543 research outputs found

    Deep learning for real-time traffic signal control on urban networks

    Get PDF
    Real-time traffic signal controls are frequently challenged by (1) uncertain knowledge about the traffic states; (2) need for efficient computation to allow timely decisions; (3) multiple objectives such as traffic delays and vehicle emissions that are difficult to optimize; and (4) idealized assumptions about data completeness and quality that are often made in developing many theoretical signal control models. This thesis addresses these challenges by proposing two real-time signal control frameworks based on deep learning techniques, followed by extensive simulation tests that verifies their effectiveness in view of the aforementioned challenges. The first method, called the Nonlinear Decision Rule (NDR), defines a nonlinear mapping between network states and signal control parameters to network performances based on prevailing traffic conditions, and such a mapping is optimized via off-line simulation. The NDR is instantiated with two neural networks: feedforward neural network (FFNN) and recurrent neural network (RNN), which have different ways of processing traffic information in the near past. The NDR is implemented and tested within microscopic traffic simulation (S-Paramics) for a real-world network in West Glasgow, where the off-line training of the NDR amounts to a simulation-based optimization procedure aiming to reduce delay, CO2 and black carbon emissions. Extensive tests are performed to assess the NDR framework, not only in terms of its effectiveness in optimizing different traffic and environmental objectives, but also in relation to local vs. global benefits, trade-off between delay and emissions, impact of sensor locations, and different levels of network saturation. The second method, called the Advanced Reinforcement Learning (ARL), employs the potential-based reward shaping function using Q-learning and 3rd party advisor to enhance its performance over conventional reinforcement learning. The potential-based reward shaping in this thesis obtains an opinion from the 3rd party advisor when calculating reward. This technique can resolve the problem of sparse reward and slow learning speed. The ARL is tested with a range of existing reinforcement learning methods. The results clearly show that ARL outperforms the other models in almost all the scenarios. Lastly, this thesis evaluates the impact of information availability and quality on different real-time signal control methods, including the two proposed ones. This is driven by the observation that most responsive signal control models in the literature tend to make idealized assumptions on the quality and availability of data. This research shows the varying levels of performance deterioration of different signal controllers in the presence of missing data, data noise, and different data types. Such knowledge and insights are crucial for real-world implementation of these signal control methods.Open Acces

    MAVEN Deliverable 6.4: Integration Final Report

    Get PDF
    This document presents the work that has been performed in WP6 after D6.3, and therefore focussing on the integration sprints 3-6. It describes which parts of the system are implemented and how they are put together. To do so, it builds upon the deliverables created so far, esp. D6.3 and all other deliverables of the underlying work packages 3, 4 and 5. Another important aspect for understanding the content of this deliverable is D2.1 [4] for the scenario definition of the whole MAVEN project, and the deliverables D6.1 [5] and D6.2 [6], which give an overview on the existing infrastructure and vehicles used in MAVEN

    A Microscopic Simulation Laboratory for Evaluation of Off-street Parking Systems

    Get PDF
    The parking industry produces an enormous amount of data every day that, properly analyzed, will change the way the industry operates. The collected data form patterns that, in most cases, would allow parking operators and property owners to better understand how to maximize revenue and decrease operating expenses and support the decisions such as how to set specific parking policies (e.g. electrical charging only parking space) to achieve the sustainable and eco-friendly parking. However, there lacks an intelligent tool to assess the layout design and operational performance of parking lots to reduce the externalities and increase the revenue. To address this issue, this research presents a comprehensive agent-based framework for microscopic off-street parking system simulation. A rule-based parking simulation logic programming model is formulated. The proposed simulation model can effectively capture the behaviors of drivers and pedestrians as well as spatial and temporal interactions of traffic dynamics in the parking system. A methodology for data collection, processing, and extraction of user behaviors in the parking system is also developed. A Long-Short Term Memory (LSTM) neural network is used to predict the arrival and departure of the vehicles. The proposed simulator is implemented in Java and a Software as a Service (SaaS) graphic user interface is designed to analyze and visualize the simulation results. This study finds the active capacity of the parking system, which is defined as the largest number of actively moving vehicles in the parking system under the facility layout. In the system application of the real world testbed, the numerical tests show (a) the smart check-in device has marginal benefits in vehicle waiting time; (b) the flexible pricing policy may increase the average daily revenue if the elasticity of the price is not involved; (c) the number of electrical charging only spots has a negative impact on the performance of the parking facility; and (d) the rear-in only policy may increase the duration of parking maneuvers and reduce the efficiency during the arrival rush hour. Application of the developed simulation system using a real-world case demonstrates its capability of providing informative quantitative measures to support decisions in designing, maintaining, and operating smart parking facilities

    Machine Learning Approaches for Traffic Flow Forecasting

    Get PDF
    Intelligent Transport Systems (ITS) as a field has emerged quite rapidly in the recent years. A competitive solution coupled with big data gathered for ITS applications needs the latest AI to drive the ITS for the smart and effective public transport planning and management. Although there is a strong need for ITS applications like Advanced Route Planning (ARP) and Traffic Control Systems (TCS) to take the charge and require the minimum of possible human interventions. This thesis develops the models that can predict the traffic link flows on a junction level such as road traffic flows for a freeway or highway road for all traffic conditions. The research first reviews the state-of-the-art time series data prediction techniques with a deep focus in the field of transport Engineering along with the existing statistical and machine leaning methods and their applications for the freeway traffic flow prediction. This review setup a firm work focussed on the view point to look for the superiority in term of prediction performance of individual statistical or machine learning models over another. A detailed theoretical attention has been given, to learn the structure and working of individual chosen prediction models, in relation to the traffic flow data. In modelling the traffic flows from the real-world Highway England (HE) gathered dataset, a traffic flow objective function for highway road prediction models is proposed in a 3-stage framework including the topological breakdown of traffic network into virtual patches, further into nodes and to the basic links flow profiles behaviour estimations. The proposed objective function is tested with ten different prediction models including the statistical, shallow and deep learning constructed hybrid models for bi-directional links flow prediction methods. The effectiveness of the proposed objective function greatly enhances the accuracy of traffic flow prediction, regardless of the machine learning model used. The proposed prediction objective function base framework gives a new approach to model the traffic network to better understand the unknown traffic flow waves and the resulting congestions caused on a junction level. In addition, the results of applied Machine Learning models indicate that RNN variant LSTMs based models in conjunction with neural networks and Deep CNNs, when applied through the proposed objective function, outperforms other chosen machine learning methods for link flow predictions. The experimentation based practical findings reveal that to arrive at an efficient, robust, offline and accurate prediction model apart from feeding the ML mode with the correct representation of the network data, attention should be paid to the deep learning model structure, data pre-processing (i.e. normalisation) and the error matrices used for data behavioural learning. The proposed framework, in future can be utilised to address one of the main aims of the smart transport systems i.e. to reduce the error rates in network wide congestion predictions and the inflicted general traffic travel time delays in real-time

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Short-term motion prediction of autonomous vehicles in complex environments: A Deep Learning approach

    Get PDF
    Complex environments manifest a high level of complexity and it is of critical importance that the safety systems embedded within autonomous vehicles (AVs) are able to accurately anticipate short-term future motion of agents in close proximity. This problem can be further understood as generating a sequence of coordinates describing the plausible future motion of the tracked agent. Number of recently proposed techniques that present satisfactory performance exploit the learning capabilities of novel deep learning (DL) architectures to tackle the discussed task. Nonetheless, there still exists a vast number of challenging issues that must be resolved to further advance capabilities of motion prediction models.This thesis explores novel deep learning techniques within the area of short-term motion prediction of on-road participants, specifically other vehicles from a points of autonomous vehicles. First and foremost, various approaches in the literature demonstrate significant benefits of using a rasterised top-down image of the road to encode the context of tracked vehicle’s surroundings which generally encapsulates a large, global portion of the environment. This work on the other hand explores a use of local regions of the rasterised map to more explicitly focus on the encoding of the tracked vehicle’s state. The proposed technique demonstrates plausible results against several baseline models and in addition outperforms the same model that instead uses global maps. Next, the typical method for extracting features from rasterised maps involves employing one of the popular vision models (e.g. ResNet-50) that has been previously pre-trained on a distinct task such as image classification. Recently however, it has been demonstrated that this approach can be sub-optimal for tasks that strongly rely on precise localisation of features and it can be more advantageous to train the model from scratch directly on the task at hand. In contrast, the subsequent part of this thesis investigates an alternative method for processing and encoding of spatial data based on the capsule networks in order to eradicate several issues that standard vision models exhibit. Through several experiments it is established that the novel capsule based motion predictor that is trained from scratch is able to achieve competitive results against numerous popular vision models. Finally, the proposed model is further extended with the use of generative framework to account for the fact that the space of possible movements of the tracked vehicle is not strictly limited to single trajectory. More specifically, to account for the multi-modality of the problem a conditional variational auto-encoder (CVAE) is employed which enables to sample an arbitrary amount of diverse trajectories. The final model is examined against methods from literature on a publicly available dataset and as presented it significantly outperforms other models whilst drastically reducing the number of trainable parameters

    Movement Analytics: Current Status, Application to Manufacturing, and Future Prospects from an AI Perspective

    Full text link
    Data-driven decision making is becoming an integral part of manufacturing companies. Data is collected and commonly used to improve efficiency and produce high quality items for the customers. IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over space and time. Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc. that can be used for decision making and improving efficiency. Turning movement data into valuable information for industrial management and decision making requires analysis methods. We refer to this process as movement analytics. The purpose of this document is to review the current state of work for movement analytics both in manufacturing and more broadly. We survey relevant work from both a theoretical perspective and an application perspective. From the theoretical perspective, we put an emphasis on useful methods from two research areas: machine learning, and logic-based knowledge representation. We also review their combinations in view of movement analytics, and we discuss promising areas for future development and application. Furthermore, we touch on constraint optimization. From an application perspective, we review applications of these methods to movement analytics in a general sense and across various industries. We also describe currently available commercial off-the-shelf products for tracking in manufacturing, and we overview main concepts of digital twins and their applications

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces
    • …
    corecore