74 research outputs found

    Cooperative Relative Positioning of Mobile Users by Fusing IMU Inertial and UWB Ranging Information

    Full text link
    Relative positioning between multiple mobile users is essential for many applications, such as search and rescue in disaster areas or human social interaction. Inertial-measurement unit (IMU) is promising to determine the change of position over short periods of time, but it is very sensitive to error accumulation over long term run. By equipping the mobile users with ranging unit, e.g. ultra-wideband (UWB), it is possible to achieve accurate relative positioning by trilateration-based approaches. As compared to vision or laser-based sensors, the UWB does not need to be with in line-of-sight and provides accurate distance estimation. However, UWB does not provide any bearing information and the communication range is limited, thus UWB alone cannot determine the user location without any ambiguity. In this paper, we propose an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure. We incorporate the UWB and the IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures. We have conducted extensive experiments to demonstrate the benefits of incorporating IMU inertial and UWB ranging measurements.Comment: accepted by ICRA 201

    Quadratic and nonlinear programming problems solving and analysis in fully fuzzy environment

    Get PDF
    AbstractThis paper presents a comprehensive methodology for solving and analyzing quadratic and nonlinear programming problems in fully fuzzy environment. The solution approach is based on the Arithmetic Fuzzy Logic-based Representations, previously founded on normalized fuzzy matrices. The suggested approach is generalized for the fully fuzzy case of the general forms of quadratic and nonlinear modeling and optimization problems of both the unconstrained and constrained fuzzy optimization problems. The constrained problems are extended by incorporating the suggested fuzzy logic-based representations assuming complete fuzziness of all the optimization formulation parameters. The robustness of the optimal fuzzy solutions is then analyzed using the recently newly developed system consolidity index. Four examples of quadratic and nonlinear programming optimization problems are investigated to illustrate the efficacy of the developed formulations. Moreover, consolidity patterns for the illustrative examples are sketched to show the ability of the optimal solution to withstand any system and input parameters changes effects. It is demonstrated that the geometric analysis of the consolidity charts of each region can be carried out based on specifying the type of consolidity region shape (such as elliptical or circular), slope or angle in degrees of the centerline of the geometric, the location of the centroid of the geometric shape, area of the geometric shape, lengths of principals diagonals of the shape, and the diversity ratio of consolidity points. The overall results demonstrate the consistency and effectiveness of the developed approach for incorporation and implementation for fuzzy quadratic and nonlinear optimization problems. Finally, it is concluded that the presented concept could provide a comprehensive methodology for various quadratic and nonlinear systems’ modeling and optimization in fully fuzzy environments

    Graphical User Interface (GUI) for Position and Trajectory Tracking Control of the Ball and Plate System Using H-Infinity Controller

    Get PDF
    In this paper, a graphical user interface (GUI) for position and trajectory tracking of the ball and plate system (BPS) control scheme using the double feedback loop structure i.e. a loop within a loop is proposed. The inner and the outer loop was designed using linear algebraic method by solving a set of Diophantine equations and  sensitivity function. The results were simulated in MATLAB 2018a, and the trajectory tracking was displayed on a GUI, which showed that the plate was able to be stabilized at a time of 0.3546 seconds, and also the ball settled at 1.7087 seconds, when a sinusoidal circular reference trajectory of radius 0.4m with an angular frequency of 1.57rad/sec was applied to the BPS, the trajectory tracking error was 0.0095m.  This shows that the controllers possess the following properties for the BPS, which are; good adaptability, strong robustness and a high control performance.   

    An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines

    Get PDF
    This paper presents a new, highly effective approach for optimal smooth trajectory planning of high-speed pick-and-place parallel robots. The pick-and-place path is decomposed into two orthogonal coordinate axes in the Cartesian space and quintic B-spline curves are used to generate the motion profile along each axis for achieving C4-continuity. By using symmetrical properties of the geometric path defined, the proposed motion profile becomes essentially dominated by two key factors, representing the ratios of the time intervals for the end-effector to move from the initial point to the adjacent virtual and/or the via-points on the path. These two factors can then be determined by maximizing a weighted sum of two normalized single-objective functions and expressed by curve fitting as functions of the width/height ratio of the pick-and-place path, so allowing them to be stored in a look-up table to enable real-time implementation. Experimental results on a 4-DOF SCARA type parallel robot show that the residual vibration of the end-effector can be substantially reduced thanks to the very continuous and smooth joint torques obtained

    WSN performance based on node placement by genetic algorithm at smart home environment

    Get PDF
    Wireless sensor connectivity is one of several factors that determines the communication reliability of each node. The placement of the node depends on the area that covered by wireless coverage area, so the node placement should be optimally placed. But the other aspect is the sensor coverage area. Sensor coverage area sometimes could be different with wireless sensor coverage area. Based on that situation, it needs to optimize that situation. Genetic Algorithm is an algorithm that utilizes a heuristic approach that uses biological mechanism evolution. It used to evolution the best position of Sensor Node based on Wireless and Sensor coverage area. After the position of each node generated by Genetic Algorithm, it still needs to evaluate the wireless sensor node performance. The performance indicates that the genetic algorithm can be used to determine sensor node placement in the smart home environment. The smart home environment used to monitor event at the house such as wildfire. In this research used Quality of Services (QoS) to measure wireless sensor performance. The experimental testing scenario will be used to place several nodes that generated. The QoS performed systems reliability that produced based on 3, 4 and 5 testing nodes, the minimum and maximum of each: delay is 6.21 and 8.74 milliseconds, jitter is 0.11 and 1.59 Hz and throughput is 68.83 and 90.49 bps. Based on ETSI classification, the performance of sensor node placement is Good and acceptable in real-time systems

    Visualization of ECG Data on Variant Maps

    Get PDF
    This chapter presents variant maps for showing potential features in ECG data sets. The variant map is a visualization method different from a traditional ECG. In this chapter, the ECG data sets obtained by clinical ECG monitoring are used as the data source, and the corresponding variant maps are obtained by the variant statistics method. This chapter mainly introduces the variant statistics method about converting ECG data into variant maps. From sample results, various visual properties can be observed, and further explorations are required

    A reduced actuation mecanum wheel platform for pipe inspection

    No full text
    This paper focuses on the design, development and assessment of a novel, 2 degrees-of-freedom magnetic pipe inspection robot. It consists of 4 mecanum wheels, with the diagonals functionally coupled and the system rotation constrained by the surface geometry, maintaining full translational mobility with reduced control and actuation requirements. The system uses positional encoding that is decoupled from the transmission system to overcome the main sources of positional/positioning errors when using mecanum wheels. The kinematic and dynamic models of the system are derived and integrated within the controller. The prototype robot is then tested and shown to follow a scan path at 20mm/s within ±1.5mm whilst correcting for gravitational drift and slip events

    Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing

    Get PDF
    Large scale operational areas often require multiple service robots for coverage and task parallelism. In such scenarios, each robot keeps its individual map of the environment and serves specific areas of the map at different times. We propose a knowledge sharing mechanism for multiple robots in which one robot can inform other robots about the changes in map, like path blockage, or new static obstacles, encountered at specific areas of the map. This symbiotic information sharing allows the robots to update remote areas of the map without having to explicitly navigate those areas, and plan efficient paths. A node representation of paths is presented for seamless sharing of blocked path information. The transience of obstacles is modeled to track obstacles which might have been removed. A lazy information update scheme is presented in which only relevant information affecting the current task is updated for efficiency. The advantages of the proposed method for path planning are discussed against traditional method with experimental results in both simulation and real environments
    corecore