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ABSTRACT 

Verberne, Johannes MSAE, Embry-Riddle Aeronautical University, May 2019. 

Development of Robust Control Laws for Disturbance Rejection in Rotorcraft UAVs. 

 

Inherent stability inside the flight envelope must be guaranteed in order to safely 

introduce private and commercial UAV systems into the national airspace. The rejection 

of unknown external wind disturbances offers a challenging task due to the limited 

available information about the unpredictable and turbulent characteristics of the wind. 

This thesis focuses on the design, development and implementation of robust control 

algorithms for disturbance rejection in rotorcraft UAVs. The main focus is the rejection 

of external disturbances caused by wind influences. Four control algorithms are 

developed in an effort to mitigate wind effects: baseline nonlinear dynamic inversion 

(NLDI), a wind rejection extension for the NLDI, NLDI with adaptive artificial neural 

networks (ANN) augmentation, and NLDI with ℒ1 adaptive control augmentation. A 

simulation environment is applied to evaluate the performance of these control 

algorithms under external wind conditions using a Monte Carlo analysis. Outdoor flight 

test results are presented for the implementation of the baseline NLDI, NLDI augmented 

with adaptive ANN and NLDI augmented with ℒ1 adaptive control algorithms in a DJI 

F330 Flamewheel quadrotor UAV system. A set of metrics is applied to compare and 

evaluate the overall performance of the developed control algorithms under external wind 

disturbances. The obtained results show that the extended NLDI exhibits undesired 

characteristics while the augmentation of the baseline NLDI control law with adaptive 

ANN and ℒ1 output-feedback adaptive control improve the robustness of the translational 

and rotational dynamics of a rotorcraft UAV in the presence of wind disturbances. 
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1. Introduction 

 Background 

The use of unmanned aerial vehicles (UAVs) for a multitude of applications has 

exponentially grown in recent years. Traditional UAV systems originate from military 

applications due to the vast reconnaissance and weapon deployment capabilities with 

minimized risk for friendly casualties. Examples of military UAV systems like the 

Firebee built by the Ryan Aeronautical Company, the AAI RQ-2 Pioneer, the General 

Atomics Predator and the Northrop Grumman Global Hawk have significantly influenced 

the outcome of US conflicts post World War II (Darack, 2011). The technological 

advancements and decrease in production cost in the twenty-first century resulted in 

UAV systems becoming available for commercial and private applications. Numerous 

examples show the positive influence these systems have had in disaster relief (Madrigal, 

2011), law enforcement (Glaser, 2017), surveillance (McGivering, 2012), journalism 

(Kaufman & Somaiya, 2013), scientific research (Whitwam, 2016), global health (CBS 

News, 2018) and filmmaking (Lavrinc, 2012).  

Besides all the benefits the introduction of UAV systems in the commercial and 

private sector have had to date, there are also limitations and potential threats to the 

public safety that are related to the continued use of these systems. The Federal Aviation 

Administration (FAA) predicts that non-commercial UAV ownership will rise from 1.1 

million units in 2017 to 2.4 million units in 2022 in the United States alone (FAA, 2018). 

This results in examples, such as drones that fly in restricted areas (CBS News, 2014), the 

potential use of drones in terrorism (Gallagher, 2013) and the danger malfunctioning 

drones can have on large crowds (Weil, 2013), that will be seen more frequently in years 
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to come due to the inability to monitor and regulate the distribution of these systems in 

the private sector.  

When it comes to the commercial UAV sector, the continued growth in autonomy 

and technology of UAV systems, together with the consumer’s demand to make everyday 

life tasks simpler, will increase the application frequency of these systems. The projection 

is that the value of the commercial UAV systems market will rise from $1 billion in 2017 

to $46 billion by 2026 (Cohn, Green, Langstaff, & Roller, 2017). Aside from further 

developing the current applications of UAV systems mentioned earlier, a large market 

left to be explored is personal air taxi service and package delivery. The latter is of 

particular interest to companies such as Amazon, UPS and Domino’s Pizza (Desjardins, 

2018), which are putting their efforts in developing the required technologies.  

The aerospace industry’s main concern with the exponential growth of private and 

commercial UAV usage is the safe introduction of these systems into the commercial 

airspace. The current focus of authorities is to safely separate airborne UAV systems 

from small and commercial aviation. The FAA presented a report in 2017 which showed 

that close encounters between UAV systems and commercial aviation grew from 874 in 

the period February through September 2015 to 1,274 in the same period in 2016 (FAA, 

2017). A more current example showing the magnitude that these encounters can have is 

the December 2018 London Gatwick Airport shutdown due to reports of a singular drone 

flying near the airport, resulting in the stranding of 140,000 passengers and the affecting 

of 1,000 aircraft (Evans, 2018). Since the expectation is that the frequency of these 

encounters will rise further in following years, the call for an increase in regulation and 

safety of UAV systems is growing.  
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The prospected growth of the UAV private and commercial market and the 

subsequent push for the introduction of these systems into the airspace requires the 

managing of these units in a safe and controlled manner. This can be achieved by 

increasing the intelligence of individual UAV systems to allow for decision-making, 

path-planning and health-monitoring algorithms (Rivera, Moncayo, Verberne, & Festa, 

2019) (Garcia D. F., 2017). However, a more efficient approach is it to manage the entire 

airspace using a generalized system. NASA is currently working on establishing an 

infrastructure to manage all these UAV systems in low-altitude (NASA, 2019). The 

proposed UAV traffic management system would provide safe and efficient path 

planning operations for all systems in the current airspace using information about traffic, 

weather and local terrain. The safe and efficient management of the airspace by a macro-

managing traffic system cannot be guaranteed however if the UAV systems are not 

individually robust enough to guarantee the efficient tracking of navigational commands 

given by the traffic management system. 

One side of assuring individual UAV systems are sufficiently robust is concerned 

with the security of the internal flight computer to prevent external security breaches. The 

hacking of UAV systems is a serious threat for public safety and attention is currently 

being placed on the cybersecurity of UAV systems (Krishna & Murphy, 2017).  

Aside from guaranteeing a secure system to reject external cyber threats, the 

efficient operation of individual UAV systems also requires individual UAV systems to 

be inherently stable inside the flight envelope at all times. This includes the efficient 

rejection of internal systems failures and unknown external disturbances. Internal systems 

failures consisting of structural defects, sensor malfunction, actuator failures and software 
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glitches can be counteracted with robust (adaptive) control systems and redundant 

onboard systems. Examples can be found in (Moncayo, et al., 2013) where ℒ1 adaptive 

control is applied to counteract actuator failures, (Perhinschi, et al., 2014) where bio-

inspired artificial neural networks and an artificial immune system are applied to detect 

and identify actuator and aerodynamic failures, and in (Lopez, Dormido, Dormido, & 

Gomez, 2015) where H∞ control is applied to counteract noisy sensor data.  

The rejection of unknown external disturbances offers a more challenging task 

due to the limited available information about the disturbance. Arguably the most 

influential external disturbance to UAV systems is wind. The unpredictable and turbulent 

character of wind makes the topic of wind rejection one of the most researched in the 

UAV field. It is commonly known that the current infrastructure, especially in U.S. cities 

where buildings are placed in city blocks on lengthy streets, generates a wind channeling 

effect. This means that wind approaching a city is accelerated through the streets much 

like the wind in the test section of a wind tunnel. The introduction of UAV systems in 

these urban environments requires, therefore, robust control systems that can successfully 

reject wind effects so that these systems can operate in a safe and efficient manner at all 

times.   

Fixed wing UAV systems often use external wind to their advantage to create 

favorable flight conditions to minimize energy. (Coulter, Moncayo, & Engblom, 2018) 

show how differential wind speed across altitudes can help sustain flight without 

propulsion for two tethered glider-type UAV systems, and (Langelaan, Alley, & 

Neidhoefer, 2011) show that if wind characteristics are known, the energy of a fixed wing 

UAV system can be minimized. 
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Unlike fixed wing systems, unmanned systems that rely on the production of 

vertical thrust by rotors to stay airborne are affected negatively by external wind due to 

the inability to use wind favorably. These systems are characterized by their ability to 

perform vertical take-off and landing (VTOL) combined with the capability to sustain 

flight while hovering in one place. External wind disturbance for these systems is solely 

seen as an external disturbance and needs to be rejected effectively to maximize the 

performance and reliability of these rotorcraft UAV systems.  

The rejection of external wind effects by rotorcraft UAVs is generally attempted 

inside the control law architecture in one of two ways: effectively measuring or 

reconstructing the wind characteristics such that an estimate of the current wind can be 

used in the control law architecture, or by developing a robust control architecture that 

can efficiently reject the external disturbance with no need for wind information. The 

challenge in the first method is to initially obtain an accurate estimation or measurement 

of the wind characteristics and to then effectively use this information in the control 

architecture. The second method offers a more practical approach in the sense that no 

additional external sensors are needed to aid in measuring wind characteristics and less 

processing capabilities of the onboard computer are required to process wind 

measurements and/or estimators.  

 Research Objective 

The main goal of this thesis is the design, development and implementation of 

robust control algorithms for disturbance rejection in rotorcraft UAVs. The main focus is 

the rejection of external wind effects. Four different control approaches are developed: a 

baseline NonLinear Dynamic Inversion (NLDI) controller, an analytical wind rejection 
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extension of the baseline NLDI control law, a baseline NLDI augmented with adaptive 

Artificial Neural Networks (ANN) and finally a baseline NLDI augmented with ℒ1 

output-feedback adaptive control. A simulation environment is applied to evaluate the 

performance of these four control algorithms under external wind conditions using a 

Monte Carlo analysis. Flight test results are presented for the implementation of the 

baseline NLDI, baseline NLDI augmented with adaptive ANN and the baseline NLDI 

augmented with ℒ1 output-feedback adaptive control in a DJI F330 Flamewheel 

quadrotor UAV system. Flight testing is performed to evaluate the control algorithms in 

an indoor wind free environment where only ground and wall effects are present, and in 

an outdoor environment subjected to wind disturbance conditions. A set of metrics is 

applied to compare and evaluate the overall performance of the developed control 

algorithms and conclusions are drawn with respect to the effectiveness of each method in 

rejecting external wind effects.  

 Thesis Outline 

Following the current chapter, Chapter 2 presents a literature review that includes 

a review of stabilizing linear, nonlinear, adaptive and intelligent control algorithms 

applicable to quadrotor UAVs, a general review of the stability criterion for nonlinear 

systems, an introduction to discrete time systems required for hardware-in-the-loop 

testing, and an overview of available wind estimation and rejection methods in UAV 

systems. 

Chapter 3 presents the mathematical model and derives the equations of motion 

describing the translational and rotational motion of the dynamic quadrotor UAV system. 

This chapter also includes the mathematical wind model with induced forces and 



CONTROL LAWS DEVELOPMENT FOR DISTURBANCE REJECTION                 7  

   
 

moments acting on the quadrotor UAV used in the derivation of the extended NLDI and 

in the simulation environment. 

Chapter 4 introduces the baseline NLDI and the derivation of the extended NLDI, 

followed by an introduction of the general architecture of the adaptive ANN and an 

overview of all studied adaptive ANN types. The adaptive ANN section is concluded 

with its application to augment the baseline NLDI and a brief stability analysis is shown 

to generate stability bounds on all the signals contained in the network. In a similar 

fashion, the general architecture of the ℒ1 output-feedback adaptive controller together 

with the augmentation architecture is discussed, followed by a brief stability analysis. 

Chapter 4 concludes with the presentation of a discretized version of the ℒ1 output-

feedback adaptive controller required for implementation in the onboard computer of the 

DJI F330 Flamewheel quadcopter. 

Chapter 5 introduces the simulation environment developed in 

MATLAB/Simulink. This includes a presentation of the simulation model, wind model 

and performance metric. Simulation results are shown for the four considered controllers 

in a Monte Carlo analysis applied to evaluate the performance of the controllers in a 

specified wind envelope.   

Chapter 6 discusses the DJI Flamewheel F330 implementation testbed. An 

overview of the quadcopter components is presented together with a discussion of the 

software used to implement the developed control architectures. Next follows an 

introduction to the weather station used to characterize the wind in outdoor flight testing. 

Chapter 6 concludes with an introduction of the locations where flight testing was 

performed in order to evaluate the performance of the DJI Flamewheel in flight under 
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nominal and wind disturbance conditions. 

Flight test results for the NLDI, NLDI augmented with ANN and NLDI 

augmented with ℒ1 output-feedback adaptive control are presented in Chapter 7. Flight 

tests were performed in an indoor wind free environment and in an outdoor environment 

subjected to wind disturbance to evaluate the performance of the control techniques under 

nominal and disturbed conditions. 

Using the results obtained in simulation and implementation, conclusions are 

drawn in Chapter 8 on the performance of each controller under external wind 

disturbance. This thesis is finalized with recommendations and future work summarized 

in Chapter 9. 

The research effort presented in this thesis has resulted in various publications: 

(Rivera, Moncayo, Verberne, & Festa, 2019) and (Verberne, Betancur, Riverak, Coulter, 

& Moncayo, 2019) have been published, (Verberne & Moncayo, 2019) has been accepted 

for publication and (Verberne & Moncayo, 2019) is currently under review.  

2. Literature Review 

In general, UAV systems are underactuated systems. This is certainly true for 

quadrotor UAVs since four independent control inputs in the form of rotational speeds of 

the motors can be commanded while the system possesses six degrees of freedom 

(6DOF); three translational and three rotational. This results in a nonlinear, multiple-

input multiple output (MIMO) system with a strong inherent coupling between 

translational and rotational dynamics (Wang, Man, Cao, Zheng, & Zhao, 2016). 

Stabilizing control with desired transient response is required to control the UAV 

throughout the flight envelope.  
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 Stabilizing Control Architectures for Quadrotor UAVs 

There are various approaches that can be taken when designing stable control 

laws for quadrotor UAVs. In general these approaches can be divided into linear control, 

nonlinear control, adaptive control and intelligent control. The application of control to 

UAV systems must operate in a closed-loop configuration such that information of the 

current performance can be used to drive the control input. Linear, nonlinear, adaptive 

and intelligent control approaches have been applied to control UAV systems in 

published literature. Although all these controllers can be tuned to enforce stable overall 

characteristics under ideal conditions, they distinguish themselves in the transient and 

steady state characteristics under (uncertain) internal and/or external disturbances. An 

overview of these methods applied to UAVs will follow next. 

2.1.1. Linear control. The application of linear controllers to nonlinear 

systems such as UAVs will not result in a robust response due to their inherent design 

through linearization. The traditional pole placement theorem will be discussed first, 

which has significant drawbacks when applied to UAV systems. The inclusion of optimal 

control such as linear quadratic regulator (LQR) and H∞ loop shaping improves the 

performance of the system.  

Pole placement. For linear systems, the closed-loop stability can be altered by 

pole placement through state-feedback. Pole placement through state-feedback is 

considered the most fundamental form of control design. In regards to UAV systems, the 

application of pole placement requires current state information to allow for the 

stabilization of rotational and translational dynamics. These states can be sent back 

through a feedback loop with proportional gain K, as can be seen in Figure 2.1, to allow 
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for the altering of the closed-loop system dynamics. Since some states are not observable 

in the UAV system, e.g. the attitude angles, filtering and estimation is required to produce 

estimates for these states. This can be performed by, for example, Kalman filtering which 

will provide state estimates of unobservable states.  

 Instead of estimating unobservable states using state estimators, output feedback 

control can be applied to stabilize the dynamics of the system with the available outputs. 

Output feedback control has its limitations when applied to nonlinear, coupled systems 

like UAVs. Linearization of the nonlinear model results in a loss of nonlinear 

characteristics which are subsequently not compensated for by the linear output feedback 

controller. Also, the use of proportional feedback compensation has its limitations on the 

reachability of desired transient and steady-state stability features (Astrom & Murray, 

2012).  

 

 

Figure 2.1. General state-feedback control scheme. 

 

PID control. PID control offers a method to achieve both desired transient and 

steady-state characteristics of the dynamic system. PID compensation is the most popular 

linear control method applied to stabilize quadrotor UAVs due to the simplicity to tune 

the PID controller to achieve desired characteristics such as settling time, percent 
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overshoot and steady-state error (Garcia, Rubio, & Ortega, 2012). (Li & Li, 2011) and 

(Salih, Moghavvemi, Mohamed, & Sallom Gaeid, 2010) show that attitude and position 

can be stabilized by applying PID compensation on the error signal of the attitude angles 

and positions tracking.  

In practice, traditional PID control applied to stabilize the rotational and 

translational dynamics is not very effective when large tracking errors exist which will 

degrade the transient performance of the system (Wang, Man, Cao, Zheng, & Zhao, 

2016). One approach to counteract the unwanted features of traditional PID control to 

UAV systems is to apply PID control in cascade loops. The idea behind using a cascade 

architecture is to decouple the fast and slow dynamics to enforce desired transient 

response in both. The general cascade architecture can be seen in Figure 2.2. This 

cascade architecture can be applied to stabilize the fast dynamics for both the rotational 

and translational dynamics in the inner loop while stabilizing the slower dynamics in the 

outer loop. As seen in Figure 2.2, outputs of the outer loop act as inputs to the inner loop. 

Examples of cascade PID application to stabilize rotational dynamics are given in (Wang, 

Man, Cao, Zheng, & Zhao, 2016) where simulation results show that the cascade PID 

outperforms the traditional PID in the presence of disturbances, and in (Bo, Xin, Hui, & 

Ling, 2016) where PID and cascade PID flight test results are compared. A slightly 

different architecture of the cascade PID can be seen in (Cao & Lynch, 2016) where an 

inner-outer loop design is presented where translational dynamics are stabilized in the 

outer loop and rotational dynamics in the inner loop. This specific architecture promotes 

overall stable flight by coupling and stabilizing attitude and position states.  
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Figure 2.2. General cascade PID control scheme. 

 

H∞ control. Pole placement provides a method to determine the feedback gain 

required to achieve certain desired closed-loop stability characteristics. However, the 

obtained feedback gain might not be the most optimal solution to obtain the desired 

closed-loop characteristics. Originating from the 1960s, optimal control is concerned with 

finding adequate control inputs that will minimize a performance index penalizing system 

variables (Levine, 2011). One of the most popular optimal control applications is H∞ loop 

shaping. H∞ control is concerned with assuring overall stability for the closed-loop 

system by applying optimization in the frequency domain. This is achieved by finding a 

feedback gain that will minimize the maximum response for the closed-loop system in 

the frequency domain together with assuring closed-loop stability (Kwakernaak, 1993) 

(Zames, 1981). Minimizing the peak value of the frequency response can be achieved by 

applying the H∞ norm to the closed-loop system (Levine, 2011):  

 ‖𝐺‖∞ = sup𝜎𝑚𝑎𝑥[𝐺(𝑗𝜔)]  (2.1) 

where sup represents the least upper bound of the closed-loop sensitivity function.  

H∞ control has been applied to stabilize quadrotor UAV systems. Examples can 

be found in (Chen & Huzmezan, 2003) where H∞ loop shaping is applied for the 
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stabilization of rotational and translational dynamics of a quadcopter, and in (Falkenberg, 

Witt, Weltin, & Werner, 2012) where an aggressive H∞ attitude controller is designed 

which shows superior results compared to a PID. 

One drawback of the application of H∞ control is the required extensive 

knowledge of control synthesis in the frequency domain as compared to more 

conventional methods.  

Linear quadratic regulator. The linear quadratic regulator (LQR) problem is 

contained under the H∞ control problem but offers implementation advantages, e.g. less 

information about the system is required to apply LQR and the computation of optimality 

is less involved. The LQR problem is concerned with finding the optimal state-feedback 

gain that will achieve guaranteed robustness while minimizing the energy spent (Levine, 

2011). LQR requires a fully observable and controllable system. In the case that not all 

states are observable, like the general UAV system, an observer needs to be added to the 

LQR to provide state estimates. The LQR with observer is named the linear quadratic 

gaussian (LQG).  

In short, the optimal feedback gain constructing the LQR controller can be 

calculated as: 

 𝐾 = −𝑅−1𝐵𝑇𝑃 (2.2) 

where 𝑅 ∈ ℜ𝑚×𝑚 is a positive definite tuning matrix penalizing control action for 𝑚 

inputs to the system, 𝐵 ∈ ℜ𝑛×𝑚 is the input matrix in state-space representation for a 

system containing 𝑛 states and 𝑃 ∈ ℜ𝑛×𝑛 is the positive semidefinite solution of the 

algebraic Ricatti equation assuring that the input to the system, 𝑢 ∈ ℜ𝑚, will minimize 

the cost function:  
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𝐽(𝑢) = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 

∞

0

 (2.3) 

where 𝑄 ∈ ℜ𝑛×𝑛 is a positive semi-definite tuning matrix penalizing transient state 

response.   

 Two examples of LQR control applied to quadrotor UAVs can be seen in (Dong, 

Fu, Yu, Zhang, & Al, 2015) where LQR control is effectively applied to control position 

and heading angle in flight, and in (Pan, Chen, Wang, Wu, & Cheng, 2018) where 

cascade LQR is applied to stabilize rotational and translational dynamics. 

2.1.2. Nonlinear control. Section 2.1.1 discussed linear controller techniques 

designed to stabilize linear systems. The application of these controllers to nonlinear 

systems will not be ideal due to their linear synthesis. This section will emphasize 

nonlinear control design which is focused on altering the stability of nonlinear systems 

specifically. Gain scheduling is the first considered approach which focuses on 

counteracting an inherent drawback of control design through the linearization of 

nonlinear systems. Backstepping, sliding mode and nonlinear dynamic inversion (NLDI) 

control are all nonlinear methodologies concerned with effective and robust control 

tracking of a desired response using feedback. Backstepping and sliding mode control 

can be designed through the Lyapunov theorem while NLDI control relies on feedback 

linearization of the nonlinear system. Examples show that all the considered nonlinear 

control approaches yield a more robust system when applied to the nonlinear quadrotor 

UAV system in the presence of disturbances and uncertainties as compared to the linear 

control techniques.  

Gain scheduling. Gain scheduling can be used in combination with the linear 
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controllers discussed in Section 2.1.1 as described in (Khalil, 2002). The main drawback 

in using a linearized model of a nonlinear dynamic system to tune and design stable 

control algorithms is the resulting loss of information due to linearization. The 

linearization of a nonlinear system only provides a relatively accurate representation of 

the nonlinear system around the linearization point. When the states of the system leave 

this linearization point, the linearized model diverges from the true nonlinear model. If 

the linearized model at a specific linearization point is used to design a stable controller, 

the controller performance will degrade once the states of the system leave the 

linearization point. Gain scheduling can provide a solution by linearizing the nonlinear 

system at various operation points inside the envelope and subsequently designing stable 

controllers at these points. The designed controllers can be merged together to allow for a 

smooth transition between controllers at different operating points (Harkegard, 2001). 

This will result in an overall more robust performance of the controller throughout the 

envelope. 

An example of gain scheduling applied to quadrotor UAV systems can be seen in 

(Ataka, et al., 2013) where it is shown that a LQR gain scheduling architecture can be 

applied using a linearized quadcopter model to assure stable tracking of reference values 

by the quadrotor UAV. 

Backstepping control. Backstepping control is a popular and effective 

approach to stabilize nonlinear systems. In a similar fashion as feedback linearization, 

which will be discussed later in this section, backstepping control applies (multiple) 

feedback loops to force the closed-loop system to exhibit favorable characteristics 

(Levine, 2011). Instead of minimizing a cost function, like is performed in H∞ loop 
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shaping and LQR control, a virtual control input is generated using a Lyapunov approach 

such that the closed-loop system exhibits desired dynamic characteristics (Madani & 

Benallegue, 2006). When applied in a cascade architecture, emphasis must be placed on 

selecting an appropriate Lyapunov equation for each loop to ensure the output of the 

outer loop, which acts as a virtual control input to the inner loop, assures favorable 

transient and steady-state characteristics of the closed-loop system (Figure 2.3).   

Examples of backstepping control applied to quadrotor UAV systems can be 

found in (Madani & Benallegue, 2006) where the backstepping control synthesis is 

described and applied for tracking translational and heading angle commands, and in 

(Huo, Huo, & Karimi, 2014) where backstepping control using a quaternion and 

integrator approach is shown to stabilize the attitude dynamics of a quadrotor in 

simulation. 

 

 

Figure 2.3. Architecture of cascade backstepping control applied to quadrotor UAV 

(Huo, Huo, & Karimi, 2014).  

 

Sliding mode control. Sliding mode control is concerned with forcing the 

states of the system to track a desired pre-defined plane in the state space exhibiting 
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desired stability characteristics (Levine, 2011). The sliding mode controller will actively 

work towards keeping the state trajectory of the system on this pre-defined state plane. 

Sliding mode control design therefore consists of defining the desired state space plane 

exhibiting desired stability characteristics and defining a fast switching controller that 

will drive the system towards the desired response.  

Similar to backstopping control, the sliding mode controller can be synthesized 

using a Lyapunov function. (Bouabdalla & Siegwart, 2005) shows a sliding mode 

controller synthesized using a Lyapunov approach and subsequently applied to stabilize a 

quadrotor UAV. Another example can be found in (Xu & Ozguner, 2006) where a sliding 

mode controller is applied to stabilize the position and attitude of a quadrotor UAV. The 

sliding mode controller shows a robust response in the presence of parametric 

uncertainties.  

Nonlinear dynamic inversion control. The general idea of NLDI control is 

to cancel the nonlinearities of a nonlinear system through feedback linearization. What 

remains is a linear system where classic control techniques such as pole placement and 

root locus can be applied to achieve desirable error dynamics. For NLDI to be applied 

effectively, a fairly accurate model of the nonlinear system dynamics must be available 

for application in the inversion loop.  

A generic nonlinear system can be characterized as (Ito, Georgie, Valasek, & 

Ward, 2002):  

 𝑥̇⃑ =  𝑓(𝑥) + 𝑔(𝑥)𝑢⃑⃑ (2.4) 

where 𝑥⃑ ∈ ℜn is the state vector, 𝑢⃑⃑ ∈ ℜm are the inputs to the system, 𝑓(𝑥) ∈ ℜn 
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represents the nonlinear system dynamics and 𝑔(𝑥) ∈ ℜnxm is the nonlinear input matrix. 

Given that 𝑔(𝑥) is invertible, feedback linearization can be applied to this nonlinear 

system by inverting Equation (2.4) as: 

 𝑢⃑⃑(𝑥) =  𝑔−1(𝑥)[𝑈⃑⃑⃑(𝑥) − 𝑓(𝑥)] (2.5) 

where 𝑈⃑⃑⃑(𝑥) ∈ ℜn is a virtual controller which can be designed using classic control 

techniques to guarantee desirable stability dynamics. Most often the virtual control signal 

is generated using a simple linear controller which assures the desirable dynamics. When 

the input derived in Equation (2.5) is inserted in Equation (2.4), the closed-loop dynamics 

of the system approach the chosen desirable stability dynamics for a near perfect 

cancellation of nonlinear terms: 

 𝑥̇⃑ ≜  𝑈⃑⃑⃑(𝑥) (2.6) 

Unmodeled nonlinearities and uncertainties will be rejected by the pseudo controller 

driving the virtual control input 𝑈⃑⃑⃑(𝑥) in Equation (2.5) if the uncertainties are small. 

However, large uncertainties will result in large uncancelled dynamics after the 

application of feedback linearization which degrades the robustness of the controller. 

The NLDI control law has been extensively used by researchers at West Virginia 

University to establish robust tracking of navigation commands by an YF-22 research 

testbed. Simulation results in (Moncayo, Perhinschi, Wilburn, Wilburn, & Karas, 2012) 

and flight test results in (Campa, et al., 2007) show desired tracking performance and 

fault tolerance capabilities of the NLDI control law applied to the YF-22 research testbed.  

For quadrotor UAV systems, the NLDI control architecture has been implemented 
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in various research efforts. (Garcia D. F., 2017) shows the development of a NLDI 

control law for a quadrotor UAV system resulting in an improved robustness throughout 

the flight envelope. An application of this developed controller can be found in (Rivera, 

Moncayo, Verberne, & Festa, 2019) where implementation results show the robustness of 

the baseline NLDI controller with augmented adaptive control against failures and 

disturbances. In (Lee, Kim, & Sastry, 2009) feedback linearization is applied to stabilize 

the rotational and translational dynamics of a quadrotor UAV. Simulation results show 

that the sliding mode controller is more robust to external disturbances than feedback 

linearization.  

2.1.3. Adaptive control. For the linear and nonlinear controllers discussed in 

Sections 2.1.1 and 2.1.2 respectively, the control parameters remain constant following 

the initial control design. This works if the system characteristics used to synthesize the 

control law are an accurate representation of the actual system. Unfortunately, all 

dynamic system models include modeling uncertainties and are vulnerable to internal and 

external disturbances. Adaptive control offers a solution to correct for these uncertainties 

and disturbances by changing its control parameters for accommodation. 

Model reference adaptive control. Adaptive control originates from the 

1950s when the need for robust autopilot systems was high for high performance aircraft 

with an extended flight envelope. Linear and nonlinear control algorithms could not 

guarantee the robustness throughout the extended flight envelope and so a new type of 

controller was required to guarantee a robust system for all expected flight conditions 

(Levine, 2011). One of the proposed methods to design such a new robust autopilot 

system was to base control output on a comparison between the current performance of 



CONTROL LAWS DEVELOPMENT FOR DISTURBANCE REJECTION                 20  

   
 

the aircraft with a desired reference model contained in a state predictor. This Model 

Reference Adaptive Control (MRAC) approach was first introduced by (Whitaker, 

Yamron, & Kezer, 1958) and a general architecture scheme can be seen in Figure 2.4. 

One example of MRAC application can be found in (Dydek, Annaswamy, & 

Lavretsky, 2013) where an existing controller is augmented with MRAC to increase the 

robustness against parametric uncertainties in a quadrotor UAV in simulation and 

implementation. The results show that the MRAC augmentation increases the robustness 

of the system; however, there are some inherent shortcomings in the application of this 

controller. 

As can be seen in Figure 2.4, at its core the MRAC compares state predictions 

with the current state of the actual system. The error between those two signals consists 

of modeling uncertainties and disturbances which are estimated using an adaptation law. 

The estimation of the modeling uncertainties and disturbances is fed back into the system 

for cancellation using a control law. The adaptive gain 𝛤 can be increased to allow for 

fast adaption in the presence of uncertainties and disturbances. However, high frequency 

oscillations are prone to occur in the control signal for large errors between the state 

 

 

Figure 2.4. General MRAC architecture with state predictor (Hovakimyan & Cao, 2010). 
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predictor and system output leading to a decrease in stability of the system as is shown in 

(Cao, Patel, Reddy, & Hovakimyan, 2006). MRAC design therefore offers a tradeoff 

between fast adaptation and robustness.   

𝓛1 state-feedback adaptive control. The need for fast adaption and 

guaranteed robustness using model reference based control resulted in the evolution of 

the MRAC into the ℒ1 adaptive control. ℒ1 adaptive control was first introduced in (Cao 

& Hovakimyan, 2006a) and (Cao & Hovakimyan, 2006b) showing the desired 

decoupling between adaptation and robustness. Figure 2.5 shows the general ℒ1 state-

feedback adaptive control scheme for matched uncertainties. These uncertainties are 

considered to enter the system through the control channel, contained in the bandwidth of 

the control input. As can be seen, the ℒ1 adaptive controller has a similar structure as the 

MRAC: state predictor, adaptation law and control law. The fast adaptation for modeling 

uncertainties and disturbances without sacrificing the robustness of the system is 

achieved by including a low-pass filter into the control design.  

Results can be found in (Leman, Xargay, Dullerud, Hovakimyan, & Wendel, 

2009) where ℒ1 state-feedback adaptive control augmentation is applied to an X-48B 

aircraft model in simulation. Results show that the ℒ1 augmented system is able to 

recover from failures. Another example can be found in (Moncayo, et al., 2013) where ℒ1 

state-feedback adaptive control augmentation is used to increase the tracking 

performance of the West Virginia University YF-22 simulation model under nominal and 

abnormal flight conditions. 
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Figure 2.5. General ℒ1 state-feedback adaptive control scheme (Hovakimyan & Cao, 

2010). 

 

𝓛1 output-feedback adaptive control. Figure 2.5 shows that the application 

of ℒ1 state-feedback adaptive control requires knowledge of all the states of the system. 

Since full state-feedback is often not feasible, a modified ℒ1 adaptive control scheme can 

be applied which uses the available outputs of the system for feedback. Figure 2.6 shows 

a general ℒ1 output-feedback adaptive control architecture for a stable reference model 

and strictly proper minimum phase filter as presented in (Hovakimyan & Cao, 2010). 

Notice that the ℒ1 output-feedback adaptive controller has a similar architecture as the ℒ1 

state-feedback adaptive controller: an output predictor, an adaptation law and a control 

law. The ℒ1 output-feedback architecture has no adaptive gain 𝛤 available to increase the 

adaptation rate of the system. Fast adaptation and robustness of the system must be 

achieved by the design of the reference model and low-pass filter.  

ℒ1 output-feedback adaptive control has been applied in numerous research 

efforts. (Cao & Hovakimyan, 2009) shows the synthesis and application of ℒ1 output-

feedback adaptive control for the longitudinal control of a missile autopilot and 
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Figure 2.6. General ℒ1 output-feedback adaptive control scheme (Nshuti, 2017). 

 

(Geiser, Xargay, & Hovakimyan, 2011) shows how ℒ1 output-feedback adaptive control 

can be used to augment a baseline NLDI controller for increased robustness in adverse 

conditions.   

An example of ℒ1 output-feedback adaptive control applied to UAV quadrotors 

can be found in (Suarez Fernandez, Dominguez, & Campoy, 2017) where the adaptive 

controller is compared for wind disturbance rejection capabilities to a LQR controller in 

simulation and with a PID controller in implementation by flying the quadrotor through a 

fan. Results show that the ℒ1 outperforms both the LQR and PID. 

2.1.4. Intelligent control. Control systems based on biological inspired 
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intelligent systems have become increasingly popular due to the potential to mimic 

human body functions that have been optimized through years of evolution (Levine, 

2011). These systems can be characterized by their ability to learn from environmental 

information which will increase their robustness, accuracy and intelligence. Research 

efforts have been focusing on developing robust and trustworthy control applications of 

these algorithms. Arguably the three most researched biomimetic applications are fuzzy 

control, the artificial immune system (AIS) paradigm and artificial neural networks 

(ANN). 

Fuzzy control. Fuzzy control attempts to mathematically model the instinctive 

heuristic understanding obtained through experiences that humans apply when 

controlling a dynamic system (Passino & Yurkovich, 1997). Where conventional control 

applied to dynamic systems focuses on system modeling and control through differential 

equations, fuzzy control focuses on establishing mathematical guidelines and decision-

making algorithms. Fuzzy control has been applied to the control of quadrotor UAVs. An 

example can be seen in (Kim, 2018) where fuzzy control is applied for hovering control 

of a quadrotor UAV. 

Artificial immune system paradigm. Another example of bio-inspired 

control is the application of the artificial immune system (AIS) metaphor for detection, 

identification, and evaluation of failures and uncertainties (Moncayo & Perhinschi, 

2011). Like the human immune system, which successfully identifies and eliminates 

intruding antigens using a combination of antibodies and lymphocytes in a regulated 

feedback scheme, the AIS metaphor can be applied to identify abnormal flight conditions 

using mathematical antibodies trained with nominal flight data sets. An example can be 
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seen in (Garcia D. , et al., 2018) where the AIS paradigm is applied to recognize actuator 

failures and in (Rivera, Moncayo, Verberne, & Festa, 2019) where the AIS paradigm is 

applied to identify motor saturations in a quadrotor UAV in flight. The initial successful 

identification of abnormal flight conditions then yields the possibility to apply the AIS 

paradigm in adaptive control compensation. An example of the application of the AIS 

metaphor in adaptive control compensation can be seen in (Coulter, 2018) where a model 

reference AIS adaptive augmentation architecture is successfully applied to correct for 

undesired fuel slosh dynamics in spacecraft.  

Artificial neural networks. Artificial neural networks (ANN) are 

mathematical models that simulate the working of the human nervous system (Al-

Mahasneh, Anavatti, & Garatt, 2017). Originating from the 1940s, ANN have been 

applied in numerous applications due to their strong estimation, classification and 

prediction capabilities, with research of the last few decades focusing on their application 

to robust control systems (Table 2.1). 

Like the human nervous system, ANN consist of a structure of interconnected 

neurons. In general, neurons are organized in layers with each individual neuron in each 

layer connected to all neurons in the previous and next layer. The first layer of neurons in 

the network make up the input layer while the last layer of neurons is denoted as output  

layer. The connections of neurons in between layers are weighted, with most neurons 

containing biases as well. The output of a neuron is generated according to an activation 

function which most commonly takes the shape of a sigmoidal function to create a 

bounded output between zero and one.   
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Table 2.1  

The Application Development of ANN (Al-Mahasneh, Anavatti, & Garatt, 2017) 

 

 

The weights and biases contained in the network are available for tuning to assure 

the network behaves in a desirable fashion. The updating of the weights and biases is 

most effectively performed when applying supervised learning due to the use of an error 

signal in the tuning process, giving the network a direct measure of how well it is 

currently performing. The weights and biases are updated according to a backpropagation 

rule containing a gradient descent algorithm aimed towards varying the weights and 

biases in such a way to minimize the error. A stability proof is often tedious to show for 

ANN given the fact that the weights and biases of the ANN can be varied almost 

indefinitely resulting in an infinite amount of possible ANN schemes. Due to its inherent 

self-adaptive nature, ANN are notorious for their sometimes unpredictable behavior. 

Many types of ANN have been developed and effectively applied. A few popular 

ANN types include the adaptive linear neuron (ADALINE), the single hidden layer 

sigmoidal neural network (SHLS-NN), the radial basis function neural network (RBFNN) 

with extended minimum resource allocating network (EMRAN) and sigma pi (Al-
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Mahasneh, Anavatti, & Garatt, 2017). The ADALINE is a single layer network which 

does not use an activation function to obtain the output of individual neurons but instead 

uses a linear combination of the inputs. This results in a poor performance when applied 

to nonlinear systems. The SHLS-NN consists of neurons organized in an input layer, 

hidden layer(s) and output layer with sigmoidal activation functions. Unlike the 

ADALINE, the SHLS-NN is able to separate nonlinear data due to the increased 

complexity of the network. The RBFNN consists of a hidden layer containing neurons 

with a radial basis function. The output can therefore be denoted as a weighted 

summation of a finite number of radial basis functions. Besides the updating of the 

parameters of the radial basis functions by a backpropagation law, the addition of the 

ERMAN algorithm allows for the allocation and extraction of neurons in the hidden layer 

at locations where extra neurons are needed and where neurons do not significantly 

contribute to the output (Samy, Fan, & Perinpanayagam, 2010). Lastly, the outputs of the 

sigma pi network consist of a weighted combination of a set of basis functions (Rysdyk 

& Calise, 1998). 

In the application of recognition and prediction, the neural network can be trained 

using nominal data featuring the desired characteristics. For example, (Perhinschi, et al., 

2014) show how a RBFNN with EMRAN algorithm can be trained to mimic the nominal 

angular accelerations response of an aircraft, which can subsequently be used for failure 

identification in combination with the AIS paradigm. In this application, the learning 

would only be applied in the design process to train the ANN with the nominal data. 

When the network is considered properly tuned, the learning is discontinued and the 

network parameters remain constant.   
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Continuous learning can be applied for the application of ANN in a control law 

architecture yielding the adaptive ANN version. In this setup, the weights and biases 

contained in the network are continuously updated in an effort to minimize a given error 

signal. Adaptive ANN are commonly applied to augment existing controllers to increase 

the robustness of the system. The relative simplicity of control augmentation by ANN can 

be seen in (Sharma & Calise, 2005) where existing linear controllers are easily 

augmented with a SHLS-NN. The NLDI controller is often augmented by adaptive ANN 

to help estimate and correct for uncancelled nonlinearities in the feedback linearization 

process. Examples of this approach can be found in (Burken, Williams-Hayes, 

Kaneshige, & Stachowiak, 2006) where a sigma pi adaptive ANN is used to augment a 

NLDI control law to correct for inversion errors resulting from aerodynamic and control 

surface failures in a F-15 simulation. (Perhinschi, et al., 2005) show flight test results of a 

Gaussian radial basis function ANN, which is different from the RBFNN by the use of a 

Gaussian instead of a radial basis function, together with the EMRAN algorithm to 

augment a NLDI control law to compensate for inversion errors and changes in aircraft 

dynamics. Flight test results of the West Virginia University YF-22 research testbed 

show that the addition of adaptive ANN augmentation results in a more robust system. 

 Stability of Nonlinear Systems 

A primary concern in any dynamic system is the concept of stability. Especially in 

aerospace applications, it is desired to confirm that the dynamic system is stable for all 

possible operating points inside the expected flight envelope. Conclusions on the stability 

of linear systems can be drawn by analyzing the eigenvalues and eigenvectors. A linear 

system is stable if all eigenvalues contain negative real components. Showing stability for 
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nonlinear systems is more challenging. One inefficient approach is to linearize the 

nonlinear system, which would only give information about the stability of the system at 

the linearization point. Different methods will need to be applied to prove stability for 

nonlinear systems.  

2.2.1. General stability definitions. A general time-varying nonlinear 

system can be defined as:  

 𝑥̇⃑ =  𝑓( 𝑥⃑(𝑡), 𝑢⃑⃑(𝑡), 𝑡),        𝑥(0) =  𝑥0 (2.7) 

where 𝑥⃑ ∈ ℜn is the state vector and 𝑢⃑⃑ ∈ ℜm are the inputs to the system. If the system 

remains at initial condition (𝑥0, 𝑢0) ∀ 𝑡 ≥ 𝑡𝑜 indefinitely for a constant control input, 

then (𝑥0, 𝑢0) = (𝑥𝑒 , 𝑢𝑒) is an equilibrium point of Equation (2.7). Nonlinear systems may 

contain more than one equilibrium point. An additional concern is the behavior of 

nonlinear systems when perturbed or initialized at a different point than the equilibrium 

point, or when moving from one equilibrium point to another inside the envelope. In 

general, three types of behaviors can be identified (Perez A. , 2016). 

An equilibrium point 𝑥𝑒 can be considered stable if and only if ∀ 𝑡 ≥ 𝑡𝑜 and 

∀ 𝑅 > 0 ∃ an initial condition ‖𝑥(0)‖ < 𝑟 such that ‖𝑥(0)‖ < 𝑅 where 𝑟 and 𝑅 are radii 

of spherical regions in the state space. Although the system does not return to the exact 

equilibrium point, the states of the system remain bounded in a finite region. 

An asymptotically stable equilibrium point exhibits the same characteristics as the 

above defined stability definition when perturbed. Additionally, the states of the system 

return to the equilibrium point, that is initial condition ‖𝑥(0)‖ < 𝑟 results in 𝑥(𝑡) →  𝑥𝑒 

as 𝑡 → ∞.  
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An equilibrium point can be considered globally asymptotically stable when the 

states of the system converge to the equilibrium point for an infinite separation from the 

equilibrium point: initial condition ‖𝑥(0)‖ < ∞ results in 𝑥(𝑡) →  𝑥𝑒 as 𝑡 → ∞.  

2.2.2. Showing stability of equilibrium points. Now that stability 

concepts have been introduced, methods need to be applied to show that dynamic 

nonlinear systems converge to equilibrium points in a desired fashion.  

Lyapunov’s direct method. Arguably the most popular contemporary method 

to show stability for nonlinear systems is Lyapunov’s direct method. Lyapunov’s direct 

method applies the concept of total energy in the system and the change of this energy 

over time to draw conclusions on the overall stability of the system. If the dynamic 

system has an asymptotically stable equilibrium point, then the internal energy in the 

system will decay over time to its minimum value at the equilibrium point when the 

states are within spherical region ‖𝑥(0)‖ < 𝑟 (Ogata, 1995). Lyapunov’s direct method 

can be applied to show stability for both linear and nonlinear, time invariant and time 

variant systems. The selection of a valid candidate Lyapunov function representing the 

total energy contained in the system is often tedious and requires knowledge of the 

analyzed system. Lyapunov’s direct method guarantees that the equilibrium points 

contained in the system are stable if there exists a continuously differentiable positive-

definite function 𝑉(𝑥) such that Equation (2.8) results in a negative semidefinite result 

and asymptotically stable if Equation (2.8) results in a negative definite solution (Levine, 

2011).  
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𝑉̇(𝑥) =  

𝜕𝑉

𝜕𝑥𝑖
𝑥̇𝑖       (2.8) 

La Salle invariance principle. The La Salle invariance principle is a useful 

technique to show asymptotic stability of nonlinear systems. Equation (2.8) often yields 

negative semidefinite results, which cannot be used to infer asymptotic stability (Perez A. 

, 2016). The application of La Salle invariance principle allows for the drawing of 

conclusions with respect to the asymptotic stability of nonlinear systems with a negative 

semidefinite result obtained from Lyapunov’s first method. This is performed by showing 

that the largest invariant set of points containing 𝑉̇(𝑥) = 0 is equal to the set containing 

the equilibrium points (Narendra & Annaswamy, 2005). 

Barbalat’s lemma. Barbalat’s lemma forms an extension of the La Salle 

invariance principle and can be applied to Lyapunov candidate functions that result in a 

negative semidefinite uniformly continuous solution to Equation (2.8). Barbalat’s lemma 

states that uniformly continuous functions are globally uniformly bounded and approach 

equilibrium as time approaches infinity and will thus result in asymptotic stability 

(Hovakimyan & Cao, 2010).  

2.2.3. Stability of adaptive and intelligent control systems. The 

application of adaptive and intelligent controllers to increase the robustness of control 

systems is often complicated by the necessity for a stability proof assuring the desired 

behavior of the controller throughout the envelope. The methods discussed in Section 

2.2.2 are usually applied to prove the stability of systems controlled by adaptive and 

intelligent controllers.  

The usual approach for systems controlled by adaptive control techniques is to 
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express the system in closed-loop form and to subsequently show the boundedness of all 

signals in the closed-loop. (Cao & Hovakimyan, 2008) shows the application of an ℒ1 

output-feedback adaptive controller to control a generic plant. The stability of the closed-

loop system is shown by proving the existence of upper bounds for the parameters in the 

system. Besides overall stability, it is inherently desirable for the adaptive controller to 

achieve the desired characteristics, which can be shown by analyzing the evolution of the 

closed-loop parameters over time.  

Intelligent control often includes self-organizing or self-adapting elements for 

which it is important to show boundedness and convergence. In the case of self-adapting 

ANN, which contain inherent update rules for the parameters of the network, the 

boundedness of all parameters must be shown. In (Calise, Lee, & Sharma, 2001) the 

boundedness of all parameters inside a single hidden layer sigmoidal neural network 

(SHLS-NN) is shown by expressing the evolution of the parameters in the network as a 

Lyapunov function which can be shown to be negative definite proving the convergence 

of the network. Another example can be found in (Campa, Fravolini, Mammarella, & 

Napolitano, 2011) where a novel approach is shown to determine the stability of dynamic 

systems subject to output feedback direct adaptive control through the formulation of 

accurate relationships for the system’s bounding sets. 

 Discrete Time Systems 

The emergence of digital control systems to replace analog control systems has 

been catalyzed by the availability of low-cost digital computers and vast application 

possibilities (Ogata, 1995). Although dynamic systems can be considered continuous-

time, controllers applied to these systems are inherently discrete due to the integration of 
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the controllers in a real-time sampled computer. This inherent discretization of the 

controller in a real-time environment must be taken into account in the controller 

synthesis.  

In general, there are two approaches when it comes to designing discrete 

controllers (Jafarnejadsani, Lee, & Hovakimyan, 2017). The first approach is to express 

the open-loop of the continuous dynamic system as a discrete system and to subsequently 

synthesize the desired controller in the discrete Z-domain. The disadvantage of this 

method is that the discretization of the continuous-time model may not reflect the 

continuous-time system up to a desirable degree. The second approach is to synthesize 

the controller in continuous time and to emulate the continuous-time controller in 

discrete-time by assuring the sample time of the real-time environment is small. In 

essence, a continuous-time signal is a discrete-time system with a sample time that 

approaches zero. Sample time limitations are often induced by the available internal 

processing of the digital computer. The main concern in this approach though is whether 

the discretized controller will match the continuous-time designed control characteristics 

at the applied sample time. 

The second approach described above will show poor performance for a large 

sample time. Due to the processing limitations on the sample time that onboard 

computers commonly pose, it is often attempted to try to evade the integration of high 

fidelity control systems on onboard computers. A popular strategy is to run controllers 

off-board on a ground station controlling the dynamic system through a telemetry 

connection, which is not limited to the internal processing capabilities of the onboard 

computer. This allows for fast processing off-board in combination with high frequency 
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telemetry connectivity. This approach is often taken when it comes to the application of 

reference model based adaptive control due to the straightforward design techniques 

available for the reference models and filters in the continuous-time domain. As a result, 

the controller can be run in a continuous-time environment with a very small sample time 

for the telemetry connection, mimicking the behavior of a continuous-time control 

system. (Suarez Fernandez, Dominguez, & Campoy, 2017) shows an example of this 

approach where continuous-time ℒ1 adaptive control is applied to control a quadrotor 

UAV through telemetry commands sent from an off-board ground station. This approach 

allows for a 10,000Hz sampling frequency, which would be unattainable for the average 

onboard computer.  

The stability of linear and nonlinear, time-variant and time-invariant discrete 

systems can be shown using Lyapunov’s direct method discussed in Section 2.2.2. This 

method can be extended to allow for the inclusion of discrete time systems (Ogata, 1995).  

 UAV External Disturbance Rejection Methodologies  

Many types of disturbances and uncertainties can degrade the overall performance 

of the UAV system. In general, disturbances and uncertainties can be categorized in 

either one of two classes: internal and external disturbances. Internal disturbances include 

those disturbances and uncertainties resulting from failures of hardware and software 

components including actuator failures, structural failures, on-board sensor malfunctions 

and software glitches. These undesired effects are commonly corrected for by applying 

the adaptive and intelligent control algorithms discussed in Sections 2.1.3 and 2.1.4. 

External disturbances include those effects caused by external influences acting on the 

system which are mostly weather related. Conventional UAV systems do not operate in 
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adverse weather conditions such as rain, snow and high wind. A realistic objective when 

it comes to external disturbances is therefore to reject low to medium wind effects acting 

on the UAV. This has been attempted in various ways. 

2.4.1. Wind estimation methods. To attempt to correct for undesired wind 

effects, information about the current wind state conditions is required to be available. 

Effectively measuring or reconstructing the wind characteristics such that an estimation 

of the current wind velocity and/or acceleration can be used in the control laws 

architecture is a crucial initial step when it comes to successful external wind rejection. 

Onboard sensor data provided by sensors that are part of the standard autopilot unit can 

be used to obtain estimates of wind characteristics; in (Waslander & Wang, 2009) wind 

speed is estimated using accelerometer data and in (Langelaan, Alley, & Neidhoefer, 

2011) a more extended approach is taken to obtain estimates for both wind speed and 

acceleration in simulation showing a relatively accurate estimation. (Sikkel, De Croon, 

De Wagter, & Chu, 2016) show a novel and relatively straightforward nonlinear observer 

to estimate the local wind components using accelerometer and GPS-velocity 

measurements in quadrotor UAV systems. Another example can be seen in (Tomic, 

Schmid, Lutz, Mathers, & Haddadin, 2016) where two methods are presented to estimate 

wind velocity. The first method applies an inverted model of the wind induced forces and 

moments for estimation while the second method obtains a wind velocity estimation 

based on the thrust of the motors. Both methods show an accurate estimation of the wind 

velocity in wind tunnel testing. 

The addition of optical sensors to provide visual data can aid in the estimation of 

wind characteristics; (Abeywardena, Wang, Dissanayake, Waslander, & Kodagoda, 
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2014) uses a monocular camera to estimate wind velocity and in (Rodriguez, Andersen, 

Bradley, & Taylor, 2007) an optical flow sensor is applied to calculate wind velocity real-

time on board a flying wing which can be used to estimate the crab angle.  

Wind characteristics can be measured directly using additional sensors that 

require additional hardware which is often unfavorable; in (Yeo, Sydney, & Paley, 2015) 

a pressure probe flow measurement system is developed for a small quadrotor UAV to 

estimate the wind velocity. In (Palomaki, Rose, Van den Bossche, Sherman, & De 

Wekker, 2017), an anemometer attached to a quadrotor UAV is used to measure the wind 

velocity directly.  

2.4.2. Wind rejection methods. Once wind characteristics are known, 

control law architectures can be developed in an attempt to correct for the external 

disturbance. One approach is to apply a correction into the control law architecture by 

modeling the aerodynamic effects caused by the external wind disturbance. (Hoffmann, 

Huang, Waslander, & Tomlin, 2007) presents corrections for two separate aerodynamic 

effects caused by external wind disturbance: thrust variation with free stream velocity, 

and induced roll and pitch moments resulting from a deflection of the thrust vector due to 

blade flapping. A continuation of this study in (Hoffmann, Huang, Waslander, & Tomlin, 

2009) shows the implementation of the presented models in the control architecture of a 

quadrotor UAV and the increased robustness of the system to wind disturbance in both 

simulation and flight test. (Bannwarth, Chen, Stol, & MacDonald, 2016) shows the 

effective rejection of wind in flight test by a quadrotor UAV by using a disturbance 

accommodating control scheme which models the drag force by external wind to increase 

the position tracking capabilities. (Sydney, Smyth, & Paley, 2013) shows the estimation 
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of wind velocity using a recursive Bayesian filter and the inclusion of wind effects in the 

Z-domain in the inner and outer loop of a feedback linearization controller.  

Besides modeling the aerodynamic effects caused by the external wind 

disturbance and including them in the system modeling and subsequent controller 

synthesis, another approach is to remove the requirement for an accurate system 

modeling completely. Section 2.1.2 showed that an accurate system modeling is required 

for a robust NLDI controller. The presence of wind induced disturbances and 

uncertainties result in an inaccurate system model which degrades the inversion 

performance of the NLDI. (Simplicio, Pavel, van Kampen, & Chu, 2013) introduces a 

modification of the classic NLDI control design by applying Taylor series expansion 

which does not require system model information but relies solely on sensor data for 

control. Flight test results of this so called incremental NLDI in a quadrotor UAV are 

shown in (Smeur, de Croon, & Chu, 2016). The incremental NLDI can be seen to 

considerably increase the robustness of the system when flying in and out the exhaust of 

a wind tunnel.  

Lastly, the application of adaptive control algorithms offers a relatively 

straightforward approach in an effort to mitigate wind effects in UAV systems. This 

approach can be considered comparatively easy since there is no need for the modeling of 

wind effects in the system or control laws. An example of this approach can be found in 

(Escareno, Salazar, Romero, & Lozano, 2013) where a Lyapunov function based 

controller is used to correct for wind gust disturbances in a simulation environment of a 

quadrotor UAV. (Suarez Fernandez, Dominguez, & Campoy, 2017) shows the 

application of ℒ1 output-feedback adaptive control in a quadrotor UAV system to reject 
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wind disturbances during high wind inspection applications. Results show that the ℒ1 

controller outperforms a LQR controller in simulation and a PID controller in flight 

testing when it comes to accurate tracking of reference values. 

3. System Mathematical Modeling  

This chapter presents mathematical models for the quadrotor UAV system and the 

complex wind environment. Rigid body kinematics and dynamics are applied to model 

the quadrotor UAV system and a mathematical approximation of the wind environment is 

derived. This is followed by an analysis of wind induced forces and moments assumed to 

act on the dynamic quadrotor UAV system.  

 Quadrotor UAV Model 

3.1.1. Kinematics. In order to apply concepts of guidance and navigation to the 

quadrotor UAV system, methods are required to convert translational and rotational 

velocities from the vehicle body frame to the inertial reference frame. Kinematics of 

translation and rotation can be applied to achieve this conversion with the use of Euler 

angles. 

Euler angles 𝜙, 𝜃 and 𝜓 provide an intuitive representation of a body in 3D space 

(Beard & McLain, 2012). The Euler angles can be used to convert from the inertial earth 

fixed reference frame to the body fixed reference frame using the rotation sequence 𝜓-𝜃-

𝜙. The rotation matrix converting a vector from the inertial reference frame to the body 

reference frame through intermediate reference frames can be expressed as: 

    𝑅𝐸
𝑏    = [

𝑐𝜓𝑐𝜃 𝑠𝜓𝑐𝜃 −𝑠𝜃
𝑐𝜓𝑠𝜙𝑠𝜃 − 𝑐𝜙𝑠𝜓 𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜓𝑠𝜃 𝑐𝜃𝑠𝜙
𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃 𝑐𝜙𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑠𝜙 𝑐𝜙𝑐𝜃

] (3.1) 

where the notation cos 𝛼 = 𝑐𝛼 and sin 𝛼 = 𝑠𝛼 is adopted. The attitude of the quadrotor 
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could be represented using quaternions but since the quadrotor will not approach high 

pitch angle values, Euler angles are preferred due to their more intuitive representation. 

Linear velocities defined in the body reference frame can be converted to 

velocities in the inertial earth reference frame using the inverse of the rotation matrix 

defined in Equation (3.1) (Beard & McLain, 2012):  

 [
𝑋̇
𝑌̇
𝑍̇

] = [

𝑐𝜓𝑐𝜃 𝑐𝜓𝑠𝜙𝑠𝜃 − 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜓𝑠𝜃 𝑐𝜙𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑠𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜙𝑐𝜃

] [
𝑢
𝑣
𝑤

] (3.2) 

where 𝑉⃑⃑𝑏 = [𝑢   𝑣   𝑤]𝑇 ∈ ℜ3 are the linear velocities expressed in the body reference 

frame and 𝑉⃑⃑𝐸 = [𝑋̇   𝑌̇   𝑍̇]𝑇 ∈ ℜ3 are the linear velocities expressed in the inertial earth 

reference frame. 

Rotational velocities in the body reference frame can be converted to the inertial 

reference frame using a similar approach as for the translational velocities with the 

consideration of the rotation about the appropriate vector in each intermediate frame 

(Beard & McLain, 2012):  

 [

𝜙̇

𝜃̇
𝜓̇

] = [

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin 𝜙 sec 𝜃 cos𝜙 sec 𝜃

] [
𝑝
𝑞
𝑟
] (3.3) 

where 𝛺⃑⃑𝑏 = [𝑝   𝑞   𝑟]𝑇 ∈ ℜ3 are the angular accelerations expressed in the body 

reference frame and 𝛺⃑⃑𝐸 = [𝜙̇   𝜃̇   𝜓̇]𝑇 ∈ ℜ3 are the angular accelerations expressed in 

the earth reference frame. 

3.1.2. Rigid body dynamics. Conservation of linear and angular momentum 

are applied to derive the rigid body dynamics of the quadrotor UAV system. A six 
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degrees of freedom (6DOF) rigid body under external forces and moments applied to the 

center of gravity in the body reference frame can be expressed in Newton-Euler form as 

(Napolitano, 2012):  

 𝑚𝑉̇⃑⃑𝑏 + 𝛺⃑⃑𝑏 × 𝑚𝑉⃑⃑𝑏 = 𝐹⃑ (3.4) 

 𝐼𝛺̇⃑⃑𝑏 + 𝛺⃑⃑𝑏 × 𝐼𝛺⃑⃑𝑏 = 𝑀⃑⃑⃑ (3.5) 

where 𝑉⃑⃑𝑏 and 𝛺⃑⃑𝑏 are the linear and angular velocities expressed in the body reference 

frame, m is the mass of the quadrotor, 𝐹⃑  ∈ ℜ3 and 𝑀⃑⃑⃑ ∈ ℜ3 are the externally applied 

forces and moments expressed in the body reference frame, and 𝐼 ∈ ℜ3𝑥3 is the inertia 

matrix of the quadrotor where symmetry is assumed in all axes resulting in all off-

diagonal values to be zero:  

 

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (3.6) 

Equations (3.4) and (3.5) together with Equations (3.2) and (3.3) form the nonlinear 

equations of motion that describe the motion of the UAV quadrotor system over time. 

The quadrotor system is modeled in a cross configuration. In this configuration all 

four motors contribute to generate angular rotations about the center of gravity, unlike the 

plus configuration where rotations about the 𝑥𝑏 and 𝑦𝑏 axes are produced by two 

independent sets of motors. Angular rotations and vertical displacement are directly 

produced by thrust and resultant torques that are used to control the quadrotor system. 

The cross configuration with the correct convention for the thrust forces and torques can 
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be seen in Figure 3.1.   

 

 

Figure 3.1. Body coordinate system with thrust and resultant torque convention for the 

motors. 

 

External forces. Translational accelerations are a result of imbalanced external 

forces acting on the system, which can be represented as:  

 𝐹⃑ =  𝐹⃑𝑇 + 𝐹⃑𝑔 + 𝐹⃑𝑤 (3.7) 

where 𝐹⃑𝑇 ∈ ℜ3 is the total thrust force required to sustain flight. The total thrust force is 

generated by the four individual motors which each produce one directional thrust force 

𝑇𝑖: 
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 𝐹⃑𝑇 = [
0
0
𝐹𝑧

] =

[
 
 
 
 

0
0

−∑𝑇𝑖

4

𝑖=1 ]
 
 
 
 

 (3.8) 

The thrust force generated by each of the four motors can be modeled as a function of the 

angular velocity of the propeller:  

 𝑇𝑖 = 𝐾𝑇𝜔𝑖
2,    𝑖 = 1,2,3,4 (3.9) 

where 𝐾𝑇 ∈ ℜ is a constant describing the correlation between angular velocity and 

thrust, which is mainly dependent on the type of propeller, motor and electronic speed 

controller (ESC) used in the propulsion system of the quadrotor UAV. For the application 

of electronic motors requiring a pulse width modulation signal (PWM) as input, a 

characterization is required of angular velocity, thrust and torque as a function of PWM. 

This can be achieved through experimental testing to characterize the propulsion system 

(Garcia D. F., 2017). 

𝐹⃑𝑔 ∈ ℜ3 defines the orientation of the gravitational forces with respect to the 

center of gravity of the quadrotor in the body reference frame:  

 𝐹⃑𝑔 = [

𝑚𝑔 𝑠𝑖𝑛 𝜃
−𝑚𝑔 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙
−𝑚𝑔 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙

] (3.10) 

𝐹⃑𝑤 ∈ ℜ3 in Equation (3.7) models the wind induced external forces for which a 

detailed discussion is presented in Section 3.2.2. 

External moments. The total external moments experienced by the quadrotor 

can be represented as:  
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 𝑀⃑⃑⃑ =  𝑀⃑⃑⃑𝑇 + 𝑀⃑⃑⃑𝜏 + 𝑀⃑⃑⃑𝑤 (3.11) 

where 𝑀⃑⃑⃑𝑇 ∈ ℜ3 models the moments produced by the thrust of the motors, 𝑀⃑⃑⃑𝜏 ∈ ℜ3 

signifies the resultant torques acting on the quadrotor, and 𝑀⃑⃑⃑𝑤 ∈ ℜ3 consists of the 

moments caused by the wind drag forces acting on the propeller.  

The moments produced by the thrust of the motors are a result of the differential 

between the individual thrust forces, which can be modeled for a UAV quadrotor with 

motors in the cross configuration following the convention in Figure 3.1 as: 

 𝑀⃑⃑⃑𝑇 = [
𝑀𝑥

𝑀𝑦

0

] = ∑ (𝑟𝑖 × 𝑇⃑⃑𝑖)
4
𝑖=1 =[ 

𝐿(𝑇1 + 𝑇4 − 𝑇2 − 𝑇3)
𝐿(𝑇1 + 𝑇2 − 𝑇3 − 𝑇4)

0

] (3.12) 

where 𝑟𝑖 ∈ ℜ3 is the moment arm between the center of gravity of the quadrotor and the 

thrust vector. The assumption is made that the quadrotor arms are perfectly modeled in 

the cross configuration such that the lateral distances between the center of gravity and 

the motors are constant and equal to 𝐿. All four motors are vertically offset by distance ℎ. 

A visual representation for 𝐿 can be seen in Figure 3.2. 

𝑀⃑⃑⃑𝜏 ∈ ℜ3 models the resultant torques allowing yawing motion of the quadrotor. 

From Figure 3.1, the moments due to resultant torques can be represented as: 

 𝑀⃑⃑⃑𝜏 = [
0
0
𝑀𝑧

] = [
0
0

𝜏1 − 𝜏2 + 𝜏3 − 𝜏4

] (3.13) 
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Figure 3.2. Moment arm definition for the quadrotor UAV system. 

 

The resultant torque produced by each of the four motors can be modeled as a function of 

angular velocity of the propeller: 

 𝜏𝑖 = 𝐾𝜏𝜔𝑖
2,    𝑖 = 1,2,3,4 (3.14) 

where 𝐾𝜏 ∈ ℜ is a constant describing the correlation between angular velocity and 

torque, which is also primarily dependent on the type of propeller, motor and electronic 

speed controller (ESC) used in the propulsion system of the quadrotor UAV. A 

characterization is required to model the motor produced torque as a function of angular 

velocity, which can be achieved through experimental testing (Garcia D. F., 2017). 

Finally, 𝑀⃑⃑⃑𝑤 ∈ ℜ3 in Equation (3.11) models the external wind induced moments, 

which will be further discussed in Section 3.2.3. 
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3.1.3. Control allocation. Equations (3.8), (3.12) and (3.13) can be combined 

and inversed to establish the thrust that must be commanded to each motor to achieve the 

desired moments and vertical force. The control allocation of the quadrotor UAV system 

with a cross configuration can be expressed as: 

 [

𝑇1

𝑇2

𝑇3

𝑇4

] =
1

4

[
 
 
 
 
1 1/𝐿 1/𝐿 −𝐾𝜏

𝑇

1 −1/𝐿 −1/𝐿 𝐾𝜏
𝑇

1 −1/𝐿 1/𝐿 −𝐾𝜏
𝑇

1 1/𝐿 −1/𝐿 𝐾𝜏
𝑇 ]

 
 
 
 

[

𝐹𝑧𝑑

𝑀𝑥𝑑

𝑀𝑦𝑑

𝑀𝑧𝑑

] (3.15) 

where 𝐹𝑧𝑑, 𝑀𝑥𝑑, 𝑀𝑦𝑑 and 𝑀𝑧𝑑 ∈ ℜ are the desired vertical force, rolling moment, 

pitching moment and yawing moment respectively generated by a control law desired for 

stability and navigation. 𝐾𝜏
𝑇 ∈ ℜ is an experimentally determined mapping factor to 

convert torque to thrust.  

 Wind Model 

3.2.1. Modeling of the wind environment. A few assumptions are made 

with respect to the wind environment in order to provide a realistic model. Since 

quadrotor UAV systems are deployed in relatively low altitudes, a reasonable assumption 

is that the UAV will always operate in the lower atmospheric boundary layer. Therefore, 

the mean translational wind flow can be simplified to move in the horizontal directions 

only; parallel to the earth’s surface with rotational wind effects neglected (Etele, 2006):  

 𝑊⃑⃑⃑⃑𝐸 = [
𝑊𝑋

𝑊𝑌

0
] (3.16) 

3D atmospheric turbulence is added to the mean wind flow to account for the 

random wind variations in space and time:  
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   𝑊⃑⃑⃑⃑𝐸 = [
𝑊𝑋 + ∆𝑊𝑋

𝑊𝑌 + ∆𝑊𝑌

∆𝑊𝑍

] (3.17) 

where ∆𝑊𝑋, ∆𝑊𝑌 and ∆𝑊𝑍 ∈ ℜ are the components of the added turbulence in the earth 

reference frame.  

The wind vector in Equation (3.17) is assumed to act at the center of gravity (CG) 

of the quadrotor UAV. This allows for the inclusion of wind effects in the inertial earth 

reference frame to reflect the correct motion with respect to the ground: 

 𝑉⃑⃑𝑔 = 𝑉⃑⃑𝐸 + 𝑊⃑⃑⃑⃑𝐸 = [
𝑋̇
𝑌̇
𝑍̇

] + [
𝑊𝑋 + ∆𝑊𝑋

𝑊𝑌 + ∆𝑊𝑌

∆𝑊𝑍

] (3.18) 

where 𝑉⃑⃑𝐸 is the velocity of the quadrotor UAV in the inertial earth reference frame 

defined in Equation (3.2) and 𝑉⃑⃑𝑔 is the ground velocity vector which contains the proper 

velocity required for guidance and navigation for which a visualization can be seen in 

Figure 3.3. 

 

 

Figure 3.3. Visualization of the ground velocity vector. 
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 In an effort to model the atmospheric turbulence, a few assumptions are made. 

The turbulence can be modeled as a stochastic process with the assumption that statistical 

properties are invariant in time and space, and with respect to rotations of coordinate 

systems. The effect of energy dissipation is neglected as well (Etele, 2006).  

Turbulence can be modeled using the Dryden turbulence model, which is an 

approved mathematical model by the United States Department of Defense for the 

simulation of turbulence (Nshuti, 2017). The Dryden turbulence model applies power 

spectral density (PSD) functions deduced from measured aerodynamic data to describe 

the power distribution in frequency domain. For simulation purposes, a white noise based 

filter can be designed applying the power spectral density functions to model turbulence 

as will be discussed in Section 5.1.4.  

The PSD functions according to the Dryden turbulence model for the air velocity 

components in the body reference frame are defined as (Etele, 2006):  

 Φ𝑢(Ω) =  2𝜎𝑢
2𝐿𝑢

1

1 + (Ω𝐿𝑢)2
 (3.19) 

 Φ𝑣(Ω) =  𝜎𝑣
2𝐿𝑣

1 + 3(Ω𝐿𝑣)
2

(1 + (Ω𝐿𝑣)2)2 
 (3.20) 

 Φ𝑤(Ω) =  𝜎𝑤
2𝐿𝑤

1 + 3(Ω𝐿𝑤)2

(1 + (Ω𝐿𝑤)2)2 
 (3.21) 

where Ω ∈ ℜ is the spatial frequency, 𝜎𝑢, 𝜎𝑣 and 𝜎𝑤 ∈ ℜ are the standard deviations of 

the velocity components effectively acting as a turbulence severity, 𝐿𝑢, 𝐿𝑣 and 𝐿𝑤 ∈ ℜ 

are the scaling lengths for the power spectra. 
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3.2.2. Wind induced forces. 𝐹⃑𝑤 ∈ ℜ3 in Equation (3.7) models the drag force 

caused by the relative wind vector defined in Equation (3.17) acting on the quadrotor. 

The drag force caused by the relative wind vector can be solved in the body reference 

frame as presented in (Bangura & Mahony, 2012) and (Omari, Hua, & Hamel, 2013):  

𝐹⃑𝑤 = 𝐹⃑𝐷𝑎𝑒𝑟𝑜
+ 𝐹⃑𝐷𝑡𝑢𝑟𝑏

+ ∑(𝐹⃑𝑑𝑏.𝑓.𝑖 + 𝐹⃑𝑑𝑖.𝑑.𝑖
+ 𝐹⃑𝑑𝑡𝑟𝑎𝑛𝑠𝑖 + 𝐹⃑𝑑𝑝𝑟𝑜𝑓𝑖)

4

𝑖=1

 (3.22) 

𝐹⃑𝑑𝑖.𝑑.𝑖
∈ ℜ3 represents the induced drag term of the propellers. Induced drag 

inherently occurs due to the redirection of the airflow around the propellers to create lift 

and can be modeled to be proportional to the created lift. In the presence of a relative 

wind vector, the advancing blade sees a higher flow velocity than the retreating blade 

resulting in higher lift and therefore a higher induced drag term for the advancing blade 

in non-hover conditions opposing the relative wind direction. The induced drag of a 

spinning propeller in a relative wind field can be modeled to be directly proportional to 

the 2-D wind: 

 𝐹⃑𝑑𝑖.𝑑.𝑖
= 𝐾𝑖.𝑑.𝑊⃑⃑⃑⃑𝑏  (3.23) 

where 𝐾𝑖.𝑑. ∈ ℜ is a constant determined through aerodynamic testing and 𝑊⃑⃑⃑⃑𝑏  is the wind 

vector expressed in the body coordinate system using the transformation matrix defined 

in Equation (3.1):  

 𝑊⃑⃑⃑⃑𝑏 = 𝑅𝐸
𝑏 𝑊⃑⃑⃑⃑𝐸 (3.24) 

𝐹⃑𝑑𝑡𝑟𝑎𝑛𝑠𝑖 ∈ ℜ3
 represents the translational drag term. Translational drag occurs due 
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to the downward redirection of the flow going into the propeller. The airstream flowing 

into the propellers with the initial direction along the apparent wind vector is redirected 

downward by the spinning of the propellers. This change in direction creates a drag force 

along the relative wind direction. The translational drag term can be modeled as: 

 𝐹⃑𝑑𝑡𝑟𝑎𝑛𝑠𝑖 = 𝐾𝑡𝑟𝑎𝑛𝑠𝑊⃑⃑⃑⃑𝑏 (3.25) 

where 𝐾𝑡𝑟𝑎𝑛𝑠 ∈ ℜ is a constant determined through aerodynamic testing. 

The profile drag term, 𝐹⃑𝑑𝑝𝑟𝑜𝑓𝑖 ∈ ℜ3, models the skin friction and form drag the 

blades experience while they spin through the air. Form drag occurs due to the separation 

of the air flow while flowing over the spinning blade, while skin friction is inherent due 

to the viscous properties of air. Like the induced and translational drag terms, the profile 

drag term can be modeled proportional to the 2-D wind velocity vector represented in the 

body reference frame: 

 𝐹⃑𝑑𝑝𝑟𝑜𝑓𝑖 = 𝐾𝑝𝑟𝑜𝑓 𝑊⃑⃑⃑⃑𝑏 (3.26) 

where 𝐾𝑝𝑟𝑜𝑓 ∈ ℜ is a constant determined through aerodynamic testing. 

𝐹⃑𝐷𝑎𝑒𝑟𝑜
∈ ℜ3 models the parasitic drag of the quadrotor frame with the propellers 

unattached. The largest contribution for this drag term is the form drag of the frame 

combined with the onboard equipment. The parasitic drag can be modeled as a second 

order function:  

 𝐹⃑𝐷𝑎𝑒𝑟𝑜
= 𝐾𝑎𝑒𝑟𝑜|𝑊⃑⃑⃑⃑𝑏|𝑊⃑⃑⃑⃑𝑏 (3.27) 

where 𝐾𝑎𝑒𝑟𝑜 ∈ ℜ is constant which can be determined through wind tunnel testing.  
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𝐹⃑𝑑𝑏.𝑓.𝑖 ∈ ℜ3 models the aerodynamic forces induced by the blade flapping 

phenomena. Blade flapping occurs in non-rigid spinning blades during relative wind 

conditions. The advancing blade during the propeller rotation experiences a higher 

velocity and therefore higher induced lift than the retreating blade, which bends the 

propeller blade up and down respectively. This results in a tilt of the thrust vector away 

from the direction of wind, which induces a moment rotating the quadrotor away from 

the relative wind vector. An exaggerated representation of the blade flapping phenomena 

can be seen in Figure 3.4. The moment is induced since the motors in the quadrotor UAV 

are offset by distance ℎ with respect to the CG as discussed in Section 3.1.2. Moment 𝑀𝛽 

is a concentrated moment caused by the bending of the rigid blades as will be analyzed in 

Section 3.2.3. Blade flapping also induces unbalanced forces at right angles from the 

relative wind vector. However, these forces are cancelled due to the quadcopter UAV 

cross configuration with counter-rotating motors. Only blade flapping forces parallel to  

 

 

Figure 3.4. Induced forces and moments due to blade flapping phenomena. 
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the relative wind vector are therefore considered (Hoffmann, Huang, Waslander, & 

Tomlin, 2007). The aerodynamic force due to blade flapping can be modeled as (Huang, 

Hoffmann, Waslander, & Tomlin, 2009) :  

 𝐹⃑𝑑𝑏.𝑓.𝑖 = |𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑏 (3.28) 

where 𝑊̂𝑏 ∈ ℜ3 is the unit wind velocity vector, |𝐹⃑𝑇| ∈ ℜ3 is the thrust force described in 

Equation (3.8) and 𝛽 ∈ ℜ is the blade flapping angle, which can be approximated as 

outlined in (Leishman, 2000): 

 𝛽 =
−

8
3𝜇(𝜃0 +

3
4𝜃𝑡𝑤)

(1 −
1
2𝜇2)

 (3.29) 

where 𝜃0 ∈ ℜ is the collective pitch of the propeller, 𝜃𝑡𝑤 ∈ ℜ is the linear blade twist of 

the propeller and 𝜇 ∈ ℜ is the rotor advance ratio modeled as: 

 𝜇 =
|𝑊⃑⃑⃑⃑𝑏|

𝜔𝑝𝑅𝑝𝑟𝑜𝑝
 (3.30) 

where 𝜔𝑝 ∈ ℜ is the angular velocity of the propeller and 𝑅𝑝𝑟𝑜𝑝 ∈ ℜ is the propeller 

radius. 

The drag force due to turbulent airflow models the effects of the change in 

relative wind speed, which is experienced by the quadrotor as turbulence. This force can 

be represented as (Napolitano, 2012):  

 𝐹⃑𝐷𝑡𝑢𝑟𝑏
= 𝑚𝑊̇⃑⃑⃑⃑𝑏 + 𝛺⃑⃑𝑏 × 𝑚𝑊⃑⃑⃑⃑𝑏 (3.31) 
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where 𝑊̇⃑⃑⃑⃑𝑏 is the wind acceleration vector obtained by taking the derivative of Equation 

(3.17) and transforming the wind acceleration vector from the inertial earth reference 

frame to the body frame: 

 𝑊̇⃑⃑⃑⃑𝑏 = 𝑅𝐸
𝑏 𝑊̇⃑⃑⃑⃑𝐸 (3.32) 

It is now possible to simplify Equation (3.22) with the assumption that all four 

propeller blades experience the same relative wind vector. Results obtained in (Bangura, 

2017) are applied to remove the need for aerodynamic testing to approximate the constant 

magnitude drag coefficients: 

 𝐹⃑𝑤 =  𝑚𝑊̇⃑⃑⃑⃑𝑏 + 𝛺⃑⃑𝑏 × 𝑚𝑊⃑⃑⃑⃑𝑏 + |𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑏 + 0.03𝑊⃑⃑⃑⃑𝑏 (3.33) 

3.2.3. Wind induced moments. The moments due to wind drag force can be 

modeled by taking the cross product between the moment arm and the wind drag forces. 

Subsequently, the parasitic drag force and drag force due to turbulent airflow do not 

create a resultant moment. Therefore, the moments due to wind drag forces in Equations 

(3.23), (3.25), (3.26) and (3.28) can be modeled as: 

 𝑀⃑⃑⃑𝑤 = 𝑀⃑⃑⃑𝛽 + ∑(𝑟𝑖 × [|𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑏 + 0.03𝑊⃑⃑⃑⃑𝑏])

4

𝑖=1

 (3.34) 

where 𝑟𝑖 ∈ ℜ3 represents the moment arm from the CG to one of four motors consisting 

of horizontal distances 𝐿 and vertical offset distance ℎ, 𝑀⃑⃑⃑𝛽 ∈ ℜ3 (Figure 3.4) is a 

concentrated moment due to the bending of the stiff rotor blades acting at the rotor shaft 

as adopted from (Huang, Hoffmann, Waslander, & Tomlin, 2009) and can be 
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approximated as: 

 𝑀⃑⃑⃑𝛽 = 𝐾𝛽𝛽𝑊̂𝑏 (3.35) 

where 𝐾𝛽 ∈ ℜ is the stiffness of the propeller, 𝛽 ∈ ℜ  is the flapping angle as determined 

in Equation (3.29) and 𝑊̂𝑏 ∈ ℜ3 is the unit relative wind vector applied to allocate the 

appropriate moment addition to each direction. 

4. Control Law Architectures  

This chapter presents the stabilizing control law architectures applied to the 

quadrotor UAV. The nonlinear dynamic inversion (NLDI) is designed as a baseline 

control law for all architectures described in this thesis. In other words, three control law 

architectures modify or augment the baseline NLDI in an effort to mitigate wind effects. 

The proposed control laws include an analytical extension of the NLDI control law that 

implicitly uses wind effects, the baseline NLDI control law architecture with adaptive 

artificial neural networks (ANN) augmentation and finally the baseline NLDI control law 

architecture with ℒ1 output-feedback adaptive control augmentation. 

 Baseline NLDI 

Section 2.1 argued that the application of linear control to a nonlinear system will 

not result in a robust closed-loop system. Since the quadrotor UAV system is highly 

nonlinear and coupled as seen in Equations (3.4) and (3.5), nonlinear control must be 

applied to assure the nonlinear system behaves desirably. Section 2.1.2 discussed several 

nonlinear control approaches that can be applied to nonlinear systems. Gain scheduling 

could be applied to control the quadrotor UAV model but will require the linearization of 

the model at various points in the envelope. Although a grid of linearized models inside 
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the envelope can be used to generate a web of controllers, the robustness of the model 

will decay when the operation point moves away from the linearization points. 

Backstepping and sliding mode control are other valid options for the control of the 

quadrotor UAV model but require tedious Lyapunov function design, while sliding mode 

control also requires knowledge of state plane design for the reference trajectories. The 

NLDI however is relatively easy to apply since a fairly accurate dynamic model is known 

as presented in Equations (3.4) and (3.5) which will result in a robust closed-loop 

quadrotor UAV system through the design of the virtual controllers. 

The NLDI controller attempts to linearize the quadrotor UAV system through 

feedback linearization, which will cancel the nonlinearities in the system such that 

traditional linear controllers can be applied. Feedback linearization is achieved by 

inverting the equations of motion describing the quadrotor UAV system. The robustness 

and performance of the NLDI controller depend on the modeling accuracy of the 

equations of motion for the quadrotor UAV system.  

The NLDI control architecture for the quadrotor UAV system consists of an outer 

and inner loop. The outer tracking loop is applied for navigation and guidance in 

autonomous flight while the inner loop, consisting of a slow and a fast loop, stabilizes the 

dynamics of the system. Figure 4.1 and Figure 4.2 show the control architectures of the 

NLDI inner and outer loop respectively applied to the UAV quadrotor system where the 

outputs of the outer loop provide the inputs to the inner loop (Garcia D. F., 2017). As it 

can be seen, inversion loops are connected in a cascade architecture where the ‘Desirable 

Dynamics’ blocks represent the linear controllers that can be applied to stabilize the 

feedback linearized system. 
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Figure 4.1. General control law architecture of the NLDI inner loop applied to quadrotor 

system.  

 

 

 

Figure 4.2. General control law architecture of the NLDI outer loop applied to quadrotor 

system. 

 

4.1.1. Inner stability loop inversion. The objective of the inner loop 

inversion is to stabilize the rotational dynamics of the system. This is achieved by 

stabilizing the fast dynamics in the fast loop and the slow dynamics in the slow loop.   

Fast loop. The fast loop inverts the conservation of angular moment equations 
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defined in Equation (3.5) to stabilize the fast dynamics of the quadrotor UAV system. 

Inverting Equation (3.5) yields: 

 [

𝑀𝑥𝑑

𝑀𝑦𝑑

𝑀𝑧𝑑

] = [

𝑈𝑝𝐼𝑥𝑥

𝑈𝑞𝐼𝑦𝑦

𝑈𝑟𝐼𝑧𝑧

] + [

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟

(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞

] − ∆𝑀⃑⃑⃑ (4.1) 

where 𝑀⃑⃑⃑𝑑 = [𝑀𝑥𝑑    𝑀𝑦𝑑    𝑀𝑧𝑑]𝑇 are the required moments to track the desired angular 

rates with desired dynamic stability characteristics modeled by the virtual controllers. ∆𝑀⃑⃑⃑ 

models external uncertainties and disturbances. The virtual controllers can be designed 

using methods discussed in Section 2.1.1. In the case that the virtual controllers consist of 

a simple proportional controller, they can be represented as: 

 [

𝑈𝑝

𝑈𝑞

𝑈𝑟

] = [

𝑘𝑝(𝑝𝑑 − 𝑝)

𝑘𝑞(𝑞𝑑 − 𝑞)

𝑘𝑟(𝑟𝑑 − 𝑟)

] (4.2) 

where  𝑘𝑝, 𝑘𝑞 and 𝑘𝑟 are proportional gains, and 𝑝𝑑, 𝑞𝑑 and 𝑟𝑑 are desired angular rates. 

For a proper cancellation of nonlinear terms to take place, the inertias of the 

quadrotor UAV need to be known accurately and an internal gyroscope is required to 

supply angular rate measurements as can be seen in Equation (4.1). It is customary in the 

classic NLDI design to assume that a perfect inversion takes place such that uncertainties 

cancel in the feedback linearization process. The stabilizing linear virtual controllers 

applied to enforce the desired dynamic characteristics are able to compensate for the 

small uncertainties and disturbances represented in Equation (4.1) as ∆𝑀⃑⃑⃑. For an accurate 

cancellation of nonlinear terms, the closed-loop linearized system dynamics for the fast 

loop will be determined by the dynamics of the virtual controllers:  
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 [
𝑝̇
𝑞̇
𝑟̇

] ≅ [

𝑘𝑝(𝑝𝑑 − 𝑝)

𝑘𝑞(𝑞𝑑 − 𝑞)

𝑘𝑟(𝑟𝑑 − 𝑟)

] (4.3) 

The desired angular rates, Ω⃑⃑⃑𝑑 = [𝑝𝑑   𝑞𝑑    𝑟𝑑]𝑇, can be generated by adding a slow 

loop in a cascade architecture. 

Slow loop. The slow loop inverts the kinematics of rotation equations defined in 

Equation (3.3) to stabilize the slow dynamics of the quadrotor UAV. Inverting Equation 

(3.3) yields: 

 [

𝑝𝑑

𝑞𝑑

𝑟𝑑
] = [

1 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃
0 𝑐𝑜𝑠 𝜙 −𝑠𝑖𝑛 𝜙
0 𝑠𝑖𝑛 𝜙 𝑠𝑒𝑐 𝜃 𝑐𝑜𝑠 𝜙 𝑠𝑒𝑐 𝜃

]

−1

[

𝑈𝜙

𝑈𝜃

𝑈𝜓

]  (4.4) 

where Ω⃑⃑⃑𝑑 = [𝑝𝑑   𝑞𝑑    𝑟𝑑]𝑇 are the required angular rates to track the desired attitude 

angles with desired dynamic stability characteristics modeled by the virtual controllers. 

The virtual controllers can be modeled using a simple proportional control law:  

 [

𝑈𝜙

𝑈𝜃

𝑈𝜓

] = [

𝑘𝜙(𝜙𝑑 − 𝜙)

𝑘𝜃(𝜃𝑑 − 𝜃)

𝑘𝜓(𝜓𝑑 − 𝜓)
] (4.5) 

In order for the virtual controllers to enforce the desired dynamic stability 

characteristics on the slow dynamics of the quadrotor UAV, an accurate estimation of the 

attitude angles must be provided through, for example, Kalman filtering. 

For an accurate cancellation of nonlinear terms, the closed-loop linearized system 

for the slow loop can be displayed as: 
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 [

𝜙̇

𝜃̇
𝜓̇

] ≅ [

𝑘𝜙(𝜙𝑑 − 𝜙)

𝑘𝜃(𝜃𝑑 − 𝜃)

𝑘𝜓(𝜓𝑑 − 𝜓)
] (4.6) 

Virtual controller design. Now that the inversion for the fast and slow loop is 

achieved, attention must be placed in designing the virtual controllers in both loops to 

assure the desired response for the rotational dynamics. The closed-loop dynamics for the 

inner loop, which is the fast and slow loops combined, can be tuned with the method 

presented in (Wang, He, Zhang, & He, 2013). The closed-loop inner loop dynamics can 

be expressed as a system of differential equations: 

 

𝜙̈ = 𝑘𝑝(𝑘𝜙(𝜙𝑑 − 𝜙) − 𝜙̇) ≅ 𝑘𝑝𝑘𝜙(𝜙𝑑 − 𝜙) − 𝑘𝑝𝑝 

𝜃̈ = 𝑘𝑞(𝑘𝜃(𝜃𝑑 − 𝜃) − 𝜃̇) ≅ 𝑘𝑞𝑘𝜃(𝜃𝑑 − 𝜃) − 𝑘𝑞𝑞 

𝜓̈ = 𝑘𝑟(𝑘𝜓(𝜓𝑑 − 𝜓) − 𝜓̇) ≅ 𝑘𝑟𝑘𝜓(𝜓𝑑 − 𝜓) − 𝑘𝑟𝑟 

(4.7) 

The differential equations describing the closed-loop dynamics of the inner loop 

can be expressed in terms of the natural frequency and damping ratio such that gains 𝑘𝑝, 

𝑘𝑞, 𝑘𝑟, 𝑘𝜙, 𝑘𝜃 and 𝑘𝜓 ∈ ℜ can be chosen to satisfy the desired transient dynamic 

characteristics: 

 

𝜙̈ ≅ −𝜔𝑛𝜙
2 (𝜙𝑑 − 𝜙) − 2𝜁𝜙𝜔𝑛𝜙𝑝 

𝜃̈ ≅ −𝜔𝑛𝜃
2 (𝜃𝑑 − 𝜃) − 2𝜁𝜃𝜔𝑛𝜃𝑞 

𝜓̈ ≅ −𝜔𝑛𝜓
2 (𝜓𝑑 − 𝜓) − 2𝜁𝜓𝜔𝑛𝜓𝑟 

(4.8) 
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where 𝜁𝜙 , 𝜁𝜃 and 𝜁𝜓 ∈ ℜ are the damping ratios and 𝜔𝑛𝜙, 𝜔𝑛𝜃 and 𝜔𝑛𝜓 ∈ ℜ are the 

natural frequencies for the closed-loop rotational dynamics for each channel.  

Combining Equations (4.7) and (4.8) produces: 

 

𝑘𝜙 =
𝜔𝑛𝜙

2𝜁𝜙
 

𝑘𝜃 =
𝜔𝑛𝜃

2𝜁𝜃
 

𝑘𝜓 =
𝜔𝑛𝜓

2𝜁𝜓
 

(4.9) 

 

𝑘𝑝 = 2𝜁𝜙𝜔𝑛𝜙 

𝑘𝑞 = 2𝜁𝜃𝜔𝑛𝜃 

𝑘𝑟 = 2𝜁𝜓𝜔𝑛𝜓 

(4.10) 

4.1.2. Outer tracking loop inversion. The desired attitude 

angles, [𝜃𝑑    𝜙𝑑    𝜓𝑑]𝑇 required in Equation (4.6) can be directly linked to the remote 

controller inputs for pilot-in-the-loop flying. However, for autonomous operations the 

inner stability loop needs to be complemented with an outer tracking loop to provide the 

desired attitude angles based on waypoint navigation commands. In general, there are two 

approaches to design the outer tracking controller.  

Cascade PID architecture. One approach to design the outer tracking control 

loop is to use a cascade PID structure. This approach does not allow for the cancellation 

of nonlinearities in the translational dynamics of the quadrotor UAV through feedback 

linearization. However, this method relaxes the modeling necessities of the dynamic 

system while still offering adequate robustness in the tracking control.  
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In the case that proportional linear controllers are applied, the desired attitude 

angles, [𝜙𝑑    𝜃𝑑    𝜓𝑑]𝑇 , and desired thrust force 𝐹𝑧𝑑 that act as inputs to the inner stability 

loop can be generated as: 

 

𝜃𝑑 = 𝐾𝑢(𝑢𝑑 − 𝑢) 

𝜙𝑑 = 𝐾𝑣(𝑣𝑑 − 𝑣) 

𝜓𝑑 = 𝜓0 

𝐹𝑧𝑑 = 𝐾𝑤(𝑤𝑑 − 𝑤) 

(4.11) 

where 𝐾𝑢, 𝐾𝑣 and 𝐾𝑤 ∈ ℜ are proportional gains, 𝑢𝑑, 𝑣𝑑 and 𝑤𝑑 ∈ ℜ are desired 

translational velocities expressed in the body reference frame, and 𝑢, 𝑣 and 𝑤 ∈ ℜ are the 

true translational velocities in the body reference frame. The desired yaw angle 𝜓𝑑 for 

quadrotor UAV systems is often designed as a sample-and-hold control law where the 

take-off heading is maintained throughout the flight. The desired velocities in the body 

reference frame are generated by a second proportional controller: 

 [

𝑢𝑑

𝑣𝑑

𝑤𝑑

] = 𝑅𝐸
𝑏 [

𝐾𝑋̇(𝑋𝑑 − 𝑋)

𝐾𝑌̇(𝑌𝑑 − 𝑌)

𝐾𝑍̇(𝑍𝑑 − 𝑍)
] (4.12) 

where 𝐾𝑋̇, 𝐾𝑌̇ and 𝐾𝑍̇ ∈ ℜ are proportional gains, 𝑋𝑑, 𝑌𝑑 and 𝑍𝑑 ∈ ℜ are the desired 

inertial earth reference frame locations, and 𝑋, 𝑌 and 𝑍 ∈ ℜ are the true inertial earth 

reference frame locations. Matrix 𝑅𝐸
𝑏 is defined in Equation (3.1). The velocity and 

position in the inertial earth reference frame of the quadrotor UAV are required to allow 

for error compensation. These can be supplied by a global positioning system (GPS). The 
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cascade PID configuration for the outer tracking loop shown in Figure 4.3 is applied to 

the implementation of the baseline NLDI control law in the quadrotor UAV for which 

flight test results will be shown in Chapter 7.  

 

 

Figure 4.3. Outer tracking loop design using cascade PID structure. 

 

In this architecture a linear controller is applied to a nonlinear system which does 

not guarantee optimal robustness. However, the application of a nonlinear controller to 

the outer tracking loop, such as feedback linearization, will increase the robustness of the 

closed-loop performance. 

Feedback linearization architecture. A second approach to design the outer 

tracking control loop is to invert the force equations outlined in Equation (3.4) as is 

shown in Figure 4.2 (Ireland, Vargas, & Anderson, 2015). The application of feedback 

linearization allows for the cancellation of nonlinearities in the translational equations. 

The derivation starts with rewriting Equation (3.4) as: 
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 [
𝑢̇
𝑣̇
𝑤̇

] = − [

−𝑟𝑣 + 𝑞𝑤
𝑟𝑢 − 𝑝𝑤
−𝑞𝑢 + 𝑝𝑣

] + [

0
0
𝐹𝑇

𝑚

] + ∆𝐹⃑ (4.13) 

where ∆F⃑⃑ models external disturbances and uncertainties which are assumed to cancel 

during the feedback linearization process in the classic NLDI design. Using the small 

angle assumption and neglecting the uncertainties and angular rate contributions, 

Equation (4.13) can be simplified to: 

 [
𝑢̇
𝑣̇
𝑤̇

] = [

0
0
𝐹𝑇

𝑚

] (4.14) 

This result can be combined with the derivative of the kinematics of translation equations 

shown in Equation (3.2), which will allow for the conversion of accelerations in the body 

reference frame to the inertial earth reference frame: 

 [
𝑋̈
𝑌̈
𝑍̈

] = [

𝑐𝜓𝑐𝜃 𝑐𝜓𝑠𝜙𝑠𝜃 − 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜓𝑠𝜃 𝑐𝜙𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑠𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜙𝑐𝜃

] [
𝑢̇
𝑣̇
𝑤̇

] (4.15) 

Combining Equations (4.14) and (4.15), and solving for 𝜃, 𝜙 and 𝐹𝑇 will give the 

required inputs to feedback linearize the translational dynamics in the outer loop: 

 𝜃𝑑 = −𝑡𝑎𝑛−1 (
𝑚(𝑐𝑜𝑠 𝜓 𝑈𝑋 + 𝑠𝑖𝑛 𝜓 𝑈𝑌)

𝐹𝑇
) (4.16) 
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 𝜙𝑑 = −𝑠𝑖𝑛−1 (
𝑚(𝑠𝑖𝑛 𝜓 𝑈𝑋 − 𝑐𝑜𝑠 𝜓 𝑈𝑌)

𝐹𝑇
) (4.17) 

 𝐹𝑇  = (𝑈𝑍 + 𝑔)𝑚 (4.18) 

where small angle approximation is assumed in Equation (4.18).  

𝑈𝑋, 𝑈𝑌 and 𝑈𝑍 ∈ ℜ are virtual control inputs representing desired accelerations in 

the inertial earth reference frame. To generate the virtual control acceleration inputs from 

the desired waypoints, two cascade linear control loops can be applied similarly to the 

cascade PID architecture:  

 [
𝑈𝑋

𝑈𝑌

𝑈𝑍

] = [

𝑘𝑋̇(𝑘𝑋(𝑋𝑑 − 𝑋) − 𝑋̇)

𝑘𝑌̇(𝑘𝑌(𝑌𝑑 − 𝑌) − 𝑌̇)

𝑘𝑍̇(𝑘𝑍(𝑍𝑑 − 𝑍) − 𝑍̇)

] (4.19) 

For an accurate cancellation of translational nonlinear terms, the closed-loop 

linearized system for the outer tracking loop can be displayed as: 

 [
𝑋̈
𝑌̈
𝑧̈

] ≅ [

𝑘𝑋̇(𝑘𝑋(𝑋𝑑 − 𝑋) − 𝑋̇)

𝑘𝑌̇(𝑘𝑌(𝑌𝑑 − 𝑌) − 𝑌̇)

𝑘𝑍̇(𝑘𝑍(𝑍𝑑 − 𝑍) − 𝑍̇)

] (4.20) 

where the proportional gains can be determined such that the closed-loop dynamics 

possess the desired transient characteristics: 
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𝑋̈ = 𝑘𝑋̇𝑘𝑋(𝑋𝑑 − 𝑋) − 𝑘𝑋̇𝑋̇ = −𝜔𝑛𝑋
2 (𝑋𝑑 − 𝑋) − 2𝜁𝑋𝜔𝑛𝑋𝑋̇ 

𝑌̈ = 𝑘𝑌̇𝑘𝑌(𝑌𝑑 − 𝑌) − 𝑘𝑌̇𝑌̇ = −𝜔𝑛𝑌
2 (𝑌𝑑 − 𝑌) − 2𝜁𝑌𝜔𝑛𝑌𝑌̇ 

𝑍̈ = 𝑘𝑍̇𝑘𝑍(𝑍𝑑 − 𝑍) − 𝑘𝑍̇𝑍̇ = −𝜔𝑛𝑍
2 (𝑍𝑑 − 𝑍) − 2𝜁𝑍𝜔𝑛𝑍𝑍̇ 

(4.21) 

 

𝑘𝑋 =
𝜔𝑛𝑋

2𝜁𝑋
 

𝑘𝑌 =
𝜔𝑛𝑌

2𝜁𝑌
 

𝑘𝑍 =
𝜔𝑛𝑍

2𝜁𝑍
 

(4.22) 

 

𝑘𝑋̇ = 2𝜁𝑋𝜔𝑛𝑋 

𝑘𝑌̇ = 2𝜁𝑌𝜔𝑛𝑌 

𝑘𝑍̇ = 2𝜁𝑍𝜔𝑛𝑍 

(4.23) 

 Extended NLDI with Wind Effects 

This section shows the design of the robust analytical extension of the NLDI 

controller for wind rejection. The extended NLDI is an approach to analytically correct 

for wind induced effects on the dynamics of the quadrotor UAV system. The derivation 

of this extension of the NLDI controller follows the derivation of the classic NLDI 

controller. However, the distinction is made in the inversion of the conservation of linear 

and angular momentum equations, Equations (3.4) and (3.5), performed in the outer 

navigation tracking loop and in the fast mode of the inner stability controller respectively.  

Equations (4.1) and (4.13) show that it is customary in the derivation of the 
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classic NLDI control law to assume that the model of the dynamic system is accurate 

such that all external disturbances and uncertainties, ∆𝑀⃑⃑⃑ and ∆𝐹⃑, cancel in the feedback 

linearization process. However, this is not an accurate assumption due to the relative 

large influence of forces and moments caused by wind effects. Therefore, the feedback 

linearization does not completely cancel the forces and moments generated by wind, 

which degrades the performance of the controller. The new approach is therefore to 

include the modeled wind induced forces and moments discussed in Sections 3.2.2 and 

3.2.3 in the derivation of the NLDI controller to allow for a more accurate cancellation of 

these nonlinearities in the feedback linearization, which will enhance the performance of 

the NLDI controller (Figure 4.4).  

 

 

Figure 4.4. Extended NLDI approach to compensate for wind effects. 

 

For the extended NLDI controller to be applied to the control architecture of the 

quadrotor UAV, a measurement or estimation of the wind velocity and wind acceleration 

is required. The overall robustness of the extended NLDI controller depends highly on 

the accuracy of the measured or estimated wind velocity and wind acceleration. Another 

concern is the modeling accuracy of the wind induced forces and moments presented in 

Sections 3.2.2 and 3.2.3. The assumption is that this model is sufficient to represent the 
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wind induced forces and moments accurately. If this is not the case, the robustness of the 

controller will be degraded. Note that for pilot-in-the-loop flying only the fast wind 

dynamics are compensated for in the extended inner stability loop inversion due to the 

exclusion of the outer tracking loop extension required for autonomous flight. These 

drawbacks will affect the overall improvement in robustness applying the extended NLDI 

as compared to the classic NLDI control law architecture. 

4.2.1. Extended inner stability loop inversion. The derivation of the 

extended inner stability loop inversion starts with including the wind induced moments 

defined in Equation (3.34) into the conservation of angular momentum inversion shown 

in Equation (4.1) in the fast loop which yields: 

 [

𝑀𝑥𝑑

𝑀𝑦𝑑

𝑀𝑧𝑑

] = [

𝑈𝑝𝐼𝑥𝑥

𝑈𝑞𝐼𝑦𝑦

𝑈𝑟𝐼𝑧𝑧

] + [

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟

(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞

] − [

𝑀𝑤𝑥

𝑀𝑤𝑦

𝑀𝑤𝑧

] (4.24) 

where [𝑀𝑤𝑥   𝑀𝑤𝑦   𝑀𝑤𝑧] 
𝑇 are the moments produced by the wind drag forces, Equation 

(3.34), solved in the body reference frame. 𝑈𝑝, 𝑈𝑞 and 𝑈𝑟 ∈ ℜ are virtual control inputs 

representing desired angular transient characteristics and can be defined as in Equation 

(4.2).  

For an accurate cancellation of all the wind induced moments in the inner tracking 

loop, the rotational dynamics will track the desired dynamics enforced by the virtual 

controllers: 

 [
𝑝̇
𝑞̇
𝑟̇

] ≅ [

𝑈𝑝

𝑈𝑞

𝑈𝑟

] (4.25) 



CONTROL LAWS DEVELOPMENT FOR DISTURBANCE REJECTION                 67  

   
 

By inspection, it can be seen that for excluding wind effects in the derivation of 

the extended NLDI inner loop control law, which means 𝑊̇𝑢 = 𝑊̇𝑣 = 𝑊̇𝑤 = 𝑊𝑢 = 𝑊𝑣 =

𝑊𝑤 = 0, Equation (4.24) simplifies to Equation (4.1). 

4.2.2. Extended outer tracking loop inversion. The derivation of the 

extended outer tracking loop inversion baseline NLDI control law starts with including 

the wind induced forces defined in Equation (3.33) in the conservation of linear 

momentum equation presented in Equation (4.13): 

 [
𝑢̇
𝑣̇
𝑤̇

] = − [

−𝑟𝑣 + 𝑞𝑤
𝑟𝑢 − 𝑝𝑤
−𝑞𝑢 + 𝑝𝑣

] + [

0
0
𝐹𝑇

𝑚

] + [

𝐹𝑤𝑥

𝐹𝑤𝑦

𝐹𝑤𝑧

] (4.26) 

 where [𝐹𝑤𝑥    𝐹𝑤𝑦   𝐹𝑤𝑧] 
𝑇 are the forces produced by the wind drag forces, Equation 

(3.33), solved in the body reference frame. 

Equation (4.26) can be expanded as: 

 

[
𝑢̇
𝑣̇
𝑤̇

] = [

𝑟(𝑣 − 𝑊𝑣) − 𝑞(𝑤 − 𝑊𝑤)

𝑝(𝑤 − 𝑊𝑤) − 𝑟(𝑢 − 𝑊𝑢)

𝑞(𝑤 − 𝑊𝑤) − 𝑝(𝑤 − 𝑊𝑤)
] + [

0
0
𝐹𝑇

𝑚

] 

+[

𝑊̇𝑢

𝑊̇𝑣

𝑊̇𝑤

] +
1

𝑚
[

|𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑢 + 0.03𝑊𝑢

|𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑣 + 0.03𝑊𝑣

|𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑤 + 0.03𝑊𝑤

] 

(4.27) 

Following the same derivation as for the classic NLDI derivation of the outer 

tracking loop, and combining Equation (4.27) with Equation (4.15), yields: 



CONTROL LAWS DEVELOPMENT FOR DISTURBANCE REJECTION                 68  

   
 

𝑊̇𝑢 + 𝑟(𝑣 − 𝑊𝑣) − 𝑞(𝑤 − 𝑊𝑤) +
1

𝑚
|𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑢 +

0.03

𝑚
𝑊𝑢 

     =  𝑐𝜓𝑐𝜃𝑋̈ +  𝑠𝜓𝑐𝜃𝑌̈ −  𝑠𝜃𝑍̈ 

(4.28) 

𝑊̇𝑣 + 𝑝(𝑤 − 𝑊𝑤) − 𝑟(𝑢 − 𝑊𝑢) +
1

𝑚
|𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑣 +

0.03

𝑚
𝑊𝑣 

= (𝑐𝜓𝑠𝜙𝑠𝜃 − 𝑐𝜙𝑠𝜓)𝑋̈ + (𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜓𝑠𝜃)𝑌̈ + (𝑐𝜃𝑠𝜙)𝑍̈ 

(4.29) 

𝑊̇𝑤 + 𝑞(𝑤 − 𝑊𝑤) − 𝑝(𝑤 − 𝑊𝑤) +
𝐹𝑇

𝑚
+

1

𝑚
|𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑤 +

0.03

𝑚
𝑊𝑤 

= (𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃)𝑋̈ + (𝑐𝜙𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑠𝜙)𝑌̈ + (𝑐𝜙𝑐𝜃)𝑍̈ 

(4.30) 

Equations (4.28), (4.29) and (4.30) can be solved for 𝜃, 𝜙 and 𝐹𝑇 to obtained the 

desired pitch angle, roll angle and thrust force to effectively linearize the translational 

dynamics with wind effects in the outer tracking loop.  

Equation (4.28) can be multiplied throughout with  

 

1

√(𝑐𝜓𝑋̈ +  𝑠𝜓𝑌̈)
2
+ (𝑍̈)

2
 

(4.31) 

which gives: 

 𝐶 = 𝐴 cos 𝜃 + 𝐵 sin 𝜃 (4.32) 

where 
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𝐴 =
𝑐𝜓𝑋̈ +  𝑠𝜓𝑌̈

√(𝑐𝜓𝑋̈ +  𝑠𝜓𝑌̈)
2
+ (𝑍̈)

2
 

𝐵 =
−𝑍̈

√(𝑐𝜓𝑋̈ +  𝑠𝜓𝑌̈)
2
+ (𝑍̈)

2
 

𝐶 =
(𝑊̇𝑢 + 𝑟(𝑣 − 𝑊𝑣) − 𝑞(𝑤 − 𝑊𝑤) +

1
𝑚 |𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑢 +

0.03
𝑚 𝑊𝑢)

√(𝑐𝜓𝑋̈ +  𝑠𝜓𝑌̈)
2
+ (𝑍̈)

2
 

(4.33) 

It can be shown that: 

 𝐴2 + 𝐵2 = 1 (4.34) 

which can be linked to the Pythagorean identity: 

 (sin 𝛼)2  + (cos 𝛼)2 = 1 (4.35) 

which means there is an unique angle 𝛼 which satisfies: 

 

sin 𝛼 = 𝐴 

cos 𝛼 = 𝐵 

(4.36) 

Combining Equation (4.36) with Equation (4.32) gives: 

 𝐶 = sin 𝛼 cos 𝜃 + cos 𝛼 sin 𝜃 = sin(𝜃 + 𝛼) (4.37) 

Combining Equation (4.37) with Equation (4.33) and neglecting the angular 

velocity terms gives:  
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sin(𝜃 + 𝛼) =
𝑊̇𝑢 +

1
𝑚 |𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑢 +

0.03
𝑚 𝑊𝑢

√(𝑐𝜓𝑋̈ +  𝑠𝜓𝑌̈)
2
+ (𝑍̈)

2
 (4.38) 

𝜃 + 𝛼 = sin−1

(

 
𝑊̇𝑢 +

1
𝑚 |𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑢 +

0.03
𝑚 𝑊𝑢

√(𝑐𝜓𝑋̈ +  𝑠𝜓𝑌̈)
2
+ (𝑍̈)

2

)

  (4.39) 

Substituting 𝛼 = sin−1(𝐴) from Equation (4.36) in Equation (4.39) will give the 

desired pitch angle required to effectively linearize the outer tracking loop. A similar 

derivation can be shown to derive the required roll angle and desired thrust force.   

The outputs of the outer tracking control loop that will effectively linearize the 

nonlinear translational dynamics are: 

 

𝜃𝑑 =  𝑠𝑖𝑛−1 (
𝑊̇𝑢 +

1
𝑚 |𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑢 +

0.03
𝑚 𝑊𝑢

√(𝑐𝜓𝑈𝑋 +  𝑠𝜓𝑈𝑌)2 +  (𝑈𝑍)2
) 

− 𝑠𝑖𝑛−1 (
𝑐𝜓𝑈𝑋 +  𝑠𝜓𝑈𝑌

√(𝑐𝜓𝑈𝑋 +  𝑠𝜓𝑈𝑌)2 +  (𝑈𝑍)2
) 

(4.40) 

 

 𝜙𝑑  =  𝑠𝑖𝑛−1 (
−𝑊̇𝑣 −

1
𝑚 |𝐹⃑𝑇| 𝑠𝑖𝑛 𝛽 𝑊̂𝑣 +

0.03
𝑚 𝑊𝑣

√(𝑐𝜓𝑈𝑋 +  𝑠𝜓𝑈𝑌)2 +  (𝑈𝑍)2
) 

+ 𝑠𝑖𝑛−1 (
−𝑠𝜓𝑈𝑋 +  𝑐𝜓𝑈𝑌

√(𝑠𝜓𝑈𝑋 −  𝑐𝜓𝑈𝑌)2 +  (𝑈𝑍)2
) 

(4.41) 
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𝐹𝑇  = −𝑊̇𝑤𝑚 + (𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑠𝜃𝑐𝜙)𝑚𝑈𝑋 

+(−𝑐𝜓𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙)𝑚𝑈𝑌 + 𝑐𝜃𝑐𝜙𝑚𝑈𝑍 

(4.42) 

𝑈𝑋, 𝑈𝑌 and 𝑈𝑍 ∈ ℜ are virtual control inputs representing desired accelerations in the 

inertial earth reference frame and can be defined as in Equation (4.19).  

For an accurate cancellation of all the wind induced forces in the outer tracking 

loop, the translational dynamics will track the desired dynamics enforced by the virtual 

controllers: 

 [
𝑋̈
𝑌̈
𝑧̈

] ≅ [
𝑈𝑋

𝑈𝑌

𝑈𝑍

] (4.43) 

It can be shown that the extended outer tracking loop inversion equations simplify 

to Equations (4.16), (4.17) and (4.18) for excluding wind effects in the derivation of the 

extended NLDI control law; that is, setting 𝑊̇𝑢 = 𝑊̇𝑣 = 𝑊̇𝑤 = 𝑊𝑢 = 𝑊𝑣 = 𝑊𝑤 = 0 in 

Equations (4.40), (4.41) and (4.42).  

 Adaptive ANN Augmentation 

The extended NLDI control law attempts to correct for wind induced effects 

analytically. As discussed in Section 4.2, the robustness of the extended NLDI relies on 

the accuracy of the UAV quadrotor model, the model of wind induced forces and 

moments and the measurement/estimation of wind velocity and acceleration. 

Uncertainties in the modeling, measurement and estimation will degrade the robustness 

of the extended NLDI controller. A second approach in an effort to mitigate wind effects 

on the UAV quadrotor system with a baseline NLDI control law is to apply intelligent 
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adaptive control. Adaptive ANN can be applied to estimate and correct for the 

uncertainties and disturbances in the system. By augmenting the baseline NLDI control 

law with adaptive ANN, the robustness of the baseline control law against uncertainties 

and disturbances can be improved. 

4.3.1. Adaptive ANN selection analysis. Various types of ANN can be 

applied to dynamic systems for estimation, prediction and control as was discussed in 

Section 2.1.4. Three adaptive ANN structures were considered and compared for the 

application to a quadrotor UAV system.  

Linear MIMO single layer neural network. The first and most 

fundamental artificial neural network that can be applied is the linear MIMO single layer 

artificial neural network (ADALINE) (Campa, Fravolini, & Napolitano, 2002). 

Compared to more complex types of ANN, the ADALINE does not use activation 

functions but instead produces the output using a linear combination of normalized 

inputs: 

 𝑦⃑𝐴𝐷𝐴 = 𝑊𝐴𝐷𝐴𝑥⃑𝐴𝐷𝐴 + 𝜗𝐴𝐷𝐴 (4.44) 

where 𝑥⃑𝐴𝐷𝐴 ∈ ℜ𝑛 is a vector of normalized inputs, 𝑦⃑𝐴𝐷𝐴 ∈ ℜ𝑚 is a vector containing the 

output of the ADALINE, 𝜗𝐴𝐷𝐴 ∈ ℜ𝑚 is a vector containing bias terms and 𝑊𝐴𝐷𝐴 ∈ ℜ𝑛×𝑚 

is a matrix containing the weights to be multiplied with the input signal. A general 

schematic for the ADALINE can be seen in Figure 4.5. 

𝑊̂𝐴𝐷𝐴 = [𝜗𝐴𝐷𝐴 | 𝑊𝐴𝐷𝐴] is a matrix containing the weights and biases updated 

according to a least squares rule which attempts to minimize the error between the output 

of the ADALINE, 𝑦⃑𝐴𝐷𝐴, and a reference value which can be represented in a discrete  
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Figure 4.5. General schematic for the ADALINE. 

 

format as (Rumelhart, Hinton, & Williams, 1986): 

 𝑊̂𝐴𝐷𝐴(𝑘 + 1) = 𝑊̂𝐴𝐷𝐴(𝑘) − Γ𝐴𝐷𝐴(𝑦⃑𝐴𝐷𝐴(𝑘) − 𝑟𝐴𝐷𝐴(𝑘))𝑥⃑𝐴𝐷𝐴(𝑘) (4.45) 

where Γ𝐴𝐷𝐴 ∈ ℜ is the learning rate, which is effectively an adaptive gain used to increase 

the adaptation rate of the network and 𝑟𝐴𝐷𝐴 ∈ ℜ𝑚 are reference values to be compared to 

the output of the ADALINE. Since the ADALINE applies a linear combination of inputs, 

the network will not be robust in modeling nonlinear reference values. This makes the 

ADALINE not suitable for robust estimation of uncertainties and disturbances caused by 

wind effects in the quadrotor UAV system since these uncertainties and disturbances 

have a nonlinear character. A more complex artificial neural network is required to offer 

the estimation capacity desired. 

Generalized MIMO radial basis function neural network. A more 

complex type of ANN is the MIMO radial basis function artificial neural network 

(RBFNN). Unlike the linear ADALINE, the RBFNN can be represented using the 
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weighted summation of a finite number of radial basis functions (Lu, Sundararajan, & 

Saratchandran, 2000) (Samy, Fan, & Perinpanayagam, 2010).  

The 𝑖𝑡ℎ output of the RBFNN can be written as: 

 𝑦𝑅𝐵𝐹𝑖 = 𝜗𝑅𝐵𝐹𝑖 + ∑ 𝑤𝑅𝐵𝐹𝑣

𝑗

𝑣=1

𝜙𝑣(𝑥⃑𝑅𝐵𝐹)𝑖 (4.46) 

where 𝜗𝑅𝐵𝐹𝑖 ∈ ℜ is an estimated bias term and 𝑤𝑅𝐵𝐹𝑣 ∈ ℜ is an estimated weight 

multiplying the output of the 𝑣𝑡ℎradial basis function, 𝜙𝑣. The hidden layer consists of a 

total of 𝑗 radial basis function hidden neurons. A general schematic for the RBFNN can 

be seen in Figure 4.6. 

The radial basis function is often selected to be Gaussian: 

 
𝜙𝑣 = 𝑒

(
−‖𝑥⃑̂−𝜇⃑⃑⃑𝑣‖

2

𝜎𝑣
2 )

 
(4.47) 

where ‖ ‖ represents the Euclidian norm between inputs 𝑥⃑̂ and the center vector of the 

Gaussian function 𝜇⃑. 𝜎 represents the width of the Gaussian function. The network 

therefore consists of a web of neurons with Gaussian functions each having a different 

center and width, of which the outputs are weighted together to generate an estimation of 

a nonlinear function. 

The network parameters are updated according to the gradient descent algorithm, 

which attempts to vary the weights, bias terms, widths of the Gaussian functions and 

centers of the Gaussian functions to minimize a given error signal. This can be 

represented in a discrete update law as (Samy, Fan, & Perinpanayagam, 2010): 
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Figure 4.6. General schematic for the RBFNN. 

 

 

Δ⃑⃑⃑𝑅𝐵𝐹(𝑘 + 1) = Δ⃑⃑⃑𝑅𝐵𝐹(𝑘) − Γ𝑅𝐵𝐹

𝜕𝑦⃑𝑅𝐵𝐹(𝑘)

𝜕Δ𝑅𝐵𝐹(𝑘)
(𝑦⃑𝑅𝐵𝐹(𝑘) − 𝑟𝑅𝐵𝐹(𝑘))

− Γ𝑅𝐵𝐹|𝜆|Δ⃑⃑⃑𝑅𝐵𝐹(𝑘) 

(4.48) 

where Δ⃑⃑⃑𝑅𝐵𝐹 ∈ ℜ1×(𝑗+𝑚+2𝑗)is a vector containing the weights, bias terms, widths of the 

Gaussian functions and centers of the Gaussian functions to be updated by the update 

law, and 𝜆 ∈ ℜ is a stabilization factor to promote boundedness in the updating of the 

weights. 

The RBFNN can be extended with the application of the extended minimal 

resource allocating network (EMRAN). The EMRAN attempts to optimize the size of the 

RBFNN by adding neurons in the hidden layer where they are most needed, and 
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removing unused neurons (Campa, Fravolini, & Napolitano, 2002). The RBFNN starts 

with no hidden neurons in the hidden layer. The EMRAN algorithm will add neurons 

when three criteria are met simultaneously (Samy, Fan, & Perinpanayagam, 2010): 

 

𝑒𝑘 = ‖𝑦⃑𝑅𝐵𝐹𝑘 − 𝑟𝑅𝐵𝐹𝑘‖ > 𝐶1 

𝑒𝑅𝑀𝑆𝑘 = √ ∑
𝑒𝑞

2

𝑟

𝑘

𝑞=𝑘−(𝑟−1)

> 𝐶2 

𝑑𝑘 = ‖𝑥⃑̂𝑘 − 𝜇⃑𝑛𝑘‖ > 𝐶3 

(4.49) 

where the first equation checks if the error between the reference values 𝑟𝑅𝐵𝐹𝑘 and the 

outputs of the RBFNN 𝑦⃑𝑅𝐵𝐹𝑘 at time instant 𝑘 is below a certain threshold 𝐶1. The 

second equation determines the root mean square of the last 𝑟 time instants which is 

required to be below threshold 𝐶2. Finally, the third equation calculates the Euclidean 

norm between the inputs 𝑥⃑̂ and the center vector of the Gaussian function 𝜇⃑ at time 

instant 𝑘. If all three errors are above the threshold, an extra neuron will be added in the 

hidden layer to increase the fidelity of the estimation.  

The disadvantage of the application of the RBFNN with EMRAN to the quadrotor 

UAV system is the possible radical growth of the network with the addition of neurons in 

the hidden layer, which would have a considerable effect on the required computation. 

Initial simulation evaluations of the RBFNN with EMRAN showed the addition of extra 

neurons was required to increase the accuracy of the estimation of the network. The 

required accuracy was achieved at the cost of a considerable addition of hidden neurons, 

increasing the required computational power. This is a serious disadvantage for the 
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implementation of the RBFNN in an onboard computer of a quadrotor UAV system. The 

possible scenario would be that in flight the RBFNN starts adding neurons in the hidden 

layer to increase the fidelity of the estimation, which could shut down the flight computer 

when the maximum processing is surpassed. The RBFNN is therefore not the most 

optimal ANN to be applied to this quadrotor UAV scenario.   

MIMO single hidden layer sigmoidal neural network. An ANN that does 

not change in size and can approximate nonlinear functions is the MIMO single hidden 

layer sigmoidal neural network (SHLS-NN) (Sharma & Calise, 2005) (Lewis, Yesildirek, 

& Liu, 1996). The network takes as inputs a set of normalized inputs: 

 𝑥⃑̂ = [𝑥̂1 𝑥̂2 ⋯ 𝑥̂𝑛]𝑇 (4.50) 

These inputs are multiplied with individual weights specified on the connections between 

the neurons in the input layer and hidden layer. Note that each neuron in the hidden layer 

is connected with all the neurons in the input layer. The input to each neuron in the 

hidden layer consists of the sum of all the weighted inputs, to which a bias is added. The 

output from the hidden layer neurons is generated by feeding the sum of the weighted 

inputs with bias, which acts as an activation minimum, through a sigmoidal activation 

function, in an effort to create a bound on the output of the hidden layer neurons: 

 𝜎(𝑢) =
1

1 + 𝑒−𝑢
 (4.51) 

To generate the outputs of the neural network, each neuron in the output layer is 

connected to all neurons in the hidden layer through individual weighted connections. 

Again, a bias is added to the sum of the weighted inputs to the output layer. The general 
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schematic for the SHLS-NN can be seen in Figure 4.7 and the output of the network can 

be represented as: 

 𝑦𝑞 =  ∑[𝑣𝑟𝑞𝜎 (∑𝑤𝑠𝑟𝑥̂𝑠 + 𝑏𝑟

𝑛

𝑠=1

) + 𝑑𝑞]

𝑗

𝑟=1

 ,    𝑞 = 1,  … , 𝑘 (4.52) 

which can be expressed in a shorter form as: 

 𝑦𝑞 = 𝑉𝑇𝜎(𝑊𝑇𝑥̂ + 𝑏̂) + 𝑑̂  (4.53) 

where the biases and weights of the connections between the input layer and hidden 

layer, 𝑊̂ = [𝑏⃑⃑ | 𝑊] ∈ ℜ𝑗×(𝑛+1)  , and between the hidden layer and output layer, 𝑉̂ =

[𝑑 | 𝑉] ∈ ℜ𝑘×(𝑗+1), are being updated by a backpropagation law (Sharma & Calise, 

2005):  

 

𝑊̇̂ = −𝛤1[𝑥⃑̂𝑒𝑉̂𝑇𝜎̂′ + 𝜆1|𝑒|𝑊̂] 

𝑉̇̂ = −𝛤2[(𝜎̂ − 𝜎̂′𝑊̂𝑇 𝑥⃑̂)𝑒 + 𝜆2|𝑒|𝑉̂] 

(4.54) 

where 𝛤 ∈ ℜ  is the learning rate of the update law, e ∈ ℜ is the error signal that drives 

the updating of the weights and biases, 𝜎̂ ∈  ℜ𝑘  is the output of the hidden layer, 𝜎̂′ is 

the Jacobian with respect to the weights and biases, and finally 𝜆 ∈ ℜ  is the e-

modification parameter that counteracts uncontrolled parameter growth commonly found 

in adaptive control theory.  

The SHLS-NN is chosen as the desired ANN for application to the quadrotor 

UAV system to mitigate wind effects since the SHLS-NN approximates nonlinear terms 

and does not change size while doing so.  
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Figure 4.7. General schematic for the SHLS-NN. 

 

4.3.2. Adaptive ANN augmentation architecture. The objective of the 

adaptive ANN augmentation is to aid the baseline NLDI control law in estimating 

inversion errors resulting from modeling uncertainties and wind disturbance. The 

adaptive ANN augmentation can be applied effectively by choosing an error signal which 

gives information about the linearization error of the baseline NLDI to drive the updating 

of the weights and biases inside the network. In this architecture, the adaptive ANN will 

attempt to reconstruct the linearization error, which can be then be used as an augmented 

value for the baseline NLDI control law. 

The SHLS-NN is designed to augment the fast loop in the inner stability loop 

inversion of the baseline NLDI controller for which the architecture can be seen in Figure 

4.8. Three SHLS-NNs are applied; one for each channel. In this architecture the adaptive 
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ANN estimates the inversion error in the fast rotational dynamics of the quadrotor UAV 

and augments the inversion with the estimation in an effort to achieve a fully linearized 

closed-loop response.  

The SHLS-NN is designed to take five inputs, seven neurons in the hidden layer 

and one generated output per channel; the estimation of the inversion error in the fast 

loop. Inputs to the network are chosen to supply the network with sufficient information 

to reconstruct the inversion error (McFarland & Calise, 2000) (Kaneshige, Bull, & Totah, 

2000). 

 

 

Figure 4.8. Fast loop augmentation by SHLS-NN adaptive ANN. 

 

p-channel inputs:  

 𝑥⃑̂𝑝 = [𝑝̂ 𝑞̂ 𝑟̂ 𝑝̂𝑑 
1 − 𝑒−(𝑈𝑝𝑁𝐿𝐷𝐼−𝑈𝑝𝑁𝑁′)

1 + 𝑒−(𝑈𝑝𝑁𝐿𝐷𝐼−𝑈𝑝𝑁𝑁′)
]

𝑇

 (4.55) 
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q-channel inputs:  

 𝑥⃑̂𝑞 = [𝑝̂ 𝑞̂ 𝑟̂ 𝑞̂𝑑 
1 − 𝑒−(𝑈𝑞𝑁𝐿𝐷𝐼−𝑈𝑞𝑁𝑁′)

1 + 𝑒−(𝑈𝑞𝑁𝐿𝐷𝐼−𝑈𝑞𝑁𝑁′)
]

𝑇

 (4.56) 

r-channel inputs:  

 𝑥⃑̂𝑟 = [𝑝̂ 𝑞̂ 𝑟̂ 𝑟̂𝑑 
1 − 𝑒−(𝑈𝑟𝑁𝐿𝐷𝐼−𝑈𝑟𝑁𝑁′)

1 + 𝑒−(𝑈𝑟𝑁𝐿𝐷𝐼−𝑈𝑟𝑁𝑁′)
]

𝑇

 (4.57) 

where 𝑝̂, 𝑞̂ and 𝑟̂ are normalized sensor readings of the current roll, pitch and yaw rates 

respectively. 𝑝̂𝑑, 𝑞̂𝑑 and 𝑟̂𝑑 are normalized commanded rates coming from the output of 

the slow loop. The last parameter in each channel feeds back information of the previous 

iteration output of the ANN which is fed through a sigmoidal function to bound the 

signal. 

The error signal driving the updating of the weights and biases in the network is 

the output of the virtual controllers in the fast loop; 𝑈𝑝𝑁𝐿𝐷𝐼, 𝑈𝑞𝑁𝐿𝐷𝐼 and 𝑈𝑟𝑁𝐿𝐷𝐼 which are 

defined in Equation (4.2). Equation (4.2) shows that the output of the virtual controllers 

in the fast loop represent an error signal between desired and actual angular rates. This 

error is mainly generated by the uncertainties and disturbances in the fast loop. 

When 𝑈𝑝𝑁𝐿𝐷𝐼, 𝑈𝑞𝑁𝐿𝐷𝐼 and 𝑈𝑟𝑁𝐿𝐷𝐼 are chosen as the signals that drive the adaptive update 

of the SHLS-NN, desired activation of the ANN is achieved. If 𝑈𝑝𝑁𝐿𝐷𝐼, 𝑈𝑞𝑁𝐿𝐷𝐼 and 

𝑈𝑟𝑁𝐿𝐷𝐼 are equal to zero, which is the case for a perfect feedback linearized system, and 

the virtual controllers perfectly assure tracking of desired angular rates resulting in a zero 

error signal, the adaptation of the adaptive ANN is stopped and the current output of the 

SHLS-NN is maintained. The network is basically told that the current augmented value 
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is producing the desired result. When 𝑈𝑝𝑁𝐿𝐷𝐼, 𝑈𝑞𝑁𝐿𝐷𝐼 and 𝑈𝑟𝑁𝐿𝐷𝐼 are non-zero, the 

SHLS-NN will attempt to estimate and produce a control augmentation that will aid in 

reducing the error signal. 

The learning rates are the main tuning parameters in the adaptive ANN 

architecture. For the simulation results shown in Chapters 5, the learning rates 𝛤1 and 𝛤2 

defined in Equation (4.54) for the updating of the parameters of the SHLS-NN will be 

constant and equal to one. Since the learning rates are tuned specifically for each test 

flight in the implementation section, they will be defined for the individual test flight 

results shown in Chapters 7. The e-modification parameters required to promote 

boundedness of the network weights and bias terms (Equation (4.54)) are constant and 

equal to 0.02 for both the simulation (Chapter 5) and implementation (Chapter 7) 

environment. 

The outputs of SHLS-NN; 𝑈𝑝𝑁𝑁, 𝑈𝑞𝑁𝑁 and 𝑈𝑟𝑁𝑁 defined in Equation (4.53), are 

the estimates of the inversion error in the fast loop and are added into the control loop in 

an attempt to cancel the inversion error. Assuming the virtual controllers consist of 

simple proportional controllers, the inputs to the inversion of the conservation of angular 

momentum equations presented in Equation (4.1) for a baseline NLDI control 

architecture with adaptive ANN augmentation can be expressed as:  

 [

𝑈𝑝

𝑈𝑞

𝑈𝑟

] = [

𝑘𝑝(𝑝𝑑 − 𝑝)

𝑘𝑞(𝑞𝑑 − 𝑞)

𝑘𝑟(𝑟𝑑 − 𝑟)

] + [

𝑈𝑝𝑁𝑁

𝑈𝑞𝑁𝑁

𝑈𝑟𝑁𝑁

] (4.58) 

4.3.3. Stability analysis. An important concern in the application of adaptive 

ANN to augment the baseline NLDI control laws is the boundedness of the outputs of the 
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SHLS-NN due to its self-adaptive configuration (Campa, Fravolini, Mammarella, & 

Napolitano, 2011). Stability bounds and error convergence of the NLDI control law with 

SHLSS-NN must be shown to assure stability for the fast loop.  

The stability proof for the SHLS-NN applied to augment the NLDI control law is 

provided in (Calise, Lee, & Sharma, 2001) and can be applied to the fast loop 

augmentation presented in Section 4.3.2 by rewriting Equation (4.1) as:  

 𝑀⃑⃑⃑𝑑 = 𝑓−1(𝛺⃑⃑𝑏, 𝑈⃑⃑⃑𝛺) (4.59) 

where 𝑈⃑⃑⃑𝛺 = [𝑈𝑝   𝑈𝑞   𝑈𝑟]
𝑇
.   

The inversion error in the fast loop can be presented as: 

 ∆⃑⃑⃑ = 𝑓−1(𝛺⃑⃑𝑏 , 𝑈⃑⃑⃑𝛺) − 𝑓−1(𝛺⃑⃑𝑏 , 𝑈⃑⃑⃑𝛺) (4.60) 

where 𝑓−1(𝛺⃑⃑𝑏 , 𝑈⃑⃑⃑𝛺) is the modeling of the system dynamics, which in the case of an 

imperfect approximation will result in uncancelled nonlinear terms in the closed-loop of 

the fast loop.  

 Given Equations (4.3) and (4.58), the closed-loop dynamics in the fast loop can be 

expressed as: 

 𝛺̇⃑⃑𝑏 = 𝑈⃑⃑⃑𝛺 + 𝑈⃑⃑⃑𝑁𝑁 + ∆⃑⃑⃑ + 𝛺̇⃑⃑𝑏𝑑   (4.61) 

where 𝑈⃑⃑⃑𝑁𝑁 = [𝑈𝑝𝑁𝑁   𝑈𝑞𝑁𝑁   𝑈𝑟𝑁𝑁]
𝑇
 are the augmented control values generated by the 

SHLS-NN and 𝛺̇⃑⃑𝑏𝑑 = [𝑝̇𝑑    𝑞̇𝑑   𝑟̇𝑑]𝑇 are the desired closed-loop dynamics for the fast 

loop which are introduced by the stability proof (Calise, Sharma, & Corban, 2000).  

 The error dynamics of the fast loop can be expressed as: 
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 𝑒̇𝛺 = 𝐾𝛺𝑒𝛺 − 𝑈⃑⃑⃑𝑁𝑁 − ∆⃑⃑⃑  (4.62) 

where 𝑒𝛺 = Ω⃑⃑⃑𝑏𝑑 − Ω⃑⃑⃑𝑏 is the error in the fast loop and 𝐾𝛺 is defined as: 

 𝐾𝛺 = [

−𝐾𝑝 0 0

0 −𝐾𝑞 0

0 0 −𝐾𝑟

]  (4.63) 

Using Equation (4.53) to express 𝑈⃑⃑⃑𝑁𝑁, Equation (4.62) can be written as: 

 𝑒̇𝛺 = 𝐾𝛺𝑒𝛺 − (𝑉𝑇𝜎(𝑊𝑇𝑥̂ + 𝑏̂) + 𝑑̂) − ∆⃑⃑⃑  (4.64) 

To assure the stability of the fast loop and effective tracking of desired angular 

rates, it must be shown that 𝑒̇𝛺 in Equation (4.64) has stable dynamics and that the 

updating of the weights and biases in the SHLS-NN Equation (4.54) is bounded. In other 

words, it must be shown that all elements in 𝑊̂ and 𝑉̂ are bounded by an upper bound; 

𝑊̃ and 𝑉̃. If both the error dynamics are shown to be stable and the updating of the 

weights and biases has an upper bound, the adaptive ANN augmented NLDI will behave 

in a stable manner and can be considered stable. 

(Calise, Lee, & Sharma, 2001) shows the proof of boundedness and stability for 

the application of SHLS-NN to augment a NLDI control law for inversion error 

estimation and correction. This is performed by constructing a candidate Lyapunov 

function that is shown to be negative semidefinite through the application of Lyapunov’s 

direct method, which concludes the proof of stable error dynamics 𝑒̇𝛺 and bounded 

weight matrices 𝑊̂ and 𝑉̂. The negative semidefinite result holds for the application of 

the SHLS-NN to augment the fast loop as long the desired angular rates are bounded and 
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continuously differentiable, stable virtual controllers are designed in Equation (4.2), the 

uncertainties are matched; they are assumed to be in the bandwidth of the inputs to the 

system (Campa, Fravolini, Mammarella, & Napolitano, 2011), inputs to the SHLS-NN 

are bounded, the upper bounds on 𝑊̂ and 𝑉̂ are known, and the update law defined in 

Equation (4.54) is used to update the parameters in the SHLS-NN (Sharma & Calise, 

2005). 

4.3.4. Discrete adaptive ANN architecture. The SHLS-NN control 

architecture introduced in Sections 4.3.1 and 4.3.2 is defined in continuous time. 

However, for implementing this controller in a real-time environment, the control 

architecture must be provided in a discrete fashion. This can be obtained relatively simply 

since the SHLS-NN in Equation (4.53) does not contain continuous-time transfer 

functions and so can be converted to a sampled structure as: 

 𝑦𝑞(𝑖𝑇𝑠 + 1) = 𝑉𝑇(𝑖𝑇𝑠)𝜎 (𝑊𝑇(𝑖𝑇𝑠)𝑥̂(𝑖𝑇𝑠) + 𝑏̂(𝑖𝑇𝑠)) + 𝑑̂(𝑖𝑇𝑠)  (4.65) 

where 𝑇𝑠 ∈ ℜ is the sample time of the discrete system. A fast sample time is desired 

such that the discrete system converges to a continuous system for fast estimation and 

adaptation of uncertainties and disturbances. This is however limited to the processing 

capabilities of the hardware. 

The assumption will be made that parameters in the network will remain constant 

in between sampling times such that all parameters shown in Figure 4.7 remain constant 

in between sampling times. The parameter update law defined in Equation (4.54) can be 

discretized as:  
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𝑊̂(𝑖𝑇𝑠 + 1) = −𝛤1[𝑥⃑̂(𝑖𝑇𝑠)𝑒(𝑖𝑇𝑠)𝑉̂
𝑇(𝑖𝑇𝑠)𝜎̂

′ + 𝜆1|𝑒(𝑖𝑇𝑠)|𝑊̂(𝑖𝑇𝑠)] 

𝑉̂(𝑖𝑇𝑠 + 1) = −𝛤2[(𝜎̂(𝑖𝑇𝑠) − 𝜎̂′𝑊̂𝑇(𝑖𝑇𝑠)𝑥⃑̂(𝑖𝑇𝑠))𝑒(𝑖𝑇𝑠)

+ 𝜆2|𝑒(𝑖𝑇𝑠)|𝑉̂(𝑖𝑇𝑠)] 

(4.66) 

 𝓛1 Output-Feedback Adaptive Control Augmentation  

Section 4.3 discussed the application of intelligent adaptive control to estimate 

and correct for the inversion error in the inner stability loop inversion of the NLDI 

control law. A different approach to compensate for external wind disturbance effects in 

the NLDI baseline control law is to apply model reference based adaptive controller. 

While the adaptive ANN is effectively an estimator applied to estimate the inversion 

error, which can subsequently be used for augmentation in an attempt to cancel the 

inversion errors, model reference based adaptive control does not estimate the error 

directly but focuses on generating an augmented control signal that will drive the system 

to follow a desired reference model. Section 2.1.3 motivated that the application of model 

reference adaptive control (MRAC) will result in a tradeoff between the fast tracking of 

reference values and the stability of the system which will degrade the overall robustness 

of the NLDI augmented system. ℒ1 state-feedback adaptive control effectively decouples 

the fast adaption with the robustness of the system but requires full state-feedback to be 

effectively applied. The necessary state estimation will introduce estimation errors in the 

control law, which is undesired. The ℒ1 output-feedback adaptive control offers both fast 

adaptation and robustness without the need for state estimation. ℒ1 output-feedback 

adaptive control will therefore be applied to augment the NLDI baseline control law to 

aid the robustness of the system under wind disturbance conditions. 
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4.4.1. 𝓛1 output-feedback adaptive control architecture. The goal of 

the ℒ1 augmentation is to assure the outputs of the closed-loop rotational dynamics of the 

baseline NLDI augmented system 𝑦(𝑡), will track the output 𝑦̂(𝑡) of a desired minimum 

phase reference model 𝑀(𝑠), which consists of the baseline NLDI inner controller with a 

desired UAV quadrotor rotational dynamics model, to a provided bounded piecewise-

continuous desired reference signal 𝑟(𝑡) in both the transient and steady state with all 

signals bounded (Geiser, Xargay, & Hovakimyan, 2011). The controller consists of an 

output predictor predicting the output of the quadrotor UAV system, an adaptation law 

which provides an estimate of uncertainties in the system by comparing the predicted 

outputs and the measured outputs, and finally a control law which generates a control 

input which will correct for the uncertainties in the system.  

The quadrotor UAV rotational inner stability dynamics can be represented as a 

SISO transfer function (Hovakimyan & Cao, 2010): 

  𝑦(𝑠) =  𝐴(𝑠)(𝑢(𝑠) + 𝑑(𝑠)),    𝑦(0) =  0  (4.67) 

where 𝑦(𝑠) ∈ ℜ is the output of the system, 𝑢(𝑠) ∈ ℜ is the input to the system, 𝐴(𝑠) is a 

strictly proper unknown transfer function and 𝑑(𝑠) ∈ ℜ is the Laplace transform of 

unknown disturbances and uncertainties. The inverse Laplace transform of 𝑑(𝑠) results in 

𝑑(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) where 𝑓 is an unknown mapping subject to the Lipschitz continuity, 

which enforces a uniform continuity on the development of the uncertainties:  

 |𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2)| ≤ 𝐿|𝑦1 − 𝑦2|,    |𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑦| + 𝐿0 (4.68) 

where the existence of constants 𝐿 > 0 and 𝐿0 > 0 is guaranteed such that Equation 
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(4.68) holds ∀𝑡 > 0 and 𝐿, 𝐿0 arbitrarily large. 

Equation (4.67) can be written in state-space form as: 

 

𝑥̇(𝑡) = 𝐴𝑚𝑥(𝑡) + 𝑏𝑚(𝑢(𝑡) + 𝜎(𝑡)),   𝑥(0) = 0; 

𝑦(𝑡) =  𝑐𝑚
𝑇 𝑥(𝑡)  

(4.69) 

where (𝐴𝑚, 𝑏𝑚, 𝑐𝑚) is a minimal realization of the desired reference model 𝑀(𝑠). 𝑀(𝑠) 

is chosen controllable, observable and with 𝐴𝑚 is Hurwitz. 𝜎(𝑡) represents the time 

domain representation of the matched uncertainties, which are assumed to enter the 

dynamics with the same input matrix as the input command (Campa, Fravolini, 

Mammarella, & Napolitano, 2011), and can be modeled as the difference between the 

true inner stability dynamics 𝐴(𝑠) and the desired reference model 𝑀(𝑠), in the presence 

of additional uncertainties and disturbances 𝑑(𝑠): 

 𝜎(𝑠) =
(𝐴(𝑠) − 𝑀(𝑠))𝑢(𝑠) + 𝐴(𝑠)𝑑(𝑠)

𝑀(𝑠)
 (4.70) 

 The unknown matched uncertainties 𝜎(𝑡) is what differentiates the quadrotor 

UAV system response from the desired reference system 𝑀(𝑠) response and must 

therefore be corrected for with the application of ℒ1 output-feedback adaptive control 

augmentation. The ℒ1 output-feedback adaptive control applied to augment the baseline 

NLDI control law in the fast loop can be seen in Figure 4.9 for which the components are 

discussed next as derived in (Hovakimyan & Cao, 2010).  
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Figure 4.9. Augmenting ℒ1 output-feedback adaptive controller. 

 

Output predictor. The output predictor is used to provide a predicted output of 

the system based on the approximated uncertainties and the desired reference model such 

that it can be compared with the measured outputs. The stable and tracking output 

predictor can be expressed as: 

 

𝑥̇̂(𝑡) = 𝐴𝑚𝑥̂(𝑡) + 𝑏𝑚(𝑟(𝑡) + 𝑈ℒ1(𝑡)) + 𝜎̂(𝑡),   𝑥̂(0) = 0; 

𝑦̂(𝑡) =  𝑐𝑚
𝑇 𝑥̂(𝑡)  

(4.71) 

where 𝑟(𝑡) ∈ ℜ is a reference input to the output predictor, 𝑈ℒ1(𝑡) ∈ ℜ is the control 

signal generated by the control law of the ℒ1 output-feedback adaptive controller and 

𝜎̂(𝑡) ∈ ℜ is the approximation of the uncertainties in Equation (4.70) supplied by the 

adaptation law. Notice that while the uncertainties in the quadrotor UAV system are 



CONTROL LAWS DEVELOPMENT FOR DISTURBANCE REJECTION                 90  

   
 

assumed to be matched in Equation (4.69), the uncertainties in the output predictor 

Equation (4.71) are unmatched, which is a key feature and is shown to effectively cancel 

the uncertainties in the plant (Cao & Hovakimyan, 2008). 

Adaptation law. The adaptation law updates the approximation of the 

uncertainties in Equation (4.70) according to the following discrete rule with discrete 

sample time 𝑇𝑠 ∈ ℜ: 

 𝜎̂(𝑖𝑇𝑠) = −Φ−1(𝑇𝑠)𝜇(𝑖𝑇𝑠) (4.72) 

with,  

 

Φ(𝑇𝑠) ≜ ∫ 𝑒Λ𝐴𝑚Λ−1(𝑇𝑠−𝜏)Λ𝑑𝜏
𝑇𝑠

0

 

Λ ≜ [
𝑐𝑚

𝑇

𝐷√𝑃
] 

(4.73) 

where 𝑃 = 𝑃𝑇 > 0, and 𝑃 ∈ ℜ𝑛×𝑛 is the positive definite solution to the algebraic 

Lyapunov equation: 

 𝐴𝑚
𝑇 𝑃 + 𝑃𝐴𝑚 = −𝑄,    for arbitrary    𝑄 = 𝑄𝑇 > 0 (4.74) 

which exists since 𝐴𝑚 is Hurwitz. 

 𝐷 ∈ ℜ(𝑛−1)×𝑛 in Equation (4.73) is a matrix that contains the null space of 

𝑐𝑚
𝑇 (√𝑃)

−1
, that is:   

 𝐷 (𝑐𝑚
𝑇 (√𝑃)

−1
)
𝑇

= 0 (4.75) 
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 𝜇(𝑖𝑇𝑠) in Equation (4.72) is defined as:  

 𝜇(𝑖𝑇𝑠) = 𝑒Λ𝐴𝑚Λ−1𝑇𝑠𝟏𝟏(𝑦̂(𝑡) − 𝑦(𝑡)) (4.76) 

where 𝟏𝟏 = [1, 0, … ,0]𝑇 ∈ ℜ𝑛. 

 As can be seen, update law Equation (4.72) is defined discrete while the rest of 

the controller and quadrotor UAV model are modeled in continuous time. The 

assumption is therefore made that 𝜎̂(𝑖𝑇𝑠) remains constant in between sample times: 

 𝜎̂(𝑡) = 𝜎̂(𝑖𝑇𝑠),   𝑡 ∈ [𝑖𝑇𝑠, (𝑖 + 1)𝑇𝑠] (4.77) 

 The rate of adaptation is limited to the chosen sample time 𝑇𝑠. For the desired fast 

adaptation, the sampling time must be decreased, which will reduce the prediction error 

(Geiser, Xargay, & Hovakimyan, 2011). The sampling time however is often restricted 

by hardware limitations. 

Control law. Now that the approximation of uncertainty in the system is 

provided by the adaptation law, a control law must be constructed to correct for this error 

through augmentation of the quadrotor UAV baseline inner loop NLDI control law. The 

ℒ1 output-feedback control law consists of the estimation of the uncertainty in Equation 

(4.72) passed through a low pass filter (Cao & Hovakimyan, 2009). The augmentation 

value provided by the control law of the ℒ1 output-feedback adaptive controller can be 

expressed as: 

 𝑈ℒ1(𝑠) = −
𝐶(𝑠)

𝑀(𝑠)
𝑐𝑚

𝑇 (𝑠𝕀 − 𝐴𝑚)−1𝜎̂(𝑠) (4.78) 

where 𝑀(𝑠) is the transfer function of the desired reference model and 𝐶(𝑠) is a strictly 
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proper filter with 𝐶(0) = 1 and relative degree 𝑑𝑟, which is the difference between the 

degree of the denominator and numerator of the filter. 𝑑𝑟 is defined as: 

 1 < 𝑑𝑟 ≤ 𝑛𝑟 (4.79) 

where  𝑛𝑟 is the relative degree of 𝑀(𝑠) in Equation (4.69). 

The filtering of the estimation of the uncertainty 𝜎̂(𝑠) in the system effectively 

decouples the fast adaptation from the robustness and assures that the control input sent 

to the system will remain inside a desired bandwidth. (Geiser, Xargay, & Hovakimyan, 

2011). The upper bound of the bandwidth is usually associated with the available 

bandwidth of the actuators. The control input in Equation (4.78) will therefore result in a 

cancellation of the uncertainties inside the bandwidth of filter 𝐶(𝑠) and actuators. It is 

desirable to apply the highest bandwidth possible to achieve optimal results for the 

estimation of uncertainties for cancellation using the control law.  

For the case that the measured outputs from the quadrotor UAV system track the 

outputs of the state predictor, that is 𝑦̂(𝑡) = 𝑦(𝑡), it can be seen that the adaptation law in 

Equation (4.72) will output zero signifying that no uncertainties are present in 

comparison between the true system and reference model. This results in the augmented 

control input from the ℒ1 output-feedback adaptive controller in Equation (4.78) to be 

zero, which indicates that the ℒ1 output-feedback adaptive controller does not augment 

the baseline NLDI control law for a system tracking the desired reference model 

perfectly. Only when there is uncertainty in the system will the ℒ1 output-feedback 

adaptive controller attempt to make the system more robust. 

4.4.2. Stability analysis. In order to verify the stability of the ℒ1 output-
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feedback adaptive controller, boundedness of all values together with the convergence of 

the output of the reference model and actual system must be shown. To ensure stability of 

the closed-loop performance of the ℒ1 output-feedback adaptive controller, strictly proper 

filter 𝐶(𝑠) and desired reference model 𝑀(𝑠) must be designed such that (Cao & 

Hovakimyan, 2008):  

 𝐻(𝑠) =
𝐴(𝑠)𝑀(𝑠)

𝐶(𝑠)𝐴(𝑠) + (1 − 𝐶(𝑠))𝑀(𝑠)
 (4.80) 

is stable and  

 ‖𝐻(𝑠)(1 − 𝐶(𝑠))‖ℒ1 < 1 (4.81) 

where  ‖ ‖ ℒ1 is the ℒ1 norm defined as (Hovakimyan & Cao, 2010): 

 ‖𝑓‖ℒ1 ≜ ∫ ‖𝑓(𝜏)‖
∞

0

𝑑𝜏 < ∞ (4.82) 

Now that the boundedness of the system is assured through the correct design of 

𝐶(𝑠) and 𝑀(𝑠), it must be shown that the ℒ1 output-feedback adaptive controller 

converges and the uncertainty is adapted correctly. This can be shown by considering the 

ideal closed-loop model performance: 

𝑦𝑖𝑑𝑒𝑎𝑙(𝑠) =  𝑀(𝑠)(𝑢𝑖𝑑𝑒𝑎𝑙(𝑠) + 𝑟(𝑠) + 𝜎𝑖𝑑𝑒𝑎𝑙(𝑠)) (4.83) 

𝜎𝑖𝑑𝑒𝑎𝑙(𝑠) =
(𝐴(𝑠) − 𝑀(𝑠))𝑢𝑖𝑑𝑒𝑎𝑙(𝑠) + 𝐴(𝑠)𝑑𝑖𝑑𝑒𝑎𝑙(𝑠)

𝑀(𝑠)
 (4.84) 
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𝑢𝑖𝑑𝑒𝑎𝑙(𝑠) = −𝐶(𝑠)𝜎𝑖𝑑𝑒𝑎𝑙(𝑠) (4.85) 

Note that for the ideal closed-loop model, the uncertainties 𝜎𝑖𝑑𝑒𝑎𝑙(𝑠) can only be 

corrected for inside the bandwidth of the filter 𝐶(𝑠), as can be seen when Equation (4.85) 

is inserted in Equation (4.83). It must now be shown that the designed ℒ1 output-feedback 

adaptive controller converges to the ideal closed-loop reference model. (Cao & 

Hovakimyan, 2008) shows the proof for this convergence: 

lim
𝑇→0

(‖𝑦̂(𝑡) − 𝑦(𝑡)‖ℒ1) = 0 (4.86) 

which assures the convergence of the output predictor Equation (4.71) and the system 

output indicating the correction for uncertainties in the system, 

lim
𝑇→0

(‖𝑦(𝑡) − 𝑦𝑖𝑑𝑒𝑎𝑙(𝑡)‖ℒ1) = 0 (4.87) 

which assures the convergence of the system output and the ideal system in Equation 

(4.83), confirming the obtained desired dynamic characteristics, and finally 

lim
𝑇→0

(‖𝑢(𝑡) − 𝑢𝑖𝑑𝑒𝑎𝑙(𝑡)‖ℒ1) = 0 (4.88) 

which confirms the convergence of the control law in Equation (4.78) to the ideal control 

law presented in Equation (4.85), which will effectively correct for the uncertainties in 

the system.  

 Although the proof shows the steady-state desired convergence of Equations 

(4.87) and (4.88), the transient tracking of Equations (4.87) and (4.88) is uniformly 
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bounded by a constant proportional to the sample time 𝑇𝑠. In other words, the transient 

tracking response can be improved by reducing the sample time in the controller. 

4.4.3. 𝓛1 output-feedback adaptive control augmentation 

architecture. ℒ1 output-feedback adaptive control augmentation can be applied to 

correct for the uncertainties in the inner stability loop inversion caused by wind 

disturbance. This can be achieved by evaluating the tracking performance of the attitude 

angles and by generating an augmented control signal to be added in the fast loop of the 

inner stability controller, assuring the fast correction of uncertainties. The ℒ1 output-

feedback adaptive controller can be applied to aid in the tracking performance of the 

attitude angles. The ℒ1 output-feedback adaptive control augmentation evaluates the 

tracking performance of the slow loop of the NLDI inner stability loop compared to a 

reference model and creates an augmented value to be added to the fast loop similar as in 

(Leman, Xargay, Dullerud, & Hovakimyan, 2009). This augmented value will attempt to 

correct for the fast dynamic uncertainties in the inner loop by augmenting the fast loop. 

The fast loop augmentation by the ℒ1 output-feedback adaptive controller can be seen in 

Figure 4.10. 

Recall that the output predictor resembles the UAV quadrotor dynamics with the 

application of the inner NLDI loop. In the same fashion as for the inner NLDI loop, the 

reference signals provided to the ℒ1 controller are therefore the desired attitude angles; 

[𝜃𝑑    𝜙𝑑    𝜓𝑑]𝑇. The output of the output predictor will signify the predicted tracking 

response of the desired attitude angles by the quadrotor dynamics with inner NLDI loop 

control. The output of the output predictor is compared with the actual measured response 

of the quadrotor UAV system; [𝜃   𝜙   𝜓]𝑇. The adaptation and control law in the ℒ1  
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Figure 4.10. Fast loop augmentation by ℒ1 output-feedback adaptive control. 

 

output-feedback adaptive controller will generate an augmented control signal based on 

the difference between the output predictor and measured response; [𝑈𝑝ℒ1   𝑈𝑞ℒ1   𝑈𝑟ℒ1]
𝑇.  

Three ℒ1 output-feedback adaptive controllers are used to augment the inner 

stability loop, one for each channel. Assuming the virtual controllers consist of a simple 

proportional controller, the inputs to the inversion of the conservation of angular 

momentum equations presented in Equation (4.1) for a baseline NLDI control 

architecture with ℒ1 output-feedback adaptive controller can be expressed as: 

 [

𝑈𝑝

𝑈𝑞

𝑈𝑟

] = [

𝑘𝑝(𝑝𝑑 − 𝑝)

𝑘𝑞(𝑞𝑑 − 𝑞)

𝑘𝑟(𝑟𝑑 − 𝑟)

] + [

𝑈𝑝ℒ1

𝑈𝑞ℒ1

𝑈𝑟ℒ1

] (4.89) 

Reference model design. The reference model signifying the quadrotor UAV 

rotational dynamics with inner NLDI loop can be modeled as a second order minimum 
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phase stable transfer function: 

 𝑀(𝑠) =  
𝜔𝑛𝑚

2

𝑠2 + 2𝜁𝑚𝜔𝑛𝑚
𝑠 + 𝜔𝑛𝑚

2
 (4.90) 

where 𝜔𝑛𝑚
∈ ℜ is the natural frequency and 𝜁𝑚 ∈ ℜ the damping ratio of the desired 

reference model. This reference system will track the desired inputs as shown by the final 

value theorem under arbitrary step response: 

 lim
𝑠→0

𝑠
𝜔𝑛𝑚

2

𝑠2 + 2𝜁𝑚𝜔𝑛𝑚
𝑠 + 𝜔𝑛𝑚

2
∙
𝛿

𝑠
= 𝛿 (4.91) 

where 𝛿 ∈ ℜ is an arbitrary step value. Since the reference model converges to the 

desired reference values, the natural frequency 𝜔𝑛𝑚
 and damping ratio 𝜁𝑚 can be selected 

for the desired transient characteristics of the reference model. 

 For the simulation results presented in Chapter 5, the reference model is designed 

with 𝜔𝑛𝑚
= 12 rad/s and 𝜁𝑚 = 1.3. This design will result in an overdamped, relatively 

fast response to reflect the desired response of the UAV quadrotor system with NLDI 

inner loop in the simulation environment. The rise time and settling time of the reference 

model are 0.4 sec and 0.7 sec respectively.   

 For the implementation of the reference model in the real-time system, for which 

results are presented in Chapter 7, the reference model is designed to mimic the nominal 

step response of the quadrotor UAV system in flight. The reference model is designed 

with 𝜔𝑛𝑚
= 25 rad/s and 𝜁𝑚 = 1.3 to mimic the nominal step response of the baseline 

NLDI fast loop, which will give a rise time of 0.195 sec and a settling time of 0.35 sec.  

 The reference model transfer function in Equation (4.90) can be converted into 
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state-space format for application in Equation (4.71) as: 

 

𝐴𝑚 = [
0 1

−𝜔𝑛𝑚
2 −2𝜁𝑚𝜔𝑛𝑚

]  

𝑏𝑚 = [
0
1
]  

𝑐𝑚 = [𝜔𝑛𝑚
2 0]  

(4.92) 

Low-pass filter design. The low-pass filter applied to filter the estimation of 

the uncertainties in the inner stability loop can be modeled using a second order transfer 

function which satisfies Equation (4.77): 

 𝐶(𝑠) =  
𝜔𝑛𝑐

2

𝑠2 + 2𝜁𝑐𝜔𝑛𝑐
𝑠 + 𝜔𝑛𝑐

2
 (4.93) 

where 𝜔𝑛𝑐
∈ ℜ is the natural frequency and 𝜁𝑐 ∈ ℜ the damping ratio of the low-pass 

filter.   

When designing the filter, attention must be placed on selecting the bandwidth. 

As discussed in Section 4.4.1, the upper bound of the bandwidth is often linked to the 

upper bound of the actuators. Besides the bandwidth, the design of 𝐶(𝑠) must also assure 

that the resonant frequency of the filter is ideally outside of the bandwidth, and if it is 

located inside the bandwidth, the resonance peak must be negligibly small to ensure that 

the filter solely filters the incoming signal and does not cause amplification. 

 For the simulation results shown in Chapter 5, the filter is designed with 𝜔𝑛𝑐
=

300 rad/s and 𝜁𝑚 = 0.7. The filter specifics can be visualized with the Bode plot in 

Figure 4.11. The Bode plot shows a filter bandwidth of 268 rad/s with no resonant peak 
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indicating that the filter does not amplify the incoming signal. The application of this 

designed filter will allow for the correction of uncertainties with a natural frequency 

below 268 rad/s. 

 

 

Figure 4.11. Bode plot for the low-pass filter designed for the simulation environment. 

 

For the implementation of the low-pass filter in the UAV quadrotor system, for 

which results are shown in Chapter 7, the filter is designed as with 𝜔𝑛𝑐
= 120 rad/s and 

𝜁𝑚 = 0.7. The filter specifics can be visualized with the Bode plot in Figure 4.12. The 

Bode plot shows a filter bandwidth of 105 rad/s with no resonant peak indicating that the 

filter does not amplify the incoming signal. The application of this designed filter will 

allow for the correction of uncertainties with a natural frequency below 105 rad/s. 
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Figure 4.12. Bode plot for the low-pass filter designed for the implementation 

environment. 

 

4.4.4. Discrete 𝓛1 output-feedback adaptive control architecture. As 

discussed in Section 2.3, it is important to consider the sample time for the 

implementation of the ℒ1 output-feedback adaptive controller on the onboard computer of 

the quadrotor UAV system. Section 4.4.3 showed the synthesis of the ℒ1 output-feedback 

adaptive controller includes continuous-time second order transfer functions for the 

reference model and low-pass filter which cannot be implemented in a discrete 

environment. These second order transfer functions must therefore be converted to a 

discrete definition using the sample time to allow for the application in a real-time 

environment. 

A generic continuous-time, time-invariant state-space model can be discretized 

using fictitious samplers and holding devices assuming the input changes only at equally 

spaced sampling instances (Ogata, 1995):  
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𝑥((𝑘 + 1)𝑇𝑠) = 𝐺𝑥(𝑘𝑇𝑠) +  𝐻𝑢(𝑘𝑇𝑠),   𝑥̂(0) = 0; 

𝑦(𝑘𝑇𝑠) =  𝐶𝑥(𝑘𝑇𝑠)  

(4.94) 

where matrix 𝐺 ∈  ℜ𝑛×𝑛 is the discretized continuous state matrix 𝐴, 𝐻 ∈  ℜ𝑛×𝑚 is the 

discretized continuous input matrix 𝐵 and 𝑇𝑠 ∈ ℜ is the sample time. Matrices 𝐺 and 𝐻 

are defined as: 

 

𝐺 = 𝑒𝐴𝑇𝑠 

𝐻 = ∫ 𝑒𝐴(𝑇𝑠−𝑠)𝐵𝑑𝑠
𝑇𝑠

0

 

(4.95) 

The above shown discretization of a continuous-time state-space model can be 

used to discretize the various components in the ℒ1 output-feedback adaptive controller as 

shown in (Wang, Kharisov, & Hovakimyan, 2014) and (Jafarnejadsani, Lee, & 

Hovakimyan, 2017). 

Discretized output predictor. The continuous-time output predictor in 

Equation (4.71) can be discretized using the definitions in Equations (4.94) and (4.95) as: 

 

𝑥̂((𝑘 + 1)𝑇𝑠) = 𝐴̂𝑚𝑥̂(𝑘𝑇𝑠) + 𝐵̂1 (𝑟(𝑘𝑇𝑠) + 𝑈̂ℒ1(𝑘𝑇𝑠))

+ 𝐵̂2𝜎̂(𝑘𝑇𝑠),   𝑥̂(0) = 0; 

𝑦̂(𝑘𝑇𝑠) =  𝑐𝑚
𝑇 𝑥̂(𝑘𝑇𝑠)  

(4.96) 

where 𝑟(𝑘𝑇𝑠) is the discretized reference input to the output predictor, and 𝐴̂𝑚, 𝐵̂1 and 𝐵̂2 

are defined as:  
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𝐴̂𝑚 = 𝑒𝐴𝑚𝑇𝑠 

𝐵̂1 = ∫ 𝑒𝐴𝑚(𝑇𝑠−𝑠)𝑏𝑚𝑑𝑠
𝑇𝑠

0

 

𝐵̂2 = ∫ 𝑒𝐴𝑚(𝑇𝑠−𝑠)𝑑𝑠
𝑇𝑠

0

 

(4.97) 

Note that no conversion is needed for output matrix 𝑐𝑚
𝑇  when discretized from 

continuous-time. 

Discretized adaptation law. The adaptation law which updates the 

approximation of the uncertainties in the system presented in Equation (4.72) is already 

presented in a piecewise discrete rule and can therefore be used in the discretized ℒ1 

output-feedback adaptive controller. 

Discretized control law. The continuous-time ℒ1 output-feedback adaptive 

control law presented in Equation (4.78) can be discretized by first rewriting Equation 

(4.78) as: 

 𝑈ℒ1(𝑠) = −𝑊(𝑠)𝜎̂(𝑠) (4.98) 

where  

 𝑊(𝑠) =
𝐶(𝑠)

𝑀(𝑠)
𝑐𝑚

𝑇 (𝑠𝕀 − 𝐴𝑚)−1 (4.99) 

In order to discretize the control law in Equation (4.98), the continuous-time 

transfer function in Equation (4.98) can first be converted to a continuous-time state-

space representation: 
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𝑥̇𝑊(𝑡) = 𝐴𝑊𝑥𝑊(𝑡) + 𝐵𝑊𝜎̂(𝑡),   𝑥𝑊(0) = 0; 

𝑦𝑊(𝑡) = 𝑈ℒ1(𝑡) =  −𝐶𝑊𝑥𝑊(𝑡) 

(4.100) 

where the estimation of the uncertainty 𝜎̂(𝑡) is the input to system, the state of the system 

is described by 𝑥𝑊, and the output of the system is the control signal that will augment 

the fast loop of the NLDI baseline controller; 𝑈ℒ1(𝑡). The continuous-time state-space 

system can subsequently be converted to a discrete state-space representation using 

Equations (4.94) and (4.95): 

 

𝑥𝑊((𝑘 + 1)𝑇𝑠) = 𝐴̂𝑊𝑥𝑊(𝑘𝑇𝑠) + 𝐵̂𝑊𝜎̂(𝑘𝑇𝑠),   𝑥𝑊(0) = 0; 

𝑦𝑊(𝑘𝑇𝑠) = 𝑈ℒ1(𝑘𝑇𝑠) =  −𝐶𝑊𝑥𝑊(𝑘𝑇𝑠)   

(4.101) 

where 𝑈ℒ1(𝑘𝑇𝑠) is the discretized control signal augmenting the fast loop of the baseline 

NLDI controller in the implementation environment, and 𝐴̂𝑊 and 𝐵̂𝑊 are defined as:  

 

𝐴̂𝑊 = 𝑒𝐴𝑊𝑇𝑠 

𝐵̂𝑊 = ∫ 𝑒𝐴𝑊(𝑇𝑠−𝑠)𝐵𝑊𝑑𝑠
𝑇𝑠

0

 

(4.102) 

5. Simulation Analysis 

Before implementing the developed control architectures in a quadrotor UAV 

testbed, the proposed control algorithms are analyzed in a simulation environment for an 

initial performance evaluation. This chapter introduces the simulation environment in 

which the developed mathematical models in Chapter 3 and control architectures in 

Chapter 4 are numerically solved to evaluate the performance of the discussed control 
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algorithms. A performance metric is presented to objectively evaluate the performance of 

the different control algorithms for wind disturbance conditions inside a considered wind 

envelope using Monte Carlo analysis.  

 Quadrotor UAV Simulation Environment 

A high fidelity simulation environment was designed in MATLAB/Simulink to 

test the developed control algorithms in Chapter 4 using the mathematical model for the 

UAV quadrotor and the mathematical model for the wind environment developed in 

Chapter 3. A DJI Flamewheel F330 quadrotor research testbed was used to implement the 

developed adaptive control algorithms, and so the simulation environment was built 

around a simulation model of the Flamewheel quadrotor. The simulation environment, 

shown in Figure 5.1, consists of the mathematical Flamewheel model, a sensor and 

filtering model which simulates on-board sensors and estimation operations, a waypoint 

navigation model which produces autonomous waypoints for navigation, a control laws 

block in which the control laws are implemented and a wind model block which 

simulates external wind velocities and accelerations. Sections 5.1.1, 5.1.2, 5.1.3 and 5.1.4 

will present the above mentioned blocks in more detail. 

5.1.1.  DJI flamewheel F330 model. Figure 5.2 shows the ‘Flamewheel’ 

block that contains a simulation model for the DJI Flamewheel F330. At its core, the 

Flamewheel is modeled around governing Equations (3.2), (3.3), (3.4) and (3.5). This 

includes the modeled wind forces and moments found in Sections 3.2.2 and 3.2.3. Wind 

accelerations are used to generate forces according to Equation (3.31). The wind velocity 

defined in the inertial earth reference frame is added to the quadrotor UAV velocity to 

include wind effects as seen in Equation (3.18). 
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Figure 5.1. The DJI Flamewheel F330 simulation environment. 

 

 

Figure 5.2. DJI Flamewheel F330 simulation model. 

 

The various required parameters to completely define the simulation model for 

the DJI Flamewheel and wind induced forces and moments as outlined in Chapter 3 are 

presented in Table 5.1. 
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Table 5.1  

Quadrotor UAV and Blade Flapping Model Simulation Parameters 

 

 

5.1.2. Sensor and filter model. The ‘IMU/GPS/WIND’ block in Figure 5.1 

simulates the noisy measurements of the global positioning system (GPS), inertial 

measurement unit (IMU) and a generic wind sensor that supplies wind velocities and 

accelerations as can be seen in Figure 5.3. The obtained simulation results shown in this 

chapter do not included added sensor noise and bias for the simulated GPS, IMU and 

wind sensor models in order to evaluate the control algorithms exclusively under wind 

disturbance conditions. The simulation frequency throughout the simulation environment, 

including the frequency of all simulated sensors, is defined at 𝑇𝑠 = 500𝐻𝑧. 

The simulation of the post processing of IMU and GPS data is performed in the  

‘Filtering and operations’ block found in Figure 5.1. GPS readings are converted to 

positions and velocities in the inertial earth reference frame and Euler angles are 

estimated using the kinematic equations. This block provides the simulation with the 

states of the Flamewheel during each time instant. The filtering and operations simulation 

is shown in Figure 5.4.  

m 2.2lb ω p 62.83rad/s

L 6.5ft R prop 7.5in

h 1.1in θ0 7.5deg

I xx  = I yy 0.0132slug·ft
2 θtw 2deg

I zz 0.0230slug·ft
2 K β 2.04 lb·in/rad

I xz  = I xy  = I yz 0

g 32.17ft/s
2

Quadrotor UAV Model Blade Flapping Model
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Figure 5.3. Sensor simulation model. 

 

 
Figure 5.4. Filtering and operations simulation model. 
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5.1.3. Waypoint navigation and control architecture model. The 

‘Waypoint Nav’ block in Figure 5.1 generates the desired waypoint commands for the 

DJI Flamewheel quadrotor simulation to track for a full autonomous simulation 

environment as can be seen in Figure 5.5. 

 

  

Figure 5.5. Waypoint navigation simulation model. 

 

The ‘Control Laws’ block in Figure 5.1 models the baseline NLDI, extended 

NLDI, adaptive ANN and ℒ1 adaptive controller. The control laws architecture can be 

seen in Figure 5.6 where the extended NLDI is modeled in the ‘Outer Tracking Loop’ 

and ‘Inner Stability Loop’. The SHLS-NN and ℒ1 adaptive controllers are both modeled 

in the ‘Inner Stability Loop’. The baseline NLDI virtual controllers are tuned as shown in 

Table 5.2 to obtain the desired dynamic characteristics.  

The simulation model for the SHLS-NN has been provided by previous research 

efforts performed at the West Virginia University (Campa, Fravolini, & Napolitano, 

2002). The Simulink model containing the simulation model for the SHLS-NN is shown 

in Figure 5.7.  
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Figure 5.6. Control laws architecture simulation model. 

 

Table 5.2  

Baseline NLDI Simulation Virtual Controller Tuned Gains 

 

Controller PID gains

U p , U q [0.4 0.1 0]

U r [0.3 0 0]

Controller PID gains

U θ,U φ [3.1 1 0]

U ψ [1.4 0 0]

Controller PID gains

K Ẋ , K Ẏ [3 0 0.4]

K Ż [17.5 2.5 0]

K X , K Y [0.1 0 0]

K Z [1 0 0]

Outer Tracking loop

Equation (4.19)

Equation (4.2)

Inner Stability Slow Loop

Equation (4.5)

Inner Stability Fast Loop
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Figure 5.7. Adaptive ANN simulation model. 

 

5.1.4. Wind model. The ‘Wind Model’ block in Figure 5.1 contains a 

simulation model for the wind environment, as shown in Figure 5.8. Wind magnitude and 

direction are defined by the user inside the ‘Wind’ block in Figure 5.8. The magnitude 

and direction are used to define the wind velocity and acceleration vectors in the inertial 

earth reference frame.  

 

 

Figure 5.8. Simulated wind environment. 

 

 Simulated atmospheric turbulence is added to the wind velocity and accelerations 

vectors. The ‘Turbulence’ block contains filters that take in white noise to produce a 

colored noise turbulence representation in compliance with the PSD functions defined in 



CONTROL LAWS DEVELOPMENT FOR DISTURBANCE REJECTION                 111  

   
 

Equations (3.19), (3.20) and (3.21) (Rauw, 2001). These filters can be modeled in the 

simulation environment as: 

 ∆𝑊𝑋(𝜎) = 𝐾𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦√
2𝐿𝑢

𝑉
 

1

1 +
𝐿𝑢

𝑉 𝑗𝜎
 (5.1) 

 

∆𝑊𝑌(𝜎) = 𝐾𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦√
𝐿𝑣

𝑉
 
1 + √3

𝐿𝑣

𝑉 𝑗𝜎

(1 +
𝐿𝑣

𝑉 𝑗𝜎)
2 (5.2) 

 

∆𝑊𝑍(𝜎) = 𝐾𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦√
𝐿𝑤

𝑉
 
1 + √3

𝐿𝑤

𝑉 𝑗𝜎

(1 +
𝐿𝑤

𝑉 𝑗𝜎)
2 (5.3) 

where ∆𝑊𝑋(𝜎), ∆𝑊𝑌(𝜎) and ∆𝑊𝑍(𝜎) ∈ ℜ are the simulated components of added 

turbulence originally defined in Equation (3.17) as a function of white noise input 𝜎 ∈ ℜ. 

𝐿𝑢, 𝐿𝑣 and 𝐿𝑤 ∈ ℜ are the scaling lengths defined as 492ft and 𝑉 ∈ ℜ is the true airspeed 

of the quadrotor UAV. For a position hold simulation, 𝑉 is equivalent to the external 

wind speed acting on the quadrotor UAV. The turbulence components added to the wind 

acceleration vector are determined by taking the time derivative of Equations (5.1), (5.2) 

and (5.3). 𝐾𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∈ ℜ is a constant applied to scale the output of the filter to 

alter the significance of the turbulence, as shown as a multiplying gain in Figure 5.8.  

For this research, the most adverse wind conditions experienced by a UAV in 

flight are assumed to be with a wind speed of 8kts and a turbulence severity of 5. The 

standard deviation of the turbulence magnitude, where the turbulence magnitude is equal 

to the norm of a vector containing the outputs of Equations (5.1), (5.2) and (5.3), as a 
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function of wind speed and turbulence severity for a simulation time of 20 sec can be 

seen in Table 5.3. Table 5.3 shows that the spread of the turbulence magnitude increases 

as the wind speed and turbulence severity increase. 

Table 5.4 shows the turbulence magnitude as a percentage of the wind speed. This 

table gives an indication of the degree of contribution of the turbulence to the total wind 

disturbance velocity magnitude. Table 5.4 shows that roughly 2% of the total wind 

disturbance originates from the wind turbulence as modeled by Equations (5.1), (5.2) and 

(5.3). 

 

Table 5.3  

Standard Deviation of Turbulence Magnitude as a Function of Wind Speed and 

Turbulence Severity 

 

 

Figure 5.9 shows an example wind gust magnitude for a 60 sec simulation with 

wind speed of 6kts, turbulence severity equal to 3 with the wind direction equal to 30 

degrees from North. The blue line represents the output of the wind block as shown in 

Figure 5.8. There was observed that if the wind frequency was too high, the effects of the 

Turbulence Severity →       

Wind Speed (kts) ↓
1 2 3 4 5

1 0.0085 0.0170 0.0255 0.0340 0.0425

2 0.0118 0.0235 0.0353 0.0470 0.0588

3 0.0141 0.0282 0.0423 0.0564 0.0705

4 0.0160 0.0319 0.0479 0.0639 0.0798

5 0.0175 0.0350 0.0526 0.0701 0.0876

6 0.0189 0.0377 0.0566 0.0754 0.0943

7 0.0200 0.0400 0.0601 0.0801 0.1001

8 0.0211 0.0421 0.0632 0.0842 0.1053
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wind disturbance on the simulated dynamics of the UAV could not be seen. The red line 

therefore shows the sampled wind speed used in the simulation. 

 

Table 5.4  

Turbulence Magnitude as a Percentage of the Wind Speed 

 

 

 

Figure 5.9. Wind speed magnitude time history with wind speed 6kts, turbulence severity 

3 and wind direction 30deg from North. 

Turbulence Severity →       

Wind Speed (kts) ↓
1 2 3 4 5

1 1.65% 3.30% 4.96% 6.61% 8.26%

2 1.15% 2.28% 3.43% 4.57% 5.72%

3 0.91% 1.83% 2.74% 3.65% 4.57%

4 0.78% 1.55% 2.33% 3.11% 3.88%

5 0.68% 1.36% 2.05% 2.73% 3.41%

6 0.61% 1.22% 1.83% 2.44% 3.06%

7 0.56% 1.11% 1.67% 2.22% 2.78%

8 0.51% 1.02% 1.54% 2.05% 2.56%
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 Performance Metric 

A performance metric is required to objectively evaluate and compare the 

performance of the developed control algorithms under wind disturbance conditions in 

both simulation and implementation. The performance metric must include relevant states 

required to evaluate the stability and tracking performance of the quadrotor’s rotational 

and translational dynamics when the control algorithms are applied.  

The performance metric combines the accumulated error between the commanded 

and measured values for translational displacement tracking, vertical displacement 

tracking, attitude angles tracking and angular rates tracking (Rivera K. , 2018). Since the 

available energy of the quadrotor UAV is limited, it is important to include the energy 

spent resulting from the application of the control algorithms in the performance metric 

evaluation. In order to evaluate the energy consumed by the system, an accumulation of 

the pulse-width-modulation signal (PWM) is included. 

The trajectory tracking performance metric, which evaluates the tracking 

performance of translational and vertical displacement commands by the quadrotor UAV 

can be defined as: 

 

𝑒̃𝑇𝑇 =
1

3
(1 −

1

𝐶𝑋

√
1

𝑇
∫ 𝑒𝑋

2
𝑇

0

𝑑𝑡  ) +
1

3
(1 −

1

𝐶𝑌

√
1

𝑇
∫ 𝑒𝑌

2 𝑑𝑡
𝑇

0

)

+
1

3
(1 −

1

𝐶𝑍

√
1

𝑇
∫ 𝑒𝑧

2 𝑑𝑡
𝑇

0

) 

(5.4) 

where 𝐶𝑋, 𝐶𝑌 and 𝐶𝑍 ∈ ℜ are normalization factors based on the worst case performance 

obtained in a set of tests, 𝑒𝑋, 𝑒𝑌 and 𝑒𝑍 ∈ ℜ are the error signals obtained by subtracting 
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the commanded values from the measured values for the navigational commands in the 

inertial reference frame, and 𝑇 ∈ ℜ is the time duration of the specific test. As it can be 

seen in Equation (5.4), the performance metric for translational and vertical tracking 

performance can be expressed as the weighted sum of the magnitude and time normalized 

error accumulation for each one of the three displacements. Since in the simulation and 

implementation environment an autonomous position and altitude hold will be 

commanded, this trajectory tracking performance metric effectively becomes a position 

and altitude hold performance evaluation. 

In a similar fashion, the attitude tracking performance metric can be defined as: 

 

𝑒̃𝜃 =
1

3
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1
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√
1

𝑇
∫ 𝑒𝜃

2
𝑇

0
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1

3
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1
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𝑇
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(5.5) 

where 𝐶𝜃, 𝐶𝜙 and 𝐶𝜓 ∈ ℜ are normalization factors based on the worst case performance 

obtained in a set of tests, 𝑒𝜃, 𝑒𝜙 and 𝑒𝜓 ∈ ℜ are the error signals obtained by subtracting 

the commanded values from the measured values for the attitude angles. 

The angular rates tracking performance metric is defined in Equation (5.6) where 

𝐶𝑝, 𝐶𝑞 and 𝐶𝑟 ∈ ℜ are normalization factors based on the worst case performance 

obtained in a set of tests, 𝑒𝑝, 𝑒𝑞 and 𝑒𝑟 ∈ ℜ are the error signals obtained by subtracting 

the commanded values from the measured values for the angular rates: 
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(5.6) 

The accumulation of the PWMs activation can be obtained by summing the 

commanded PWM signals for each one of the four motors to characterize the energy 

consumed by the system: 

 𝑒̃𝑃𝑊𝑀 = 1 −
1

𝐶𝑃𝑊𝑀
∑(√

1

𝑇
∫ 𝑃𝑊𝑀𝑖

𝑇

0

𝑑𝑡)

4

𝑖=1

  (5.7) 

where 𝐶𝑃𝑊𝑀 ∈ ℜ  is a normalization factor based on the worst case performance obtained 

in a set of tests, 𝑃𝑊𝑀𝑖 ∈ ℜ is the PWM signal commanded for motor 𝑖. 

The weighted combination of these four individual metrics will yield the global 

performance index (PI), which characterizes the overall performance of the quadrotor 

UAV in a specific configuration:  

 𝑃𝐼 =  𝑤1𝑒̃𝑇𝑇 + 𝑤2𝑒̃𝜃 + 𝑤3𝑒̃Ω + 𝑤4𝑒̃𝑃𝑊𝑀 (5.8) 

where 𝑤1, 𝑤2, 𝑤3 and 𝑤4 ∈ ℜ are arbitrary weights chosen based on the importance of 

each individual metrics. The arbitrary weights are case dependent and will therefore be 

presented in Chapters 5 and 7 in combination with the simulation and flight test results. 

 A good performance by the quadrotor UAV is characterized by a value close to 

one with one being a perfect tracking of values with no error for the metrics defined in 
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Equations (5.4), (5.5) and (5.6). Since there is no such thing as zero energy consumption 

for quadrotor UAV systems in flight, a value close to one for the metrics in Equation 

(5.7) will indicate a good economic energy performance. The overall PI defined in 

Equation (5.8) will show close to one for well performing quadrotor UAV systems under 

external wind disturbance. 

The above presented performance metric was implemented in the simulation 

environment in the ‘Performance Metric’ block in Figure 5.1. 

 Performance Evaluation Baseline NLDI under Nominal Conditions  

Simulation results can be obtained for the baseline NLDI under no wind 

conditions. This will establish the baseline NLDI’s performance under nominal 

conditions to which all other simulations results can be compared.  

The nominal baseline NLDI evaluation consists of a 60 sec position and altitude 

hold at waypoint (𝑋𝑑, 𝑌𝑑, 𝐻𝑑) = (0, 0, 10)ft for initial condition (𝑋0, 𝑌0, 𝐻0) =

(0, 0, 10)ft with all initial rotational velocities, rotational displacements and translational 

velocities zero. The simulation is performed at a simulation frequency of 𝑇𝑠 = 500𝐻𝑧 for 

no wind conditions, meaning 𝑊̇𝑢 = 𝑊̇𝑣 = 𝑊̇𝑤 = 𝑊𝑢 = 𝑊𝑣 = 𝑊𝑤 = 0 and all wind 

induced forces and moments described in Sections 3.2.2 and 3.2.3 are ignored. 

 Figure 5.10, Figure 5.11 and Figure 5.12 show the tracking performance for the 

attitude angles, angular rates and translational and vertical displacements. As expected, 

the baseline NLDI performs near perfect in a simulation environment free from external 

disturbances. 

This nominal simulation evaluation can be repeated for the extended NLDI, 

baseline NLDI with adaptive ANN augmentation and baseline NLDI with ℒ1 output-
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feedback adaptive control augmentation. It can be shown that the adaptive controllers do 

not generate an augmented value since no uncertainties and/or disturbances are present in 

the environment. This is verified in Table 5.5, which shows the performance index for the 

baseline NLDI, extended NLDI, baseline NLDI with adaptive ANN augmentation and 

baseline NLDI with ℒ1 output-feedback adaptive control augmentation under nominal 

conditions in the simulation environment where 𝑤1 = 𝑤2 = 𝑤3 = 0.3 and 𝑤4 = 0.1 as 

defined in Equation (5.8).  

The values for the performance metric obtained for the four controllers under 

nominal conditions can be characterized as the best obtainable results in this architecture 

to which the further obtained simulation results can be compared. 

 

 

Figure 5.10. Attitude angles tracking performance baseline NLDI under nominal 

conditions. 
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Figure 5.11. Angular rates tracking performance baseline NLDI under nominal 

conditions. 

 

 

Figure 5.12. Translational and vertical tracking performance baseline NLDI under 

nominal conditions. 
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Table 5.5  

Performance Index Comparison under Nominal Conditions in Simulation 

 

 

 Performance Evaluation Case Study 

Now that the nominal condition is established and characterized, the discussed 

control algorithms in Chapter 4 can be evaluated under external wind disturbance in a 

simulation environment. Before considering the Monte Carlo analysis, which will provide 

a performance evaluation over the entire selected wind envelope, a set wind condition can 

be selected for a detailed analysis to provide some insight into the individual control 

algorithms. A randomly chosen external wind disturbance scenario characterized by a 

wind speed of 6kts headed towards 30 degrees North with a turbulence severity of 3 

(Table 5.3 and Table 5.4) is selected for this analysis. The simulation will once again 

consist of a 60 sec position and altitude hold at waypoint (𝑋𝑑, 𝑌𝑑 , 𝐻𝑑) = (0, 0, 10)ft for 

initial condition (𝑋0, 𝑌0, 𝐻0) = (0, 0, 10)ft with all initial rotational velocities, rotational 

displacements and translational velocities zero. The simulation is performed at a 

simulation frequency of 500Hz.  

Figure 5.13 and Figure 5.14 show a top view and 3D view of the position hold 

comparison performed by the four controllers at the stated wind condition. As it is shown, 

the extended NLDI controller outperforms the other controllers in the position and 

Controller PM Attitude PM Rates PM Trajectory PM PWM Global PI

Baseline NLDI 1.0000 1.0000 0.9762 0.333750 0.9262

Extended NLDI 1.0000 1.0000 0.9762 0.333750 0.9262

NLDI + NN 0.9999 0.9999 0.9761 0.333750 0.9262

NLDI + L1 1.0000 1.0000 0.9762 0.333750 0.9262
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altitude hold capabilities since it recovers the quadrotor to the desired location initially 

and maintains a compact trajectory in both position and altitude throughout the remainder 

of the simulation. A steady-state error in the extended NLDI response can be seen 

indicating that the extended NLDI is not able to perfectly invert and cancel the wind 

disturbance. This is caused by the virtual controllers, which enforce transient dynamics 

containing inherent delays on the quadrotor response, making it impossible for the 

extended NLDI to perfectly cancel the wind disturbance. Another factor that prevents a 

perfect cancelation is the inability to invert and correct for the stochastic wind turbulence. 

The baseline NLDI, baseline NLDI with adaptive ANN augmentation and baseline NLDI 

with ℒ1 augmentation perform similarly with respect to the position and altitude hold 

capabilities. 

The performance improvement of the NLDI with ANN augmentation and NLDI 

with ℒ1 augmentation with respect to the baseline NLDI is not quite distinguishable from 

Figure 5.13 and Figure 5.14, but can be seen in the performance index in Table 5.6 for 

𝑤1 = 𝑤2 = 𝑤3 = 0.3 and 𝑤4 = 0.1. The extended NLDI outperforms the other 

controllers at position hold capabilities, while the adaptive controllers increase the overall 

rotational stability of the quadrotor UAV system in comparison to the baseline NLDI 

control law. As expected, the NLDI with ANN augmentation provides the best 

performance in angular rates tracking since the angular rates tracking error drives the 

ANN updating. A similar result is presented for the NLDI with ℒ1 augmentation, which 

promotes a better performance in attitude angle tracking due to the inherent design 

focusing on the attitude angles tracking error. Clearly, the stability of the quadrotor is 

increased with the application of the adaptive ANN and ℒ1 augmentation. The  
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Figure 5.13. Top view 3D simulated position hold performance comparison.  

 

 

Figure 5.14. 3D simulated position hold performance comparison.  

 

performance metric with respect to energy consumption is fairly constant across the 

board with the baseline NLDI with ℒ1 adaptive control performing slightly better. 
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Overall, the NLDI with ANN augmentation results in the highest PI, indicating the best 

performance in comparison with the other methods. 

The extended NLDI, baseline NLDI with adaptive ANN augmentation and NLDI 

with ℒ1 output-feedback adaptive control augmentation can be analyzed in further detail 

to create a better understanding of the overall performance. 

 

Table 5.6  

Performance Index for Performance Comparison 

 

 

5.4.1. Extended NLDI. Figure 5.15 and Figure 5.16 present a comparison of 

the time histories for attitude angles and angular rates for the performed simulation, 

which show that the application of the extended NLDI results in larger magnitude angles 

and rates in the quadrotor UAV. This is especially true in the pitch axis since this is the 

primary axis the wind is acting in. These high magnitude angles and rates are caused by 

the direct inclusion of wind accelerations in the outer loop to generate commanded pitch 

and roll angles as described in Equations (4.40) and (4.41), and by the direct inclusion of 

wind induced moments to generate a control signal commanded to the control allocation 

of the UAV control laws as seen in Equation (4.24). The filtering of wind velocities and 

accelerations would increase the stability of the rotational dynamics of the quadrotor 

Controller PM Attitude PM Rates PM Trajectory PM PWM Global PI

Baseline NLDI 0.9212 0.9361 0.7581 0.333807 0.8180

Extended NLDI 0.8596 0.8758 0.8925 0.333786 0.8218

NLDI + NN 0.9328 0.9558 0.7592 0.333816 0.8277

NLDI + L1 0.9529 0.9282 0.7565 0.333842 0.8246
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UAV equipped with the extended NLDI, but inherent information of the wind would be 

lost in this process. This would degrade the position hold capabilities of the extended 

NLDI. The extended NLDI therefore shows a trade-off between rotational and 

translational tracking stability. 

5.4.2. Adaptive ANN augmentation. In order to appreciate the 

augmentation by the adaptive ANN, it is first necessary to show the behavior of the 

baseline NLDI fast loop response discussed in Section 4.1.1. Figure 5.17 shows a time 

history of the virtual control inputs under wind disturbance conditions in simulation for 

the baseline NLDI, which was first introduced in Equation (4.2). As can be seen, the 

virtual control input takes the shape of an offset value in the roll and pitch rate channels 

caused by the wind disturbance.  

 

 

Figure 5.15. Attitude angles time history comparison under wind disturbance conditions 

in simulation. 
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Figure 5.16. Angular rates time history comparison under wind disturbance conditions in 

simulation. 

 

 

 

Figure 5.17. Baseline NLDI virtual control under wind disturbance conditions in 

simulation. 
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Figure 5.18 shows the outputs of the adaptive ANN under the considered wind 

conditions as defined in Equation (4.53). Figure 5.19 shows the virtual control signal 

generated by the NLDI with ANN augmentation in all three channels as defined in 

Equation (4.58). As it can be seen, the adaptive ANN actively augment a control signal in 

the roll and pitch channels, 𝑈𝑝𝑁𝑁 and 𝑈𝑞𝑁𝑁, in an effort to aid the tracking of the desired 

roll and pitch rates commanded by the baseline NLDI control law; 𝑈𝑝𝑁𝐿𝐷𝐼 and 𝑈𝑞𝑁𝐿𝐷𝐼. 

More activation in the pitch channel seems to be present, which is expected since the 

wind disturbance direction is towards 30 degrees North causing the largest uncertainties 

and inversion errors in the pitch channel. The output of the ANN for the roll and pitch 

channels, shows an augmented signal with a constant offset as shown in Figure 5.18. This 

signal drives the error signal sent to the ANN, 𝑈𝑝𝑁𝐿𝐷𝐼 and 𝑈𝑞𝑁𝐿𝐷𝐼 back to zero, which 

inherently shows a constant offset as presented in Figure 5.17. The output of the ANN for 

the roll and pitch channels shows high frequency corrections on top of the constant offset. 

This high frequency signal is generated to correct for the high frequency wind turbulence. 

The ANN in the yaw channel does not activate at the same intensity as the ANN applied 

in the roll and pitch channels, indicating that the yaw inversion does not contain much 

uncertainty under the simulated wind disturbance. 
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Figure 5.18. Outputs of the adaptive ANN under wind disturbance conditions in 

simulation. 

 

Figure 5.19. NLDI with adaptive ANN augmentation virtual control under wind 

disturbance conditions in simulation. 
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5.4.3. 𝓛1 output-feedback adaptive control augmentation. Figure 5.20 

shows the outputs of the ℒ1 adaptive controller under the simulated wind conditions as 

defined in Equation (4.78). Figure 5.21 shows the virtual control signal generated by the 

NLDI with the ℒ1 adaptive control augmentation for all three channels as defined in 

Equation (4.89). It is shown that the ℒ1 adaptive controller actively augments the roll and 

pitch rate channels, where the pitch channel produces a larger augmented value. The 

augmented values in the roll and pitch channel, 𝑈𝑝𝐿1 and 𝑈𝑞𝐿1, are characterized by a 

similar magnitude and frequency as the virtual roll and pitch rate control coming from the 

baseline NLDI virtual controller; 𝑈𝑝𝑁𝐿𝐷𝐼 and 𝑈𝑞𝑁𝐿𝐷𝐼.  

Comparing the ANN augmentation and ℒ1 adaptive augmentation performance, it 

can be shown in Figure 5.18 and Figure 5.20 that both controllers attempt to aid the baseline 

NLDI by producing an augmented correction signal. Both controllers augment an offset 

value where the ANN outputs also show high frequency adaptation for turbulence. 

 
Figure 5.20. Outputs of the ℒ1 adaptive controller for nominal indoor flight testing under 

wind disturbance conditions in simulation. 
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Figure 5.21. NLDI with ℒ1 adaptive controller augmentation virtual control under wind 

disturbance conditions in simulation. 

 

 Monte Carlo Analysis 

Section 5.4 provides a comparison analysis for the developed control algorithms at one 

wind condition. A Monte Carlo analysis was applied to evaluate and compare the 

performance of the four control algorithms throughout the entire considered wind 

envelope. As previously mentioned, a realistic most adverse wind condition experienced 

by a quadrotor UAV in flight can be set at a wind speed magnitude of 8kts with a 

turbulence severity of 5. Additionally, the wind direction can be varied between 0 and 

359 degrees from North. In order to evaluate the performance of the control algorithms 

throughout this wind envelope, ten equally spaced wind speed magnitudes between 0 and 

8kts, ten equally spaced turbulence severity values between 0 and 5, and five wind 

directions between 0 and 359 degrees were sampled as outlined in Table 5.7 

The four control approaches were evaluated at each possible combination of wind 
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speed magnitude, wind turbulence severity and wind direction resulting in 500 evaluation 

points. At each evaluation point, the performance of the controllers was evaluated with a 

20 sec position and altitude hold at waypoint (𝑋𝑑, 𝑌𝑑, 𝐻𝑑) = (0, 0, 10)ft for initial 

condition (𝑋0, 𝑌0, 𝐻0) = (0, 0, 10)ft with all initial rotational velocities, rotational 

displacements and translational velocities zero. The simulations were run at a frequency 

of 500Hz.  

 

Table 5.7 

Wind Condition Sample Points for Monte Carlo Analysis 

   

 

 The results of the Monte Carlo analysis are presented by plotting the performance 

metric development for attitude tracking, angular rates tracking, trajectory tracking and 

PWM accumulation as a function of wind speed magnitude and turbulence severity at a 

set wind direction. A same plot can be generated for the global PI development with 

𝑤1 = 𝑤2 = 𝑤3 = 0.3 and 𝑤4 = 0.1.  

Figure 5.22 through Figure 5.26 show the development of the performance 

metrics for attitude angles, angular rates, position hold, energy consumption and global 

PI for increasing wind speed magnitude and turbulence severity at a wind direction of 

288 degrees from North. The results show a similar trend as found in Section 5.4; the 

NLDI with ℒ1 augmentation performs best in the attitude angle tracking, NLDI with 

ANN augmentation performs best in angular rate tracking and the extended NLDI 

performs best in position hold. The differences for energy consumption are very small 

Wind Magnitude (kts) 0.00 0.89 1.78 2.67 3.56 4.44 5.33 6.22 7.11 8.00

Wind Turbulence Severity 0.00 0.56 1.11 1.67 2.22 2.78 3.33 3.89 4.44 5.00

Wind Direction from North (deg) 0 72 144 216 288
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with the extended NLDI performing slightly better than the other three controllers. Figure 

5.26 shows that the NLDI with ANN augmentation and NLDI with ℒ1 augmentation 

result in the best performance overall. 

    Based on Figure 5.22 through Figure 5.26, it is shown that although the 

extended NLDI results in the best trajectory tracking performance, it does not necessarily 

produce the best stability characteristics as indicated by Figure 5.22 and Figure 5.23. This 

could be visualized by the quadrotor UAV with extended NLDI holding the desired 

position and altitude well but with attitude oscillations, performing even worse than the 

baseline NLDI. The NLDI with ANN augmentation and NLDI with ℒ1 augmentation 

outperform the baseline NLDI in all plots, increasing the robustness of the quadrotor 

UAV under external wind disturbances.    

 The development of the performance metrics for attitude angles, angular rates, 

trajectory tracking, energy consumption and global PI for increasing wind speed 

magnitude and turbulence severity at a wind direction of 0, 72, 144 and 216 degrees from 

North can be found in the Appendix. A similar trend at the different wind direction 

conditions, as seen in Figure 5.22 through Figure 5.26, can be observed. The figures in 

the Appendix show that, for some wind speed magnitudes and turbulence severity 

combinations, the baseline NLDI and extended NLDI produce instabilities, as shown by a 

sharp decrease in the plotted plane. However, the augmentation by ANN results in the 

NLDI to be stable as compared to the baseline NLDI at these points. The instability is 

either delayed to a more adverse condition or stability is guaranteed throughout the 

envelope, which is not achievable with the baseline NLDI.  

Figure A.11, Figure A.13, Figure A.14, Figure A.15, Figure A.16, Figure A.18 
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and Figure A.19 show an unexpected behavior by the NLDI with ℒ1 augmentation. The 

NLDI with ℒ1 augmentation goes unstable at a certain wind condition but is able to 

converge at a more adverse wind condition. These instabilities will be considered as 

outliers.  

Table 5.8 shows the means for the global performance index and individual 

performance metrics over the 500 Monte Carlo runs. The means confirm the overall 

observed trend with the NLDI with adaptive ANN augmentation overall outperforming 

the other three controllers.  

Table 5.9 summarizes standard deviation for the global performance index and 

individual metrics over the 500 Monte Carlo runs. The standard deviation information 

gives an indication of the consistency of the controller performance throughout the wind 

envelope. As it can be seen, the NLDI with adaptive ANN augmentation performs the 

most consistently in all runs, resulting in a smaller standard deviation than the other three 

controllers. 

 

Figure 5.22. Controller comparison for attitude angles PM for wind 288 deg from North. 
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Figure 5.23. Controller comparison for angular rates PM for wind 288 deg from North. 

 

 

 

Figure 5.24. Controller comparison for trajectory PM for wind 288 deg from North. 
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Figure 5.25. Controller comparison for PWM PM for wind 288 deg from North. 

 

 

 

Figure 5.26. Controller comparison for global PI for wind 288 deg from North. 
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Table 5.8  

Performance Metric Means for 500 Monte Carlo Runs 

 

Table 5.9  

Performance Metric Standard Deviation for 500 Monte Carlo Runs 

 

 

6. Quadrotor UAV Testbed & Implementation Environment 

This chapter will introduce the UAV quadrotor research testbed, weather station 

and flight testing locations used to test the developed algorithms in flight. The hardware 

components consisting of the power and propulsion systems, sensors and Pixhawk flight 

computer are introduced first. This is followed by a discussion of the software 

implemented in the Pixhawk flight computer. This chapter will conclude with a 

presentation of the flight testing locations at which flight tests were performed and the 

weather station applied to characterize the wind in the outdoor environment.  

 

Controller PM Trajectory Mean PM Attitude Mean PM Rates Mean PM PWM Mean Global PI Mean

Baseline NLDI 0.8165 0.9057 0.9002 0.33303 0.8199

Extended NLDI 0.8845 0.8320 0.8151 0.33310 0.7926

NLDI + ANN 0.8270 0.9288 0.9427 0.33322 0.8429

NLDI + L1 0.8222 0.9480 0.9023 0.33324 0.8333

Controller PM Trajectory SD PM Attitude SD PM Rates SD PM PWM SD Global PI SD

Baseline NLDI 0.1114 0.0875 0.0784 0.00318 0.0826

Extended NLDI 0.0951 0.1541 0.1276 0.00117 0.1111

NLDI + ANN 0.0947 0.0478 0.0289 0.00022 0.0502

NLDI + L1 0.1068 0.0526 0.1206 0.00021 0.0929
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 DJI Flamewheel F330 Research Testbed 

The research testbed used to evaluate the performance of the developed control 

algorithms in flight is the DJI Flamewheel F330 quadrotor. This quadrotor is symmetric 

about the body reference x- and y-axis with a crossed arm configuration. This low-cost 

testbed was chosen for its durability and ease of implementation of the required sensors 

and flight computer. Figure 6.1 shows the front/top view of the DJI Flamewheel F330 

testbed with Pixhawk flight computer, GPS module with digital compass, brushless 

motors and eight-inch diameter propellers. Figure 6.2 shows the side view with the 

Lightware laser for altitude measurements, 30A ESCs and a 3000mAh 11.1V lithium-ion 

polymer (LiPo) battery required to power all systems. 

 

 

Figure 6.1. DJI Flamewheel F330 research testbed – front/top view. 
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Figure 6.2. DJI Flamewheel F330 research testbed – side view. 

 

Table 6.1 outlines the main properties of the DJI Flamewheel F330 research 

testbed with the heights measured from the landing gear base. The vertical offset of the 

motors with respect to the CG is 1inch.  

 

Table 6.1  

Main Properties of the DJI Flamewheel F330  

 

Total Flight Weight 2.2lb

Thrust Arm 6.5in

CG Height 4in

Motor Height 5in

Max Height 8in

Ixx 0.0132slug·ft
2

Iyy 0.0132slug·ft
2

Izz 0.0230slug·ft
2
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6.1.1. Pixhawk flight computer and sensor package. The primary flight 

computer equipped on the Flamewheel is the Pixhawk 1 (PX1) autopilot unit (Figure 

6.3). Originally designed by 3D Robotics, PX1 offers internal processing at 180MHz 

with 256 KB RAM and 2MB of Flash. Although the processing capabilities of the PX1 

are not outstanding, they are sufficient to run all required control laws including the 

adaptive controllers. 

PX1 runs a soft real-time operating system (RTOS) where information about the 

current status of the board can be communicated by the light emitting diode (LED), 

multi-tone audio and data logging on the microSD card. PX1 includes 14 PWM outputs 

and a wide variety of additional connectivity options such as 12C, CAN, ADC and 

UART. The board is powered by the flight batteries. 

 

 

Figure 6.3. PX1 autopilot board (Px4 Dev Team, 2019). 

 

Various embedded sensors that are part of the standard autopilot unit, and external 

sensors that are required for navigation can be identified that are necessary for stable and 

controlled flight of the Flamewheel quadrotor.  

MPU6000 3-axis accelerometer/gyroscope. The primary accelerometer and 

gyroscope used by the PX1 is the MPU6000 (Figure 6.4). This sensor provides 3-axis 
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angular rates and translational acceleration measurements in the body reference frame at 

a maximum frequency of 8kHz.  

  

 

Figure 6.4. MPU6000 3-axis primary accelerometer/gyroscope (SparkFun Electronics, 

2013). 

 

ST micro L3GD20H 16-bit gyroscope. The L3GD20H 16-bit gyroscope is a 

secondary gyroscope sensor equipped in the PX1. It is defined as a low-power angular 

rate sensor which gives the possibility to communicate the measured angular rates at 

different bandwidths to external devices through the serial protocol I2C.  

ST micro L3M303D 14-bit accelerometer/magnetometer. The L3M303D 

14-bit accelerometer/magnetometer is a secondary accelerometer/magnetometer sensor 

equipped in the PX1. The L3M303D includes an I2C interface used to communicate 

readings through external connections.  

UBLOX LEA-6H GPS receiver module with digital compass. The 

external UBLOX GPS includes the HMC5883L digital compass which provide the PX1 

with a heading and a position measurement in the inertial reference frame. The GPS and 

digital compass are required to be connected to the PX1 through serial and I2C 

connection respectively. The inclusion of the digital compass in the external UBLOX 

GPS is convenient due to the possibility of mounting the compass away from potential 
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sources of interference. The GPS and digital compass offer a 5Hz update rate. 

 

 

Figure 6.5. UBLOX LEA-6H GPS receiver module with digital compass (ArduPilot Dev 

Team, 2019). 

 

Lightware SF11/C laser. The external Lightware SF11/C laser provides the 

PX1 with altitude readings throughout the flight (Figure 6.6). The laser is connected to 

the PX1 through serial connection offering altitude measurements with a range up to 

120m.  

 

 

Figure 6.6. Lightware SF11/C laser (ACRONAME, 2019). 

 

DX8 8CH transmitter and DSMX remote receiver. The DX8 8CH 

transmitter is used during flight testing operations to allow for wireless communication 

with the PX1 onboard autopilot unit. The transmitter is equipped with eight channels 

which can be set up using four channels for primary flight controls, one channel for 

arming/unarming of the PX1 and three extra optional switches. The transmitter includes a 
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battery pack which offers about an hour of usage before recharge is required. The signals 

from the DX8 8CH transmitter are received by the DSMX remote receiver connected to 

the PX1. The DX8 8CH transmitter and DSMX remote receiver can be seen in Figure 

6.7. 

 

 

Figure 6.7. DX8 8CH transmitter and DSMX remote receiver (Horizon Hobby, 2019). 

6.1.2. Power and propulsion systems. In order to provide power to the PX1 

and to allow for the outputs of the PX1 to be send to the motors, various power and 

propulsion systems are required, which are introduced next.  

2212 920KV brushless motors. The Flamewheel is equipped with four low-

cost 2212 920KV brushless motors to provide the required propulsion (Figure 6.8). These 

high performance motors are easy to assembly and very durable. This motor is rated for 

920 RPM/V (KV). Separate motors allow for clockwise and anticlockwise assembling of 

the propellers to distinguish the spin direction.  
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Figure 6.8. 2212 920KV brushless motors (Amazon, 2019). 

 

Simonk 30A ESC. Low-cost Simonk 30A electronic speed controllers (ESCs) 

are applied to regulate the speed of the brushless motors. The ESCs will allow PWM 

commands from the PX1 to be converted to voltage input to the motors. These ESCs can 

be calibrated for the throttle range of the DX8 8XH transmitter for optimal performance. 

Additionally, the Simonk 30A offer various safety and protection modes.  

 

 

Figure 6.9. Simonk 30A ESC (Amazon, 2019). 

 

B8x4.5MR-B4 propellers. The Flamewheel is equipped with eight-inch 

diameter, 4.5 inch pitch propellers produced by Advanced Precision Composites (Figure 

6.10). These cost-efficient plastic propellers are very durable and are compatible with the 

clockwise and anticlockwise rotation required for the quadrotor UAV.  
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Figure 6.10. B8x4.5MR-B4 propellers (Propellers, 2019). 

 

HobbyStar 3000mAh 11.1V, 3S 30C LiPo battery. The HobbyStar 

3000mAh 11.1V lithium-ion polymer (LiPo) battery is used to power the PX1 and 

propulsion systems of the Flamewheel quadrotor (Figure 6.11). This battery offers fast 

charging at a rate of 2C and powerful discharging capabilities at 30C, making it an ideal 

fit to power the Flamewheel.  

 

Figure 6.11. HobbyStar 3000mAh 11.1V LiPo battery (RCJuice, 2019). 

 

 Embedded Software 

Embedded software is required to allow for the deployment of the developed 

control law architectures presented in Chapter 4 in the PX1 flight computer for inflight 

testing. MATLAB/Simulink provides embedded coder options to allow for the testing of 

MATLAB/Simulink generated codes with hardware-in-the-loop. One example is the 
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Pixhawk Support Package for embedded coder, which offers the possibility to generate C 

code from designed Simulink models that are compatible with the PX1 board.  

6.2.1. Pixhawk support package. The Pixhawk Support Package allows 

users to convert Simulink models to readable, compact, and fast C and C++ code 

compatible for deployment on the PX1 flight management unit using the Pixhawk 

Toolchain. Using this support package, several embedded PX1 sensors can be interfaced 

with the Simulink flight code allowing for real-time sensor data to be used in-flight. 

These sensors include the gyroscope, IMU, internal attitude estimation and GPS. An 

input block allows for transmitter commands to be used in the code, while an output 

block allows for generated output signals to be send to the 14 PWM ports of the PX1. 

Status updates can be communicated with the appropriate blocks for the LED, multi-tone 

audio speaker and data logger. Figure 6.12 shows the library with the provided blocks of 

the Pixhawk Support Package in MATLAB 2016b. 

 

Figure 6.12. Pixhawk Support Package library blocks (Pilot Engineering Group 

Mathworks, 2017). 
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6.2.2. S-function development. The Pixhawk Support Package library 

(Figure 6.12) provides many blocks allowing for the communication between the 

Simulink code and the PX1 internal sensors and output ports. However, some blocks 

required for the application to the Flamewheel are not provided and were developed at 

the Advanced Dynamics and Control Laboratory (ADCL). One approach to design these 

blocks is using S-Function coder for Simulink. An S-Function is a representation of a 

Simulink block written in C or C++ code that can be executed to create a desired 

interface between Simulink and the PX1. Figure 6.13 shows developed S-Function blocks 

at the ADCL required for the implementation of the developed control algorithms in the 

Flamewheel quadrotor (Rivera K. , 2018). The ‘PX4_signal_log’-block allows for flight 

data to be stored on the microSD card of the PX1 for post-flight data processing, the 

‘PX4_gps_position’ and ‘PX4_gyros_filtered’ blocks provide readings of the filtered and 

corrected readings for the GPS and gyroscope, and the ‘laser’-block allows for the 

readings from the Lightware SF11/C laser to be used in the Simulink code during flight.  

 

 

Figure 6.13. S-Functions developed at the ADCL (Rivera K. , 2018). 
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6.2.3. Flamewheel F330 flight code. Figure 6.14 shows the general 

architecture of the implementation code used in the Flamewheel quadrotor for flight 

testing. The flight code is a modification of the simulation code discussed in Section 5.1. 

The ‘px4-SENSORS’ and ‘Attitude Estimation’ blocks in Figure 6.14 use blocks from 

the Pixhawk Support Package library (Figure 6.12) and developed S-Functions (Figure 

6.13) to allow the inflow of real-time sensor data from the IMU, gyroscope, 

magnetometer, GPS and laser sensor into the code, which is subsequently used to 

estimate current states of the Flamewheel quadrotor. Estimated states are used in the 

‘Control Laws’ and ‘Control Allocation’ blocks to control the quadrotor in a stable 

manner during flight. Transmitter inputs enter the code in the ‘RC Inputs’ subsystem 

which contains the transmitter block from the Pixhawk Support Package. Outputs of the 

code are sent to the LED, multi-tone audio and output ports of the PX1 in the ‘Pixhawk 

Outputs’ block. Desired states are logged on the PX1 microSD card in the ‘DATA 

RECORDING’-block using the developed S-Function shown in Figure 6.12. 

 

 

Figure 6.14. General architecture of the implementation code used in the Flamewheel 

quadrotor. 
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Note that the outer-loop tracking controller uses the cascade PID architecture 

presented in Section 4.1.2. The tuned virtual controller gains for the baseline NLDI in the 

flight code to achieve stable and desired transient and steady-state characteristics can be 

seen in Table 6.2. 

 

Table 6.2  

Baseline NLDI Flight Code Virtual Controller Tuned Gains 

 

 

 Ground Weather Station 

A characterization of the current wind conditions is required in outdoor flight 

testing in order to evaluate the Flamewheel performance with the developed control 

algorithms as a function of the current wind conditions. This can be accomplished by 

Controller PID gains

U p , U q [8.8713 3 0.175]

U r [17 0 0]

Controller PID gains

U θ,U φ [3 0 0]

U ψ [1.4 0 0]

Controller PID gains

K u , K v [6.62 1.55 0]

K w [1.369 0.17 0.12]

K Ẋ , K Ẏ [0.5 0 0]

K Ż [0.22 0.06 0]

Inner Stability Fast Loop

Equation (4.2)

Inner Stability Slow Loop

Equation (4.5)

Outer Tracking loop

Equation (4.11) 

Equation (4.12)
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using the ULTIMETER 2100 weather station developed by Peet Bros which offers a 

wide variety of weather measurement options such as humidity, amount of rain, 

temperature and wind, as can be seen in the wire diagram shown in Figure 6.15. 

 

 

Figure 6.15. ULTIMETER 2100 wiring diagram showing all compatible sensors (Bros, 

2017). 

 

 The ULTIMETER 2100 weather station components required in this research 

include the keyboard/display unit that provides multiple options to show current weather 

statistics and an anemometer with wind vane that can be connected to the 

keyboard/display unit with a 40ft cable as can be seen in (Figure 6.16).  

Weather measurements from the ULTIMETER 2100 can be stored using the 

WeatherText software from Peet Bros. This software saves various measurements in one 

minute intervals in a .txt file on a connected computer. A sample report can be seen in 

Figure 6.17, which shows the collection of all current measurements, highest wind speed 
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over the past minute, highest wind speed since data collection started and one minute 

average wind speed.  

 

Figure 6.16. ULTIMETER 2100 ground weather station. 

 

Figure 6.17. Sample WeatherText software wind measurement report. 
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 Flight Testing Locations 

Flight tests with the Flamewheel UAV quadrotor were performed at two different 

locations. Initial flight testing was performed at the Indoor Unmanned Systems Testing 

Facility (IUSTF) at the John Mica Engineering & Aerospace Innovation Complex 

(MicaPlex) for initial tuning and nominal flight evaluation. Outdoor flight testing was 

performed at the artificial turf softball field at Embry-Riddle Aeronautical University to 

evaluate the Flamewheel flight under wind disturbance conditions.    

6.4.1. MicaPlex indoor unmanned systems testing facility. The IUSTF 

is an indoor multipurpose testing environment located inside the Micaplex at the Embry-

Riddle Aeronautical University Research Park (Figure 6.18). The IUSTF offers a 

multipurpose indoor testing environment for ground and air unmanned systems. The 

facility is equipped with a VICON motion capture system, which allows for the capturing 

and tracking of the motion of both ground and air systems inside the facility. The VICON 

motion capture system software can be interfaced with MATLAB/Simulink to allow for 

the use of captured data in both real-time and post processing applications.  

 Initial flight tests conducted inside the IUSTF were aimed towards tuning the 

inner stability loop virtual controllers of the baseline NLDI control law under nominal no 

wind disturbance conditions. The IUSTF offers a near disturbance free environment with 

only small disturbances caused by ground and wall effects. Subsequent flight tests 

evaluated the performance of the controllers under indoor nominal conditions in the 

Flamewheel quadrotor. The indoor flight test setup can be seen in Figure 6.19. 
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Figure 6.18. Location of Indoor Unmanned Systems Testing Facility inside the MicaPlex 

(Google, 2019). 

 

Figure 6.19. Flight testing inside the Indoor Unmanned Systems Testing Facility. 
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6.4.2. ERAU artificial turf softball field. Outdoor flight testing was 

conducted at the artificial turf softball field at Embry-Riddle Aeronautical University 

shown in Figure 6.20. The artificial turf softball field offers a favorable testing location 

due to the available space and its close proximity to the ADCL. Additionally, the 

artificial turf field remains functional after nightly precipitation as compared to real grass 

and offers a relatively soft and smooth surface for quadrotor landings. Flight testing at the 

artificial softball field was performed to evaluate the developed control algorithms in an 

outdoor wind environment, which could be characterized using the ground weather 

station. 

 

 

Figure 6.20. Artificial Turf Softball Field at Embry-Riddle Aeronautical University 

(Google, 2019). 
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7. Implementation Analysis 

The simulation results presented in Chapter 5 showed the improvement in 

position hold capabilities of the quadrotor UAV simulation with the extended nonlinear 

dynamic inversion (NLDI), and the improvement in rotational stability gained by 

augmenting the baseline NLDI with adaptive artificial neural networks (ANN) and ℒ1 

output-feedback adaptive control. This chapter will show flight test results of the baseline 

NLDI, baseline NLDI with ANN augmentation and baseline NLDI with ℒ1 output-

feedback adaptive control augmentation implemented in the Flamewheel testbed 

introduced in Chapter 6.  

No implementation results are shown for the extended NLDI because significant 

disadvantages of the extended NLDI application came to light in the simulation analysis 

performed in Chapter 5; a decrease in stability as compared to the baseline NLDI, the 

cancellation of the wind forces can only be performed in a full autonomous environment 

and the additionally required wind estimation/measurement method which, if not 

performed very accurately, will decrease the robustness of the overall system. 

The implemented control law architectures are according to the presented 

architectures in Chapter 4. The outer loop of the NLDI control law will consist of the 

cascade PID architecture as presented in Section 4.1.2. Initial flight testing with the 

baseline NLDI augmented with ANN and ℒ1 showed that augmenting the yaw rate 

channel in the fast loop did not significantly affect nor improve the dynamic response of 

the system, as it is also observed in the simulation results shown in Chapter 5. Yaw rate 

augmentation by the ANN and ℒ1 in the fast loop is therefore omitted.  

Since the adaptive ANN and ℒ1 augmentation are designed and tuned in the 
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simulation environment discussed in Section 5.1, additional tuning is required for 

successful implementation in the flight code. This is achieved for the adaptive ANN by 

tuning the learning rates inside the adaptive ANN with a knob on the transmitter in flight 

before engaging the autonomous hold. The ℒ1 adaptive controller is tuned by multiplying 

the augmentation value with an adjustable gain which will correct for the difference in 

magnitude of the virtual controllers in the simulation (Table 5.2) and implementation 

(Table 6.2) codes. This is required to effectively scale the output value of the ℒ1 adaptive 

controller to achieve successful augmentation of the fast loop.  

As discussed in Section 6.1.1, the PX1 runs a soft real-time operating system 

meaning that the internal sample time will depend on the required computation. In this 

application, the PX1 runs at a maximum sampling rate of 25Hz with all the flight code 

running effectively and consistently, but has been found to run as low as 13Hz on 

occasion. One point of concern related to this sample frequency is the design of the 

discrete ℒ1 adaptive controller. Section 4.4.3 showed that the reference model is designed 

with 𝜔𝑛𝑚
= 25 rad/s in order to mimic the ideal response of the fast loop of the baseline 

NLDI. According to the Nyquist frequency theorem, a PX1 board with a sampling rate of 

25Hz will be able to correctly represent discretized dynamic signals with a maximum 

frequency of 12.5Hz (Ogata, 1995). Signals with a higher frequency than 12.5Hz will not 

be represented correctly in the PX1 board with a sampling rate of 25Hz. For a PX1 

sampling rate of 13Hz, the highest supported frequency drops to 6.5Hz. The discretized 

reference model of the ℒ1 adaptive controller has a natural frequency of 𝜔𝑛𝑚
= 25 rad/s 

= 4 Hz. The desired dynamics in the implemented reference model of the ℒ1 adaptive 

controller should therefore be represented correctly in the PX1. This is not an issue in the 
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simulation environment since the sampling frequency was set at 𝑇𝑠 = 500Hz. The PX1 

board therefore enforces a considerable restriction on the implementation of the ℒ1 

adaptive controller. 

In regards to the implemented filter in the ℒ1 adaptive controller, Section 4.4.3 

showed that the bandwidth is established at 105 rad/s which is equal to a 16.7Hz 

frequency. The PX1 board has a maximum sample frequency equal to 25Hz, so 

effectively the implemented ℒ1 filter will filter high frequency signals caused by the wind 

disturbance while not affecting the dynamics of the desired reference model.  

Three sets of flight tests are performed for which the results are presented to 

evaluate the flight performance of the implemented baseline NLDI, baseline NLDI 

augmented with ANN and baseline NLDI augmented with ℒ1 in the Flamewheel 

quadrotor. The first set of flight tests shows results for the three controllers inside the 

Indoor Unmanned Systems Testing Facility (IUSTF) to evaluate the performance of the 

controllers in a near disturbance free environment. The second set of flight tests show 

results for the three controllers implemented in the Flamewheel quadrotor in flight tests 

performed at the artificial turf softball field at minimal wind conditions. Finally, flight 

test results are shown for the Flamewheel quadrotor with the three controllers under low, 

medium and high wind disturbance conditions characterized by the ground weather 

station.   

 Performance Evaluation Indoor Nominal Conditions 

The first set of flight tests focus on evaluating the baseline NLDI, baseline NLDI 

with ANN augmentation and baseline NLDI with ℒ1 augmentation in the IUSTF. This 

will assess the performance of the three controllers under nominal, almost disturbance 
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free indoor conditions. Ideally, the augmentation of the baseline NLDI with ANN and ℒ1 

should add robustness in the presence of uncertainties and disturbances but should not 

hurt the nominal performance of the baseline NLDI. The results for the nominal indoor 

tests for the three controllers should therefore be consistent, indicating that the addition of 

the augmentation does not negatively influence the performance of the baseline NLDI at 

nominal conditions. 

The indoor testing consisted of an autonomous altitude hold and no position hold 

since the IUSTF does not allow for a GPS signal to be received by the GPS module. In 

this case, the pilot takes-off and engages a switch for the Flamewheel to sample-and-hold 

the current altitude autonomously while the pilot attempts to maintain the position 

manually. The performance metric for trajectory tracking described in Equation (5.4) was 

modified to reflect this limitation of the indoor environment to only include vertical 

displacement tracking error with 𝑤2 = 𝑤3 = 0.4 and 𝑤1 = 𝑤4 = 0.1 as defined in 

Equation (5.8). 

Table 7.1 shows the performance metric results for comparable nominal indoor 

flight tests with the three controllers. The learning rates of the adaptive ANN introduced 

in Equation (4.54) are tuned for high adaption with  𝛤1 = 𝛤2 = 33.5 for the shown test 

results. The augmented output of the ℒ1 adaptive controller was multiplied by 5.2 to 

obtain the desired response, which is also roughly the scaling difference between the 

virtual controllers in the fast loop in the simulation environment and in the flight code 

(Table 5.2 and Table 6.2).  

As it can be seen, the baseline NLDI results in the best overall performance. The 

application of NLDI with ANN augmentation and NLDI with ℒ1 augmentation both 
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result in a slightly worse performance as compared to the baseline NLDI. This is not 

alarming whatsoever though, and it is a commonly seen trait of the addition of adaptive 

control at nominal conditions. It is important to note that the baseline NLDI does not 

become unstable in nominal conditions with the application of adaptive ANN and ℒ1 

adaptive control. The effect of the adaptive controllers will primarily be seen during 

abnormal and disturbed conditions. 

 

Table 7.1  

Performance Index Comparison for Nominal Indoor Flight Tests 

 

 

7.1.1. Baseline NLDI. In order to further analyze the performance of the 

adaptive ANN and ℒ1 augmentation in the fast loop of the NLDI, first the baseline NLDI 

characteristics need to be known. Figure 7.1 shows the baseline NLDI roll and pitch rate 

virtual control values defined in Equation (4.2) for the indoor test flights during the 

autonomous hold. As it can be seen, both signals show a fast changing response close to 

zero to obtain the desired closed-loop response in the inner stability loop inversion using 

the baseline NLDI control law. 

7.1.2. Adaptive ANN augmentation. Figure 7.2 shows the outputs of the 

adaptive ANN in the roll and pitch channel as defined in Equation (4.53). Figure 7.2 is 

extended to include the portion of the flight before the autonomous hold to show the 

behavior of the adaptive ANN after engagement. This behavior of the ANN after 

Controller PM Attitude PM Rates PM Altitude PM PWM Global PI Flight Time (s)

Baseline NLDI 0.8810 0.8038 0.8836 0.728300 0.8351 36.85

NLDI + NN 0.7325 0.7652 0.8719 0.726816 0.7589 33.50

NLDI + L1 0.8622 0.7224 0.8699 0.727104 0.7935 35.62
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activation can be observed in all flight tests with the Flamewheel, and so this portion will 

be omitted in future plots of flight test data to strictly evaluate the performance of the 

Flamewheel during autonomous altitude (and position) hold. Figure 7.2 shows that the 

ANN outputs attain an equilibrium with the baseline NLDI controller shortly after being 

activated and remain constant throughout the autonomous hold. The ANN outputs attain 

a constant value that is directly dependent on the selection of the e-modification 

parameter that counteracts uncontrolled parameter growth introduced in Equation (4.54). 

This parameter is set to 0.02 in all test flights shown in this chapter. The addition of this 

term will effectively enforce an upper bound on the outputs of the ANN. The ANN 

outputs do not show high frequency corrections due to the near disturbance free 

environment in the IUSTF. 

 

 

Figure 7.1. Baseline NLDI roll and pitch rate virtual control for nominal indoor flight 

testing. 
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Figure 7.2. Outputs of the adaptive ANN for nominal indoor flight testing. 

 

Figure 7.3 shows the virtual control signal generated by the NLDI with ANN 

augmentation as defined in Equation (4.58). Comparing Figure 7.3 with Figure 7.1 shows 

that the combined signal for the 𝑈𝑁𝐿𝐷𝐼 + 𝑈𝑁𝑁 in Figure 7.3 is very similar to the 𝑈𝑁𝐿𝐷𝐼 

signal in the baseline NLDI shown in Figure 7.1. This shows that the addition of adaptive 

ANN augmentation does not degrade the nominal behavior of the NLDI control law. 

Comparing Figure 7.3 and Figure 5.19 shows a difference between the NLDI with 

adaptive ANN augmentation virtual control in simulation and implementation. This is 

caused by the selection of the e-modification parameter (Equation (4.54)), which is set at 

the same value for the simulation and implementation analyses. Because of the upper 

bound that is required to promote stability, the adaptive ANN is not able to drive the 𝑈𝑝𝑁𝐿𝐷𝐼 

and 𝑈𝑞𝑁𝐿𝐷𝐼 signals to zero in the implementation results as is achieved in the simulation 

results. This creates an equilibrium between the various signals that still attains the desired 

dynamic characteristics as can be seen in Figure 7.3. 
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Figure 7.3. NLDI with adaptive ANN augmentation roll and pitch rate virtual control for 

nominal indoor flight testing. 

 

As mentioned earlier, adaptive ANN are notorious for their sometimes 

unexpected behavior. This unwanted trait caused by the inherent self-adaptive nature of 

the network parameters can be seen in one of the performed test flights in the IUSTF. 

Figure 7.4 shows the outputs of the adaptive ANN for one of the test flights. Initially the 

ANN were stable and output constant values throughout the flight. However, at some 

point towards the end of the flight the adaptive ANN outputs show a high frequency 

character without an apparent reason. The result of this instability can be seen in Figure 

7.5 which shows the NLDI with adaptive ANN augmentation roll and pitch rate virtual 

control signals becoming very oscillatory at the end of the autonomous altitude hold. In 

this flight, the pilot had to recover to prevent a loss of complete flight control. This shows 

the care that must be taken when introducing ANN in active flight controls.  
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Figure 7.4. Outputs of the adaptive ANN showing instability for nominal indoor flight 

testing. 

 

 

 

Figure 7.5. NLDI with adaptive ANN augmentation roll and pitch rate virtual control 

showing instability for nominal indoor flight testing. 
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7.1.3. 𝓛1 output-feedback adaptive control augmentation. Figure 7.6 

shows the outputs of the ℒ1 output-feedback adaptive controller in the roll and pitch 

channel as defined in Equation (4.101). Figure 7.7 shows the NLDI with ℒ1 adaptive 

controller augmentation for the roll and pitch rate virtual controllers as defined in 

Equation (4.89). The results show that the ℒ1 adaptive controller only augments small 

values, which is expected due to the near disturbance free environment in the IUSTF, 

resulting in small uncertainties in the feedback linearization in the fast loop of the NLDI 

control law. 

 

 

Figure 7.6. Outputs of the ℒ1 adaptive controller for nominal indoor flight testing. 
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Figure 7.7. NLDI with ℒ1 adaptive controller augmentation roll and pitch rate virtual 

control for nominal indoor flight testing. 

 

 Outdoor Performance Evaluation 

The second set of flight tests focus on evaluating the baseline NLDI, baseline 

NLDI with ANN augmentation and baseline NLDI with ℒ1 augmentation in the 

Flamewheel quadrotor at the artificial turf softball field at different magnitude wind 

conditions characterized by the ground weather station. The outdoor testing campaign 

consists of an autonomous altitude and position hold. During these tests, the pilot takes-

off and engages a switch for the Flamewheel to sample-and-hold the current altitude and 

position autonomously. The original performance metric for trajectory tracking defined in 

Equation (5.4) is applied with 𝑤1 = 𝑤2 = 𝑤3 = 0.3 and 𝑤4 = 0.1 as defined in Equation 

(5.8).   

7.2.1. Nominal wind disturbance conditions. While the results in Section 

7.1 show the nominal results in the indoor near disturbance free environment, this section 
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shows nominal results in the outdoor environment. The flight tests presented here are 

performed at near wind free conditions as measured by the ground weather station to 

allow for a performance evaluation at outdoor nominal conditions.  

Table 7.2 shows the performance metric results for comparable nominal outdoor 

flight tests with the three controllers. The learning rates of the adaptive ANN defined in 

Equation (4.54) are tuned to allow for fast adaptation with 𝛤1 = 𝛤2 = 38.1 for the shown 

test results. The augmented output of the ℒ1 adaptive controller was multiplied by 8.85 to 

obtain the desired response. 

 

Table 7.2  

Performance Index Comparison for Nominal Outdoor Flight Tests 

 

 

Table 7.2 shows similar results for the nominal outside tests as for the nominal 

inside test presented in Section 7.1. All three controllers result in a desired stable and 

tracking quadrotor dynamic response with the baseline NLDI slightly outperforming the 

NLDI with ANN augmentation and NLDI with ℒ1 augmentation. Again, this is expected 

with the most important result in these tests being that the augmented controllers perform 

about as well as the nominal baseline controller at nominal outdoor flight conditions.  

The baseline NLDI roll and pitch rate virtual control signal characteristics for the 

outdoor testing during the autonomous altitude and position hold are observed to be 

almost identical to the results obtained in the indoor testing shown in Figure 7.1. The 

Controller PM Attitude PM Rates PM Trajectory PM PWM Global PI Flight Time (s)
Average Wind 

Speed (kts)

Maximum Wind 

Peak (kts)

Baseline NLDI 0.9049 0.8530 0.7381 0.727220 0.8215 31.19 0.0 0.0

NLDI + NN 0.8591 0.7363 0.7269 0.729182 0.7696 27.17 0.0 0.0

NLDI + L1 0.9086 0.8164 0.7529 0.729835 0.8164 30.16 0.0 0.0
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same can be said about the NLDI with ANN augmentation and NLDI with ℒ1 

augmentation which show to result in very similar looking response plots for the roll and 

pitch rate virtual controllers as shown in Figure 7.2, Figure 7.3, Figure 7.6 and Figure 7.7. 

This confirms the proper working of the augmented controllers at nominal outdoor 

conditions. 

Figure 7.8 shows the 3D trajectory of the Flamewheel quadcopter with the 

baseline NLDI, baseline NLDI with ANN augmentation and baseline NLDI with ℒ1 

augmentation during the autonomous altitude and position hold in the outdoor nominal 

environment. The colored spheres represent the commanded position and altitude for the 

three separate flights. As can be seen by the axis limits, all controllers hold the 

commanded position and altitude well with some slight transient error when switching 

from pilot-in-the-loop to autonomous control. 

 

 

 

Figure 7.8. 3D trajectory comparison for nominal outdoor flight testing. 
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7.2.2. Low wind disturbance conditions. Table 7.3 shows the performance 

index comparison for low wind conditions for the three controllers together with the 

average and maximum wind speed peak for each flight. Table 7.3 indicates that for low 

wind conditions, which can be characterized by wind speeds up to 3kts, the three 

controllers perform uniformly. Comparing Table 7.3 with Table 7.2 shows that the 

presence of low wind disturbance results in a reduction of the global PI and all PMs for 

the three controllers.   

 

Table 7.3  

Performance Index Comparison for Low Wind Conditions 

 

 

Figure 7.9 shows the 3D trajectory of the Flamewheel quadcopter with the 

baseline NLDI, baseline NLDI with ANN augmentation and baseline NLDI with ℒ1 

augmentation during the autonomous altitude and position hold outdoors in the presence 

of low wind disturbance conditions. As it can be seen, the Flamewheel is able to sustain 

controlled flight with all three controllers. Comparing Figure 7.9 with Figure 7.8 shows 

that the overall deviation of the quadrotor from the desired waypoint is larger for higher 

wind disturbance conditions. 

Adaptive ANN augmentation. Figure 7.10 shows the outputs of the adaptive 

ANN in the roll and pitch channel for low wind conditions during the autonomous 

position and altitude hold. The learning rates of the adaptive ANN introduced in Equation 

Controller PM Attitude PM Rates PM Trajectory PM PWM Global PI Flight Time (s)
Average Wind 

Speed (kts)

Maximum Wind 

Peak (kts)

Baseline NLDI 0.8338 0.6120 0.6778 0.725926 0.7097 29.96 2.1 3.6

NLDI + NN 0.8346 0.6695 0.6014 0.730011 0.7047 29.32 1.8 2.3

NLDI + L1 0.8940 0.6410 0.6166 0.729872 0.7185 35.50 3.0 5.3
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(4.54) are tuned for high adaption with  𝛤1 = 𝛤2 = 30.0 for the shown test results. A 

similar constant offset of the outputs as seen in Section 7.1.2 can be observed. 

Superimposed higher frequency spikes can be seen which are induced by the ANN in an 

effort to correct for the wind disturbances in the fast loop of the NLDI control law.  

𝓛1 output-feedback adaptive control augmentation. Figure 7.11 shows the 

outputs of the ℒ1 output-feedback adaptive controller in the roll and pitch channel for low 

wind conditions during the autonomous position and altitude hold. The augmented output 

of the ℒ1 adaptive controller was multiplied by 3.1 to obtain the desired response. The 

outputs of the ℒ1 output-feedback adaptive controller show small, high frequency values 

which are augmented in the fast loop in an effort to increase the robustness of the 

rotational dynamics response. 

 

 

Figure 7.9. 3D trajectory comparison for low wind conditions. 
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Figure 7.10. Outputs of the adaptive ANN for low wind conditions. 

 

 

 

Figure 7.11. Outputs of the ℒ1 adaptive controller for low wind conditions. 

 

7.2.3. Medium wind disturbance conditions. Table 7.4 shows the 

performance index comparison for medium wind conditions for the three controllers 
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together with the average and maximum wind speed peak for each flight. Table 7.4 

indicates that for medium wind conditions, which can be characterized by wind speeds 

between 3kts and 5kts, the baseline NLDI with ANN and ℒ1 augmentation outperform 

the baseline NLDI controller. The added value of augmenting the baseline NLDI control 

law can clearly be seen for flights exposed to increased wind disturbance conditions.  

The performance index results at medium wind conditions show that the previous 

discussed concern in regards to the lower than desired sampling frequency of the 

reference model of the ℒ1 output-feedback adaptive controller does not degrade the 

robustness of the system.  

 

Table 7.4  

Performance Index Comparison for Medium Wind Conditions 

 

 

Figure 7.12 shows the 3D trajectory of the Flamewheel quadrotor with the 

baseline NLDI, baseline NLDI with ANN augmentation and baseline NLDI with ℒ1 

augmentation during the autonomous outdoor altitude and position hold in the presence 

of medium wind disturbance conditions. In this case, the Flamewheel is able to sustain 

controlled flight with all three controllers. Comparing Figure 7.12 with Figure 7.9 shows 

that the overall deviation of the quadrotor from the desired waypoint is larger for 

increased wind disturbance conditions. 

A closer look can be taken at the stability of the angular dynamics performance of 

Controller PM Attitude PM Rates PM Trajectory PM PWM Global PI Flight Time (s)
Average Wind 

Speed (kts)

Maximum Wind 

Peak (kts)

Baseline NLDI 0.6735 0.0958 0.4333 0.729901 0.4338 19.04 4.0 6.4

NLDI + NN 0.7918 0.4697 0.5243 0.727829 0.6085 27.45 3.6 5.0

NLDI + L1 0.7964 0.4569 0.5586 0.729209 0.6165 16.16 3.6 4.6
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the three controllers in the presence of medium wind disturbance conditions. 

 

 

Figure 7.12. 3D trajectory comparison for medium wind conditions. 

 

Baseline NLDI. Figure 7.13 shows the roll and pitch angle response for the 

baseline NLDI control law under medium wind disturbance conditions. Both responses 

show a very oscillatory behavior of the angular dynamics of the Flamewheel quadrotor 

during the 3D autonomous position and altitude hold. The quadrotor with baseline NLDI 

is heavily affected by the wind disturbance and the robustness of the rotational dynamics 

is decreased.  

Adaptive ANN augmentation. Figure 7.14 shows the outputs of the adaptive 

ANN during the position and altitude hold at medium wind conditions. The learning rates 

of the adaptive ANN are tuned for high adaption with  𝛤1 = 𝛤2 = 46.1 to allow for fast 

adaptation of the network parameters to the wind disturbance. As can be seen, a constant 

offset of the outputs is again observed. Comparing Figure 7.14 with Figure 7.10 shows 

the increase of high frequency characteristics of the outputs of the adaptive ANN at 
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medium wind conditions as compared to low wind conditions. For an increase in external 

disturbance induced by the wind, the adaptive ANN will attempt to estimate and adapt for 

the external uncertainties in the system faster. 

Figure 7.15 shows the effect of the adaptive ANN augmentation on the roll and 

pitch angle response under medium wind conditions during the autonomous position and 

altitude hold. Comparing Figure 7.15 with Figure 7.13 shows the increase in robustness 

of the rotational dynamics of the Flamewheel quadrotor in flight exposed to medium 

wind conditions. The relatively large oscillatory behavior observed in the Flamewheel 

with the baseline NLDI control law have been considerably corrected for by the addition 

of ANN augmentation. 

 

 

Figure 7.13. Roll and pitch angle response for baseline NLDI under medium wind 

conditions. 
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Figure 7.14. Outputs of the adaptive ANN for medium wind conditions. 

 

 

 

Figure 7.15. Roll and pitch angle response for baseline NLDI with adaptive ANN 

augmentation under medium wind conditions. 
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𝓛1 output-feedback adaptive control augmentation. Figure 7.16 shows the 

outputs of the ℒ1 output-feedback adaptive controller in the roll and pitch channel for 

medium wind conditions during the autonomous position and altitude hold. The 

augmented output of the ℒ1 adaptive controller was multiplied by 2.1 to obtain the 

desired response. Comparing Figure 7.16 with Figure 7.11 shows a similar output at 

medium wind conditions as at low wind conditions. The ℒ1 adaptive controller is 

attempting to aid the overall rotational dynamics robustness of the quadrotor by 

augmenting values to correct for the wind disturbance.  

 

 

Figure 7.16. Outputs of the ℒ1 adaptive controller for medium wind conditions. 

 

Figure 7.17 shows the effect of the ℒ1 adaptive control augmentation on the roll 

and pitch angle response under medium wind conditions during the autonomous position 

and altitude hold. Comparing Figure 7.17 with Figure 7.13 shows the increase in 

robustness of the rotational dynamics of the Flamewheel quadrotor in flight exposed to 
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medium wind conditions. Although an oscillatory behavior can still be seen, the 

magnitude and frequency of the oscillations have been decreased by the addition of ℒ1 

adaptive control augmentation. 

 

 

Figure 7.17. Roll and pitch angle response for baseline NLDI with ℒ1 adaptive control 

augmentation under medium wind conditions. 

 

7.2.4. High wind disturbance conditions. Table 7.5 shows the 

performance index comparison for high wind conditions for the three controllers together 

with the average and maximum wind speed peak for each flight. For high wind 

conditions, which can be characterized by wind speeds over 5kts, all three controllers are 

not able to sustain stable and controlled flight, resulting in crashes.   

 

 

 

 



CONTROL LAWS DEVELOPMENT FOR DISTURBANCE REJECTION                 175  

   
 

Table 7.5  

Performance Index Comparison for High Wind Conditions 

 

 

Figure 7.18 shows the 3D trajectory of the Flamewheel quadcopter with the 

baseline NLDI, baseline NLDI with ANN augmentation and baseline NLDI with ℒ1 

augmentation during the autonomous altitude and position hold outdoors in the presence 

of high wind disturbance conditions. As it is shown, all three flights resulted in crashes, 

indicating that for high wind conditions even the addition of ANN and ℒ1 augmentation 

will not be able to stabilize the relatively light-weight Flamewheel in flight. 

  

 

Figure 7.18. 3D trajectory comparison for high wind conditions. 

 

 

Controller PM Attitude PM Rates PM Trajectory PM PWM Global PI Flight Time (s)
Average Wind 

Speed (kts)

Maximum Wind 

Peak (kts)

Baseline NLDI 0.4570 0.0000 0.4290 0.729532 0.1535 29.31 5.0 8.3

NLDI + NN 0.4454 0.0000 0.3799 0.726492 0.0667 13.62 5.4 8.8

NLDI + L1 0.6379 0.0000 0.0822 0.728157 0.2577 17.65 6.5 8.5
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Adaptive ANN augmentation. Figure 7.19 shows the outputs of the adaptive 

ANN at high wind conditions with  𝛤1 = 𝛤2 = 31.4 to attempt for fast adaptation of the 

network parameters to the high wind disturbance. Although the network is trying to 

adjust the internal parameters to correct for the wind effects, the large wind disturbance is 

too significant for the adaptive ANN to correct.  

𝓛1 output-feedback adaptive control augmentation. Figure 7.20 shows the 

outputs of the ℒ1 adaptive controller for high wind conditions with an output multiplier 

equal to 3.4 to attempt to augment values to correct for the high wind disturbance. 

However, similar to the adaptive ANN, the large magnitude wind disturbance is too 

significant to correct for by the ℒ1 adaptive controller. 

 

 

Figure 7.19. Outputs of the adaptive ANN for high wind conditions. 
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Figure 7.20. Outputs of the ℒ1 adaptive controller for high wind conditions. 

 

8. Conclusions 

This thesis focused on the design, development and implementation of robust 

control algorithms for disturbance rejection in rotorcraft UAVs with the focus on the 

rejection of external disturbances caused by wind influences.  

An evaluation of the performance of the baseline nonlinear dynamic inversion 

(NLDI) control law, the wind rejection extension for the NLDI, the NLDI with adaptive 

artificial neural networks (ANN) augmentation and the NLDI with ℒ1 output-feedback 

adaptive control augmentation in a simulation environment was performed. Results for a 

Monte Carlo analysis throughout a realistic wind envelope using the four considered 

controllers showed that the extended NLDI provides the best position tracking 

capabilities but sacrifices rotational stability. The NLDI controllers with adaptive ANN 

and ℒ1 augmentation outperform the baseline NLDI in rotational dynamic stability and 

position tracking capabilities.  
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An evaluation of the performance of the baseline NLDI, NLDI with adaptive 

ANN augmentation and NLDI with ℒ1 output-feedback adaptive control augmentation 

implemented in a DJI Flamewheel F330 quadrotor was performed in flight testing in both 

indoor nominal conditions, outdoor nominal conditions and outdoor disturbed conditions. 

Results showed that all three controllers behave uniformly in both indoor and outdoor 

nominal conditions. The NLDI with adaptive ANN and ℒ1 augmentation outperformed 

the baseline NLDI in all performance metrics when the magnitude of the wind 

disturbance increased. No implementation was performed for the extended NLDI due to 

decreased robustness as compared to the baseline NLDI shown in the simulation results 

and because of the additional required wind estimation/measurement method to supply 

wind velocities and accelerations.  

It can therefore be concluded that the augmentation of the baseline NLDI control 

law with adaptive ANN and ℒ1 output-feedback adaptive control improves the robustness 

of the translational and rotational dynamics of a rotorcraft UAV in the presence of wind 

disturbances.  

Although no results are shown in this thesis, the conclusion can be extended to 

state that the addition of adaptive ANN and ℒ1 output-feedback adaptive control 

augmentation will increase the robustness of a baseline NLDI control law applied to a 

rotorcraft in the presence of any type of disturbances or uncertainties. Unlike the 

extended NLDI, the adaptive ANN and the ℒ1 do not require explicit information about 

the type of disturbance. In this thesis, the considered inversion linearization errors in the 

NLDI control law were caused by adverse external wind disturbances. However, these 

inversion errors can be considered to be the result of any type of external or internal 
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disturbances and uncertainties. 

The effect of the computational power limitations of the PX1 and the resulting 

relatively slow sampling frequency was observed to be significant on the performance of 

both the adaptive controllers in flight. The Nyquist frequency should ideally be a few 

orders of magnitude larger, preferably larger than five, than the highest dynamic 

frequency found in the system. During test flights the Nyquist frequency was observed to 

be slightly more than two times the highest dynamic frequency in the system. Although 

both the adaptive controllers showed a stabilizing performance, their robustness against 

higher frequency disturbances can be greatly improved by increasing the computational 

power of the onboard flight computer. 

Although the augmentation of the baseline NLDI control law with adaptive ANN 

and ℒ1 was shown to add robustness against external wind disturbances, an essential 

requirement is that the baseline control law is tuned and stable. Without this prerequisite, 

the robustness and stability of the rotorcraft system will be degraded even under nominal 

conditions. 

9. Future Work & Recommendations 

The research presented in this thesis can be extended and improved in multiple 

different ways. 

Firstly, a wind estimation/measurement method can be developed to allow for an 

estimation of the wind velocity and acceleration to be available. This estimation can 

subsequently be used to implement the extended NLDI control law for hardware-in-the-

loop flight testing to evaluate the performance. Much detail must be placed in the 

development of an accurate wind estimation/measurement method since simulation 
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results showed that the performance of the extended NLDI is very sensitive to the 

accuracy and precision of the wind velocity and acceleration estimates. 

Additionally, the PX1 runs a soft real-time operating system with a sampling 

frequency of around 25Hz. To improve the performance of the discretized ℒ1 controller 

and the adaptive ANN to allow for higher frequency dynamic characteristics, the PX1 can 

be replaced by a faster computer equipped with a hard real-time operating system and 

more computational power in order to increase the sampling frequency. The PC104 

Advantech PCM computer would be a potential candidate for this application. 

A more in depth analysis can be performed on the adaptive ANN and ℒ1 

controllers to evaluate if the additional tuning of the numerous parameters can improve 

the performance of both controllers in simulation and implementation. 

More flight tests should be performed to obtain a more complete set of 

implementation results shown in Chapter 6. Inconsistencies were occasionally 

encountered in the outdoor flight testing campaign. To decrease the effect of outliers, 

more flight tests should be performed for each controller to give a more complete image 

of the performance of the controllers exposed to external wind disturbances.  

Improvements can be made to the characterization of the wind by the ground 

weather station. The wind environment seemed to be varying locally on the artificial turf 

softball field and since the Flamewheel was flown at safe distance from the ground 

weather station, some error might be introduced in the wind characterization. The local 

wind disturbances as felt by the Flamewheel in flight could be quite different from the 

local wind measured by the ground weather station. To improve the characterization of 

the wind, multiple ground weather stations could be placed around the artificial turf 
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softball field to obtain a sense of varying wind conditions across the field during 

Flamewheel flight.   

A more complete set of internal and external disturbances and uncertainties could 

be considered for which a performance analysis can be performed using the baseline 

NLDI, NLDI with adaptive ANN augmentation and NLDI with ℒ1 augmentation control 

laws. Possible disturbances and uncertainties that can be considered include motor 

saturation, sensor malfunction, the addition of extra weight to a tuned baseline NLDI and 

hardware failures in the form of a partially broken propeller.   

Lastly, this thesis considered two types of adaptive control; model reference based 

adaptive control and intelligent control. However, more controllers including those 

discussed in the literature review in Chapter 2 can be considered and evaluated under 

external disturbance conditions.   
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Appendix 

Monte Carlo Analysis Results: Wind direction 0 degrees from North. 

 

Figure A.1. Controller comparison for attitude angles PM for wind 0 deg from North. 

 

 

Figure A.2. Controller comparison for angular rates PM for wind 0 deg from North. 
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Figure A.3. Controller comparison for trajectory PM for wind 0 deg from North. 

 

 

Figure A.4. Controller comparison for PWM PM for wind 0 deg from North. 
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Figure A.5. Controller comparison for global PI for wind 0 deg from North. 

 

Monte Carlo Analysis Results: Wind direction 72 degrees from North. 

 

Figure A.6. Controller comparison for attitude angles PM for wind 72 deg from North. 
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Figure A.7. Controller comparison for angular rates PM for wind 72 deg from North. 

 

 

Figure A.8. Controller comparison for trajectory PM for wind 72 deg from North. 



CONTROL LAWS DEVELOPMENT FOR DISTURBANCE REJECTION                 198  

   
 

 

Figure A.9. Controller comparison for PWM PM for wind 72 deg from North. 

 

 

Figure A.10. Controller comparison for global PI for wind 72 deg from North. 
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Monte Carlo Analysis Results: Wind direction 144 degrees from 

North. 

 

Figure A.11. Controller comparison for attitude angles PM for wind 144 deg from North. 

 

 

Figure A.12. Controller comparison for angular rates PM for wind 144 deg from North. 
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Figure A.13. Controller comparison for trajectory PM for wind 144 deg from North. 

 

 

Figure A.14. Controller comparison for PWM PM for wind 144 deg from North. 
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Figure A.15. Controller comparison for global PI for wind 144 deg from North. 

 

Monte Carlo Analysis Results: Wind direction 216 degrees from 

North. 

 

Figure A.16. Controller comparison for attitude angles PM for wind 216 deg from North. 
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Figure A.17. Controller comparison for angular rates PM for wind 216 deg from North. 

 

 

Figure A.18. Controller comparison for trajectory PM for wind 216 deg from North. 
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Figure A.19. Controller comparison for PWM PM for wind 216 deg from North. 

 

 

Figure A.20. Controller comparison for global PI for wind 216 deg from North. 
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