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Abstract

Real-time traffic signal controls are frequently challenged by (1) uncertain knowledge
about the traffic states; (2) need for efficient computation to allow timely decisions;
(3) multiple objectives such as traffic delays and vehicle emissions that are difficult
to optimize; and (4) idealized assumptions about data completeness and quality that
are often made in developing many theoretical signal control models. This thesis ad-
dresses these challenges by proposing two real-time signal control frameworks based
on deep learning techniques, followed by extensive simulation tests that verifies their
effectiveness in view of the aforementioned challenges.

The first method, called the Nonlinear Decision Rule (NDR), defines a nonlinear
mapping between network states and signal control parameters to network perfor-
mances based on prevailing traffic conditions, and such a mapping is optimized via
off-line simulation. The NDR is instantiated with two neural networks: feedforward
neural network (FFNN) and recurrent neural network (RNN), which have different
ways of processing traffic information in the near past. The NDR is implemented and
tested within microscopic traffic simulation (S-Paramics) for a real-world network in
West Glasgow, where the off-line training of the NDR amounts to a simulation-based
optimization procedure aiming to reduce delay, CO2 and black carbon emissions. Ex-
tensive tests are performed to assess the NDR framework, not only in terms of its
effectiveness in optimizing different traffic and environmental objectives, but also in
relation to local vs. global benefits, trade-off between delay and emissions, impact
of sensor locations, and different levels of network saturation.

The second method, called the Advanced Reinforcement Learning (ARL), em-
ploys the potential-based reward shaping function using Q-learning and 3rd party
advisor to enhance its performance over conventional reinforcement learning. The
potential-based reward shaping in this thesis obtains an opinion from the 3rd party
advisor when calculating reward. This technique can resolve the problem of sparse
reward and slow learning speed. The ARL is tested with a range of existing rein-
forcement learning methods. The results clearly show that ARL outperforms the
other models in almost all the scenarios.

Lastly, this thesis evaluates the impact of information availability and quality on
different real-time signal control methods, including the two proposed ones. This is
driven by the observation that most responsive signal control models in the literature
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tend to make idealized assumptions on the quality and availability of data. This
research shows the varying levels of performance deterioration of different signal
controllers in the presence of missing data, data noise, and different data types.
Such knowledge and insights are crucial for real-world implementation of these signal
control methods.

x



Acknowledgements

Firstly, I would like to thank my supervisor Dr.Ke Han. You are my excellent mentor,
researcher and educator. You have treated me with all your heart and given me a
lot of motivations for improvement of my academic capability and insight. Your
advice gives me invaluable challenges. I look forward to many more year of fruitful
collaborations with you in the future.
”韩科教授, 谢谢您指导. 非常感谢!”

I also would like to thank Prof. Washington Yotto Ochieng who have supervised
me for PhD period. Without his support and guidance, this PhD work would have
not been completed.

I am very grateful to my research group members; Yang Yu, Shiming Xu, Jun
Song, Peeranut Jeammaneeporn, Suwan(Krystal) Yin and Jianan Yin. They cheered
me up whenever I was having a hard time during my PhD, and I can learn much
knowledge by discussing with you. I always pray for you to achieve outstanding
academic achievements and finish your PhD very well.
”能一起学习是我的荣幸, 祝你们学业有成.”

Moreover, I would like to thank my korean friends at Imperial College London.
You always give me life advices. I am also grateful for your help in the college
adaptation. I always wish you your PhD researches and academic achievements.

I would like to very thank you my parents, parents-in-law for their unconditional
love and support. Without you, none of this would have been possible.

Lastly, to my wife, Meesook. Thank you very much for always supporting me for
the PhD period. Without your dedication, sacrifice and love, I wouldn’t have made
anything for the Phd period. Thank you for always praying to me whenever I am
mentally tired and hard. To my son, Sion. Although taking care of you during my
PhD has been a great challenge, your bright smile always made me feel good. I hope
you grow up healthily and happily. I will do my best for you. I love you so much!
”정말 감사하고 모두 사랑합니다.”
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Chapter 1

Introduction

1.1 Intelligent Transportation System (ITS) for con-

gestion mitigation and environmental impact

Intelligent Transport Systems (ITS) aim to leverage recent developments in informa-
tion and communication technologies (ICT) and advanced control & machine learn-
ing algorithms to improve the efficiency of traffic operation and reduce congestion
externalities such as emission and fuel consumption, as well as accidents in urban
traffic networks (D’Acierno et al., 2012). By combining sensing technologies (such as
inductive loops, radio frequency identification, automatic number plate recognition,
blue tooth, and global navigation satellite systems), ITS can measure and evaluate
traffic characteristics or states on dynamic urban traffic networks. In particular,
with sensors deployed in urban traffic networks, traffic monitoring systems can col-
lect, transmit, process and fuse heterogeneous and real-time traffic data (e.g. vehicle
velocity, road occupancy, and traffic flow). The data collected via these means may
be used for the following purposes:

• Road traffic control and management for improved travel time and reliability
(Cambridge Systematics, 2005), and alleviated exhaust emissions and their
impacts on public health (He et al., 2013),

• optimal dispatch of emergency vehicles such as police, ambulance, and fire
truck (Chakraborty et al., 2015);
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Chapter 1: Introduction

• Information provision for travel guidance, private trip scheduling, policy ap-
praisal, and data visualization (Smith et al., 2001);

• Information for predicting traffic congestion, traffic accident, and travel de-
mand (Chakraborty et al., 2015).

However, despite the wide development and deployment of ITS infrastructure and
technology, traffic congestion remains a major challenge in dense urban areas and
produces staggering social, economic, and environmental costs. This is further exac-
erbated by factors such as traffic accidents, road works, weather, and special events
(e.g. strikes, sporting events) (Cambridge Systematics, 2005). Regarding the envi-
ronmental impact of the traffic congestion, increased number of vehicles in congested
areas, as a result of rapid urbanization and motorization especially in developing
countries, produce significant amount of exhaust emissions. Barth & Boriboonsom-
sin (2008) pointed out that, in the United States, exhaust emissions comprise about
33 % of all air pollutants. From an economic perspective, the traffic congestion brings
negative economic impacts in the form of lost labour, among others, which attenu-
ate employment growth and worker productivity (Sweet, 2014). Furthermore, in the
United Kingdom, traffic-driven environmental issues, investment in traffic infrastruc-
ture, and fuel consumption amount to a total of £20 bn per year impediments to the
national economy. In the United State, the Texas transportation institute estimated
a total loss of $115 bn due to traffic congestion during the year 2009 (Ellis, 2009,
Schrank et al., 2010).

1.2 Research scope and objectives

1.2.1 Traffic control and management

Within the context of traffic control and management, different ITS strategies have
been developed and tested over the past two decades, which include congestion charg-
ing (de Palma & Lindsey, 2011, Evans, 2007), dynamic route guidance (Papageor-
giou, 1990, Watling & Van Vuren, 1993), variable message signs (Liu et al., 2016,
Peeta & Gedela, 2001, Zuurbier et al., 2006), variable speed limits (Yu & Fan, 2019,
Frejo et al., 2019), and traffic signal control (Liu et al., 2015, Liang et al., 2018, Wei
et al., 2018). This PhD research focuses on traffic signal control systems since traffic
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intersections are known to be the main source of vehicle queuing and travel delays,
and a sufficiently optimized traffic signal control tends to reduce vehicle delays and
stop-and-go frequencies, and such effects are more pronounced when a number of
signalized intersections are centrally controlled and coordinated. Moreover, traffic
controls are critical for ensuring the safety of pedestrians and vehicles moving in
conflict directions. Furthermore, the utilization of traffic network capacity can be
optimized using signal controls with a balance between centralization and decentral-
ization of local traffic controls (e.g. at individual intersections).

1.2.2 Real-time traffic signal control

In the real world, traffic flows are dynamically changing and varying on both within-
day and day-to-day scales. In this situation, real-time (responsive) traffic controls
should be able to process real-time traffic network states and offer timely decisions.
Depending on the control architecture and optimization techniques involved, there
are two approaches for real-time traffic signal control: centralized and decentralized.
Centralized traffic signal control is coordinated by a single central agent, which,
through sophisticated optimization methods by taking into account the global ef-
fect of localized control measures and coordination among different local controllers,
has the potential to achieve more efficient (sometimes global optimal) traffic con-
trol policies. However, given the highly demanding computational requirement and
limited data communication and processing capacities (Han, 2017), centralization of
responsive signal controls on a network tends to be difficult to implement in large
scale in practice (Chow et al., 2019). On the other hand, decentralized system re-
quires multi-agents which control local traffic at interconnected sub-networks. This
system can minimize computational efforts but may cause conflicts for traffic signal
control policies among local agents (LIU et al., 2017, El-Tantawy et al., 2013, Aziz
et al., 2018, Arel et al., 2010). In addition, the decentralized system requires accurate
and frequent measurements so that it might be vulnerable to sensor failure (Manolis
et al., 2018). In this research, our frameworks focus on centralized traffic signal con-
trol for its potential to achieve superior performance, stability and robustness, while
investigating techniques to overcome its shortcomings such as computational burden
and slow convergence towards optimal policies.

3
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1.2.3 Content of this research

Traffic signal controls play a vital role as traffic intersections are the most stringent
bottlenecks of traffic networks, and are the main locations where congestions and
queues emerge, which could propagate through links to the whole network. Traf-
fic signal controls are important for the safety of pedestrians, and when properly
optimized, reduce traffic congestion and alleviate exhaust emissions and fuel con-
sumptions of vehicles. The main goal of this research is to develop and evaluate a
novel real-time road traffic signal control framework in different operational envi-
ronments with a balanced view of different traffic and environmental objectives to
be optimized. The proposed framework has the potential to yield robust and near-
optimal real-time signal timing solutions for managing urban traffic in peak times.
This is achieved by integrating traffic control theory with machine learning (ML)
models, including Feedforward Neural Network (FFNN), Recurrent Neural Network
(RNN) and Reinforcement Learning(RL). Figure 1.1 shows that the real-time traffic
signal control framework consists of the machine learning module, an optimization
model, and a traffic model.

A hallmark of this research is its emphasis on global optimality, online compu-
tational efficiency, multiple (including environmental) objectives, and performance
with different levels of information availability and quality. Among these four, the
last issue has not been addressed in the literature, as most of the proposed real-time
signal control strategies (especially based on ML techniques) assume perfect and
complete information on traffic flow, occupancy or speed with no error or missing
data, and that real-time information are readily available without time delays. In
fact, in a real-world operating environment, limited sensing penetration that only
covers a portion of the network of interest, sensing error, or transmission delays
could compromise the performance of such models developed under these idealised
assumptions. This research is the first to systematically and thoroughly investigate
the impact of sensor location, information availability, and signal-to-noise ratio of
the data on the performance of the signal controls. Using data collected from a real-
world traffic network, the proposed traffic control framework is demonstrated to be
effective in mitigating traffic congestion, reducing travel time and vehicle emissions,
even under some of the aforementioned imperfect operation environment.
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1.3 Research Challenges

Figure 1.1: Construction of real-time traffic signal control system framework

1.2.4 Real-world data

To test and validate the proposed signal control strategies, this research will apply
real-time traffic data collected from the West End of Glasgow, Scotland, where net-
work and traffic data were used to establish and calibrate simulation models. Data
collection for our research is performed via the CARBOTRAF project
(http://www.carbotraf.eu). These data include dynamic traffic demand, traffic flows
at intersections, local pollutant concentration, and vehicle fleet composition (e.g.
cars, mini-buses, light goods vehicles, heavy goods vehicles, coaches). Details of the
test site will be introduced later in Sections 4.1 and 4.1.1

1.3 Research Challenges

Based on the literature review presented later in Chapter 2, this research has iden-
tified four main challenges in developing and deploying an effective real-time signal
control framework; see Figure 1.2.
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Figure 1.2: Four challenges for development of real-time traffic control framework

1.3.1 Uncertainty of traffic network dynamics

The meaning of traffic uncertainty in the context traffic network awareness and
control is two-fold: (1) it may refer to unpredictable variations in traffic states,
which is akin to stochasticity; (2) it may also refer to unknown traffic states in
part of the network, in which case the control algorithm need to take into account
possible realizations of the unknown states. Depending on how the uncertainty set
is characterized and analyzed, the effectiveness of the controls can be varied (Pengra
& Dillman, 2009). In the field of transportation, traffic flow may vary significantly
at road intersections even during the similar times of the day or on the same day of
the week (Li et al., 2016b, Song et al., 2017). As a result, it is crucial that the design
of the real-time traffic signal control framework allows the handling of uncertain and
unexpected traffic flow patterns (Srinivasan et al., 2006, Dong & Chen, 2010). This
can ensure satisfactory performance in real-life traffic situations and assist decision
makers in constructing feasible solution in uncertain traffic environments.

1.3.2 Multi-objective optimization of network traffic

Specific objectives considered in the literature of traffic control and management
include the minimization of (weighted) vehicle/pedestrian delay (He et al., 2014,
Sun et al., 2006, Zhang et al., 2010), minimization of passenger delay (Christofa &
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Skabardonis, 2011, Christofa et al., 2016), minimization of number of stops (Lucas
et al., 2000), maximization of total throughput (Chang & Sun, 2004, Han et al.,
2014). Furthermore, there are also numerous studies that incorporate environmental
objectives such as emission and fuel consumption.

In many cases, traffic congestion/delay and exhausted emission objectives are not
completely aligned with each other, especially when traffic network configuration is
non-trivial and traffic dynamics are highly nonlinear. Additionally, striking a bal-
ance between the two objectives is very important for effective sustainable traffic
management. Thus, in order to keep trade-off between traffic and environmental ob-
jectives, multi-objective optimization model for traffic control in a timely fashion will
be considered and developed in this research. In addition, the emission of each pol-
lutant has different mechanisms. For example, the CO2 emission is highly dependent
on the engine load and vehicle speed. The emission of Black Carbon tends to in-
crease at low driving speeds as consequences of congestion and stop-and-go episodes.
Considering CO2 and Black Carbon separately, this research investigates their rela-
tionships with vehicle delays at intersections and across the entire network. Lastly,
the environmental objectives are relatively indirect to mitigate traffic congestion.
Therefore, our framework additionally finds the optimal traffic control policy and
investigates the potential impact among the traffic objectives by balancing between
different traffic objectives.

1.3.3 Computational efficiency

In a realistic and complex traffic environment, decisions should be made in a few
seconds to realize real-time and adaptive signal controls. In addition, traffic flow
and emission may dynamically vary every time. As shown in Figure 1.1, continuous
interpretation of response surface consisting state, control(action) and objective (e.g.
KPIs of delay or emissions) is very crucial for real-time traffic signal control. The
efficient traffic signal control strategies require the timely and accurate interpreta-
tion of the response surface, in order to reduce air pollutants and alleviate traffic
congestion.

To tackle the challenge of excessive computational demands in an on-line signal
optimization environment, many traffic control architectures (e.g. SCOOT) resort to
decentralized controls (Chow et al., 2019, Manolis et al., 2018), which rely on locally

7



Chapter 1: Introduction

optimized control rules without guaranteeing global optimality; the resulting controls
tend to be sub-optimal, and it is difficult to optimize sophisticated objectives such as
vehicle delay and emissions in a decentralised manner. However, centralized controls
can guarantee global optimality so that it can outperform the decentralized controls
by reaching the optimal value (Chow et al., 2019, Manolis et al., 2018). To overcome
the computational effort on the centralized controls, Liu et al. (2015) propose offline
and online stage to optimize traffic signal control policies and reduce the computa-
tional efforts. In the same vein, as the characteristic of machine learning(ML), ML
consists of training and testing procedure for learning and evaluating, respectively.
Based on training procedure(offline), ML efficiently shows the performance on online
procedure (El-Tantawy et al., 2014, Liang et al., 2018, Arel et al., 2010, Liang et al.,
2018). Therefore, this research proposes two frameworks: (1) NDR (Nonlinear Deci-
sion Rule)-based framework; and (2) ARL (Advanced Reinforcement learning)-based
framework.

1.3.4 Information availability and quality

Sensors on road networks generate spatial and/or temporal data with different spar-
sity, granularity, and reliability. This has a major impact on theoretically derived or
tested signal control models. Many existing studies make idealized assumptions on
data availability and quality. For example, most previous literatures use real traffic
demand or synthetic demand for the experiment (Wiering, 2000, El-Tantawy et al.,
2014, Chin et al., 2011, Jin & Ma, 2018, Schultz & Sokolov, 2018, Khamis & Gomaa,
2014, Genders & Razavi, 2016, Gao et al., 2017). But, they did not investigate the
effect of the sensor failure on the performance. In particular, some literatures using
image-based data from sensors (like cameras) do not consider data incompleteness
caused by bad weather (LIU et al., 2017, Mousavi et al., 2017, Liang et al., 2018, Arel
et al., 2010, Van der Pol & Oliehoek, 2016, Lin et al., 2018, Mannion et al., 2015,
Gao et al., 2017, Genders & Razavi, 2016, Wei et al., 2018). In reality, communica-
tion failure (such as data noise and data missing) of the sensor can deteriorate the
data quality (Kaisler et al., 2013), causing issues such as missing data, transmission
delays, and data noises. Traffic decisions that are made based on the erroneous input
by the sensor failure might not be practical or even feasible, and they might result in
unsatisfactory performance in real-life traffic situations (Uselton et al., 1998). They
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can even have negative effects on computational efficiency (Kaisler et al., 2013).

1.4 Contributions

In view of the four main research challenges mentioned in Section 1.3:

1. Uncertainty in the traffic network;

2. Multi-objective optimization;

3. Computational efficiency; and

4. Data availability and quality

this thesis develops two real-time traffic signal control frameworks for optimizing traf-
fic network performance in terms of vehicle delay, vehicle throughput and reduction
of exhausted emissions. The main contributions are articulated as follows.

• This thesis develops a Nonlinear Decision Rule (NDR) approach for real-time
signal control based on two types of neural networks: feedforward neural net-
work and recurrent neural network. The NDR allows the optimization of re-
sponsive signal control policies/rules to be trained and optimized in an off-line
environment, saving the need for real-time optimization and hence addressing
challenge 3 by allowing efficient on-line computations.

• This thesis further develops an Advanced Reinforcement Learning (ARL) frame-
work for real-time signal control, by introducing potential-based reward shap-
ing function and a 3rd party advisor. As a model-free approach, Q-learning is
employed to reduce computational expenses and generate an immediate and
proper traffic signal timings (challenge 3). A number of state variables and
their combinations are considered to target optimization objectives such as av-
erage network delay and throughput (challenge 2). To avoid sparse reward and
improve the learning speed, potential-based reward shaping function with the
3rd party advisor is proposed to better handle network uncertainty (challenge
1).

• The proposed NDR is tested in a microsimulation environment, which is built
using real-world data from Glasgow. The training of the NDR framework
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considers both vehicle delay and CO2, black carbon emissions as objectives.
The effectiveness of the proposed framework is demonstrated with simulation
results, followed by in-depth analysis of the relationship among different objec-
tives (challenge 2).

• The proposed ARL is tested using hydrodynamic traffic simulations (the Lighthill-
Whitham-Richards model) on the Glasgow network. A number of baseline re-
inforcement learning models are considered in a comparative study in terms of
vehicle delay and network throughput, which shows that the ARL has superior
performance not only in normal cases (i.e. with good data quality) but also
under deteriorated data quality.

• This thesis investigates the impact of data incompleteness and imperfectness on
the performance of a range of real-time signal control methods. This is driven
by the observation that most responsive signal control models in the literature
tend to make idealized assumptions on the quality of data. These assumptions
are challenged in this thesis, and we show the varying levels of performance
deterioration of different signal controllers (challenge 4). The impact of sensor
locations is also analyzed within the traffic microsimulation of Glasgow. Such
findings are not previously seen in the literature, and yield crucial insights
regarding the expected level of performance of real-time signal controls in a
realistic traffic data collection paradigm.

More findings specific to the test results are mentioned at the end of each rele-
vant chapter, which provide managerial insights regarding managing dynamic traffic
networks. The two real-time signal control frameworks put forward in this thesis are
derived based on machine learning techniques integrated with an optimization-based
training procedure that fully takes into account the possible realization of uncertain
traffic states. The resulting real-time controls take full advantage of current infor-
mation and communication technologies to collect, represent, and process traffic in-
formation in order to achieve timely, robust (against uncertainties) and near-optimal
decisions for a range of traffic control objectives.

10



1.5 Thesis structure

1.5 Thesis structure

In this section, we present the outline of the thesis. The thesis consists of eight
chapters which have subsections to support.

Chapter 2 describes the state-of-the-art in real-time adaptive traffic signal control.
this chapter introduces the research background and scientific literature with respect
to real-time adaptive traffic signal control.

Chapter 3 shows the application of the real-time adaptive traffic signal control
framework based on nonlinear decision rule(NDR). With the core knowledge of the
framework, this thesis addresses how to efficiently deal with nonlinear traffic dynam-
ics on the proposed framework.

Chapter 4 demonstrates the effectiveness and applicability of the proposed NDR
simulation-based optimization framework by applying the proposed framework to
real-word traffic network in west Glasgow.

Chapter 5 proposes reinforcement learning-based traffic signal control framework
including a novel potential reward shaping function with 3rd party advisor. In addi-
tion, in this chapter, the thesis addresses how to apply the ARL to real-life traffic
environment, by newly defining three main ARL components(state, action and re-
ward).

Chapter 6 shows the efficient application to real-life traffic network. The bench-
mark models and our proposed ARL-based framework are tested in equivalent en-
vironment and constraints. Therefore, the thesis shows the effectiveness of our pro-
posed model.

Chpater 7 describes the impact of information availability and quality. Based on
the experiment settings in chapter 6, the thesis checks the efficiency of both NDR-
and ARL- based framework with other benchmark models.

Lastly, Chapter 8 concludes our thesis by completing four challenges; 1) Data
availability and quality, 2) Uncertainty of traffic network dynamics, 3) Multi-objective
problem and 4) Computational efficiency. In addition, the research contributions and
limitations are shown in the Chapter 8. The thesis suggests future works to improve
this research.
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Chapter 2

State-of-the-art in real-time
adaptive traffic signal control

This chapter outlines the previous research on real-time traffic signal control us-
ing various state-of-the-art, such as machine learning, mathematical optimisation,
simulation-base traffic model as well as traffic signal control with environmental con-
cern.

2.1 Application of machine learning to traffic signal

control

2.1.1 The characteristic of machine learning

Machine learning, as a subfield of artificial intelligence techniques, focuses on de-
veloping computer-learning algorithms. Representation and generalization are the
centrepieces of machine learning. The representation is defined as data assessment,
and the generalization is the capability to process unknown and heterogeneous data
or parameters. Hence, machine learning can be used 1) to recognize data patterns in
order to extract hidden information from enormous amounts of data, 2) to deduce
novel information from historical data, 3) to provide the most appropriate solutions,
and 4) to recover and understand missing, noisy, or ambiguous data. Machine learn-
ing is comprised of three main categories, i.e., supervised learning, unsupervised
learning and reinforcement learning. The aim of supervised learning is to detect a
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rule and to predict a target attribute with labelled data by directly providing feed-
back. Supervised learning incorporates classification and regression. On the contrary,
although there are no labels and feedbacks, unsupervised learning can explain and
summarize the main characteristics of the data by identifying hidden structure. The
related techniques include clustering, density estimation, outlier detection and di-
mension reduction. As the third category, reinforcement learning typically is used to
solve learning problem to obtain the maximized reward from specific actions on the
given environments. As a typical example, reinforcement learning usually is used in
various academic and industrial fields, such as humanoid robotics, management of
financial investments and power station control.

2.1.2 Computational issues in machine learning

In the field of transport, the machine learning techniques have been widely used to
widen the range of existing research and solve realistic problems. First, the man-
agement of continuously increasing traffic data still remains as a critical issue of the
analysis and realization of the data, due to the limitation of computer’s CPU and
memory.

Wibisono et al. (2016) proposed a Fast Incremental Model Trees-Drift Detection
(FIMT-DD) algorithm to process time-varying big data generated by 2,500 local sen-
sors deployed in the United Kingdom. The algorithm, based on binary search tree,
finds the best split for individual attributes and then split each attribute by stan-
dard deviation reduction. The proposed algorithm can efficiently use the computer
memory and effectively cope with continuous increment of data over time.

Hoplaros et al. (2014) focused on traffic data summarization technique derived
from K-mean clustering, which is a way to minimise the variance in the distance
between clusters. The technique defines and simplifies huge traffic raw data. In
addition, through minimizing information loss, it assists with not only exact analysis
of enormous traffic data, but also fast and effective traffic information processing.
The proposed summarisation technique thereby is able to reduce the running time
for traffic data analysis.

Guardiola et al. (2014) focused on data dimensionality reduction and the long-
term monitoring of traffic flow patterns from day-to-day, in order to find the evolution
of traffic patterns over time. As a solution to computational issue, principal compo-

13



Chapter 2: State-of-the-art in real-time adaptive traffic signal
control

nent analysis (PCA) is employed to reduce the dimensionality of the dataset, which
induces and interpret principal components that are independent of each other by
analyzing correlation among components.

Smith et al. (2001) constructed a framework to set up and monitor traffic signal
plans by using hierarchical clustering and classification and regression trees(CART)
which can search for the significant traffic patterns and relationship between a set
of traffic data, in order to decide the optimal tree. After training procedure where
is computationally expensive to learn historical traffic data, the framework shows
computational efficiency by testing the validity of the framework.

Above these researches, some researchers have taken note of other artificial intel-
ligent techniques. Wang et al. (2016) proposed new intelligent transportation system
with RFID sensors. To alleviate system load, fuzzy control rules are used. In ad-
dition, the fuzzy control query set is updated by genetic algorithm which is able
to improve the overall performance of the proposed system. That is, through fuzzy
control rule, this research minimize computational issue.

Song et al. (2017) proposed real-time adaptive traffic signal control for trade-off
between traffic and environment objectives. This framework employs linear decision
rule (LDR) with distributionally robust optimisation(DRO). The implementation of
the LDR method consists of two stages, such as off-line module and on-line module.
The off-line module is to train the LDR model using historical traffic data, which
amounts to a data-driven distributionally robust optimization(DRO) with traffic
and environmental objectives. The performance of the LDR method on the on-line
module is guaranteed by the off-line module, and the computationally expensive
optimization problem is solved by on-line module.

2.1.3 Effective countermeasures of unstable and dynamic traf-

fic data

Machine learning techniques, through prediction analysis, can determine the traffic
strategies that can be used to appropriately react to future events and to control
traffic flows. Many studies focus on how to efficiently handle unstable and dynamic
traffic data with machine learning technique. For example, in the environmental
perspective, Yan et al. (2012) suggested a novel environmental monitoring method-
ology using compressive sensing. As the reconstruction model handling unstable and
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dynamic environmental data, the goal of this research is to monitor large-scale envi-
ronmental symptoms by using a small number of the sensors. The novel methodology,
which is based on Bayesian theory, is cost-effective and accurately recovers a high
resolution of environmental symptoms (including temperature changes and lever of
atmosphere pollution) with under-sampling measurements.

He et al. (2013) proposed a novel artificial neural network model to extract and
recognize potential and specific patterns in huge and dynamical traffic data. The
proposed model consists of two parts; self-organized feature map (SOFM), GA (Ge-
netic Algorithm)-chaos optimized radial basis function(RBF) neural network. In
particular, as an unsupervised learning, SOFM is based on competitive learning in
which output neurons compete against each other to be activated (Bullinaria, 2004).
The result is that the activated neurons organize themselves. Turning to RBF neural
network, the RBF neural network is conceptually similar with K-Nearest Neighbor
(k-NN) method. Gaussian activation function is used in the neural network with both
the standard deviation(or radius setting) of input data and the average of input data
which are provided by the reseach of Hájek (2011). Based on these parts, this re-
search clusters dynamic traffic data and recognises hidden patterns. As a result,
the proposed neural network model using chaos optimisation and genetic algorithm
performs better compared to other models.

McHugh (2015) illustrated an prediction approach using huge traffic data, weather
data and twitter data. This research focused on how to deal with highly volatility of
both traffic data and weather data, in order to achieve traffic prediction and accu-
rate analysis for real-time traffic events. In addition, McHugh (2015) mentioned that
different area has different characteristics and patterns in traffic and weather data,
and each prediction model(including linear regression, bayesian ridge regression and
support vector machine) then has different performances according to the each na-
ture of different areas. Therefore, McHugh (2015) applied different prediction models
to different areas. Based on this, real-time visualisation of the employed prediction
models has been implemented by combining numerous real-time traffic tweets.

Polson & Sokolov (2016) proposed a deep learning architecture to interpret non-
linear spatio-temporal variation in traffic flow. The learning architecture is based
on feed-forward neural network(FFNN) with tanh and rectifier function (f(x) =
max(0, x)). This research tests and evaluates the performance of the proposed ar-
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chitecture by comparing with the performance of sparse linear vector sutoregressive
(VAR) combining with data pre-filtering techniques(such as median filtering and
trend filtering). Therefore, the proposed architecture using FFNN can provide bet-
ter solutions to predict unexpected traffic events suddenly occurred on traffic roads.

Yang et al. (2016) focuses on nonlinear interactions control between vehicles in
congested areas, by using machine learning that captures and counts vehicles on the
road from image sensors. The proposed deterministic microscopic model investigates
the dependence of accelerations on vehicle velocity, relative velocity and headway.
The model is formulated by using nonlinear least-square regression which minimizes
the sum of squares of the error and fits a set of observed data with nonlinearity in
unknown parameters. After implementing the proposed model, the results show that
vehicle headway have strong influence on the dependence of acceleration on vehicle
velocity relative velocity.

Kianfar & Edara (2013) analysed similarity among traffic data (including flow,
occupancy, and speed) in each flow condition and partitioned the traffic data us-
ing three clustering techniques; K-means clustering, general mixture model (GMM)
and hierarchical clustering. The fundamental traffic flow diagrams and macroscopic
traffic stream models are created by partitioning traffic data. The results indicate
that the performance of hierarchical clustering and K-means clustering outperform
GMM clustering. Lastly, this research investigates the effect of input variable for
the clustering technique. As a result, as input variable(s), using the combination
of occupancy and speed, or only speed show the best performance for clustering
technique.

2.1.4 Applications to traffic signal control

In recent year, responsive traffic signal control has been important on urban signal-
ized road intersections because traffic signals can directly manage traffic flows and
keep balance between centralization and dispersion on the traffic networks. In addi-
tion, it can minimize numerous traffic problems, such as long delay of vehicle drivers,
traffic accident, exhaust emissions from vehicles on roads and energy consumption
(Liang et al., 2018). In particular, recent advancement in articial intelligence, both
in theory and computational architecture, has led to the emergence of a number of
machine learning (ML) based approaches for traffic signal controls, such as neural
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networks (NNs) and reinforcement learning (RL).
Multi-agent approach using NNs has been applied to minimize average vehicular

delay time and average stoppage time (Srinivasan et al., 2006), improve the reactivity
of traffic control and capacity of traffic network (Castro et al., 2017), alleviate traffic
congestion (El-Tantawy et al., 2013), and improve traffic control decision-making
(Hauser & Scherer, 2001). On the other hand, RL is used to develop multi-agent
traffic control architecture to optimize phase timing (Balaji et al., 2010), reduce
queue length and the number of stops (Li et al., 2016a), and minimize the average
delay and congestion at intersections (Arel et al., 2010).

Chiu (1992) proposes a distributed architecure using fuzzy logic to control traffic
at multiple intersections in a signalised road network consisting of two-way streets.
Each intersection independently changes signal traffic parameters (such as cycle time,
phase split, and offset) based on traffic data. A set of 40 fuzzy decision rules is used
for the adjustment of the cycle time, phase split and offset. The output of the fuzzy
decision rules is the proportional level of adjustment to the traffic signal parameters.
This research performs the simulation on signalised road network consisting of 9
intersections. In a simulation, the control scope is changed accroding to traffic control
strategy which has two strategies consisting of fixed cycle time and fuzzy-based cycle
time. Through this simulation, this paper evaluates the performance of both average
waiting time and number of vehicle stops according to the definition of the initial
cycle time.

For development of adaptive traffic signal control, Castro et al. (2017) employed
biologically-inspired neural network. The network is different from artificial neural
network because it does not require training stage to achieve a desired control action
by exploring biological natures of real neuron to keep improved performances of
overall control action in the model. This model has two different types of inhibitions
between each layer, such as feed forward and feedback. Through the communication
with each neural in each layer, the bi-neural network provides a phase green time in
fixed control cycle time. From the experiment, this paper shows that the proposed
model has an efficiency of controlling traffic.

Srinivasan et al. (2006) designed multi-agent traffic signal control framework.
The framework consists of two models such as Simultaneous perturbation stochas-
tic approximation in fuzzy neural networks (NN) and Hybrid neural network-based
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multi-agent system. The goal is to manage the traffic signal control efficiently. So,
in order to evaluate the performance of the developed both multi-agent systems,
Srinivasan et al. (2006) considered the mean delay and mean stoppage time of the
vehicles. Both models were performed by PARAMICS with JAVA script. With three
scenarios such as Three-Hour simulations, Six-Hours simulations and Long Extreme
simulation with multiple peaks(24 hours), the models are compared with banch-mark
model based on Sydney Coordinated Adaptive Traffic System (SCATS). As a result,
the longer the simulation time is, the more total mean delay and vehicle mean speed
increase in the banch-mark model and SPSA-NN. However, hybrid NN has a superior
performance rather than other models and keeps numerical-stability even under ex-
tremely long simulation running time. Therefore, this paper contributed to apply the
intelligence techniques in real world, with application of neural network technique.

Hauser & Scherer (2001) constructs a procedure in order to develop, implement
and monitor traffic signal plans by using both hierarchical clustering analysis and
Classification And Regression Trees (CART). In United States, the term of Time-
Of-Day (TOD) is widely used to select and implement the traffic plan, which is
an effective way to come up with specific time intervals per day. So, in order to
design the TOD system, this research identifies the proper intervals for the traffic
plan, decides the occurrence of the traffic volume counts and builds the effective
plans to apply to each intervals. Hierarchical cluster analysis classifies the similar
cases by grouping together. This method is able to be used for identifying TOD
intervals, but it is not possible to analyse traffic data pattern. The proposed CART
is a prediction model which is able to cover what cluster analysis does not cover. It
is able to search for the significant patterns and relationships in a set of traffic data
and then decide the optimal tree by using non-stopping rule. Therefore, Hauser &
Scherer (2001) suggests the efficient method of how to manage and analyse a large
number of data by hierarchical cluster analysis and CART. Through automatically
analysing the traffic data sample, this research provides traffic engineers with more
useful information and aids them to determine traffic timing plans.

With recent successful application using deep Q-network(DQN) at Atari game
Mnih et al. (2013, 2015), RL is more popular among researchers and developers in
the various field. The RL is the method of optimising action policy, which aims at
maximizing the reward by interacting with the given environments. In particular, in
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the field of transportation, many researchers have been finding the most appropriate
traffic signal control policy corresponding to real-time traffic environments, which
can mitigate traffic congestion. Therefore, the related research shows the efficiency of
the responsive traffic signal control by comparing fixed-time traffic signal or different
methods (Arel et al., 2010, Aslani et al., 2018a,b, 2017, Balaji et al., 2010, El-Tantawy
et al., 2013, Gao et al., 2017, Jin & Ma, 2015, Junchen & Xiaoliang, 2016, Genders
& Razavi, 2019).

Balaji et al. (2010) used reinforcement learning to develop multi-agent traffic con-
trol architecture to optimise green timing. Based on the proposed architecture, the
published paper analysed how overall average travel time was minimised according
to the optimised green time. For validation of the proposed architecture, other traf-
fic control systems (including cooperative ensemble (CE), hierarchical multi-agent
system (HMS), and actuated control) were compared with the proposed architec-
ture. The results showed that the proposed architecture had better performance for
minimising total mean travel time than the other existing systems.

In the same vein, Arel et al. (2010) focused on finding the efficient 8 phase com-
binations with the regular time interval, which is non-conflict and compatible in
multi-intersection network. Reinforcement learning with feedforward neural net-
work(FFNN) is employed to find the efficient traffic signal control strategy which
minimizes average delay per vehicle and average cross blocking. Compared with
benchmark model(longest-queue-first (LQF) algorithm), Arel et al. (2010) demon-
strates the advantage of the proposed model for efficient traffic control management.

Chin et al. (2011) analyzed the stability and robustness of the reinforcement
learning by decreasing or increasing traffic demand at specific time interval in a 4-
way intersection. The state is vehicle queue length. the defined action distributes 1
second/5 seconds to green time in each phase according to the vehicle queue length.
In addition, the actions are rewarded if the additional green time(1 second/5 seconds)
is distributed to the phase when the vehicles are in the queue. On the contrary,
the actions are penalized when the additional green time(1 second/5 seconds) is
unnecessarily distributed when the vehicle queue is not in the corresponding phase.
The result shows that the reinforcement learning algorithm efficiently reduce the
vehicle queue length when traffic demand is increased in the specific time interval.
Even when traffic demand is reverted to original traffic demand after the traffic
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demand has been reduced in a specific time interval, the reinforcement learning
approach effectively controls the reverted traffic flows and maintains the vehicle queue
length. But, it is not clear that this paper did not mention how much increase and
decrease the traffic demand numerically.

To efficiently handle non-stationary of traffic environment, Abdoos et al. (2011)
developed an reinforcement learning for traffic signal control, which is based on
model-free approach(Q-learning). To accurately describe the traffic state, this re-
search creates 24 state which has four approaching links. Each approach is ranked
by the vehicle queue length, and then green times is assigned to ranked approach-
ing links. The proposed algorithm is tested on large-scale traffic network including
50 intersections which are four-way junctions. The simulation results demonstrate
that the proposed algorithm outperforms the standard reinforcement learning and
effectively reduces the vehicle delay.

Li et al. (2016a) focused on how to develop more responsive traffic signal control
algorithm. This research proposed the deep reinforcement learning approach to de-
sign the efficient traffic signal timing plans with deep neural network(DNN) which
learns the Q-function interacting with the given traffic environments and also find
the appropriate traffic signal timing strategies(policies) by clearly defining the traffic
state and traffic control actions. In addition, as the DNN, the deep stacked auto-
encoders(SAE) neural network is employed, which is one of unsupervised learning
techniques and reduces the dimensionality of traffic image data by compressing the
input value to extract specific features which closely match original input data. The
experiment performed by PARAMICS traffic simulation software. By comparing
with the base RL model, this research shows the efficiency of traffic signal control on
the proposed RL model.

The reinforcement learning algorithm with Q-table has a limitation of state-action
space because Q-table has limited size. To overcome this problem, Wiering (2000)
focused on communicating traffic signal controllers with cars by using multi-agent
reinforcement learning, in order to optimize vehicle driving policy and minimize the
cumulative waiting time until when vehicles arrive to their destinations. For evalu-
ation, this paper set 6 traffic signal control strategies; fixed traffic signal controller,
random traffic signal controller, TC-1, TC-2 and TC-3. TC-1 uses only a central
traffic information without sharing local traffic information to control traffic. TC-2
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applies global information to control only the first car approaching at an intersection
and uses local information to control from the second car. Lastly, TC-3 considers
global information to control all cars. The experimental results show that TC-3 effec-
tually handles the traffic flow and then outperforms other controllers. However, the
agents in this research cannot individually coordinate their traffic signal. This can
cause global inefficiencies. To solve this problem, Kuyer et al. (2008) uses max-plus
algorithm for the explicit coordination of neighboring traffic signals and the cooper-
ative learning. The max-plus algorithm estimates the optimized action by sharing
locally optimized information with neighboring agents.

Expand the above researches, Khamis & Gomaa (2014) used multi-objective func-
tion with reinforcement learning algorithm proposed by Wiering (2000) since the al-
gorithm proves its superiority and efficiency when Wiering (2000) apply to large-scale
traffic network. By using cooperative hybrid exploration which can be interchange-
ably used ε-exploration(low traffic congestion) with softmax exploration(high traffic
congestion), the proposed algorithm can efficiently handle the dynamical changes in
traffic network.

Van der Pol & Oliehoek (2016) focused on instability of the reinforcement learn-
ing for multi-agent. To avoid this, this research proposed coordinated reinforcement
learning using transfer planning which calculates heuristic value function Q̂ by com-
puting similar tasks with neighbor agents. In particular, the reinforcement learning
algorithm is based on Wiering’s algorithm (Wiering, 2000) and Kuyer’s algorithm
(Kuyer et al., 2008) to learn traffic signal control policies for the multi-agent and com-
bine with max-plus coordination algorithm. Through proposed algorithm, Van der
Pol & Oliehoek (2016) evaluate the performance according to the number of agent.
Therefore, this research conclude that the proposed algorithm efficiently manages
the instability caused by the base reinforcement learning.

Liang et al. (2018) focused on how to define the traffic signal’s duration cor-
responding to the traffic situations. To deal with the complicated traffic status,
a double dueling deep Q network (3DQN) with prioritized experience replay is pro-
posed in this research. The proposed model is able to deal with the overestimation of
Q-value and achieve better convergence performance in training module. In addition,
by estimating the advantage of all possible actions at certain state, the model finds
and uses the most beneficial action which is able to make better performance(related
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to average vehicle waiting time). For evaluation of the proposed model, simulation of
urban mobility(SUMO) is simulated in the proposed model. The result shows that
the proposed model can efficiently adjust the duration of signal control rather than
the fixed time signal control’s duration.

Wei et al. (2018) also proposed the reinforcement learning approach to efficiently
manage traffic and minimize queue length and vehicle delay by adjusting traffic
signal’s duration. In particular, unlike the previous research, Wei et al. (2018) focused
on two issues; how to exactly describe traffic environment and how to maintain the
balanced memory applicable for different traffic situations. To achieve the both, this
research simultaneously considers 6 state variables(such as queue length, number of
vehicle, updated waiting time of vehicle, vehicle position, current phase status and
next phase status). In addition, this research pointed out that traffic on different
lanes might be really different and imbalanced so that a memory cannot cover all
traffic situation. Thus, Wei et al. (2018) employed the concept of memory palace,
which is that training traffic data for different traffic signal control strategies are
stored into different memories. According to the traffic status on different lane, the
RL can manage traffic more accurately.

El-Tantawy et al. (2013) proposed a coordinated multi-agent reinforcement learn-
ing for integrated network of adaptive traffic signal controllers (MARLIN-ATSC).
The state and reward are defined as queue length and total cumulative delay, re-
spectively. This approach is tested on a large-scale urban network including 59
intersections. The results clearly show that the proposed model efficiently improves
traffic status by minimising average queue length, average vehicle delay, average stop
time, travel time, average and CO2 emission and maximising vehicle throughput.

In the same vein, LIU et al. (2017) proposed cooperative reinforcement learning
approach for efficient traffic management. Different agents have different traffic con-
trol policies. So, a traffic agent learns its own traffic control policies and considers
traffic control policies of other agnets as a part of traffic environments. This can
cause serious conflict and traffic accidents. So, this research focused on the problems
caused by conflicts between multi-agents. To prevent the above problem, only one
agent at central intersection is trained in training procedure. The optimal traffic con-
trol policy generated from training procedure will be shared with the other agents.
Compared to base RL model, this research shows that each agent collaboratively
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performs traffic signal control at each intersection.
Teo et al. (2014) designed robust and accurate dynamic traffic algorithm using

the Q-learning which is a model-free approach in reinforcement learning. In addition,
for state definition, the level of vehicle queue length is categorized to clearly describe
traffic state. The action is to adjust the green time duration at each intersection.
Here, reward is defined by identifying current greent signal and the current level of
vehicles in queue. If there is no vehicle queue and green signal is still running, the
proposed algorithm gets the penalty. Therefore, the proposed algorithm minimizes
vehicle queue length at each intersection by adjusting green time.

Unlike the existing reinforcement learning approaches, Gao et al. (2017) do not
use human-crafted features(such as average vehicle delay and vehicle queue length)
for traffic control decision, which might guide to sub-optimal traffic signal control
policies. Gao et al. (2017) propose the reinforcement learing approach using raw real-
time traffic data(including vehicle speed, vehicle position and traffic signal status).
This approach extracts useful traffic state information from the raw data by using
convolutional neural network(CNN). The superiority and efficiency of the proposed
approach is demonstrated through comparison with longest queue first algorithm and
fixed time control algorithm.

Lin et al. (2018) pointed out that previous machine learning approaches requires
vast state-action spaces to learn and describe the complicated characteristic of traffic
dynamics in all traffic environments, and control traffic in the complex multiple sig-
nalized intersections. This can cause low learning speed(convergence speed) which
makes the approaches very slowly reach optimal solution in large-scale urban traf-
fic control problem. To solve these problems, Lin et al. (2018) proposed parallel
reinforcement learning approach in which all agents are synchronously trained and
learn different type of traffic states. In addition, in order to accelerate learning
speed, this research uses general advantage estimation(GAE) which can minimize
variance of estimating the overall sum of the reward. Therefore, compared to the
performances(such as the number of arrival vehicle and average waiting time) of the
fixed-time controller and actuated controller, this research shows that the perfor-
mances of the proposed approach outperforms other benchmark models.

Genders & Razavi (2016) focused on how to improve representation of traffic, as
the traffic state space. In order to extract relevant traffic information, convolutional
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neural network is employed. The traffic state space consists of three vectors(including
presence of vehicle, vehicle speed and the current traffic signal phase). The action
is defined as traffic signal phase, and the reward is defined as the variation in the
cumulative vehicle delay among actions. Based on these components, reinforcement
learning algorithm with experience replay is developed and tested by traffic microsim-
ulator(Simulation of Urban MObility, SUMO). The performance of the proposed al-
gorithm outperforms that of shallow traffic signal control agent. Therefore, Genders
& Razavi (2016) conclude that well-reflected traffic state can affect the output of the
reinforcement learning.

Mousavi et al. (2017) approach both technical and practical issues of the deep
reinforcement learning at the same time. That is, Mousavi et al. (2017) first focused
on how to solve instabilities and oscillations of the reinforcement learning during
training procedure and how to fully utilize traffic data to describe traffic environ-
ment in detail. Second, by achieving these issues, this research shows the improved
performance and the efficiency of the proposed algorithm. Through policy gradient
approach, the proposed algorithm can smoothly update traffic signal control policy
at each epoch by just following the gradient to find the optimal parameters. In ad-
dition, the policy gradient approach can provide a guarantee to coverage on the best
case and the worst case during the training process. The state is overall traffic status
of one intersection generated by image sensors. The action and reward is defined as
the green time of two phases(such as North/South and East/West) and the total
cumulative delays between two consecutive actions, respectively. To evaluate the
performance, the traffic micro-simulator(Simulation of Urban MObility, SUMO) is
employed, and the benchmark model is defined as the classical reinforcement learn-
ing using shallow neural network(SNN) consisting of one hidden layer. Compared
to the benchmark model, this research clearly shows the proposed algorithm has
quicker convergence speed(learning speed) and also efficiently handle the traffic at a
synthetic traffic intersection.

Touhbi et al. (2017) investigated the feasibility of the reinforcement learning for
adaptive traffic signal control. In particular, this research analyze the performance
according to the different reward functions separately considering queue length, cu-
mulative delay and vehicle throughput. The state and action are defined as queue
length and green time at each phase, respectively. The classical reinforcement learn-
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ing is developed and tested on a four-way signalized intersection(used by El-Tantawy
et al. (2013)) by using microscopic traffic simulator named Paramics. The result
shows that different traffic volume can affect the performance of the reinforcement
learning algorithm with different reward function but the developed algorithm still
outperform the fixed time traffic signal control policy(Webster).

Genders & Razavi (2018) evaluate three different state representations of rein-
forcement learning for adaptive traffic signal control. The state definition has great
influence on the performance of the Reinforcement learning agent. Three state rep-
resentations consist of 1) occupancy and speed, 2) queue and density and 3) discrete
cell encoding that describes the presence/absence of the vehicle. Action and reward
are defined as green traffic phases and change in cumulative delay between previous
and current time, respectively. With traffic micro-simulator(simulation of urban mo-
bility, SUMO), the result shows that all reinforcement learning traffic signal control
outperforms the actuated traffic signal control and efficiently handles traffic dynamics
by reducing vehicle delay and queue length.

Chu et al. (2019) proposed multi-agent advantage actor critic(A2C) to overcome
learning difficulty and improve the stability, observability and robustness of the ex-
isting reinforcement learning algorithm for traffic signal control. A spatial discount
factor is first employed to weaken the influence of local agents. So, the discounted
global reward makes the algorithm keep a balance between cooperative control and
greedy control, and efficiently estimates the ”advantages” of local traffic signal con-
trol policies. The action is defined as green time phase. State consists of two vector,
such as the cumulative vehicle delay and the total number of vehicle approaching at
intersections. The reward is calculated by queue length and cumulative vehicle delay.
This research uses fully connected layers and LSTM layers on Deep neural network.
Through synthetic traffic grid(5 X 5 traffic grid) and Monaco traffic network, this
research evaluates the performance of the proposed model, and the result shows the
proposed algorithm is more stable and robust than other benchmark models.

For good traffic representations, Muresan et al. (2019) proposed a novel state
space definition on the reinforcement learning algorithm for traffic signal control,
which consists of vehicle queue length, traffic signal status, time of data and day
of the week. To evaluate the performance, unexpected traffic demand at a specific
time interval is set in the experiment. As a result, compared to fixed time and
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actuate traffic controller, this method outperforms and even is more stable when
unexpected traffic demand is occurred. The result addresses that appropriate state
space definition can affect the performance and stability of reinforcement learning
algorithm.

In general, reinforcement learning has slow learning speed during training pro-
cess. To solve this, Mannion et al. (2015) developed adaptive traffic signal control
with potential-based advice where agents are advised by using specific state ex-
tracted from the traffic environment. To achieve this, potential-based advice(PBA)
technique, based on potential-based reward shaping(PBRS), is employed to improve
learning speed and improve the performance of the reinforcement learning agent. In
addition, like the PBRS, the developers in the PBA can help the RL agent reach
to the optimal state by shaping reward function with the discount factor. To eval-
uate the proposed algorithm, this research checks the performance of the proposed
algorithm on three different phase(2, 3, 4 phases) junctions and compares it with
classical reinforcement learning algorithm. As a result, this research shows that the
proposed algorithm rapidly converges to the optimal output rather than the conven-
tional algorithm and improve the performance. But, according to the the definition
of the potential function in reward shaping function, the performance can be im-
proved more. In addition, this research did not apply to real traffic network. So,
through applying to real traffic network, the proposed algorithm is validated.

Aziz et al. (2018) developed reinforcement learning algorithm with R-Markov
Average Reward Technique(RMART) which is a new temporal-difference method
in which value function is defined by averaging the expected reward. In addition,
traffic control agents in the proposed learning algorithm can share traffic information
with the surrounding agents. The simulation is performed by VISSIM with different
random seeds. Compared to four benchmark models(such as fixed-time control,
adaptive control, standard Q-learning and standard SARSA), the results from the
simulation show that the proposed algorithm reduces vehicle delay and emission(such
as CO, CO2, NOX , VOC, PM10) and alleviates traffic congestion.
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2.2 Application of mathematical optmisation (Math

programming) to traffic signal control

2.2.1 The characteristics of math programming

Mathematical optimisation (math programming), which includes linear, convex, and
nonlinear optimisation, is one of problem-solving methodologies that aims to improve
the decision-making and efficiency of various systems, including transportation sys-
tems (Boyd & Vandenberghe, 2004). In general, the mathematical optimisation
technique minimises or maximises a real function in a certain problem by calculat-
ing input variables of the function with constraints. In the field of transportation,
the math programming technique has been used for the minimisation of traffic de-
lay, journey time, and travel cost and for the maximisation of vehicle throughput in
traffic networks (Nagurney & Zhang, 2007). Turning to traffic flow theory, the traf-
fic flow theory analyses the relations between infrastructure (including traffic signal
controller, loop detector, road, and highway) and travellers (including motorcyclists,
vehicle drivers, cyclists, and pedestrians). Its main purpose is to develop optimal
feasible traffic network to achieve efficient traffic flow and to alleviate traffic con-
gestion (Garavello et al., 2016). Adjunctively, dynamic traffic assignment (DTA) in
the traffic flow theory is a mathematical model to describe the dynamic evolution
of traffic networks with travel demands and travel behaviours. Under constraints,
such as travel demand and delay, flow propagation, and link dynamics, the DTA
minimises travel cost caused by travellers (Friesz, 2010).

2.2.2 Traffic optimisation models

In the real world, traffic flows may vary significantly at road intersections even in
the same time period of the day and day of the week. As a result, the capability
to handle uncertain and unexpected flow patterns on a network level is crucial in
the design of adaptive signal controls. Numerous studies have attempted to design
the adaptive signal control algorithm in the past. From an optimization point of
view, a well-defined function is required to relate the traffic signal parameters to
specific objective being optimized. Specific objectives in the literature include the
minimization of (weight) vehicle/pedestrian delay (Chang & Lin, 2000, He et al.,
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2014, Sun et al., 2006, Zhang et al., 2010, D’Acierno et al., 2012), minimization of
passenger delay (Christofa & Skabardonis, 2011, Christofa et al., 2016), minimization
of number of stops (Lucas et al., 2000), maximization of total throughput (Chang &
Sun, 2004, Han et al., 2014).

Yin (2008) developed a pre-timed signal control model by aiming to minimize
the average delay and maintain sound performance against the worst-case scenario.
The robustness and efficiency of the resultant traffic signal timings are tested and
validated by a macroscopic Monte-Carlo simulation which provides decision-makers
with the range of all possible outcomes and the probability that can be occurred by
any action choice. Moreover, based on ’Webster’ split algorithm (Webster, 1958),
Dong & Chen (2010) developed real-time signal timing model with non-fixed cycle
and split. The model targets to minimise total delay time and maximise traffic
capacity by determining the optimised parameters with objective value.

However, the above proposed models do not fully explain traffic dynamics. They
inefficiently handle the uncertainty and fluctuation of traffic demand with high com-
putational load. To overcome these limitations, Zhang et al. (2010) consider daily
variations of the traffic demand in the optimization of pre-timed signal controls, by
using a stochastic programming model that is informed by a range of demand scenar-
ios and their corresponding probabilities of occurrence. In addition, Ukkusuri et al.
(2010) proposes a robust system optimal signal control model with an embedded
cell transmission model(CTM), in order to account for uncertainty of future trans-
portation demand and capture traffic flow dynamics in a traffic network. The CTM
evaluates the fundamental diagram of traffic density and flow by approximating a
meso-scopic traffic behaviours in the given test network where is used for developing
robust traffic signal control plans. The resulting performance illustrates that the
proposed model is robust in a complicated traffic environment, and efficiently deals
with the traffic uncertainty over the different level of traffic demand.

Li et al. (2016b) proposed a framework combining signal optimization model with
simulation method which optimizes the duration of the green time at each phase.
The simulation method can not only forecast the future traffic states but also eval-
uate current traffic condition. In addition, the proposed simulation method can
appropriately find the evolution or changes on a traffic network and interact with
the proposed optimization model based on simultaneous perturbation stochastic ap-
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proximation algorithm(SPSA) which has a iterative property to reach at the optimal
value. The experimental result shows that the proposed framework can mitigate
traffic congestion and improve average travel velocity on the test-bed network.

He et al. (2014) formulated a request-based mixed-integer linear program (MILP)
to accommodate priority-optimal signal timings and to avoid conflict of requests be-
tween priority eligible vehicles and pedestrians, with consideration for signal coordi-
nation and real-time vehicle actuations. The generated signal timing is responsive to
real-time signal control. Other literature proposed real-time adaptive signal phase
allocation algorithm to optimise duration and signal phase sequence by using two-
level optimisation problem of which two objective functions minimise queue length
and total vehicle delay (Feng et al., 2015).

Jiao et al. (2015) considered a pedestrian factor in the adaptive traffic signal
control and proposes a signal timing optimization model to minimize the average
delay time per person at an intersection. For realistic application, field survey is
performed to obtain the information of average passenger load of the vehicle including
bus and car. As the factors for evaluation, the average delay time per person and
average queue length in certain time interval in each phase and each direction are
considered to compare with each performance between the proposed model and the
current signal time plan. In order to apply to real traffic signal control system, Dotoli
et al. (2003) modified Jiao et al. (2015)’s traffic signal optimization model considering
the different types of vehicle, pedestrian movement, the number of vehicle entering
or leaving an intermediate link, etc. For evaluation, a case study is performed to
evaluate and analyse the performance of the adapted optimization model. In the
same vein, Dotoli et al. (2003) show the efficiency of the adapted optimization model
to minimize the queue length at a real life intersection. However, existing research
papers try to find and suggest efficient ways in order to avoid traffic congestion.
Although the existing researches propose a variety of optimisation models, most
optimization model has a difficulty to coordinate local signal timing affecting to
the whole network. So, Dotoli et al. (2004) focused on synchronization of the local
intersections in order to improve traffic flow in the signalised area and proposed
a heuristic method to minimise the average number of vehicles per cycles. The
proposed framework is based on the macroscopic traffic model developed by Barisone
et al. (2002). The results show the efficiency of minimizing average number of vehicle
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per cycles.
Lee et al. (2005) developed real-time adaptive traffic signal optimization with ge-

netic algorithm(GA) which evaluates fitness value of the candidate traffic signal plans
calculated by GA. With three scenarios using three different levels(high, medium
and low) of traffic demand, the proposed algorithm is tested by microsimulation
software(PARAMICS) in online testing module and compared with fixed-time sig-
nal control plan generated by TRANSYT-7F. The resulting performances indicate
that the proposed algorithm efficiently minimizes total vehicle delay in all scenario,
compared to the fixed-time signal control plan.

On the network-wide level, Liu et al. (2015) proposed a linear decision rule ap-
proach for on-line signal control. The linear decision rule relies on closed-form trans-
formation from the state space to the control space, which is feasible in a real-time
decision environment. Such a transformation can be trained via an off-line procedure,
which amounts to a distributionally robust optimization.

Papatzikou & Stathopoulos (2015) proposed an optimization model of traffic
signalization by combining dynamic traffic assignment with traffic network control.
The proposed model is formulated based on conditional Value-at-Risk (CVaR) and
simulated by TRANSYT-7F. That research aims to minimize the risk of over-budget
travel time from the traffic signal planning properly deployed in the traffic network.

Different from aforementioned literature, Christofa et al. (2016) took into account
of person delay in assessing performance of traffic signal setting. A mixed integer
linear program is employed and built to minimise person delay with passenger oc-
cupancy of vehicles. The proposed real-time signal control system optimises signal
setting by solving the mixed integer linear program.

Zhai et al. (2018) focused on signal-stage phase to maximize traffic efficiency
and vehicle throughput and minimize average vehicle delay and stops. To achieve
this, Zhai et al. (2018) proposed a multi-stage optimal decision framework based
on signal-stage optimization. This framework has two signal-stage phases such as
primary and secondary compatible phase. Each compatible phase does not conflict
with each other since the secondary compatible phase is defined after the primary
compatible phase. To verify the performance of the proposed framework, this paper
performs the simulation with an intersection and compares the proposed framework
with three benchmarks; fixed timing control, segmented timing control and fully
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actuated control. In addition, using balanced and unbalanced traffic demands, this
paper shows that the framework keep a guarantee of the performance.

Ahmed et al. (2019) emphasized that exact representation of traffic state plays
important role on the efficient traffic management. In addition, this research pointed
out that the traffic flow prediction based on historical traffic data cannot cover the
dynamical changes of traffic. To overcome this, Ahmed et al. (2019) developed a
framework using Cell Transmission Model(CTM), Extended Kalman Filter(EKF)
and Genentic Algorithm(GA). In the framework, the CTM estimates macroscopic
traffic behaviours on a traffic network by evaluating the traffic density and flow at
different time stages and optimizes the traffic network. The predicted output are
complemented by EKF to gain more accurate estimates of traffic state, which work
well for nonlinear state estimation. The optimized traffic signal timing plans gener-
ated by CTM-EKF with GA(CTM-EKF-GA). The proposed framework is evaluate
in a synthetic intersection. Through estimating vehicle delay, the prediction accuracy
of the proposed framework is higher than other benchmark models.

2.2.3 Signal control with environmental objectives

Real-time traffic management with environmental objectives has been a difficult chal-
lenge because of (1) the highly dynamic and uncertain nature of road traffic and their
emission profile; (2) the need for generating timely and robust decisions for large-
scale networks; and (3) the balance between traffic and environmental objectives. To
address these challenges, literatures proposes various methodologies. The incorpo-
ration of environmental objectives such as emission and fuel consumption has been
less widely studied. Therefore, this thesis will explain the relationship traffic with
emission.

Li et al. (2004) focused on addressing the relation between average vehicle delay
and signal cycle length on a metropolitan network. To achieve this, Li et al. (2004)
first formulated a traffic signal timing optimization model to decrease the amount
of the exhaust emission, fuel consumption of vehicles and average delay per vehicle.
In the opimization model, the objectives are green time and signal cycle length. By
optimizing both objectives, this research investigates how much both objectives can
affect emissions, fuel consumption and average vehicle delay. In order to address this,
a signalized intersection in Nanjing city is used with real data. The experimental
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results show that the relationships are close.
Environmental objectives are directly related to the behaviours of vehicle. Rakha

et al. (2004) used a microscopic energy and emission model developed by Virginia
Tech. This emission model focuses on how much exhaust emission is emitted accord-
ing to the acceleration and speeds of vehicles. The experimental results show that
the relationship between emissions and vehicle behaviours is very close. Moreover,
Lefebvre et al. (2011) mentioned that total CO2 emission is highly dependent on the
engine load and vehicle speed. The emission of CO2 tends to increase at low driving
speeds as consequences of congestion and stop-and-go episodes. In addition, as speed
slightly increases, the emission reduces, which is due to the vehicle engine working
at optimal load, this occurs during the moderate traffic speed. At higher speed, the
emission increases significantly again. A similar trend can be observed with other
pollutants, such as NOx, PM2.5, however, NOx and PM2.5 are more sensitive to the
vehicle dynamics (such as acceleration and idle) and vehicle technology compared
with CO2 (Barth & Boriboonsomsin, 2009, Zhang et al., 2011).

Zhang et al. (2013) formulated a multi-objective optimization model to coordi-
nate traffic signal timings for the minimization of vehicle delay and the reduction
of exhaust emission from vehicles. In particular, in environmental perspective, the
optimization model takes into account pollutant dispersion affected by weather con-
ditions. To achieve this, cell transmission model is employed to capture the pollutant
dispersion and calculate the amount of the roadside air pollutions. In addition, for
computational efficiency, Genetic Algorithm(GA) is employed. Lastly, by optimiz-
ing green splits, offsets, cycle length and phase sequences, traffic system delay and
average exhaust emission are minimized.

Ji et al. (2014) also have developed a method to optimize transit signal priority
scheme by alleviating impact on exhaust emission and reducing traffic vehicle delay.
However, it finds, in many cases, traffic and emission objectives are not aligned
very well with each other, especially when traffic network is complicated and traffic
dynamics are nonlinear. Thus, in order to keep trade-off between both objectives,
developing a bi-objective optimization model for traffic signal setting has gained
popularity.

Chen et al. (2012) mentioned that vehicle emissions are affected by a variety of
factors; vehicle type, vehicle operation time and condition (idle speed, acceleration,
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and deceleration). So, the instantaneous vehicle emission model based on detailed
vehicle dynamics(such as vehicle speed, acceleration and deceleration) is proposed. In
addition, by combining the proposed vehicle emission model, this research developed
a traffic signal timing optimization model considering both pollutant emissions and
average vehicle delay at signalized intersections.

Chang & Hui (2016) develop a traffic emission control model considering signal
timing and emission pricing. The model, based on particle swarm optimization, is
able to optimize intersection traffic and link-based emissions. Numerical results indi-
cates that the optimization model shows the efficiency of minimizing traffic exhaust
emissions. However, due to simplification of the complicated traffic environment,
there are limitations to apply to real-world traffic environments.

Most of these aforementioned signal optimization strategies rely on either simpli-
fied vehicle dynamics (such as the kinematic wave model) or fleet composition (e.g.
single commodity). It is widely known that an accurate depiction of traffic emissions
requires extensive knowledge of the detailed vehicle movements, vehicle types, as well
as relevant emission factors (Mascia et al., 2017). However, such information is very
difficult to obtain especially on a network-wide scale during a real-time operational
environment, and most signal optimization algorithms tend to resort to heuristics.
In addition, the potential trade-off between traffic performance and environmental
impact has not been properly understood in an on-line decision-making context.

The environmental impact of traffic signal control strategies has been investigated
and accounted for in a number of recent studies. Han et al. (2016) proposed a MILP
approach to optimize signal timings that reduce network congestion as well as vehicle
emissions. The MILP is developed using a robust optimization approach based on a
macroscopic approximation of the relationship between link dynamics and emission
rates. Their study is based on the Lighthill-Whitham-Richards(LWR) kinematic
wave model, from which vehicle-derived emissions are calculated. Through robust
optimization, the authors are able to reformulate signal optimization problems with
emission constraints/objectives as a mixed integer linear program.

Lin et al. (2013) consider vehicle mean speed and the number of vehicle stops to
simultaneously reduce vehicle delay and traffic emissions for urban traffic networks
by applying model predictive control (MPC) which has the promising capability of
efficiently coordinating traffic flow and easily solving multi-objective optimization
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problem. In addition, by analyzing individual vehicle at a specific time and location,
this research tried to express the traffic situation in mode detail. Similarly, Jamshid-
nejad et al. (2018) also use the MPC with a gradient-based control optimization
approach to smooth vehicle flows, in order to reduce traffic congestion and emissions
simultaneously. In addition, in order to secure accuracy and efficient computational
time, the traffic flow model ’S-model’ developed by Lin et al. (2012) is employed. To
describe traffic environment, four groups are categorized according to the different
vehicle behaviours and queue positions. The result shows computational efficiency
and the balance between vehicle delay and emissions.

2.3 Simulation-based traffic models

Traffic control management has a direct effect on vehicles’ travel times, exhaust
emissions, and fuel consumption (Spall & Chin, 1997, Chunxiao & Shimamoto, 2011,
Rakha et al., 2004, Lefebvre et al., 2011, Chen et al., 2012). The research reported
in the literature commonly uses math optimization models, but when applied to
reality, it is difficult to check its validity of the outputs. Through simulation model
which is a surrogate model to analyze real physical model, many research can check
validation and performance of their traffic model (Hirschmann et al., 2010, So et al.,
2018, Zhou & Cai, 2014, Osorio et al., 2015, 2017, Stevanovic et al., 2015, Chen
et al., 2015, Osorio & Selvam, 2015). In the field of transportation, traffic model
(so called simulation model for traffic) is used to help researchers predict traffic flow
and patterns on urban traffic networks. There are a variety of simulation software
for traffic modeling (including verkehr in stadten-simulations model (VISSIM), and
S-paramics (SIAS, 2011)) and mathematical models.

In particular, with increased interest of environmental problem, many researchers
have been focusing traffic model with emissions (CO2, CO, NO, NOx, etc). Through
communicating traffic simulation-based model with emission model, such as pas-
senger car and heavy-duty emission model (PHEM), comprehensive modal emission
model (CHEM), comprehensive modal emission model (CMEM), and analysis of in-
stantaneous road emissions model (AIRE), many studies are used to estimate exhaust
emission for each simulated road vehicle (Scotland, 2011a).

Stevanovic et al. (2009) proposed a simulation-based framework by integrating
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VISSIM, CMEM, and VISGAOST. The proposed framework consist of VISSIM for
traffic model, CMEM for generating traffic demand, and VISGAOST for signal tim-
ing optimization with GA. The traffic model, emission model, and optimization pro-
gram minimizes vehicular emission (CO2) and fuel consumption (Diesel), optimizes
traffic signal timing, and validates and calibrates surrogate model based on Park city,
Utah, respectively. Based on the framework, Stevanovic et al. (2015) additionally
analyze the traffic safety by adding surrogate safety assessment model(SSAM). This
framework uses 3-dimensional Pareto Fronts of traffic signal timing plans considering
safety, mobility and traffic environment which are important factors for traffic oper-
ation and are optimized by modifying traffic signal timing plans. Such a framework
can keep a balance between mobility, safety, and exhaust emission by communicating
between models in the integration method. Similarly, Chen et al. (2015) focused on
developing a simulation-based adaptive traffic signal control framework to mitigate
traffic congestion by analyzing approximation of the objective function. With traffic
simulation model(AIMSUM) and different demand scenarios, the proposed frame-
work is evaluated. The result shows that the proposed framework efficiently handles
the traffic flow in the urban traffic network.

Hirschmann et al. (2010) first developed traffic model by using VISSIM with
different driving modes considering desired speed and acceleration, and the traffic
model is based on a metropolitan arterial road of Graz city. By connecting PHEM
with the developed traffic model, this paper calculated emission (including NOx,
CO, HC, PM, PN, and NO) and fuel consumption. In addition, So et al. (2018)
proposes an integrated simulation-based approach consisting of a traffic model, an
emission estimation model and a vehicle dynamic model. The traffic model generates
vehicle trajectory information as input data for the vehicle dynamic model. Based on
outputs from vehicle dynamic model, this approach estimates and assesses exhaust
emission.

Zhou & Cai (2014) developed a multi-objective optimization method based on
microscopic traffic simulation at a single intersection. A modal emission and fuel
consumption model is used in conjunction with the genetic algorithm to minimize
vehicle delay, exhaust emission and fuel consumption at the same time.

Osorio et al. (2015) proposed a meta-model, simulation-based approach to opti-
mize fixed timing for dynamic traffic networks by incorporating dynamic traffic as-
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signment models. The response surface methodology is shown to significantly reduce
the computational burden typically associated with microscopic traffic and emission
models. In order to design more efficient simulation-based optimization(SO) model,
Osorio et al. (2017) formulated and used analytical traffic network model which gen-
erates more accurate approximation of the link-based travel time.

Song et al. (2017) proposed a real-time adaptive traffic signal control framework
based on linear decision rule (LDR), which is integrated with realistic traffic and
emission modeling via micro-simulation. The goal of the research is to trade-off
between traffic delay and emission. To implement online for testing and off-line
for training module, this research used S-Paramics. In the same vein, Zheng et al.
(2019) developed a bi-objective stochastic simulation-based optimization model to
keep a balance between vehicular exhaust emissions and total vehicle delay under
stochastic traffic environment and minimize the differences between real values and
simulated objective values by using VISSIM and micro emission model. To evaluate
the proposed model, large-scale urban traffic network(Changsha, China) is employed,
which consists of 15 traffic intersections with 47 traffic signal phases. The experi-
mental results address that the proposed model efficiently keeps a trade-off between
bi-objective values and improve the traffic state more than the existing traffic state.

2.4 Summary

Urban traffic signal controls play an important role for traffic management to solve
traffic congestion and diminish adverse environmental impacts. Many researches de-
vised different traffic signal control algorithm, ranging from traditionally pre-timed
signal control systems based on historical traffic information to fully responsive sys-
tems that frequently update traffic signal control parameters and/or phasing schemes
according to real-time traffic conditions.

In many literatures, traffic optimization models are developed and proposed with
various methodologies(such as genetic algorithm (Wang et al., 2016, He et al., 2013,
Lee et al., 2005, Zhang et al., 2013, Zhou & Cai, 2014), cell transmission model(CTM)
(Ukkusuri et al., 2010, Ahmed et al., 2019, Zhang et al., 2013), colony optimization al-
gorithm (D’Acierno et al., 2012) and various simulation-based approach (Hirschmann
et al., 2010, So et al., 2018, Zhou & Cai, 2014, Osorio et al., 2015, 2017, Stevanovic
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et al., 2015, Chen et al., 2015, Osorio & Selvam, 2015)). However, most traffic op-
timization models cannot be applied to real traffic signal control system due to the
generalization issue. If many constraints are considered in the model, the computa-
tion might become more expensive. So, the model cannot cover the heterogeneous
data. In addition, the optimization model can offer valuable solutions but do not
guarantee global optimality due to the lack of coordination. To solve these problems,
the thesis proposes a novel nonlinear decision rule (NDR) approach based on feed-
forward neural network and recurrent neural network. The key novelty is that all the
expensive computations are performed in an off-line environment through simulation-
based optimization based on traffic microsimulation (S-Paramics) and high-fidelity
emission modeling using AIRE and COPERT IV models (Mascia et al., 2017). The
aim of the off-line optimization is to train the NDR such that its on-line (i.e. real-
time) operation can be continuously improved. In addition, the on-line operation of
the NDR is computationally efficient as all the optimizations are performed off-line.
As we shall see later, some other advantages of this framework include:

• flexible input structure: The system can accommodate a wide range of data
types, spatial coverage and temporal resolution. This is a desirable feature for
real-time signal control as most existing studies assume full knowledge of traffic
states at all key intersections and their approaches, which is often not the case
in real-world networks.

• flexible scope and resolution of controls: Different signal parameters (cycle
time, green split, offset) at one or several intersections can be controlled simul-
taneously in real time;

• user defined objectives and priorities: As the training of the NDR is based on
simulation, the proposed framework can include various traffic and environ-
mental performance indicators; and

• explicit incorporation of uncertainties: Demand variations and uncertainties in-
herent in traffic dynamics can be accounted for during the training of the NDR,
so that the resulting real-time controls are robust against traffic uncertainties.

Moreover, with recent successful application of reinforcement learning, many re-
searchers have tried to apply machine learning algorithms to traffic systems, in or-
der to overcome the limitations which existing studies have. As the learning-based
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algorithm, the machine learning efficiently handles the traffic dynamics, and the
generalization issue, which mathematical optimization methods suffer from, would
be readily resolved through learning traffic situations. Hence, the machine learning
technique, especially reinforcement learning, has been considered as the promising
methodology in various industrial fields.

However, in the field of transportation, there are a few things that the researchers
might overlook in the reinforcement learning. Here, as the second approach, the
thesis proposes learning-based traffic signal control approach with 3rd party advisor.
In addition to the limitations of existing literatures, the contribution of the thesis is
to be described as follows.

First, most researcher might not address which state variable is more influential
to describe traffic environment in detail. This is very important because if less influ-
ential state variables are employed more, the machine learning algorithm is diverged
and takes much time to reach at the optimal traffic signal control policy. Therefore,
this thesis will investigate the impact of state variables.

Second, there might be a few papers considering data incompleteness(e.g., data
noise and data missing). In real-life, due to tele-communication error or bad weather,
sometimes sensors might not be working or generate erroneous data which cause
bad performance on the reinforcement learning algorithm. Therefore, this thesis
considers which state variable is more influential for exact description of real time
traffic environment. Additionally, the data incompleteness will be considered in the
thesis.

Third, as the main objective function in the reinforcement learning, reward func-
tion plays a pivotal role on the reinforcement learning algorithm. The reward can
effect the learning speed and action policy of the RL algorithm (Ng et al., 1999,
Chang, 2006, Mannion, 2017). In addition, the existing literatures consider a range
of forms of the reward such as queue length, vehicle delay, relative reduction of total
travel delay, total travel time and emergency stop (Aslani et al., 2018b,a, Aziz et al.,
2018, Balaji et al., 2010, El-Tantawy et al., 2013, Gao et al., 2017, Jin & Ma, 2015,
Lin et al., 2018, Teo et al., 2014, Van der Pol & Oliehoek, 2016, Wei et al., 2018).
However, in early stage of reinforcement learning implementation on the existing
literatures, state and action are usually unknown and reward can be sparse. This
causes the long time training process to reach at optimal traffic control policy (Li
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et al., 2016a). Therefore, to get fast convergence with better performance and lead
correct convergence, this thesis will extend the basic idea of the reward function from
the previous researches and address how to efficiently deal with reward function.

To sum up, the thesis provides two frameworks, such as nonlinear decision rule
(NDR) approach and learning-based traffic signal control approach. Through two
approaches, the thesis will solve limitations which optimization model and machine
learning algorithm have.
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Nonlinear decision rule (NDR)
based traffic signal control
framework

The nonlinear decision rule (NDR) framework for real-time signal control problem is
detailed in this section. In presenting the model we first employ a generic represen-
tation without relying on any specific network configuration or control preferences,
which highlights the flexibility, computational efficiency and robustness of the pro-
posed method. This is done in Section 3.1. Implementation details of the model
pertaining to the case study of this thesis will be presented in Section 3.2. Finally,
the off-line training of the NDR based on simulation-based optimization will be de-
tailed in Section 3.3.

3.1 Non-linear decision rule

The decision rule approach is first applied to on-line signal optimization in Liu et al.
(2015) to match actual traffic data and optimized traffic signal control strategies.
However, linear decision rule(LDR) proposed by Liu et al. (2015) has a limitation
of handling traffic dynamics although the LDR outperform existing signal control
optimization model in the research of Song et al. (2017). Therefore, this PhD thesis
develops and proposes nonlinear decision rule approach.

The dynamics of the traffic network of interest may be perceived by a state
vector q = q(t) that changes with time. For example, the vector q may be used to
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express traffic quantities such as flow, density, speed, and travel time, which may be
measured with different types of sensors (e.g. loop detectors, GPS, and cameras).
In addition, this thesis allows q to encapsulate multiple time periods so that the
resulting decisions may rely on past memories; see (3.4) for further detail. The NDR
stipulates the following form of the control:

µ = Θ(x, q), u = PΩ [µ] (3.1)

where Θ represents the NDR that maps the states q to the control variables µ; x is
the set of parameters of the NDR, which is to be optimized in the off-line training.
However, the feasibility of the control µ in a complex control environment cannot be
guaranteed by the NDR, and therefore a projection operator PΩ[ · ] is employed to
further map µ to the feasible control u, where Ω denotes the set of feasible signal
control parameters. Ω may be characterized by fixed cycle time, maximum/minimum
green time, and signal offsets, all of which may be expressed linearly. In this case,
the projection operator PΩ[ · ] reduces to a quadratic program (see Section 3.2.3 for
details).

A NDR of the form (3.1) can yield timely signal control decisions given inputs
regarding current and past network states, which enables real-time operations as
it involves analytical or closed-form transformations. The key step in the NDR
approach, which directly impacts its on-line performance, is the optimization of the
parameters x through off-line training.

We let Φ(q, u) = Φ
(
q,PΩ[Θ(x, q)]

)
be a given network performance measure,

which depends on the system state q and the control u, along with some inherent
uncertainties in the traffic system. For example, Φ may be the vehicle delay/vehicle
throughput at a particular junction, or the total emission along a certain corridor.
Without loss of generality, we assume that Φ is subject to minimization.

The problem of optimal NDR can be formulated as

min
x

Φ
(
q, PΩ[Θ(x, q)]

)
(3.2)

However, note that q is a stochastic variable that varies on a daily basis. For
example, q can be the vector of time-varying demands of an arterial network, which
vary from day to day. Therefore, a robust feedback control policy such as (3.2)
must take into account the uncertainties in the system. With this in mind, the
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off-line training of the decision rule may be formulated as the following stochastic
optimization problem:

min
x

E
[
Φ (q, PΩ[Θ(x, q)])

]
(3.3)

where the objective is to minimize the expectation of the performance measure
with uncertain network states q.

3.2 Implementation details

Building on the generic model presented in Section 3.1, this section presents some
implementation details pertaining to the case study of the real-world traffic network
in Glasgow presented in Section 4.1.

3.2.1 Traffic network state variables

This PhD research begins with the state variable q, which captures the network-wide
traffic state in terms of different measurements (flow, density, speed, etc.) obtained
from a network of sensors (like loop detectors). Given the discrete time step t (t is
an integer) with step size δt, we express the state variable as

q(t) =



q1(t− n) q1(t− n+ 1) . . . q1(t−m− 1) q1(t−m)
q2(t− n) q2(t− n+ 1) . . . q2(t−m− 1) q2(t−m)

... ... ... ... ...
qN(t− n) qN(t− n+ 1) . . . qN(t−m− 1) qN(t−m)

 (3.4)

where 0 ≤ m < n ≤ t are prescribed integers. On the right hand side of (3.4),
each row corresponds to one sensor, and each column represents one single time step.
The integer n is used to indicate the number of past time steps considered when
making decisions at the current time step t; m is used to account for the fact that
data collected in the most recent time intervals may not be immediately available
for decision making due to limited capacities of data transmission and computation
(Han, 2017).
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Remark 1. In the Glasgow case study presented in Section 4.1, the network state
is captured by 41 loop detectors, which calculate cross-sectional traffic flows every 2
min (i.e. N = 41, δt = 2 min). The NDR updates signal timing parameters every
10 min based on the flow information collected in the past 10 min; that is, m = 0
and n = 4.

3.2.2 NDR based on feedforward and recurrent neural networks

This PhD thesis selects feedforward neural network (FFNN) and recurrent neural
network (RNN) to instantiate the nonlinear decision rule Θ( · , · ). Figure 3.1
illustrates the internal structures of both networks. Given Remark 1, in order to
generate traffic control parameters at time step t, both neural networks receive traffic
flow vectors in the past 5 consecutive time steps (with a step size of 2 min)

f(t), f(t− 1), f(t− 2), f(t− 3), f(t− 4) ∈ R41, (3.5)

each being the vector of flows measured at the 41 loop detectors in a 2-min period.
(3.5) suggests that the signal control decision made at time t forward depends on
the flows in the past five 2-min intervals. To decrease the sensitivity of the neural
networks to such input variables, we apply normalization to the vectors f(t), f(t−
1) . . . ,f(t− 4) before feeding them to the neural networks.

The FFNN has two hidden layers with 100 and 50 neurons, respectively. The fully
connected neural network employs the Sigmoid activation function, and the weights
of connections among the neurons are treated as the parameters x of the NDR in
(3.1), to be optimized in the off-line training. In Figure 3.1(left), the output of the
neuron N in the first hidden layer is given as

s

( 4∑
i=0

ωiNf(t− i)
)

(3.6)

where ωiN ’s are the weights, and s( · ) is the Sigmoid activation function. Finally,
the output µ for every decision period is generated and used for computing signal
control parameters via the projection operator elaborated in Section 3.2.3.

On the other hand, the RNN has one hidden layer with N = 100 neurons and
one context layer with the same number of neurons as shown in Figure 3.1(right).
The RNN reads the vectors f(t), . . . ,f(t − 4) from the input layer one by one in a
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Figure 3.1: Structures of the FFNN (left) and RNN (right).

recursive way:

Hj
k =


s (wjkf(t+ k)) k = −4

s
(
wjkf(t+ k) +∑N

i=1 vikH
i
k−1

)
k = −3, −2, −1, 0

(3.7)

for j = 1, . . . , N . The RNN iteratively evaluates the quantities {Hj
k, j = 1, . . . , N}

after reading a flow vector f(t− k).
In comparison with the FFNN, which perceives all the flow vectors f(t), . . . ,f(t−

4) at distinct time steps with a symmetric structure as in (3.6), the RNN processes
these vectors in sequence following their chronological order. In this way, the RNN
is able to capture the temporal dependencies among these state variables through
composition of the activation functions.

3.2.3 Projection onto the feasible control set

The signal control parameters typically include cycle time, phasing plans, green
times, all-red, and offset (Han & Gayah, 2015). Due to real-world safety considera-
tions reported by (Mascia et al., 2015), the cycle time and phasing plans are fixed in
this study. Nevertheless, this PhD research notes that the NDR framework can be
easily extended to dynamically change these control variables.
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This thesis focuses on the phase green times at each and every intersection, de-
noted g = (g1, g2, . . . , gN)T , where N is the number of phases. The green times gi
of all the phases must satisfy the following constraints:

gmin ≤ gi ≤ gmax ∀i,
N∑
i=1

gi = Tcycle −∆ (3.8)

where gmin and gmax denote minimum and maximum green times, respectively; Tcycle

is the fixed cycle time, and ∆ includes amber (or all-red) time and pedestrian phase
time, which are fixed for safety reasons.

Given the green times ĝ = (ĝ1, ĝ2, . . . , ĝN)T as output of the neural network
Θ(x, q), which do not necessarily satisfy (3.8), the minimum 2-norm projection PΩ

onto the feasible set can be formulated as the following quadratic program:

min
g

1
2
∥∥∥g − ĝ∥∥∥2

= 1
2
(
g − ĝ

)T(
g − ĝ

)
(3.9)

subject to the linear constraints (3.8). Applying the Karush-Kuhn-Tucker conditions
(Friesz, 2010) which is the first-order test required to achieve optimal solution in
nonlinear programming when regularity conditions are satisfied, we can explicitly
express the solution as:

g = (g1, g2, . . . , gN)T , gi =
{
ĝi − λ

}gmax

gmin

where we employ the notation

{
ĝi − λ

}gmax

gmin

.=


gmin if ĝi − λ < gmin

ĝi − λ if gmin ≤ ĝi − λ ≤ gmax

gmax if ĝi − λ > gmax

and the dual variable λ is such that

N∑
i=1

{
ĝi − λ

}gmax

gmin
= Tcycle −∆, (3.10)

which can be found by numerically solving the algebraic equation (3.10). Note
that in reality the maximum and minimum green times may vary across different
signal phases, in which case the formulae above remain valid.
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3.3 Off-line optimization of the NDR

This section presents details of the simulation-based optimization procedure, which
serves as the off-line module to train and optimize the NDR; i.e. the neural network
presented in Section 3.2.2. The main purpose is to find the optimal (or near optimal)
solutions of the optimization problem (3.3), which is recapped here:

min
x

E
[
Φ (q, PΩ[Θ(x, q)])

]
(3.11)

The inherent stochasticity in the network states q can be handled in different
ways such as using robust optimization and stochastic optimization, with varying
degrees of conservatism and computational complexity; see Bertsimas et al. (2011),
Liu et al. (2015) and Han (2017) for more discussions. In this paper, due to the
potentially expensive evaluation procedure, which is done through microscopic traffic
and emission simulations, we propose a Monte-Carlo type evaluation method.

Specifically, the overall optimization procedure, which is viewed as the off-line
module of the proposed signal control framework, can be divided into two levels;
see Figure 3.2. The upper-level problem is to find the optimal parameters x to
minimize the expectation shown in (3.11). The objective function involves traffic
micro-simulation and high-fidelity emission modeling, whose dynamics and uncer-
tainties are difficult to characterize analytically. Therefore, This thesis employs a
heuristic method based on Particle Swarm Optimization method (PSO) to find opti-
mal x. The PSO is chosen here as only zeroth-order information of the objective and
the constraints are required. In addition, although the performance of PSO varies
relying on the application or parameters, the research shows evidences of PSO or
its variants outperforming other metaheuristic or evolutionary algorithms such as
simulated annealing, tabu search, and genetic algorithm (Liu et al., 2015, Yin, 2006,
Savsani et al., 2010, Sha & Hsu, 2008). On the other hand, the lower-level problem
seeks to evaluate the expected network performance (in terms of traffic and emission
indicators) with given parameters x, while taking into account stochasticity in the
traffic states q and microscopic traffic dynamics such as driving behavior and route
choices.
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3.3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) (Banks et al., 2007) offers an efficient and flex-
ible trade-off between optimality of the solution and computational resources, which
is based on the social behaviors in a group of animals, called a swarm. In a swarm,
the animals are described as particles, and can share and collaborate their own infor-
mation to adjust their positions in the search for a specific location. Their positions
are adjusted by collective memory of the swarm on the best location achieved so far
(hereafter referred to as “gbest”), and the individual memory of the best location
that the particle has attained so far (hereafter referred to as “pbest”). As a result of
the position adjustment, the particles tries to converge to either G or Pj. Although
the performance of PSO varies according to the domain of applications or parame-
ters chosen, this PhD research shows evidence of PSO outperforming well-established
metaheuristics (e.g. genetic algorithm, simulated annealing, and tabu search) Liu
et al. (2015).

Given the objective function to be minimized, denoted f( · ), and the feasible
domain S, the following pseudo code summarizes the PSO procedure.

Particle Swarm Optimization

Input. Population size N , {ωk : k ≥ 0} ⊂ (0, 1), c1, c2 > 0.

Step 0. Let k = 0. Randomly initialize the particles’ positions X0
i and velocities

V 0
i , 1 ≤ i ≤ N . Initialize “pbest” P 0

i and “gbest” G0 as follows:

P 0
i = X0

i 1 ≤ i ≤ N, G0 = P 0
i∗

where i∗ = argmin
1≤i≤N

f(P 0
i ).

Step 1. Update the velocities and positions: for all 1 ≤ i ≤ N ,

V k+1
i =ωkV k

i + c1r1(P k
i −Xk

i ) + c2r2(Gk −Xk
i )

Xk+1
i =PS[Xk

i + V k+1
i ]

where r1 and r2 are random numbers uniformly generated within [0, 1]. ωk
is inertia weight, which can control the impact of previous velocity. c1 and
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c2 are constants and determine the weights of P k
i and Gk.

Step 2. Evaluate the objective values f(Xk+1
i ) for all 1 ≤ i ≤ N .

Step 3. Update “pbest” and “gbest”:

P k+1
i =


Xk+1
i if f(Xk+1

i ) < f(P k
i )

P k
i Otherwise

∀1 ≤ i ≤ N

Gk+1 =


P k+1
i∗ if min

1≤i≤N
f(P k+1

i ) < f(Gk)

Gk Otherwise

where i∗ = argmin
1≤i≤N

f(P k+1
i )

Step 4. If the stopping criterion is met (e.g. no improvement in the objective
within a given number of consecutive iterations), terminate the algorithm
with output Gk+1. Otherwise, let k = k + 1, and go to Step 1.

3.3.2 Off-line training procedure

The off-line training of the NDR amounts to a simulation-based optimization pro-
cedure, which requires PSO to be carried out in conjunction with the Monte-Carlo
approach that assesses the NDR with given parameters (for FFNN or RNN) via
microsimulation and emission calculation. The work flow of the simulation-based
optimization is outlined in Figure 3.2, with individual key components explained
below.

3.3.2.1 PSO for solving optimization equation (3.3)

The PSO is an agent-based search method, which is detailed in Section 3.3.1. In
each iteration of the PSO, a total of N agents, which interact with traffic environ-
ment in traffic network, conduct independent search by evaluating, for a given NDR,
the corresponding objective value, which is defined as the expectation in Equation
(3.3). The stochasticity arises from the microscopic traffic simulation where the de-
parture rates and route choices are randomly sampled based on an origin-destination
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Figure 3.2: Off-line training (optimization) procedure of the nonlinear decision rule.

matrix describing travel demands. Another source of stochasticity comes from the
microscopic driving dynamics, which involve car-following, lane-changing, and gap-
acceptance behavior. All these stochasticities in each simulation run are populated
by a random seed, and this research uses K distinct random seeds to represent the
stochastic nature of the traffic states. The aforementioned expectation is then ap-
proximated as the average over K independent simulation runs.

In the case study presented in Section 4.1, the PSO employs a population size of
N = 5, and the algorithm is terminated if no improvement is made on the objective
within 20 iterations or when the total iteration number reaches 45.

3.3.2.2 Traffic simulation

Traffic simulation simulate complicated vehicle interactions realistically on a meso-
scopic, macroscopic or microscopic perspectives, by modeling traffic demand, supply
and vehicle’s and pedestrian’s behaviour. Based on traffic simulation with a variety of
scenarios, researcher and engineers can design, plan and operate traffic system which
efficiently improve traffic conditions in real-life. Our research focuses on microscopic
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traffic simulation to manage traffic flow. The microscopic traffic simulation is per-
formed using the S-Paramics software (SIAS, 2011), which not only calculates various
traffic key performance indicators (KPIs) such as travel time, delay and throughput,
but also produces detailed vehicle trajectories at a resolution of 0.5 second, which are
used as input of emission modeling. For the case study presented in the next section,
a microsimulation model is set up for the west end of Glasgow, and calibrated using a
combination of macroscopic and microscopic data. See Section 4.1.1 for more details.

The number of traffic simulation (and emission estimation) that needs to be per-
formed within one major PSO iteration is equal to N ×K where N is the population
size (independent search agents) and K is the number of random seeds used to pop-
ulate stochastic parameters and dynamics in the simulation.

3.3.2.3 Emission calculation

A main feature of the proposed real-time signal control framework is the consideration
of environmental impact caused by exhaust emissions from vehicles, which is directly
impacted by vehicle dynamics and the signal control strategies. In this thesis, we
focus on CO2 and Black Carbon (BC). CO2 is the primary greenhouse gas and
contributes to global warming, while BC causes serious health concerns such as
respiratory problems, heart attacks and lung caners.

This PhD research uses the AIRE (Analysis of Instantaneous Road Emissions)
vehicle exhaust emission model (Scotland, 2011b) to calculate the instantaneous to-
tal carbon and particulate matter emissions resulting from the combustion of fuel
throughout each journey of vehicles in the simulation. AIRE is a subsidiary software
program that interfaces with S-Paramics and post-processes the output (including
car position, vehicle type, direction of vehicle travel, angle of elevation of vehicles,
link gradient, vehicle acceleration, vehicle speed, vehicle brake and right and left
indicator) of the traffic simulation. Through built-in Instantaneous Emissions Mod-
eling (IEM) tables, AIRE is able to generate estimated value of vehicle emission for
each simulated vehicle (Scotland, 2011b).

As AIRE does not calculates CO2 and BC directly, a post-processing tool de-
veloped by CARBOTRAF project is used to convert total carbon and particulate
matters into CO2 and BC emissions (Mascia et al., 2017). Through organic mass
(OM) and Elemental Carbon (EC) in the emission inventory, PM is proportionally
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assigned. COPERT model also includes emission factors that indicate the propor-
tional assignment(PM2.5/PM10 ratio) between PM2.5 and PM10 for different traffic
environments. These factors allow the model to estimate the EC fraction of PM10

exhaust emissions. For assessment of road vehicle emissions, it is assumed that EC is
effectively equal to BC due to characteristics of the combustion processes in different
type of vehicles. As a result, this combination of apportioned emission factors and
assumptions can estimate BC emissions in our framework. The calculation flow is
described in figure 3.3 (Mascia et al., 2017). Therefore, the following procedures are
followed to achieve this.

• Based on the PHEM (Passenger Car and Heavy Duty Emission Model) fuel
consumption metric, the total carbon metric consequently is able to be directly
converted into a representative CO2 emissions(Mascia et al., 2017). This is
done by using the atomic weights of Carbon and Oxygen to generate a factor
of 44/12 (one molecule CO2 weighs 44, one atom carbon weighs 12)(Mascia
et al., 2017).

• The calculation of BC is based on the estimated PM10 emission rates using the
COPERT IV mothod for conversion (Gkatzoflias et al., 2007, Mascia et al.,
2017).

• The PM10 predicted from the emission model contains emission exhausted from
vehicles (Mascia et al., 2017).

• The emission model assumes that all exhaust PM10 is approximately equal to
PM2.5 (Gkatzoflias et al., 2007, Mascia et al., 2017).

• It is also assumed that EC is approximately equal to BC (Ntziachristos &
Boulter, 2013, Mascia et al., 2017)

3.3.2.4 Weighted objective

In this thesis, NDR keeps a trade-off between traffic and environment objectives.
From an optimization point of view, a well-defined function is required to relate the
signal parameters to specific objective being optimized. Specific objectives in the lit-
erature include the minimization of (weighted) vehicle delay (He et al., 2014, Zhang
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Figure 3.3: Emission procedure (Mascia et al., 2017)

et al., 2010, Sun et al., 2006), minimization of passenger delay (Christofa & Skabar-
donis, 2011), minimization of number of stop (Lucas et al., 2000), maximization of
total throughput (Chang & Sun, 2004, Han et al., 2014). On the other hand, the
incorporation of environmental objectives such as emission or fuel consumption has
been less widely studied. Han et al. (2016) propose a signal optimization method
that takes advantage of a macroscopic relationship between link occupancy and vehi-
cle emission rate. Their research is based on the Lighthill-Whitham-Richards(LWR)
kinematic wave model, from which vehicle-derived emissions are calculated. Through
robust optimization, the authors are able to reformulate signal optimization prob-
lems with emission constraints/objectives as a mixed integer linear program. Ji et al.
(2014) also have developed a method in optimising transit signal priority scheme by
alleviating impact on exhaust emission and reducing traffic vehicle delay at the same
time. However, it finds, in many cases, traffic and emission objectives are not aligned
very well with each other, especially when traffic network is complicated and traffic
dynamics are nonlinear. Thus, in order to keep trade-off between both objectives,
developing a bi-objective optimisation model for traffic signal setting has gained
popularity. Stevanovic et al. (2015) proposes a novel integration method in order
to solve multi objective traffic signal optimization. The method can keep a balance
between mobility, safety, and exhaust emission by communicating between models
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in the integration method. Chen et al. (2012) mentioned that vehicle emissions are
affected by a variety of factors; vehicle type, vehicle operation time and condition
(idle speed, acceleration, and deceleration). So, the instantaneous vehicle emission
model based on detailed vehicle dynamics is more appropriate for this kind of study.
Most of these aforementioned signal optimization strategies rely on either simplified
vehicle dynamics (such as the kinematic wave model) or fleet composition (e.g. sin-
gle commodity). It is widely known that an accurate depiction of traffic emissions
requires extensive knowledge of the detailed vehicle movements, vehicle types, as well
as relevant emission factors (Mascia et al., 2017). However, such information is very
difficult to obtain especially on a network-wide scale during a real-time operational
environment, and most signal optimization algorithms tend to resort to heuristics.
In addition, the potential trade-off between traffic performance and environmental
impact has not been properly understood in an on-line decision-making context.

However, Song et al. (2017) integrate an on-line signal control framework based
on linear decision rule (LDR) with traffic microsimulation and high-resolution emis-
sion computation, which serves as a proof of concept for the proposed signal control
system to simultaneously reduce traffic congestion and derived vehicle emission in
real-time operational environment. This research shows that equivalent value of the
weight for multi-objectives efficiently keep a balance between traffic and environmen-
tal objective. Therefore, to simultaneously reduce traffic congestion and emissions
based on Song et al. (2017), this PhD research reformulates the multi-objective op-
timization problem into a single-objective one through scalarization:

min Delay, or min
(
w1 · Delay

n1
+ w2 · CO2

n2

)
or min

(
w1 · Delay

n1
+ w3 · BC

n3

)
(3.12)

where Delay refers to network-wide average delay per vehicle, CO2 and BC are
respectively the network-wide total CO2 and BC emissions. Constants n1, n2 and
n3 are normalization factors to bring the three objective values to a comparable
numerical scale. wi’s are positive weights and defined with equivalent value for the
balance between traffic and environmental objectives. But, sensitive analysis of the
weight wi is important to analyze the characteristics of emission corresponding to
traffic objective. Because our research focus on considering the trade-off between
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traffic and environmental objective, this research consider the potential future work
and leaves the sensitive analysis according to the weight wi for near future.

3.3.2.5 Advanced control interface (ACI)

ACI is a method of accessing the traffic model via external program and exchang-
ing information. In S-Paramics, it uses a component protocol called SNMP (Simple
Network Management Protocol) to achieve that. Through this protocol, external
program can organize, collect, and modify traffic information to change the condi-
tion of traffic model (SIAS, 2011). For example, in this paper, the ACI has two main
functions; parameter/data exchange and simulation synchronization. First, the pro-
gram will access real-time (in simulation) traffic data to monitor the performance
of the traffic network. This information will be saved and used for the responsive
signal optimization procedure. Second, the information will be sent to S-paramics
for the synchronization purpose, as the right signal timings need to be implemented
in the right time during the simulation. The ACI model has been developed by using
visual basic application (VBA), which is an integral part of our experiment set up
and facilitates the information exchange and control among different models.

3.4 Summary

In this section, this PhD research develops a real-time signal control framework based
on nonlinear decision rule(NDR) to allow actuation of signal timing changes based
on network traffic states. The NDR has been implemented with two neural networks:
feedforward neural network (FFNN) and recurrent neural network (RNN). Through
the NDR, the controller updates traffic signal parameters based on prevailing network
states, and the performance of such mechanism can be optimized via off-line traning
of the NDR.

Particle swarm optimization is employed to solve the off-line optimization prob-
lem, which is the computationally expensive part of the NDR framework, and the
on-line implementation of the trained NDR, which only involves analytical and/or
closed-form transformation, is quite efficient and can be fully compatible with real-
time decision requirements. This is a key advantage of the NDR approach.

The practicality of this approach has been sufficiently demonstrated using mi-
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croscopic traffic simulation. The NDR framework uses current/historical traffic data
as input of the off-line training phase, which are provided by the microsimulation
with different random seeds. The training procedure becomes a simulation-based
optimization and is summarized in figure 3.2. A hallmark of this research is the
simultaneous consideration of traffic and emission objectives, which can be easily
incorporated in the objective function. This highlights a key advantage of the NDR
framework over existing signal control methods: the signal control is fully informed
by explicit and accurate depiction of emission obtained from microsimulation (AIRE
and S-Paramics), and can still maintain high efficiency in an on-line decision making
environment.

This real-time (responsive) signal control framework can be readily applied to
a real-world environment with the help of a well-calibrated simulation model. In
next section, this PhD research demonstrates the applicability and effectiveness of
the proposed framework using microscopic traffic simulation and emission modeling
based on a real-world traffic network in west Glasgow.
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Application to real traffic network:
NDR-based framework

4.1 Case Study in Glasgow

4.1.1 Simulation of the test site

The proposed NDR-based framework has been applied to a real-world test network
in Glasgow, Scotland. This PhD thesis employs the traffic simulation model per-
formed by the EU-funded CARBOTRAF project, which aims to support adaptive
traffic management for reducing urban congestion and associated environmental and
health impacts. The study area is the west part of Glasgow (see Figure 4.1) with 14
signalized junctions and 478 links. There are 21 zones (Figure 4.1(a)), giving rise to
420 origin-destination pairs.

A typical demand scenario for the test network was generated within the S-
Paramics simulation software for 7:30-9:30am, which represents morning peak of a
typical working day (Monday-Thursday) in 2010; see Figure 4.2(a). The microscopic
model has been built using the OS-ITN network to represent the supply, and a
seeded demand matrix obtained from loop detectors that represent the within-day
and day-to-day variability of traffic (Mascia et al., 2015). For the baseline control
scenario, we consider the default traffic signal timing plans provided by the Glasgow
City Council. The baseline model has been fully calibrated and validated using a
combination of loop detector and floating car data (Mascia et al., 2015).

The vehicle fleet that has been simulated consists of private cars, taxis, buses,
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4.1 Case Study in Glasgow

Figure 4.1: (a) The test area in Glasgow with 8 signalized intersections. (b) Road network with
21 Zones. (c) The locations of the 41 loop detectors in the real world. (d) Alternative 1 : First
alternative locations of the loop detectors for the comparative study. (e) Alaternative 2 : Second
alterative locations of the loop detectors for the comparative study.

vans, light goods vehicles, and heavy goods vehicles. The fleet composition is defined
by the Annual Average Daily Flow (AADF) data for the Glasgow city provided by
the Department for Transport between 2000 and 2010. This allows us to capture
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realistic traffic dynamics with mixed vehicle types and to accurately estimate vehicle
emissions with detailed emission factors for different vehicle types. Moreover, road
gradient has been explicitly modeled based on the Digital Elevation Model as it
has been shown to play a significant role in engine load and, subsequently, carbon
emissions (Sobrino et al., 2016). Figure 4.2 shows the bus stops in and around the
test network as well as the digital elevation information for the study area.
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Figure 4.2: (a): 5-min average traffic flow (veh/hr) on Byres Road. (b): Bus stops in and around
the test network. (b): Network nodes overlaid with Digital Elevation Model.

4.1.2 Signal control details

The network has eight major signal intersections, shown as intersections A-H in Fig-
ure 4.1. Other minor junctions in the network are either priority junctions/roundabouts
or controlled by actuated signals, which are excluded from our control framework.
The cycle times, inter-green (including amber and all-red), and phasing schemes of
the eight main intersections are shown in Figure 4.3. These quantities are fixed in
our NDR framework per real-world control and safety requirements imposed by the
Glasgow City Council (GCC), and parameters subject to real-time optimization are
the green times of all the vehicle-movement phases. Note that signal offsets could be
easily included as additional decision variables in our control framework, but they
are difficult to be adjusted dynamically within the microsimulation. For this reason
the offsets are all fixed using the default setting (provided by the GCC) in our control
framework.

The resolution for the adaptive signal control is 10 min, which means that the
signal timings are adjusted every 10 minutes depending on the real-time traffic con-
ditions. Accordingly, 10-min average traffic flow information collected by the 41 loop

58



4.1 Case Study in Glasgow

A (cycle time: 120s) B (cycle time: 120s) C (cycle time: 120s) D (cycle time: 120s) E (cycle time: 120s) F (cycle time: 120s) G (cycle time: 120s) H (cycle time: 120s)

Junction
Layout

Phase I
Inter-green: 

7s

Phase II
Inter-green: 

7s

Phase III
Inter-green: 

7s

Phase IV
Inter-green: 

7s

Phase V
Inter-green: 

7s Right-of-wayLegend: Give way Minor conflict Pedestrian movement

Figure 4.3: Phasing plans of the eight signal intersections.

detectors (see Figure 4.1(b)) is provided to the NDR framework to update signal
controls for the next 10 min.

4.1.3 Signal control scenarios

To investigate the extent of traffic and environmental impact of the proposed real-
time signal controls, and to make a case for coordinated signal controls on a network-
wide level, this thesis considers three test scenarios with varying controllability.

(1) Junction Level [JL]: only intersection A is controlled dynamically by the
proposed NDR framework; all the other seven intersections are controlled by
the default signal timings (provided by the GCC). Intersection A is of critical
importance as it connects traffic from the west to major local destinations in-
cluding universities and hospitals. In the real-world, location A is most affected
by traffic congestion and air pollution.

(2) Corridor Level [CL]: only intersections A, B and C are dynamically con-
trolled by the proposed NDR framework; the other five intersections are con-
trolled by the default timings. Intersections A-C are located along the Byres
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road, which is a strategic corridor connecting the radial routes to the center of
city for drivers approaching from the west of Glasgow.

(3) Network Level [NL]: all eight junctions in the network are simultaneously
and dynamically controlled by the proposed NDR framework. In this way,
the signal timings are coordinated in a centralized fashion. In other words,
the control of any local intersection is informed by the traffic states and other
signal timing plans on the entire network. This is in contrast to distributed
controls, which seeks local efficiency over global optimality.

As a benchmark for comparing with the proposed signal control strategy, the thesis
considers:

(4) Glasgow City Council [GCC]: the fixed signal timing plan provided by the
Glasgow City Council, which is derived from static OD route flow information.

In accordance with the aforementioned control scenarios, this PhD research con-
ducts off-line training (optimization) of the NDR by minimizing the average delay,
CO2 emission, BC emission through a weighted combination of these objectives. This
allows us to understand the potential trade-off between traffic efficiency and environ-
mental impact. Then, the on-line performance of the optimized NDR is tested in 30
independent simulation runs with 30 random seeds that are different from the ones
used in the training. The resulting performance of the traffic network, measured in
terms of delay, CO2 emissions, BC emissions, queuing and throughput, is presented
in the following sections.

4.1.4 Test results and discussion

The test results are evaluated against four key performance indicators (KPIs):

• network-wide average delay. The delay is defined as the difference between the
actual journey time of a trip minus the free-flow time obtained by assuming
little traffic;

• network throughput, defined to be the number of vehicles completing their
trips by the end of the simulation period;

• average vehicles in queue, which is defined on the link level; and
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• network-wide CO2 and black carbon emissions.

4.1.4.1 Overall performance of the proposed signal controls

Figure 4.4 shows the average number of vehicles in queue on each link of the network,
which is a direct indicator of network congestion. In the case of [GCC], significant
congestion is seen along the Byres corridor, especially on the northern entrance. For
the proposed methods, widening the scope of the signal controls ([JL] to [CL] to [NL])
tend to mitigate the congestion on the network level overall. However, minor spatial
trade-offs of congestion can be seen, for example, between [CL] and [JL]. Through
a coordinated control of the three intersections A, B and C, [CL] effectively reduces
the congestion on the Byres corridor, especially on the northern entrance (including
the Great Western Rd.) compared to [JL]. However, more significant queueing on
the southeast part of the network results from the [CL], possibly due to (1) lack of
direct control of that area; and (2) increased traffic flow on the Dumbarton Rd. as
a result of improved Byres corridor. Such trade-off of congestion at different parts
of the network reveals the complexity of network-wide adaptive signal control as
drivers’ route choices are affected by real-time traffic conditions (Han et al., 2015).
Finally, [NL] eliminates all the major queuing on the network and achieves the highest
efficiency in terms of vehicle queues. Nevertheless, even in this case some queuing
still remains along the northern corridor (Great Western Rd.); this is due to the
lack of sufficient sensor coverage along this main corridor; see Figure 4.1(b), and the
proposed signal controls are not fully informed by the traffic states there.
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Figure 4.4: Average number of vehicles in queue.

Figure 4.5 shows the performances of the four control scenarios (GCC, JL, CL,
NL) based on FFNN and RNN, in terms of delay, throughput, total carbon and black
carbon emissions, followed by Table 4.1 summarizing the average improvements of
the proposed signal controls over the baseline scenario (GCC). It can be seen that the
proposed signal control methods significantly outperform the existing signal control
(GCC). Among all four KPIs generated by multi-objectives vehicle delay has the
most drastic improvement, from around 28 seconds per vehicle to below 10 seconds
(NL). This is followed by CO2 emission and network throughput, with up to 73 kg
reduction and 74 veh increase, respectively. The decrease in CO2 is likely caused by
increased travel speeds as a result of reduced congestion, as CO2 emissions tend to
increase at low driving speeds (Lefebvre et al., 2011). The decrease of black carbon
is comparatively less significant with 0.5-1.4 g reduction. Black carbon forms during
incomplete combustion of carbonaceous fuels, and is primarily caused by sudden
acceleration and brake of vehicle movements (Mascia et al., 2017). Therefore, the
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reduction of BC is more significant at local intersections than on the network level
(see Figure 4.7). It is also clear from Figure 4.5 and Table 4.1 that the benefits of the
proposed real-time signal control are pronounced when more signalized intersections
(e.g. network-wide control with 8 signals) are simultaneously controlled.

Figure 4.5: Box plot summary (with 30 random simulation runs) of the performance of the four
control scenarios in terms of average network delay, total carbon emission, black carbon emission,
and throughput.

Table 4.1: Statistical summary (with 30 random simulation runs) of the improvement of [JL],
[CL] and [NL] over baseline [GCC]

Scenario [JL] Scenario [CL] Scenario [NL]

Delay FFNN 14.0 s (48.2%) 16.7 s (58.1%) 19.6 s (68.4%)
RNN 13.7 s (47.2%) 18.3 s (63.7%) 19.3 s (67.2%)

CO2
FFNN 38.5 kg (1.5%) 69.9 kg (2.8%) 71.3 kg (2.8%)
RNN 35.3 kg (1.4%) 63.8 kg (2.5%) 73.2 kg (2.9%)

BC FFNN 0.59 g (0.7%) 1.3 g (1.8%) 1.4 g (2.0%)
RNN 0.81 g (1.2%) 0.72 g (0.8%) 0.72 g (0.8%)

Throughput FFNN 59.6 veh (0.9%) 64.7 veh (1.0%) 73.8 veh (1.2%)
RNN 59.8 veh (0.9%) 65.1 veh (1.0%) 68.2 veh (1.1%)
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4.1.4.2 Improvement at junction level

To further examine the effects of the proposed controls, this PhD thesis evaluates
the emission reduction at individual signalized intersections. The emission at an
intersection is calculated as the sum of emissions at its incoming approaches, as
shown in Figure 4.6.

Figure 4.6: The emissions at signalized intersections are calculated on the highlighted incoming
approaches, with their lengths shown (in meter).

In Figure 4.7, this PhD research shows the average absolute (left axis) and relative
(right axis, in %) CO2 and BC reductions at the eight signal intersections. The cases
examined include: FFNN vs. RNN, and different objectives in the off-line training
(i.e. optimizing delay only or combination of delay and CO2/BC). Both absolute
and relative CO2/BC reductions at the junction level show far greater improvement
compared to the network level (see Table 4.1 for comparison). The overall reduction
of CO2 (BC) at the junctions is above 80 kg (1.5 g), when the network-level reductions
are up to 73 kg (1.4 g). This means that the network-wide reduction of emissions is
almost entirely attributed to the improved signal controls at individual intersections,
which indeed shows the effectiveness of the proposed controls. In addition, the
majority of the savings occur at junction C, with over 30% reduction of both CO2

and BC. As for rest of the intersections, the reductions of CO2 are mostly positive
except H, while the reductions of BC are mixed. Finally, in terms of the optimization
objective, minimizing delay alone seems to yield similar emission reductions as the
weighted sum of delay and emissions.
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Figure 4.7: Reductions of CO2 and BC emissions at individual intersections.
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4.1.4.3 Trade-off between vehicle delay and emissions

As Figure 4.7 suggests, minimizing delay as the only objective seems to yield similar
levels of emission reduction to the joint minimization of delay and emission. Intu-
itively, reducing vehicle delays leads to increase average speed, which could reduce
CO2 emissions, and reduce vehicle idling and acceleration/deceleration events. To
further investigate the potential correlation between vehicle delays and emissions, in
Figure 4.8 this thesis shows the scatter plots of delay reduction vs. total emission
reduction at the junction level. These data points are obtained from a total of 90
independent on-line simulation runs, where the NDR was respectively optimized off
line with the three objectives shown in (3.12). The figure shows that reductions of
CO2 are positively correlated with delay reductions, as indicated by the Pearson test
(p ≈ 0). This is consistent with the interpretation that CO2 emissions are dependent
on average vehicle speed, which is related to vehicle delays. On the other hand,
BC reductions do not show meaningful correlation with delay reductions (p = 0.44).
This is attributed to the fact that BC emissions are primarily caused by stop-and-go
cycles and highly dependent on vehicle fleet composition (e.g. buses, HGVs), which
are not directly related to average vehicle delays.
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Figure 4.8: Correlation analysis of delay reductions vs. emission reductions at the junction level.

We also observe from Figure 4.7 that, when jointly minimizing delay and emis-
sions (CO2 or BC), the reduction of emissions does not improve compared to the case
when only delay is minimized. Aside from the possibility that the PSO-based off-line
heuristic optimization does not yield global optimal within the required computa-
tional resources, the lack of discernible trade-off (i.e. statistically significant negative
correlation) between delay reduction and emission reduction, as seen in Figure 4.8,
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also suggests that optimizing delays in this case seems to be sufficient in reducing
emissions at signalized intersections. More effective measures for emission reduction
may involve localized, actuated controls such as transit signal priority and offset
optimization, which are beyond the scope of this paper.

4.1.4.4 Effect of sensor locations

The proposed NDR framework for real-time signal control perceives the traffic state
via the input vector q in (3.1), which, in our case, represents the traffic flows at several
key locations in the past 10 minutes. All the results presented to this point are based
on the real-world configuration of 41 loop detectors as shown in Figure 4.1(c). To
assess the impact of sensor locations on the performance of the NDR framework, this
thesis considers two alternative configurations (“Alternative 1” and “Alternative 2”)
shown in Figure 4.1(d) and (e), respectively. In these hypothetical configurations,
each incoming approach of a signalized intersection has a loop detector providing
flow information, and there are 32 such detectors. The only difference between
“Alternative 1” and “Alternative 2” is that the sensors are closer to the intersections
in the former case, while the sensors are located in the middle of the relevant link in
the latter.

It is noted that the real-world sensors are distributed unevenly across the network,
with missing information on incoming traffic at several key intersections (C, D, E, F).
The alternative sensor configurations make sure that the controller receives traffic
information at all relevant incoming approaches.

Table 4.2: On-line performances of the NDR based on real-world and alternative sensor locations
(respectively (c), (d) and (e) in Figure 4.1). Brackets mean standard error of the results

Delay CO2 BC Throughput

Real-world
GCC 28.3 s (4.77) 2,503 kg (4.84) 70 g (3.14) 6,413 veh (16.02)

FFNN 8.7 s (0.71) 2,432 kg (3.69) 68.6 g (3.24) 6,487 veh (10.13)
RNN 9.0 s (0.78) 2,431 kg (3.91) 69.3 g (2.53) 6,482 veh (8.96)

Alternative 1 FFNN 9.3 s (0.79) 2,432 kg (4.17) 68.7 g (3.28) 6,488 veh (11.76)
RNN 9.6 s (0.76) 2,430 kg (3.98) 68.6 g (3.36) 6,489 veh (11.2)

Alternative 2 FFNN 14.4 s (1.36) 2,462 kg (4.47) 69.2 g (3.37) 6,463 veh (12.59)
RNN 13.1 s (1.07) 2,456 kg (4.17) 69 g (3.28) 6,481 veh (12.1)

Table 4.2 shows the performances in the three cases of sensor locations, based
on 30 independent on-line tests. Each case is run with both FFNN and RNN as the
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NDR. We can see that the two sensor locations of both “Real-world” and “Alternative
1” yield similar performances regardless of the neural networks chosen. Surprisingly,
the “Real-world” sensor configuration yields slightly lower delays than “Alternative
1”, despite its uneven distribution of sensors and missing data at several key loca-
tions. The performance under “Alternative 2” is worse than the other two cases.
Nevertheless, compared to the GCC, “Alternative 2” still can efficiently reduce the
vehicle delay by about 50%.

One possible explanation of the results is that the neural networks in the NDR
are sufficiently deep such that their performances are not sensitive to the dimension
or the configuration of the state variables, as long as their parameters are sufficiently
trained in the off-line environment. It also shows that the proposed NDR is quite
robust against different configurations of the network of sensors.

4.1.4.5 Performances with demand increase

To further test the performance of the proposed signal controls under more congested
network conditions, this thesis increases the dynamic travel demand in the network
by uniformly scaling up the demand matrix by 10%, 20% and 30%. Tables 4.3, 4.4
and 4.5 show the corresponding performances of FFNN and RNN, where the off-
line training aims to minimizes traffic delay, and compares them with the baseline
scenario (original demand). In particular, Table 4.4 and 4.5 are based on changed
sensor locations “Alternative 1” and “Alternative 2” as shown in Figure 4.1. All
figures reported are based on 30 independent random simulation runs.

Table 4.3: On-line performances of the NDR with increased travel demand. The percentages
indicate the relative increases compared to the baseline (based on the same type of neural network).

Delay (s) CO2 (kg) BC (g) Throughput (veh)
Baseline FFNN 8.7 / - 2,432 / - 68.6 / - 6,487 / -

(0% increase) RNN 9.0 / - 2,431 / - 69.3 / - 6,482 / -

10% increase FFNN 14.0 / 61% 2,627 / 8% 72.8 / 6% 7,068 / 9%
RNN 12.6 / 40% 2,622 / 8% 73.2 / 6% 7,062 / 9%

20% increase FFNN 20.3 / 133% 2,860 / 18% 76.3 / 11% 7,737 / 19%
RNN 17.6 / 96% 2,853 / 17% 78.7 / 14% 7,743 / 19%

30% increase FFNN 41.8 / 380% 3,219 / 32% 83.9 / 22% 8,403 / 30%
RNN 36.2 / 302% 3,182 / 31% 83.3 / 20% 8,448 / 30%

In Tables 4.3 4.4 and 4.5, it can be seen that the vehicle throughputs are con-
sistent with the demand increase (10%, 20% and 30%). Regarding the other three

68



4.1 Case Study in Glasgow

Table 4.4: On-line performances of the NDR with increased travel demand in alternative config-
uration 1 (Figure 4.1(d)). The percentages indicate the relative increases compared to the baseline
(based on the same type of neural network).

Delay (s) CO2 (kg) BC (g) Throughput (veh)
Baseline FFNN 9.3 / - 2,432 / - 68.7 / - 6,488 / -

(0% increase) RNN 9.6 / - 2,430 / - 68.6 / - 6,489 / -

10% increase FFNN 13.9 / 49% 2,645 / 8% 73.8 / 6% 7,131 / 9%
RNN 13.1 / 36% 2,649 / 9% 74 / 6% 7,132 / 9%

20% increase FFNN 19.6 / 110% 2,856 / 17% 77.8 / 14% 7,749 / 19%
RNN 17.1 / 78% 2,851 / 17% 77.9 / 11% 7,766 / 19%

30% increase FFNN 33.8 / 263% 3,118 / 28% 83.4 / 20% 8,322 / 28%
RNN 26.2 / 172% 3,084 / 26% 82.5 / 22% 8,371 / 29%

Table 4.5: On-line performances of the NDR with increased travel demand in alternative config-
uration 2 (Figure 4.1(e)). The percentages indicate the relative increases compared to the baseline
(based on the same type of neural network).

Delay (s) CO2 (kg) BC (g) Throughput (veh)
Baseline FFNN 14.4 / - 2,462 / - 69.2 / - 6,463 / -

(0% increase) RNN 13.1 / - 2,456 / - 69 / - 6,481 / -

10% increase FFNN 25.8 / 79% 2,714 / 10% 74.7 / 7% 7,036 / 8%
RNN 20.5 / 56% 2,690 / 9% 74.8 / 8% 7,104 / 9%

20% increase FFNN 35.2 / 144% 2,992 / 21% 80.1 / 15% 7,632 / 18%
RNN 29 / 121% 2,962 / 20% 80.5 / 16% 7,738 / 19%

30% increase FFNN 49.8 / 246% 3,267 / 32.6% 83.6 / 20% 8,170 / 26%
RNN 43 / 228% 3,249 / 32.2% 84.9 / 23% 8,284 / 27%

performance indicators, there is a hyperlinear increase of delays as the network de-
mand increases, which is caused by the nonlinear effect of network dynamics and
vehicle congestion. In comparison, CO2 emissions exhibit linear growth with the
demand levels, which suggests that CO2 emissions are proportional to the vehicle
volumes, and are less sensitive to vehicle delays and traffic dynamics. Note that this
does not contradict Figure 4.8, which shows high correlation between delay reduc-
tion and CO2 emissions, for two reasons. Firstly, the differences of delay and CO2

are due to different demand levels in Table 4.3 and 4.4, instead of different control
strategies in Figure 4.8. Secondly, Figure 4.8 only shows local reductions at the
junction level, when in fact vehicles emit majority (around 63%) of the CO2 while
traveling along the links. Finally, BC emissions grow sublinearly with demand. This
is quite interesting as BC emissions are mainly produced during stop-and-go cycles
near junctions, which suggests that the NDR approach is effective in reducing BC

69



Chapter 4: Application to real traffic network: NDR-based
framework

emissions when the network demand increases.
Under the original sensor configuration, when the network becomes more con-

gested, RNN starts to outperform FFNN in delay reduction, by 11%, 15% and 15%
respectively, under 10%, 20% and 30% demand increase (see Table 4.3). This is be-
cause RNN takes into account the temporal precedence and chronological dependen-
cies of the input variables when generating control parameters, and hence is capable
of handling the highly nonlinear traffic dynamics under higher network loads.

Similarly, in the case that the loop detectors are re-located (Table 4.4), RNN
still has better performance, by 6%, 14% and 29% respectively compared to FFNN.
In particular, in the case of 30% demand increase, “Alternative 1” results in lower
delays and emissions than the original sensor configuration. This suggests that while
sensor re-location may not have a significant effect on performance under normal
traffic demand, its impact becomes positive and more pronounced when the network
demand increases.

Finally, Table 4.5 suggests that “Alternative 2” yields worse performance of the
NDR than the other two sensor configurations. This indicates that placing the
sensors away from the intersections compromises the performance of the proposed
signal control frameworks.

4.2 Summary

In this section, with microscopic traffic simulation and emission model based on a
real-world traffic network in west Glasgow, the applicability and effectiveness of the
proposed framework are demonstrated. The traffic and emission models have been
set up and calibrated based on an EU project (http://www.carbotraf.eu). Historical
traffic flow data are used to reflect the levels of traffic demand and variability. The
test phase is conducted in a simulation environment with different random seeds to
populate stochasticity in the simulation. The performance of the proposed NDR
approach is assessed in terms of travel delay, throughput, total carbon and black
carbon emissions. The following findings are made.

• Compared with the fixed-timing plan used on the real-world site, the proposed
NDR reduces network-wide delay by up to 68%, total carbon and black carbon
emissions by 3% and 2%, respectively, and 1% increase of network throughput.
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In addition, most emission reductions take place at signalized intersections, as
a result of the proposed controls.

• Under the normal network demand level, the performances of FFNN and RNN
are similar in terms of delay, CO2 and BC emissions, and throughput. When the
network demand increases (by 10%, 20% and 30% in this thesis), RNN begins
to outperform FFNN. This is likely due to the internal structures of FFNN and
RNN as we explained at the end of Section 3.2.2. Furthermore, there seems to
be a mismatch between the depth of the neural networks and the nonlinearity
of the traffic/control dynamics (i.e. ‘depth’ of the traffic network). The latter
is dependent on the level of saturation of the traffic network, which causes the
change in the relative performances of FFNN and RNN.

• There is a strong correlation between delay reductions and CO2 emissions at
local intersections. Such a correlation does not exist between delay reductions
and BC emissions. This is because CO2 emissions are highly dependent on ve-
hicle average speeds, which are related to junction delays; BC emissions, on the
other hand, are affected by stop-and-go cycles and vehicle type (such as buses
and HGVs), which are not directly related to junction delays. Furthermore,
minimizing delays in the off-line training tends to also minimize CO2 and BC
emissions.

• The NDR approaches with FFNN and RNN are both tested with a different set
of loop detectors in the network, which offers relatively more complete infor-
mation on all the incoming approaches of signalized intersections. Note that in
the real-world network, some intersections have missing detectors on some in-
coming approaches. The test result, surprisingly, shows that the performances
are very similar in these two cases, which means that the NDR approach is
robust against different sensor locations. Lastly, compared to Table 4.3, the
results in the Table 4.4 show that the location of the loop detectors might affect
the robustness and performance of the proposed framework.
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Chapter 5

Reinforcement learning based
traffic signal control framework

Unlike pre-defined/fixed-time traffic control, responsive traffic control can be more
flexible and meet the requirements of a dynamically changing traffic environment
but in fact, it is difficult to handle the complicated characteristics of traffic network
and to design appropriate signal timing plans (Lin et al., 2018). With increasing
interests of reinforcement learning (RL), which has significant potential to control
traffic through adaptive learning, many researchers are currently focusing on applying
various RL algorithms to responsive traffic signal controls.

The RL approach can be categorized into model-based (such as prioritized sweep-
ing (Moore & Atkeson, 1993), Dyna (Sutton, 1991) and policy-iteration (Puterman,
2014)) and model-free (such as SARSA and Q-learning). One notable distinction
between the two is that model-free methods do not require the learning transition
function T (Mannion, 2017, Liang et al., 2018); in the training phase, such meth-
ods directly learn from experiences faced by the agents. Then, cumulative rewards
from a given environment are maximised by updating their value functions. On the
other hand, the goal of the model-based methods is to construct a model interacting
with the given environment and leaning transition function T , which can be used
to select appropriate actions. In addition, model-based methods typically enjoy a
good sampling efficiency as they may require much fewer samples to learn from the
constructed model interacting with given environments if the traffic dynamics can
be properly approximated. However, model-based methods are usually associated
with high computational costs because in highly stochastic traffic environment, the
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methods incur higher complexities than their model-free counterparts (El-Tantawy
et al., 2013). Therefore, in this research, the RL-based traffic signal control frame-
work follows one of the model-free approaches, by using Q-learning for computational
efficiency.

For efficient applications of RL to traffic signal controls, defining three main
components (state, action and reward) in the RL algorithm plays a pivotal role. The
importance of these three components are briefly explained below.

1. State describes the environment in which RL agent faces. For example, in
the field of transportation, according to the traffic state (environment), the RL
agent can choose the appropriate action which can maximize the cumulative
reward. Many candidate state variables have been attempted such as queue
length (Balaji et al., 2010, Chin et al., 2011, El-Tantawy et al., 2013, Teo et al.,
2014), total delay (Arel et al., 2010) and the number of vehicles on each signal
phase (Aslani et al., 2018a).

2. Actions are used to implement certain traffic signal control policy by directly
acting on the traffic of interest. In addition, the action helps the RL agent learn
in the right direction to reach the optimal traffic signal policy. In many existing
research, the actions are defined as green time duration (Arel et al., 2010, Aslani
et al., 2018a, Balaji et al., 2010), green time extension (Chin et al., 2011, Jin
& Ma, 2015) and phase plans (Gao et al., 2017, Wei et al., 2018, Van der Pol
& Oliehoek, 2016, Lin et al., 2018). The action has a considerable impact on
mitigating traffic congestion because it directly actuates on traffic flow. In this
research, for safety considerations, the total cycle time and phasing sequence
are assumed to be fixed, including the pedestrian phase, and the action is
defined as the phase times.

3. Reward can be the signpost to reaching optimal traffic control policy (Li
et al., 2016a). According to the reward, the RL agent can make appropriate
actions given the current environment. The main objective of the RL is to
maximize the reward. For example, given the RL agent’s action followed by
good performance in the previous stage, if the performance of the agent in the
current stage is no better than the previous one, the difference between current
and previous performances means ‘regret (or negative)’ as the reward. In that
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case, the RL agent has to reason about appropriate actions in order to collect
better rewards. As a result, if the agent continuously obtains better rewards
with better performances, it is possible to reach the optimum quickly. That is,
the reward can affect the learning speed (or convergence speed). However, in
the early stage of the RL implementation, initial states and actions tend to be
sub-optimal and there is no guarantee of improving reward/performance. As a
result, the reward can be sparse in that stage. This causes prolonged training
process to reach optimal(or nearly optimal) performance (Li et al., 2016a). In
order to overcome this issue, this thesis proposes a method that uses reward
shaping function, adding 3rd party advisor, which combines the concept of
potential based reward shaping (Ng et al., 1999) with that of expert advices
(Chang, 2006). This allows the RL agent to not only search in the correct
learning direction, but also reach optimal (or near optimal) performance as
quick as possible. See Chapter 6 for test results.

This chapter details the proposed RL-based framework for real-time traffic signal
control, in order to mitigate traffic congestion and maximize the throughput of the
underlying traffic network. Alongside a detailed explanation of the basic RL frame-
work, the thesis proposes a new potential reward shaping function, named the 3rd

party advisor.

5.1 Background of Reinforcement Learning (RL) - Q-

learning

Before the thesis explains the fundamental theory of reinforcement learning, this
thesis introduces a few terminologies and notations for understandable presentation
below.
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Table 5.1: key variables for Reinforcement learning in section 5.1

Symbol Description

s, s
′ current state and next state

a, a
′ current action and next action

r reward
α learning rate
γ discount rate
L() loss function
Q(s, a) Q-value at state s and action a
θ primary neural network
θ− secondary(target) neural network
π(s) control policy at state s
V (s) value function at state s in markov decision process(MDP)
M prioritize experience replay memory
B minibatch
ε greedy rate

In an uncertain control environment, without prior knowledge, the RL agents
become increasingly more intelligent by interacting with the given environment to
maximize reward obtained from actions. The overall RL process is illustrated in
Figure 5.1.

RL is based on the Markov decision process (MDP) that finds the best policy(π∗).
The MDP basically comprises of state(S), action(A), reward(R) and transition(T ),
i.e. a four-tuple 〈S,A,R, T 〉. As the action executor, agents takes actions corre-
sponding to the given environment, and the resulting state corresponding to the
action returns a reward which can be either negative or positive. That is, while the
state changes from st to st+1, the agent, which explores a certain environment, per-
ceives the current state st and takes an appropriate action at (Li et al., 2016a). Here,
T is transition function T (s, a, s′) ∈ (0, 1), which is a probability given by selected
action a ∈ A and moves from the current state s ∈ S to the next state s′ ∈ S.
However, our proposed framework is based on the model-free approach(Q-learning)
which does not require the transition function T (Mannion, 2017, Liang et al., 2018).

An agent in the MDP behaves based on the policy π, which is a mapping from the
set of actions (which are selected by a RL agent in a given environment) to the set of
states. Therefore, the MDP aims at finding the optimal policy(π∗) that maximizes
the expected sum of the discounted rewards (Panait & Luke, 2005).
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Figure 5.1: The overall process of Reinforcement Learning (RL) overall process

Due to the nature of the MDP, designing the reward function is very important
because the RL agent tends to maximize the output generated from the reward,
which defines the policy. The value function relies on the policy π which is used for
the action selection. If the agent chooses the action by using a given policy, the value
function is defined by:

V π(s) = E
[
T∑
t=1

γt−1rt|st = s

]
, ∀s ∈ S (5.1)

where rt is the designed reward function at time step t, the number of time steps
is defined as T , and γ is the discount factor ranging in [0, 1], which describes how
important rewards in the future are to current state.

In order to describe the importance to current state in RL, a reward, which occurs
in the future N steps from the current state, is multiplied by γN . For example, if
γ is 0.8, and a reward is 100 which is 2 steps ahead from the current state. The
importance of this reward to the current state is (0.82)*100 (=64). Usually, in the
field of machine learning, lower value of the discount factor γ encourages the action
maximizing short-term reward, while higher value of γ makes the agent more forward-
looking and maximizes long-term rewards because, in the case of long-term reward,
reward can be sparse in the algorithm.

After the number of time steps T , the episodic domain finishes. The algorithm
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finds an optimal value function in all possible value functions for all states:

V ∗(s) = max
π

V π(s) ∀s ∈ S (5.2)

Here, π is the policy as the pair of perceived states and actions to be taken in those
states of the environment. In eq. 5.3, the optimal policy π corresponding to the
optimal value function can be expressed as:

π∗(s) = arg max
π

V π(s) ∀s ∈ S (5.3)

Similarly, in order to define the value function taking action a with state s, the Q
function in the RL, action-value function for policy π, is defined as:

Qπ(s, a) = E
[
T∑
t=1

γt−1rt(st, at)|st = s, at = a,

]
, ∀s ∈ S,∀a ∈ A (5.4)

In the same vein, in the Q-learning, Q-value function Qπ(s, a) is used for value
function, instead of V (s) in MDP.

π∗(s, a) = arg max
π

Qπ(s, a) ∀s ∈ S,∀a ∈ A (5.5)

Based on the nature of the Bellman optimality equation searching for optimal policy
π, the optimal action policy π∗ in eq. (5.5) can be recursively calculated. In addition,
for the given state, the value of the optimal policy can be equal to the expected value
of the optimal action. Therefore, the optimal action policy Qπ∗(s, a) can be calcu-
lated by the optimal Q values of states and actions, which maximize the cumulative
reward in each episode. Thus, Qπ∗(s, a) can be calculated by the following equation:

Qπ∗(s, a) = Es′
[
rt(s, a) + γmax

a′
Qπ∗(s′ , a′)|s, a

]
(5.6)

Lastly, learning from experiences, the agents in the Q-learning can update their
Q-values by:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′ , a′)−Q(s, a)] (5.7)

where maxa′ Q(s′ , a′) is an estimate of optimal future Q-value after selecting the next
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action a′ corresponding the next state s′. α ∈ [0, 1] is the learning rate which can
control the extent to which Q value are updated at each time-step. γ is the discount
factor ranging from 0 to 1. The overall process of Q-learning is presented in Algorithm
1. Moreover, a RL agent has to keep a balance between exploring the action for
the next stage and exploiting the known actions resulting in good performance, in
order to maximize the cumulative reward received during its simulation time in each
episode and reach the optimal policy. To achieve this, this research employs decaying
e-greedy with exploration rate, which randomly selects actions with probability e, or
selects the actions defined by Q-value with probability 1− e. Through the decaying
e-greedy, more random actions are selected at the early stages of the learning process,
and more known actions resulting in good performance are selected at later stages
of the learning process.

The estimates generated from the value function are simply stored to a look-up
table, in which state-action pairs are associated with a Q-value. However, in more
complicated environments, the number of state-action pairs that have to be stored
increases exponentially. As a result, in real-life applications, learning a large number
of state-action pairs requires requires a substantial amount of memory, data and
computational time, which are unacceptable for real-time implementation (Sutton
et al., 1998). To resolve this, function approximation using deep neural network
(Q-network, with weight parameters θ) has been recently applied to mitigate the
explosive growth of state-action space and generalize over the large state-action space
by scaling linearly all computations without any loss of quality (Sutton et al., 1998).
Therefore, table lookup representation is not used in this thesis and, instead, function
approximation is employed for the proposed signal control framework. Eq. (5.7) can
be changed with function approximation, as follows:

Q(s, a)← Q(s, a; θ) + α[r + γmax
a′

Q(s′ , a′ ; θ−)−Q(s, a; θ)] (5.8)

However, the aforementioned Q-learning can be easily divergent due to strong cor-
relation between samples and the frequent changes of secondary(target) Q-network
θ in α[r + γmaxa′ Q(s′ , a′ ; θ) calculating an estimate of optimal future Q-value. To
avoid such divergence, this thesis employs Deep Q-Network (DQN). In the DQN
algorithm, as the secondary neural network, the secondary(target) neural network is
separately used to avoid the divergence problem;
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The secondary network parameter Q value is fixed in the initial training phase
and updated every C steps (see algorithm 1). In this research, C is equal to 2 that
means the Qvalue is updated twice in an episode. The primary network parameter
θ for Q-value estimation is updated by the gradient back-propagation with the Mean
Square Error (MSE) as the loss:

L(θ) = E
[(
r(s, a) + γmax

a′
Q(s′ , a; θ−)−Q(s, a; θ)

)2
]

(5.9)

where r(s, a) + γmaxa′ Q(s′ , a′ ; θ−) and Q(s, a; θ) are the secondary (target) and
estimated Q-values, respectively. Eq. (5.9) calculates the loss between the sec-
ondary(target) and the estimated value. Then, the loss is minimized by the gradient
descent method.

5.2 Reinforcement learning(RL) structure

The environment model of the Q-learning algorithm is articulated based on the
definitions of states and actions. As mentioned in Section 5.1, the three components
(state, action and reward) are crucial for the implementation and performance of the
RL.

Properly defined states and actions are crucial for the Q-learning system to ensure
that the exploration process can be successfully implemented through all the possible
states. Chin et al. (2012) mention that if the state is not properly defined, the Q-
learning algorithm might lose itself in the process of exploration/exploitation or
learning. In addition, if the state-and-action pairs are not set correctly, the whole
Q-learning will not be able to get the optimum solution in the whole process (Chin
et al., 2012). Therefore, the state-action pairs of the Q-learning play a key part in
determining the robustness of the algorithm and its performance.

5.2.1 Agent Design

5.2.1.1 State variables

In RL, the state of the system is determined and returned by the current environ-
ment. According to the state observed, the RL agent defines appropriate actions
that directly influence the reward.
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In this thesis, the traffic state is defined for each link of the network, and may be
measured from prevailing sensing infrastructure such as loop detectors, microwave
detectors, ANPR cameras and GPS-enabled devices. In particular, the following
three types of state variables are considered:

• Average Relative Occupancy (ARO), which is defined to be the ratio
between the link occupancy (number of cars on the link at a particular time)
and the link’s holding capacity (a constant representing the maximum number
of cars the link can store), which is then averaged over at least one full signal
cycle to filter the within-cycle effect;

• Average Delay (AD), defined to be the average link traversal time (including
wait time at the signal) averaged over at least a full signal cycle;

• Average Speed (AS), defined to be the average vehicle speed on the link
(link length over travel time) averaged over at least a full cycle.

These three state variables are commonly studied in the traffic engineering literature
and can be easily obtained via loop detectors, ANPR cameras, and GPS devices.
To further balance the three variables, we also consider the following derived state
variable

• Weighted Sum (WS), defined as

WS = w1AD +w2ARO +w3AS (5.10)

WS is the sum of multiple states considering each state in the environment simul-
taneously. In this research, in order to efficiently describe traffic condition in the
environment, this research uses WS in which the three states are considered equally,
as an additional state. The structure of the defined state variables is illustrated in
Figure 5.2.

5.2.1.2 Action

The complexity of traffic signal control is exemplified by the sophisticated phasing
and timing plans. Although most research defines the action in relation to the green
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Figure 5.2: Four state definitions and conditions

time, the definition of the action policy might not be realistic and applicable to
real-life traffic signal system with safety constraints for pedestrians and drivers.

To comply with real-world traffic signal control specifications (such as fixed cycle
time and phasing plans for traffic stability and safety) while achieving more efficient
traffic flow through real-time controls, we propose a new action policy to optimize
the green time of each phase at every intersection. In particular, the agent moni-
tors/calculates four traffic states described in Section 5.2.1.1: Average Relative Oc-
cupancy (ARO), Average Delay(AD), Average Speed(AS) and Weighted Sum(WS)
for all the links. Based on these state variables, the Q-values at each phase (P ) of
each intersection (I) are estimated by the neural network (deep Q-network).

The signal control parameters usually include cycle time, phasing plans, green
time, all red and offset (Han & Gayah, 2015). These parameters are subjected
to real-life traffic safety considerations (Mascia et al., 2015). In this study, the
phasing traffic plans and cycle time are fixed as they are predominantly influenced
by safety regulations. The control variables amount to the green times of all the
phases for every intersection. The agent decides which state should be given more
consideration at each intersection, by using the ε-greedy strategy through exploration
and exploitation. Thus, the action is defined as the discrete choice of one from the
four state variables by the value of action (a) that maximizes Q(s, a; θ) estimated
from the primary neural network (deep Q-network) using four states as inputs:
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a



1 : Index considering Average Relative Occupancy (ARO)

2 : Index considering Average Delay (AD)

3 : Index considering Average Speed (AS)

4 : Index considering Weighted Sum (WS)

(5.11)

Figure 5.3: the definition process of the action

Based on the defined actions at each phase of each intersection, the phase green
control parameters (g) take the Q-values estimated from the primary neural network
using network parameter θ and four state inputs. Thus, the phase green control
parameters (g) defined by the actions are denoted g = (g1, g2, . . . , gN)T where N

is the number of phases. The control parameters gp’s must satisfy the following
constraints:

gmin ≤ gp ≤ gmax ∀p,
N∑
p=1

gp = Tcycle −4 (5.12)

where gmin and gmax denote minimum and maximum green times, respectively; Tcycle
is the fixed cycle time, and 4 includes amber, all-red and pedestrian phase time,
which are fixed for safety reasons. In this thesis, gmin and gmax is 5 and 50 sec,
respectively. More detail of projection onto the feasible control set is explained in
section 3.2.3.
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5.2.1.3 Rewards

Reward is one of the main features that distinguish the RL from other learning-based
algorithms.

Remark 2. Reinforcement learning(RL) is based on Markov decision process(MDP)
which make a decision in stochastic and sequential environment. The RL agent inter-
acts with the given environment by changing state in accordance with action choices
generated by the RL agent and collecting temporal reward for a simulation(episode).
Therefore, through trial-and-error learning, the RL agent learns the optimal policy
maximizing the cumulative(total) reward in the given environment. On the other
hand, NDR is the decision rule-based optimization model. The NDR agent finds
the optimal policy based on heuristic method(Particle Swarm Optimization, PSO)

The reward is cast as feedback to the RL model about the performance obtained
by the previous actions. Therefore, it plays a pivotal role in correctly and efficiently
pitching the learning process towards the best action policy. To achieve this, the
literature considers a range of forms of the reward such as queue length (Araghi
et al., 2013, Aslani et al., 2018a, Aziz et al., 2018, Balaji et al., 2010, Teo et al.,
2014), vehicle delay (El-Tantawy et al., 2013, Gao et al., 2017), relative reduction of
total travel delay (Jin & Ma, 2015), outflow of the road network (Lin et al., 2018),
vehicle waiting time (Van der Pol & Oliehoek, 2016), and the weighted sum using
the queue length, delay, waiting time, light switches, and total travel time(Wei et al.,
2018).

In this research, the main objective is to alleviate traffic congestion by minimizing
delays and maximizing vehicle throughput. For the reward function, we consider
three performances:

• Total network-wide delay over the past control period (TP);

• Average delay per vehicle over the past control period (AP); and

• Vehicle throughput over the past control period (VT).

Note that TP measures the total network-wide delay, which is influenced by the
number of vehicles therein, and hence indirectly reflects traffic volume; AP is a more
direct measure of the level of congestion by measuring the delay per vehicle. Lastly,
VT describes the vehicle capacity of the urban traffic network. Here, by using TP and
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AP, this thesis calculate rewards in the macro- and micro-perspective. To balance
these three performances, we formulate the reward function as the linear combination
of the relative differences of the performances in two consecutive time periods:

Reward(t) =


0 (t = 1)

w1 · TP(t−1)−TP(t)
TP(t) + w2 · AP(t−1)−AP(t)

AP(t) + w3 · VT(t)−VT(t−1)
VT(t)

(w1 + w2 + w3 = 1, t ≥ 2)
(5.13)

where w1, w2, w3 ∈ (0, 1) are weights to keep a balance between the three normalized
objectives. This reward function is aligned with the overall objective of minimiz-
ing the average vehicle delay and maximizing the vehicle throughput in the traffic
network.

5.2.2 Potential-based reward shaping function with 3rd party

advisor

Before this research addresses a novel potential-based reward shaping function, we
introduce key variables and terminologies for the easy presentation in Table 5.1;
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Table 5.2: key variables for Potential-based reward shaping function with 3rd party advisor in
Section 5.2.2

Symbol Description

Q(s, a) Q value corresponding the state s and the action a
F (s, s′) potential-based reinforcement(or reward shaping) function

moving from the current state s and the next state s′

π(s) or π(s′) the potentials of the current or the next state, respectively
Padvisor(s) the probability of matching the action policy of the RL agent

at the state s with that of the 3rd party advisor
svadvisor action index when selecting one of four state

variables by 3rd advisor at each link
sv action index when selecting one of four state

variables by RL agent at each link shown in figure 5.3
β Application rate of advice from 3rdpartyadvisor
i the ithlink in traffic network.
I total number of the link in traffic network.
Φ( · ) potential function for reward shaping

Reinforcement learning (RL) is known to effectively handle complex dynamics
by interaction with a given environment (Grześ & Kudenko, 2010). However, con-
ventional RL typically have slow learning speeds before converging to the optimal
policy due to huge action space (Grześ & Kudenko, 2010), sparse reward and delayed
reward (Grześ & Kudenko, 2010). To tackle these problems, reward shaping is one
technique aiming to resolve the temporal credit assignment problem, which causes
the delayed reward leading to slow convergence and undermining the influence of
the reward in the learning process. Ng et al. (1999) devise Potential-Based Reward
Shaping (PBRS) by proving the policy invariance under reward function transfor-
mations (the process of proving the optimal policy preservation is discussed in depth
therein). That is, the optimal policy is not changed, even if the reward function is
transformed.

Basically, in order to accelerate convergence speed of the RL approach, reward
shaping provides additional reward, as a heuristic knowledge. Therefore, reward
shaping function is added below.
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Q(s, a)← Q(s, a; θ) + α[r + F (s, s′)︸ ︷︷ ︸
reward shaping

+γmax
a′

Q(s′ , a′ ; θ−)−Q(s, a; θ)] (5.14)

where F (s, s′) is a potential-based reinforcement function (Ng et al., 1999, Chang,
2006), which can call an additional reward function moving from current state s to
the next state s′ . Moreover, by giving the agent frequent feedbacks on proper actions,
the issue of sparse reward, which causes very slow convergence to the optimal policy,
can be resolved. Here, the function F (s, s′) with the potential Φ is defined by Ng
et al. (1999):

F (s, s′) = γΦ(s′)− Φ(s) (5.15)

where γ is the discount factor, and Φ(s) and Φ(s′) denote the potentials of the
current and next states, respectively. In addition, this heuristic technique is flexible
to combine background knowledge (Grześ & Kudenko, 2010, Chang, 2006, Mannion,
2017). In particular, for fast learning, Chang (2006) tries to incorporate expert
advices (or knowledge) into (5.15). The expert/advisor can be neural networks,
decision trees (e.g. random forest (Mitchell, 1997)), expert experience information
and model-free or model-based RL (Chang, 2006). This research employs another
neural network as a 3rd party advisor. So, the potential function for all states, which
combine the advise of the 3rd party, can be generated as follows:

Φ(s) = Padvisor(s) (5.16)

In order to calculate the probability Padvisor(s), Qadvisor-network is additionally used
for the potential-based reward shaping function because it might have a good shaping
potential (Chang, 2006). As mentioned in figure 5.3, action index sv is used to
calculate the probability with Q-network, which is based on which state variable is
the most important among state variables at each link. svadvisor is similar to sv

but uses different Q-network (named Qadvisor-network). Therefore, Padvisor is the
probability of matching sv with svadvisor at each link. The probability Padvisor can
be defined as:

Padvisor(s) = β

[
1
I

I∑
i=1

M(svi, svadvisori )
]

(5.17)
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where

M(sv, svadvisor) =


1, sv = svadvisor

0, Otherwise
(5.18)

Padvisor(s) =


Padvisor(s), Padvisor(s) = (1, 0)

0, Padvisor(s) = 0 or 1
(5.19)

where i (i = 1, . . . , I) indicates each link in the traffic network. β(= [0, 1]) is appli-
cation rate which is about how much expert advice the agent applies and is calcu-
lated by svadvisor = argmaxaQadvisor(s, a; θadvisor) Lastly, M is the binary function of
matching sv with svadvisor. If the index sv of the RL agent at ith link is equal to the
index scadvisor suggested by the 3rd party advisor, the matching function M = 1, and
0 otherwise. Lastly, this research does not allow the case that Padvisor(s) is equal
to 0 or 1 because this research has an assumption that as people think differently,
the traffic control policy generated through the 3rdpartyadvisor cannot be 100%
matched with the traffic control policy produced by the RL agent. In addition, if
the two agents are fully different (in the case Padvisor(s) = 0), this research assumes
that one of the two agents is learning in the incorrect way. Therefore, in that cases,
our framework does not consider 3rd party advisor.

5.2.3 Overall procedure for real-time traffic signal control

To sum up the previous sections, this research proposes a new process to address
two main challenges: traffic congestion minimization and fast learning speed. The
pseudo code is shown in Algorithm 1. As a non-linear approximator, fully-connected
multi-layers deep neural network (Q-network) is applied in this thesis, in order to
obtain the maximized reward generated by the action.

In addition, prioritized experience replay (PER) is employed for stable and quick
learning in the Q-network and keeping a low degree of correlation between samples
in the training process. The PER is important for stable learning with the optimal
action by more efficiently using the previous experience for a simulation time (Schaul
et al., 2015). The basic concept of PER is to store the experiences of RL agent
in a limited size of re-training data named mini-batch (B). (Here, B is the mini-
batch which retrain our framework in the training procedure, in order to achieve fast
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convergence.) Through iteratively training mini-batched data(or experience), the RL
agent easily recap the previous experience in the mini-batch data, then can keep and
improve its performance when facing new real-world experience. Unlike Experience
Relay (ER), PER prioritizes the stored experiences by ranking the performance of
the RL agent in the stored experience or using priority proportional to temporal
difference (TD)-error in the stored experience. The superiority of the PER has
shown in the research of (Schaul et al., 2015, Liang et al., 2018). Therefore, this
thesis applies ranked-based method on the PER (Schaul et al., 2015, Liang et al.,
2018), which stores the four-tuple < s, a, r, s′ > with performance into memory (M),
which has a fixed size (mini-batch), and samples tuples from the memory based on
the ranked-based priority.

Moreover, as mentioned in 5.1, deep neural network in this thesis uses two net-
works(primary neural network and secondary neural network), in order to get more
stable training and quick learning process. To achieve fast convergence and quickly
find the optimal policy, this research employs potential-based reinforcement function
using 3rd party advisor neural network. The following pseudo code in Algorithm 1
describes the proposed RL-based model.
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Algorithm 1 Q-learning: Learn function Q : s× a→ r
Require:

Prioritize Experience Replay memory M
Minibatch B
Greedy rate ε
States s = {1, . . . ,S}
Actions a = {1, . . . ,A},
Reward function R :s×a→ r
Learning rate α ∈ [0, 1]
Discount factor γ ∈ [0, 1]
Episode number ep = {1, . . . , EP}

Notation
θ : the primary neural network.[3pt]
θ− : the secondary(target) neural network.
θadvisor : the 3rd party advisor’s neural network.
φ() : pre-process function (normalization of state variable)
Q̂(s′

, a
′ ; θ−) : Q value for next state and next action

using secondary(target) NN
Q(s, a; θ) : Q value for current state and current action using primary NN

for episode ep = 1 to EP do
Initialize parameters of θ, θ−, θadvisor with random values.
Initialize M to be empty at each episode before implementation
Initialize states space s with the starting scenario at the traffic network.
Initialize Actions space a.
while there exists a state s do

With probability ε select a random action a
Ohterwise select a = arg maxa Q (φ(s), a; θ))
Execute action a in traffic environment and Observe reward r and next state s′

Add the four-tuple
〈
s, a, r, s

′
〉

into M
Assign s

′ to s(s← s
′)

if size(M) > size(B) then
Select B samples from M based on the sampling rank-based priorities.
Set

y =
{
r, for terminal s′

r(s, a, s′) + F (s, s′; θadvisor) + γ· maxa′ Q̂(s′, a′; θ−)), for non-terminal s′ (5.20)

Perform a gradient descent step on (y −Q(s, a; θ))2

Every C steps update Q̂← Q
end if

end while
i← i+ 1

end for

The goal of our model is to develop a responsive/real-time traffic signal control
strategy, which adaptively changes phase green times at relevant intersections to
minimize average vehicle delay and maximize network throughput under uncertain
traffic flows and demands. As the pre-train stage, the agent first randomly collects
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tuples < s, a, r, s′ > of different performance until sufficient samples for mini-batch
are collected. In that stage, the priorities of the collected samples are the same.
From training, the priorities of the samples collected in the memory change and
are chosen with different probabilities based on rank-based experience (Schaul et al.,
2015). The network parameters θ are updated by performing gradient descent step on
loss function defined as the square error between the Q-value and secondary(target)
Q-value output from the Q-network. Lastly, the RL agent learns the optimal action
policy maximizing reward based on different traffic demands.

5.3 Summary

In this chapter, the reinforcement learning framework is reviewed and the proposed
Advanced Reinforcement Learning (ARL) framework is developed for real-time signal
control. As a model-free approach, Q-learning is employed to reduce computational
expenses and generate an immediate and proper traffic signal timings. Firstly, three
types of state variables are considered (average relative occupancy, average delay,
and average speed). In particular, their weighted sum is added as another state
variable to keep a balance between the three. Secondly, in view of real-world traffic
signal constraints, the phase green times, which are the primary control variables,
are explicitly derived using the Karush-Kuhn-Tucker (KTT) conditions. Thirdly,
the rewards are calculated based on total network-wide delay, average delay per ve-
hicle and vehicle throughput over the paster control period. To avoid sparse reward
and improve the learning speed, potential-based reward shaping function with 3rd

party advisor is proposed. Lastly, through prioritized experience replay, the pro-
posed framework is capable of stable and rapid learning and keeping a low degree of
correlation between samples in the training process.
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Chapter 6

Assessment and comparative study
of Advanced Reinforcement
Learning in responsive traffic
signal control

6.1 Experiment setting

In this chapter, the proposed Advanced Reinforcement Learning (ARL) framework
will be applied to responsive traffic signal control based on the Glasgow test net-
work. Through a quantitative evaluation by comparing with the performance of
other benchmark models, we show the superiority of the proposed framework.

6.1.1 Traffic flow dynamics

The proposed framework is applied to a real-world traffic network in West end of
Glasgow, Scotland. The test network consists of 5 signalized intersections and 35
directed links; see Figure 6.1(b). The simulation of traffic dynamics follows the
Lighthill-Whitham-Richards (LWR) model extensively used in the traffic modeling
and control literature (Han et al., 2014, Han & Gayah, 2015). For brevity, this
chapter only highlights the key part of the model, while the rest of the modeling
details can be found in Han et al. (2014) and Han & Gayah (2015). The LWR model
is a macroscopic traffic simulation model that is based on the conservation of mass
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Table 6.1: key variables for traffic flow dynamics.

Symbol Description

D(t) the demand at links
S(t) the supply at links
fin(t) the inflow of each link
fout(t) the exit flow of each link
u(t) signal control parameter
C flow capacity
Nin cumulative number of vehicle arriving at each link
Nout cumulative number of vehicle leaving from each link
L the length of each link
ρjam the traffic jam density
i link index (i ∈ I)

and a fundamental diagram describing the relationship between traffic density and
flow:

∂tρ(t, x) + ∂xf
(
ρ(t, x)

)
= 0 (t, x) ∈ [0, T ]× [a, b] (6.1)

where ρ(t, x) and f
(
ρ(t, x)

)
denote density and flow, respectively. f(ρ) is a concave

function of the density, and in this thesis is simplified as the triangular fundamental
diagram:

f(ρ) =


vρ ρ ∈ [0, ρc]

−w(ρ− ρjam) ρ ∈ (ρc, ρjam]
(6.2)

where v and w are the positive forward and backward kinematic wave speeds; ρjam

denotes the jam density, and ρc is the critical density at which the flow is maximized,
i.e. the flow capacity C = f(ρc).

The demand and supply of a link can be defined as

D(t) =


C if ρ(t, b−) ≥ ρc

f
(
ρ(t, b−

)
if ρ(t, b−) < ρc

(6.3)
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S(t) =


C if ρ(t, a+) ≤ ρc

f
(
ρ(t, a+

)
if ρ(t, a+) > ρc

(6.4)

The demand and supply indicate the maximum flow that can be accommodated at
the exit and entrance of a link, respectively. Based on such definition, the signalized
intersection model follows that of Han et al. (2014) and Han & Gayah (2015), where
the on-and-off effect is incorporated into the model via the following formula:

fout(t) = min
{
D(t), u(t) · min{C, Sdn(t)}

}
(6.5)

where the signal control for the link of interest is expressed as a binary variable:

u(t) =


1 if the signal is green at time t

0 if the signal is red at time t
, (6.6)

and Sdn(t) denotes the downstream supply, whose precise mathematical expression
depends on the junction layout, signal phasing plan, and vehicle turning probabil-
ities/proportions. The reader is referred to Han et al. (2014) and Han & Gayah
(2015) for full details. Finally, to define the various state variables, we define the
cumulative link entering and exiting counts:

N i
in(t) =

∫ t

0
f iin(t) dt, N i

out =
∫ t

0
f iout(t) dt, ∀i ∈ I (6.7)

The simulation environment allows a number of traffic state variables such as
average vehicle relative occupancy(ARO), average vehicle delay (AD) and average
vehicle speed(AS) to be defined. The Instantaneous Relative Occupancy(IRO) is
defined as follows;

IROi(t) = N i
in(t)−N i

out(t)
Liρjam

i

(6.8)

where Li indicates the length of link i, and ρjam
i is the jam density. Clearly, Eqn.

(6.8) represents a quantity that changes over time within a full signal cycle. In order
to reasonably reflect the level of link occupancy that is independent of the on-and-off
effect of signal control, we integrate the IRO over at least a full cycle to obtain the
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Average Relative Occupancy (ARO):

AROi(Tj) = 1
|Tj|

∫
t∈Tj

IROi(t) dt i ∈ I, Tj ⊂ R (6.9)

where Tj is a given time interval whose length is a multiple of the fixed signal cycle
time.

The definition of vehicle delay (travel time) within a signal-controlled link relies
on the notion of link entry time function τ i( · ):

tiin = τ i(tout) = max
{
t : N i

in(t) = N i
out(tout)

}
(6.10)

where tiin is the link entry time of a vehicle that leaves the link at time tout. Therefore,
the Instantaneous Delay (ID) at link i is simply calculated as

IDi(tiout) = tiin − tiout = τ i(tout)− tout ∀tout, i ∈ I (6.11)

Similar to IRO, ID varies within a full signal cycle, hence we propose the Average
Delay(AD) as the time-integral of ID over several cycles:

ADi(Tj) = 1
|Tj|

∫
t∈Tj

IDi(t) dt i ∈ I, Tj ⊂ R (6.12)

where Tj is a given time interval whose length is a multiple of the fixed signal cycle
time. Finally, the Average Speed (AS) within the signalized link can be defined as

ASi(Tj) = Li

ADi(Tj)
i ∈ I, Tj ⊂ R (6.13)

6.1.2 Configuration of ARL

In our experiments, Matlab(R2017b) is employed to execute the proposed framework
and experiments. In accordance with Table 5.1, the discount factor γ is set to be
0.99 and all weights of the neural network (see details in figure 3.1) are updated by
the mini-batch gradient descent with the learning rate α = 0.001 and mini batch size
B = 50. Unlike the feedforward neural network (FFNN) described in section 3.2.2,
the FFNN used in this section has five hidden layers with 100, 500, 500, 500 and 100
neurons. The fully connected neural network employs the sigmoid activation func-

94



6.1 Experiment setting

tion and continuously updates the weights of connections among the neurons as the
simulation continues (see more details in section 3.2.2). The networks is trained for
1,000 episodes and tested for another 50 episodes. Here, an episode is a simulation
from the start state until termination state. In addition, each episode has different
traffic demand. The main objectives of this framework are the average vehicle delay
and the average vehicle throughput. The action is chosen by ε-greedy method alter-
nating probability 1-ε(exploitation) with probability ε (exploration) every 12 min.
Lastly, for the implementation of the prioritized experience replay (PER), the PER
memory size is set to be 10,000.

6.1.3 Signal control details for experiment

The traffic network for experiment consists of five major signalized intersections,
shown as intersections A-E in figure 6.1. The time step size is 5 s, and the cycle times
at all the intersections are set to be 100 s. With the exception of junction B, which
has three vehicle movement phases, all intersections have four vehicle movement
phases.

The simulation horizon is morning commuting period (8:00 am - 9:00 am) of a
typical working day. The ARL agent adaptively changes signal control parameters
(the green times of all the phases except the pedestrian phase) every 12 min, which is
the control resolution. In other words, during the course of 1 hr simulation, the ARL
may adaptively change the phase green times of each junction for the next 12-min
period, based on average relative occupancy(ARO), average delay(AD) and average
speed (AS) in the past 12 min.

6.1.4 Evaluation

6.1.4.1 Research objective

To investigate the extent of traffic impact of the proposed real-time signal controls,
this experiment considers two key performance indicators (KPIs):

1. average delay per vehicle.

2. network throughput.
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Figure 6.1: The test network in the West end of Glasgow, Scotland.

Average delay per vehicle and network throughput are the main objectives of the
proposed responsive signal optimization framework. In particular, we approximate
the total vehicle travel time on a link as:

σi =
∫ T

0
N i

in(t)−N i
out(t) dt i ∈ I (6.14)

where σi represents the total vehicle travel time on link i. The network-wide average
delay per vehicle is then approximated as

AD =
∑
i∈I σ

i∑
i∈Ientry N

i
in(T ) (6.15)

where Ientry is the set of source links of the network.
On the other hand, the network throughput is defined as

NT =
∑
i∈Iexit

N i
out(T ) (6.16)

where Iexit denotes the set of sink links in the network.
These two objectives are direct measurements of the network’s efficiency and

capacity under certain signal controls. In addition, the essential goal of the RL is
to find the optimal action maximizing the cumulative reward in each episode. In
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general, reward shaping function can not only avoid sparse reward, but also improve
the learning speed. According to the definition of the potential in reward shaping
function, the performance and the learning speed (or convergence speed) might be
different (Mannion, 2017). In order to show the effectiveness of our model using
the potential-based reward shaping function with 3rd party advisor, three different
benchmark models are set in the section 6.1.4.2, which use state variable ARO, AD
and AS as potentials in the reward shaping function, respectively (see the details
in eq.6.17). Therefore, this thesis additionally checks the performance according to
reward shaping function using different potentials (see eq.6.17).

6.1.4.2 Benchmarks for evaluation

In section 6.1.4.1, the three objectives play a significant role on applying the Q-
learning to real-life signal optimization. To evaluate the effectiveness of the proposed
ARL in terms of the three objectives, we consider and compare the following methods:

1. [GCC] : Fixed signal timing

2. [ARL]: Base Q-learning + Reward shaping function using 3rd party advisor

3. [BA]: Base Q-learning

4. [R-ARO]: Base Q-learning + Reward shaping function using ARO

5. [R-AD]: Base Q-learning + Reward shaping function using AD

6. [R-AS]: Base Q-learning + Reward shaping function using AS

Here, [GCC] is provided by the Glasgow City Council (GCC) as an off-line ap-
proximation of the SCOOT system. [BA], [R-ARO], [R-AD] and [R-AS] are based
on the Base Q-learning for the responsive traffic signal control. As the conventional
RL, [BA] is a baseline model including the prioritized replay experience (PER) and
Q-network. Building on [BA], the three RL variants [R-ARO], [R-AD] and [R-AS]
employ different reward shaping functions. As the proposed model, [ARL] employs
the potential-based reward shaping function with the 3rd party advisor elaborated
in Section 5.2.2. Reward shaping function basically uses the potential Φ; see Eq.
(5.16). Therefore, [R-ARO], [R-AD] and [R-AS] define the potential as the average
relative occupancy (ARO), average delay (AD) and average vehicle speed (AS) in
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each control period, respectively. Therefore, the defined potentials in the reward
shaping function are as follows:

Φ(s) = AROa∑
ARO︸ ︷︷ ︸

[R-ARO]

or ADa∑
AD︸ ︷︷ ︸

[R-AD]

or ASa∑
AS︸ ︷︷ ︸

[R-AS]

(6.17)

6.2 Results and discussion

With the real-world traffic network in West of Glasgow simulated using the LWR
hydrodynamic model, this thesis evaluates the performance of different RL methods
under different scenarios. The proposed framework is trained in 1,000 episodes.
The reward is cumulated in an episode. As mentioned in Section 6.1.4.1, the RL-
based optimization has two goals: the theoretical objective (reward) for the RL and
practical objective (vehicle delay and throughput) for the signal control problem. To
achieve these objectives in our framework, through the experiments, the reward and
the vehicle throughput are maximized, and the vehicle delay is minimized in each
episode by adjusting the phase green times in a full cycle.

All the RL methods, including the proposed one, are tested in 50 episodes with
different random seeds (which are different from those in the training episodes), the
results are averaged and summarized in Table 6.2. In addition, through [R-ARO],
[R-AD] and [R-AS], which use different state variables in the potential, the impact
of the different reward shaping functions on their overall performances is analyzed.

6.2.1 Overall performance and comparison with benchmarks

As mentioned in section 5.2.1.1, four state variables, namely Average delay per vehicle
(AD), Average Relative Occupancy(ARO), Average vehicle Speed(AS) and Weighted
Sum(WS), are considered in this experiment. These variables can be computed based
on the LWR hydrodynamic traffic simulation described in Section 6.1.1.

Table 6.2 shows the average performance (vehicle delay and throughput) of the
five benchmark models ([GCC], [BA], [R-ARO], [R-AD] and [R-AS]), as well as the
relative improvement (%) of the proposed model ([ARL]) compared to the bench-
marks. The results clearly show that the proposed method outperforms the bench-
marks in terms of both vehicle delay and throughput.
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To evaluate different reward shaping functions, [R-ARO], [R-AD] and [R-AS] are
analyzed. The performances of three scenarios are similar, and slightly better than
that of [BA]. That is, well-designed reward shaping functions can indeed improve
the performances (Mannion, 2017), although such improvement is not pronounced
according to our experiment. On the other hand, comparing [ARL], which introduces
the 3rd party advisor, with [BA], [R-ARO], [R-AD] and [R-AS] reveals that the 3rd

party advisor makes a significant improvement in the model’s performance.

Table 6.2: Statistical summary of the mean performances of different scenarios compared to the
proposed [ARL] model.

Scenario Vehicle Delay (Unit: sec) Throughput(Unit: vehicle)
[ARL] 64.68 / - 2,473 / -
[GCC] 120.99 / 46.53% 2,349 / -5.28%
[BA] 88.84 / 27.18% 2,370 / -4.36%

[R-ARO] 71.38 / 9.38% 2,437 / -1.47%
[R-AD] 75.65 / 14.49% 2,416 / -2.35%
[R-AS] 88.06 / 26.54% 2,379 / -3.97%

In Table 6.3, we compare the performances of different signal control methods
under varying levels of demand (i.e. network congestion). We achieve this by in-
creasing the demand by 10% or 20% for all relevant source links of the network. It
can be seen that the superiority of ARL over benchmarks, in terms of delay, is more
pronounced when the network becomes more congested, but the benefit of ARL in
network throughput decreases under 20% demand increase. This is due to the fact
that in such a case the network becomes severely congested (oversaturated), and not
much improvements can be done on the network throughput but local delays.

Table 6.3: Comparison analysis of demand increase (10% and 20%) over each models The per-
centages indicate the relative increases compared to the [ARL].

0% 10% 20%

[ARL] Vehicle Delay 64.68 / - 81.47 / - 99.95 / -
Throughput 2,473 / - 2,735 / - 2,982 / -

[BA] Vehicle Delay 88.84 / 27.18% 122.65 / 33.57% 143.06 / 30.13%
Throughput 2,370 / -4.36% 2,669 / -2.45% 2,902 / -2.78%

[R-ARO] Vehicle Delay 71.38 / 9.38% 102.21 / 20.28% 120.94 / 17.35%
Throughput 2,437 / -1.47% 2,671 / -2.37% 2,916 / -2.26%

[R-AD] Vehicle Delay 75.65 / 14.49% 88.34 / 7.77% 106.09 / 5.79%
Throughput 2,416 / -2.35% 2,601 / -5.13% 2,828 / -5.44%

[R-AS] Vehicle Delay 88.06 / 26.54% 102.23 / 20.3% 121.25 / 17.56%
Throughput 2,379 / -3.97% 2,597 / -5.31% 2,848 / -4.7%
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6.2.2 Convergence speed

In order to evaluate the learning speeds of different RL methods, we focus on cu-
mulative reward in the training phase. If the cumulative rewards obtained in a
sequence of training episodes reach the maximum level within a relatively small
number of episodes, then the learning speed is considered faster. This has some
important practical implications, as the real-world implementation of RL-based sig-
nal controller requires feedbacks from the traffic system of interest, and the faster
the algorithm converges to the optimal level, the less running cost it imposes to the
real-world network.

Figure 6.2: Cumulative rewards in all episodes.

Figure 6.2 shows the cumulative rewards obtained at different training episodes.
For better visualization, we apply curve-smoothing technique (moving average) to
these results and obtain Figure 6.3. From both figures we clearly see that ARL
outperforms the other RL models in terms of mean cumulative rewards upon con-
vergence, and reaching the level of optimal performance with minimum number of
episodes. In particular, the cumulative reward is mostly greater than 1.4, and such
performance is achieved within 50 episodes. After 100 episodes, the cumulative re-
wards are stabilized with local variations between 1.38 and 1.44. The rewards of
[R-ARO], [R-AD] and [R-AS] stay in the range between 1.33 and 1.38, and it took
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Figure 6.3: Cumulative rewards (smoothed via moving average with span= 50 for better visual-
ization) in all episodes.

50+ more episodes to reach those levels.

6.3 Summary

In this chapter, the advanced reinforcement learning (ARL) signal control model,
which incorporates reward shaping and 3rd party advisor, is evaluated in terms of
average vehicle delay and network throughput and compared with five benchmark
models using LWR-based stimulations of a real-world test network in Glasgow. By
comparing [BA] (a baseline RL model) with [R-ARO], [R-AD] and [R-AS] (RL models
incorporating reward shaping), it is proven that reward shaping function works well
and quickly learn the optimal (near optimal) action (phase green time duration).
Moreover, ARL shows considerable superiority (in terms of vehicle delay and network
throughput) over [BA], [R-ARO], [R-AD] and [R-AS], proving that the 3rd party
advisor significantly enhances the performance of the signal controller, which is also
more effective than reward shaping. In addition, as shown in Figures 6.2 and 6.3,
ARL achieves much faster convergence to the optimal level of rewards than the other
methods, which demonstrates the potential benefits of the 3rd party advisor in that
it helps the signal controller to achieve the desired level of performance with much
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fewer iterations, saving running cost in a real-world deployment scenario.
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Chapter 7

Impact of information availability
and quality

This chapter investigates the impact of information availability and quality on the
performance of different machine learning based responsive signal controls, including
the proposed NDR and ARL frameworks.

In recent year, with advanced technology including vehicular sensors and network
communication, various state information on the urban traffic network has been gen-
erated, but data completeness is still not guaranteed due to environmental factors
that cause sensor malfunction or failure. Relevant work in the literature address
the effectiveness of signal controls by making idealized assumptions regarding in-
formation availability. For example, Gao et al. (2017), Aziz et al. (2018) and Lin
et al. (2018) adapt signal control parameters based on vehicle position, vehicle speed,
and the number of vehicles stopping at each link, that are instantaneously available
without any uncertainty (e.g. arising from sensing error or sampling granularity)
or missing data (e.g. arising from sparsely distributed sensors). Moreover, existing
studies of signal control based on reinforcement learning assumes complete informa-
tion on the state variables (e.g. queue length, flow, speed) throughout the network
(El-Tantawy et al., 2013, Wei et al., 2018, Mannion et al., 2015).

In the real-world implementation of responsive signal control strategies, the afore-
mentioned methods are challenged in three aspects:

• little understanding exists regarding the most appropriate type of variable (e.g.
flow, speed, queue length, travel time, etc.) to capture real-time traffic states,
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such that certain machine learning algorithms are most effective in managing
traffic with such variables. While a wide range of traffic state variables have
been investigated in the literature, no comparison exists between these state
variables as the source of information for different responsive control strategies.

• traffic state variables are not uniformly available on all links/junctions, due to
actual sensor locations and working conditions. In a real-world network, it is
likely that the desired traffic data are missing from certain links or junctions,
resulting in uncertainty when describing the network’s state. The decision
making capabilities of different signal control methods under such uncertainty
has not been thoroughly investigated.

• traffic observations are associated with certain levels of uncertainty arising from
either sensing error or systematic error (e.g. arising from sampling methods or
communication capacities). Different machine learning architecture (e.g. deep
neural networks) reacts differently to this kind of input uncertainties, leading
to unknown performance of the signal controls. The performances of different
real-time signal control algorithms are less understood in this regard.

To address these challenges, this chapter presents a comprehensive study of the
impact of data availability and quality on different machine learning based signal
control frameworks. This includes

1. a comparison between different state variables (ARO, AD, AS), see Section 7.1;

2. impact analysis of data noise with different signal-noise ratio, see 7.2; and

3. investigation of model performance with missing data, see Section 7.2.2.

The remainder of this chapter reports assessment and comparative results for
the proposed ARL and NDR models, which are obtained via LWR-based simulation
(see Section 6.1.1) performed on Matlab(R2017b) platform. The experiment setup
follows that in Chapter 6.1. In particular, ARL and other RL-based methods are
trained with 1,000 episodes and tested with 50 different episodes. The NDR methods
(including NDR with FFNN and RNN) are trained with 45 iterations and tested with
50 different random seeds.
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7.1 State selection

To generate the appropriate action corresponding to dynamic traffic states, selecting
the right state variables is a critical issue that is related to the size of the state space
and the learning efficiency of the model . Many researchers use various state variables
(such as number of vehicle, delay time, vehicle position, queue length etc.) for state
representation. However, if the state selection is not done in an optimal way, the
large amount of state information might cause the divergence of learning of the traffic
network (Casas, 2017). In addition, according to different state information such
as Average Delay (AD), Average Relative Occupancy (ARO), Average Speed (AS)
and their combinations, the performances of the RL models can vary significantly
(Genders & Razavi, 2018). Therefore, by comparing the proposed NDR and ARL
frameworks with other benchmarks mentioned in 6.1.4.2, this section evaluates their
performances based on different selection of the state variable. Two versions (based
on FFNN and RNN, respectively) of the proposed NDR framework are considered:

• [NDR-1] : the NDR framework based on FFNN

• [NDR-2] : the NDR framework based on RNN

Figure 7.1 shows the impacts of all-state selection and single-state selection. Over-
all, the proposed frameworks (including [ARL], [NDR-1] and [NDR-2]) outperform
other benchmark models. In all four scenarios, the proposed models, including ARL
and NDR, outperform the other benchmarks in terms of both vehicle delay and
network throughput. Across all scenarios, ARL slightly outperform NDR, and the
performances of NDR-1 and NDR-2 are similar. When it comes to the state selection,
all the responsive signal controls perform best when considering all three states (AD,
AS, ARO) simultaneously. However, their performances vary significantly when a
single state variable is applied. In particular, BA, R-ARO, R-AD and R-AS perform
the worst based on average delay as the state variable, which suggests that these
models may not work well with data related to link travel times (e.g. data collected
from GPS devices, cameras and virtual trip lines). When using average speed or
average relative occupancy, the benchmarks have worse performance than the fixed
signal timing (GCC). In contrast, the performances of ARL and NDR are stably
when using single state variables, indicating that they are robust against different
choices of state variables. In addition, AD and ARO are the most effective single
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state variables for ARL and NDR, whose performances are comparatively worse when
AS is involved.

Figure 7.1: Performances of using all state variable(a) and single state variable(b,c,d) in our
models and benchmark models (X-axis: Each scenario, Y-axis(Left): average delay per vehicle(unit:
sec) and Y-axis(right): average vehicle throughput(unit: veh))

In Figure 7.2, we test different combinations of the state variables. The per-
formances of the benchmarks are more steady and consistent when using two state
variables instead of one, and all the responsive controllers outperform the fixed-timing
control (GCC). The proposed ARL and NDR outperform BA, R-ARO, R-AD and
R-AS in the case of AD+AS, and such improvement is positive yet less significant in
ARO+AS and AD+ARO.

Overall, Figures 7.1 and 7.2 suggest that using more state variables tend to en-
hance the performances of all the responsive signal controls. The proposed ARL,
NDR-1 and NDR-2 outperform the benchmarks regardless of the type of state vari-
ables or their combinations.

In Figure 7.3, we present, in each subfigure, the performance of a given signal
controller with different combinations of state variables. We see that ARL, NDR-
1 and NDR-2 experience the minimum deterioration of the KPIs when the state
variables vary; namely the difference in delays are within 25 s (ARL), 22 s (NDR-1)
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Figure 7.2: Performances of using two state variable in our models and benchmark models (X-
axis: Each scenario, Y-axis(Left): average delay per vehicle(unit: sec) and Y-axis(right): average
vehicle throughput(unit: veh))

and 23 s (NDR-2), while the difference in throughputs are within 170 veh (ARL), 130
veh (NDR-1) and 120 veh (NDR-2). On the other hand, the other methods result in
either significant deterioration in delays (up to 84 s) or throughput (up to 300); see
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Figure 7.3: Re-arranged performances(including vehicle delay and vehicle throughput) according
to the scenario (X-axis: Each case, Y-axis(Left): average delay per vehicle(unit: sec) and Y-
axis(right): average vehicle throughput(unit: veh))
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Table 7.1. In particular, NDR and BA seem to be the most and least robust signal
controllers against different choices of the state variables.

ARL BA R-ARO R-AD R-AS NDR-1 NDR-2
Delay (s) 25 84 46 55 33 22 23

Throughput (veh) 170 300 170 210 120 130 120
Table 7.1: Maximum deterioration of average vehicle delay or network throughput when the state
variable(s) vary.

For ARL and NDR, the most effective single state variable(s) are AD or ARO.
When it comes to the combination of two state variables, no discernible difference
can be seen for these proposed models, and the gap with all three state variables
(‘ALL’ in Figure 7.3) is quite insignificant.

7.2 Information imperfectness and incompleteness

In a real-world operational environment of signal control, external conditions such
as low spatial sensor coverage or sensing error could lead to low availability of traffic
data that are crucial for calculating state variables. This gives rise to the notions of
data completeness and perfectness, which are directly related to data quality and can
present the totality of characteristic of the data to accomplish a given goal (Kaisler
et al., 2013). Among the many instances of data incompleteness/imperfectness, we
consider missing data (for certain links of the network) and data uncertainty (in the
form of additive noises present in the data). Therefore, this section aims to test the
proposed responsive signal control frameworks as well as several benchmarks in these
conditions.

7.2.1 Data noise

To represent uncertainties in the traffic data that might be caused by systematic or
random errors, we use an additive noise term to the three state variables:

˜ARO = ARO + ε1, ÃD = AD + ε2, ÃS = AS + ε3

Here, each εi is a random vector of appropriate size comparable with the dimension
of the relevant state variable, and the individual elements of εi follow i.i.d Normal
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distribution N(0, σ2
i ) where the standard deviation σi is chosen to be 5%, 10% and

20% of the mean value of the state variable (i.e. the signal). These different noise-
to-signal ratios allow us to test the performance of different models under different
levels of data uncertainty.

Figure 7.4 shows the performances (in terms of vehicle delay and network through-
put) under different signal control measures in the presence of data noises (5%, 10%
and 20% noise-to-signal ratios). Overall, the models [ARL], [NDR-1] and [NDR-2]
outperform other benchmark models in almost all cases except one (AS with 20%
noise), which shows that the proposed models have superior robustness over the
benchmarks when the input of the controller is perturbed with noises. Among the
three state variables, the proposed models have the least satisfactory performances
under average speed (AS), which is consistent with the findings in Figure 7.1 (ARL
and NDR perform better with AD and ARO than AS).

The performances of R-ARO, R-AD and R-AS are susceptible to significant (20%)
perturbations of the input state variables. Interestingly, in the case where noise is
added to state variable AS, the benchmark model [R-AD] has the worst performances
rather than [R-AS]. That is, in the case of [R-AS], the reward shaping function in the
benchmark model [R-AS] efficiently deals with the noise. As a result, the benchmark
model [R-AS] can avoid the rapid decline in performances. On the other hand, [R-
AD] does not have good performances due to inaccurate state information, even if
the reward shaping function works properly.
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Figure 7.4: Performances of different signal control methods with noisy state variables (5%, 10%
and 20% noise-to-signal ratio).

7.2.2 Missing information

In a real-world traffic network, due to limited sensor deployment or sensing failure,
it is not possible to obtain traffic data on all the links in the network. When traffic
information is not available on certain links in the network, the traffic states on those
links become unknown, which poses challenges to responsive signal controllers.

In this experiment, four state variables (Average Relative Occupancy, Average
Delay, Average Speed and Weighted sum) mentioned in Section 5.2.1.1 are considered
in the reinforcement learning. we consider three scenarios where traffic states are
unknown on certain links. As illustrated in Figure 7.5(a-1), (b-1) and (c-1), data
on Byres Road and Great Western Road are missing. In particular, we define the
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following three scenarios:

1. Missing data on Byres Road (both directions),

2. Missing data on Byres Road (south bound) and University Avenue (west bound),

3. Missing data on the Great Western Road (both directions between junctions
C and D, and west bound direction between junctions D and E).

These scenarios are chosen as Byres Road and Great Western Road are considered
highly congested, carrying significant amount of traffic approaching the city center
from the west and south in morning peaks (see Section 4.1.4.1). A lack of state
variables on these critical links therefore poses significant challenge to the responsive
signal controllers. This section investigate the level of impact on the performances of
different signal control methods in terms of vehicle delay and network throughput.

The signal control performances are shown in the right column of Figure 7.5.
Overall, the methods [ARL], [NDR-1] and [NDR-2] outperform other benchmark
models in all three scenarios. In particular, [NDR-1] has the best performance in
the case (c-2). Figure 7.6 compares the performances of different signal controllers
before (non-missing) and after removal of information. Similar to Figure 7.5, ARL
and NDR perform consistently well compared to the benchmarks. It is noted that the
three proposed models (ARL, NDR-1, NDR-2) are most affected in the “Byres Road
+ University Avenue” case, while the impact of missing data on the Great Western
Road is relatively minor. These phenomena are caused by the different flows on these
links and are manifestation of highly complex traffic dynamics and decision processes.
However, such findings provide valuable insights on sensor location problem when
the traffic is managed in real time by AI-based signal controls.
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Figure 7.5: Performances of different signal control models in the presence of missing data. The
left column illustrates the links with missing data in red bold curves. The right column indicates
the corresponding performances of various signal control models in terms of vehicle delay (unit:
sec) and network throughput (unit: veh)
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Figure 7.6: Performances in terms of vehicle delay (a) and network throughput (b) of different
signal control models before (non-missing) and after (others) data removal on certain links.

7.3 Impact of different types of data quality issues

As a summary of the previously presented instances of data quality issues, namely
selection of state variables, data noise and unknown states on parts of the network,
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we compare their impacts pertaining to the signal control frameworks mentioned in
this chapter.

When different combinations of state variables are used, the ranges of deteriora-
tion of the proposed methods are

• ARL: Delay: 7s - 25s; Throughput: 110 - 170 veh

• NDR-1: Delay: 4s - 22s; Throughput: 70 - 130 veh

• NDR-2: Delay: 6s - 23s; Throughput: 40 - 120 veh

When different levels of noises are applied to the state variables (AD or ARO), the
ranges of deterioration of the proposed methods are:

• ARL: Delay: 10s-12s; Throughput: 120 - 130 veh

• NDR-1: Delay: 13s - 14s; Throughput: 100 -135 veh

• NDR-2: Delay: 6s - 8s; Throughput: 60 veh

When three scenarios are considered concerning the missing data on several links of
the network (see Figure 7.5), the ranges of deterioration of the proposed methods
are:

• ARL: Delay: 6s - 8s; Throughput: 100 - 110 veh

• NDR-1: Delay: 0.5s - 4s; Throughput: 10 - 90 veh

• NDR-2: Delay: 2s - 4s; Throughput: 0 - 60 veh

It can be seen that the different types of data quality issues have relatively minor
impact on the performance of the proposed signal control measures. All things con-
sidered, NDR-2 (NDR with recurrent neural network) is the least impacted method
among the three.

7.4 Summary

This chapter investigates the impact of data incompleteness and imperfectness on
the performance of a range of real-time signal control methods. This is driven by
the observation that most responsive signal control models in the literature, derived
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either analytically/theoretically or via simulations, tend to make idealized assump-
tions on the quality of data, which gives rise to accurate and perfect information on
the traffic states. These assumptions are challenged in this chapter, and we show the
varying levels of performance deterioration of different signal controllers including
the proposed ARL, NDR-1 and NDR-2, as well as benchmarks models such as the
baseline reinforcement learning and RL with different reward shaping functions.

Three types of scenarios are considered, namely different selections of the state
variables, data uncertainty/noise, and unknown states on parts of the network. It is
found that the proposed ARL and NDR models perform consistently well compared
to the benchmarks, despite the deterioration of data quality in the decision-making
process.

The ranges of performance deterioration for the proposed methods (ARL, NDR-
1, NDR-2) are summarized in Section 7.3. In terms of state variables, average delay
(AD) or average relative occupancy (ARO) are shown to be suitable ones to represent
traffic states when integrated with the ARL or NDR frameworks. When noises are
applied to the state variables, the performance of the three methods remain stable
with relatively minor deterioration. When the traffic state information is removed
from certain links of the network, different methods are impacted and their effects
vary, which is likely due to the different neural network structure inherent in these
responsive signal control frameworks.
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Comparison, Recommendation,
Conclusions and future research

This thesis addresses the four main challenges in responsive traffic signal control,
namely

1. Uncertainty in the traffic network;

2. Multi-objective optimization;

3. Computational efficiency; and

4. Data availability and quality

by leveraging machine learning techniques integrated with optimization-based train-
ing procedures to yield timely decisions that optimizes traffic network performance
in a centralized and reliable way. In addition, with strength points to the proposed
frameworks in this thesis, this section first address the key difference from NDR/ARL
with existing systems like SCOOT/SCAT. Additionally, this thesis provide a discus-
sion on the pros and cons of Nonlinear Decision Rule(NDR) and Advanced Reinforce-
ment Learning(ARL), and offer some suggestions when it comes to their deployment.

8.1 Comparison with Existing traffic system

NDR and ARL can be efficiently used to mitigate traffic congestion and reduce
exhausted emission. As the responsive traffic signal control framework, the both
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frameworks efficiently handle uncertainty in the traffic network, keep the balance
between traffic and environmental objectives, achieve computational efficiency, and
have a strong guarantee related to the issue of the data availability and quality. In
order to recommend our frameworks, we need to address the key difference from
NDR/ARL with existing systems like SCOOT.

First, unlike SCOOT or SCAT using only numerical data(especially, vehicle count
and queue length), our framework can be applied with different type of data provided
by various traffic sensors(like image-based sensors). That is very important because,
with advanced technology, there are many state-of-the-art sensors to more accurately
and efficiently detect events/vehicle’s behaviours on the roads. The existing traffic
signal system using SCOOT has a limitation to use the different type of traffic
data since it requires only specific data(like vehicle counts and queue length). Our
frameworks has a strong flexibility of using various type of traffic data(like imagery
traffic data). That is, the proposed frameworks can be applied to varoius traffic
networks in which the SCOOT/SCAT cannot be applied.

Second, existing systems(such as SCOOT and SCAT) only focus on the opti-
mization of the vehicle delay and/or network capacity and show the efficiency of
controlling traffic flow in real-life. But, these systems do not consider environ-
mental perspective. As you can see the section 4.1.4.3, vehicle delay and Carbon
Dioxide(CO2) emission have the high correlation, but low correlation between vehi-
cle delay and Black Carbon(BC). Cho (2019) mentioned that BC directly affects to
global warming as a main factor of air pollutants. Many governments and researchers
have recently paid attention to environmental pollution so that environmental per-
spectives might be required to traffic systems. In this thesis, our frameworks can
consider two exhausted emissions(CO2 and BC), but the two frameworks has a flex-
ibility of considering other emissions. Therefore, our framework can efficiently solve
air pollution.

Third, SCOOT is based on fixed traffic signal timing which can efficiently control
the traffic in common situation. But, the fixed signal plan does not cover specific traf-
fic condition or events(like festival or road closure). However, our frameworks based
on machine learning techniques(including Neural Networks(NN) and Reinforcement
Learning(RL)) can responsively control traffic flows in urban traffic network so that
these frameworks can efficiently handle the uncertainties occurred from the roads.
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In addition, the fixed timing cannot harmonize the traffic conditions of other inter-
sections. As a result, although traffic flow can be optimized in a certain intersection,
but it can cause serious conflicts or accidents. On the other hand, our frameworks
can perform the network-level traffic signal control. So, these frameworks can con-
sider traffic conditions among each intersections. As a result, they can avoid traffic
conflicts effectively.

8.1.1 Recommendation

Two proposed frameworks in this thesis can efficiently be employed according to dif-
ferent conditions on traffic network, due to the main characteristic of the frameworks.

First, NDR is the rule-based framework. So, the NDR framework provides op-
timal traffic signal control strategy to the specific traffic network, which has a key
capability to effectively find the optimal real-time traffic plan. If NDR is applied
however, off-line optimisation should be performed to find the optimal traffic signal
strategies corresponding to the different traffic network. But, the on-line implementa-
tion of the trained NDR framework is quite efficient and can accommodate real-time
decision requirements. In addition, due to the nature of built-in neural network in
the NDR framework, the more experience the NDR framework has with other traffic
networks, the faster and easier it is to find the optimal traffic signal strategy.

Second, RL is the learning-based framework to control traffic signal. Although the
RL framework can find the ”near-optimal” traffic signal plan, it can more effectively
and quickly react the unexpected events(including accidents, temporal road closure
and any events). In addition, when it comes to different traffic networks, without
any off-line implementation, the framework can find the efficient traffic signals based
on the framework’s experience and knowledge. Therefore, the framework has an
excellent applicability to different traffic networks.

Therefore, according to urban planning of the government, if the government
wants to optimize the traffic signal strategy only in a specific city, NDR is more
useful. If each traffic signal control system of multiple cities need to be developed
at the same time, RL can intensely reduce the development period because of the
above-mentioned characteristic of the RL.
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8.2 Main contributions

The four main challenges have been addressed in this thesis, as follows.

• Uncertainty in the traffic network

- Unlike many stochastic optimization approaches where a priori distribu-
tions are known, the uncertainty of traffic network dynamics is difficult
to characterize and calibrate. This has been addressed in the proposed
NDR framework via a Monte-Carlo type simulation-based optimization
approach, which is shown to effectively handle within-day and day-to-day
variations of traffic quantities. Similarly, the ARL approach can account
for the stochasticities in the state variables by deriving the optimal con-
trol policy. As a result, the resulting real-time controls are robust against
traffic uncertainties, as shown in relevant simulation tests.

• Multi-objective problem

- This thesis addresses traffic related objectives including vehicle delay, net-
work throughput, and exhaust emissions such as CO2 and black carbon.
These objectives are incorporated in the training procedure of the ma-
chine learning models via a feedback loop based on traffic simulations.
The test results of the proposed models demonstrate the capability of the
machine learning based signal controllers to effectively balance different
objectives. In addition, further analysis reveal the potential alignment
and conflict of traffic and environmental objectives, which offer insights
into the management of dynamic traffic networks for sustainability.

- When the level of network demand increases (i.e. the network becomes
more congested), the key performance indicators of signal controls are
affected in different ways. Specific findings can be found in relevant sec-
tions.

• Computational efficiency

- Both NDR and ARL frameworks tackle the challenge of excessive com-
putational demands in an on-line optimization environment. Through
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off-line training procedure that fully takes into account the possible re-
alization of uncertain traffic states, the resulting real-time controls are
guaranteed to maintain a satisfactory level of performance with little com-
putational burden, which allows real-time decisions to be made.

- To reduce the size of the traffic state space and allow timely decisions to be
made without consuming a vast amount of traffic information, this thesis
investigate performances of NDR and ARL according to different selection
and combination of traffic state variables. This allows the machine learn-
ing model to conducted supervised learning, as informed by realized traffic
objectives through simulation, in order to optimize the configuration of
the neural networks.

• Information availability and quality

- the impact of data incompleteness and imperfectness on the performance
of a range of real-time signal control methods is investigated. This is
driven by the observation that most responsive signal control models in
the literature, derived either analytically/theoretically or via simulations,
tend to make idealized assumptions on the quality of data, which gives
rise to accurate and perfect information on the traffic states. These as-
sumptions are challenged in this research, and it is shown that the varying
levels of performance deterioration of different signal controllers includ-
ing the proposed NDR and ARL methods, as well as several benchmarks
models.

- In terms of state variables, average delay (AD) or average relative occu-
pancy (ARO) are shown to be suitable ones to represent traffic states when
integrated with the ARL, NDR-1, or NDR-2 frameworks. When noises
are applied to the state variables, the performance of the three meth-
ods remain stable with relatively minor deterioration. When the traffic
state information is removed from certain links of the network, different
methods are impacted and their effects vary, which is likely due to the dif-
ferent neural network structure inherent in these responsive signal control
frameworks.
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8.3 Research limitation and future research

The research methodologies and/or findings may be extended in the following ways.

1. application of the proposed signal control frameworks to different types of traffic
networks (with varying size, configuration and flow characteristics), in order
to demonstrate the transferability and generality of the findings, despite the
widely-held belief that machine learning based control models should work
properly in different environments given sufficient data and training resources.

2. integration with localized (decentralized) coordination (such as offset optimiza-
tion) and actuation (such as a transit priority signal) to further reduce emissions
at local junctions;

3. a systematic and quantitative approach to optimal sensor location that is com-
patible with the proposed neural network configuration; and

4. an in-depth (theoretically or experimentally) investigation of the matching be-
tween the structure and depth of the neural networks, and the complexity of
the underlying control system. Such a priori knowledge could offer valueable
insights into the construction of nonlinear decision rules and tuning of their
parameters for better efficiency and less redundancy.
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Chu, T., Wang, J., Codecà, L., & Li, Z. (2019). Multi-agent deep reinforcement
learning for large-scale traffic signal control. IEEE Transactions on Intelligent
Transportation Systems. 25

Chunxiao, L., & Shimamoto, S. (2011). A real time traffic light control scheme for
reducing vehicles co2 emissions. In The 8th Annual IEEE Consumer Communica-
tions and Networking Conference-Emerging and Innovative Consumer Technolo-
gies and Applications. 34

D’Acierno, L., Gallo, M., & Montella, B. (2012). An ant colony optimisation algo-
rithm for solving the asymmetric traffic assignment problem. European Journal of
Operational Research, 217 (2), 459–469. 1, 28, 36

126

https://blogs.ei.columbia.edu/2016/03/22/the-damaging-effects-of-black-carbon/
https://blogs.ei.columbia.edu/2016/03/22/the-damaging-effects-of-black-carbon/


References

de Palma, A., & Lindsey, R. (2011). Traffic congestion pricing methodologies and
technologies. Transportation Research Part C: Emerging Technologies, 19 (6),
1377–1399. 2

Dong, L., & Chen, W. (2010). Real-time traffic signal timing for urban road multi-
intersection. Intelligent Information Management, 2 (08), 483. 6, 28

Dotoli, M., Fanti, M. P., & Meloni, C. (2003). Real time optimization of traffic
signal control: application to coordinated intersections. In SMC’03 Conference
Proceedings. 2003 IEEE International Conference on Systems, Man and Cyber-
netics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483),
vol. 4, (pp. 3288–3295). IEEE. 29

Dotoli, M., Fanti, M. P., & Meloni, C. (2004). Coordination and real time opti-
mization of signal timing plans for urban traffic control. In IEEE International
Conference on Networking, Sensing and Control, 2004 , vol. 2, (pp. 1069–1074).
IEEE. 29

El-Tantawy, S., Abdulhai, B., & Abdelgawad, H. (2013). Multiagent reinforcement
learning for integrated network of adaptive traffic signal controllers (marlin-atsc):
methodology and large-scale application on downtown toronto. IEEE Transactions
on Intelligent Transportation Systems, 14 (3), 1140–1150. 3, 17, 19, 22, 25, 38, 73,
83, 103

El-Tantawy, S., Abdulhai, B., & Abdelgawad, H. (2014). Design of reinforcement
learning parameters for seamless application of adaptive traffic signal control. Jour-
nal of Intelligent Transportation Systems, 18 (3), 227–245. 8

Ellis, D. (2009). Cost per hour and value of time calculations for passenger vehicles
and commercial trucks for use in the urban mobility report. Texas Transportation
Institute, (p. 7). 2

Evans, R. (2007). Central london congestion charging scheme-ex-post evaluation of
the quantified impacts of the original scheme. 2

Feng, Y., Head, K. L., Khoshmagham, S., & Zamanipour, M. (2015). A real-time
adaptive signal control in a connected vehicle environment. Transportation Re-
search Part C: Emerging Technologies, 55 , 460–473. 29

127



References

Frejo, J. R. D., Papamichail, I., Papageorgiou, M., & De Schutter, B. (2019). Macro-
scopic modeling of variable speed limits on freeways. Transportation research part
C: emerging technologies, 100 , 15–33. 2

Friesz, T. L. (2010). Dynamic optimization and differential games, vol. 135. Springer
Science & Business Media. 27, 45

Gao, J., Shen, Y., Liu, J., Ito, M., & Shiratori, N. (2017). Adaptive traffic signal
control: Deep reinforcement learning algorithm with experience replay and target
network. arXiv preprint arXiv:1705.02755 . 8, 19, 23, 38, 73, 83, 103

Garavello, M., Han, K., & Piccoli, B. (2016). Models for vehicular traffic on networks,
vol. 9. American Institute of Mathematical Sciences (AIMS), Springfield, MO. 27

Genders, W., & Razavi, S. (2016). Using a deep reinforcement learning agent for
traffic signal control. arXiv preprint arXiv:1611.01142 . 8, 23, 24

Genders, W., & Razavi, S. (2018). Evaluating reinforcement learning state represen-
tations for adaptive traffic signal control. Procedia computer science, 130 , 26–33.
25, 105

Genders, W., & Razavi, S. (2019). Asynchronous n-step q-learning adaptive traffic
signal control. Journal of Intelligent Transportation Systems, 23 (4), 319–331. 19

Gkatzoflias, D., Kouridis, C., Ntziachristos, L., & Samaras, Z. (2007). Copert 4 user
manual (version 5.0). 51
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