190 research outputs found

    Neural Adaptive Backstepping Control of a Robotic Manipulator With Prescribed Performance Constraint

    Full text link
    IEEE This paper presents an adaptive neural network (NN) control of a two-degree-of-freedom manipulator driven by an electrohydraulic actuator. To restrict the system output in a prescribed performance constraint, a weighted performance function is designed to guarantee the dynamic and steady tracking errors of joint angle in a required accuracy. Then, a radial-basis-function NN is constructed to train the unknown model dynamics of a manipulator by traditional backstepping control (TBC) and obtain the preliminary estimated model, which can replace the preknown dynamics in the backstepping iteration. Furthermore, an adaptive estimation law is adopted to self-tune every trained-node weight, and the estimated model is online optimized to enhance the robustness of the NN controller. The effectiveness of the proposed control is verified by comparative simulation and experimental results with Proportional-integral-derivative and TBC methods

    Weld pool and keyhole dynamic analysis based on visual system and neural network during laser keyhole welding

    Get PDF
    In keyhole fiber laser welding processes, the weld pool behavior and keyhole dynamics are essential to determining welding quality. To observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. In addition, because of the cause-and-effect relationship between the welding defects and stability of the keyhole, which is primarily determined by keyhole geometry during the welding process, the stability of keyhole needs to be considered as well.^ The first part of this thesis presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of grayness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.^ As for the keyhole dynamics, three essential attributes to describe the simplified three-dimensional keyhole shape include keyhole size, penetration depth and keyhole inclination angle. However, when using traditional measurement techniques, it is very challenging to take in-process measurements of penetration depth and inclination angle, even if the keyhole size can be detected by using a visual monitoring system. To realize the on-line estimation of keyhole dynamics and welding defects, a data-based radial basis function neural network state observer is adopted for estimating penetration depth and inclination angle in the transient state when welding parameters change suddenly. First, a static neural network is trained in advance to establish a correlation between the welding parameters and unobservable keyhole geometry. The dynamic state observer is trained based on the transient welding conditions predicted by a numerical model and then used to estimate the time-varying keyhole geometery. Meanwhile, the coaxial monitoring system is used to observe the keyhole shape from the top side in real time, which not only provides input to the neural network but also indicates the potential welding porosities. The predicted results are validated by experimental data performed by welding with stainless steel 304 and magnesium alloy AZ31B

    MME-EKF-Based Path-Tracking Control of Autonomous Vehicles Considering Input Saturation

    Get PDF
    This paper investigates the path-tracking control issue for autonomous ground vehicles with the integral sliding mode control (ISMC) considering the transient performance improvement. The path-tracking control is converted into the yaw stabilization problem, where the sideslip-angle compensation is adopted to reduce the steady-state errors, and then the yaw-rate reference is generated for the path-tracking purpose. The lateral velocity and roll angle are estimated with the measurement of the yaw rate and roll rate. Three contributions have been made in this paper: first, to enhance the estimation accuracy for the vehicle states in the presence of the parametric uncertainties caused by the lateral and roll dynamics, a robust extended Kalman filter is proposed based on the minimum model error algorithm; second, an improved adaptive radial basis function neural network (RBFNN) considering the approximation error adaptation is developed to compensate for the uncertainties caused by the vertical motion; third, the RBFNN and composite nonlinear feedback (CNF) based ISMC is developed to achieve the yaw stabilization and enhance the transient tracking performance considering the input saturation of the front steering angle. The overall stability is proved with Lyapunov function. Finally, the superiority of the developed control strategy is verified by comparing with the traditional CNF with high-fidelity CarSim-MATLAB simulations

    Energy Optimization of Wind Turbines via a Neural Control Policy Based on Reinforcement Learning Markov Chain Monte Carlo Algorithm

    Full text link
    The primary focus of this paper is centered on the numerical analysis and optimal control of vertical axis wind turbines (VAWT) using Bayesian reinforcement learning (RL). We specifically tackle small-scale wind turbines with permanent magnet synchronous generator, which are well-suited to local and compact production of electrical energy in small scale such as urban and rural infrastructure installations. Through this work, we formulate and implement an RL strategy using Markov chain Monte Carlo (MCMC) algorithm to optimize the long-term energy output of the wind turbine. Our MCMC-based RL algorithm is a model-free and gradient-free algorithm, where the designer does not have to know the precise dynamics of the plant and their uncertainties. The method specifically overcomes the shortcomings typically associated with conventional solutions including but not limited to component aging, modeling errors and inaccuracies in the estimation of wind speed patterns. It has been observed to be especially successful in capturing power from wind transients; it modulates the generator load and hence rotor torque load so that the rotor tip speed reaches the optimum value for the anticipated wind speed. This ratio of rotor tip speed to wind speed is known to be critical in wind power applications. The wind to load energy efficiency of the proposed method is shown to be superior to the classical maximum power point tracking method

    Development of Robust Control Laws for Disturbance Rejection in Rotorcraft UAVs

    Get PDF
    Inherent stability inside the flight envelope must be guaranteed in order to safely introduce private and commercial UAV systems into the national airspace. The rejection of unknown external wind disturbances offers a challenging task due to the limited available information about the unpredictable and turbulent characteristics of the wind. This thesis focuses on the design, development and implementation of robust control algorithms for disturbance rejection in rotorcraft UAVs. The main focus is the rejection of external disturbances caused by wind influences. Four control algorithms are developed in an effort to mitigate wind effects: baseline nonlinear dynamic inversion (NLDI), a wind rejection extension for the NLDI, NLDI with adaptive artificial neural networks (ANN) augmentation, and NLDI with L1 adaptive control augmentation. A simulation environment is applied to evaluate the performance of these control algorithms under external wind conditions using a Monte Carlo analysis. Outdoor flight test results are presented for the implementation of the baseline NLDI, NLDI augmented with adaptive ANN and NLDI augmented with L1 adaptive control algorithms in a DJI F330 Flamewheel quadrotor UAV system. A set of metrics is applied to compare and evaluate the overall performance of the developed control algorithms under external wind disturbances. The obtained results show that the extended NLDI exhibits undesired characteristics while the augmentation of the baseline NLDI control law with adaptive ANN and L1 output-feedback adaptive control improve the robustness of the translational and rotational dynamics of a rotorcraft UAV in the presence of wind disturbances

    Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks

    Get PDF
    In this paper, a force sensorless control scheme based on neural networks (NNs) is developed for interaction between robot manipulators and human arms in physical collision. In this scheme, the trajectory is generated by using geometry vector method with Kinect sensor. To comply with the external torque from the environment, this paper presents a sensorless admittance control approach in joint space based on an observer approach, which is used to estimate external torques applied by the operator. To deal with the tracking problem of the uncertain manipulator, an adaptive controller combined with the radial basis function NN (RBFNN) is designed. The RBFNN is used to compensate for uncertainties in the system. In order to achieve the prescribed tracking precision, an error transformation algorithm is integrated into the controller. The Lyapunov functions are used to analyze the stability of the control system. The experiments on the Baxter robot are carried out to demonstrate the effectiveness and correctness of the proposed control scheme

    RISE-Based Integrated Motion Control of Autonomous Ground Vehicles With Asymptotic Prescribed Performance

    Get PDF
    This article investigates the integrated lane-keeping and roll control for autonomous ground vehicles (AGVs) considering the transient performance and system disturbances. The robust integral of the sign of error (RISE) control strategy is proposed to achieve the lane-keeping control purpose with rollover prevention, by guaranteeing the asymptotic stability of the closed-loop system, attenuating systematic disturbances, and maintaining the controlled states within the prescribed performance boundaries. Three contributions have been made in this article: 1) a new prescribed performance function (PPF) that does not require accurate initial errors is proposed to guarantee the tracking errors restricted within the predefined asymptotic boundaries; 2) a modified neural network (NN) estimator which requires fewer adaptively updated parameters is proposed to approximate the unknown vertical dynamics; and 3) the improved RISE control based on PPF is proposed to achieve the integrated control objective, which analytically guarantees both the controller continuity and closed-loop system asymptotic stability by integrating the signum error function. The overall system stability is proved with the Lyapunov function. The controller effectiveness and robustness are finally verified by comparative simulations using two representative driving maneuvers, based on the high-fidelity CarSim-Simulink simulation

    Neural Control of Bimanual Robots With Guaranteed Global Stability and Motion Precision

    Get PDF
    Robots with coordinated dual arms are able to perform more complicated tasks that a single manipulator could hardly achieve. However, more rigorous motion precision is required to guarantee effective cooperation between the dual arms, especially when they grasp a common object. In this case, the internal forces applied on the object must also be considered in addition to the external forces. Therefore, a prescribed tracking performance at both transient and steady states is first specified, and then, a controller is synthesized to rigorously guarantee the specified motion performance. In the presence of unknown dynamics of both the robot arms and the manipulated object, the neural network approximation technique is employed to compensate for uncertainties. In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is integrated into the control design. Effectiveness of the proposed control design has been shown through experiments carried out on the Baxter Robot

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Investigation of Some Self-Optimizing Control Problems for Net-Zero Energy Buildings

    Get PDF
    Green buildings are sustainable buildings designed to be environmentally responsible and resource efficient. The Net-Zero Energy Building (NZEB) concept is anchored on two pillars: reducing the energy consumption and enhancing the local energy generation. In other words, efficient operation of the existing building equipment and efficient power generation of building integrated renewable energy sources are two important factors of NZEB development. The heating, ventilation and air conditioning (HVAC) systems are an important class of building equipment that is responsible for large portion of building energy usage, while the building integrated photovoltaic (BIPV) system is well received as the key technology for local generation of clean power. Building system operation is a low-investment practice that aims low operation and maintenance cost. However, building HVAC and BIPV are systems subject to complicated intrinsic processes and highly variable environmental conditions and occupant behavior. Control, optimization and monitoring of such systems desire simple and effective approaches that require the least amount of model information and the use of smallest number but most robust sensor measurements. Self-optimizing control strategies promise a competitive platform for control, optimization and control integrated monitoring for building systems, and especially for the development of cost-effective NZEB. This dissertation study endorses this statement with three aspects of work relevant to building HVAC and BIPV, which could contribute several small steps towards the ramification of the self-optimizing control paradigm. This dissertation study applies self-optimizing control techniques to improve the energy efficiency of NZEB from two aspects. First, regarding the building HVAC efficiency, the dither based extremum seeking control (DESC) scheme is proposed for energy efficient operation of the chilled-water system typically used in the commercial building ventilation and air conditioning (VAC) systems. To evaluate the effectiveness of the proposed control strategy, Modelica based dynamic simulation model of chilled water chiller-tower plant is developed, which consists of a screw chiller and a mechanical-draft counter-flow wet cooling tower. The steady-state performance of the cooling tower model is validated with the experimental data in a classic paper and good agreement is observed. The DESC scheme takes the total power consumption of the chiller compressor and the tower fan as feedback, and uses the fan speed setting as the control input. The inner loop controllers for the chiller operation include two proportional-integral (PI) control loops for regulating the evaporator superheat and the chilled water temperature. Simulation was conducted on the whole dynamic simulation model with different environment conditions. The simulation results demonstrated the effectiveness of the proposed ESC strategy under abrupt changes of ambient conditions and load changes. The potential for energy savings of these cases are also evaluated. The back-calculation based anti-windup ESC is also simulated for handling the integral windup problem due to actuator saturation. Second, both maximum power point tracking (MPPT) and control integrated diagnostics are investigated for BIPV with two different extremum seeking control strategies, which both would contribute to the reduction of the cost of energy (COE). In particular, the Adaptive Extremum Seeking Control (AESC) is applied for PV MPPT, which is based on a PV model with known model structure but unknown nonlinear characteristics for the current-voltage relation. The nonlinear uncertainty is approximated by a radial basis function neural network (RBFNN). A Lyapunov based inverse optimal design technique is applied to achieve parameter estimation and gradient based extremum seeking. Simulation study is performed for scenarios of temperature change, irradiance change and combined change of temperature and irradiance. Successful results are observed for all cases. Furthermore, the AESC simulation is compared to the DESC simulation, and AESC demonstrates much faster transient responses under various scenarios of ambient changes. Many of the PV degradation mechanisms are reflected as the change of the internal resistance. A scheme of detecting the change of PV internal shunt resistance is proposed using the available signals in the DESC based MPPT with square-wave dither. The impact of the internal resistance on the transient characteristics of step responses is justified by using the small-signal transfer function analysis. Simulation study is performed for both the single-string and multi-string PV examples, and both cases have demonstrated successful results. Monotonic relationship between integral error indices and the shunt internal resistance is clearly observed. In particular, for the multi-string, the inter-channel coupling is weak, which indicates consistent monitoring for multi-string operation. The proposed scheme provides the online monitoring ability of the internal resistance condition without any additional sensor, which benefits further development of PV degradation detection techniques
    corecore