on average, and that the

worst case FEC delay is never larger than 100 packets.

7.4.5 Summary

Considering the higher CPU overhead for the RSE scheme recorded in [134], the results of

this section agree with the conclusions of [134] that LDPC codes are the most suitable choice

among the schemes compared. However, the (k = 170, r = 85) parameters recommended in

[134] result in latency that is too high for practical use (a delay bound of 200ms at 5Mb/s).
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By applying parameters with a smaller FEC block size (k = 67, r = 33) and (k = 80,

r = 20), the results show that the worst-case FEC delay is reduced, while not harming

recovery performance too much.

It should also be noted that none of the FEC schemes recover all lost packets when

the loss is too high. In such cases, it is necessary to use retransmission alongside FEC to

recover loss, although doing so will add one round-trip time of latency, to account for the

retransmission request. Note that infrastructure to support retransmission is likely already

present in the system, to support rapid channel-change [212].

7.5 The Effect of Burstiness on FEC Performance

Comparing the results between random loss (Section 7.4.1) and the measured loss traces

(Section 7.4.2), it is clear that performance is different. While most of the loss traces show

loss rates less than 10%, FEC performance on the traces does not match that of random loss

below 10%. The difference is due to the loss patterns in the traces, which exhibit bursty

rather than uniform random loss, as described in Chapters 4 and 5. This section looks at

metrics to define the burstiness of a trace, and investigates how well these metrics correlate

with FEC performance.

7.5.1 Metrics for Burstiness

An intuitive choice for a burstiness metric is the mean loss burst length, the average length

of a packet loss burst. This metric has been used in previous work on evaluating FEC per-

formance [70, 148]. However, as discussed in Chapter 5, average loss burst lengths can be

misleading, since some of the traces with the poorest performance have short mean burst

lengths. The reason for this is that there are periods where many packets are lost in short

bursts next to short bursts of received packets; while the loss bursts are short, the overall loss

patterns are highly bursty.

To measure this effect, and better capture the loss burstiness in the traces, a different

metric, βwin, is calculated. To calculate βwin for a trace, it is split into windows, and the

number of lost packets and distinct loss bursts in each window are counted. In a particular

window, if the number of lost packets exceeds a threshold N , or the number of loss bursts
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exceeds M , that window is classified as bursty. βwin is defined as the fraction of windows

classified as bursty, using this technique:

βwin =
#windows where (#losses > N) or (#bursts > M)

total #windows
(7.2)

A window size of 16 packets is chosen, since this corresponds to the smallest of the block

sizes of the FEC schemes being compared. Also, if the packets are being transmitted at 500

packets per second (as discussed in Section 7.4.3), the 16 packet window equates to 32ms,

which is roughly equal to one frame of video playback at 29.97fps (1/29.97 ≈ 33.33ms).

N = 4 packets was chosen since the 99th percentile of all loss burst lengths in the loss traces

is 4, suggesting that loss bursts longer than this are unusual and should be recorded. The M

parameter acts as a threshold for how bursty the windows should be; M = 4 packets was

chosen since 4 loss bursts in a window of 16 suggests loss is reaching the point where repair

is ineffective (as seen in Figure 7.2).

A similar metric for burstiness in voice-over-IP calls was proposed in Section 4.7.2 of

RFC 3611 [68]. This metric uses a threshold Gmin to divide the trace into periods of bursts

and gaps, where a burst is defined as: “the longest sequence that (a) starts with a lost or dis-

carded packet, (b) does not contain any occurrences of Gmin or more consecutively received

(and not discarded) packets, and (c) ends with a lost or discarded packet” [68].

In the following section, these three metrics are calculated for each of the loss traces, and

correlated with FEC performance. The accuracy of the metrics of burstiness in predicting

FEC performance is then compared.

7.5.2 Comparing Burstiness Metrics

Figure 7.10 shows the results of plotting the three burstiness metrics (mean burst length,

RFC 3611 burstiness metric, and βwin), against the residual loss rate after FEC recovery.

To assess the correlation between the burstiness metrics and the residual loss rate, Pearson’s

product-moment correlation coefficient was computed.

The results shown in the left panels demonstrate the poor performance of mean burst

length as a predictor of FEC performance, with a wide range of residual loss rates resulting

from traces with loss mean burst lengths, and a very low correlation value. The reason for

this is as discussed before; most individual loss bursts are short, but when they are placed

close together, they have a severe impact on FEC performance.
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Correlation : 0.8292
2D (k  = 16, r = 8)
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Correlation : 0.9904
2D (k  = 16, r = 8)
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Correlation : 0.0286
RSE (k  = 170, r = 85)
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Correlation : 0.8084
RSE (k  = 170, r = 85)
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Correlation : 0.9782
RSE (k  = 170, r = 85)
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Correlation : 0.0286
LDPC (k  = 170, r = 85)
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Correlation : 0.8105
LDPC (k  = 170, r = 85)
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Correlation : 0.9797
LDPC (k  = 170, r = 85)
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Correlation : 0.0551
LDPC (k  = 500, r = 250)

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

Correlation : 0.8050
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Correlation : 0.9756
LDPC (k  = 500, r = 250)
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Figure 7.10: Correlating FEC Performance with Loss Burstiness Metrics. Left panels: mean

loss burst length; Middle panels: RFC 3611 burstiness metric; Right panels: window-based

burstiness metric βwin.
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The middle panels of Figure 7.10 show better performance from the metric defined in

RFC 3611, but these are not as good as the performance of βwin, shown in the right panels.

The poorer performance is probably due to the RFC 3611 metric being too sensitive, and

describing a whole period as bursty, even if FEC recovery might be possible. βwin is more

accurate since it considers how much loss is tolerable. Adjusting the threshold length, Gmin

used in the RFC 3611 metric can achieve better performance, but the correlation with FEC

performance is only stronger than βwin when Gmin is ≤ 3, at which point the RFC 3611

metric does not distinguish between “good and poor quality periods”, as was the aim in [68].

Figure 7.10 shows that βwin is a better metric for FEC performance than both mean loss

burst length and the burstiness metric presented in RFC 3611, correlating strongly with the

residual loss rate. This suggests that βwin might be used as a predictor of FEC performance

(and hence as a crude metric for video quality), allowing the application to adapt to network

conditions. An interesting topic for future work would be to adapt the code rate of FEC (i.e.,

the ratio of video packets to repair packets) using βwin, since this might allow adaptation to

happen faster than waiting for the FEC recovery process.

7.6 Simulating FEC Performance with Packet Loss Models

Chapter 6 presented a two-level model, which was shown to be more accurate in modelling

packet loss statistics than previous models. In this section, the accuracy of the two-level

model is compared to the SGM and uniform random loss, in terms of the FEC performance

using input packet loss sequences generated by these models. This is important since FEC

performance can be evaluated using packet loss models, rather than requiring full measure-

ment traces (provided that the models induce similar FEC performance to the raw data).

Since the SGM is already widely used for this purpose (e.g., [70, 71, 149, 103, 208]), this

section demonstrates that the two-level model is more suitable when simulating the packet

loss patterns of residential broadband networks.

7.6.1 Comparing Models to Raw Data

To compare performance of the models, FEC simulations using eperftool were conducted,

using the uniform random loss mode (as in Section 7.4.1), and traces generated by the two

models, SGM and ld, SGM/2HMM/2HMM. To demonstrate the improved accuracy of the
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two-level models of Chapter 6 using FEC as an example application, the FEC performance

results obtained from these synthetic sequences is compared to the results obtained from the

original raw data.

So, for each trace, we have the FEC performance measured from:

� the original raw trace (discussed in Section 7.4)

� uniform random data (with a loss probability derived from the raw trace)

� the SGM synthetic sequence (with model parameters derived from the raw trace)

� the ld, SGM/2HMM/2HMM synthetic sequence (with model parameters derived from

the raw trace)

The FEC performance from the models is compared to performance from the raw data,

to assess the accuracy of the models, in terms of simulating FEC.

7.6.2 Improved Accuracy of Two-Level Models

Figure 7.11 compares the performance of FEC obtained from the loss traces (as discussed

earlier) against FEC performance results using synthetic data from 1) uniform random packet

loss; 2) packet loss generated by the SGM model; and 3) packet loss generated by the ld,

SGM/2HMM/2HMM model. The metric for performance is FEC effectiveness, (i.e., number

of source packets repaired divided by number of source packets lost). This is used instead of

residual loss rate, since it more clearly demonstrates the differences between performance of

the models.

From each raw data trace, ten synthetic sequences were generated (within eperftool for

uniform random loss model, and using the approach used in Chapters 5 and 6 for the SGM

and ld, SGM/2HMM/2HMM models). Each point on the scatter plots represents a measure-

ment trace, and shows the FEC effectiveness obtained from the raw data (x-axis), and the

mean of the FEC effectiveness obtained from the ten synthetic sequences. This demonstrates

the typical FEC performance that would be obtained from simulation using these models.

If the models perfectly matched the raw data, the points would fall on a 45◦ diagonal line.

Deviations from this line show the extent to which the FEC performance obtained from the

models is different to that obtained from the raw data.
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Figure 7.11: FEC Performance on Raw and Synthetic Data
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The top row of Figure 7.11 shows the results from uniform random loss, the middle

row shows results from the SGM model, and the bottom row shows results from the ld,

SGM/2HMM/2HMM model. The left column shows results from the LDPC (k = 67, r =

33) scheme, and the right column shows results from LDPC (k = 80, r = 20).

From Figures 7.11a and 7.11b, it is clear that the FEC performance obtained by simulat-

ing uniform random loss is quite different from that in the real data. This is as discussed in

Section 7.5, but is visible in the line present across the top of Figures 7.11a and 7.11b, cor-

responding to the case where the synthetic sequence resulted in 100% FEC recovery, while

the original raw data sequence was not fully recovered. Figures 7.11c and 7.11d show that

the performance of the SGM is only slightly better than using uniform random loss. The

lines of points representing 100% recovery is also present for the SGM. In contrast, the ld,

SGM/2HMM/2HMM model, as shown in Figures 7.11e and 7.11f, tends to generate syn-

thetic sequences that show FEC performance more similar to the original, with the points

clustering closer to the 45◦ diagonal. The vertical line around x = 100 on the plots for

the SGM and ld, SGM/2HMM/2HMM models indicates cases where 100% recovery was

achieved in the original trace, while the synthetic trace resulted in lower recovery. In these

cases, the model appears to be somewhat pessimistic about the FEC performance. However,

looking at the correlation between raw and synthetic FEC effectiveness (displayed on each

plot), it is clear that the two-level model is more accurate, with correlation of over 0.8. This

is a strong improvement over the correlation of ∼0.2 (for uniform random loss) and ∼0.3

(for the SGM).

7.6.3 Summary

This section has applied the two-level model presented in Chapter 6 to simulation of FEC

recovery, comparing its accuracy in terms of FEC performance using the real data. Compared

to the previous models (both uniform random loss, and the widely used SGM model), the

two-level model gives more accurate FEC performance results, suggesting it is more suitable

for simulation of FEC performance on video streaming over residential broadband networks.
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7.7 Discussion & Summary

In this chapter, I have evaluated the performance of three AL-FEC schemes; 2D, RSE, and

LDPC-Staircase codes, under loss conditions measured for IPTV-like traffic on residential

broadband networks. I have shown that since the measured loss is bursty, the FEC perfor-

mance does not simply follow the input loss rate as suggested in [134], but is also affected

by the loss burstiness. Looking at burstiness, I have also demonstrated that the mean burst

length is not sufficient to predict FEC performance, since it does not consider the periods of

short, clustered loss bursts. I have presented a window-based loss burstiness metric, βwin,

which better correlates with residual loss rate than the burst loss metric presented in [68].

I have found that LDPC-Staircase codes give the best trade-off between recovery, latency

and computational cost (a finding consistent with that of [134]), although the worst-case

delays incurred when (k = 170, r = 85) are too high to be used for Internet streaming.

However, the results show that smaller block sizes can be used without harming recovery

performance too much. Since there are periods of loss that are unrecoverable using FEC

(even with high levels of overhead), it is also clear that retransmission-based recovery should

also be used to recover from these periods of loss.

Finally, I have used the application of FEC performance evaluation as a case study to

validate the improved accuracy of the two-level model presented in Chapter 6. The results

show that future work on simulating FEC performance on networks with bursty packet loss

behaviour (such as the residential broadband networks I have measured) would benefit from

using the two-level model, rather than existing approaches such as the SGM. Another po-

tential use for the new models is in adaptive FEC, where the receiver uses the classification

and modelling mechanisms presented in Chapter 6 as input to a control loop that determines

which FEC parameters should be used. For example, the ratio of video data to FEC could be

adjusted, so that a higher video bit-rate can be offered while network conditions are good,

while more error resilience is available when conditions degrade. The issues involved in the

design and optimisation of such a system are an interesting direction for future work.
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Chapter 8

Conclusions and Future Work

Video streaming has become a ubiquitous application in today’s Internet, and transmitting

high quality video to home users is increasingly important. However, the performance char-

acteristics of high quality video streaming over these residential users’ access links (typically

DSL or Cable) are not well understood; therefore, accurately simulating network perfor-

mance or evaluating new video applications can be difficult.

In this dissertation, I have presented my contributions to solving this problem. I have

collected and published packet level measurements of streaming high bit-rate IPTV-like traf-

fic across the Internet to residential users, giving new insight into the packet loss and delay

performance of video streaming applications. I have used these measurements to show that

existing models for packet loss simulation can be inaccurate, and introduced a new model

that allows more accurate simulation of packet loss. I have also shown the differences in

forward error correction performance between previous studies (which made assumptions

about network conditions) using real measurement data, and explained these differences.

This chapter is structured as follows. Section 8.1 recaps the thesis statement presented

in Chapter 1, and describes how it has been addressed. Section 8.2 lists the contributions of

this dissertation. Section 8.3 outlines directions for future work, describing improvements

that can be made to the work presented here, and exploring how it fits into other areas of

research. Section 8.4 gives a summary of this chapter, and concludes the dissertation.
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8.1 Thesis Statement

In this section, I repeat my thesis statement from Section 1.1, and indicate how it has been

addressed, with reference to the preceding chapters. The thesis statement is restated as fol-

lows:

I assert that packet loss simulation for streaming over residential networks is

inaccurate because existing models do not capture the bursty nature of packet

loss on these networks. To demonstrate this assertion, I will show the inaccu-

racy of existing Markov chain models under bursty packet loss by testing their

goodness-of-fit against real packet loss data. Then, to overcome the limitations

of existing models, I will develop a new model that more accurately models

bursty packet loss.

As a first step towards demonstrating this assertion, I will capture the packet

loss and delay characteristics of residential networks by performing new mea-

surements. Then, using these measurements I will:

� Evaluate existing models for simulating packet loss, and show that these

models can be inaccurate since they generate synthetic sequences that have

different properties to the real data. This is important since when the mod-

els are used for simulation, the results obtained will not reflect reality.

Moreover, I will explain what types of network performance cannot be

accurately represented by existing models.

� Develop a new, more accurate model for packet loss simulation that explic-

itly models changes in packet loss and delay behaviour. This new model

will demonstrate that by better understanding the network performance,

simulation accuracy can be improved.

� Evaluate the performance of forward error correction (FEC) schemes for

Internet video under real packet loss conditions, and show that more real-

istic simulation of FEC performance is possible by using the new packet

loss model. This will demonstrate that the new model can be applied to a

realistic application, and show the benefits of doing so.
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To improve our understanding of the performance of video streaming over residential

networks, and improve the accuracy of packet loss simulation in this context, I did the fol-

lowing.

In Chapter 3, I collected a dataset of streaming high bit-rate IPTV-like RTP traffic towards

receivers connected to the Internet using residential ADSL and Cable links. The chapter

describes the process involved in choosing experimental parameters, as well as practical

considerations for conducting active measurements to residential users.

Chapter 4 presented a high-level analysis of these measurements, showing that the packet

loss and delay characteristics vary significantly between different links, and can fluctuate

over time. Indeed, characteristics can vary over long time scales between the two years of the

measurements, over medium time scales between different times of day, and even over short

time scales within individual traces. Another finding of Chapter 4 was the clear difference

between the performance of capacity estimation techniques on ADSL and Cable, suggesting

that although there is not a clear distinction for packet loss and delay characteristics, the links

are quite different, and might be distinguished using the packet-pair technique.

In Chapter 5, I used the packet level loss measurements to evaluate the accuracy of ex-

isting, widely used models for packet loss. Using a simulation-based approach, I demon-

strated that the existing models do not capture the wide range of loss conditions present in

the measurement data. In particular, the switches between periods of relatively infrequent

packet loss and periods of bursty, correlated loss are not well-captured by existing models. I

showed that in order to accurately model these loss behaviours, a new model needs to under-

stand the underlying state of the network (i.e., whether it is currently congested or not), and

the transitions between these.

Chapter 6 introduced such a model, which I designed to explicitly take into account

the transitions between network states observed in the loss data. Using the same evaluation

technique as in Chapter 5, I showed that the new model accurately models a larger number of

traces than the previous models, producing loss patterns that more closely match the switches

between periods of infrequent packet loss and bursty, correlated loss. Moreover, in terms of a

range of summary statistics, I have shown that the new models have better “goodness-of-fit”

than the previous models, demonstrating that they are more accurate.

Finally, in Chapter 7, I showed that by understanding the network better, more realistic

performance evaluation of network applications can be conducted, presenting a case study
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where the performance of forward error correction schemes was tested. I showed that the

schemes perform quite differently under real packet loss conditions than previous studies

have suggested, and demonstrated that the new packet loss model presented in Chapter 6

enables more realistic simulation.

8.2 Contributions

The contributions of this dissertation are as follows:

A new dataset of IPTV-like RTP streaming to residential Internet users.

I have conducted and published new packet level performance measurements of stream-

ing high bit-rate RTP traffic towards residential receivers. High-level analysis of this

dataset to compare access link types (i.e., ADSL and Cable) shows that the links can

be quite different in terms of packet loss and delay behaviour, with some showing

very predictable performance and others being quite variable (e.g., showing time-of-

day variation). Moreover, the analysis shows no clear difference in loss and delay

behaviour between ADSL and Cable, with individual links behaving differently from

each other (e.g., some links show lots of congestive loss, or spikes in queueing delay

during the evening, while other links of the same type do not). There is, however, a

difference between the performance of packet pair capacity estimation, which seems

quite accurate for ADSL (but not for Cable).

An evaluation study of existing Markov chain packet loss models.

This work used the measurements of packet loss to evaluate the accuracy of existing

packet loss models (Simple Gilbert Model and Extended Gilbert Model, and Hidden

Markov Models) on residential broadband links. I found that in some traces, the packet

loss conditions were able to be modelled by these existing models, but that in a sig-

nificant number of traces, the existing models performed poorly. A key feature of the

traces where existing models are inaccurate is that there appear to be changes in state,

where the loss behaviour switches into a mode of bursty, correlated loss. The problem

with existing models is that they do not capture these state changes.

Introduction of a new two-level model for packet loss, using loss and delay.

This work developed a new two-level model to explicitly capture the state changes
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that caused problems for the SGM, EGM and HMMs. The two-level model classifies

periods of each trace into states (“uncongested”, “core congestion”, “edge conges-

tion”) according to the packet loss and delay behaviour, and estimates separately the

model parameters for the periods of different states. The evaluation results of this new

two-level model show that it improves on the accuracy for those traces that were not

well-modelled before.

An evaluation study of FEC algorithms under packet loss on residential links.

This work demonstrated how a number of forward error correction schemes proposed

for use in video streaming perform under real loss conditions measured from residen-

tial links. I found that the FEC schemes perform differently than previous studies have

suggested due to burstiness in packet loss, and presented a new metric for packet loss

burstiness, βwin, which is a good indicator of FEC performance, showing higher corre-

lation with FEC recovery than existing metrics. I have also demonstrated the benefits

of the two-level model introduced in Chapter 6, by showing that simulating FEC per-

formance using this model gives a more accurate insight into FEC effectiveness than

using uniform random loss, or the SGM model evaluated in Chapter 5.

8.3 Future Directions

The work in this dissertation has demonstrated how the evaluation of Internet video systems

can be improved by better understanding the performance of residential networks, in terms

of more accurate simulation (for developing new video techniques) and more realistic perfor-

mance evaluation (for trying out the performance of existing techniques). However, the work

presented in the preceding chapters provides a number of opportunities for future research,

which will be described in this section.

8.3.1 Measurement

One obvious direction for future work is to expand the range of measurement data, to study

the performance of different ISPs in different geographic locations. Due to the challenges in

widespread deployments, integrating the study of video streaming performance into existing
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large-scale Internet measurement projects such as [115, 204] may be the best opportunity to

understand the larger picture of video streaming performance on the Internet as a whole.

Another approach is to use passive measurement of streaming performance in homes

(e.g., using instrumented home gateways such as [205, 144]). This could be used with both

real streaming traffic from actual Internet video applications, as well as with test traffic de-

signed to measure the capabilities of the network. The use of intelligent end-points (either

home gateways or set-top boxes) present an opportunity for “always-on” monitoring of net-

work performance, and might be also augmented to monitor video quality.

8.3.2 Modelling

The two-level model presented in Chapter 6 demonstrated that by taking the network states

into account, more accurate packet loss simulation is possible. However, further work into

the model could focus on improved classification algorithms, inner packet loss models, or

models for transitions between outer states, since each of these can be replaced separately.

A related idea is that this approach for modelling different packet loss states (e.g., due to

noise or congestion) could be extended to include other states. For example, a nice extension

would be to incorporate the effect of wireless networks (e.g., home 802.11 or mobile wireless

networks), which are likely to have different loss characteristics. Developing improved clas-

sifiers and inner packet loss models within the general two-level model framework presented

in Chapter 6 would be a useful step in this direction.

Finally, another direction for modelling is to extend the packet loss models discussed

in this work, to also provide a model for delay (e.g., a similar approach to [182]), to give

useful input for evaluation and simulation of delay-sensitive mechanisms like algorithms for

improving channel change, or optimising the size of de-jitter buffers. To do this, a more de-

tailed understanding of the time-series behaviour of delay, and the relationship between loss

would be required. For example, given the close relationship between loss and delay seen

throughout this dissertation, the approach taken in [182] (where the packet delays are drawn

from a Gamma distribution) is unlikely to be suitable, since the trends and correlations be-

tween the delay values, and between delays and losses, would be hard to capture. Therefore,

any work in this direction needs to make a careful study of the delay behaviour; not just in

isolation, but in terms of the rest of the system.
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8.3.3 Applications

Other future work can include extending the work in Chapter 7 on FEC performance by de-

veloping adaptive FEC mechanisms that react to changes in network performance (according

to the network classification made by the algorithms presented in Chapter 6). Such an ap-

proach could allow the ratio of video data to FEC to be adjusted, to use more FEC when

conditions degrade (i.e., sacrificing video bit-rate for error resilience).

Another useful application for the models is for anomaly detection. Together with the

“always-on” monitoring discussed in Section 8.3.1, this would allow receivers to continually

monitor the network conditions, building a profile of the “typical” behaviour of the network

(taking into account long-term effects and trends). Then, anomalous behaviour that does not

conform to the expectations of the model might be reported, allowing the operators to more

easily identify faults.

Since this dissertation has focused on the effect of network performance on RTP-based

video streaming, another useful direction for future work would be to similarly study the

effect of the network on HTTP-based streaming (e.g., DASH), since this is a particularly

active area of research at present. Topics in this area might include understanding the ef-

fect of the network on throughput, retransmissions, and buffer occupancy at receivers, and

distinguishing congestive and non-congestive losses. The packet loss model described in

Chapter 6, combined with the capacity estimates presented in Chapter 4 might be used as

a starting point to simulate TCP retransmissions and throughput under realistic conditions,

although the accuracy of these models for this scenario would need to be verified. Since

the mechanisms used in HTTP streaming are somewhat more complicated (including TCP

retransmissions and congestion control, and application level rate adaptation and buffer man-

agement), understanding the effect of the network on these mechanisms will be beneficial.

The techniques presented in this dissertation provide the foundations to do this.

8.4 Summary & Conclusions

In this dissertation, I have presented new insight into the network performance of video

streaming applications as perceived by residential Internet users. Using new measurements

of network performance, I have shown that existing models for packet loss are insufficient to

express the full range of packet loss behaviours seen on real networks. By understanding the
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network behaviour in-depth (i.e., the congestion state in different parts of the network) using

the end-to-end packet loss and delay observations, I developed a new model that explicitly

considers these network states. Recognising the relationship between packet level observa-

tions and trends (i.e., individual loss and delay values) and the overall state of the network is

key to the new model. Finally, by understanding the packet loss behaviour of the network,

I have also made a realistic evaluation of FEC performance, showing an example of how

application behaviour is linked to that of the network.

The findings presented in this dissertation demonstrate the importance of understand-

ing network performance, both for providing realistic simulation and evaluating the perfor-

mance of existing applications. In doing so, I have improved packet loss simulation for video

streaming to residential users, and provided a means for future work to realistically evaluate

the performance of these applications.
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