
The University of Hull
Faculty of Science and Engineering

School of Computer Science

Short-term motion prediction of autonomous vehicles in
complex environments: A Deep Learning approach

Albert Dulian

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computer Science of the University of Hull,

April 2, 2024

To my beloved great-grandmother
Waleria Bartczak

i

List of Publications

Conference Papers

• Dulian, A. and Murray, J.C., 2021, May. Exploiting latent representation of

sparse semantic layers for improved short-term motion prediction with Capsule

Networks. In 2021 IEEE International Conference on Robotics and Automa-

tion (ICRA) (pp. 8537-8543). IEEE.

Preprints

• Dulian, A. and Murray, J.C., 2021. Multi-modal anticipation of stochastic

trajectories in a dynamic environment with Conditional Variational Autoen-

coders. arXiv preprint arXiv:2103.03912.

ii

Acknowledgments

This ride has been a real rollercoaster. I consider the last couple of years to be

extremely transformative and I truly believe that going through this period in my

life has been critical, albeit extremely challenging. Prior to embarking on this PhD

journey I felt unsure about the future. Now however, I have no doubt that I ended

up on the right track. Research, curiosity, novelty and desire to understand complex

concepts gives me an enormous joy and fulfilment. I will be forever grateful that this

opportunity was presented to me and I hope I will be able to successfully continue

on this path.

That being said, I would like to first of all, express my sincere gratitude to my

supervisor, Professor John C. Murray for his patience, encouragement and firm

guidance throughout the last couple of years. Without John’s invaluable support

completing this thesis would not be possible. Moreover, I would like to thank Dr.

Yongqiang Cheng who provided an immense amount of support in my final months

of PhD. Furthermore, I would also like to extend my deepest appreciation and

gratitude to Dr. Nina Dethlefs for her meticulous and insightful feedback, which

has greatly contributed not only to the refinement and improvement of my work but

also to my growth as a researcher. Next, I would like to thank my lab friends Dr.

Annika Schoene and Ashley Williamson for all the laughter and stimulating research

conversations, which have been a constant source of inspiration.

I am particularly thankful to be constantly surrounded by amazing people. To my

loving parents, Justyna and Sylwester Dulian, thank you for believing in me and

my life choices. You allowed me to pursue my dreams whilst offering a continuous

support and an unwavering faith in my abilities, without it, this significant milestone

would not have been possible. To my dear sister Zuzanna Dulian and her amazing

fiancé Wiktor Marszalek who, throughout those stressful years, were always there for

me whenever I needed a reminder that there was a world beyond academia. Thank

you for being there for me, always offering solace and a great sense of normalcy that

kept me well grounded. To my wonderful brother Sebastian Sodolski and his fiancée

iii

Oliwia Gasior. It is difficult to express in words what it means to have people like you

in my life. There is no one else in this world with whom I have shared such heartfelt

laughter, and I sincerely hope that in the future, we will have the opportunity to

spend even more time together. Next, I would like to extend my deepest appreciation

to my best friends. To Filip Kiedrowski, Robert Popowski, Sebastian Dabrowski,

Szymon Bukowski and Adam Gasowki. I will be forever grateful that our paths

crossed, as your presence has had a profound influence on my life. I sincerely wish

for everyone to be surrounded by extraordinary individuals like you. To Kuba

Maruszczyk and his fiancée Dr. Sylwia Macinska, I wish that one day both of you will

realize the magnitude of positive impact you have had on my life. It is evident to me

that without knowing you, I would never have achieved the remarkable milestones

I have, nor would I have dared to envision the extraordinary path that unfolded

before me. Lastly, to Przemyslaw Doruch, my life long best friend, thank you for it

is you who instilled in me a passion for technology.

Finally, I want to express my dearest gratitude to my beloved fiancée Agata Jakubowska.

You have been by my side since the very beginning of this endeavor, accompanying

me every step of the way. During the last couple of years you have been the most

profound source of support. It is you who have given me the greatest sense of tran-

quility, composure and immense happiness. You have endured me during the most

demanding and stressful years of my life, I hope I will be able to repay you. Today, I

truly believe that with you by my side I can accomplish anything because "No man

succeeds without a good woman behind him". I love you my dear.

iv

Abstract

Complex environments manifest a high level of complexity and it is of critical impor-

tance that the safety systems embedded within autonomous vehicles (AVs) are able

to accurately anticipate short-term future motion of agents in close proximity. This

problem can be further understood as generating a sequence of coordinates describ-

ing the plausible future motion of the tracked agent. Number of recently proposed

techniques that present satisfactory performance exploit the learning capabilities of

novel deep learning (DL) architectures to tackle the discussed task. Nonetheless,

there still exists a vast number of challenging issues that must be resolved to further

advance capabilities of motion prediction models.

This thesis explores novel deep learning techniques within the area of short-term

motion prediction of on-road participants, specifically other vehicles from a points

of autonomous vehicles. First and foremost, various approaches in the literature

demonstrate significant benefits of using a rasterised top-down image of the road to

encode the context of tracked vehicle’s surroundings which generally encapsulates a

large, global portion of the environment. This work on the other hand explores a

use of local regions of the rasterised map to more explicitly focus on the encoding of

the tracked vehicle’s state. The proposed technique demonstrates plausible results

against several baseline models and in addition outperforms the same model that

instead uses global maps. Next, the typical method for extracting features from ras-

terised maps involves employing one of the popular vision models (e.g. ResNet-50)

that has been previously pre-trained on a distinct task such as image classification.

Recently however, it has been demonstrated that this approach can be sub-optimal

for tasks that strongly rely on precise localisation of features and it can be more

advantageous to train the model from scratch directly on the task at hand. In

contrast, the subsequent part of this thesis investigates an alternative method for

processing and encoding of spatial data based on the capsule networks in order to

eradicate several issues that standard vision models exhibit. Through several exper-

iments it is established that the novel capsule based motion predictor that is trained

from scratch is able to achieve competitive results against numerous popular vision

v

models. Finally, the proposed model is further extended with the use of generative

framework to account for the fact that the space of possible movements of the tracked

vehicle is not strictly limited to single trajectory. More specifically, to account for

the multi-modality of the problem a conditional variational auto-encoder (CVAE)

is employed which enables to sample an arbitrary amount of diverse trajectories.

The final model is examined against methods from literature on a publicly available

dataset and as presented it significantly outperforms other models whilst drastically

reducing the number of trainable parameters.

vi

Contents

Dedication i

Acknowledgments ii

Abstract iv

List of Figures xxii

List of Tables xxii

Acronyms xxiii

1 Introduction 1

1.1 On a Road to Vehicle Automation . 1

1.2 Intelligently Driven Vehicles . 6

1.3 Research Aim . 8

1.4 Contributions . 10

1.5 Thesis Outline . 11

vii

viii CONTENTS

2 Deep Learning - Technical Background 13

2.1 History . 13

2.1.1 McCulloch-Pitts Model . 13

2.1.2 Perceptron . 15

2.2 Multilayer Perceptron . 18

2.3 Convolutional Neural Network . 20

2.4 Recurrent Neural Network . 24

2.5 Backpropagation and Optimization 27

2.5.1 Backpropagation . 27

2.5.2 Optimization . 30

2.6 Conclusion . 33

3 Literature Review 34

3.1 Kinematic and Dynamic Models . 34

3.1.1 Summary . 39

3.2 Monte Carlo Methods . 39

3.2.1 Summary . 41

3.3 Bayesian Framework . 42

3.3.1 Bayesian Networks . 42

3.3.2 Gaussian Process . 44

3.3.3 Summary . 47

CONTENTS ix

3.4 Machine Learning . 48

3.4.1 Classification and Regression 48

3.4.2 Clustering . 49

3.4.3 Deep Learning . 52

3.4.4 Summary . 61

3.5 Conclusion . 62

4 Investigating Local Maps for Short-term Motion Prediction 65

4.1 Introduction . 65

4.2 General Setup . 66

4.2.1 Dataset and Benchmark . 66

4.2.2 Problem Formulation and Notation 70

4.3 Local Semantic Layers . 71

4.4 Experiments and Results . 72

4.4.1 Experimental Setup . 72

4.4.2 Establishing Baseline Models 74

4.4.3 Unraveling of Semantic Layers 81

4.4.4 Finding an Optimal Map Size 83

4.5 Conclusion . 84

x CONTENTS

5 Improving Deterministic Motion with Capsule Networks 87

5.1 Introduction . 87

5.2 Capsule Neural Networks . 89

5.3 Network Architecture and Computational Flow 92

5.4 Experiments and Results . 96

5.4.1 Initial Ablation Study . 96

5.4.2 Performance Comparison of Capsule Encoder vs Popular CNN

Models . 99

5.4.3 Mode Collapse . 105

5.5 Conclusion . 108

6 Introducing Stochasticity for a Multi-modal Motion 111

6.1 Introduction . 111

6.2 Conditional Variational Auto-encoders 112

6.2.1 Auto-encoders . 112

6.2.2 Variational Auto-encoders . 114

6.2.3 Conditional Variational Auto-encoders 117

6.3 Network Architecture and Computational Flow 119

6.3.1 State Encoding . 121

6.3.2 Recognition Network . 123

6.3.3 Motion Generator . 124

6.4 Experiments and Results . 125

6.4.1 Ablation Study - VAE vs CVAE 125

6.4.2 Facilitating the Learning Process with Minimum over N 130

6.4.3 Comparison with Methods from the Literature 133

6.5 Conclusion . 136

7 Conclusions and Future Work 138

7.1 Summary of the Thesis . 138

7.2 Limitations and Avenues for Future Work 142

7.2.1 Physical and Social Constrains 142

7.2.2 Probabilities of Predicted Trajectories 143

7.2.3 Public Datasets . 144

7.2.4 Novel Architectures . 144

Bibliography 145

xi

xii

List of Tables

4.1 An overview of various public autonomous driving datasets that are

often used within the research community. Note that only two datasets

(where map type is not none) provide an access to some sort of map

data. 68

4.2 The average displacement error of proposed baseline models for the

first 3 seconds of the future time horizon with each (in case of DL

models) containing the mean ADE and std over 5 different training

runs. 77

4.3 Further results of the ADE for the future predictions between 4-6

seconds. Again, each cell with DL model presents a mean error and

std of 5 independent training runs. 77

4.4 The final displacement error of the examined baseline models for the

first 3 seconds of the predicted trajectories. Again, for the DL based

models the mean FDE and std is reported over 5 independent training

runs. 79

4.5 Final FDE results for the furthest time-horizons from 4 to 6 seconds

into the future with each cell containing the mean (and std for DL

models) results of all models. 80

xiii

xiv LIST OF TABLES

4.6 ADE results for the time-horizons from 4 to 6 seconds with each cell

containing the mean and std results of three variants of the CNN

baseline model. 83

4.7 FDE results for the time-horizons from 4 to 6 seconds with each cell

containing the mean and std results of three variants of the CNN

baseline model. 83

5.1 The mean and std ADE between three variants of Capsule based

motion prediction over 5 independent runs. 98

5.2 The mean and std FDE between three variants of Capsule based

motion prediction over 5 independent runs. 98

5.3 The ADE and FDE errors between proposed backbone feature ex-

tractors from the literature and the Capsule based motion predictor.

Additionally, the number of parameters of each backbone feature ex-

tractor has been included to demonstrate the performance with re-

spect to model’s complexity. 103

6.1 Quantitative results of an ablation study between CVAE and VAE

as well as between various modes of conditioning of the CVAE based

model. 128

6.2 Quantitative results of an ablation study between CVAE and VAE

as well as between various modes of conditioning of the CVAE based

model. 129

6.3 Comparison study between different settings of n during training with

respect to MoN loss. A minADE/minFDE errors are provided in

meters for four different sampling values of k. 132

6.4 Ablation study between different distance functions. Again, four dif-

ferent sampling rates (k) are used during the testing. 133

6.5 Comparison study of the final model vs two recently proposed meth-

ods from the literature. Apart from providing results using minADE/minFDE

the number of learnable parameters (millions) is also included to

demonstrate the difference in complexity of all examined methods.

All models were trained on n samples indicated by the subscript. Ad-

ditionally, for CoverNetε the number of modes that each variant is

trained on is adjusted with accordance to ε value. 136

xv

xvi

List of Figures

1.1 Summary of the driving automation levels as defined by SAE Inter-

national (Committee et al. 2018). 5

1.2 Sample image from the work by Redmon et al. (2016) with various

objects detected and located in both artwork and natural images.

Interestingly, the model mistakenly classifies the object as an airplane

instead of a person in the second image of the second row. 7

2.1 Simplified representation of the biological neuron (left) (Hajela &

Berke 1991) as well as a flow of input-output information within neu-

ron’s body (right) (Gurney 1997). 14

2.2 McCulloch-Pitts model of an artificial neuron that takes the weighted

sum of inputs and corresponding weights and passes it through an

activation function to compute the final output value in a binary

form (Rothman 2018). 15

2.3 An example of two classes being linearly separated by decision bound-

ary drawn with use of perceptron. 16

2.4 Perceptron learning rule. 17

xvii

xviii LIST OF FIGURES

2.5 Multilayer perceptron with a single input layer, two hidden layers and

an output layer with a single node (Guérillot et al. 2017). 18

2.6 Convolution operation between input matrix (lower blue grid) and

kernel matrix. The darker blue grid indicates patches of the input

data that are currently scanned by the receptive field. Each patch

is multiplied by the respective kernel values and summed up to yield

the state of the neuron (dark green node) in the feature map (upper

green grid) (Dumoulin & Visin 2016). 21

2.7 Convolution between I ∈ R5×5 and K ∈ R3×3 where s = (1, 1) and

p = same which yields F ∈ R5×5 (Dumoulin & Visin 2016). 22

2.8 An example of a CNN architecture. The input image of the Samoyed

dog (bottom left corner) runs through number of convolution layers

where learned filters extract distinctive features, creating several fea-

tures maps. Each convolution layer is also followed by pooling layer

where spatial size of its output is significantly reduced (LeCun et al.

2015). 23

2.9 Visualisation of features learned by a CNN. Each column (from left

to right) corresponds to a deeper layer within the network, thus the

visualisation becomes more abstract within each consecutive layer.

Features range from simple features such as edges, textures (first two

columns) to complex features such as parts and whole objects (last

two columns) (Olah et al. 2018). 24

2.10 A comparison of MLP and RNN architecture with a single hidden layer. 25

2.11 Unfolding of the computational graph of a single layered RNN. Note,

for simplicity the bias term as well as non-linear activation function

have been omitted. 26

LIST OF FIGURES xix

3.1 An example of two degree of freedom bicycle model by Lin et al.

(2000) where δ denotes the front wheel steering angle, u the forward

vehicle speed, m the lumped vehicle mass, v the translational velocity

along the body-fixed lateral axis, r the yaw rate, Iz the yaw moment

of interia and lastly, a and b the distance from vehicle’s centre of

gravity to the axels. 36

4.1 An example of a rasterised top-down view of the HD map from

nuScenes dataset (Caesar et al. 2020) where a temporal motion of

an ego vehicle has been represented with black dots, and a number

of different road layers has been specifically colour coded. 67

4.2 Disentanglement process of a map chunk at time t − 2. The map is

turned into several geometrical layers each representing a single part

of the whole map. In addition, an agent is rendered (bottom middle

and right images) with its origin corresponding to the position on the

chunk of interest. 73

4.3 A plot of ADE for all models over the entire set of future prediction

time-steps. As can be seen the gap between constant velocity and

heading model and other models increases exponentially for more

distant predictions. 78

4.4 A plot that depicts the final displacement error for all models for up

to 6 seconds of the prediction horizon. 81

4.5 An ADE and FDE results of the CNNTDL model trained for a 6

seconds of future time horizon on various settings of map size λ. . . . 85

5.1 An example of six images from different classes taken from the Ima-

geNet training set. 89

xx LIST OF FIGURES

5.2 An image of two human faces with a face on the left preserving hierar-

chical relationship between local features, and face on the right having

local features in arbitrary positions (CNN face detection failure n.d.). 91

5.3 An overview of the proposed Capsule Net encoder. A single map

chunk at time t is disentangled into separate geometrical layers. Each

layer is then passed separately to the convolutional base, followed by

lower capsules and then to its corresponding higher capsule. Finally,

outputs of all higher capsules are concatenated and passed to the final

capsule to compute the final encoding. 94

5.4 The training (solid line) and validation loss (dash line) of each model

over 100 epochs. Training loss is presented with a solid line whereas

the dashed line shows the validation loss. 104

5.5 The training (solid line) and validation loss (dash line) of each model

starting from epoch 20 after each model hits some local minimum

demonstrated the stability of each model as well as a point of where

overfitting starts to emerge. 105

5.6 The validation loss of each model and its pre-trained variation (dashed

line) over 100 epochs. 106

5.7 The distribution of the loss computed with MotionCaps over three

different future time windows with test set. The plot presents the box

plot as well as all individual data points along x-axis which provides

an insight into how spread those loss values are for each individual

time-step. 106

5.8 Visualisation of 150 easy (left columns) and hard (right columns)

ground truth motion samples form test set over three future time

horizons (defined on the right side of y-axis). 108

LIST OF FIGURES xxi

6.1 An example of an autoencoder. An original input image is processed

through the encoder to produce a compressed representation of an

image, then a decoder takes this latent representation and aims to

decode it such that the output resembles the original input (Bank

et al. 2020). 113

6.2 An example of results obtained from training the denoising autoen-

coder. The noisy input to the network is presented on the left with

the original data in the centre an a denoised output of the model on

the right (Jordan 2018). 114

6.3 The figure by Kingma et al. (2019) demonstrates the mapping pro-

cess that a VAE is aiming to learn (note that the notation in the

figure might differ from the notation used in this subsection). A

probabilistic encoder Qφ(z | x) is trained to map the input x to the

latent variable z. Then, a stochastic decoder PΦ(x | x) is trained to

reconstruct the input data x given a latent input z. 118

6.4 A graphical comparison of the VAE (left) and CVAE (right). As

depicted, the CVAE model now considers an additional input y which

conditions the encoder and decoder accordingly to a given label y

(Doersch 2016). 119

6.5 An example of a global map M (left) as well as the unraveling pro-

cess of a local map chunk Lt (middle) which is turned into several

geometrical layers (right) each representing a single part of the whole

map. In addition, we draw an agent (top right) with its origin corre-

sponding to the position on the chunk of interest. 121

xxii LIST OF FIGURES

6.6 A simplified overview of the proposed network. During training pa-

rameters of the prior distribution are obtained with the recognition

network which is used to produce a diverse set of training samples.

Then, during testing the past ground-truth motion Y of a tracked

agent is not available and z is therefore sampled directly from prior

i.e. z ∼ N (0, I) and then used to decode k samples which are encap-

sulated in Ŷ. 125

6.7 An inference time study demonstrating the speed of predicting k sam-

ples with previously examined models. 130

6.8 Results of the minADE error with regards to several MMST’s variants

where 24 ≤ k ≤ 213. 134

6.9 Results of the minFDE error with regards to several MMST’s variants

where 24 ≤ k ≤ 213. 135

Acronyms
ABS Anti-lock brake system

ACC Adaptive cruise control

AHC Agglomerative hierarchical clustering

ADAS Advanced driver assistance systems

AE Auto-encoder

AV Autonomous vehicle

ADE Average displacement error

BI Bayesian inference

BF Bayesian filter

BN Bayesian network

CA Constant acceleration

CAN Controller area network

CCA Constant curvature and acceleration

CL-RRT Closed loop rapidly-exploring random tree

CNN Convolutional neural network

CSV Constant steering angle and velocity

CTRA Constant turn rate and acceleration

CTRV Constant turn rate and velocity

CV Constant velocity

CVAE Conditional variational auto-encoder

xxiii

xxiv LIST OF FIGURES

CYRA Constant yaw rate and acceleration

DAE Denoising auto-encoder

DARPA Defense Advanced Research Projects Agency

DL Deep learning

DGPS Differential global positioning system

DP Dirichlet process

ELU - Exponential linear unit

EKF Extended Kalman filter

FDE Final displacement error

GAN Generative adversarial network

GD Gradient descent

GHMM Growing Hidden Markov model

GMM Gaussian mixture model

GNG Growing neural gas

GNN Graph neural network

GP Gaussian process

GPS Global positioning system

GRU Gated recurrent unit

HMM Hidden Markov model

ICS Inevitable collision state

IOC Inverse optimal control

LIST OF FIGURES xxv

KF Kalman filter

LSTM Long short-term memory

MAE Mean absolute error

MBGD Mini-batch gradient descent

MCP McCulloch-Pitts neuron

ML Machine learning

MOG Mixture of Gaussians

MLP Multilayer perceptron

MRM Manoeuvre recognition module

MSE Mean squared error

PCA Principal component analysis

PFSM Probabilistic finite-state machine

PPM Partial motion planning

ReLU Rectified linear unit

RNN Recurrent neural network

RRT Rapidly-exploring random tree

RVM Relevance vector machine

SBL Sparse Bayesian learning

SGD Stochastic gradient descent

SVM Support vector machine

UKF Unscented Kalman filter

xxvi LIST OF FIGURES

VAE Variational auto-encoder

VGMM Variational Gaussian mixture model

Chapter 1

Introduction

1.1 On a Road to Vehicle Automation

Throughout the last couple of decades the domain of transportation has matured

to the point where it became an inseparable part of today’s society. Automobiles

became a dominant form of transportation around the world and it has been esti-

mated that in merely 20 years, i.e. between 1996 and 2016 the number of motor

vehicles in operation has almost doubled in quantity from 670 million to over 1.3

billion (Petit 2017).

Furthermore, as safety became a crucial factor over the past years, automotive com-

panies introduced various technological advancements to increase traffic safety and

assist motorists with the task of driving. A great portion of those advancements

has been adopted in numerous real-time embedded systems known as ADASs (Ad-

vanced Driver Assistance Systems) that offer a range of support, from advanced

visual warnings to taking over lateral and longitudinal control of the vehicle. ABS

(Anti-lock Brake System) and ACC (Adaptive Cruise Control) are just two exam-

ples of well known commercial ADASs. ABS is designed to enable the driver to

1

2 Chapter 1. Introduction

retain control of the vehicle by preventing the wheels from locking during braking

which can cause the vehicle to skid, thereby causing loss of control (Broughton &

Baughan 2002). On the other hand, ACC is responsible for sustaining a safe dis-

tance with respect to the vehicle in front, whilst maintaining a pre-set or optimal

velocity, therefore the system can be further classified as longitudinal control and

avoidance system. For instance, if sensors detect that the velocity of vehicle in front

has decreased and therefore the minimum safety distance has been exceeded, ACC

will automatically adjust the velocity of its vehicle to ensure that enough safe space

is maintained (Winner et al. 1996).

Nonetheless, despite all amenities offered by the advance technology of today’s au-

tomobiles, there still exist a vast number of drawbacks as road transports are con-

sidered to be one of the major causes of fatalities. According to global road crash

statistics published by ASIRT (’Association for Safe International Road Travel’)

over 3,000 people die daily in road accidents, with the annual figure being as high as

1.25million (Organization et al. 2023), leaving further 20-50million people injured

or disabled. Likewise, data from 2015 presents that in United States alone traffic

accidents were classified as number four cause of death accounting for more than 5%

of total casualties (for Health Statistics 2017). Moreover, the primary factor that

contributed and caused an estimate of 94% of those accidents was in fact a human

error (Singh 2015).

Additionally, although ADAS systems are designed with the intention of improving

traffic safety, reducing driver errors, and increasing efficiency, it is often a case that

those system present a host of potential hazards and problems. For example, accord-

ing to Lee et al. (2004), creating a collision warning system is not a trivial task as its

effectiveness is highly dependable on how well the system is designed with respect to

a driver’s capabilities and preferences. As such, an inappropriately designed warn-

ing system might lead to a situation where the driver will ignore warning signals,

1.1. On a Road to Vehicle Automation 3

and therefore fail to act when necessary (Bliss & Acton 2003). Furthermore, Bishop

(2005) points out the importance of designing a system where the trust between the

driver and technology is well-balanced to avoid (in case of "over-trust") a creation of

dependence which could potentially result in significantly reduced vigilance. Lastly,

Rudin-Brown & Parker (2004) presented the negative effect of ACC on driver’s be-

havioral adaptation where ACC-participants’ response time to hazard detection as

well as lane position variability has increased considerably.

Based on results of past experiments discussed in previous paragraphs it is reason-

able to speculate that achieving significant improvements in terms of on-road safety

cannot be accomplished without restricting or even completely eliminating the need

for a human driver. The challenge of eradicating human error has caused a signif-

icant research interest increase in the field of autonomous transportation not only

from academic research institutions but also from several industry developers such

as Tesla, Waymo, Volvo and many more. In this dissertation the term ’autonomous

vehicle’ (AV) will be further used to refer to vehicles that exhibit intelligent capa-

bilities such as navigating and sensing environments with little to no human input.

The development of AV technology has seen its initial advancements only in the last

decade, nevertheless, the work in this area has been ongoing for over three decades

(Pomerleau 1989, Dickmanns et al. 1994, Pomerleau & Jochem 1996, Broggi et al.

1999). A pioneering piece of work can be attributed to the research project carried

out in the 1980’s at Carnegie Mellon University where Dean Pomerleau trained

ALVINN (Autonomous Land Vehicle in Neural Network), a single hidden-layered

neural network (Goodfellow et al. 2016) with data gathered from a front facing

camera and laser range to output direction units which represent road curvature

that the test vehicle should track in order to effectively follow the road (Pomerleau

1989).

Despite the fact that ALVINN unveiled various potential possibilities for the future

4 Chapter 1. Introduction

of autonomous transportation, the field was greatly restricted in its capabilities for

further advancements primarily due to the hardware and software limitations of the

time. The next big milestone came through a series of competitions (Grand Chal-

lenge) sponsored by DARPA (Defense Advanced Research Project Agency) between

2004-2007 that aimed to accelerate research and development of AVs. The first com-

petition organised in 2004 has not seen a single vehicle finishing the 150 mile route,

yet, it can still be considered as a significant success due to the impelled interested

which resulted with numerous teams returning in the following year. The second

edition of the Grand Challenge, held in 2005 involved a 130 mile route where vehicles

were challenged to pass through a dessert terrain of various complexity, five out of

23 teams successfully finished the race with the winning entry ’Stanley’ completing

the track in 6h and 54min (Thrun et al. 2006). The success of the 2005 competition

revealed a great number of problems, one of the most important being static race

environment and inability of vehicles to perceive and interact with moving traffic.

The third competition commonly known as ’DARPA Urban Challenge’ involved 11

selected teams and focused mainly on addressing issues from previous years. The

track required vehicles to navigate through roughly 60 miles of abandoned urban

environment, which included single and multi lane roads, traffic circles, intersec-

tions, open areas, parking lots etc, whilst interacting with other moving vehicles

and obeying California’s traffic laws (Urmson et al. 2008). Yet again, the 2007 com-

petition exposed numerous issues within AV technology, nonetheless, it is crucial to

emphasize its various positive outcomes such as breakthroughs in software (Fergu-

son et al. 2008) and laser sensors (Velodyne LiDAR n.d.) without which the field of

autonomous transportation would not evolve as rapidly as it has.

It’s been over a decade since the DARPA Urban challenge and the technology de-

ployed within today’s AVs has developed dramatically. SAE International has cat-

egorized autonomy of vehicles into six levels (Committee et al. 2018) ranging from

level 0 i.e. no driving automation to level 5 which defines full automation where no

1.1. On a Road to Vehicle Automation 5

human attention is required and the vehicle is capable of performing driving task in

all conditions (see Figure: 1.1). As previously mentioned various car manufacturing

companies are involved in the creation and development of AVs with an ultimate

goal of providing technology capable of level 5 automation. At the moment, Tesla

is considered as the most publicly used AV with their autopilot offering level 3 au-

tomation and providing functionality such as: navigating in complex environments

(Autosteer+), summoning the vehicle in parking lots (Smart Summon), front and

side collision warning, automatic adjustment of high/low beams and many more.

In contrast, Waymo is already offering a level 4 automation in their vehicles, how-

ever, these are only available in Phoenix, AZ and are driven by a limited number

of selected test riders (Waymo Technology n.d.). As of present, there are no compa-

nies offering full autonomous capabilities (level 5), and many experts believe that it

may still take decades to create an intelligent autonomy capable of covering 99% of

conditions (Litman 2017).

Figure 1.1: Summary of the driving automation levels as defined by SAE Interna-
tional (Committee et al. 2018).

6 Chapter 1. Introduction

1.2 Intelligently Driven Vehicles

With the need of creating intelligent autonomy comes the requirement of developing

and equipping vehicles with artificially intelligent systems capable of performing var-

ious driving tasks such as path planning and environmental perception in a rational

and reasonable manner. The domain of artificial intelligence (AI), more precisely

its sub-domain deep learning (Goodfellow et al. 2016) has advanced tremendously

in the last decade yielding a variety of novel techniques that have been effectively

applied in numerous fields. In computer vision for instance, DL has been widely

used for example to classify a given image into a particular category (Krizhevsky

et al. 2012), reconstruct corrupted data (Liu et al. 2018), apply one type of image

style to another (Gatys et al. 2016), and generate completely new images from ei-

ther noise (Goodfellow et al. 2014) or existing data (Zhu et al. 2017) to name few.

Undoubtedly, a considerable achievement accomplished with the use of DL, specifi-

cally deep reinforcement learning (DRL) (Sutton et al. 1998, Mnih et al. 2015) can

be attributed to AlphaGO (Silver et al. 2016), a system that in 2016 beat former

GO champion Lee Sedol in five-game match, a game that many considered a grand

challenge for AI (McCarthy 1997, Mechner 1998).

A great number of deep learning based approaches have been deployed and used

within AVs for many years, which is most notable in vehicles produced by Tesla

and Waymo (Tesla Autonomy Day). For example, as previously indicated a key

component of any AV is to meaningfully perceive its surrounding in order to detect

and recognize objects. This is often achieved with use of object detection algorithms.

A number of DL methods have been proposed for the mentioned task over the past

decade (Sermanet et al. 2013, Ren et al. 2015, Redmon et al. 2016) allowing these

techniques to not only categorise multiple objects into a specific class but also obtain

their spatial location within an input image (see Figure: 1.2). An interesting use

of DL have been demonstrated in the work developed by Bojarski et al. (2016)

1.2. Intelligently Driven Vehicles 7

where a simple idea of mapping image pixels from a front-facing camera into a

steering command allowed to approximate and predict steering angle for the current

state. Unexpectedly, the proposed model managed to not only anticipate steering

angle, but also learned to recognise lanes and follow the road without the aid of any

additional modules e.g. object detection.

Figure 1.2: Sample image from the work by Redmon et al. (2016) with various
objects detected and located in both artwork and natural images. Interestingly,
the model mistakenly classifies the object as an airplane instead of a person in the
second image of the second row.

These few examples merely illustrate the true capacity of modern AI, and it is there-

fore only reasonable to optimistically speculate that deep learning based systems are

the key to achieving full, desired automation within the transportation industry and

to acknowledge that higher levels of autonomy have a great potential to offer robust

and effective solutions that will have significant impact in a reduction of on-road

risk.

Nevertheless, despite the great advancements within the intelligent technologies that

AVs are being equipped with there still exists a number of tasks that pose a variety of

complicated challenges. For instance, it is critical that an autonomous vehicle, just

like a human driver, has the capability accurately analyse and track surrounding

entities such as vehicles and pedestrians within its immediate environment, with

an awareness of their state, i.e. position and relative speed. The ability to track

8 Chapter 1. Introduction

and analyse states of other entities can further allow for a more accurate short-term

prediction about their future actions which can in turn enable the AV system to take

a set of actions that will drastically decrease its chances of ending up in potentially

dangerous on-road situations such as vehicle to vehicle collision.

1.3 Research Aim

The central objective of this thesis is to investigate and develop novel deep learning

methodologies to enable accurate prediction of future paths for on-road vehicles.

Specifically, the research focuses on the perspective of autonomous vehicles navi-

gating through complex and uncertain environments. This problem can be further

formulated as predicting or generating a sequence of future coordinates that describe

the possible motion of a tracked agent over a specified time horizon. Forecasting the

trajectory of surrounding vehicles is imperative for autonomous vehicles to proac-

tively ensure safety and efficiency in navigating intricate traffic environments, an-

ticipate potential risks, and sustain seamless trajectories; while achieving even brief

yet precise predictions spanning 2 seconds is commendable, extending the predic-

tive horizon to 4-6 seconds can yield significant and transformative outcomes. The

current approaches towards the discussed task pose a number of challenges (further

described in more detail in subsequent chapters) that mainly include poor abilities

to perform accurately in complex environments. This in large part is caused by the

difficult nature of the task itself but also by the lack of sufficient amounts of quality

training data that can be used to train a model that can generalize well to previously

unseen data. To improve current motion prediction models the following questions

were devised:

Can the accuracy of a motion detection model be improved by incorporating data

that more directly models the internal state of the tracked agent?

1.3. Research Aim 9

In general, the training of the motion prediction models is often based on using an

internal representation of the global surroundings with use of e.g. high definition

maps. This greatly ignores the fact that the local surroundings of the agent, devised

from such types of data, could potentially further improve the performance of the

model. To answer this question, a novel usage of high definition maps in a form of

local maps will be explored and examined.

Can the computational complexity (number of model’s parameters) of motion

prediction model be reduced without scarifying its performance?

A general trend within the deep learning domain revolves around usage of large

pre-trained models that are not necessarily trained on the target domain, this poses

two important difficulties. First of all, autonomous vehicles should be equipped

with models that are relatively low in complexity considering the need to perform a

number of tasks in real-time, and secondly using models that are pre-trained on a

distinct domain can potentially reduce the performance of the model as opposed to

improving it. The above question will be tackled by examining and introducing a

model based on novel capsule networks (Hinton et al. 2011) that alleviates a number

of drawbacks introduced by currently used vision models and is better suited towards

learning from smaller quantities of available data. In addition, due to the nature

of the task the model will be further extended with use of generative framework to

allow predicting a large number of future trajectories of the tracked agent.

Based on devised research questions the main hypothesis that will be investigated

within this thesis in order to overcome the discussed challenges are:

1. Incorporating local information about context of the tracked agent’s surround-

ing can be exploited to increase the general performance of motion prediction

model.

10 Chapter 1. Introduction

2. The computational complexity of the motion predictor can be significantly re-

duced by training a model based on a robust capsule network from scratch

directly on the target domain.

1.4 Contributions

Throughout the thesis there are number of contributions that are being made which

aim to alleviate identified issues. The following summarises the main contributions

made throughout the thesis:

1. An introduction and examination of disentangled local semantic maps. An

alternative way of using rasterised maps to encode the context of the environ-

ment and focus more specifically on encoding the information about the state

of the tracked agent.

2. The first use of capsule networks with respect to the task of predicting short-

term future motion of vehicles in complex environments. The introduced cap-

sule based motion predictor demonstrates a promising avenue for the training

of smaller models on a limited quantity of data.

3. Extension of the proposed capsule based motion predictor with a generative

model, more specifically a conditional variational auto-encoder (Sohn et al.

2015) which enabled the model to account for the multi-modal (more than

one output prediction i.e. multiple trajectories in this case) nature of the task

and predict a diverse set of plausible paths with regards to the tracked agent.

4. Examination of the proposed generative motion predictor with use of an al-

ternative loss function, the Minimum over N (MoN) which leads the model to

learn a more diverse set of predictions and significantly improved its accuracy.

1.5. Thesis Outline 11

5. Comparison of the final model’s performance against recent state-of-the-art

methods from the literature on publicly available dataset.

1.5 Thesis Outline

The chapters within this thesis are organised into two background chapters, three

technical chapters and finally a conclusion chapter.

More specifically, chapter 2 provides a necessary technical background about the

deep learning methodology, starting off with some history of neural networks, then

moving onto most common types of layers that are used for different types of tasks

(e.g. vision or language tasks) and finally finishing off with the explanation of back-

propagation and optimization methods used to train deep networks. Next, chapter

3 provides an extensive overview of the literature with a focus on the task of motion

prediction. First, the classic set of methods based on physical models are being

discussed. Then a set of sampling based algorithms such as Monte Carlo meth-

ods are further introduced. Next, motion prediction algorithms based on Bayesian

framework models are reviewed in order to give an overview of probabilistic models.

Finally the most recent machine learning (and deep learning) based methodologies

are thoroughly addressed to identify their strengths and weaknesses.

Chapter 4 introduces and examines the first usage of local geometrical semantic

maps and establishes a set of baseline models that are used in a subsequent chapter

of the thesis. Furthermore, chapter 5 focuses on developing a novel method for

predicting short-term motion of tracked agents with use of capsule based networks,

stating its advantages over a classical convolutional neural network and examining

its performance against some of the most popular CNN based feature extractors.

Next, chapter 6 extends the model presented in chapter 5 with an introduction of

conditional variational auto-encoder and further examines the usage of an alternative

12 Chapter 1. Introduction

cost function known as Minimum over N (MoN). Lastly, the performance of the final

generative model is compared against recent state-of-the-art methods to demonstrate

its capabilities on a public dataset that includes a diverse set of scenarios from

complex, urban environments.

Chapter 2

Deep Learning - Technical

Background

2.1 History

2.1.1 McCulloch-Pitts Model

In 1943 Warren McCulloch and Walter Pitts presented the first computational model

of an artificial neuron known as McCulloch-Pitts neuron (MCP) or linear threshold

gate that was inspired by the behavior of a biological neuron (McCulloch & Pitts

1943). Figure 2.1 demonstrates the structure and the data flow that occurs within a

biological neuron, as observed the neuron is primarily defined by four major parts:

dendrites, axon, soma also known as cell body and synapses (Zurada 1992).

In comparison to the biological neuron, the McCulloch-Pitts neuron simulates its

behavior in a similar, yet simplified fashion. First, the artificial neuron receives

a binary vector x = [x1, x2, · · · , xn] where xi ∈ {0, 1} which can be compared to

electrical signals collected by dendrites. Next, a vector of fixed connections values

13

14 Chapter 2. Deep Learning - Technical Background

Figure 2.1: Simplified representation of the biological neuron (left) (Hajela & Berke
1991) as well as a flow of input-output information within neuron’s body (right)
(Gurney 1997).

(weights)w ∈ Rn is defined in order to increase or decrease input values by weighting

each xi by its corresponding wi. The weighted sum of x and w is further computed

to produce the neuron’s output value, thus imitating the process of the cell body:

z = x1w1 + x2w2 + ...+ xnwn =
n∑
i=1

xiwi (2.1)

where:

x =

x1

...

xn

w =

w1

...

wn

 (2.2)

Lastly, the weighted sum is passed through an activation function ϕ(z) in this case

the linear threshold function or step function to compute the final output. The

output of the step function is further dependant on the empirically defined threshold

value θ that determines whether the artificial neuron should "fire" (pass the signal

to the subsequent neuron) or not:

2.1. History 15

y = ϕ(z) =

1 if z ≥ θ

0 if z < θ

(2.3)

The following figure presents the flow of data within McCulloch-Pitts model. One

can notice that the artificial neuron strongly resembles procedures that take places

with its biological counterpart (Fig. 2.1).

Figure 2.2: McCulloch-Pitts model of an artificial neuron that takes the weighted
sum of inputs and corresponding weights and passes it through an activation function
to compute the final output value in a binary form (Rothman 2018).

Unfortunately the model presents several limitations as it can be only used for

linearly separable tasks. In addition its parameters (weights and threshold) are

pre-defined and fixed, and the input-output values can only be binary, thus greatly

restricting the model.

2.1.2 Perceptron

The next major advancement happened in 1958 when Frank Rosenblatt developed

what is known as perceptron, a supervised learning algorithm for binary classification

task (Rosenblatt 1957). The idea of a perceptron was based on the classical MCP

model, with one crucial difference. Rosenblatt’s main contribution came from the

introduction of a perceptron’s learning rule which enabled the algorithm to learn or

16 Chapter 2. Deep Learning - Technical Background

adjust its weights to a set of values that would allow it to draw a linear decision

boundary between two linearly separable classes.

Figure 2.3: An example of two classes being linearly separated by decision boundary
drawn with use of perceptron.

During the learning phase the model is exposed to a data set that contains a set of

training examplesX and a set of corresponding output labels Y . Firstly, the vector

of weights is initialized either with small random numbers or with zeros. Next, for

each training sample xi ∈ X the output class label ŷ is computed by passing the

weighted sum of weights w and input features from the current training sample xi

to the activation function ϕ(z) (Eq. 2.1 and 2.3). The computed or predicted ŷ is

compared with the corresponding ground truth label yi ∈ Y to calculate the error

value and update the weights accordingly. The perceptron’s learning rule states that

each weight wj ∈ w is formally updated as:

wj := wj + ∆wj (2.4)

and the ∆wj value for updating weight wj is calculated as:

∆wj = η(yi − ŷi)xji (2.5)

2.1. History 17

where wj is the weight connection for the j input feature in xi training sample, yi

is the ground truth class label, ŷi is the predicted label and η is a small constant

value between 0.0 and 1.0 typically known as learning rate. The learning rate is a

crucial hyperparameter in training perceptron models, as it significantly influences

the convergence and stability of the learning process.

Figure 2.4: Perceptron learning rule.

Figure 2.4 demonstrates how similar the perceptron is in comparison to the MCP

model (see Figure: 2.2) with the difference of computing the error in order to update

the weights.

In contrast to the MCP, the perceptron does not only accept binary values as its

input but rather any real values, however, it’s main advantage comes from the

capability of learning weights with respect to the input data, giving it more flexibility

and an ability for greater generalization. The model does certainly demonstrate

several improvements over classical MCP, nonetheless, it is still largely restricted

only to binary classification tasks where the data must be linearly separable. Despite

the limitations of both MCP and perceptron, both models made an enormous impact

within the field and laid a foundation ground for the future development of artificial

neural networks that will be discussed further in the following subsections.

18 Chapter 2. Deep Learning - Technical Background

2.2 Multilayer Perceptron

A model of a perceptron can be further understood as a two-layered neural network

with an input and an output layer. A multilayer perceptron (MLP) also referred to

as feed-froward neural network builds upon the idea of a conventional model of a

perceptron by introducing at least one or more hidden layers between an input and

an output layers as well as a non-linear activation functions e.g sigmoid :

ϕ(z) =
1

1 + e−z
(2.6)

Figure 2.5 demonstrates an example of an MLP with four layers where the data

traverses in a forward way from input to output layer through intermediate hidden

layers. One can notice that every neuron (node) in one layer is connected to every

other neuron in the following layer through the weighted connections, thus enabling

the model to create more complex internal representation of the data within each

consecutive layer.

Figure 2.5: Multilayer perceptron with a single input layer, two hidden layers and
an output layer with a single node (Guérillot et al. 2017).

2.2. Multilayer Perceptron 19

The aim of such an MLP is to approximate an arbitrary function f ∗ by learning

values of connection weightsW between the neurons so that f ∗ : x→ y where x is

a vector of features corresponding to a single data sample and y is a desired output

(LeCun et al. 2015).

To further understand the computational process that occurs within an MLP let’s

consider an example of a regression task where a three-layered network with input

layer lin, one hidden layer lh and output layer lout is trained to predict an output

vector ŷ so that ŷ ≈ y. First, let D denote the dataset with X-Y input-output

pairs where X ∈ Rm×n, Y ∈ Rm×n with m denoting a number of samples within D,

and n defining the size of input-output vectors. Next let x ∈ X represent a single

data sample with y ∈ Y being a corresponding ground truth label, W randomly

initialized connection weights between neurons and b a bias vector.

The lin is initialized with n neurons where n is equal to the size of input data x,

thus an ith neuron of lin corresponds to xi ∈ x. As mentioned before each neuron in

layer l is connected to all neurons in layer l−1, and therefore an input z to the first

neuron in hidden layer lh1 i.e. weighted sum of connection weights and input values

can be computed as:

z = lin1 W
h
1,1 + lin2 W

h
1,2 + . . .+ linnW

h
1,n + b (2.7)

where linn is the nth neuron in layer lin and W h
1,n is the weight connecting neuron lh1

with neuron linn . The final output value of neuron lh1 is further calculated by passing

z through a non-linear activation function e.g. Sigmoid function (see Equation:2.6):

lh1 = ϕ(z) (2.8)

All neurons in each layer are computed with 2.7 and 2.8 although the choice of

20 Chapter 2. Deep Learning - Technical Background

activation function may vary throughout the layers. The choice of an appropriate

activation function is often determined by numerous factors, for example, when

predicting values within range 0-1 such as probabilities, it is desirable to use an

activation function whose output offers this range. Other reasons might include

computational speed or ease of optimization. Next, the predicted value ŷ i.e. the

output value of a neuron in lout is compared with y to measure the prediction error

for the particular sample x. This is further repeated for all data points x1, x2, . . . , xn

with use of a loss function J(W) e.g. Mean Squared Error (MSE) which computes

an averaged squared distance between all predictions and the corresponding ground

truth such that:

J(W) =
1

n

n∑
i=1

(yi − ŷi)2 (2.9)

The result of the J(W) is used by backpropagation (Rumelhart et al. 1988) to com-

pute its gradient ∆J(W) with respect to parameters W . The computed gradient

is further used by an optimisation algorithm e.g. gradient descent (Ruder 2016)

to slightly adjust the weights in a way that minimizes J(W), hence allowing the

network to predict ŷ that is closer to the ground truth y. This briefly explains a

single epoch (iteration) of the MLP training process which is repeated for n number

of epochs or until the network converges i.e. the global minimum of J(W) has been

reached.

2.3 Convolutional Neural Network

The development and design of neural networks for processing data with grid-like

topology (e.g. images) known as Convolutional Neural Network (CNN) goes back

to the 80’s (Fukushima 1980, Waibel et al. 1989) and have been primarily inspired

by the prior research on the visual system and processing within animal’s brains

(Hubel & Wiesel 1968). And although in 1989 LeCun et al. (1990) successfully

2.3. Convolutional Neural Network 21

demonstrated capabilities of CNN’s on a real-world task by training such a network

with backpropagation to recognise handwritten digits, it wasn’t until 2012 when

Alex Krizhevesky won the annual ImageNet challenge with AlexNet (Deep CNN)

(Krizhevsky et al. 2012) that these networks have been truly recognized.

Similar to an MLP, a CNN architecture and model is composed of number of layers

where layer l is connected to layer l + 1, however, the main difference comes from

the use of a convolution operation or a convolution layer instead of a general matrix

multiplication in at least one of layers (Goodfellow et al. 2016). First, an input image

I ∈ Rh1×w1 is fed to the initial convolution layer which is composed of number of

learnable 2D filters or kernels that can be further considered as CNN’s weightsW .

Each filter is defined as a K ∈ Rh2×w2 where h2 ≤ h1 and w2 ≤ w1. The main idea

behind convolution is to "scan" a small portion of an input image I with a local

receptive field whose size is defined by the size of K, and compute the dot product

between "scanned" patch and K, hence a result of discrete 2D convolution between

matrices I and K at point (i, j) is computed with:

(I ·K)i,j =
∑
m

∑
n

I i−m,j−nKm,n (2.10)

which can be further visualized with the following figure: The receptive field, thus

Figure 2.6: Convolution operation between input matrix (lower blue grid) and kernel
matrix. The darker blue grid indicates patches of the input data that are currently
scanned by the receptive field. Each patch is multiplied by the respective kernel
values and summed up to yield the state of the neuron (dark green node) in the
feature map (upper green grid) (Dumoulin & Visin 2016).

K is then "shifted" by the stride s = (h,w) for both height and width of I, re-

peating the convolution until the whole of I has been covered by K (Fig. 2.6).

22 Chapter 2. Deep Learning - Technical Background

Such convolution yields a matrix F , often called feature map that stores states of

computed neurons. Interestingly, what can be observed from figure 2.6 is that the

spatial size of of F is smaller than I, more precisely of =

⌊
oi − ok

s

⌋
+ 1 where

oi and ok is the size of I and K respectively. In numerous situations however, it

is desirable to e.g. retain the spatial size of an input or convolve over it such that

the size of an output feature maps is a fraction of the original size of an input. To

overcome this, a convolution layer introduces another hyperparameter p known as

padding which pads the input volume with zeros around its borders. The padding

amount can be further determined by its mode, and thus the size of of is now defined

as of =

⌊
oi − ok + 2p

s

⌋
+ 1. Figure below demonstrates the use of same padding

mode, one can clearly notice that such mode allows to preserve the original size of

I at its output.

Figure 2.7: Convolution between I ∈ R5×5 and K ∈ R3×3 where s = (1, 1) and
p = same which yields F ∈ R5×5 (Dumoulin & Visin 2016).

It is worth noting that the convolution layer produces several feature maps using

learnable filters, where each filter aims to detect or extract certain feature from the

input image (e.g. straight line). Therefore, the output of convolution layer is a

3D tensor F ∈ Rh×w×c where h and w denote the height and width of each feature

map respectively, and c denotes the total number of feature maps. In addition, each

F ∈ F is passed through a non-linear activation function e.g. 2.6 before being

passed further to a network’s consecutive layers e.g. pooling layer.

In a typical CNN architecture the convolution layer is generally followed by a pooling

layer which aims to summarise a m×n area of the input feature map. The pooling

2.3. Convolutional Neural Network 23

mechanism can be further understood by comparing it to the convolution where

a h × w kernel "shifts" through the input by stride s. Pooling employs similar

structure, however, instead of using kernels and computing dot product between I

and K, it extracts e.g. a maximum or average value from the current m × n

patch. The result is a spatially reduced feature map that preserves most valuable

information. In addition to downsampling, pooling also helps to attain a certain

level of invariance with respect to various linear transformations e.g. translation,

rotation.

Figure 2.8: An example of a CNN architecture. The input image of the Samoyed
dog (bottom left corner) runs through number of convolution layers where learned
filters extract distinctive features, creating several features maps. Each convolution
layer is also followed by pooling layer where spatial size of its output is significantly
reduced (LeCun et al. 2015).

As can be concluded, a CNN introduces within its architecture several techniques

that makes it more suitable for processing for instance an image data where mod-

elling as well as maintaining a spatial relationship between features is critical. First

and foremost, the idea of kernels and receptive field allows the network to greatly

reduce the number of learnable parameters, this is formally known as weight sharing

where each small kernel (weights) is reused over the entire input data. In compari-

son, a feedforward network with an input image of size 100× 100 would have 10,000

nodes in its input layer, resulting in 10,000s connection weights with proceeding

24 Chapter 2. Deep Learning - Technical Background

layer. Furthermore, image data have a strong 2D local structure which needs to

be maintained at least to a certain degree to extract local features and preserve

correlation between them. MLP ignores that as the input to the network in case of

2D image would be a flatten matrix i.e. vector of features, and therefore the result

of training would be constant regardless of the order of nodes (pixel values) in input

layer (LeCun et al. 1995).

Figure 2.9: Visualisation of features learned by a CNN. Each column (from left
to right) corresponds to a deeper layer within the network, thus the visualisation
becomes more abstract within each consecutive layer. Features range from simple
features such as edges, textures (first two columns) to complex features such as parts
and whole objects (last two columns) (Olah et al. 2018).

2.4 Recurrent Neural Network

Previous subsections gave a brief overview of two types of networks, MLP where

the information flows unidirectionally from an input to an output layer, and CNN

that can effectively capture spatial dependencies and extract salient features from

2.4. Recurrent Neural Network 25

e.g. images. Yet, it is often the case that the network’s predicted output depends

on the information from the past, e.g. anticipating vehicle’s future position greatly

relies on its past trajectory. Recurrent Neural Network (RNN) (Rumelhart et al.

1988) have been designed specifically to model temporal dependencies and process

sequential data. These types of network have been extensively applied to a variety of

tasks, mainly in the field of natural language processing (NLP), for instance speech

recognition (Graves et al. 2013), machine translation (Kalchbrenner & Blunsom

2013) and language modelling (Mikolov 2012).

Figure 2.10 demonstrates a comparison of a MLP and RNN architecture with a

single hidden layer. As previously discussed, in MLP the data flows in one direction

i.e. from input x to output y through hidden state h, in contrast the input of

RNN’s hidden state ht where t refers to a particular point in time (or position in

the sequence) is composed of the input vector xt at time t and the output of the

hidden layer from previous timesteps. Feeding the hidden layers of RNN with the

data from previous timesteps enables the model to retain information about the past

samples, hence h can be further interpreted as a "naive memory" of the network

that contains a summary of past sequence of inputs up to t.

Figure 2.10: A comparison of MLP and RNN architecture with a single hidden layer.

As stated before RNN’s hidden layer (note that both state and layer will be used

interchangeably throughout this section) receives its incoming signal from the input

layer as well as from past hidden layers, therefore the computation of a forward pass

is almost identical to that of MLP. To understand the process further let’s consider

26 Chapter 2. Deep Learning - Technical Background

an example of a RNN with just a single hidden layer. Figure below illustrates an

unfolded computational graph of the RNN presented earlier in figure 2.10

Figure 2.11: Unfolding of the computational graph of a single layered RNN. Note, for
simplicity the bias term as well as non-linear activation function have been omitted.

Let xt, yt and ht denote the input, output and hidden state of the network at time

t respectively. The connection between xt and ht is parameterized by weight matrix

U , whereas the recurrent connection from ht−1 to ht by weight matrix W , hence,

the output of ht can be computed with the following equation:

at = Uxt +Wht−1 + b (2.11)

ht = ϕ(at) (2.12)

where b corresponds to the additional bias term and ϕ represents a non-linear acti-

vation function. The result of ht is further used to obtain the output of the network

at time t (i.e. yt) by applying the following:

ot = V ht + b (2.13)

yt = ϕ(ot) (2.14)

where V denotes the connection weights between ht and yt. One can notice that

the unfolded graph illustrates a crucial idea that allows RNNs to effectively process

2.5. Backpropagation and Optimization 27

sequential data i.e. parameter sharing. Weight matrices U , W and V are shared

across timesteps (or sequence lengths), therefore the network can exploit that prop-

erty to generalize to the data of various sequence length. Let’s consider an example

of the following two sentences "Yesterday, I went to the cinema" and "I went to the

cinema yesterday", standard MLP would have a separate parameters for each input

feature, thus, it would learn rules for a sentence where words are placed in specific

order, whereas RNN model would present generalization capabilities due to the use

parameter sharing (Goodfellow et al. 2016).

Unfortunately, training a conventional RNN can be difficult if the input sequence

is long (e.g. over 10 timesteps) as the gradient that propagates back through time

tends to vanish or explode exponentially, thus preventing the network from updating

weights and learning the appropriate mapping between input-output. In the liter-

ature this issue is commonly referred to as vanishing gradient (Bengio et al. 1994)

and over the years numerous solutions were proposed to address it with a common

RNN choice being a LSTM (Hochreiter & Schmidhuber 1997) or GRU (Chung et al.

2014) architectures.

2.5 Backpropagation and Optimization

2.5.1 Backpropagation

The process of finding an optimal set of weights during the training of a neural

network is at its heart guided by the previously mentioned algorithm called Back-

propagation (Rumelhart et al. 1988). The backpropagation algorithm is used to

compute the gradient of a function where in a case of neural networks the function

is an arbitrary loss function that measures e.g. the difference between the network’s

predictions and the ground truth data. The gradient vector is further computed with

28 Chapter 2. Deep Learning - Technical Background

respect to all parameters of the network using chain rule which describes the impact

of each parameter on the objective function and defines the direction in which the

weights should be adjusted as to minimize (negative gradient) network’s overall loss.

As an example, let’s first start with a simple case of performing a backpropagation

on a single neuron (a perceptron) with two inputs x1, x2 and a single output y. Let

f : (x1, x2) → y be the mapping function that describes the computation of the

neuron which is further parameterized by corresponding weights and bias term such

that f = f(x1, x2;w1, w2, b). Recall that the activation of a neuron is computed by

first multiplying inputs with corresponding weights, let h(xi, wi) = xiwi define the

function that multiplies a single input xi with a corresponding weight wi. Next,

each output of h(xi, wi) is summed with the bias term to obtain the raw score

of a neuron which can be defined by the following function given two inputs z =

g(h(x1, w1), h(x2, w2), b) = h(x1, w1) + h(x2, w2) + b. The computed raw score is

then passed through some activation function, for this example let the activation

function be a ReLU non-linearity:

ϕ(x) =

x if x > 0

0 otherwise

(2.15)

thus, the final activation of a neuron is a = ϕ(z). Since this is a case of a single

neuron the activation a is the actual target output ŷ such that a = ŷ. Lastly, in order

to measure the difference between a neuron’s output ŷ and the target ground truth

y a loss function is employed, in this case a simple MSE such that J(ŷ, y) = (ŷ−y)2.

As can be seen from the example the computation required to obtain the measure

of how close the prediction is to the ground truth follows the following chain of

functions J(ϕ(g(h(x1, w1), h(x2, w2), b)), y). Recall that the aim of backpropagation

is to compute the gradient vector of a loss function which contains a set of partial

derivatives with respect to the network’s parameters, in this case the parameters of

2.5. Backpropagation and Optimization 29

a single neuron are w1, w2 and b therefore the aim is to obtain the following:

∇J(ŷ, y) =

∂
∂w1

J(ŷ, y)

∂
∂w2

J(ŷ, y)

∂
∂b
J(ŷ, y)

 =

∂
∂w1

∂
∂w2

∂
∂b

 J(ŷ, y) (2.16)

and as mentioned before, the chain rule which states that the derivative of a function

chain is a product of derivatives of all functions in the chain is being used to compute

each partial derivative within the gradient vector. For example, the chain rule states

that the derivative with respect to x given the following chain of functions f(g(x))

is:
d

dx
f(g(x)) =

df(g(x))

dg(x)

dg(x)

dx
(2.17)

and therefore the partial derivative of the loss with respect to e.g. w1 can be further

computed using the chain rule as:

∂J(ŷ, y)

∂w1

=
∂J(ŷ, y)

∂ŷ

∂ŷ

∂z

∂z

∂x1w1

∂x1w1

∂w1

(2.18)

where the partial derivative of the loss function (MSE) with respect to the neuron’s

prediction is calculated as follows:

∂J(ŷ, y)

∂ŷ
= 2(ŷ − y) (2.19)

and the partial derivative of the ReLU non-linearity with respect to the neuron’s

raw output is computed as:

∂ŷ

∂z
=
∂ReLU(z)

∂z
= 1(z > 0) =

1 if z > 0

0 otherwise

(2.20)

and furthermore, the partial derivative of a neuron’s output z which is a result

of g(h(x1, w1), h(x2, w2), b) = h(x1, w1) + h(x2, w2) + b with respect to h(x1, w1) is

30 Chapter 2. Deep Learning - Technical Background

simply 1. Lastly, the partial derivative of h(x1, w1) with respect to the weight w1 is:

∂h(x1, w1)

∂w1

=
∂x1w1

∂w1

= x1 (2.21)

and therefore computing the partial derivative of a loss with respect to w1 can be

formulated as:
∂J(ŷ, y)

∂w1

= 2(ŷ − y)1(z > 0)x1 (2.22)

This process can be then repeated to find the partial derivatives of w2 and b and

compute the gradient vector. Generalizing the above process where a backpropa-

gation, or a backward pass is performed on an arbitrarily deep neural network is

also trivial. For instance, considering the current example of a single neuron, let

that particular neuron connect to multiple neurons in the proceeding layer within

the network, thus each of those neurons receives an input (an activation) from that

one particular neuron. In such a case, when backpropagation is performed, each

neuron from the proceeding layer will return its partial derivative with respect to an

input received from a neuron from a previous layer. Therefore, that single neuron in

the current layer will receive, instead of a single value, a set of values (vector) that

encapsulates partial derivatives of all neurons from the proceeding layer to which

that particular neuron is connected to. The vector that contains all those partial

derivatives is then summed up so that the neuron at the current layer ultimately re-

ceives a single value that defines it’s impact on the proceeding layers and ultimately

the loss of the whole network.

2.5.2 Optimization

Once the backpropagation is finished computing partial derivatives of loss with re-

spect to each weight within the network the last step in the learning process of the

network can be executed. The optimization of neural network is relatively straight

2.5. Backpropagation and Optimization 31

forward at its core and follows a slightly similar process to the one used within per-

ceptron’s learning rule defined in equations 2.4 and 2.5. In essence, given a weight

w (or a bias b) and it’s computed derivative ∆w the simplest optimization step can

be performed as follows:

wi+1 = wi − η∆wi (2.23)

where η defines a learning rate. The above equation defines the simplest optimization

algorithm known as Gradient descent (GD) (Ruder 2016) which aims to optimize

weights of neural network such that the network converges to some global minimum.

In theory, given a convex loss function, the GD algorithm is guaranteed to reach

the global minimum, however, in practice when training deep neural networks which

are typically used to learn a complex mapping between input and output data, it is

non-trivial to reach the global minimum and the network generally ends up in some

local minimum. For example, simply choosing an appropriate η value for learning

might often be a challenge. A learning rate that is too low might cause the network

to stagnate causing the model to be stuck in some non-optimal local minimum. On

the other hand, high updates to network’s parameters might cause the model to

drastically jump over the loss landscape, never reaching some optimal point.

Generally speaking, there exists a number of different variations of the vanilla GD

algorithm. Amongst them the most well known are Stochastic gradient descent

(SGD) and Mini-batch gradient descent (MBGD). The vanilla GD fits the whole

dataset at once whereas the SGD fits a single sample at a time and a MBGD fits

a small batch of data which is usually sampled at random. Usually, the vanilla

GD is not the optimization algorithm of choice as it’s extremely slow and can be

intractable. On the other hand, SGD fits only a single sample at a time meaning

that it is significantly faster than GD but the training process can be very unstable.

Finally, the MBGD, which is actually often refereed to as SGD in the literature or

other deep learning resources, combines best of both vanilla GD and SGD. Since

32 Chapter 2. Deep Learning - Technical Background

the MBGD performs weights update for every sampled mini batch it means that

the training is still considerably fast and most importantly it is significantly more

stable since the variance of parameters updates is noticeable reduced as compared

to SGD.

2.6. Conclusion 33

2.6 Conclusion

This chapter provided a thorough explanation of the basics of essential deep learning

concepts. First of all, a brief history of neural networks was provided, starting with

an explanation of a simple McCulloch-Pitts model who’s development was inspired

by the biological neuron. Next, a perceptron model was introduced to demonstrate

the subsequent step in development of an artificial neuron. The perceptron takes

the idea that was previously presented with the MCP model, however, in addition it

introduces its learning rule, a crucial part of the algorithm which allows the model

to adjust its weights so that its output is more precise with respect to the target

data. Next, an explanation of Multilayer perceptron was provided to demonstrate

further extension of a simple perceptron into an artificial neural network which

introduces the idea of using a layer of neurons that propagate data in a forward

manner from an input layer, through a number of hidden layers to finally reach

the output layer. Furthermore, two popular variants of an artificial neural network

were demonstrated, namely the convolutional and recurrent neural networks which

aim to deal with spatial and temporal data respectively. Finally, a vital algorithm,

backpropagation was clearly explained with a simple example of how the network’s

error is propagated backward to compute its gradients which are then used by an

optimization algorithm to train the network. The next chapter will provide the

reader with an extensive review of the literature within the area of vehicle motion

prediction.

Chapter 3

Literature Review

This chapter will provide a comprehensive review of the relevant literature within

the area of short-term motion prediction. The literature review will primary focus

on a trajectory forecasting from the perspective of autonomous vehicle, however,

some work from the area of pedestrian motion prediction will also be discussed as

numerous methods can be transferable and applicable for vehicle motion forecasting.

3.1 Kinematic and Dynamic Models

Vehicle’s motion forecasting has been generally approached with an assumption that

the evolution of object’s state through time remains primarily governed by laws of

physics and can be therefore modeled with some known mathematical model. These

methods commonly use a variation of the well known bicycle model (Gillespie 1992)

that portrays a vehicle as a two-wheeled entity on a 2D plane (see Figure: 3.1).

The bicycle model is then combined with a kinematic motion model that computes

an estimate of the future state vector with the following differential equation (Li &

Jilkov 2003):

ẋ(t) = v(t) cos θ(t) (3.1)

34

3.1. Kinematic and Dynamic Models 35

ẏ(t) = v(t) sin θ(t) (3.2)

v̇(t) = at(t) (3.3)

θ̇(t) = an(t)/v(t) (3.4)

where an denotes normal acceleration, at the tangential acceleration, ẋ, ẏ, v̇, θ̇ rep-

resents target x, y coordinates as well as the velocity and heading angle of a vehicle

respectively. Nonetheless, kinematic models are often restricted due to the lack of

consideration of numerous forces e.g. tire or aerodynamic drag forces that affect vehi-

cles’ motion. Thus, dynamic motion models are often employed to account for those

limitations (Rajamani 2011). Some of the popular motion models frequently found

in the literature include; constant velocity (CV), constant acceleration (CA), con-

stant turn rate and velocity (CTRV), constant turn rate and acceleration (CTRA),

constant steering angle and velocity (CSAV) and constant curvature and accelera-

tion (CCA). A more in-depth review of those models can be found in Schubert et al.

(2008). Additionally, filtering algorithms such as Kalman filter (KF) (Kalman 1960)

and its variations namely extended KF (EKF) (Jazwinski 2007) and unscented KF

(UKF) (Julier & Uhlmann 2004) are often combined with motion models to improve

prediction accuracy and account for the noise introduced through numerous sensor

measurements. For instance, Lin et al. (2000) proposed a modified dynamic bicycle

model in order to predict a vehicle’s future path and prevent drivers from drifting off

the roadway in the presence of various disturbances e.g. wind effects, road crown.

The path prediction however, could only be executed under an assumption that the

certain road conditions are met, and the vehicle’s speed remains constant for the

duration of prediction.

Moreover, Huang & Tan (2006) investigated if the differential GPS (DGPS) based

system can be used to obtain more accurate vehicle data such as its position in global

coordinate systems against previously proposed methods that focused on data col-

36 Chapter 3. Literature Review

Figure 3.1: An example of two degree of freedom bicycle model by Lin et al. (2000)
where δ denotes the front wheel steering angle, u the forward vehicle speed, m the
lumped vehicle mass, v the translational velocity along the body-fixed lateral axis,
r the yaw rate, Iz the yaw moment of interia and lastly, a and b the distance from
vehicle’s centre of gravity to the axels.

lection from vision sensors. The captured data was then combined with information

describing vehicle dynamics to estimate its future states using proposed models.

Nonetheless, presented methods were based on a simple kinematic model that as-

sumed no drastic change of a driver’s intention as well as that both longitudinal and

lateral motion will remain constant during the short prediction window.

On the other hand, Hillenbrand et al. (2006) incorporated a simple kinematic model

to reason about future states of two agents of interest and use it to measure the time

until potential collision. The accurate estimation of vehicles future motion with use

of proposed model however, was again highly dependant on several assumptions such

that the acceleration remains constant during prediction time, and that past states

of tracked vehicles are perfectly known.

In addition, Ammoun & Nashashibi (2009) also addressed the issue of risk estimation

from the perspective of predicting vehicle’s trajectory using dynamic model and

3.1. Kinematic and Dynamic Models 37

geometrical data that represents road topology. The proposed method applied KF

to filter the noisy input data and recursively estimate a future position of the agent.

Nevertheless, an accurate approximation could only be achieved if several parameters

remained constant during computation time.

Next, Barth & Franke (2008) introduced an image based solution for vehicle track-

ing and motion estimation. The method proposed the use of a 3D point cloud to

detect and represent an object of interest in a spatial domain through time. Ad-

ditionally, the further use of a 3D point cloud representation allowed to estimate

its motion parameters that could be then filtered with the EKF. Unfortunately,

the approach could not be considered as robust and reliable as the uncertainty of

trajectory prediction grows quadratically as the distance increases.

As previously mentioned, variety of methods in the literature focus on using tra-

jectory prediction as a intermediate step towards detection of dangerous situations

that might potentially lead to a collision. This idea was further explored by Batz

et al. (2009) where a dynamic model and the KF were adopted for future state esti-

mation. Interestingly, the methodology was presented from a perspective of agents

working in a cooperative fashion where the data between vehicles was exchanged for

anticipation of both motion and collisions. Yet, in order for the proposed approach

to be successful it required no changes of driver’s actions during prediction interval,

and an access to an advanced digital map that defines the surrounding.

Another body of work that approached the issue of path prediction and collision

avoidance from the perspective of modelling an environment with cooperative agents

was presented by Lytrivis et al. (2008). The proposed method exploited the dynamic

vehicle model and fused the motion data processed by the KF as well as road ge-

ometry information using (Jang et al. 1997) to compute more realistic path for up

to 3 seconds into the future. In addition, each agent could communicate with other

agents within 400 meter radius to exchange KF filtered motion data, which further

38 Chapter 3. Literature Review

allowed for more advanced path anticipation by considering intentions of all agents

within the defined reach.

Benefits of including road geometry for the more reliable path prediction were further

demonstrated by (Polychronopoulos et al. 2007). The presented approach combined

several algorithms as well as data defining road structure to create a hierarchically-

structured method for the vehicle’s state estimation that was then used to anticipate

the driver’s intention and detect potentially dangerous situations.

Furthermore, the following work by Houenou et al. (2013) examined and discussed

numerous advantages that come from having a manoeuvre recognition module (MRM)

integrated into motion forecasting system as its intermediate step. The classification

of tracked vehicle’s current manoeuvre considered the computed distance between

target’s current path and road lane’s center lines as a classification metric. For

instance, if the measured distance between vehicle’s path and lane that was being

followed was lower than empirically defined threshold, then the vehicle was per-

forming a keeping lane manoeuvre. Next, with regards to the motion prediction,

authors combined the following; a Constant Yaw Rate and Acceleration (CYRA)

motion model as well as path prediction based on manoeuvre recognition, in or-

der to compute the final, weighted prediction of the future position. Experimental

results demonstrated the effectiveness of the final model whereby the prediction er-

ror of future path decreased dramatically when comparing separate predictions of

both CYRA and MRM, particularly on non-linear paths. For example, the average

prediction error of the model based solely on CYRA and for the time horizon of

2-3 seconds was reported to be 2.3 metres whereas the model that combined both

CYRA and MRM managed to reduce this error to just 0.28 metres.

3.2. Monte Carlo Methods 39

3.1.1 Summary

This section extensively explored the application of kinematic and dynamic mod-

els, often rooted in the bicycle model. Kinematic models, though foundational, are

limited by their oversight of critical forces like tire or aerodynamic drag, prompting

the adoption of dynamic models, including constant velocity (CV), constant accel-

eration (CA), and others. The integration of filtering algorithms, such as Kalman

filters, enhances prediction accuracy by addressing sensor measurement noise. While

these models offer a diverse range of options for motion prediction, drawbacks in-

clude their reliance on assumptions of constant conditions, potential inaccuracies in

unpredictable scenarios, and dependencies on idealized circumstances or advanced

infrastructure. Robustness issues, particularly in image-based solutions, and the

complexity of certain algorithms further highlight the challenges in achieving accu-

rate short-term motion predictions for autonomous vehicles in dynamic real-world

environments.

3.2 Monte Carlo Methods

In numerous situations some desired quantity cannot be precisely determined due to

e.g. required computational complexity. Instead, its approximation can be obtained

using random sampling based algorithms such as Monte Carlo methods (Hammersley

2013) at reduced cost. As the sampling from a given distribution allows to compute

integrals in the form of:

c = Ex∼P [f(x)] =

∫
P (x)f(x)dx (3.5)

which can be considered as an expectation over random variable x. Hence, the target

expectation c can be further estimated by drawing n samples from P to compute

40 Chapter 3. Literature Review

the empirical average such that:

ĉn =
1

n

n∑
i=1

f(xi) ≈ c = Ex∼P [f(x)] (3.6)

and as the law of large numbers states that as the sample size n grows and if all

samples xi, . . . , xn are i.i.d, then the average converges to the expected value:

lim
n→∞

ĉn = c (3.7)

The following work, described by Broadhurst et al. (2005) defines a framework based

on Monte Carlo sampling to approximate a probability distribution of potential

future paths for every object in the scene. Next, the agent’s trajectories sampled

from the estimated distribution are evaluated against approximated paths of all other

agents within the scene to determine the potential likelihood of future collision.

Moreover, Eidehall & Petersson (2008) extend the threat assessment framework

presented by Broadhurst et al. (2005) with an introduction of iterative sampling

which removes and replaces sampled trajectories that lead to collision earlier in the

processing pipeline.

Furthermore, work presented by Pepy et al. (2006) proposed a combination of the

dynamic bicycle model examined by Taheri (1992) with rapidly-exploring random

tree (RRT) (LaValle 1998) to reduce prediction error of the path planning module.

Authors demonstrated that their method was capable of producing realistic and

smooth paths whilst accounting for wheel slipping. Yet, high vehicle speed during

computation time restricted the method to successfully find collision free paths.

Next, Petti & Fraichard (2005) introduced the so called partial motion planning

(PMP) technique to address the problem of motion planning within dynamic en-

vironments composed of variety of stationary and dynamic obstacles. In general,

the PMP was used to compute and construct a set of partial, possible trajectories

3.2. Monte Carlo Methods 41

over small period of time. Then, a small subset of trajectories was explored and

examined with RRT as well as inevitable collision state (ICS) (Fraichard & Asama

2004) framework to determine and chose collision-free paths exist within the subset.

An alternative variation of RRT, namely closed-loop RRT (CL-RRT) for motion

planning was further described by Kuwata et al. (2009). It is worth mentioning

that the outlined algorithm was used during 2007 DARPA Urban Challenge by the

MIT team and their vehicle Talos. The CL-RRT computed and then simulated

possible future movement of the agent based on the defined vehicle motion model

and the control unit. The forward pass of the algorithm generated a set of potential

future states which were then simulated and examined against what was defined

as the drivability map (2D grid) that encoded the data of the surrounding such as

lane boundaries, obstacles etc, to find an optimal, collision-free set of nodes (future

states) that could be selected as a candidate trajectory.

3.2.1 Summary

While traditional deterministic methods for predicting agent motion in autonomous

vehicles can be computationally expensive, several Monte Carlo and sampling-based

approaches offer efficient alternatives. Techniques like Monte Carlo sampling and

iterative sampling estimate likely future trajectories by drawing samples from prob-

abilistic models, while RRT-based methods like PMP and CL-RRT explore and

refine feasible paths within dynamic environments. These methods excel in reduc-

ing computational load and handling complex situations with multiple agents, even

achieving success in real-world challenges like the DARPA Urban Challenge. How-

ever, limitations exist in their accuracy, computational demands at high speeds, and

ability to model long-term interactions. Further research is necessary to refine these

approaches and address these limitations for robust and accurate short-term motion

prediction in autonomous vehicles.

42 Chapter 3. Literature Review

3.3 Bayesian Framework

3.3.1 Bayesian Networks

Probabilistic models such as Bayesian networks (BNs) (Jensen et al. 1996) allow to

capture and define conditionally dependent and independent relationships between

a set of random variables. Those are further modelled with a directed acyclic graph

where nodes correspond to random variables, and edges represent their relationship

as a probability distribution. As an example, let A,B and C denote a set of three

random variables where P (B | A), P (C | A) and both B and C are independent of

each other such that P (B | A,C), P (C | A,B). Hence, the joint probability of B

and C given A can be computed as a product of P (B | A) and P (C | A):

P (B,C | A) = P (B | A)P (C | A) (3.8)

and so the joint probability of P (A,B,C) can be further defined as:

P (A,B,C) = P (B | A)P (C | A)P (A) (3.9)

Alternatively, Hidden Markov models (HMMs) (Rabiner 1989) which can be further

perceived as dynamic Bayesian networks where edges of the graph do not have to

be direct and can therefore contain cycles are also often employed to model the

probability distribution over a sequence of states that are not directly observable

(hidden states). The system that is being modeled with the HMM satisfies the

following assumptions:

1. Probability of transitioning to the future hidden state depends solely on the

current hidden state i.e. P (st+1 | st) = P (st+1 | st, st−1, . . . , s0), and is there-

fore independent of the past which further satisfies the Markov property.

3.3. Bayesian Framework 43

2. After each transition, the model yields an observable state that is dependent

only on the current hidden state i.e. P (ot | st) = P (ot | st, ot−1, st−1 . . . , o0, s0).

The work described by Schreier et al. (2014) presents a framework for safety assess-

ment of on-road situations in a multi agent scenarios with use of Bayesian networks

for manoeuvre identification and motion forecasting. At each measured time step

a modeled BN yields a probability mass function over a discrete set of manoeuvres

for all agents within the environment, which is then used to associate appropriate

trajectory prediction model for each of the detected manoeuvres. Thus, enabling the

overall framework to use trajectory prediction model that can adapt to the specific

situation.

An example where HMMs were used to model probability distribution over a se-

quence of observations can be found in work by Vasquez et al. (2008). Authors of

this work discussed the importance of learning motion patterns that could be as-

sociated with agents’ destinations in a given environment, thus, allowing HMMs to

learn and exploit them for an accurate approximation of future movements. In ad-

dition, an unsupervised learning algorithm namely the Growing neural gas (GNG)

(Fritzke 1995) was implemented to identify and learn HMMs’ states as well as a

prior state transition probabilities. This work was further extended by Vasquez

et al. (2009) where a variation of HMM specifically growing HMM (GHMM) was

proposed. The suggested improvement allowed GHMMs to perform online learning,

thereby enabling constant modification and update of states and their transitions

with new observations.

Another body of work that examined use of HMM with respect to the task of

motion anticipation in urban environments was discussed by Akabane et al. (2017).

HMMs were trained to output a sequence of possible future road segments based on

the vehicle’s current location where a single segment denoted the closest reachable

position within 20 meter radius. In addition, the Viterbi algorithm (Forney 1973)

44 Chapter 3. Literature Review

was applied to find the most likely sequence corresponding to the agent’s future

motion. Despite promising findings, this work requires further advancements as

several complex and stochastic factors that occur within urban context were ignored.

Next, Berndt et al. (2008) implemented HMMs as the proposed solution with re-

spect to the issue of ego vehicle’s intention inference and recognition. The suggested

approach consisted of numerous separate HMMs that were trained to distinguish

between lane changing, turning and lane following manoeuvres at an early stage.

Classification results presented in the paper revealed promising results with rela-

tively low error rate indicating a sensitivity of 71% and 74% for detecting left and

right lane change maneuvers, respectively. Nevertheless, in order for the system to

be successfully applied in a broader context e.g. for traffic risk assessment or motion

forecasting, further experiments with manoeuvre recognition of not just ego vehicle’s

intention but rather surrounding agents should have been conducted.

Hülnhagen et al. (2010) investigated and discussed a manoeuvre recognition ap-

proach based on probabilistic finite-state machine (PFSM) (Vidal et al. 2005) and

Fuzzy logic (Zadeh 1965). More specifically, each of the considered manoeuvres

was decomposed into a temporal sequence of basic elements that described it (e.g.

braking, driving slowly). Then, those elements were identified using the Fuzzy logic

based module, and further modeled with PFSM to represent transition probabili-

ties between them. Lastly, a Bayes filter presented by Thrun (2002) was applied to

classify the manoeuvre.

3.3.2 Gaussian Process

In numerous statistical approaches parameters θ of some unknown function f∗ are

being inferred from the data x such that P (θ | x). The Gaussian process (GP)

(Rasmussen 2003) on the other hand aims to define a prior distribution directly

3.3. Bayesian Framework 45

over functions P (f | x) that fit the data and then compute and update its posterior

with e.g. Bayesian inference (BI). For a regression task, a GP’s prior can be fully

define as:

f(x) ∼ GP(m(x), k(x,x′)) (3.10)

which further requires a finite, arbitrary set of function’s outputs f(xi) such that

p(f(xi), . . . , f(xn)) forms a multivariate Gaussian characterised by some mean vec-

tor µ = m(x) and covariance matrix Σ = k(x,x′) which models covariance between

each pair in x. Thus, m(x) and k(x,x′) define GP’s mean and covariance (kernel)

function respectively:

m(x) = Ex∼P [f(x)] (3.11)

k(x,x′) = Ex∼P [(f(x)−m(x))(f(x′)−m(x′))T] (3.12)

where k(x,x′) must be a positive definite kernel. Since the kernel of GP controls its

measure of uncertainty (variance) its choice might vary, one of the often used kernel

function is squared exponential kernel (RBF kernel):

k(x,x′) = σ2
f (−

1

2`2
(x− x′)2) (3.13)

As an example, let f ∗ denote function outputs of interest given elements of the test

set x∗ ∈ X∗. Given GP’s definition, the joint distribution of the training and the

test data is formulated as: f
f ∗

 ∼ N

µ
µ∗

 ,
K K∗

KT
∗ K∗∗

 (3.14)

where µ represents the mean of the training data and µ∗ the test data. K, K∗ and

K∗∗ further denote the covariance matrices of training set, training-test set and test

46 Chapter 3. Literature Review

set respectively. Considering that GP’s prior defines joint Gaussian:

P (f |X) = N (f | µ,K) (3.15)

its posterior distribution for test set, given training set can be further derived with:

P (f ∗ |X∗,X,f) = N (f ∗ | µ(X∗) +KT
∗K

−1(f − µ(X)),K∗∗ −KT
∗K

−1K∗)

(3.16)

The GP based approach was further explained by Joseph et al. (2011) in the context

of motion modelling for the future position anticipation. A mixture of Gaussian pro-

cesses were applied to provide an adaptive representation of motion patterns derived

from trajectory data where each pattern was quantified by a combination of loca-

tion derivatives (i.e. velocities) which further allowed to group similar patterns that

were close to one another. In addition, the authors pointed out an important issue

in regards to GP where a finite number of patterns needs to be known in advance for

the correct modelling. To remedy this issue a Dirichlet process (DP) (Teh 2010) was

included to allow adding new behaviours as the data was observed. Hence, forming

a distribution over discrete set of distributions of potentially unbounded number

of motion patterns with an assumption that a finite number of these patterns is

generally followed.

Furthermore, a combination of GP and UKF was used within the work by Tran &

Firl (2013) to tackle the issue of modelling and and predicting drivers’ intentions as

well as their future motion in a complex surrounding, specifically urban intersections.

Authors trained a single GP regression model per each of the defined manoeuvres

which included driving straight and turning left or right. Then, using the observed

data that defines subject’s vehicle state over time a manoeuvre model that best fits

that state was adopted for further movement prediction. Lastly, the selected model

was combined with UKF to account for non-linear prediction of future position in

3.3. Bayesian Framework 47

a multi-step manner. Moreover, improvements of this work were later presented

by Tran & Firl (2014) where drawbacks of using UKF were addressed. Firstly, to

improve the long term prediction a particle filter algorithm (Thrun 2002) based

on given GP regression model was employed with combination of the Monte Carlo

sampling for multimodal predictions.

Next, McCall et al. (2007) addressed the recognition of driver’s intention to lane

change with sparse Bayesian learning methodology (SBL) (Tipping 2001) to learn

the mapping between the input vector of features and the set of discrete manoeu-

vres in a probabilistic fashion. Results indicated an increase in performance when

the data describing head motion was incorporated within the prediction model as

opposed to sole use of lane tracking and CAN bus data.

Moreover, Morris et al. (2011) developed a framework based on Bayesian variation

of support vector machine (SVM) (Cortes & Vapnik 1995) namely relevance vector

machine (RVM) (Tipping 2000) to capture and predict driver’s future intent. The

predictive model was trained specifically to distinguish between an intention of lane

changing and lane keeping using features collected from numerous sensors, including

head tracking camera to observe driver’s head position and orientation. As reported,

the RVM based classifier achieved reliable results in a highway scenario where lane

change manoeuvre was anticipated for up to three seconds before it was executed.

3.3.3 Summary

The Bayesian framework offers several promising approaches for short-term mo-

tion prediction in autonomous vehicles. Bayesian networks model agent maneuvers

and adapt predictions accordingly, while hidden Markov models learn motion pat-

terns and destinations, even adapting online. Gaussian processes provide adaptive

motion representations and handle multimodal predictions, and combined methods

48 Chapter 3. Literature Review

address specific challenges like long-term prediction and driver intention. However,

limitations remain in accuracy, computational demands, and handling complex en-

vironments.

3.4 Machine Learning

3.4.1 Classification and Regression

Predictive models provide a way to approximate some arbitrary function f∗ which

aims to map a set of inputs features x to an output variable y ∈ y. In a supervised

setting where ground truth labels are present the training of predictive models can

be loosely categorised into tasks of classification or regression where the former aims

to map x to a discrete output variable y corresponding to a class label e.g. cat or

dog (binary classification), and the latter predicts y as a continuous quantity, for

instance a price of a property.

Support vector machine (SVM) (Cortes & Vapnik 1995) being a widely used super-

vised model solves the classification task by finding an optimal decision boundary

(hyperplane) in an affine space by maximising margin between closest data points

(support vectors) of both classes y ∈ {+1,−1} such that:

f(x) =

+1 if wTx+ b ≥ 0

−1 if wTx+ b < 0

(3.17)

where w is the weight vector and b is the bias term. Thus, if the given data point

xi lies below or above the hyperplane then its class label is yi = −1 or yi = +1

respectively. Although SVM is generally used for classification, it can also be applied

for regression task where the decision boundary is used to find a some continuous

value y rather than to separate the data point xi to class yi.

3.4. Machine Learning 49

In a work by Mandalia & Salvucci (2005) the use of SVM was explored for the task of

detecting and classifying lane change behaviour. First of all, the authors examined

a set of features that predominantly contribute to a differentiation of the defined

classes i.e. lane keeping or lane changing. Then, a SVM was trained with the data

collected from highway scenarios in a temporal manner where an input to the model

was constructed from a set of features collected over a constant time window.

Another example of SVM classifier was presented by Aoude & How (2009) where

the predictive model was trained to distinguish between harmless and dangerous

behavior. Additionally, the output of the SVM was further processed with Bayesian

filter (BF) (Bishop 2006) to account for the temporal manner of the problem by

estimating the probability of the SVM’s output in the future. Lastly, the approx-

imated classification score was fed through the empirically defined threshold unit

to compute final behavior category. Further advancements of this work were pre-

sented by Aoude et al. (2011) where the performance of the SVM-BF algorithm was

examined against the HMM to determine their suitability for discussed scenarios.

3.4.2 Clustering

Clustering algorithms allow to analyse the data in an unsupervised fashion where no

ground truth labels are present. Furthermore, these methods focus on identifying

and grouping together data points that manifest similar features and are therefore

close together in a given space. The degree of similarity between data points is

determined by a dissimilarity function e.g. Euclidean distance:

d(x,x′) =

√√√√ n∑
i=1

(xi − x′i)2 (3.18)

In the context of trajectory or manoeuvre prediction clustering can for instance

refer to determining motion patterns within the data for further inference. K-Means

50 Chapter 3. Literature Review

(Hartigan & Wong 1979) is an example of a popular clustering algorithm which aims

to iteratively group n data points into fixed number of k clusters with nearest mean

by minimising the objective function J :

J =
k∑
j=1

n∑
i=1

‖x(j)
i − cj‖ (3.19)

where ‖x(j)
i − cj‖ is the distance between data point x(j)

i and cluster centre cj. The

step-by-step approach to the K-Means works as follows:

1. k random points are randomly selected as cluster centers or centroids c1, . . . , ck.

2. Each data point x1, . . . , xn is assigned to the closest centroid c∗ based on the

distance function.

3. Each centroid c1, . . . , ck is updated by re-computing the average of all data

points within given cluster.

4. Step 2 and 3 is repeated until convergence.

K-Means offers a straightforward, yet naive and limited solution for cluster anal-

ysis. Its main drawbacks arise from hard clustering in which each data point is

assigned to a single group, and from its distance function which is measured from

centroids, effectively creating restricted round shaped clusters. Those issues can

be addressed through soft probabilistic clustering such as Gaussian mixture model

(GMM) (Reynolds 2009), also called mixture of Gaussians (MOG) where each clus-

ter is assumed to form a single multivariate Gaussian distribution, thereby allowing

each data point to be assigned to more than one cluster in a probabilistic manner.

Considering that GMM is just a linear combination of k Gaussians with some mean

µ and covariance matrix Σ weighted by π it can be further formulated as:

P (xi | θ) =
k∑
j=1

πjN (xi | µj,Σj) (3.20)

3.4. Machine Learning 51

Vasquez & Fraichard (2004) suggested a statistical approach towards motion predic-

tion based on the clustering technique from earlier work of Hofmann & Buhmann

(1997). The primary hypothesis established in this work was that objects’ movement

within a given environment can be characterised with a certain number of general

patterns which further enabled the model to learn those from training data. Then,

during estimation stage, a partially observed trajectory was associated with one of

k clusters for further estimation of agent’s possible future motion.

The work by Veeraraghavan et al. (2006) further investigated how the combination

of GMM and UKF can be utilised to predict motion of vehicles at intersection by

sampling from the state distribution. Moreover, the data defining motion of agents

(discrete position and velocity) was collected using surveillance camera rather than

on-board sensors, and further processed with a computer vision tracking algorithm

(Veeraraghavanm & Papanikolopoulos 2004). Results presented in numerous figures

demonstrate that the proposed methodology, based on Gaussian Mixture Model

(GMM) and deterministic sampling, was capable of predicting future motion with

significantly lower error compared to the standard Kalman filter.

Next, Wiest et al. (2012) suggested to use GMM to approximate the probability

density function that describes possible future motion. The GMM based approach

enabled the model to extract and learn motion patterns from agents’ trajectories

and then based on observed historical data infer a probability distribution defining

subsequent movement for up to 2 seconds. In addition, a variant of GMM was

implemented i.e. Variational GMM (VGMM) (Nasios & Bors 2006) to overcome the

disadvantages imposed by GMM such as overfitting and sensitivity to outliers.

A more recent body of work with regards to clustering of a lane changing and lane

keeping behaviour was demonstrated by Augustin et al. (2018). More specifically,

the K-means as well as agglomerative hierarchical clustering (AHC) (Tan et al.

2016) were trained to form a representation (prototype) of trajectories with respect

52 Chapter 3. Literature Review

to the defined manoeuvres classes. Results revealed predominance of using AHC as

opposed to K-means in a highway environment. Then, with the generative classifier

from (Hubert & Van Driessen 2004) a manoeuvre estimation was executed using

an input in a form of partially observed motion of an agent as well as clusters’

prototypes defined as the mean value of all trajectories within particular cluster.

In addition, authors proposed to utilise classification results for the approximation

of the vehicle’s future motion with the discrete Wiener process acceleration model

(Bar-Shalom et al. 2004).

3.4.3 Deep Learning

Lee et al. (2017) introduced a framework for multi-modal vehicle trajectory predic-

tion and presented numerous benefits of integrating an interaction aware module

within it. The proposed approached named DESIRE was primarily constructed

through a combination of a CNN to extract semantic scene context, the condi-

tional variational auto-encoder for multiple plausible future trajectories conditioned

on past trajectories, and the RNN to account for encoding and decoding of states

through time. In addition, to further assess the quality of predicted hypothetical

trajectories, a framework based on inverse optimal control (IOC) (Abbeel & Ng

2004) was employed to learn an unknown reward function for ranking and refining

of the decoded future motion.

Furthermore, Choi et al. (2019) also proposed a multi modal motion prediction

framework DROGON based on causal reasoning of agents’ intentions and interac-

tions. Yet again, the CVAE conditioned on agents’ possible actions was employed

to approximate the posterior distribution for multiple possible trajectory anticipa-

tion. In addition, numerous penalty terms were introduced to encourage the model

to predict more natural future locations within drivable road boundaries. Results

clearly demonstrate a great reduction with respect to prediction error which further

3.4. Machine Learning 53

indicate advantages of incorporating intention and interaction aware modules into

the network. For example, DROGON managed to reduce the average and final dis-

placement error (ADE/FDE) (Eq. 4.6, 4.7) over 40% for trajectory prediction of

up to 4 seconds as compared to the state-of-the-art GatedRN-20 Choi & Dariush

(2019).

Luo et al. (2018) approached the discussed task from a perspective of training their

proposed model named Fast and Furious (FaF) for numerous related tasks such as

detection, tracking and motion prediction, in an end-to-end fashion. As typically

employed, these task are learned independently, sending their output forward within

the pipeline which fundamentally, as authors argue, can greatly limit the propagation

of uncertainty produced by each module. FaF on the other hand is trained end-to-

end allowing it to learn dependencies of each task and jointly reason about future

predictions. The model uses a 3D point cloud data to construct a sparse bird-

eye-view of the surrounding over observed number of timesteps which is further

processed by numerous convolutional layers that output future bounding boxes of

tracked agent. In terms of motion prediction, results demonstrate a satisfactory

performance being able to predict 10 frames of motion into the future with L2 being

less than 0.33 meter. However, the model was not tested on any publicly available

dataset but rather on an in-house dataset, and in addition no comparison with any

of the recent approaches (at the time of writing) was made.

Chandra, Bhattacharya, Bera & Manocha (2019) presented a deep learning based

model (hybrid LSTM-CNN) named TraPHic that addresses the issue of motion

forecasting in dense traffic whilst simultaneously accounting for interactions be-

tween numerous heterogeneous on-road participants (e.g. bikes, buses). TraPHic

captures relationships between traffic agents by defining a fixed horizon of inter-

est (semi-elliptical region) using an empirically determined radius as opposed to

the conventionally employed grid-based methodology (Deo & Trivedi 2018a). The

54 Chapter 3. Literature Review

states of observed agents are then processed through a LSTM layer to account for

the temporal dependencies, and further encoded through a CNN layer to learn local

on-road interactions. Further extension of this work was presented by Chandra,

Bhattacharya, Roncal, Bera & Manocha (2019) where instead of using manually an-

notated data to train the proposed model, all trajectories were obtained from RGB

cameras and tracking algorithm.

The following work presented by Deo & Trivedi (2018b) proposes a LSTM network

based on encoder-decoder architecture to tackle the issue of motion prediction on

a freeway. The main contribution of the work comes from training the model in

a fashion that can present interaction aware capabilities between multiple agents,

and by conditioning the future trajectory prediction of the vehicle of interest on

six different manoeuvre classes. The network is constructed such that it takes the

past motion of all agents within the scene as its input and then predicts manoeuvre

class of the vehicle of interest which allows to further anticipate the distribution

of possible future motions with respect to the anticipated class. Despite plausible

results it is quite evident that the network computes its predictions solely on naive

past states of observed agents (past motion coordinates) which could be further

improved by including numerous other relevant data points such as their velocities,

yaw angles etc, potentially leading to an increase of performance as well as an ability

to being examined in more complex scenarios rather than just on freeway.

In their work Djuric et al. (2020) argued that in order to learn essential features of

the environment, one must transform its context into a meaningful representation

that will contain information with respect to road layout as well as all agents within

the scene. Their work proposes to model the static scene context by rasterising it

into a top-down view HD map data that describes the road’s drivable surface, lanes,

crosswalks, agents’ movement through time etc. The rasterised static context of the

scene is then used as an input to the CNN layer which extracts and learns salient

3.4. Machine Learning 55

features of the road. The encoded road features are further combined with the

agent’s state and passed through a subsequent MLP in order to predict a plausible

future motion along with the standard deviation that accounts for the uncertainty of

predictions per trajectory point. Further extension of this work was demonstrated

by Cui et al. (2019) where yet again a rasterised image of the surrounding was

utilised for the prediction of agents’ future motion. However, in comparison to the

previous study where a single trajectory for the agent of interest was anticipated, this

work extended the prior model and tackled the issue of reasoning about multi-modal

nature of the task by forecasting number of candidate future trajectories along with

the estimate of the probabilities. In order to assign the best matching probability to

each of the mode (trajectory), authors suggested to first predict an arbitrary number

of future motions which can then be used to select the closest matching mode with

respect to the ground truth motion, and then to employ a novel multiple-trajectory

prediction (MTP) loss (Rupprecht et al. 2017) to force the probability of the best

selected mode to be as close to 1 as possible.

Next, Marchetti et al. (2020) demonstrated an interesting approach by utilising the

memory augmented network (Weston et al. 2014) to learn the association between

past and future motion and memorise most meaningful samples. The proposed

model was constructed in a encoder-decoder manner with two encoding functions

for learning past and future trajectories, and a decoder for reconstruction of fu-

ture motion from latent representation of encoders’ outputs. Moreover, the network

presented ability of updating its internal representation of motion samples in an

online fashion, thus allowing for continuous improvement as new samples are col-

lected. Despite the fact that various aspects such as interactions between agents

were not modelled, the network managed to outperform several previously proposed

approaches e.g. DESIRE by over 25% on a 4 seconds prediction horizon.

One of the main issues with regards to motion prediction that the current approaches

56 Chapter 3. Literature Review

manifest is poor generalisation capabilities with respect to e.g. unknown or never

previously seen datasets. The work by Srikanth et al. (2019) tackles this very issue by

constructing an intermediate representation of feature space from numerous bird’s

eye view maps. Each map is generated from stereo and LiDAR data to form various

semantic representations of the scene such as lanes, roads, obstacles etc. Next, the

generated intermediate representation is fed through a CNN-LSTM based network

to predict location of the vehicle of interest on an occupancy grid map.

On the other hand Gao et al. (2020) investigated a novel approach of transform-

ing input features such as lanes, agents’ trajectories, crosswalks into a vectorised

form and incorporating those into a model based on graph neural network (GNN)

(Battaglia et al. 2018). The structure of GNN was divided into local (MLP) and

global (self-attention (Vaswani et al. 2017)) graphs in order to allow the model to

capture data from both individual polylines as well as from its aggregated global

representation. The performance of proposed GNN was further compared to a CNN

based on ResNet-18 architecture. Experimental results indicate that the proposed

GNN required over 70% less parameters as compared to ResNet-18, which ulti-

mately lead to significant boost in performance (18%) and reduced computational

requirements whilst achieving state-of-the-art performance for predictions of up to

3 seconds on the publicly available Argoverse dataset (Chang et al. 2019).

Another use of the GNN for the task of the trajectory prediction was introduced by

Lee et al. (2019) where the main task was divided into two sub-tasks i.e. modelling

joint interactions between a pair of agents, and combining predictions from subse-

quent task with agents’ past states to reason about their future motion. The authors

assumed that there exists a set of discrete interactions between a pair of agents e.g.

yielding to another driver, that can be learned from labeled data, thus allowing the

GNN based model whose nodes and edges represented agents of interest as well as

their long-term intents respectively to learn those in a supervised fashion.

3.4. Machine Learning 57

Next, Messaoud et al. (2020) emphasized the importance of inferring trajectory cues

from both scene structure and past motion data of interacting agents, and proposed

a model based on multi-head attention (Vaswani et al. 2017) for the future motion

anticipation. The discussed work suggests to encode and concatenate a joint repre-

sentation of all agents of interests as well as a top-down view of static scene through

an LSTM encoder and a pre-trained CNN (Krizhevsky et al. 2012) respectively.

Furthermore, the encoded context can be divided into a spatial grid that is used

to model future trajectory distribution as a mixture model where each attention

head of the multi-headed mechanism corresponds to a single mixture component.

Thus, allowing each attention head to focus on a distinct parts of the encoded scene

resulting in a diverse and more accurate multi-modal future predictions.

Vast majority of motion forecasting approaches focus on formulating the discussed

problem as a regression task. Recently proposed method called CoverNet (Phan-

Minh et al. 2020) proposes to frame this as a classification task over a set of generated

trajectories. The main motivation arises from an assumption that given the current

state of an agent within an environment, there exist a finite amount of relatively

reasonable actions that an agent can execute within a short period of the future

time horizon (e.g. 6 seconds). First, the set of plausible trajectories is generated

using either fixed approach where a subset of future motions is sub-sampled from the

training set without considering the observed agent’s state, or using the dynamic

approach where trajectories are generated based on the currently observed state

of the agent with the dynamic model. Next, the scene context (top-down view of

the surrounding) is encoded with a pre-trained ResNet-50 and further concatenated

with an agent’s current motion state. Finally, the concatenated encoding is fed to

prediction layer which outputs probabilities over the fixed set of trajectories. Results

of experiments conducted on public urban self-driving datasets demonstrated that

CoverNet can outperform previously proposed methods by over 30% on a 6 seconds

prediction horizon, whilst ensuring that a plausible set of possible trajectories is

58 Chapter 3. Literature Review

being covered.

The use of deep learning based methods within the area of motion forecasting has

not been explored solely from the point of view of autonomous vehicles. A large

body of work has also examined applications of these models in the area of human

trajectory prediction with a great emphasis on modeling interactions between e.g.

pedestrians in crowded spaces. An example of such work was presented by Alahi

et al. (2016) where a LSTM based network (Social LSTM) was applied to implicitly

model complex interactions between people, thus allowing to account for numerous

non-linear behaviors which in essence lead to a more intelligent and robust predic-

tion of agents’ future paths. Most importantly, authors addressed LSTM’s inability

to capture spatial dependencies between multiple sequences through a novel pooling

layer refereed to as social pooling. The social pooling mechanism uses a grid-based

approach where encoded LSTM’s hidden states corresponding to an agent of interest

as well as its nearby neighbours are placed inside a tensor such that their spatial

relationship can be partially preserved. The social tensor as well as agent’s coordi-

nates over the observed time-steps are further encoded and then finally decoded to

output an estimate of future positions.

An extension of Social LSTM, namely Social GAN (S-GAN) was further presented

by Gupta et al. (2018) where a pooling mechanism was replaced with a MLP and

max pooling operation resulting in a decreased computational costs as well as an

increase of overall performance. Moreover, the authors demonstrated the use of

generative adversarial networks (GANs) (Goodfellow et al. 2014) to account for the

multi modal nature of the task. In addition, a novel variety loss was introduced to

encourage the network to learn a wider distribution of the possible trajectories with

respect to agent’s observed past data whilst being consistent in producing paths that

are socially plausible. Formerly discussed approaches introduced numerous interest-

ing ideas with respect to modelling of social constrains, however, when navigating

3.4. Machine Learning 59

through complex and stochastic environments it is crucial to consider not only social

but also physical limitations imposed by the surrounding. SoPhie (Sadeghian et al.

2019) addresses both of these limitations by employing a soft attention mechanism

(Xu et al. 2015) for both physical features extracted from image representation of

the scene, as well as social features i.e. hidden states of observed agents and their

joint representation.

On the other hand the following work by Nikhil & Tran Morris (2018) also focuses

on predicting the motion of pedestrians, however, instead of using a RNN based

network to process the sequential data it utilises a convolutional layers to encode

and predict future coordinates. Given only the past coordinates of observed agent

the proposed CNN based model is able to achieve a competitive results with some of

the state-of-the-art models e.g. 0.59/1.22 vs 0.61/1.121 ADE/FDE against S-GAN-

P, whilst dramatically decreasing the inference time per frame from 0.067 seconds

(S-GAN-P) to 0.002 seconds.

More recent approach within the area of pedestrian motion prediction presented by

Giuliari et al. (2020) explored a novel use of transformer networks (Vaswani et al.

2017) to model temporal dependencies between past and future states. During re-

cent years transformer networks demonstrated a superior performance on a diverse

set of language tasks (e.g. text generation, sentiment analysis) (Radford et al. 2018,

2019, Brown et al. 2020) significantly outperforming LSTM based models due to

their improved ability of handling long-term dependencies as well as the use of at-

tention mechanisms which further forces the model to focus on the salient parts of

e.g. given sentence. In the discussed work the authors examined vanilla transformer

as well bidirectional transformer (BERT) (Devlin et al. 2018) against numerous ap-

proaches on the TrajNet benchmark (Sadeghian et al. 2018). Despite the inability of

modelling social interactions in crowded environment between pedestrians, the pro-

posed transformer model has been able to achieve competitive performance against

60 Chapter 3. Literature Review

other approaches whilst demonstrating greater capabilities of predicting multiple

future motions further into the future.

The idea of pooling mechanism for the purpose of modelling the context of on-road

social interactions was also extended within the domain of AVs. For instance the

following work by Deo & Trivedi (2018a) proposes a use of pooling layer based on

convolutional layer as well as max-pooling operation as opposed to the methodologies

presented in similar prior work by Alahi et al. (2016) and Gupta et al. (2018). More

specifically, states of all observed agents in the scene are encoded with an LSTM

encoder and placed within a tensor (social tensor) to preserve spatial relationship.

Then, instead of using an MLP for further encoding, a convolutional layer and the

max-pooling operation are applied on top of the obtained tensor to extract local

salient features corresponding to interactions between agents. Lastly, based on the

social encoding as well as encoded state of the vehicle of interest a distribution

of possible future motions can be predicted with respect to six different discrete

manoeuvre classes.

A similar approach was also demonstrated by Zhao et al. (2019) where apart from

considering an encoded context of on-road social interaction a spatial features of

the road were also encoded to account for physical context of the surrounding.

Additionally, a conditional GAN (Mirza & Osindero 2014) dependent on the scene

context and past trajectories of all agents was trained to account for multi-modality

of the task.

Another example of utilising the pooling mechanism for modelling of on-road social

interactions was presented by Messaoud et al. (2019) with an extension of attention

mechanism. In their work, Messaoud et al. used a grid-like approach to preserve

spatial relationship between target vehicle and surrounding agents which further en-

abled the model to learn local dependencies through the use of convolutional layers

with depthwise kernel as demonstrated by Chollet (2017). Furthermore, considering

3.4. Machine Learning 61

that employing convolutional layers only enables the model to capture local interac-

tions between nearby vehicles, a multi-headed attention was implemented in order

to ensure that a weighted non-local encoding of the relationship between agents

can also be obtained. Despite promising results, the proposed model was examined

solely on a highway datasets and it is therefore arguable whether its effectiveness

would be persistent within a more challenging environments.

More recent approach where social pooling was employed was presented by Zhang

et al. (2020). The proposed model also follows the methodology of placing tracked

agents within a grid map to retain spatial structure, however, in comparison to

previous studies where e.g. a convolutional operation with max pooling operation

is used to create a so called Social tensor, authors propose to instead use dilated

convolutional operation (Yu & Koltun 2015) to reduce loss of data caused by the

pooling operation. Additionally, a stacked sparse auto-encoders (Du et al. 2016)

were introduced to extract and encode salient features that correspond to agents’

states. Nevertheless, the described methodology was only examined within a high-

way scenario and was not compared against any of the recently published methods

for further validation of its performance.

3.4.4 Summary

In the realm of short-term motion prediction, diverse methodologies have been

explored, spanning classical machine learning and cutting-edge deep learning ap-

proaches allowing to predict accurate motion of agents for up to 6 seconds into the

future. Classification and regression models, like Support Vector Machines, exhibit

effectiveness in discerning behaviors, while clustering algorithms, including K-Means

and Gaussian Mixture Models, uncover motion patterns through unsupervised anal-

ysis. The surge in deep learning, witnessed in models like DESIRE, DROGON, and

FaF, showcases the superior capacity of CNNs, RRNs, and Transformers in captur-

62 Chapter 3. Literature Review

ing intricate interactions and temporal dependencies. Innovations like CoverNet and

TraPHic introduce trajectory classification and hybrid architectures, while SoPhie

and transformer-based models extend their prowess to human trajectory predic-

tion. Challenges persist in adapting these methods to diverse real-world scenarios,

warranting ongoing research for robust, adaptable solutions in short-term motion

prediction for autonomous vehicles.

3.5 Conclusion

This chapter focused on reviewing the literature in the field of motion prediction,

primarily from the perspective of automotive vehicles. The importance of the task

that is trajectory forecasting has been thoroughly outlined and discussed. First of

all, section 3.1 examined more classical methodologies based on the kinematic and

dynamic physical motion models that often combine additional filtering algorithms

such as Kalman filter to account for the noise in the data. And although those meth-

ods often provide a straightforward set of solutions they generally require several

assumptions e.g. a constant lateral motion to remain fixed during the prediction

horizon and can therefore be only applied within environments that manifest a low

level of complexity. In addition, the accuracy of physic’s based models diminishes

rapidly for predictions that are non-linear and are longer than e.g. 1 second as they

rely solely on a low level properties of vehicle’s motion, further ignoring and not

considering numerous external factors such as road topology, on-road interactions,

manoeuvres etc.

Next, section 3.2 and 3.3 explored probabilistic methodologies such as Monte Carlo

sampling as well as methods that are based on the Bayesian framework, for example

Hidden Markov models. The discussed techniques demonstrated a great number of

definite advantages over both kinematic and dynamic models by for instance allow-

3.5. Conclusion 63

ing to capture conditional relationships between variables, or by enabling to obtain

an approximate estimation of desired motion using a large number of samples. Nev-

ertheless, in spite of numerous benefits, there are still various critical limitations

that the probabilistic based approaches manifest including short prediction horizon,

inability to accurately model multiple plausible motions, low capacity of captur-

ing the temporal dependency of future movement based on the past actions of the

tracked vehicle, e.g. HMM must satisfy Markov property and can thus compute

motion that depends exclusively on the current state.

Lastly, in section 3.4 an extensive review of recent machine learning techniques has

been conducted. First, the more classical ML algorithms such as SVM, K-Means,

GMM and others were examined, and despite the significant improvements that

those methods offer over previously discussed techniques that rely on e.g. physical

models there is still a number of substantial disadvantages that prevents them from

achieving low prediction error in complex environments. For example, as with pre-

viously discussed approaches the problem of a accurate anticipation for the longer

horizon than e.g. 1-2 seconds persists with the dramatic accuracy decrease as the

future prediction horizon increases. Moreover, section 3.4.3 covered a broad review

of most recent and advanced trajectory prediction methods based on deep learning

algorithms that are currently achieving state-of-the-art results on the motion fore-

casting task. As discussed in section 2.6 in recent years tasks that involve learning

from data has been primarily approached from the perspective of utilising DL based

algorithms mainly due to their ability to process raw, large amounts of data which

then allows those methods to automatically learn relevant abstract representation

required for the task at hand without the need of manual feature engineering. Yet,

even recently proposed methods present several limitations with respect to the an-

ticipation of agents’ future motion, especially in a more advanced surroundings such

as urban environments where a large space of possible non-linear options must be

considered. For example, all recent DL methods that employ some form of HD

64 Chapter 3. Literature Review

map data (generally in a form of top-down rasterised 2D images) focus on a large

portion of the surrounding to encode the global context of the surrounding which

might be sub-optimal considering that a smaller chunks of the map that capture lo-

cal surrounding can be used to obtain a more robust encoding of the tracked agent.

Additionally, the standard technique of encoding those maps involves employing one

of the popular CNN architectures e.g. ResNet-50 (He et al. 2016) with large number

of parameters that were initially pre-trained on a distinct task as well as dataset.

Generally, this method presents satisfactory results. However, it has been recently

demonstrated that for tasks that heavily depend on localization of salient features

it might be more beneficial to train the model from scratch directly on the task at

hand. As a result, the next chapter will explore an alternative way of using map data

to encode the captured information about the tracked agent in a form of local maps.

In addition, the subsequent chapters will investigate and demonstrate a variant of

the feature extractor that is based on a novel neural network architecture which will

aim to minimize the model’s complexity and alleviate some of the drawbacks that

standard CNN models exhibit.

Chapter 4

Investigating Local Maps for

Short-term Motion Prediction

This chapter will explore the usage of local geometrical maps and will aim to estab-

lish a set of baseline models for the subsequent parts of the thesis in the domain of

vehicle motion prediction. First, an overview of various public autonomous driving

datasets will be presented in order to determine their suitability for further experi-

ments. Next, the problem formulation as well as notation within this chapter will be

outlined. Furthermore, the concept of local geometrical maps as well as the process

of creating them will be introduced. Finally, a set of experiments and results will be

presented to demonstrate the performance of baseline models as well as advantages

of using local maps.

4.1 Introduction

The majority of recent approaches within the area of motion prediction has primarily

focused on exploiting the capabilities of deep learning models to learn complex

representations that would allow for an accurate anticipation of the tracked vehicle’s

65

66 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

short-term movement. As presented in the previous chapter, one of the popular

techniques that has been frequently employed to improve robustness and accuracy

of the predicted trajectories is to incorporate the global context of the environment

in the form of e.g. high definition maps (see Figure: 4.1) which encodes various

useful properties of the road such as lanes, walkways, other road participants and

so forth. Generally, a predominant manner in which those HD maps are utilised

involves first transforming them into a rasterised top-down image of the surrounding,

and then using this spatial representation of the road as an auxiliary data for the

DL model during both training and inference as presented for example in the work

by Phan-Minh et al. (2020) or Cui et al. (2019). Moreover, the usual approach

when using the rasterised map is to extract a large portion of the map (e.g. a

portion that encompasses 60× 60 meters) with respect to agent’s position to allow

the network to detect and encode salient features as well as enable the agent to ’see’

what lies in front of it. Whilst this approach demonstrated plausible results it is still

unclear whether indeed a large portion of the environment must be observable by

the model to make an accurate short-term prediction of the tracked agent’s motion.

In contrast, this chapter will focus on exploring and creating a more representative

encoding with respect to a single agent by exploiting its spatial representation within

an environment through a semantic, hierarchical view of a local chunk (e.g. 20× 20

meters) of a rasterised HD map.

4.2 General Setup

4.2.1 Dataset and Benchmark

An accurate prediction of agent’s future motion is greatly influenced by numerous

observable factors, primarily, as suggested by the conducted literature review, by its

past motion data such velocity, yaw angle etc. In addition, a vast majority of recent

4.2. General Setup 67

motion prediction techniques also demonstrated several advantages of incorporating

some form of map data which introduces information about the environment’s global

context into the processing pipeline. For instance, using a previously considered

Figure 4.1: An example of a rasterised top-down view of the HD map from nuScenes
dataset (Caesar et al. 2020) where a temporal motion of an ego vehicle has been rep-
resented with black dots, and a number of different road layers has been specifically
colour coded.

rasterised top-down view of HD maps with encoded road attributes where each

attribute is specifically colour coded as demonstrated in Figure 4.1 should enable

a CNN based feature extractor to learn the relevant road features with respect

to the spatial context of the scene as previously presented by Choi et al. (2019)

and Marchetti et al. (2020). It is therefore reasonable to explore and primarily

consider datasets that provide the access to such data for subsequent experiments.

Table 4.1 provides a comparison summary between various popular publicly available

autonomous driving datasets.

68 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

Dataset Locations Images Anns. Map
Type

Map
Layers

KITTI
(Geiger et al. 2012) Karlsruhe 15k 15k None 0

Cityscapes
(Cordts et al. 2016)

Germany
(50 cities) 25k 25k None 0

ApolloScape
(Huang et al. 2019)

China
(4 regions) 144k 144k None 0

H3D
(Patil et al. 2019) San Francisco 83k 27k None 0

A2D2
(Geyer et al. 2020)

Germany
(3 cities) 392.5k 12.5k None 0

A*3D
(Pham et al. 2020) Singapore 39k 19k None 0

Waymo
(Sun et al. 2020)

USA
(3 cities) 1m 200k None 0

Argoverse
(Chang et al. 2019)

Miami
Pittsburgh 490k 22k Raster, Vector 3

nuScenes
(Caesar et al. 2020)

Boston
Singapore 1.4m 40k Raster 11

Table 4.1: An overview of various public autonomous driving datasets that are often
used within the research community. Note that only two datasets (where map type
is not none) provide an access to some sort of map data.

As presented in the table 4.1 despite the existence of numerous publicly available

autonomous driving datasets there exists a limited number of them that provides

an access not only to annotations related to agents’ past movement but also to

a map data which offers a contextual knowledge of the surrounding and a strong

prior for further scene understanding. The two main candidates for experiments

are Argoverse and nuScenes. The Argoverse datasets contains the lowest amount

of annotations (22k) out of those potential sets, and only provides an access to two

map layers (driveable area and ground height) as well to an additional map in a

vectorised form where semantic road data is represented as a localized graph as

4.2. General Setup 69

opposed to the raster counterpart. Moreover, it’s main limitation arises from the

fact that each recorded sequence of a trajectory is only 5 seconds long meaning that

a predictive model is restricted to a prediction horizon that is shorter than 5 seconds

(considering at least a single time step of observed data as a model’s input).

On the other hand, nuScenes contains a large number of annotated frames (around

40k) with each recorded scene being at least 20 seconds long. In addition, the

dataset provides the access to rasterised top-down semantic maps with 11 different

types of map layers and it includes scenes that were recorded in Boston as well

as Singapore which provides the access to both left as well as right hand traffic.

Moreover, nuScenes offers the full availability of its development kit which enables

the easy access to various properties of the annotated samples such as the positions,

rotation and velocity and many more including semantic maps that can be rendered

with different combinations of semantic layers.

The nuScenes dataset extends its value beyond the provision of high-quality data.

It also offers a comprehensive toolkit that facilitates effective experimentation and

evaluation of models. This toolkit includes baseline physics-based models, provid-

ing researchers with a foundational starting point for benchmarking performance.

Additionally, it incorporates state-of-the-art model implementations drawn from

the literature, enabling easy comparative analysis and contextualizing the perfor-

mance of novel models. The availability of well-established evaluation metrics within

the toolkit ensures consistency and reliability in the evaluation process. Moreover,

nuScenes maintains a leaderboard for the relevant task, promoting direct compari-

son of model performance and ultimately fostering innovation and progress in the

field.

In conclusion, nuScenes exhibits several distinct advantages over comparable datasets,

justifying its selection as the primary source of experimental data. This dataset,

along with its accompanying toolkit, will be used for both the training of novel mod-

70 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

els and their benchmarking against established models from the literature through-

out this thesis and its subsequent technical chapters. The availability of well-defined,

standardized metrics within nuScenes further reinforces its suitability for reliable and

objective performance evaluation.

4.2.2 Problem Formulation and Notation

First of all, it is assumed that the vehicle equipped with the proposed method is

also fitted with an appropriate tracking sensor that is capable of producing data

corresponding to the state of a tracked agent at some fixed interval e.g. 2Hz. Addi-

tionally, it is assumed that the vehicle is capable of accessing the HD map data that

defines the following road layers; road segments, drivable areas, lanes and walkways.

Next, the goal of the trained model is to predict a sequence of the agent’s future

position differences for τ time-steps into the future with respect to its last observed

position at time t. The matrix containing a set of future predictions is further de-

noted as Ŷ = [ŷt+1, ŷt+2, · · · , ŷt+τ] where ŷt+1 corresponds to a vector containing

the difference in position at time t + 1 such that ŷt+1 = (∆x̂t+1,∆ŷt+1). Further-

more, let Y = [yt+1,yt+2, · · · ,yt+τ] encapsulate the ground-truth future position

differences and let S = [st−ρ, · · · , st−1, st] represent a matrix of the tracked agent’s

motion state from time-step t − ρ to the initial time-step t where ρ represents the

observed time horizon and where:

st = [v,a,∆ϑ] (4.1)

denotes a vector of features containing velocity (x, y) and acceleration (x, y) vectors

as well as a scalar value for the heading change rate respectively. Moreover, a

normalised tensor D = [Lt−ρ, · · · ,Lt−1,Lt] is defined which encapsulates the spatial

data that represents a set of rasterised top-down views of a local surrounding with

4.3. Local Semantic Layers 71

respect to agent’s position over the entire observed time horizon. Then, each L ∈ D

is unraveled into separate semantic layers such that Lt = [Lt,0, Lt,1, · · · ,Lt,n] where

n is equal to number of road layers e.g. drivable areas, and Lt,i is equal to a sparse

matrix that encapsulates spatial data of semantic layer of type i (see Figure: 4.2),

note that the process of constructing semantic layers will be explained in details in

the next subsection. Finally, both state matrix S as well as the ground truth matrix

Y are standardized so that each independent feature has a mean of 0 and standard

deviation of 1, and the image data, in this case the tensor D, is normalized so that

values are within the range of 0-1.

4.3 Local Semantic Layers

The following summarises the process of creating disentangled map chunks as de-

picted in Fig. 4.2.

First, let {(xt, yt) | pt ∈ P } denote a set of tracked agent’s observed coordinates

from time t to t− ρ where each pt ∈ P is used to define the origin of extraction for

a map chunk Lt at time t. Moreover, a single map chunk Lt is defined by n sparse

matrices (all pixels but the ones corresponding to the given layer are set to zero)

[Lt,0, Lt,1, · · · ,Lt,n] where the Lt,i corresponds to a semantic layer of type i. The

following types of layers are considered within this work:

S = {road_segments, drivable_area, lane, walkway} (4.2)

Thus, each local semantic layer with respect to pt can be further extracted by:

Lt,i = Φget_l(pt, λ, s), ∀ s ∈ S (4.3)

where λ defines the extraction offset in meters with a default resolution of 3 pixels

72 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

per meter. The local chunk of the layer of interest is then extracted from xt− 3λ to

xt + 3λ in a horizontal direction, and from yt− 3λ to yt + 3λ in a vertical direction,

hence, the final size of the Lt,i is 2λ × 2λ meters. In addition, an extra layer that

portrays the agent is created by rendering it at its origin defined by pt, with its

initial orientation facing up. Next, a rotation angle θ̂ with respect to the agent’s

yaw angle θ is computed as:

θ̂ = ((π/2) + sign(−θ) · |θ|) · 180/π (4.4)

which defines the rotation angle by which the agent is rotated so that its orientation

is aligned with its global heading direction. Lastly, the extracted images (layers)

are transformed from RGB to grayscale, and the up-scaled so that the final size of

each layer is equal to 64× 64 pixels.

4.4 Experiments and Results

This section will focus on establishing and evaluating a set of deterministic models

that will be used as baseline models for further experiments.

4.4.1 Experimental Setup

Results of subsequent experiments are obtained by training and evaluating models

within the subsequent subsections on the nuScenes dataset (see Section: 4.2.1) which

provides the access to 1000 scenes, each approximately 20 seconds long that were

collected in two different cities with both left and right hand traffic. The collected

scenes provide a wide diversity with regards to weather conditions, traffic situations

as well as traffic density. In addition, scenes and objects (e.g. vehicles, pedestrians)

were accurately annotated at the rate of 2Hz and modeled as cuboid, providing

4.4. Experiments and Results 73

Figure 4.2: Disentanglement process of a map chunk at time t − 2. The map is
turned into several geometrical layers each representing a single part of the whole
map. In addition, an agent is rendered (bottom middle and right images) with its
origin corresponding to the position on the chunk of interest.

further access to the object’s position, velocity and yaw angle (the acceleration is

further derived with the use of velocity). The dataset is further split in accordance

to nuScene’s train and val split sets 1. Since the test set has not been annotated

the train set is split into train (80%) and validation (20%) sets and the val set is

used as a test set. For every data sample the observed time horizon is set to 5

time-steps which corresponds to 2 seconds of agent’s past state, and the predictions

are made for every t ∈ {1, 2, 3, 4, 5, 6} seconds of the future time horizon. During

the initial experiment the size of a local chunk of a map is set to λ = 10 meters.

Furthermore, each model is trained for 100 epochs with Adam optimizer (Kingma &
1Available on the official repository

74 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

Ba 2014) with a constant learning rate of 5e− 4 and a batch size of 128. All models

are implemented with PyTorch (Paszke et al. 2019) and trained as well as tested

on a single Nvidia RTX 2080Ti. To account for the fact that models are subject

to random variation in training, the final results are computed as the mean and

standard deviation (std) over 5 independent training runs. Networks are optimised

by minimising the mean squared error loss function between predicted ground truth

and predicted trajectory:

J =
1

n

n∑
i=1

(yi − ŷi)2 (4.5)

The quantitative results are reported by employing the standard metrics from the

literature for the task of motion predictions that measure the difference between

ground truth and predictions in meters i.e. average displacement error (ADE) be-

tween all predictions of sample i:

ADE =
1

n

√√√√ n∑
i=1

(yi − ŷi)2 (4.6)

and final displacement error (FDE) between sample’s final prediction at time t+ τ :

FDE =
1

n

√√√√ n∑
i=1

(yi,t+τ − ŷi,t+τ)2 (4.7)

4.4.2 Establishing Baseline Models

First of all, two classic physics-based models will be introduced to serve as a baseline

methods against other DL models introduced within this subsection. First model

will be based on an assumption that vehicle’s velocity as well as the yaw angle

remain constant throughout the prediction horizon (constant velocity and yaw),

second model on the other hand will compute the minimum average point-wise

Euclidean distance over four different physics-based models; constant velocity and

4.4. Experiments and Results 75

yaw, constant velocity and yaw rate, constant acceleration and yaw, and finally a

constant acceleration and yaw rate. Next, as defined in section 4.2.2 both the input

as well as the output data are of sequential type, and thus it is reasonable to establish

at least one model that can process this type of data e.g. a RNN based network.

However, in order to measure the impact that a sequence of observed features has

on the predicted outputs, a model based on the feed-forward network that will be

trained on features observed at the last time-step t will also be examined. Lastly,

since the aim of this chapter is to examine the impact of semantic maps, a trivial

model based on a CNN architecture will also be evaluated against a CNN model that

uses global maps as an input. The following lists the initial set of models considered

during this experiment:

1. Cons. Vel. & Head. - A dynamic physics-based model that assumes that

the agent’s velocity as well as heading angle remain constant throughout the

duration of prediction horizon.

2. Physics Oralce - An extended version of basic physics-based models which

computes future predictions using numerous different constant physics-based

models and which chooses the final output to be the one with the minimum

L2 distance with respect to the ground truth data.

3. FCSingleTS - A simple neural network based solely on three fully-connected

layers with hidden size of 128, 64 and 2τ respectively, and with a ReLU non-

linearity (Nair & Hinton 2010) in-between whose input consists of the agent’s

state at the last observed time-step t i.e. st.

4. FCMultiTS - An extension of FCSingleTS model whose input not only con-

siders the last observable state of the agent but the entire sequence S.

5. LSTM - An RNNmodel based on a LSTM unit with a hidden dimension of 128

units for the purpose of examining whether a model that can naturally deal

76 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

with sequence data outperforms a simple network based on fully-connected

layers.

6. GRU - A more computationally efficient RNN model based on a GRU unit

with a hidden dimension of 128 units for comparison purposes against LSTM

model.

7. CNNL - A variant of a basic CNN based model that is built of a fully-

connected layer with 128 units as well as three convolutional layers whose

output channels are equal to 16, 32 and 32 respectively. The default kernel

size of 3× 3, a stride of 1 and a same padding mode is adopted for each con-

volutional layer. The fully-connected layer processes the flattened matrix S

in order to encapsulate the knowledge of the entire observed history, whereas

convolutional layers encode the information from the local semantic layers

(with a default size of 20× 20 meters). For the basic baseline experiments the

semantic layers are not split into separate geometrical layers, and instead of

using a sequence of local maps a single map at the last observable timestep t

is used as an input to the network which is further depicted in the first column

of Figure 4.2 at t−0. Finally, the output of fully-connected layer as well as the

convolutional layers is concatenated and processed by the final fully-connected

layer whose output is a predicted trajectory Ŷ .

8. CNNG - A second variant of the CNN model based on CNNL which uses

the same architecture, however, instead of using local maps as an input, it

uses global rasterised chunk of a map (60× 60 meters) centered at the agent’s

location.

The following presents results of the baseline models trained on the nuScene dataset

for up to 6 seconds of the future prediction horizon. First, Tables 4.2 and 4.3 present

results of the trained models with respect to the average displacement error which

4.4. Experiments and Results 77

Model Future Time Horizon (seconds) - ADE
1s 2s 3s

Const. Vel. & Head. 0.48 0.96 1.60
Physics Oracle 0.41 0.76 1.26
FCSingleTS 0.27 ± 0.00 0.62 ± 0.02 1.18 ± 0.03
FCMultiTS 0.24 ± 0.00 0.58 ± 0.00 1.11 ± 0.05
LSTM 0.24 ± 0.00 0.57 ± 0.02 1.05 ± 0.02
GRU 0.24 ± 0.00 0.60 ± 0.01 1.06 ± 0.01
CNNG 0.22 ± 0.00 0.57 ± 0.02 1.05 ± 0.00
CNNL 0.22 ± 0.01 0.56 ± 0.00 1.05 ± 0.00

Table 4.2: The average displacement error of proposed baseline models for the first
3 seconds of the future time horizon with each (in case of DL models) containing
the mean ADE and std over 5 different training runs.

Model Future Time Horizon (seconds) - ADE
4s 5s 6s

Const. Vel. & Head. 2.42 3.31 4.33
Physics Oracle 1.92 2.63 3.49
FCSingleTS 1.80 ± 0.08 2.54 ± 0.04 3.40 ± 0.07
FCMultiTS 1.74 ± 0.05 2.45 ± 0.05 3.31 ± 0.06
LSTM 1.68 ± 0.03 2.41 ± 0.01 3.22 ± 0.01
GRU 1.69 ± 0.01 2.43 ± 0.01 3.26 ± 0.02
CNNG 1.61 ± 0.00 2.40 ± 0.02 3.21 ± 0.01
CNNL 1.58 ± 0.01 2.38 ± 0.00 3.17 ± 0.01

Table 4.3: Further results of the ADE for the future predictions between 4-6 seconds.
Again, each cell with DL model presents a mean error and std of 5 independent
training runs.

computes an average error over the entire predicted trajectory of all samples. As

can be seen from both tables, physics based models demonstrate the worst perfor-

mance with the constant velocity and heading model performing significantly worse

than the physics oracle as well as other deep learning models. The large perfor-

mance gap is further shown in Figure 4.3 where the error of the constant velocity

and heading model grows exponentially as the prediction horizon increases. On the

other hand however, the physics oracle model presents a similar performance as the

78 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

Figure 4.3: A plot of ADE for all models over the entire set of future prediction
time-steps. As can be seen the gap between constant velocity and heading model
and other models increases exponentially for more distant predictions.

FCSingleTS with the relative ADE difference of only 0.09 meters for the 6 second

prediction horizon. Next, observing the mean performance of the DL based models

it can be clear that as expected the FCSingleTS network which only considers the

state of the agent at time t as its input yields the highest error across all future

time-steps where the most apparent difference is visible for predicted trajectories

with longer time horizon e.g. > 3 seconds. The FCMultiTS model demonstrates

further improvement over the FCSingleTS model which indicates that incorporating

more temporal information about the agent is beneficial and results in more accurate

predictions. Moreover, the use of networks that are designed to work with temporal

data i.e. LSTM and GRU in this case, presents further improvement as those net-

works process the data in sequential order, thus encoding the temporal information

encapsulated within the observed state of an agent. Comparing the performance

of both LSTM and GRU it is clear that LSTM outperforms GRU on almost all

future time-steps with respect to the ADE error (apart from 5 seconds). In addi-

tion, the temporal based networks (as well as subsequent CNN models) demonstrate

4.4. Experiments and Results 79

lower variance in between training runs as opposed to models based purely on fully-

connected layers. Finally, both CNN models which encapsulate not only the state

of the agent but also the rasterised maps (global or local) presents the best per-

formance, outperforming temporal models by at least 1.5% as well as significantly

outperforming models based solely on fully-connected layers by over 4.2% on the

longest prediction horizon (6 seconds).

Furthermore, the analysis of final displacement error in Table 4.4 and 4.5 provide a

greater insight into the mean performance of baseline models for the prediction of

the furthest position (time-step t + τ) within the anticipated trajectory sequence.

Model Future Time Horizon (seconds) - FDE
1s 2s 3s

Const. Vel. & Head. 0.66 1.82 3.32
Physics Oracle 0.41 0.76 2.55
FCSingleTS 0.37 ± 0.00 1.21 ± 0.06 2.43 ± 0.08
FCMultiTS 0.34 ± 0.00 1.13 ± 0.07 2.27 ± 0.03
LSTM 0.36 ± 0.00 1.11 ± 0.01 2.22 ± 0.02
GRU 0.37 ± 0.00 1.12 ± 0.01 2.27 ± 0.02
CNNG 0.35 ± 0.01 1.09 ± 0.02 2.21 ± 0.01
CNNL 0.34 ± 0.01 1.08 ± 0.01 2.19 ± 0.01

Table 4.4: The final displacement error of the examined baseline models for the first
3 seconds of the predicted trajectories. Again, for the DL based models the mean
FDE and std is reported over 5 independent training runs.

First of all, as observed, the relative performance between models for FDE metric is

consistent with results of ADE where the physics based models demonstrate poorest

performance, again with the significant decrease in accuracy of predicted motion

for the constant velocity and heading model as the future time-horizon increases

(see Figure: 4.4). Yet again, the CNN based predictors presents top performance,

significantly outperforming all models but LSTM and GRU on the final prediction

of the agents’ positions with the CNNL also outperforming the version of the model

that processes the global map. Finally, results from both ADE and FDE related

80 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

Model Future Time Horizon (seconds) - FDE
4s 5s 6s

Const. Vel. & Head. 5.30 7.62 10.23
Physics Oracle 4.13 6.13 8.38
FCSingleTS 4.11 ± 0.08 5.94 ± 0.03 8.29 ± 0.07
FCMultiTS 3.93 ± 0.05 5.82 ± 0.07 8.19 ± 0.07
LSTM 3.76 ± 0.03 5.72 ± 0.03 7.86 ± 0.10
GRU 3.82 ± 0.02 5.75 ± 0.03 7.91 ± 0.05
CNNG 3.76 ± 0.01 5.70 ± 0.03 7.80 ± 0.02
CNNL 3.73 ± 0.01 5.68 ± 0.04 7.76 ± 0.01

Table 4.5: Final FDE results for the furthest time-horizons from 4 to 6 seconds into
the future with each cell containing the mean (and std for DL models) results of all
models.

tables demonstrate that for all DL models there exist an extremely small variance

between predictions with respect to different training runs, however, just as in the

ADE comparison, the fully-connected based models yield relatively higher variance

than more complex counterparts. Interestingly, as can be observed from results

with both ADE and FDE the CNN model that uses smaller local maps consistently

outperforms its counterpart that uses global maps by a small margin. It is likely

that this difference can be attributed to the fact that smaller maps are more specific

to the state of the agent rather than a surrounding as a whole, and due to their size

carry less noise within the data.

Ultimately, the set of experiments carried out in this section provides numerous valu-

able insights that will guide further studies. The set of baseline models defined in this

section reveal a clear hierarchy of importance for the task at hand. Firstly, the fully-

connected models (FCSingleTS and FCMultiTS) demonstrate the value of temporal

information. FCSingleTS, limited to the last observed state, underperforms com-

pared to FCMultiTS, which incorporates the entire trajectory history. Secondly,

RNN models (LSTM and GRU) outperform fully-connected models, emphasizing

the significance of modeling temporal dependencies. LSTM’s slight advantage over

4.4. Experiments and Results 81

GRU hints at its greater ability to capture long-term patterns within the agent’s

movement. Finally, the excellent performance of CNN-based models (CNNL and

CNNG) underscores the importance of spatial context provided by maps. Interest-

ingly, CNNL’s use of focused local maps yields slightly better results than CNNG’s

global map approach, suggesting that a concentrated view of the agent’s surround-

ings may reduce noise and highlight the most relevant decision-making cues.

Figure 4.4: A plot that depicts the final displacement error for all models for up to
6 seconds of the prediction horizon.

4.4.3 Unraveling of Semantic Layers

Next, as demonstrated in Figure 4.2 and discussed in section 4.3 the set of semantic

layers can be unraveled into several geometrical layers where each layer represents

a single part of the whole map, e.g. a walkway or lanes. It can be argued that the

unraveling process of semantic layers can potentially provide an additional source of

information for the model to learn from. Moreover, in the previous experiment where

a number of various types of models were examined to determine a baseline model it

became evident that during the training models benefit not only from spatial data

82 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

but also from the temporal data (state of the tracked agent), therefore it is also

reasonable to examine the effect of including local maps in a temporal manner.

This experiment will focus on examining whether the best performing baseline model

from previous section (CNN based model) can be further improved by training it

with a) a set of unraveled semantic layers as well as b) a set of temporal seman-

tic layers. Furthermore, the set of separate geometrical layers will also include an

additional layer that will portray an agent with respect to its current state as demon-

strated in Figure 4.2. The experimental setup remains unchanged and the baseline

CNNL model is trained with the same training setup as models in the previous

section with the sole difference being the input data:

1. CNNDL - The baseline CNN model that takes as an input a single unraveled

map chunk Lt = [Lt,0, Lt,1, · · · ,Lt,n] at the last observable timestep t (t− 0).

Each separate geometrical layer Lt,i is encoded through convolutional layers

and then finally concatenated with the state of an agent S and finally processed

by the fully-connected layer to make final predictions.

2. CNNTDL - The extension of the baseline CNN model where apart from using

the disentangled local layers at the last observable timestep, the entire history

of local maps from time t to t − ρ is encoded and used to predict future

movement. Again, each layer for each timestep is encoded separately, however,

this time instead of using a fully-connected layer to encode the state of an

agent, a LSTM layer with 128 units is used. This allows to concatenate the

encoded state of an agent st at time t with corresponding encoded semantic

layers Lt and then use that as an input to fully-connected layer to predict

future movement of an agent.

Results of the experiment are presented in tables 4.6 and 4.7 (ADE and FDE re-

spectively). Note that for this experiment only a future time horizon of 4, 5 and 6

4.4. Experiments and Results 83

seconds was considered as predictions with respect to shorter times are significantly

less critical for this work. As initially expected, the inclusion of additional sources of

data whether in a form of geometrical layers or in a form of temporal maps provides

a significant advantage during the learning process, allowing the baseline model to

improve further over all future time horizons, gaining a slight but not necessarily a

significant improvement on both ADE and FDE on the 6 second horizon for up to

3.7% and 2.4% respectively. This confirms that providing the model with more fine-

grained and temporally-aware spatial information enhances its predictive ability.

Model Future Time Horizon (seconds) - ADE
4s 5s 6s

CNNL 1.58 ± 0.01 2.38 ± 0.00 3.17 ± 0.01
CNNDL 1.55 ± 0.03 2.36 ± 0.01 3.12 ± 0.00
CNNTDL 1.51 ± 0.02 2.31 ± 0.01 3.05 ± 0.02

Table 4.6: ADE results for the time-horizons from 4 to 6 seconds with each cell
containing the mean and std results of three variants of the CNN baseline model.

Model Future Time Horizon (seconds) - FDE
4s 5s 6s

CNNL 3.73 ± 0.01 5.68 ± 0.04 7.76 ± 0.01
CNNDL 3.65 ± 0.02 5.60 ± 0.01 7.68 ± 0.03
CNNTDL 3.55 ± 0.01 5.51 ± 0.02 7.57 ± 0.02

Table 4.7: FDE results for the time-horizons from 4 to 6 seconds with each cell
containing the mean and std results of three variants of the CNN baseline model.

4.4.4 Finding an Optimal Map Size

Lastly, during the previous two experiments the size of a local map chunk, or rather

an area of the agent’s surrounding that it encapsulates remained as a fixed size of

84 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

λ = 20 meters. Given the default setting the model was able to achieve promising

results, however, it is still crucial to conduct further examination to find the optimal

map size (in meters). The subsequent experiment examines following the set of

λ ∈ {5, 10, 15, 20} settings at a 6 second prediction horizon to determine whether

the displacement errors can be further reduced. As with previous experiments the

same training setup for the model of interest, in this case the CNNTDL are being

adopted to ensure that a fair comparison is conducted. Results of the experiment

are presented in figure 4.5.

As demonstrated, various configurations of the λ parameter result in a minor differ-

ence for both ADE and FDE. What is however apparent is that setting the λ = 5

yields the least optimal results which suggests that the size of the captured surround-

ing might considerably restrict the learning process due to the limited amount of

information that is carried within the rasterised maps. In addition, it can be noted

that the optimal configuration of λ appears to be when λ = 15, the difference how-

ever between other settings seems insignificant. It is nonetheless interesting to see

that a bigger size of the map does not guarantee better results which suggests that

larger maps might carry a significant amount of noise that negatively contributes the

training of the model. In conclusion, the experiment on optimal map size provides

insights into the trade-offs associated with different configurations. While a slightly

larger map size appears optimal, there’s a diminishing return with excessively large

maps.

4.5 Conclusion

This chapter focused on introducing an alternative methodology towards a task of

a short-term motion prediction of vehicles from a perspective of an autonomous ve-

hicle in a complex urban setting. First, an alternative approach of using rasterised

4.5. Conclusion 85

Figure 4.5: An ADE and FDE results of the CNNTDL model trained for a 6 seconds
of future time horizon on various settings of map size λ.

top-down 2D HD maps has been proposed and examined. Instead of a typical usage

of rasterised maps where global maps that encapsulate large chunks of the surround-

ing environment are utilised as an additional source of information for the model,

a local map chunks that can be separated into an individual semantic pieces were

used instead. This is the first time the concept of local maps has been utilised for

the task at hand. As demonstrated in section 4.4 the addition of auxiliary infor-

mation in a form of rasterised maps enabled the trained model with a CNN feature

extractor to perform slightly better than e.g. a LSTM based model where only tem-

poral information about past movement of the agent was provided. In addition, the

model that utilized local map chunks as opposed to the global counterparts provided

further improvement with respect to the final performance of the model. It can be

argued that it is highly possible that the improvement of the model that was trained

with local maps as opposed to global maps can be attributed to the fact that the

information carried with global maps carry a significant amount of noise that does

not contribute to the training. Next, the impact of unraveling of semantic maps was

further examined to determine whether representing the rasterised map data in a

form of separate geometrical layers can be beneficial. In addition, the experiment

also examined advantages of incorporating map data over time as opposed to us-

ing the 2D view from the last observable time-step. As demonstrated, the baseline

86 Chapter 4. Investigating Local Maps for Short-term Motion Prediction

model with the lowest error with respect to two main metrics (ADE & FDE) has

proved to be the CNN which incorporated both the separate local map chunks as

well as maps that were observed over longer time horizon further suggesting that

it is indeed advantageous to include the temporal information in a spatial form.

Lastly, an ablation study has been carried out to explore and find the optimal size

of the local map chunk, and as presented in the last subsection of section 4.4 maps

with higher spatial range do not necessarily contribute positively towards learning

process.

The next chapter will explore an alternative CNN based method for extracting

features from rasterised map data to determine whether a large pre-trained models

are indeed, as usually presented in the literature, an adequate option for the task of

motion prediction.

Chapter 5

Improving Deterministic Motion

with Capsule Networks

5.1 Introduction

A typical technique for processing spatial data, as presented in the literature survey

as well as previous chapter, usually requires employing some sort of a CNN based

feature extractor which encodes the rasterised map input and then extracts a set

of meaningful road features that are subsequently combined with e.g. the observed

agent’s motion data in order to compute the final prediction. A common choice for

a CNN based feature extractor involves using one of the popular CNN models, for

example ResNet-50 which is initially pre-trained on a very large and diverse dataset

such as the ImageNet dataset (Russakovsky et al. 2015). In principle, this approach

has been adopted as a standard technique due to its general effectiveness in com-

puter vision, however, recent studies demonstrate that training models from scratch

on the domain specific dataset leads to results that are often on pair (or slightly

better) with their pre-trained counterparts when given enough training iterations

(He et al. 2019). Additional findings also suggests that pre-training on for instance

87

88 Chapter 5. Improving Deterministic Motion with Capsule Networks

an ImageNet appears to be less beneficial for tasks that rely heavily on localisation

and are primarily advantageous to classification related tasks. Furthermore, the

ImageNet dataset is composed of over 1 million annotated diverse images belong-

ing to 1000 different classes (see Figure: 5.1) which is significantly more complex

than rasterised maps used for motion prediction meaning that the deep layers of

a large vision models such as a pre-trained ResNet which learned highly abstract

representations of those classes could provide little to no use when trying to extract

relevant representations from maps that are mainly constructed out of very low-level

features such lanes, edges etc. Additionally, majority of popular pre-trained vision

models often contain a large number of parameters, e.g. ResNet50 contains 25 mil-

lions trainable parameters whereas its deeper version named ResNet152 contains

over 60 million parameters, and although for tasks such as image classification or

object recognition such complexity is necessary it is arguable whether this approach

is viable for learning valuable representation from relatively naive rasterised maps.

The discussed points suggest that the use of large feature extractors that are pre-

trained on a very distinct domain might be redundant or even harmful as similar or

better level of accuracy can be potentially achieved with significantly lighter models

that are trained end-to-end from scratch. Therefore, this chapter will explore an

approach towards utilisation of map data for the deterministic motion forecasting of

an on-road vehicles from the perspective of autonomous vehicle with a novel CNN

feature extractor based on the capsule network which aids to alleviate the drawbacks

that a standard CNN architectures exhibit i.e. lack of equivariance to other affine

transformations but translation, and inability of achieving invariance without use of

additional pooling mechanism (Goodfellow et al. 2016).

5.2. Capsule Neural Networks 89

Figure 5.1: An example of six images from different classes taken from the ImageNet
training set.

5.2 Capsule Neural Networks

As previously discussed, a typically employed approach that is utilised to encode a

scene context is to use the rasterised HD map data in order to extract representative

spatial road features with the use of a CNN, often a variant of ResNet, by either

leveraging benefits of transfer learning (Wang et al. 2019) and fine tuning certain

parts of the feature extractor for the task at hand, or by training the network in an

end-to-end fashion. Nonetheless, despite achieving state-of-the-art performance in

recent years on several computer visions tasks such as object classification (Touvron

et al. 2020), detection (Acharya et al. 2020) and semantic segmentation (Tao et al.

2020), the CNN still exhibit certain crucial drawbacks (Goodfellow et al. 2016).

First, convolutional layers are unable to account for the equivariance with respect

to various transformations. An arbitrary function f(x) is said to be equivariant to

function g(x) if it’s output reflects the same changes that were applied to the input

x through g(x) i.e. f(g(x)) = g(f(x)). For example, let g(·) denote a translation

function that shifts each pixel of an input image I one pixel to the right such that

I ′(x, y) = I(x − 1, y). Next, let f(·) denote a convolution operation, if f(·) were

to be equivariant with respect to g(·), then the output of f(g(I)) would be the

90 Chapter 5. Improving Deterministic Motion with Capsule Networks

same as firstly applying the convolutional operation and then the translation i.e.

g(f(I)). CNNs exhibit the property of being equivariant solely to the translation,

other transformations such as rotation and scaling will often cause relevant neurons

to not fire and thus fail when detecting salient features within spatial domain. The

translation equivariance is achieved through parameter sharing as the same learned

weights (kernel) shift through the entire input image, thus enabling the convolutional

layer to detect features of interest irrespective of their positions.

Secondly, in addition to the issue of equivariance, CNNs lack the ability to handle

spatial invariance i.e. given an arbitrary affine transformation A e.g. translation,

the convolutional layer denoted by f(·) would be invariant to such translation if

f(·) satisfied the following f(x) = f(A(x)). One approach that has been extensively

employed within CNN’s pipeline that helps to achieve an approximation of local

translation invariance is known as pooling operation which has been previously dis-

cussed in section 2.3. The output of pooling operation e.g. max-pooling summarises

feature maps computed by a former convolutional layer by sliding a filter, often a

2×2 with a stride of 2, throughout layer’s input tensor and taking a maximum value

within each small window. This operation results in each feature map preserving

only the values with highest activation whilst simultaneously being downsampled by

a factor of 2. Evidently, pooling operation provides certain benefits as downsampled

feature maps cause subsequent convolution layers to have significantly less learnable

parameters, thereby making the network computationally less expensive, and as

previously mentioned enabling a model to have a capability of achieving a small

translation invariance. Nonetheless, these properties might not be always desirable,

for instance, for a task of object classification where the position of given object is

not as crucial as its sole presence the pooling will provide advantages, however, if

a given task is highly dependant on the position of local features as well as their

global relationship then pooling will effectively eliminate such information. Figure

5.2 demonstrates a case of an image that contains two variations of the representa-

5.2. Capsule Neural Networks 91

tion of human’s face i.e. a face on the left preservers the relationship between local

features whereas the face on the right contains local features at arbitrary positions.

Due to weight sharing as well as the pooling mechanism it is highly possible that

a CNN trained to classify whether a human face is present or not (binary classi-

fication) would in both cases produce a positive outcome i.e. face being present.

Figure 5.2: An image of two human faces with a face on the left preserving hierar-
chical relationship between local features, and face on the right having local features
in arbitrary positions (CNN face detection failure n.d.).

To tackle these issues Hinton et al. (2011) proposed a novel type of neural network

known as capsule network that implements the idea of using capsules (locally in-

variant group of neurons) to learn various properties (e.g. pose) of the same object

and encode them in an output vector whose length corresponds to the probability

of that object being present. Encoded parameters can be further conceptualised

as an object’s instantiation parameters that enable the model to learn more robust

and equivariant representation of features with respect to change in viewpoint. Fur-

thermore, Sabour et al. (2017) introduced the routing-by-agreement mechanism by

which capsules from lower levels decide which of their output vectors should be sent

to higher level capsules. In essence, output vectors from lower level capsules are

92 Chapter 5. Improving Deterministic Motion with Capsule Networks

used to predict the output of higher level capsules, predictions are then compared

with actual outputs to iteratively compute "agreement" (cosine similarity) between

lower and higher capsules. For instance, the mere presence of a nose or eyes (lower

level capsules) should not be a sole indicator that the face (higher level capsules)

exists within an image, a hierarchical relationship (e.g. rotation) between low and

high level features should have a high impact on the final prediction.

The outlined advantages of capsule networks over standard CNN architectures strongly

motivate for examination of this type of networks for the task of motion prediction.

Therefore, the subsequent set of experiments will investigate how a DL motion pre-

dictor with a capsule based feature extractor can be utilised to improve the overall

performance of the system whilst maintaining the efficiency of the model with re-

spect to its complexity. First, the architecture as well as the computational flow of

the proposed capsule based encoder will be described in details.

5.3 Network Architecture and Computational Flow

The architecture of the proposed and examined CapsNet based feature extractor

loosely follows the implementation from the original work of Sabour et al. (2017),

however, the proposed model in this case is constructed as a four-part network as

demonstrated in Figure 5.3. Let (k, s, o) denote the tuple that specifies a convolution

layer’s kernel size, stride size, and the number of output channels respectively (the

padding is set to zero for all convolutional layers). First, a shallow convolutional

base Φbase(·) is defined to extract local, low-level features from semantic layers which

is composed of a single convolutional layer with the following set of hyperparame-

ters; (k = 9, s = 2, o = 64) followed by a variant of ReLU activation function i.e.

Exponential Linear Unit (ELU) non-linearity (Clevert et al. 2015) which is defined

5.3. Network Architecture and Computational Flow 93

as:

ELU(z) =

z z > 0

α(ez − 1) z ≤ 0

(5.1)

and provides certain benefits that aid with mitigating the issues that can be oth-

erwise introduced by ReLU such as dying ReLU (Trottier et al. 2017). Next, the

second part of the encoder i.e. lower level (primary) capsules Φlower(·) is defined

to learn parameters for more trivial parts of the input data. Every capsule is a

4D unit, where each of its dimensions corresponds to the scalar output value of an

independent set of consecutive convolutional layers defined by the following set of

hyperparameters; (k = 9, s = 2, o = 32), (k = 2, s = 2, o = 16) for the first and

second layer respectively, hence, the number of convolutional layers within Φlower(·)

is equal to 4 × 2. Instead of using e.g. the ELU activation function in-between

convolutional layers which treats each value as being independent, a ’squashing’

non-linearity introduced by Sabour et al. (2017) is employed in order to normalize

the input vector z so that the magnitude of short and long vectors is squashed to

almost 0 and just below 1 respectively:

Φsquash(z) =
‖z‖2

1 + ‖z‖2

z

‖z‖
(5.2)

Since low level features of input images e.g. edges and lanes resemble strong similar-

ities among different types of semantic layers, it is reasonable to use a single Φlower(·)

layer to learn and extract their parameters. Nonetheless, to account for the fact that

their final representation differs significantly, a single higher capsule layer Φhigher(·)

is defined per each type of semantic layer in the subsequent part of the encoder.

Hence, each type of semantic layer Lt,i is encoded through its own respective higher

capsule Φhigher_i(·) that outputs a 32D vector of its latent representation. Moreover,

the encoder’s final part is defined as a single capsule Φfinal(·) which outputs a 128D

vector containing a joined latent representation of all semantic layers. Lastly, for

94 Chapter 5. Improving Deterministic Motion with Capsule Networks

each Φhigher(·) as well as Φfinal(·) learnable parameters are sampled from Gaussian

distribution and then scaled by ε such that εw ∼ N (µ, σ2) where ε = 0.1, µ = 0

and σ2 = 1.

Figure 5.3: An overview of the proposed Capsule Net encoder. A single map chunk
at time t is disentangled into separate geometrical layers. Each layer is then passed
separately to the convolutional base, followed by lower capsules and then to its cor-
responding higher capsule. Finally, outputs of all higher capsules are concatenated
and passed to the final capsule to compute the final encoding.

Next, the computational flow of data through the proposed network that yields the

short-term future motion of an agent of interest is described, including both the

capsule encoder as well as the motion decoder. Although the description represents

the computation process of a single agent, it is trivial to extend the method for a

multi-agent scenario. For the purpose of simplicity and to focus on the main aspect

of the method, a single-agent case is maintained.

First, for each observed time-step t a set of semantic layers Lt are encoded through

the capsule encoder. Each disentangled grayscale layer Lt,i is transformed individu-

ally to compute its output representation vector by first running the matrix through

a convolutional base:

Zt,i = Φbase(Lt,i) (5.3)

where Zt,i is the output tensor containing 64 feature maps of size 28 × 28. Next,

5.3. Network Architecture and Computational Flow 95

the Zt,i is further passed into the Φlower(·) layer to compute lower capsules:

Zt,i = Φlower(Zt,i) (5.4)

where Zt,i is the squashed output matrix with 400 × 4D capsules (second convo-

lution layer outputs 16 feature maps of size 5 × 5). Furthermore, Zt,i is passed

through its respective Φhigher_i(·) to get the 32D output vector zt,i whose scalar

values corresponds to the layer’s Lt,i latent instantiation parameters:

zt,i = Φhigher_i(Zt,i) (5.5)

This process is then repeated for each semantic layer with each output being con-

catenated to create an input matrix for the final capsule that outputs a final 128D

vector zt at time t:

zt = Φfinal(concat(zt,0, zt,1, · · · , zt,n)) (5.6)

In addition, each state vector st is encoded through a fully-connected layer with

128 output units, followed by the ELU activation which is then concatenated with a

corresponding zt to form the matrix of shape [ρ, 256] where ρ refers to the number

of observed time-steps. The matrix is then encoded in the temporal manner through

the use of the LSTM layer with hidden-state size of 128. Finally, the last hidden-

state (final encoded output) of the LSTM layer is passed through the decoder (fully-

connected layer) with 2(x, y) × τ units where τ corresponds to the future time-

horizon, in order to get the final future predictions. The output of the decoder

is then reshaped to create the target matrix Ŷ = [ŷt+1, ŷt+2, · · · , ŷt+τ] with each

vector containing the predicted future position (x, y) of the tracked agent, relative

to its position at the last observed time-step t.

96 Chapter 5. Improving Deterministic Motion with Capsule Networks

5.4 Experiments and Results

5.4.1 Initial Ablation Study

First, in order to demonstrate the benefits of the proposed method, an initial ablation

study is conducted between the described capsule based network and its simpler

variants (note that throughout the remainder of this chapter the main model defined

in the subsection 5.3 will be referred to as MotionCaps):

1. SimpleCaps - A similar yet basic version of the proposed network that is

composed of the capsule based extractor constructed only with the convolu-

tional base Φbase as well as a layer composed of lower level (primary) capsules

such as that of Φlower as well as final layer Φfinal, thus omitting the higher cap-

sules Φhigher that are responsible for an independent encoding of different types

of semantic layers. In addition, instead of processing each type of semantic

layer independently through the Φfinal, a whole local map at time t (see the

first column of Figure 4.2) is passed to the encoder, thus performing a similar

computational process as that of the CNN model described in 4.4.1. The

output of this backbone feature extractor is a 128D vector zt at time t that

is then concatenated with the corresponding state vector st.

2. SimpleLayerCaps - A subsequent variant of the SimpleCaps model that

instead of using a local map as a whole as its input, uses a set of separate

semantic geometrical layers Lt (just like the proposed capsule extractor) as

depicted in Figure 4.2. However, yet again, this model does not include the

higher capsules Φhigher for individual processing of each type of layers, but

instead processes each Lt,i through the final capsule layer Φfinal and then ag-

gregates each output of the Φfinal (i.e. 128D vector) through a summation

operation. Again, the result of applying this feature extractor on the input

5.4. Experiments and Results 97

layers is a 128D vector zt at time t.

The setup for this experiment is similar to the setup explained in subsection 4.4.1

where the above models are trained 5 times (independent runs) with Adam optimizer

for 100 epochs per each training run, however, this time only results for every t ∈

{4, 5, 6} future horizon are reported as it is more crucial to focus on the longer

prediction horizon. In addition, a learning rate scheduler is adopted during the

training which decays the initial learning rate (5e − 4) by γ = 0.1 at epoch 5 and

20.

Tables 5.1 and 5.2 demonstrate results from the conducted experiment. In addition,

a performance of a CNNTDL model from subsection 4.4.4 has been added to the

table as it is essential to first explore and compare the performance of the basic

capsule based motion decoder (SimpleCaps) to emphasize on the sole benefits of

using the proposed architecture. The comparison between the basic capsule-based

model and its CNNTDL counterpart reveals a notable performance advantage for the

capsule-based approach. Specifically, the capsule-based model achieves a significant

reduction in both ADE and FDE errors, outperforming the CNNTDL counterpart

by 5.9% and 6.8% respectively on the 6-second prediction horizon. This highlights

the effectiveness of the proposed capsule-based architecture in capturing complex

motion dynamics compared to traditional convolutional neural networks. Interest-

ingly, the performance gain of the capsule-based model remains consistent across

all future time-steps, with notable improvements observed as the prediction horizon

increases. This suggests that the additional complexity introduced by higher-level

capsules in MotionCaps is justified, as it enables more accurate predictions over

longer time horizons. Furthermore, while the performance gap between iterations

of capsule-based models is marginal, MotionCaps consistently outperforms other

variants across all future time-steps on both metrics. This suggests that the inclu-

sion of higher-level capsules in MotionCaps contributes to its superior performance,

98 Chapter 5. Improving Deterministic Motion with Capsule Networks

allowing for more effective encoding of diverse semantic layers and complex mo-

tion patterns. Unexpectedly, the second iteration of the model (SimpleLayerCaps)

performs worse than its more basic version, however, it is still outperformed by Mo-

tionCaps. The reason behind this performance gap could be explained by the fact

that SimpleLayerCaps uses a larger array of image data (separate semantic layers)

than SimpleCaps which uses a single image of a local environment, thus requiring a

higher level of complexity in order to be able to learn much richer internal represen-

tation. This is in fact further proven with MotionCaps which utilizes the same type

of data as SimpleLayerCaps, yet the model complexity is increased with an addition

of a higher capsule layer per each type of semantic layer.

Model Future Time Horizon (seconds) - ADE
4s 5s 6s

CNNTDL 1.51 ± 0.02 2.31 ± 0.01 3.05 ± 0.02
SimpleCaps 1.41 ± 0.03 2.09 ± 0.01 2.87 ± 0.02
SimpleLayerCaps 1.45 ± 0.01 2.16 ± 0.02 2.95 ± 0.01
MotionCaps 1.38 ± 0.02 2.04 ± 0.01 2.80 ± 0.04

Table 5.1: The mean and std ADE between three variants of Capsule based motion
prediction over 5 independent runs.

Model Future Time Horizon (seconds) - FDE
4s 5s 6s

CNNTDL 3.55 ± 0.01 5.51 ± 0.02 7.57 ± 0.02
SimpleCaps 3.25 ± 0.02 5.02 ± 0.03 7.05 ± 0.02
SimpleLayerCaps 3.29 ± 0.01 5.09 ± 0.02 7.11 ± 0.02
MotionCaps 3.21 ± 0.01 4.97 ± 0.01 6.99 ± 0.03

Table 5.2: The mean and std FDE between three variants of Capsule based motion
prediction over 5 independent runs.

5.4. Experiments and Results 99

5.4.2 Performance Comparison of Capsule Encoder vs Pop-

ular CNN Models

In the introductory section of this chapter the topic of using pre-trained networks

as a means of transferring the already acquired knowledge (transfer learning) from a

larger and often more general datasets towards a different task has been covered. As

discussed, the idea of using transfer learning has been adopted as a regular method

for numerous tasks that rely on deep learning models. However, recent findings

suggest that focusing on the sole use of pre-trained models might not necessarily

yield an optimal solution due to certain limitations, for example, a decrease in a

fine-tuned model’s performance on tasks that are heavily dependent on a precise

localisation of salient features within the spatial domain (He et al. 2019). In order

to further examine the effectiveness of the proposed capsule based model, a set of

models with popular architectures (e.g. ResNet) that are often employed in the

literature will be initially trained from scratch for the task of motion prediction and

compared against the MotionCaps model. Then, the same set of models will be

trained again, however, this time with the weights being initially pre-trained on the

ImageNet and then fine-tuned for the task at hand to demonstrate the difference in

their performance. The following models are considered during this experiment2:

1. ResNet - One of the most popular type of convolutional architectures that is

often being used as a baseline backbone in various computer vision tasks. Prior

to the introduction of ResNet architecture the training of very deep networks,

as discussed in the original paper, seemed infeasible due to the degradation

problem which causes the deeper network’s performance to saturate and then

rapidly degrade as compared to its shallow counterpart. ResNet introduced

what is known as Residual Block, where instead of learning a mapping H(x)

through a stack of layers the residual block aims to learn F (x) = H(x) −
2All considered pre-trained models are available on the official PyTorch repository

100 Chapter 5. Improving Deterministic Motion with Capsule Networks

x and thus the final mapping function becomes H ′(x) = F (x) + x where

the second term i.e. addition of x is referred to as skip connection. The

paper demonstrated that learning residual function F (x) and introducing skip

connections to the computational graph eases the learning process and does

indeed allow to effectively train much deeper networks.

2. DenseNet (Huang et al. 2017) - Use of skip connections has also proved to be

an effective strategy for another type of CNN architecture inspired by ResNet

known as DenseNet. The main idea behind DenseNet architecture concen-

trates on reusing network’s feature maps. More specifically, a set of features

maps from an earlier layer is passed not just to the next layer but to all sub-

sequent layers within a Dense Block (hence DenseNet). In addition, instead

of adding the data from incoming skip connections (as is the case for ResNet),

the DenseNet concatenates it allowing subsequent layers to reuse feature maps

from earlier parts of the network.

3. Inception (Szegedy et al. 2015) - The standard way of defining a CNN simply

involves stacking number of convolutional layers one after another such that

the network becomes deep and complex enough to learn the task at hand. The

Inception model proposed a new paradigm of defining the CNN architecture

where a number of filters operate on the same computational level. For ex-

ample, given an input image with a single channel I ∈ Rw×h×1 and a naive

convolutional layer with a single 3× 3 kernel the output of such a layer would

be a single feature map produced as a result of convolving this kernel over the

input image. On the other hand however, the Inception block implements a

number of kernels (often stacked on top of another w.r.t. convolutional opera-

tions) of various sizes for example 1×1, 3×3, 5×5, whose output feature maps

are concatenated to produce the final output. The main reason behind the us-

age of kernels of various spatial sizes is to give the CNN the ability to look at

5.4. Experiments and Results 101

the input at a different spatial resolutions. Additionally, subsequent versions

of Inception network Szegedy et al. (2016) introduced numerous improvements

such as a reduction of the output’s depth through a usage of 1× 1 kernels, a

reduction of computational complexity through factorization of kernels e.g. a

5× 5 convolution (25 weights) can be represented by two 3× 3 convolutional

operations (18 weights), and even further factorization of any n × n kernels

into two separate 1× n and n× 1 kernels.

4. MobileNet (Howard et al. 2019) - The last CNN architecture that will be

considered in the following experiment was proposed and designed to be suited

for mobile vision applications. The MobileNet family of CNNs aim to maximize

the performance of the model on a given task whilst simultaneously reducing

the computational intensity. MobileNet achieves its performance with use of

Depth-wise separable convolution, an operation that is constructed with two

separate layers. Firstly, the depth-wise convolution is applied onto the input

image I ∈ Rw×h×c by convolving a single kernel over each channel (thus the

number of kernels within the layer is equal to c) which results in an output

tensor I′ ∈ Rw′×h′×c. Then a point-wise convolution layer is applied onto

I′ ∈ Rw′×h′×c by convolving n 1 × 1 kernels to produce linear combination of

the output of the former layer resulting in an output tensor O′ ∈ Rw′×h′×n.

Furthermore, during initial experiments it was discovered that using the default

output of models that were proposed for comparison purposes (e.g. ResNet-50) as

a direct input to the following, temporal modules within the network quickly leads

to either significant overfitting or exploding gradients early in the training. The

primary cause of this instability during training is a result of a relatively large size

of an output vector of the convolutional feature extractor (e.g. output of ResNet-

50 in this case is an vector of 2048 units) in comparison to the encoded size of

the motion state vector st (128 units). To account for this and ensure that a

102 Chapter 5. Improving Deterministic Motion with Capsule Networks

comparison between the proposed networks is indeed fair and that the motion state

vector is not overwhelmed by features extracted from semantic maps an additional

fully-connected layer with 128 units is stacked on top of each model in order to

downsample the output. Next, the output of each feature extractor is concatenated

with an encoded motion state st of an observed agent to form a matrix of shape

[ρ, 256] where ρ refers to the number of observed time-steps. The subsequent steps

follow exactly the same procedure as MotionCaps i.e. the concatenated matrix with

extracted visual features as well as the encoded motion state is decoded through an

LSTM layer and finally through the fully-connected layer to yield a predicted motion

in the form of a target matrix Ŷ = [ŷt+1, ŷt+2, · · · , ŷt+τ]. Finally, each model is

also trained in an identical fashion as MotionCaps, adopting the same optimizer,

scheduler, number of epochs, learning rate as well as other relevant hyperparameters.

Results of the experiment are presented in table 5.3 with each cell containing the

ADE and FDE errors for the corresponding time horizon (between 4 and 6 seconds)

as well as with an additional column that shows the complexity of each backbone

feature extractor in terms of number of its parameters. The results in 5.3 clearly

demonstrate that the motion prediction based on the capsule feature extractor (Mo-

tionCaps) consistently outperforms other backbone feature extractors across all time

horizons. Despite having significantly fewer parameters compared to the other net-

works, MotionCaps achieves lower ADE and FDE errors, indicating its effectiveness

in capturing motion dynamics. This suggests that the capsule-based architecture

effectively encodes and utilizes spatial-temporal information for accurate motion

prediction. Additionally, it is interesting to see that the performance of each model

does not correlate with its complexity, as primarily demonstrated by MotionCaps

and DenseNet, but rather the architecture and its benefits.

Furthermore, figures 5.4 and 5.5 demonstrate the training and validation loss of each

model over the 100 epochs of the training process with the latter figure showing the

5.4. Experiments and Results 103

Model Future Time Horizon (seconds) - ADE/FDE Params
(Backbone)4s 5s 6s

MobileNet V2 1.60/3.69 2.29/5.37 3.03/7.29 3.50m
Inception V3 1.48/3.51 2.22/5.29 2.95/7.23 27.16m
ResNet-50 1.39/3.28 2.10/5.15 2.82/7.12 23.50m
DenseNet-121 1.36/3.21 2.03/4.99 2.79/6.94 7.97m
MotionCaps 1.34/3.17 1.99/4.91 2.74/6.89 0.95m

Table 5.3: The ADE and FDE errors between proposed backbone feature extrac-
tors from the literature and the Capsule based motion predictor. Additionally,
the number of parameters of each backbone feature extractor has been included to
demonstrate the performance with respect to model’s complexity.

progress after the first 20 epochs in order to demonstrate the point at which each

model starts to overfit. Figure 5.4 illustrates the training and validation loss trends

over 100 epochs for each model. It is noteworthy that while all models reach a

local minimum early in the training (around the 10th epoch), MotionCaps exhibits

a slower convergence rate compared to other models. This prolonged convergence

may indicate the complexity of the capsule-based architecture and the time required

for it to effectively learn motion patterns from the data. Nevertheless, as observed

closer in figure 5.5 despite this, the capsule based model eventually reaches and

outperforms other models on both training and validation loss. Ultimately, further

in the training it can be seen that the performance of all models stops improving,

the validation curve diverges from the training curve which leads to overfitting with

MobileNet and Inception showing poorest performance as well as stability over the

course of the training.

Lastly, as mentioned in the beginning of this sub-section, a typical way of approach-

ing a number of deep learning tasks is to start with a previously trained model

that can be then fine-tuned for the task at hand. In addition, it was also discussed

that the idea of fine-tuning might not necessarily be suitable if the task on which

the model was initially pre-trained is significantly different. For example, using a

104 Chapter 5. Improving Deterministic Motion with Capsule Networks

Figure 5.4: The training (solid line) and validation loss (dash line) of each model
over 100 epochs. Training loss is presented with a solid line whereas the dashed line
shows the validation loss.

model trained for a classification task might not necessarily yield suitable results if

the latter task relies heavily on precise localisation of features. Figure 5.6 presents

results of models that were previously proposed for comparison purposes in terms of

their validation loss with the solid line showing results of those models trained from

scratch and the dash line showing results of models being initially pre-trained on

ImageNet and then fine tuned for the task of motion prediction. As can be seen from

the results below, it is evident that all pre-trained models demonstrate significantly

poorer performance than the same variants that were trained from scratch directly

for the task at hand. Furthermore, the results in figure 5.6 reveal that pre-trained

models exhibit significantly poorer performance compared to models trained from

scratch, as indicated by their higher validation loss. Notably, pre-trained models

also require more epochs to reach a certain local minimum, typically around the

60th epoch, after which their validation loss starts to plateau. This suggests that

pre-training on ImageNet and fine-tuning for motion prediction may not effectively

leverage the spatial-temporal features required for accurate motion prediction, lead-

ing to suboptimal performance and prolonged training convergence.

5.4. Experiments and Results 105

Figure 5.5: The training (solid line) and validation loss (dash line) of each model
starting from epoch 20 after each model hits some local minimum demonstrated the
stability of each model as well as a point of where overfitting starts to emerge.

5.4.3 Mode Collapse

As demonstrated throughout this chapter the motion detector that introduces the

usage of semantic maps as well as the novel spatial feature extractor based on a

capsule network yields promising results. Nevertheless, the main issue still remains,

the proposed model can only predict a single possible trajectory given the data

about past movement of the observed agent which greatly limits its potential. In

addition, its main limitation i.e. deterministic prediction of a single motion, can also

lead to a possibility of what is known as a mode collapse where during optimization

a model’s weights are adjusted in such a way that its ability to predict more than a

small set of output types is greatly restricted.

First, in order to gain greater insight into the model’s performance its loss over the

entire test set, over three different future time horizons (4,5 and 6 seconds) is closely

examined. Figure 5.7 demonstrates initial results of the experiment where three box

plots reveal the distribution of loss obtained by running MotionCaps over the test

set. As can be seen in the figure each distribution demonstrates a comparatively

106 Chapter 5. Improving Deterministic Motion with Capsule Networks

Figure 5.6: The validation loss of each model and its pre-trained variation (dashed
line) over 100 epochs.

similar pattern of being right skewed where a large number of samples (up to the

third quartile) yields a relatively small loss. However, it can also be clearly seen

that there is a large number of outliers that strongly deviate from the mean of the

distribution.

Figure 5.7: The distribution of the loss computed with MotionCaps over three dif-
ferent future time windows with test set. The plot presents the box plot as well as
all individual data points along x-axis which provides an insight into how spread
those loss values are for each individual time-step.

The distribution of loss values depicted in 5.7 indicates overall stability in the model’s

5.4. Experiments and Results 107

performance during training. However, the presence of outliers suggests instances

where the model struggles to make accurate predictions, potentially due to complex

or rare motion patterns. Addressing these outliers could lead to further improve-

ments in the model’s robustness and generalization capabilities. It is therefore highly

likely that there exists a pattern or patterns of motion that the model is either strug-

gling to learn, or a general set of patterns that the model focused too strongly on

and is hence only able to make an accurate prediction when such patterns occur.

To further confirm this hypothesis, the test motion samples that were obtained

by running the model over the entire test set are sorted with respect to their loss

value. Then, a set of n = 150 easy (n samples with lowest loss) and a set of

hard (n samples with highest loss) ground truth samples per three future time

horizons (4,5 and 6 seconds) are visualised to determine differences with respect to

the motion patterns that yield lowest and highest loss. As can be seen in figure

5.8 where various trajectories are being visualized there is a significant difference

with respect to motion patterns between easy and hard samples over all three time

horizons. More specifically, it appears that all samples that present little difficulty

to the model seem to follow a notably similar, linear pattern of agents moving in

a straight motion. In addition, looking closely at those patterns one can notice

that the velocity of the tracked agents also remains relatively stable, thus making

the prediction significantly simpler. Furthermore, observing the visualised patterns

that are in fact difficult for the model to predict correctly it can be clearly noticed

that the space of those movements is significantly more difficult, containing patterns

that are highly non-linear. Moreover, looking closely it can also be observed that

the velocity within those movements varies considerably.

108 Chapter 5. Improving Deterministic Motion with Capsule Networks

Figure 5.8: Visualisation of 150 easy (left columns) and hard (right columns) ground
truth motion samples form test set over three future time horizons (defined on the
right side of y-axis).

5.5 Conclusion

In this chapter a novel method for extracting features from rasterised map data

based a on capsule network has been proposed and thoroughly examined. First

and foremost, an initial ablation study has been conducted in order to establish the

initial performance of the proposed model.

A comparison experiment between a basic CNN based motion predictor from section

4.4.4 as well as MotionCaps and its basic variants has been conducted. The results

5.5. Conclusion 109

presented in the discussed section demonstrated that the model with the proposed

capsule based feature extractor did indeed outperform a model that instead used

the basic CNN backbone. In addition, through further ablation study it was also

established that the model can also benefit from the usage of local, disentangled

semantic maps (each describing a different category of the road layer e.g. walkway,

drivable area) assuming that each semantic layer is encoded with a dedicated capsule

layer.

Moreover, MotioCaps model has been additionally compared against a set of motion

predictors with various, popular CNN backbones from the literature such as ResNet,

MobileNet, Inception and DenseNet both by training the chosen networks with ran-

domly initialized weights as well as with the use of weights that were pre-trained

on ImageNet. The practice of using pre-trained models has been generally adopted

as a de facto method within the computer vision domain, however, as argued in

section 5.2 this is not often beneficial if the source domain within which the model

was pre-trained strongly deviates from the target domain, especially when the task

at hand is highly sensitive towards a localization of small spatial features. As then

demonstrated in subsection 5.4.2 models that were trained from scratch achieved

substantially better performance indicating that their counterparts that were ini-

tially pre-trained on e.g. the classification task are less suited for learning of salient

features from rasterised maps. In addition, the comparison of MotionCaps against

motion detectors that employed one of the popular CNN architecture demonstrated

that the capsule based predictor not only accomplished comparable results against

other models, but also managed to reach its performance using considerably less

parameters and with a more stable training.

Finally, limitations of the proposed motion predictor were investigated to determine

model’s modes of failure. First of all, the MotionCaps model was used to evaluate

the NuScene test set and gather statistics with respect to the loss over the entire

110 Chapter 5. Improving Deterministic Motion with Capsule Networks

test set across three different prediction horizons. From the demonstrated results

it is clear that the general performance for all future time horizons remains rela-

tively stable, however, there still exists a large amount of samples that do cause the

model to fail considerably yielding high prediction error. Ultimately, the test sam-

ples that produced the lowest and highest prediction error revealed that the model

has collapsed during the training and is strongly biased towards accurate prediction

of linear motion. Nevertheless, despite limitations that were discovered during the

final analysis within this chapter the proposed capsule based motion predictor, Mo-

tionCaps, has managed to demonstrate satisfactory performance, surpassing other

methods that were used during the comparison analysis. In the next chapter the

MotionCaps model will be extended further in order to advance its functionality

with an introduction of generative models to account for the uncertain, multi-modal

nature of the task.

Chapter 6

Introducing Stochasticity for a

Multi-modal Motion

6.1 Introduction

The previous chapter explored and employed a novel architecture for predicting

short-term future motion of tracked agents from the perspective of autonomous

vehicles. The proposed model utilized a convolutional branch based on capsule

networks in order to process a series of local, disentangled semantic layers which

greatly increased its final performance. Nevertheless, the problem of forecasting

short-term motion of nearby vehicles presents an inherently challenging issue as the

space of agents’ possible future movements is not strictly limited to a set of single

trajectories. The technique proposed in the previous chapter as well as number of

recently proposed methods that demonstrate plausible results concentrate primarily

on forecasting the fixed number of deterministic predictions (Cui et al. 2019), or

on classifying over a wider variety of trajectories that were previously generated

using for example a dynamic model (Phan-Minh et al. 2020). This set of approaches

however, is not sufficient for the problem at hand as it is highly unlikely for agents

111

112 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

to continuously follow uniform, deterministic movement in any given environment.

One way to address the discussed issue is to introduce stochasticity into the pre-

diction process, thereby enabling the model to vary its output. Therefore, in this

chapter the issue of multi-modal motion prediction will be tackled by leveraging

benefits of generative models, in particular conditional variational auto-encoders

that approximates a posterior distribution of future trajectories by conditioning the

decoder on the past data of a tracked agent. As previously discussed, a number of

recently suggested approaches have explored the use of various DL methods to ad-

dress the discussed task, however, these still manifest several drawbacks such as the

complete lack of multi-modality, or in a case where the proposed model does exhibit

the ability to output numerous predictions given an input, it is still often limited

to several deterministic predictions. Variational auto-encoders (VAE) (Kingma &

Welling 2013) on the other hand come from the family of generative models and are

thus not restricted to a particular set of deterministic predictions.

6.2 Conditional Variational Auto-encoders

6.2.1 Auto-encoders

First, in order to gain a better understanding of variational autoencoders it is es-

sential to introduce the notion of autoencoders which are types of neural networks

trained in an unsupervised fashion that aim to learn the compressed representation

of the data in order to then reconstruct it. More specifically, an autoencoder, first

introduced by McClelland et al. (1987) can be perceived as a neural network that

is build of two primary parts (see Figure: 6.1) i.e. an encoder network c = f(x)

that takes an input x and produces its compressed representation c, as well as a

decoder network x̂ = g(c) that aims to reconstruct the input x from its compressed

6.2. Conditional Variational Auto-encoders 113

latent representation c such that x̂ ≈ x (Goodfellow et al. 2016). Autoencoders were

traditionally used within the area of dimensionality reduction and in a case where

an autoencoder does not use non-linear activations it can learn a similar latent rep-

resentation of the data as Principal Component Analysis (PCA) (Hotelling 1933).

Thus, those types of networks with non-linear activation functions can be further

considered as a generalization of PCA that learns a complex non-linear manifold of

the data as opposed to the low dimensional hyperplane that PCA aims to find.

Figure 6.1: An example of an autoencoder. An original input image is processed
through the encoder to produce a compressed representation of an image, then a
decoder takes this latent representation and aims to decode it such that the output
resembles the original input (Bank et al. 2020).

The use of autoencoders varies, as previously mentioned those types of networks

can be used for example for data compression, however, their usage has also been

found to be particularly beneficial for retrieval of corrupted data. In such case, the

autoencoder is generally referred to as denoising auto-encoder (DAE) (Vincent et al.

2008). As an example, let x be the original input data and let x̃ be a corrupted

version of x through an addition of random noise e.g. x̃ = x+n where n ∼ N (µ, σ2).

Then, the aim of the denoising autoencoder is to minimize some objective function

J (x, g(f(x̃))) such that the resulting network can remove the noise from the input as

opposed to simply learning to copy the input as done by conventional autoencoders

as demonstrated in figure 6.2.

114 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

Figure 6.2: An example of results obtained from training the denoising autoencoder.
The noisy input to the network is presented on the left with the original data in the
centre an a denoised output of the model on the right (Jordan 2018).

6.2.2 Variational Auto-encoders

Variational auto-encoders which are considered probabilistic generative models, ex-

tend the idea of conventional, often deterministic auto-encoders by aiming to con-

strain the learning process to learn parameters of a probability distribution (often

Gaussian) that models the data instead of learning an arbitrary mapping function.

A simple VAE at its core just like the conventional auto-encoder is constructed of

a sequence of two part neural networks, an encoder as well as decoder which in a

case of VAE are often referred to as recognition and generative networks (or models)

respectively. Figure 6.3 demonstrates a simple example of the VAE framework.

To further understand the core idea behind VAE let X = {xi}Ni=1 denote a dataset

with N i.i.d. samples where xi can be either continuous or discrete. Furthermore,

it is assumed that the data is generated by some random process which involves a

latent continuous random variable zi generated from a prior distribution Pθ(z) with

6.2. Conditional Variational Auto-encoders 115

the random data sample x being generated from a conditional distribution over z

i.e. Pθ(x | z). Therefore, the initial objective is to be able to sample from the well

representative latent space z given the observed data x which requires calculating

the posterior probability distribution Pθ(z | x) which using Bayes’ rule is further

defined as:

Pθ(z | x) =
Pθ(x, z)

Pθ(x)
=
Pθ(x | z)Pθ(z)

Pθ(x)
(6.1)

where

Pθ(x) =

∫
Pθ(x, z) =

∫
Pθ(x | z)Pθ(z)dz (6.2)

However, Pθ(x) and therefore the posterior Pθ(z | x) is intractable due to all possible

configurations of the continuous latent variable z. Hence, in order to turn this into

a tractable problem a VAE framework introduces an encoder (recognition) network,

denoted as Qφ(z | x) where φ includes weights and biases of the encoder, which aims

to approximate parameters of the true posterior distribution Pθ(z | x) such that:

Qφ(z | x) ≈ Pθ(z | x) (6.3)

For example, if Pθ(z | x) is a Gaussian distribution then the encoder Qφ(z | x) will

be trained such that it can estimate parameters µ, σ2 given x, thus:

Qφ(z | x) = N (z | µ(x, φ), σ2(x, φ)) (6.4)

To train an encoder network a non symmetrical measure of the similarity between

two probability distributions is being used, more precisely a Kullback-Leibler diver-

gence DKL is defined as:

DKL(Qφ(z | x) || Pθ(z | x)) = EQφ

[
log

Qφ(z | x)

Pθ(z | x)

]
(6.5)

which has the property of being non-negative DKL(Qφ(z | x) || Pθ(z | x)) ≥ 0 and

116 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

zero if, and only if, Qφ(z | x) equals the true posterior distribution. By further

factoring Kullback-Leibler divergence and applying Bayes’ rule to the Pθ(z | x) the

DKL becomes:

DKL(Qφ(z | x) || Pθ(z | x)) = EQφ

[
log

Qφ(z | x)

Pθ(z | x)

]
= EQφ

[logQφ(z | x)]− EQφ
[logPθ(z | x)]

= EQφ
[logQφ(z | x)]− EQφ

[
log

Pθ(z, x)

Pθ(x)

]
= EQφ

[logQφ(z | x)]− EQφ
[logPθ(z, x)] + EQφ

[logPθ(x)]

= EQφ
[logQφ(z | x)]− EQφ

[logPθ(z, x)] + logPθ(x)

(6.6)

The goal is to find the variational parameters φ of the encoder that minimize the

divergence between the approximated and true posterior:

Q∗φ(z | x) = arg minφDKL(Qφ(z | x) || Pθ(z | x)) (6.7)

However, due to the intractable nature of Pθ(x) the DKL(Qφ(z | x) || Pθ(z | x))

cannot be computed directly. Instead, an alternative objective function known as

evidence lower bound (ELBO) (or variational lower bound) can be used during op-

timization:

ELBOθ,φ(x) = EQφ
[logPθ(x, z)]− EQφ

[logQφ(z | x)] (6.8)

Combining this further with the DKL allows to rewrite the evidence as:

logPθ(x) = ELBOθ,φ(x) +DKL(Qφ(z | x) || Pθ(z | x)) (6.9)

and since DKL is always equal or greater than 0 it means that maximizing ELBO is

equivalent to minimizing the DKL. Interestingly, as stated by Kingma et al. (2019)

the optimization of ELBO will approximately maximize the marginal likelihood

6.2. Conditional Variational Auto-encoders 117

Pθ(x) and minimize the DKL between the approximated and true posterior, thus,

leading to a better generative model.

Furthermore, given the latent output of the stochastic encoder Qφ(z | x) the next

part is to train the probabilistic decoder (generative network) PΦ(x | z) to recon-

struct the input data such that:

PΦ(x | z) ≈ x (6.10)

The choice of loss function for the decoder is strongly dependant on the task at hand,

however, a simple mean squared error is a frequent choice for learning to reconstruct

the data:

Jdecoder = ‖PΦ(x | z)− x‖2 (6.11)

6.2.3 Conditional Variational Auto-encoders

In the previous subsection a probabilistic generative model named variational auto-

encoder was introduced. As demonstrated, the VAE establishes a reliable framework

for learning parameters of probability distribution and allowing to then sample from

the learned distribution in order to generate a plausible output. Nevertheless, the

VAE is inherently limited as the decoder cannot be controlled to produce a specific

output. For example, given a MNIST dataset of handwritten digits (LeCun et al.

1998) the task with use of the VAE would involve learning the probability distri-

bution such that when sampled from the distribution the decoder would be able to

reconstruct the handwritten digits. However, in such case the latent input to the

decoder would carry no information as to which digit the decoder should aim to

reconstruct, and thus the final output would be a randomly generated digit.

118 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

Figure 6.3: The figure by Kingma et al. (2019) demonstrates the mapping process
that a VAE is aiming to learn (note that the notation in the figure might differ from
the notation used in this subsection). A probabilistic encoder Qφ(z | x) is trained
to map the input x to the latent variable z. Then, a stochastic decoder PΦ(x | x) is
trained to reconstruct the input data x given a latent input z.

To mitigate this issue and allow for a more controlled process of generating data,

a further extension of VAE was proposed, namely a conditional variational auto-

encoder which learns to encode and decode the latent space based not solely on the

input x and latent variable z but also on some random variable y as depicted in

figure 6.4.

More specifically, the encoder is now modelled as Qφ(z | x, y) and the decoder as

PΦ(x | z, y) where for instance, in a case of training to generate the MNSIT dataset

the y could represent the specific digit (often encoded with one hot encoding) that

the model should aim to output. Moreover, the evidence now becomes logPθ(y | x)

and is further formulated as:

logPθ(y | x) = ELBOθ,φ(x, y) +DKL(Qφ(z | x, y) || Pθ(z | x, y)) (6.12)

6.3. Network Architecture and Computational Flow 119

Figure 6.4: A graphical comparison of the VAE (left) and CVAE (right). As de-
picted, the CVAE model now considers an additional input y which conditions the
encoder and decoder accordingly to a given label y (Doersch 2016).

with the variational lower bound from equation 6.8 now being rewritten as:

ELBOθ,φ(x, y) = EQφ
[logPθ(y, z | x)]− EQφ

[logQφ(z | x, y)] (6.13)

As demonstrated in this section, the VAE framework (as well as its extension towards

CVAE) proposes an elegant solution for tackling the lack of multi-modality in numer-

ous tasks, among them a prediction of future motion of on-road agents. Therefore,

the next section will explain the proposed architecture of the mulit-modal motion

predictor based on the CVAE framework.

6.3 Network Architecture and Computational Flow

This section provides an overview of the architecture as well as the computational

flow of the proposed network that aims to address the main issue from the previous

chapter, the lack of multi-modal output.

First, as in previous chapters, it is assumed that the vehicle equipped with motion

prediction capabilities is equipped with an appropriate tracking module that for re-

120 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

trieval of information that corresponds to the past state of the tracked agent, and

in addition it is assumed that additional data in form of HD maps is also available.

First, let τ, ρ denote time-steps for the prediction and observed time horizon re-

spectively. Next, let S = [st−ρ, · · · , st−1, st] represent a standardised matrix of the

tracked agent’s motion state from time-step t − ρ to the initial time-step t where

st = [v, a,∆ϑ] denotes a vector of scalar features containing velocity, acceleration

and heading change rate respectively. Moreover, let P = [pt−ρ, · · · ,pt−1,pt] corre-

spond to the agent’s observed past positions, and Y = [yt+1,yt+2, · · · ,yt+τ] to its

future ground-truth positions with each vector in both matrices containing (x, y)

coordinates in the agent’s frame of reference.

Next, let the normalised matrix M define a global chunk of a rasterised HD map

which captures 100 meters of the surrounding area in front of the vehicle and 5

meters from the rear. The matrix M is further extracted with accordance to the

agent’s position at the initial time-step t and rotated towards its frame of reference.

Furthermore, a normalised tensor D = [Lt−ρ, · · · ,Lt−1,Lt] is defined which encapsu-

lates local map chunks (20m× 20m) with respect to the tracked agent. Then, each

L ∈ D is unraveled into separate semantic layers such that Lt = [Lt,0, Lt,1, · · · ,Lt,n]

where n is equal to the number of road layers and Lt,i is equal to a sparse matrix

that encapsulates spatial data of semantic layer of type i. An example of both global

and local HD map data is presented in Fig 6.5.

The goal is to train a generative model based on the CVAE framework which is gen-

erally composed, as previously mentioned, as a three-part model with Qφ(z|x,y)

(recognition network), Pθ(z|x) (conditional prior) and PΦ(y|x, z) (generative net-

work) parameterised by Φ, φ and θ with each part of the model being commonly

defined as a MLP. In Pθ(z|x) the latent variable z is conditioned on an arbitrary

input x, however, this can be further relaxed such that Pθ(z|x) = Pθ(z) therefore

making z statistically independent (Kingma et al. 2014). Finally, the main interest

6.3. Network Architecture and Computational Flow 121

Figure 6.5: An example of a global mapM (left) as well as the unraveling process of
a local map chunk Lt (middle) which is turned into several geometrical layers (right)
each representing a single part of the whole map. In addition, we draw an agent
(top right) with its origin corresponding to the position on the chunk of interest.

is to use the trained generator to predict a diverse set of k trajectories with respect

to a tracked entity which is denoted as Ŷ = [Ŷ 0, Ŷ 1, · · · , Ŷ k] with each matrix Ŷ i

being further constructed as Ŷ i = [ŷi,t+1, ŷi,t+2, · · · , ŷi,t+τ] where ŷi,t+1 corresponds

to a vector containing future coordinates of the trajectory i at time t+ 1 such that

ŷi,t+1 = (x̂i,t+1, ŷi,t+1) in the agent’s frame of reference.

6.3.1 State Encoding

The basis of the network for encoding the captured state of the agent follows those

from the previous chapter. More specifically, the set of local semantic maps D is

encoded through the capsule encoder (for details see Section 5.3). A single layer

Lt,i ∈ Lt at time t is passed through the feature extractor to extract the final latent

representation vector of each semantic map L over the observed time horizon. The

122 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

matrix Lt,i is passed through the convolutional base with Leaky ReLU non-linearity

(Maas et al. 2013) (with the default value for the negative slope of 1e− 2) such that

L̂t,i = Φl_base(Lt,i) which results in the tensor L̂t,i which encapsulates activations

of local low-level features. The extracted features are then passed through lower

capsules L̂t,i = Φl_lower(L̂t,i) which results in the output matrix L̂t,i that contains m

capsules where each capsule is an n−dimensional vector with entries corresponding

to instantiation parameters of detected features e.g. lines. As in the previous chap-

ter, instead of using scalar based activation function, a squashing non-linearity (see

Equation: 5.2) is used instead. The output of the Φl_lower(·) is further encoded with

its respective higher capsule layer i such that l̂t,i = Φl_higher_i(L̂t,i) with vector l̂t,i

encapsulating encoded parameters of the layer Lt,i. The above operation is further

repeated for each Lt,i ∈ Lt with the final encoding of each layer being concatenated

to create an input matrix for the final capsule:

l̂t = Φl_final(Φconcat(l̂t,0, l̂t,1, · · · , l̂t,n−1)) (6.14)

where l̂t encodes the final representation of Lt. Repeating this process for each

Lt ∈ D yields matrix L̂ whose entries encapsulate encoding of all semantic layers

from time t− ρ to t such that L̂ = [l̂t−ρ, · · · , l̂t−1, l̂t].

Furthermore, in order to obtain the final encoding of the agent’s state the matrix L̂

is concatenated with corresponding elements from motion state matrix S:

ŝt = Φconcat(l̂t,Φstate(st)), ∀ l̂t ∈ L̂, st ∈ S (6.15)

to create encoded state matrix Ŝ = [ŝt−ρ, · · · , ŝt−1, ŝt] where Φstate(·) is a single

fully-connected layer with Leaky ReLU. Lastly, the matrix Ŝ is passed through a

LSTM layer to compute the final state representation in a temporal manner ŝ =

Φstate_lstm(Ŝ) with vector ŝ corresponding to Φstate_lstm(·) final hidden-state.

6.3. Network Architecture and Computational Flow 123

6.3.2 Recognition Network

In addition to the computed encoding of the tracked agent’s state ŝ as described

in the previous subsection, the scene context M as well as an agent’s ground-truth

future Y and past motion P must also be encoded. First of all, the surrounding

global context M is passed through another, independent feature extractor in a

similar manner as D such that:

m̂ = Φm_higher(Φm_lower(Φm_base(M))) (6.16)

The feature extractor is based on the capsule network proposed in the previous

chapter with a slight modification as can be noted by looking at the equation 6.16.

Instead of reusing the same architecture, the feature extractor is pruned such that

it only relies on the convolutional base as well as the lower and higher capsules. The

final capsule layer has been omitted due to the fact that the rasterised scene context

M is a single image as opposed to multiple images as in a case of local semantic

layers Lt.

Next, both Y and P are flattened along their temporal dimensions to create vectors

g (future) and p (past) of shape 2× τ and 2× ρ respectively. Both vectors through

their respective fully-connected layers with Leaky ReLU to get ĝ = Φgt(g) and

p̂ = Φpast(p) (initial experiments demonstrated no improvement when encoding Y

and P through LSTM layers and therefore it was decided to use fully-connected

networks instead to account for computational efficiency).

The recognition network is further defined in the CVAE framework as QΘ(z|ĝ, c)

where QΘ is constructed as a two-headed MLP each composed of two fully-connected

layers with Leaky ReLU and batch normalisation (Ioffe & Szegedy 2015), and the

vector c is the result of the following c = Φconcat(p̂, m̂). QΘ aims to approximate the

prior distribution Pφ(z) which is modeled as a Gaussian such that Pφ(z) = N (0, I)

124 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

by predicting distribution parameters i.e. µ̂ and σ̂ of a latent variable z which results

in z ∼ QΘ(z|ĝ, c) = N (µ̂, σ̂) and leads to learning of the hidden representation of

ĝ given c.

6.3.3 Motion Generator

The generation network which is also referred to as motion generator is formulated as

Pθ(Ŷ |z, c) and defined as an MLP with four fully-connected layers and Leaky ReLU

non-linearity in-between layers. In addition to using z and c during the generation

process, the agent’s encoded state ŝ is also added as an additional intermediate input

to the second fully-connected layer. The final layer of the generator yields a vector

of size 2(x, y) × τ where τ corresponds to the future time horizon. The output of

the generator is finally reshaped to create target matrix Ŷ = [ŷt+1, ŷt+2, · · · , ŷt+τ]

with each entry vector containing predicted future coordinates (x, y) in the agent’s

coordinate frame from time t+1 to t+τ . During the training phase the latent variable

z is sampled from QΘ i.e. z ∼ QΘ(z|ĝ, c), however, during testing the encoding

of ground-truth motion ĝ is not available and therefore z is directly sampled from

the prior distribution z ∼ Pφ(z). Note that generating k samples can be performed

by sampling z from the prior for k times to create Z = [z0, z1, · · · , zk] with zi

corresponding to the latent sample at index i, and then decoding the ith motion

sequence such that:

Ŷ i = Pθ(Ŷ i|zi, c) ∀ zi ∈ Z (6.17)

The summary of the proposed model’s architecture is demonstrated in figure 6.6.

6.4. Experiments and Results 125

Figure 6.6: A simplified overview of the proposed network. During training param-
eters of the prior distribution are obtained with the recognition network which is
used to produce a diverse set of training samples. Then, during testing the past
ground-truth motion Y of a tracked agent is not available and z is therefore sam-
pled directly from prior i.e. z ∼ N (0, I) and then used to decode k samples which
are encapsulated in Ŷ.

6.4 Experiments and Results

This section will focus on exploring and evaluating an extension of the deterministic

model proposed in the previous chapter by extending it via the CVAE framework

to account for multi-modality of the problem that is predicting future motion of

agents in complex scenes. First of all, an ablation study will be conducted between

a motion predictor based on a standard VAE against a CVAE with various modes of

c to examine a) whether CVAE does actually presents any benefits by conditioning

the decoder and b) what sort of condition yields lowest error. The architecture of

the standard VAE and the CVAE follows a similar pattern, with the main differ-

ence being the conditional prior. Note, throughout the remainder of this chapter

the proposed CVAE model will be referred to as MMST (multi-modal stochastic

trajectories).

6.4.1 Ablation Study - VAE vs CVAE

The experimental setup for the following experiments follows a similar pattern as

in previous chapters with the main difference being the loss function used for the

126 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

training and the metric used for evaluation. Both VAE and CVAE predictors are

optimized by minimising the following loss function:

J = αJ1 + βJ2 (6.18)

where J1 aims to minimise the distance between QΘ(z|ĝ) (VAE) or QΘ(z|ĝ, c)

(CVAE) as well as the prior Pφ(z) such that:

J1 = −DKL(QΘ(z|ĝ, c)||Pφ(z))

= −1

2

n∑
i=1

(1 + log((σ̂i)
2)− (µ̂i)

2 − (σ̂i)
2)

(6.19)

and J2 serves as a reconstruction loss between ground truth and the prediction:

J2 = MSE(Y , Ŷ)

= ‖yi − ŷki ‖2

(6.20)

Both loss terms are balanced by setting α = 1 and β = 1e − 2. Furthermore,

both types of networks are trained for up to 400 epochs with the early stopping,

Adam optimizer and a batch size of 64. Next, for every data sample the observed

time horizon is again set to 2 seconds (5 time-steps) of the agent’s past states i.e.

ρ ≡ 2 seconds and the prediction horizon is set to τ ≡ 6 seconds of the agent’s

future motion. Moreover, the quantitative metrics are now adapted in order to

reflect the nature of the generative models, more specifically, instead of considering

only a single predicted sample both ADE and FDE now take into consideration k

predictions such that:

minADEk =
1

n

√√√√ n∑
i=1

min
k
‖yi − ŷki ‖2 (6.21)

6.4. Experiments and Results 127

and

minFDEk =
1

n

√√√√ n∑
i=1

min
k
‖yi,t+τ − ŷki,t+τ‖2 (6.22)

First of all, the performance of CVAE against VAE is examined with various modes

of c in order to determine the most optimal combination of input data as well

as to determine whether conditioning a generative model yields lower minADE

and minFDE. For various modes of c the CVAE based networks are adjusted by

adding/removing relevant layers w.r.t. input data.

Results of the initial experiment are presented in Table 6.1 where both metrics

demonstrate the error with respect to a large number of samples (k = 100). As

demonstrated in the table, there exists a significant performance difference between

the VAE and CVAE based motion predictors of at least (0.03/0.06) and up to

(0.18/0.30) for both minADE and minFDE. These findings unequivocally underscore

the advantageous nature of conditioning the generative model on the latent variable

c, as facilitated by the CVAE framework.

Furthermore, the analysis of various modes of c demonstrates that the best com-

bination is in fact the past motion of the observed agent as well as the rasterised

global map that encapsulates significantly larger portion of surrounding than local

maps. Moreover, it appears that utilising past motion provides the greatest improve-

ment across the board which potentially stems from the fact that the past motion

correlates strongly with the future movement of an agent. On the other hand, con-

ditioning the motion generator solely with either global or local maps offers slightly

worse improvement over the standard VAE.

In essence, the findings underscore the pivotal role of conditioning within the CVAE

framework, emphasizing the nuanced interplay between past motion, global context,

and local cues in shaping the predictive capabilities of the model. These insights

not only advance the understanding of multi-modal motion prediction but also of-

128 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

fer practical implications for enhancing the performance of generative models in

complex dynamic environments.

Generative
Model

Condition c minADE/minFDE
(k = 100)Past Motion Global Map Local Maps

VAE 2.21/4.63
CVAE X 2.07/4.40

X 2.12/4.49
X 2.13/4.52

X X 2.03/4.33
X X 2.10/4.45

X X X 2.06/4.38

Table 6.1: Quantitative results of an ablation study between CVAE and VAE as
well as between various modes of conditioning of the CVAE based model.

Next, further results presented in Table 6.2 demonstrate the performance of MMST

based on both VAE and CVAE (with most optimal c) from the previous experiment

across the number of different k samples. In addition, the MotionCaps network in-

troduced in the previous chapter has been also considered in order to further present

the relative performance of deterministic and stochastic networks. Looking at the

table it is clear that the CVAE based MMST presents the best results in compari-

son to other methods which further supports results from the previous experiment.

However, what is interesting are the results of stochastic models when k = 1 in which

case the best performing model seems to be the deterministic MotionCaps. Nonethe-

less, when observing the performance of stochastic models it can be noted that the

model (MMST based on CVAE) with minimum error across both metrics and al-

most all k modes tend to perform worse on k = 1. This behaviour might signify that

initially the variance w.r.t. plausible movement of the agent could be narrow and

only encapsulate the most common motion patterns (hence lower minADE/minFDE

for MotionCaps and MMST based on VAE) but with a better model the learned

variance could be more suited towards predictions of more complex movement.

6.4. Experiments and Results 129

Model minADE/minFDE
k = 1 k = 20 k = 50 k = 100

MotionCaps 2.74/6.89 - - -
MMST (VAE) 3.97/9.49 2.78/6.20 2.38/5.02 2.21/4.63
MMST (CVAE) 4.26/10.17 2.49/5.58 2.17/4.72 2.03/4.33

Table 6.2: Quantitative results of an ablation study between CVAE and VAE as
well as between various modes of conditioning of the CVAE based model.

Lastly, it is crucial to analyze the inference time of the examined models with re-

gards to the number of sampled trajectories to determine whether sampling with

a higher rate introduces a speed bottleneck. Results of the experiment are pre-

sented in Figure 6.7 where three models considered in Table 6.2 were tested on

k ∈ {1, 20, 50, 100, 500, 1000} with the deterministic model (MotionCaps) being con-

sidered only on k = 1 for comparison purposes. As demonstrated, the MotionCaps

is in fact fastest when predicting for a single sample with the inference speed of

55.02ms against VAE’s 57.12ms and CVAE’s 60.44ms, which is in fact relatively

negligible considering that MotionCaps is limited to predicting a single trajectory

per given input. On the other hand, it is clear that CVAE is slightly slower than

VAE across all modes of k whilst also having significantly higher variance. However,

despite the varying complexities introduced by an increased number of sampled tra-

jectories, the inference time remains relatively stable, indicating that scaling the

number of samples does not necessarily incur a substantial speed penalty. This ob-

servation underscores the scalability and efficiency of the models, suggesting that

a large number of samples can be obtained without compromising computational

speed.

130 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

Figure 6.7: An inference time study demonstrating the speed of predicting k samples
with previously examined models.

6.4.2 Facilitating the Learning Process with Minimum over

N

Next, the work presented by Gupta et al. (2018) where a generative model (based on

GAN) was employed for a similar task but in the domain of human trajectory pre-

diction, argue that with a simple objective function such as L2 the model is strongly

restricted the during optimization process which leads to learning of a limited space

of plausible outcomes causing the model to often produce a set of "average" pre-

dictions. In order to aid with the learning process and encourage the network to

produce a more diverse set of samples the authors proposed to utilise a novel va-

riety loss (also known as Minimum over N or just MoN) which considers n output

predictions produced by a model by randomly sampling from N (0, 1) instead of con-

sidering only a single prediction when optimizing the model. Furthermore, during

the learning process, the MoN uses the most optimal prediction out of n predictions

which is defined by an arbitrary distance metric e.g. L2. The formulation of MoN

aims to encourage the network to cover a wider space of plausible movements that

correspond to the past motion of agents. More specifically, the MoN is formulated

6.4. Experiments and Results 131

as:

MoN(Y , Ŷ) =
N∑
i=1

min
n

d(yi, ŷ
n
i) (6.23)

where N refers to the number of data samples, n to the number of modes used during

training and d(·) to an arbitrary distance function such as d(yi, ŷ
n
i) = ‖yi − ŷni ‖2.

The following experiment examines the effect of MoN when applied during the train-

ing of MMNST. The training procedure follows a similar process as the one defined

in subsection 6.4.1, however, this time the network is trained for 360 epochs with

the SPS optimizer with adaptive learning rate (Loizou et al. 2021) and the recon-

struction loss is formulated as:

J2 = MoN(Y , Ŷ)

=
N∑
i=1

min
n

d(yi, ŷ
n
i)

(6.24)

with the default distance function being d(yi, ŷ
n
i) = L2(yi, ŷ

n
i) = ‖yi − ŷni ‖2.

First, various values of n are examined with regards to the training of the model

where n ∈ {1, 16, 32, 64, 128, 256}, results are presented in Table 6.3. Note that for

sake of comparison a n = 1 mode has been included to demonstrate the performance

gain of models trained with MoN against a default MMNST that was trained with

a default L2 objective as presented in the 6.4.1. Above all, it is crucial to emphasize

the difference between a model trained without a MoN (MMST1) against models

trained with the alternative criterion.

As presented, the initial performance increase is drastic with an improvement of both

minADEk and minFDEk by at least 21% and 24% respectively (k = 10, MMST1 vs

MMST256). This highlights the pivotal role of MoN in enhancing the predictive ca-

pabilities of the model, leading to more accurate trajectory predictions.Furthermore,

results show that for the proposed method the optimal number of samples during

training is ≈ 32 which yields the least error across three out of four sampling sce-

132 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

narios (k = 10). Interestingly, the performance of the model does not exhibit a

linear relationship with the number of training samples (n), as performance tends

to plateau or even decrease with larger n values (above n = 32). This observation

suggests that there might be a saturation point beyond which increasing the number

of training samples does not lead to further improvements in prediction accuracy.

Furthermore, it is notable that for k = 10, the best results are achieved when n = 16,

indicating that the MMST trained with MoN can achieve optimal performance with

relatively smaller sample sizes. This finding has practical implications, as it sug-

gests that the model can be trained effectively even with limited data, potentially

reducing computational costs and training time.

MoNn
minADEk/minFDEk

k = 10 k = 25 k = 50 k = 100

MMST1 2.78/6.33 2.40/5.31 2.17/4.72 2.03/4.33
MMST16 1.77/3.81 1.32/2.51 1.09/1.87 0.92/1.38
MMST32 1.82/3.92 1.25/2.42 1.05/1.82 0.89/1.32
MMST64 1.99/4.37 1.43/2.79 1.14/2.00 0.95/1.46
MMST128 2.07/4.53 1.45/2.84 1.17/2.02 0.94/1.44
MMST256 2.19/4.80 1.52/3.00 1.19/2.11 0.97/1.50

Table 6.3: Comparison study between different settings of n during training with
respect to MoN loss. A minADE/minFDE errors are provided in meters for four
different sampling values of k.

Next, Table 6.4 demonstrates results of employing three different distance functions

d(·) during training of the model (n is set to the fixed value of 32 as it presented

most optimal performance during the previous experiment). Two popular metric

functions L1 and L2 as well as their combination which is further balanced by the

λ = 0.5 parameter are examined. Results clearly demonstrate advantages of using

L2 which outperforms other metrics on the majority of scenarios. Interestingly,

the balanced combination of L2 and L1 does present the best results in a couple

of cases and performs relatively similarly to L2 in others. This suggests that the

6.4. Experiments and Results 133

appropriate adjustment of the λ parameter might lead to L2 being outperformed in

certain scenarios. Further fine-tuning of the parameter could potentially optimize

the trade-off between the two distance functions, resulting in improved prediction

accuracy.

Distance
Function

minADEk/minFDEk
k = 10 k = 25 k = 50 k = 100

L1 1.94/4.00 1.45/2.72 1.20/2.05 1.00/1.51
L2 1.82/3.92 1.25/2.42 1.05/1.82 0.89/1.32
λ(L1 + L2) 1.79/3.83 1.30/2.49 1.07/1.81 0.90/1.36

Table 6.4: Ablation study between different distance functions. Again, four different
sampling rates (k) are used during the testing.

Lastly, an analysis of displacement errors (Fig. 6.8 & 6.9) with respect to a large

number of sampled trajectories (k ≤ 213) are presented. As expected the displace-

ment error for both metrics declines as the number of sampled trajectories grows.

It is also noticed that all variations of MMST perform similarly well with mod-

els trained on larger n (i.e 128 and 256) achieving slightly lower minADE of about

≈ 0.40. In addition, a similar trend can be noticed with respect to the minFDE with

all variations of MMST reaching roughly equivalently low error as k grows. Interest-

ingly, when k > 29 the minFDE gets smaller than minADE with lowest displacement

of roughly ≈ 0.17. This disparity underscores the model’s ability to capture more ac-

curate predictions of final positions as the number of sampled trajectories increases,

highlighting its robustness in handling diverse and complex prediction scenarios.

6.4.3 Comparison with Methods from the Literature

Finally, a performance comparison of the MMST against other methods from the

literature (which at the time of experimentation were considered the state-of-the-

art methods) is presented, more specifically the following are considered during the

134 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

Figure 6.8: Results of the minADE error with regards to several MMST’s variants
where 24 ≤ k ≤ 213.

comparison study:

1. CoverNet (Phan-Minh et al. 2020): This method as previously discussed in

section 3.4.3 proposes to frame the multi-modal probabilistic trajectory pre-

diction from a classification point of view by pre-generating n trajectories and

then training the model to reduce the loss with respect to a classified sample

that is closest to the actual ground-truth. For this experiment, the model

is re-trained by following settings outlined in the original paper across three

different error tolerance settings i.e. ε ∈ {2, 4, 8} with pre-trained ResNet-50

to extract road features and encode context of the environment.

2. MTP (Cui et al. 2019): Another method that uses a rasterised top-down

view of the environment and encodes its salient features with use of ResNet-

50. As with CoverNet the training settings for MTP are also adopted with

accordance to the details outlined within the original paper. The model is

re-trained to output n ∈ {64, 128, 256} deterministic trajectories along with

their probabilities and then sample k most probable motions.

6.4. Experiments and Results 135

Figure 6.9: Results of the minFDE error with regards to several MMST’s variants
where 24 ≤ k ≤ 213.

Results of the comparison study are presented in Table 6.5. As demonstrated, the

proposed generative model either outperforms both approaches or produces results

that are relatively similar to MTP. It can be noticed that MMST yields significantly

higher error when k = 1 but then instantaneously reaches similar results when

k > 1. In addition, MMST tends to outperform other methods across most k

samples on the minADE metric whilst reaching significantly lower errors when k =

200. Furthermore, it can be observed that the proposed model achieves a relatively

low error whilst at the same time significantly reducing the number of parameters

within the network which is attributed to the use of the custom backbone feature

extractor based on the capsule network. Both MTP and CoverNet employ ResNet-

50 to encode the context of the environment which lead to early overfitting during

re-training of these models. Moreover, the pre-trained ResNet-50 is trained on a

distinct domain (Deng et al. 2009), and it is therefore arguable whether this approach

actually leads to an encoding of meaningful features from the rasterised HD map.

It is important to note that MMST is not restricted with respect to the number

of samples it can generate as compared to both CoverNet and MTP which are

limited to producing a deterministic output that must contain an equal amount of

136 Chapter 6. Introducing Stochasticity for a Multi-modal Motion

trajectories with regards to n training modes. This flexibility positions MMST as a

versatile and adaptable solution for multi-modal trajectory prediction tasks, capable

of accommodating varying prediction requirements and complexities.

Model minADEk/minFDEk #Params
k = 10 k = 50 k = 100 k = 200

CoverNet8
64 2.43/4.10 2.21/3.11 - - 32.0m

CoverNet8
415 2.31/4.33 1.51/2.02 1.40/1.60 1.34/1.39 33.5m

CoverNet8
2206 2.32/4.60 1.38/2.02 1.17/1.46 1.04/1.09 40.9m

MTP64 1.84/3.70 1.07/1.85 - - 38.5m
MTP128 2.39/5.18 1.23/2.04 0.93/1.25 - 45.0m
MTP256 2.29/5.04 1.14/1.87 0.94/1.28 0.88/1.13 58.1m
MMST32 1.82/3.92 1.05/1.82 0.89/1.32 0.78/0.98 7.4m

Table 6.5: Comparison study of the final model vs two recently proposed methods
from the literature. Apart from providing results using minADE/minFDE the num-
ber of learnable parameters (millions) is also included to demonstrate the difference
in complexity of all examined methods. All models were trained on n samples indi-
cated by the subscript. Additionally, for CoverNetε the number of modes that each
variant is trained on is adjusted with accordance to ε value.

6.5 Conclusion

The final chapter of this thesis concentrated on building upon the work introduced

in the former chapters. The motion prediction model based on the capsule net-

work which employed local semantic maps as an additional source of information for

modelling of the state of the tracked agent has been extended with use of a stochas-

tic model, more specifically a conditional variational auto-encoder which allowed to

account for the multi-modal nature of the problem. First, an introduction to the

problem as well as a general overview of auto-encoders and variational auto-encoders

has been presented, stating numerous reasons as to why a previously introduced mo-

tion predictor can benefit from incorporating the CVAE framework into its pipeline.

6.5. Conclusion 137

Next, the network architecture as well as the computational flow of the proposed

model has been presented to demonstrate how CVAE will be used for the problem

of short-term motion prediction. Furthermore, the number of experiments has been

carried out to examine the effectiveness of the proposed model. First of all, the

performance of the proposed CVAE based model was examined against the classic

(similar) VAE based model to establish whether conditioning the generative model

yields a positive outcome, the number of different variants of CVAE were considered

to determine the most successful model combination. In addition, the generative

model was then examined against the capsule based motion predictor both with

respect to its prediction quality as well as its speed, demonstrating that the pro-

posed generative model can be used to produce a large number of predictions with

almost a constant time. Then, to further ease the learning process an alternative

objective function, Minimum over N, has been introduced and thoroughly examined

to allow the model to learn a more diverse set of plausible trajectories. Finally, the

performance of the proposed CVAE based motion predictor has been further com-

pared against other methods from the literature that also focused on multi-modal

prediction with use of rasterised maps. As demonstrated in the last section, the pro-

posed model significantly outperformed other methods whilst drastically reducing

the overall size of the network.

Chapter 7

Conclusions and Future Work

This chapter provides a coherent summary of the work conducted in this thesis.

Starting of with the discussion of the contributions that were made throughout this

work, then addressing the limitations and finally exploring the future work within

the area of intelligent vehicle motion prediction.

7.1 Summary of the Thesis

The main purpose of this thesis was to first of all, investigate and explore the usage

of an alternative data source in the form of rasterized HD maps that capture a

local portion of the tracked agent’s surroundings in order to increase the model’s

performance. This problem was tackled in chapter 4 where a number of experiments

were conducted in order to validate the following hypothesis:

Incorporating local information about the context of the tracked agent’s surrounding

can be exploited to increase the general performance of a motion prediction model.

In chapter 4 a novel approach that utilizes a small portion of a rasterised 2D HD

maps has been proposed. It was argued that employing the standard methodology

138

7.1. Summary of the Thesis 139

of using global maps that aim to capture a significantly larger portion of the sur-

roundings might not be optimal and that instead using local maps captured over

time can be better suited to encode the state of the tracked agent, and therefore

increase the efficiency of the model. First, a set of experiments was conducted in

order to establish a set of baseline models and to determine the advantages of using

various types of data such as temporal data (agent’s physical state) and spatial data

(global or local rasterised maps). Results of experiments initially demonstrated that

achieving most optimal performance with the basic model can be accomplished with

the use of the agent’s tracked physical data such as its past motion, position etc, as

well as the spatial data either global or local with the model that used local maps

yielding slightly better results. Then, a subsequent set of experiments aimed at

improving the baseline model by first unraveling the local map into a set of separate

maps where each defines a certain road layer. Then the model was further extended

to process a set of local semantic maps in a temporal manner where instead of using

the local chunk of a map from the last observable timestep, a set of local maps

collected over a fixed period of time was utilized to further advance the model’s

performance. Finally, the last experiment explored various sizes of local maps to

determine the most optimal setting for the training and inference. Based on the

conducted experiments and obtained results it can be concluded that exploiting the

local semantic maps, especially when incorporated in a temporal manner in which

those maps are utilized can noticeably increase the performance of the model in

regards to short-term motion prediction.

Additionally, the problem of reducing the model’s complexity was also addressed as

it was argued that models deployed within autonomous vehicles should achieve a cer-

tain level of inference speed which is highly dependent on the complexity of the model

which must therefore be significantly lighter as opposed to large vision/language

models for example, that are used to analyse data off-line. This issue was tackled

in order to validate the following hypothesis:

140 Chapter 7. Conclusions and Future Work

The computational complexity of the motion predictor can be significantly reduced

by training a model based on a robust capsule network from scratch directly on the

target domain.

Results of the proposed methodologies and subsequent experiments are presented in

chapters 5 and 6. Chapter 5 introduces a motion prediction model based on a al-

ternative architecture of a neural network for processing of the spatial data, namely

a capsule network. First, it was argued that the typical feature extractors that are

employed in recent methods from the literature are often very large (number of pa-

rameters), pre-trained on the distinct domain (often classification tasks) which can

greatly harm their performance if the target domain differs significantly, and use

standard convolutional layers with pooling layers on top which can further reduce

a model’s performance as it discards a large amount of information about objects.

Initial experiments in this chapter explored different architectures of motion predic-

tion based on capsule feature extractor, more specifically, it was determined that

the most optimal performance can be achieved when an unraveled set of local maps

captured over time is encoded with the dedicated higher capsules which resulted in

significantly better performance as opposed to other baseline models. Next, the per-

formance of the most optimal model was further examined against a set of popular

CNN feature extractors such as ResNet, DenseNet and many others. All employed

feature extractors were trained either from scratch or by simply fine tuning already

pre-trained weights on the task at hand. Results clearly demonstrate that using a

capsule based feature extractor can potentially lead to a model that achieves a higher

level of accuracy on the task of motion prediction, and in addition allows to signifi-

cantly reduce the total number of parameters leading to a noticeable lighter model.

Lastly, the final part of this chapter explored modes of failures of the model to gain

further understanding of the cases that the model is particularly struggling with.

As clearly demonstrated, this experiment revealed that certain types of movements

(strongly non-linear trajectories) significantly decrease the prediction accuracy of

7.1. Summary of the Thesis 141

the model. Based on the obtained results it was further decided that in order to

alleviate the discovered issues an extension of the deterministic model towards a

multi-modal prediction must be made.

In the last technical chapter (chapter 6) this issue was further addressed with an

extension of the model through the introduction of a generative model based on the

conditional variational auto-encoder framework. As argued, the space of plausible

movement for each vehicle in the vicinity is non-deterministic and is not limited to

a single, correct motion. Therefore, to improve the model further a CVAE method

has been employed to allow for a stochastic, multi-modal output. Initial experi-

ments aimed at comparing the previously proposed capsule based model against

two models, one based on the classical VAE framework and the other based on its

extension with the conditional part. From results it was established that the CVAE

based motion predictor achieves the best performance, outperforming the VAE best

model as well as the deterministic model. In addition, either of the stochastic mod-

els demonstrated that there is no noticeable speed difference when sampling for a

very large number of motion samples against prediction of a single sample. Next,

the training process of the CVAE based model was further improved with an intro-

duction of an alternative loss function known as Minimum over N (MoN). The use

of loss function has been previously proposed in other tasks that involved usage of

generative models and thus it was only logical to try to examine whether this can be

used to further advance the performance of the motion predictor. Presented results

clearly demonstrate the superior performance of the model that was trained with

MoN loss. Lastly, the performance of the final motion prediction model based on a

combination of capsule network and CVAE framework was compared against some

of the methods that at the time of experimentation were considered as state-of-the-

art models within the area of vehicle motion prediction. All models that were used

for comparison purposes were tested on a public dataset with each model producing

a multi-modal output. Yet again, the model proposed in this thesis (see Table 6.5)

142 Chapter 7. Conclusions and Future Work

demonstrated an excellent performance, significantly outperforming other methods

whilst at the same time maintaining low complexity.

7.2 Limitations and Avenues for Future Work

The aim of this thesis was to improve on current motion prediction models for

autonomous vehicles to better predict the short-term movement of other vehicles in

close vicinity through the development of novel methodologies based on deep learning

methods. Based on results obtained from chapter 4, 5 and 6 and through research

and development of a novel motion prediction model it can be concluded that the

defined hypotheses were correct. Nevertheless, there are a number of possible future

avenues that can still be explored in this area which will be further discussed in this

section.

7.2.1 Physical and Social Constrains

Precise anticipation of a vehicle’s trajectory, as well as the movements of pedestrians,

bicycles, and other entities on the road, is essential for achieving significantly safer

autonomous systems. However, accomplishing this can prove challenging as mo-

tion prediction models typically concentrate on forecasting future movements based

solely on limited observations of the agent’s state within a brief time frame. An

interesting area of research that was not explored in this thesis revolves around the

prediction of an agent’s future movement based on the knowledge of physical and

social constrains. As was presented in the final section of chapter 5, the model can

learn to accurately predict a large number of motion patterns that involve straight

movement. However, in numerous cases, especially when driving in complex, urban

environments, certain movements might simply not be plausible due to physical con-

strains such as buildings, footpaths, other on-road agents etc, and the model should

7.2. Limitations and Avenues for Future Work 143

be able to recognize that such trajectories are invalid and should not be predicted.

Moreover, there are a number of complex social interactions that are constantly

happening either between vehicles or between vehicles and pedestrians. Forecasting

of human trajectories has already been explored in the following work by Gupta

et al. (2018), however, in the context of vehicle motion prediction this aspect is still

missing. As with physical constrains, the prediction of vehicle trajectories is also

strongly constrained by social interactions and this should be included in the train-

ing process to allow for not only more precise predictions but also for forecasting of

the trajectories that are socially acceptable.

7.2.2 Probabilities of Predicted Trajectories

Models presented in this thesis gradually evolved from simple and shallow models to

deeper deterministic motion predictors that finally demonstrated abilities to predict

potentially an unlimited number of motion patterns through usage of a generative

framework. Nonetheless, some of the models from the literature that were used dur-

ing comparison studies in the last section of chapter 6 also presented capacities of

assigning probabilities of agents performing one of numerous predicted trajectories.

Typically the motion detectors that can output both sets of trajectories and their

respective probabilities are constrained to predict a limited set of deterministic mo-

tions as presented in previous methods. The final model proposed in this thesis can

produce potentially an unlimited number of stochastic trajectories, however, it is

missing the crucial ability to assign probabilities to reach of predicted trajectories.

This area of research where a generative model can also accurately predict proba-

bility of taking a certain trajectory by a vehicle is crucial for more accurate analysis

of potentially dangerous on-road situations. Moreover, this should be further com-

bined with the knowledge about physical and social interactions as a next step in

order to more accurately reflect those movements.

144 Chapter 7. Conclusions and Future Work

7.2.3 Public Datasets

Unfortunately, in this thesis only one public dataset was suitable for carrying out

experiments that allowed the validation of the defined hypothesis. Lack of large,

public datasets not only in the area of motion prediction but also in other tasks

related to autonomous vehicles has an immense effect on the research community

where researchers are greatly restricted from carrying out experiments as well as

the development of models that could considerably contribute to numerous prob-

lems that are yet to be solved in the general area of autonomous vehicles. It is

important to acknowledge that despite having the access to even the most advanced

deep learning models, one would be still largely limited in terms of advancing such

models if the dataset used for training does not include a large number of com-

plex and representative scenarios. As demonstrated in the last section of chapter

5, the proposed deterministic model learned to accurately predict mostly straight

movement but struggled with more complex motion. This inability of the proposed

model to precisely handle more complicated trajectories is greatly influenced simply

by the fact that these sorts of movements were not as common as other, more simple

motion patterns.

7.2.4 Novel Architectures

Lastly, in recent years a number of novel deep learning architectures have been

developed that could potentially lead to even further improvements in the area of

motion prediction. For example, a transformer (Vaswani et al. 2017) architecture has

been employed with enormous success in a number of tasks within the area of natural

language processing. More recently however, transformers have also brought a lot of

success in the area of computer vision (Dosovitskiy et al. 2020). This suggests that

novel architectures based on transformers could be explored for this type of work as

7.2. Limitations and Avenues for Future Work 145

it is suited both for spatial and temporal data. Recent years have also seen a rapid

growth in the area of graph neural networks. This type of architecture appears to

be greatly suitable to the task such as modelling of interactions between on-road

users.

Bibliography

Abbeel, P. & Ng, A. Y. (2004), Apprenticeship learning via inverse reinforcement

learning, in ‘Proceedings of the twenty-first international conference on Machine

learning’, p. 1.

Acharya, M., Hayes, T. L. & Kanan, C. (2020), ‘Rodeo: Replay for online object

detection’, arXiv preprint arXiv:2008.06439 .

Akabane, A. T., Pazzi, R. W., Madeira, E. R. & Villas, L. A. (2017), Modeling and

prediction of vehicle routes based on hidden markov model, in ‘2017 IEEE 86th

Vehicular Technology Conference (VTC-Fall)’, IEEE, pp. 1–5.

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L. & Savarese, S.

(2016), Social lstm: Human trajectory prediction in crowded spaces, in ‘Pro-

ceedings of the IEEE conference on computer vision and pattern recognition’,

pp. 961–971.

Ammoun, S. & Nashashibi, F. (2009), Real time trajectory prediction for collision

risk estimation between vehicles, in ‘2009 IEEE 5th International Conference on

Intelligent Computer Communication and Processing’, IEEE, pp. 417–422.

Aoude, G. S., Desaraju, V. R., Stephens, L. H. & How, J. P. (2011), Behavior

classification algorithms at intersections and validation using naturalistic data, in

‘2011 IEEE Intelligent Vehicles Symposium (IV)’, IEEE, pp. 601–606.

146

BIBLIOGRAPHY 147

Aoude, G. S. & How, J. P. (2009), Using support vector machines and bayesian

filtering for classifying agent intentions at road intersections, Technical report.

Augustin, D., Hofmann, M. & Konigorski, U. (2018), Motion pattern recognition

for maneuver detection and trajectory prediction on highways, in ‘2018 IEEE

International Conference on Vehicular Electronics and Safety (ICVES)’, IEEE,

pp. 1–8.

Bank, D., Koenigstein, N. & Giryes, R. (2020), ‘Autoencoders’, arXiv preprint

arXiv:2003.05991 .

Bar-Shalom, Y., Li, X. R. & Kirubarajan, T. (2004), Estimation with applications

to tracking and navigation: theory algorithms and software, John Wiley & Sons.

Barth, A. & Franke, U. (2008), Where will the oncoming vehicle be the next second?,

in ‘2008 IEEE Intelligent Vehicles Symposium’, IEEE, pp. 1068–1073.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,

Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R. et al. (2018),

‘Relational inductive biases, deep learning, and graph networks’, arXiv preprint

arXiv:1806.01261 .

Batz, T., Watson, K. & Beyerer, J. (2009), Recognition of dangerous situations

within a cooperative group of vehicles, in ‘2009 IEEE Intelligent Vehicles Sympo-

sium’, IEEE, pp. 907–912.

Bengio, Y., Simard, P., Frasconi, P. et al. (1994), ‘Learning long-term dependencies

with gradient descent is difficult’, IEEE transactions on neural networks 5(2), 157–

166.

Berndt, H., Emmert, J. & Dietmayer, K. (2008), Continuous driver intention recog-

nition with hidden markov models, in ‘2008 11th International IEEE Conference

on Intelligent Transportation Systems’, IEEE, pp. 1189–1194.

148 BIBLIOGRAPHY

Bishop, C. M. (2006), Pattern recognition and machine learning, springer.

Bishop, R. (2005), Intelligent vehicle technology and trends.

Bliss, J. P. & Acton, S. A. (2003), ‘Alarm mistrust in automobiles: how collision

alarm reliability affects driving’, Applied ergonomics 34(6), 499–509.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,

Jackel, L. D., Monfort, M., Muller, U., Zhang, J. et al. (2016), ‘End to end

learning for self-driving cars’, arXiv preprint arXiv:1604.07316 .

Broadhurst, A., Baker, S. & Kanade, T. (2005), Monte carlo road safety reasoning,

in ‘IEEE Proceedings. Intelligent Vehicles Symposium, 2005.’, IEEE, pp. 319–324.

Broggi, A., Bertozzi, M., Fascioli, A., Bianco, C. G. L. & Piazzi, A. (1999), ‘The

argo autonomous vehicle’s vision and control systems’, International Journal of

Intelligent Control and Systems 3(4), 409–441.

Broughton, J. & Baughan, C. (2002), ‘The effectiveness of antilock braking systems

in reducing accidents in great britain’, Accident Analysis & Prevention 34(3), 347–

355.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-

lakantan, A., Shyam, P., Sastry, G., Askell, A. et al. (2020), ‘Language models

are few-shot learners’, arXiv preprint arXiv:2005.14165 .

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A.,

Pan, Y., Baldan, G. & Beijbom, O. (2020), nuscenes: A multimodal dataset for

autonomous driving, in ‘Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition’, pp. 11621–11631.

Chandra, R., Bhattacharya, U., Bera, A. & Manocha, D. (2019), Traphic: Trajec-

tory prediction in dense and heterogeneous traffic using weighted interactions, in

BIBLIOGRAPHY 149

‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion’, pp. 8483–8492.

Chandra, R., Bhattacharya, U., Roncal, C., Bera, A. & Manocha, D. (2019), Ro-

busttp: End-to-end trajectory prediction for heterogeneous road-agents in dense

traffic with noisy sensor inputs, in ‘ACM Computer Science in Cars Symposium’,

pp. 1–9.

Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang,

D., Carr, P., Lucey, S., Ramanan, D. et al. (2019), Argoverse: 3d tracking and

forecasting with rich maps, in ‘Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition’, pp. 8748–8757.

Choi, C. & Dariush, B. (2019), Looking to relations for future trajectory forecast,

in ‘Proceedings of the IEEE/CVF International Conference on Computer Vision’,

pp. 921–930.

Choi, C., Patil, A. & Malla, S. (2019), ‘Drogon: A causal reasoning framework for

future trajectory forecast’, arXiv preprint arXiv:1908.00024 .

Chollet, F. (2017), Xception: Deep learning with depthwise separable convolutions,

in ‘Proceedings of the IEEE conference on computer vision and pattern recogni-

tion’, pp. 1251–1258.

Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. (2014), ‘Empirical evaluation of gated

recurrent neural networks on sequence modeling’, arXiv preprint arXiv:1412.3555

.

Clevert, D.-A., Unterthiner, T. & Hochreiter, S. (2015), ‘Fast and accurate deep net-

work learning by exponential linear units (elus)’, arXiv preprint arXiv:1511.07289

.

150 BIBLIOGRAPHY

CNN face detection failure (n.d.), http://sharenoesis.com/wp-content/

uploads/2010/05/7ShapeFaceRemoveGuides.jpg. Accessed: 2021-04-08.

Committee, S. O.-R. A. V. S. et al. (2018), ‘Taxonomy and definitions for terms

related to driving automation systems for on-road motor vehicles’, SAE Interna-

tional: Warrendale, PA, USA .

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,

Franke, U., Roth, S. & Schiele, B. (2016), The cityscapes dataset for semantic

urban scene understanding, in ‘Proceedings of the IEEE conference on computer

vision and pattern recognition’, pp. 3213–3223.

Cortes, C. & Vapnik, V. (1995), ‘Support-vector networks’, Machine learning

20(3), 273–297.

Cui, H., Radosavljevic, V., Chou, F.-C., Lin, T.-H., Nguyen, T., Huang, T.-K.,

Schneider, J. & Djuric, N. (2019), Multimodal trajectory predictions for au-

tonomous driving using deep convolutional networks, in ‘2019 International Con-

ference on Robotics and Automation (ICRA)’, IEEE, pp. 2090–2096.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. (2009), Imagenet:

A large-scale hierarchical image database, in ‘2009 IEEE conference on computer

vision and pattern recognition’, Ieee, pp. 248–255.

Deo, N. & Trivedi, M. M. (2018a), Convolutional social pooling for vehicle trajec-

tory prediction, in ‘Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops’, pp. 1468–1476.

Deo, N. & Trivedi, M. M. (2018b), Multi-modal trajectory prediction of surrounding

vehicles with maneuver based lstms, in ‘2018 IEEE Intelligent Vehicles Symposium

(IV)’, IEEE, pp. 1179–1184.

http://sharenoesis.com/wp-content/uploads/2010/05/7ShapeFaceRemoveGuides.jpg
http://sharenoesis.com/wp-content/uploads/2010/05/7ShapeFaceRemoveGuides.jpg

BIBLIOGRAPHY 151

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2018), ‘Bert: Pre-training

of deep bidirectional transformers for language understanding’, arXiv preprint

arXiv:1810.04805 .

Dickmanns, E. D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M.,

Thomanek, F. & Schiehlen, J. (1994), The seeing passenger car’vamors-p’, in

‘Intelligent Vehicles’ 94 Symposium, Proceedings of the’, IEEE, pp. 68–73.

Djuric, N., Radosavljevic, V., Cui, H., Nguyen, T., Chou, F.-C., Lin, T.-H., Singh, N.

& Schneider, J. (2020), Uncertainty-aware short-term motion prediction of traffic

actors for autonomous driving, in ‘The IEEE Winter Conference on Applications

of Computer Vision’, pp. 2095–2104.

Doersch, C. (2016), ‘Tutorial on variational autoencoders’, arXiv preprint

arXiv:1606.05908 .

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,

T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S. et al. (2020), ‘An image

is worth 16x16 words: Transformers for image recognition at scale. arxiv 2020’,

arXiv preprint arXiv:2010.11929 .

Du, B., Xiong, W., Wu, J., Zhang, L., Zhang, L. & Tao, D. (2016), ‘Stacked con-

volutional denoising auto-encoders for feature representation’, IEEE transactions

on cybernetics 47(4), 1017–1027.

Dumoulin, V. & Visin, F. (2016), ‘A guide to convolution arithmetic for deep learn-

ing’, arXiv preprint arXiv:1603.07285 .

Eidehall, A. & Petersson, L. (2008), ‘Statistical threat assessment for general road

scenes using monte carlo sampling’, IEEE Transactions on intelligent transporta-

tion systems 9(1), 137–147.

152 BIBLIOGRAPHY

Ferguson, D., Baker, C., Likhachev, M. & Dolan, J. (2008), A reasoning framework

for autonomous urban driving, in ‘2008 IEEE Intelligent Vehicles Symposium’,

IEEE, pp. 775–780.

for Health Statistics, N. C. (2017), Health, United States, 2016, with chartbook on

Long-term trends in health, number 2017, Government Printing Office.

Forney, G. D. (1973), ‘The viterbi algorithm’, Proceedings of the IEEE 61(3), 268–

278.

Fraichard, T. & Asama, H. (2004), ‘Inevitable collision states—a step towards safer

robots?’, Advanced Robotics 18(10), 1001–1024.

Fritzke, B. (1995), A growing neural gas network learns topologies, in ‘Advances in

neural information processing systems’, pp. 625–632.

Fukushima, K. (1980), ‘Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position’, Biological

cybernetics 36(4), 193–202.

Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C. & Schmid, C. (2020),

Vectornet: Encoding hd maps and agent dynamics from vectorized representation,

in ‘Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition’, pp. 11525–11533.

Gatys, L. A., Ecker, A. S. & Bethge, M. (2016), Image style transfer using con-

volutional neural networks, in ‘Proceedings of the IEEE conference on computer

vision and pattern recognition’, pp. 2414–2423.

Geiger, A., Lenz, P. & Urtasun, R. (2012), Are we ready for autonomous driving?

the kitti vision benchmark suite, in ‘2012 IEEE conference on computer vision

and pattern recognition’, IEEE, pp. 3354–3361.

BIBLIOGRAPHY 153

Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung, A. S.,

Hauswald, L., Pham, V. H., Mühlegg, M., Dorn, S. et al. (2020), ‘A2d2: Audi

autonomous driving dataset’, arXiv preprint arXiv:2004.06320 .

Gillespie, T. D. (1992), Fundamentals of vehicle dynamics, Vol. 400, Society of

automotive engineers Warrendale, PA.

Giuliari, F., Hasan, I., Cristani, M. & Galasso, F. (2020), ‘Transformer networks for

trajectory forecasting’, arXiv preprint arXiv:2003.08111 .

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep learning, MIT press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. & Bengio, Y. (2014), Generative adversarial nets, in ‘Advances in

neural information processing systems’, pp. 2672–2680.

Graves, A., Mohamed, A.-r. & Hinton, G. (2013), Speech recognition with deep

recurrent neural networks, in ‘2013 IEEE international conference on acoustics,

speech and signal processing’, IEEE, pp. 6645–6649.

Guérillot, D., Bruyelle, J. et al. (2017), Uncertainty assessment in production fore-

cast with an optimal artificial neural network, in ‘SPE Middle East Oil & Gas

Show and Conference’, Society of Petroleum Engineers.

Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S. & Alahi, A. (2018), Social gan: So-

cially acceptable trajectories with generative adversarial networks, in ‘Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition’, pp. 2255–

2264.

Gurney, K. (1997), ‘An introduction to neural networks’.

Hajela, P. & Berke, L. (1991), ‘Neurobiological computational models in structural

analysis and design’, Computers & Structures 41(4), 657–667.

154 BIBLIOGRAPHY

Hammersley, J. (2013), Monte carlo methods, Springer Science & Business Media.

Hartigan, J. A. & Wong, M. A. (1979), ‘Algorithm as 136: A k-means clustering

algorithm’, Journal of the royal statistical society. series c (applied statistics)

28(1), 100–108.

He, K., Girshick, R. & Dollár, P. (2019), Rethinking imagenet pre-training, in

‘Proceedings of the IEEE/CVF International Conference on Computer Vision’,

pp. 4918–4927.

He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep residual learning for image recog-

nition, in ‘Proceedings of the IEEE conference on computer vision and pattern

recognition’, pp. 770–778.

Hillenbrand, J., Spieker, A. M. & Kroschel, K. (2006), ‘A multilevel collision mitiga-

tion approach—its situation assessment, decision making, and performance trade-

offs’, IEEE Transactions on intelligent transportation systems 7(4), 528–540.

Hinton, G. E., Krizhevsky, A. & Wang, S. D. (2011), Transforming auto-encoders,

in ‘International conference on artificial neural networks’, Springer, pp. 44–51.

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long short-term memory’, Neural com-

putation 9(8), 1735–1780.

Hofmann, T. & Buhmann, J. M. (1997), ‘Pairwise data clustering by determin-

istic annealing’, Ieee transactions on pattern analysis and machine intelligence

19(1), 1–14.

Hotelling, H. (1933), ‘Analysis of a complex of statistical variables into principal

components.’, Journal of educational psychology 24(6), 417.

Houenou, A., Bonnifait, P., Cherfaoui, V. & Yao, W. (2013), Vehicle trajectory

prediction based on motion model and maneuver recognition, in ‘2013 IEEE/RSJ

international conference on intelligent robots and systems’, IEEE, pp. 4363–4369.

BIBLIOGRAPHY 155

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W.,

Zhu, Y., Pang, R., Vasudevan, V. et al. (2019), Searching for mobilenetv3, in

‘Proceedings of the IEEE/CVF International Conference on Computer Vision’,

pp. 1314–1324.

Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. (2017), Densely

connected convolutional networks, in ‘Proceedings of the IEEE conference on

computer vision and pattern recognition’, pp. 4700–4708.

Huang, J. & Tan, H.-S. (2006), Vehicle future trajectory prediction with a dgps/ins-

based positioning system, in ‘2006 American Control Conference’, IEEE, pp. 6–pp.

Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q. & Yang, R. (2019), ‘The apol-

loscape open dataset for autonomous driving and its application’, IEEE transac-

tions on pattern analysis and machine intelligence 42(10), 2702–2719.

Hubel, D. H. & Wiesel, T. N. (1968), ‘Receptive fields and functional architecture

of monkey striate cortex’, The Journal of physiology 195(1), 215–243.

Hubert, M. & Van Driessen, K. (2004), ‘Fast and robust discriminant analysis’,

Computational Statistics & Data Analysis 45(2), 301–320.

Hülnhagen, T., Dengler, I., Tamke, A., Dang, T. & Breuel, G. (2010), Maneuver

recognition using probabilistic finite-state machines and fuzzy logic, in ‘2010 IEEE

Intelligent Vehicles Symposium’, IEEE, pp. 65–70.

Ioffe, S. & Szegedy, C. (2015), Batch normalization: Accelerating deep network

training by reducing internal covariate shift, in ‘International conference on ma-

chine learning’, PMLR, pp. 448–456.

Jang, J.-S. R., Sun, C.-T. & Mizutani, E. (1997), ‘Neuro-fuzzy and soft computing-

a computational approach to learning and machine intelligence [book review]’,

IEEE Transactions on automatic control 42(10), 1482–1484.

156 BIBLIOGRAPHY

Jazwinski, A. H. (2007), Stochastic processes and filtering theory, Courier Corpora-

tion.

Jensen, F. V. et al. (1996), An introduction to Bayesian networks, Vol. 210, UCL

press London.

Jordan, J. (2018), ‘Introduction to autoencoders’, Jeremy Jordan, Mar .

Joseph, J., Doshi-Velez, F., Huang, A. S. & Roy, N. (2011), ‘A bayesian nonpara-

metric approach to modeling motion patterns’, Autonomous Robots 31(4), 383.

Julier, S. J. & Uhlmann, J. K. (2004), ‘Unscented filtering and nonlinear estimation’,

Proceedings of the IEEE 92(3), 401–422.

Kalchbrenner, N. & Blunsom, P. (2013), Recurrent continuous translation models, in

‘Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing’, pp. 1700–1709.

Kalman, R. E. (1960), ‘A new approach to linear filtering and prediction problems’.

Kingma, D. P. & Ba, J. (2014), ‘Adam: A method for stochastic optimization’,

arXiv preprint arXiv:1412.6980 .

Kingma, D. P., Mohamed, S., Jimenez Rezende, D. & Welling, M. (2014), ‘Semi-

supervised learning with deep generative models’, Advances in neural information

processing systems 27.

Kingma, D. P. & Welling, M. (2013), ‘Auto-encoding variational bayes’, arXiv

preprint arXiv:1312.6114 .

Kingma, D. P., Welling, M. et al. (2019), ‘An introduction to variational autoen-

coders’, Foundations and Trends® in Machine Learning 12(4), 307–392.

BIBLIOGRAPHY 157

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), Imagenet classification with

deep convolutional neural networks, in ‘Advances in neural information processing

systems’, pp. 1097–1105.

Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E. & How, J. P. (2009),

‘Real-time motion planning with applications to autonomous urban driving’, IEEE

Transactions on control systems technology 17(5), 1105–1118.

LaValle, S. M. (1998), ‘Rapidly-exploring random trees: A new tool for path plan-

ning’.

LeCun, Y., Bengio, Y. & Hinton, G. (2015), ‘Deep learning’, nature 521(7553), 436.

LeCun, Y., Bengio, Y. et al. (1995), ‘Convolutional networks for images, speech, and

time series’, The handbook of brain theory and neural networks 3361(10), 1995.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hub-

bard, W. E. & Jackel, L. D. (1990), Handwritten digit recognition with a back-

propagation network, in ‘Advances in neural information processing systems’,

pp. 396–404.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998), ‘Gradient-based learning

applied to document recognition’, Proceedings of the IEEE 86(11), 2278–2324.

Lee, D., Gu, Y., Hoang, J. & Marchetti-Bowick, M. (2019), ‘Joint interaction and

trajectory prediction for autonomous driving using graph neural networks’, arXiv

preprint arXiv:1912.07882 .

Lee, J. D., Hoffman, J. D. & Hayes, E. (2004), Collision warning design to mitigate

driver distraction, in ‘Proceedings of the SIGCHI Conference on Human factors

in Computing Systems’, pp. 65–72.

Lee, N., Choi, W., Vernaza, P., Choy, C. B., Torr, P. H. & Chandraker, M. (2017),

Desire: Distant future prediction in dynamic scenes with interacting agents, in

158 BIBLIOGRAPHY

‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion’, pp. 336–345.

Li, X. R. & Jilkov, V. P. (2003), ‘Survey of maneuvering target tracking. part

i. dynamic models’, IEEE Transactions on aerospace and electronic systems

39(4), 1333–1364.

Lin, C.-F., Ulsoy, A. G. & LeBlanc, D. J. (2000), ‘Vehicle dynamics and external

disturbance estimation for vehicle path prediction’, IEEE Transactions on Control

Systems Technology 8(3), 508–518.

Litman, T. (2017), Autonomous vehicle implementation predictions, Victoria Trans-

port Policy Institute Victoria, Canada.

Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A. & Catanzaro, B. (2018),

Image inpainting for irregular holes using partial convolutions, in ‘Proceedings of

the European Conference on Computer Vision (ECCV)’, pp. 85–100.

Loizou, N., Vaswani, S., Laradji, I. H. & Lacoste-Julien, S. (2021), Stochastic polyak

step-size for sgd: An adaptive learning rate for fast convergence, in ‘International

Conference on Artificial Intelligence and Statistics’, PMLR, pp. 1306–1314.

Luo, W., Yang, B. & Urtasun, R. (2018), Fast and furious: Real time end-to-

end 3d detection, tracking and motion forecasting with a single convolutional

net, in ‘Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition’, pp. 3569–3577.

Lytrivis, P., Thomaidis, G. & Amditis, A. (2008), Cooperative path prediction in ve-

hicular environments, in ‘2008 11th International IEEE Conference on Intelligent

Transportation Systems’, IEEE, pp. 803–808.

Maas, A. L., Hannun, A. Y. & Ng, A. Y. (2013), Rectifier nonlinearities improve

neural network acoustic models, in ‘Proc. icml’, Vol. 30, Citeseer, p. 3.

BIBLIOGRAPHY 159

Mandalia, H. M. & Salvucci, M. D. D. (2005), Using support vector machines for

lane-change detection, in ‘Proceedings of the human factors and ergonomics so-

ciety annual meeting’, Vol. 49, SAGE Publications Sage CA: Los Angeles, CA,

pp. 1965–1969.

Marchetti, F., Becattini, F., Seidenari, L. & Bimbo, A. D. (2020), Mantra: Memory

augmented networks for multiple trajectory prediction, in ‘Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition’, pp. 7143–

7152.

McCall, J. C., Wipf, D. P., Trivedi, M. M. & Rao, B. D. (2007), ‘Lane change intent

analysis using robust operators and sparse bayesian learning’, IEEE Transactions

on Intelligent Transportation Systems 8(3), 431–440.

McCarthy, J. (1997), ‘Ai as sport’.

McClelland, J. L., Rumelhart, D. E., Group, P. R. et al. (1987), Parallel Distributed

Processing, Volume 2: Explorations in the Microstructure of Cognition: Psycho-

logical and Biological Models, Vol. 2, MIT press.

McCulloch, W. S. & Pitts, W. (1943), ‘A logical calculus of the ideas immanent in

nervous activity’, The bulletin of mathematical biophysics 5(4), 115–133.

Mechner, D. A. (1998), ‘All systems go’, Sciences 38(1), 32.

Messaoud, K., Deo, N., Trivedi, M. M. & Nashashibi, F. (2020), ‘Trajectory predic-

tion for autonomous driving based on multi-head attention with joint agent-map

representation’.

Messaoud, K., Yahiaoui, I., Verroust-Blondet, A. & Nashashibi, F. (2019), Non-local

social pooling for vehicle trajectory prediction, in ‘2019 IEEE Intelligent Vehicles

Symposium (IV)’, IEEE, pp. 975–980.

160 BIBLIOGRAPHY

Mikolov, T. (2012), ‘Statistical language models based on neural networks’, Presen-

tation at Google, Mountain View, 2nd April 80.

Mirza, M. & Osindero, S. (2014), ‘Conditional generative adversarial nets’, arXiv

preprint arXiv:1411.1784 .

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G. et al. (2015), ‘Human-

level control through deep reinforcement learning’, Nature 518(7540), 529–533.

Morris, B., Doshi, A. & Trivedi, M. (2011), Lane change intent prediction for driver

assistance: On-road design and evaluation, in ‘2011 IEEE Intelligent Vehicles

Symposium (IV)’, IEEE, pp. 895–901.

Nair, V. & Hinton, G. E. (2010), Rectified linear units improve restricted boltzmann

machines, in ‘Icml’.

Nasios, N. & Bors, A. G. (2006), ‘Variational learning for gaussian mixture mod-

els’, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

36(4), 849–862.

Nikhil, N. & Tran Morris, B. (2018), Convolutional neural network for trajec-

tory prediction, in ‘Proceedings of the European Conference on Computer Vision

(ECCV)’, pp. 0–0.

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K. & Mordv-

intsev, A. (2018), ‘The building blocks of interpretability’, Distill 3(3), e10.

Organization, W. H. et al. (2023), Pedestrian safety: a road safety manual for

decision-makers and practitioners, World Health Organization.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L. et al. (2019), ‘Pytorch: An imperative

BIBLIOGRAPHY 161

style, high-performance deep learning library’, Advances in neural information

processing systems 32, 8026–8037.

Patil, A., Malla, S., Gang, H. & Chen, Y.-T. (2019), The h3d dataset for full-

surround 3d multi-object detection and tracking in crowded urban scenes, in ‘2019

International Conference on Robotics and Automation (ICRA)’, IEEE, pp. 9552–

9557.

Pepy, R., Lambert, A. & Mounier, H. (2006), Reducing navigation errors by planning

with realistic vehicle model, in ‘2006 IEEE Intelligent Vehicles Symposium’, IEEE,

pp. 300–307.

Petit, S. (2017), ‘World vehicle population rose 4.6% in 2016’, Wards Auto .

Petti, S. & Fraichard, T. (2005), Safe motion planning in dynamic environments,

in ‘2005 IEEE/RSJ International Conference on Intelligent Robots and Systems’,

IEEE, pp. 2210–2215.

Pham, Q.-H., Sevestre, P., Pahwa, R. S., Zhan, H., Pang, C. H., Chen, Y., Mustafa,

A., Chandrasekhar, V. & Lin, J. (2020), A* 3d dataset: Towards autonomous

driving in challenging environments, in ‘2020 IEEE International Conference on

Robotics and Automation (ICRA)’, IEEE, pp. 2267–2273.

Phan-Minh, T., Grigore, E. C., Boulton, F. A., Beijbom, O. & Wolff, E. M. (2020),

Covernet: Multimodal behavior prediction using trajectory sets, in ‘Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition’,

pp. 14074–14083.

Polychronopoulos, A., Tsogas, M., Amditis, A. J. & Andreone, L. (2007), ‘Sensor

fusion for predicting vehicles’ path for collision avoidance systems’, IEEE Trans-

actions on Intelligent Transportation Systems 8(3), 549–562.

162 BIBLIOGRAPHY

Pomerleau, D. A. (1989), Alvinn: An autonomous land vehicle in a neural network,

in ‘Advances in neural information processing systems’, pp. 305–313.

Pomerleau, D. & Jochem, T. (1996), ‘Rapidly adapting machine vision for auto-

mated vehicle steering’, IEEE expert 11(2), 19–27.

Rabiner, L. R. (1989), ‘A tutorial on hidden markov models and selected applications

in speech recognition’, Proceedings of the IEEE 77(2), 257–286.

Radford, A., Narasimhan, K., Salimans, T. & Sutskever, I. (2018), ‘Improving lan-

guage understanding by generative pre-training’.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. & Sutskever, I. (2019), ‘Lan-

guage models are unsupervised multitask learners’, OpenAI blog 1(8), 9.

Rajamani, R. (2011), Vehicle dynamics and control, Springer Science & Business

Media.

Rasmussen, C. E. (2003), Gaussian processes in machine learning, in ‘Summer School

on Machine Learning’, Springer, pp. 63–71.

Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. (2016), You only look once:

Unified, real-time object detection, in ‘Proceedings of the IEEE conference on

computer vision and pattern recognition’, pp. 779–788.

Ren, S., He, K., Girshick, R. & Sun, J. (2015), Faster r-cnn: Towards real-time

object detection with region proposal networks, in ‘Advances in neural information

processing systems’, pp. 91–99.

Reynolds, D. A. (2009), ‘Gaussian mixture models.’, Encyclopedia of biometrics 741.

Rosenblatt, F. (1957), The Perceptron, a Perceiving and Recognizing Automaton

Project Para, Report: Cornell Aeronautical Laboratory, Cornell Aeronautical Lab-

oratory.

URL: https://books.google.co.uk/books?id=P_XGPgAACAAJ

BIBLIOGRAPHY 163

Rothman, D. (2018), Artificial Intelligence By Example: Develop machine intelli-

gence from scratch using real artificial intelligence use cases, Packt Publishing

Ltd.

Ruder, S. (2016), ‘An overview of gradient descent optimization algorithms’, arXiv

preprint arXiv:1609.04747 .

Rudin-Brown, C. M. & Parker, H. A. (2004), ‘Behavioural adaptation to adaptive

cruise control (acc): implications for preventive strategies’, Transportation Re-

search Part F: Traffic Psychology and Behaviour 7(2), 59–76.

Rumelhart, D. E., Hinton, G. E., Williams, R. J. et al. (1988), ‘Learning represen-

tations by back-propagating errors’, Cognitive modeling 5(3), 1.

Rupprecht, C., Laina, I., DiPietro, R., Baust, M., Tombari, F., Navab, N. & Hager,

G. D. (2017), Learning in an uncertain world: Representing ambiguity through

multiple hypotheses, in ‘Proceedings of the IEEE International Conference on

Computer Vision’, pp. 3591–3600.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M. et al. (2015), ‘Imagenet large scale visual

recognition challenge’, International journal of computer vision 115(3), 211–252.

Sabour, S., Frosst, N. & Hinton, G. E. (2017), ‘Dynamic routing between capsules’,

arXiv preprint arXiv:1710.09829 .

Sadeghian, A., Kosaraju, V., Gupta, A., Savarese, S. & Alahi, A. (2018), ‘Trajnet:

Towards a benchmark for human trajectory prediction’, arXiv preprint .

Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H. & Savarese,

S. (2019), Sophie: An attentive gan for predicting paths compliant to social and

physical constraints, in ‘Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition’, pp. 1349–1358.

164 BIBLIOGRAPHY

Schreier, M., Willert, V. & Adamy, J. (2014), Bayesian, maneuver-based, long-

term trajectory prediction and criticality assessment for driver assistance systems,

in ‘17th International IEEE Conference on Intelligent Transportation Systems

(ITSC)’, IEEE, pp. 334–341.

Schubert, R., Richter, E. & Wanielik, G. (2008), Comparison and evaluation of ad-

vanced motion models for vehicle tracking, in ‘2008 11th international conference

on information fusion’, IEEE, pp. 1–6.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R. & LeCun, Y. (2013),

‘Overfeat: Integrated recognition, localization and detection using convolutional

networks’, arXiv preprint arXiv:1312.6229 .

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. et al. (2016),

‘Mastering the game of go with deep neural networks and tree search’, nature

529(7587), 484.

Singh, S. (2015), Critical reasons for crashes investigated in the national motor

vehicle crash causation survey, Technical report.

Sohn, K., Lee, H. & Yan, X. (2015), Learning structured output representation using

deep conditional generative models, in ‘Advances in neural information processing

systems’, pp. 3483–3491.

Srikanth, S., Ansari, J. A., Ram, R. K., Sharma, S., Murthy, J. K. & Krishna,

K. M. (2019), Infer: Intermediate representations for future prediction, in ‘2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)’,

IEEE, pp. 942–949.

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,

J., Zhou, Y., Chai, Y., Caine, B. et al. (2020), Scalability in perception for au-

BIBLIOGRAPHY 165

tonomous driving: Waymo open dataset, in ‘Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition’, pp. 2446–2454.

Sutton, R. S., Barto, A. G. et al. (1998), Introduction to reinforcement learning,

Vol. 135, MIT press Cambridge.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V. & Rabinovich, A. (2015), Going deeper with convolutions, in ‘Pro-

ceedings of the IEEE conference on computer vision and pattern recognition’,

pp. 1–9.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. (2016), Rethinking the

inception architecture for computer vision, in ‘Proceedings of the IEEE conference

on computer vision and pattern recognition’, pp. 2818–2826.

Taheri, S. (1992), ‘An investigation and design of slip control braking systems inte-

grated with four-wheel steering.’.

Tan, P.-N., Steinbach, M. & Kumar, V. (2016), Introduction to data mining, Pearson

Education India.

Tao, A., Sapra, K. & Catanzaro, B. (2020), ‘Hierarchical multi-scale attention for

semantic segmentation’, arXiv preprint arXiv:2005.10821 .

Teh, Y. W. (2010), ‘Dirichlet process.’.

Thrun, S. (2002), ‘Probabilistic robotics’, Communications of the ACM 45(3), 52–

57.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong,

P., Gale, J., Halpenny, M., Hoffmann, G. et al. (2006), ‘Stanley: The robot that

won the darpa grand challenge’, Journal of field Robotics 23(9), 661–692.

Tipping, M. E. (2000), The relevance vector machine, in ‘Advances in neural infor-

mation processing systems’, pp. 652–658.

166 BIBLIOGRAPHY

Tipping, M. E. (2001), ‘Sparse bayesian learning and the relevance vector machine’,

Journal of machine learning research 1(Jun), 211–244.

Touvron, H., Vedaldi, A., Douze, M. & Jégou, H. (2020), ‘Fixing the train-test

resolution discrepancy: Fixefficientnet’, arXiv preprint arXiv:2003.08237 .

Tran, Q. & Firl, J. (2013), Modelling of traffic situations at urban intersections

with probabilistic non-parametric regression, in ‘2013 IEEE Intelligent Vehicles

Symposium (IV)’, IEEE, pp. 334–339.

Tran, Q. & Firl, J. (2014), Online maneuver recognition and multimodal trajectory

prediction for intersection assistance using non-parametric regression, in ‘2014

IEEE Intelligent Vehicles Symposium Proceedings’, IEEE, pp. 918–923.

Trottier, L., Giguere, P. & Chaib-Draa, B. (2017), Parametric exponential linear

unit for deep convolutional neural networks, in ‘2017 16th IEEE International

Conference on Machine Learning and Applications (ICMLA)’, IEEE, pp. 207–

214.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan,

J., Duggins, D., Galatali, T., Geyer, C. et al. (2008), ‘Autonomous driving in

urban environments: Boss and the urban challenge’, Journal of Field Robotics

25(8), 425–466.

Vasquez, D. & Fraichard, T. (2004), Motion prediction for moving objects: a statis-

tical approach, in ‘IEEE International Conference on Robotics and Automation,

2004. Proceedings. ICRA’04. 2004’, Vol. 4, IEEE, pp. 3931–3936.

Vasquez, D., Fraichard, T., Aycard, O. & Laugier, C. (2008), ‘Intentional motion

on-line learning and prediction’, Machine Vision and Applications 19(5-6), 411–

425.

BIBLIOGRAPHY 167

Vasquez, D., Fraichard, T. & Laugier, C. (2009), ‘Incremental learning of statistical

motion patterns with growing hidden markov models’, IEEE Transactions on

Intelligent Transportation Systems 10(3), 403–416.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

Ł. & Polosukhin, I. (2017), Attention is all you need, in ‘Advances in neural

information processing systems’, pp. 5998–6008.

Veeraraghavan, H., Papanikolopoulos, N. & Schrater, P. (2006), Deterministic

sampling-based switching kalman filtering for vehicle tracking, in ‘2006 IEEE

Intelligent Transportation Systems Conference’, IEEE, pp. 1340–1345.

Veeraraghavanm, H. & Papanikolopoulos, N. (2004), Combining multiple tracking

modalities for vehicle tracking at traffic intersections, in ‘IEEE International Con-

ference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004’, Vol. 3,

IEEE, pp. 2303–2308.

Velodyne LiDAR (n.d.).

URL: https://www.velodynelidar.com/

Vidal, E., Thollard, F., De La Higuera, C., Casacuberta, F. & Carrasco, R. C.

(2005), ‘Probabilistic finite-state machines-part i’, IEEE transactions on pattern

analysis and machine intelligence 27(7), 1013–1025.

Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. (2008), Extracting and

composing robust features with denoising autoencoders, in ‘Proceedings of the

25th international conference on Machine learning’, pp. 1096–1103.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. & Lang, K. J. (1989), ‘Phoneme

recognition using time-delay neural networks’, IEEE transactions on acoustics,

speech, and signal processing 37(3), 328–339.

168 BIBLIOGRAPHY

Wang, K., Gao, X., Zhao, Y., Li, X., Dou, D. & Xu, C.-Z. (2019), Pay attention

to features, transfer learn faster cnns, in ‘International Conference on Learning

Representations’.

Waymo Technology (n.d.).

URL: https://waymo.com/tech/

Weston, J., Chopra, S. & Bordes, A. (2014), ‘Memory networks’, arXiv preprint

arXiv:1410.3916 .

Wiest, J., Höffken, M., Kreßel, U. & Dietmayer, K. (2012), Probabilistic trajec-

tory prediction with gaussian mixture models, in ‘2012 IEEE Intelligent Vehicles

Symposium’, IEEE, pp. 141–146.

Winner, H., Witte, S., Uhler, W. & Lichtenberg, B. (1996), ‘Adaptive cruise control

system aspects and development trends’, SAE transactions pp. 1412–1421.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R. &

Bengio, Y. (2015), Show, attend and tell: Neural image caption generation with

visual attention, in ‘International conference on machine learning’, pp. 2048–2057.

Yu, F. & Koltun, V. (2015), ‘Multi-scale context aggregation by dilated convolu-

tions’, arXiv preprint arXiv:1511.07122 .

Zadeh, L. A. (1965), ‘Fuzzy sets’, Information and control 8(3), 338–353.

Zhang, H., Wang, Y., Liu, J., Li, C., Ma, T. & Yin, C. (2020), ‘A multi-modal

states based vehicle descriptor and dilated convolutional social pooling for vehicle

trajectory prediction’, arXiv preprint arXiv:2003.03480 .

Zhao, T., Xu, Y., Monfort, M., Choi, W., Baker, C., Zhao, Y., Wang, Y. & Wu,

Y. N. (2019), Multi-agent tensor fusion for contextual trajectory prediction, in

‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion’, pp. 12126–12134.

BIBLIOGRAPHY 169

Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. (2017), Unpaired image-to-image trans-

lation using cycle-consistent adversarial networks, in ‘Proceedings of the IEEE

international conference on computer vision’, pp. 2223–2232.

Zurada, J. M. (1992), Introduction to artificial neural systems, Vol. 8, West publish-

ing company St. Paul.

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Acronyms
	Introduction
	On a Road to Vehicle Automation
	Intelligently Driven Vehicles
	Research Aim
	Contributions
	Thesis Outline

	Deep Learning - Technical Background
	History
	McCulloch-Pitts Model
	Perceptron

	Multilayer Perceptron
	Convolutional Neural Network
	Recurrent Neural Network
	Backpropagation and Optimization
	Backpropagation
	Optimization

	Conclusion

	Literature Review
	Kinematic and Dynamic Models
	Summary

	Monte Carlo Methods
	Summary

	Bayesian Framework
	Bayesian Networks
	Gaussian Process
	Summary

	Machine Learning
	Classification and Regression
	Clustering
	Deep Learning
	Summary

	Conclusion

	Investigating Local Maps for Short-term Motion Prediction
	Introduction
	General Setup
	Dataset and Benchmark
	Problem Formulation and Notation

	Local Semantic Layers
	Experiments and Results
	Experimental Setup
	Establishing Baseline Models
	Unraveling of Semantic Layers
	Finding an Optimal Map Size

	Conclusion

	Improving Deterministic Motion with Capsule Networks
	Introduction
	Capsule Neural Networks
	Network Architecture and Computational Flow
	Experiments and Results
	Initial Ablation Study
	Performance Comparison of Capsule Encoder vs Popular CNN Models
	Mode Collapse

	Conclusion

	Introducing Stochasticity for a Multi-modal Motion
	Introduction
	Conditional Variational Auto-encoders
	Auto-encoders
	Variational Auto-encoders
	Conditional Variational Auto-encoders

	Network Architecture and Computational Flow
	State Encoding
	Recognition Network
	Motion Generator

	Experiments and Results
	Ablation Study - VAE vs CVAE
	Facilitating the Learning Process with Minimum over N
	Comparison with Methods from the Literature

	Conclusion

	Conclusions and Future Work
	Summary of the Thesis
	Limitations and Avenues for Future Work
	Physical and Social Constrains
	Probabilities of Predicted Trajectories
	Public Datasets
	Novel Architectures

	Bibliography

