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ABSTRACT 

Luo, Masiyang. M.S.E., Purdue University, August 2014. Weld Pool and Keyhole 

Dynamic Analysis Based on Visual System and Neural Network during Laser Keyhole 

Welding. Major Professor: Yung Shin, School of Mechanical Engineering. 

 

 

In keyhole fiber laser welding processes, the weld pool behavior and keyhole 

dynamics are essential to determining welding quality. To observe and control the 

welding process, the accurate extraction of the weld pool boundary as well as the width is 

required. In addition, because of the cause-and-effect relationship between the welding 

defects and stability of the keyhole, which is primarily determined by keyhole geometry 

during the welding process, the stability of keyhole needs to be considered as well.    

           The first part of this thesis presents a weld pool edge detection technique based on 

an off axial green illumination laser and a coaxial image capturing system that consists of 

a CMOS camera and optic filters. According to the difference of image quality, a 

complete developed edge detection algorithm is proposed based on the local maximum 

gradient of greyness searching approach and linear interpolation. The extracted weld pool 

geometry and the width are validated by the actual welding width measurement and 

predictions by a numerical multi-phase model. 

As for the keyhole dynamics, three essential attributes to describe the simplified 

three-dimensional keyhole shape include keyhole size, penetration depth and keyhole 
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inclination angle. However, when using traditional measurement techniques, it is very 

challenging to take in-process measurements of penetration depth and inclination angle, 

even if the keyhole size can be detected by using a visual monitoring system. To realize 

the on-line estimation of keyhole dynamics and welding defects, a data-based radial basis 

function neural network state observer is adopted for estimating penetration depth and 

inclination angle in the transient state when welding parameters change suddenly. First, a 

static neural network is trained in advance to establish a correlation between the welding 

parameters and unobservable keyhole geometry. The dynamic state observer is trained 

based on the transient welding conditions predicted by a numerical model and then used 

to estimate the time-varying keyhole geometery. Meanwhile, the coaxial monitoring 

system is used to observe the keyhole shape from the top side in real time, which not only 

provides input to the neural network but also indicates the potential welding porosities. 

The predicted results are validated by experimental data performed by welding with 

stainless steel 304 and magnesium alloy AZ31B. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Literature Review 

1.1.1 Keyhole Laser Welding 

Laser welding has been a promising welding technique in industrial 

manufacturing owing to its high density energy, low heat input, large depth-to-width 

ratio, small heat-affected zone (HAZ), and high speed [1]. All laser welding techniques 

can be classified into two basic categories:  keyhole or conduction welding. Keyhole, or 

deep penetration welding, is probably the most popular welding form. 

In keyhole welding, the laser beam is focused on a small spot to obtain a high 

power density at the surface of a workpiece. The temperature of the fusion zone is rapidly 

elevated to the evaporating point where a vapor cavity, known as a keyhole, is formed 

due to the influence from recoil pressures, vapor plume impacts and other forces. Vapor 

pressure holds back the surrounding molten metal and keeps this hole open during the 

process. The metal vapor also scatters the laser beam into the molten metal along the side 

of the keyhole, thus transferring energy through the entire depth of the keyhole, resulting 

in a weld with a high aspect ratio, as illustrated in Figure 1.1.  

The small size of the keyhole region results in relatively small zones for both the 

fusion zone and the heat-affected zone. Furthermore, the highly localized application of 

heat means that the workpiece both heats up and cools down rapidly, which can minimize 

http://www.welding-consultant.com/Laser3.htm
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grain growth in materials. Even though no filler material is typically used for keyhole 

welding, the high temperatures of keyhole welding can vaporize the materials and 

produce a different composition in the fusion zone than in the base metal. 

 

Figure 1.1.  Schematic of keyhole welding. 

 

1.1.2 Numerical Model Simulation of Laser Welding 

While keyhole welding has been given much attention and extensive study, the 

instability of the keyhole and the weld pool still generate some defects during the welding 

process. Hence, to ascertain the keyhole and weld pool dynamics, especially their shapes 

during deep penetration welding, much research has been conducted on the modeling of 

keyhole and weld pool changes in terms of different physical assumptions.    

Matsunawa and Semak [2] developed a simulation model of the front keyhole 

wall behaviour on the basis of a hydrodynamic model that assumed that only the front 
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part of the keyhole wall is exposed to the high-intensity laser beam and the growth of the 

keyhole wall inside the material is due to melt expulsion. The front keyhole wall profile 

distribution of absorbed laser intensity and phase velocity of the solid and liquid 

boundary were calculated for different processing parameters, which showed that 

depending on the processing conditions, the absolute value of the keyhole wall velocity 

component parallel to the translation velocity vector can be higher than, smaller than, or 

equal to the beam translation speed. 

To obtain a better understanding of the keyhole geometry, Lankalapalli et al. [3] 

developed a model for estimating penetration depth based on a two-dimensional heat 

conduction model and a conical keyhole assumption. Later, he proposed another 

modified model-based approach [4] for laser weld penetration monitoring, instead of a 

purely empirical correlation between a measured signal (acoustic, infrared, etc) and the 

penetration depth to estimate the welding depth for bead-on-plate welds on low-carbon 

steel plates. On the other hand, Ye et al. [5] assumed a cylindrical keyhole and studied 

the effects of welding speed, Marangoni force, and natural convection on melt flow and 

heat transfer. A method was outlined to use the three-dimensional modeling results to 

estimate the keyhole radius or predict the energy efficiency in the laser full-penetration 

welding. 

However, these simplified models may not be able to accurately reflect the real 

dynamic changes of the keyhole; thus, numerical modeling work has been conducted to 

develop more complex models which describe these changes. Ronda et al. [6] 

investigated the relationship between the shape of the keyhole, surface tension and a 

recoil force based on numerical simulation. This model of keyhole formation took into 
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consideration the temperature dependence of material parameters and characteristics of a 

laser beam, as well as considering the influence of the sulphur content on surface tension. 

Ki et al. [7,8] developed more complicated and well-considered models based on level-

set equations. The model featured the self-consistent evolution of the liquid/vapor (L/V) 

interface together with full simulation of fluid flow and heat transfer. Important 

interfacial phenomena, such as free surface evolution, evaporation, and multiple 

reflections were applied in the model. In addition, Pang et al. [9] proposed a three-

dimensional sharp interface model, which combined three-dimensional heat transfer, 

keyhole free surface evolutions, and fluid flow in the welding process. In this model, not 

only the keyhole wall but also periodical keyhole collapse and bubble formation 

processes could be simulated successfully. Another model considering plasma gas, liquid 

metal and solid metal was proposed to describe the keyhole phenomena of laser welding 

by Zhao et al. [10]. In their work, the forces of interaction of fluid dynamics in the 

keyhole and molten pool were modeled and an adaptive heat source model was proposed 

for the absorption of laser energy. 

   More recently, based on the study of all the previous models, Tan et al. [11] used 

a multi-phase numerical simulation combining the level-set model and a sharp interface 

model to accurately capture the dynamics of the keyhole, the molten pool and even the 

plume. The model revealed that plume attenuation due to the particle absorption and 

scattering could be significant in fibre or Nd :YAG laser-based keyhole welding. 

Moreover, the temperature on the keyhole wall was accurately calculated. This model has 

been validated against mutiple experiments with both stainless steel and magnesium 

alloys.  



5 

 

5
 

1.1.3 Weld Pool Monitoring 

To fully understand dynamic keyhole welding and improve the weldment 

quality, a variety of research has been carried out in addition to the development of 

numerical models, such as the assisted shield gas application [12-14] and weld pool 

monitoring [15-25]. Since the weld pool contains useful information related to welding 

quality, on-line weld pool monitoring techniques have been developed over the past 

decade.  

Li et al. [15] used the “acoustic mirror” to study the ultrasonic airborne acoustic 

emission of weld pool plasma and laser beam. The characteristics of two types of 

ultrasonic acoustic emissions observed in laser material processing involving melting, 

vaporization and plasma generation were compared. Wang et al. [16] and Huang et al. 

[17] measured welding temperature distributions by an IR thermography system, which 

was calibrated by thermocouples. 

At present, as a result of the continuous development of visual imaging 

techniques and high computational capability with a reduction of cost, a vision-based 

system has become a popular approach to monitoring the weld pool. Captured imaging 

signals are capable of providing more straightforward welding details, such as variations 

in weld pool geometry. Measurements have been conducted using a high speed camera 

and a dot matrix pattern laser so as to reconstruct the three-dimensional weld pool surface 

in gas tungsten arc welding (GTAW) [18–20]. Among these studies, Kovacevic et al. [20] 

first defined the weld pool boundary point as the point with a maximum gradient value so 

as to distinguish the weld pool boundary against the imaging backgrounds. Moreover, a 

calibrated camera with structured lights was used to directly measure the weld pool depth 
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in GTAW [21]. However, even if the structured light method has potential to detect the 

three-dimensional shape of the weld pool, it is limited to the GTAW since the weld pool 

is not very deep compared with keyhole laser welding. In keyhole welding, the structured 

light could hardly be reflected from the keyhole area.  

In order to capture the two-dimensional geometry of the weld pool in keyhole 

welding, a coaxial monitoring system was developed. With this type of system, which 

consisted of a coaxial image camera and a coaxial illumination laser, Kim et al. [22] 

investigated the size of the keyhole area by testing various optic filter combinations with 

a coaxial illumination laser under different welding conditions. However, the setup of the 

coaxial illumination laser made the entire monitoring system, as shown in Figure 1.2, too 

complicated to be used in a wider range of situations. Qin et al. [23] extracted molten 

pool edges by taking advantage of the binarization algorithm. However, these methods 

were too simple to capture the dynamic details of the weld pool.  
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Figure 1.2. Coaxial monitoring system with coaxial illumination [22]. 

 

Recently, Zhang et al. [24] built an on-line coaxial monitoring system with an 

auxiliary illuminant for the fiber laser welding of Zn-coated steel and proposed a region-

growing method with the Canny algorithm to extract the boundary of the weld pool. The 

extracted result is shown as Figure 1.3. Even though their algorithm was computationally  

efficient and accurate, their image processing method may not be able to deal with other 

materials—such as magnesium alloys—which produce low-quality images with more 

welding noise. In terms of weld pool reflection features, a more complex edge detection 

algorithm was designed on the edge enhancement [25]. However, the lack of illumination 

made a slow transient region occur between the image background and the weld pool 

area, which introduced some uncertainties into the weld pool edge detection. 
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Additionally, the lack of comparison between the actual welding width and the monitored 

one also brings up the unknown reliability of the image processing results. 

 

Figure 1.3. Captured weld pool image and extracted weld pool boundary [20]. 

 

1.1.4 Observation of Keyhole Dynamics   

Although various numerical models are capable of describing the transient 

keyhole shape, they cannot be used for real-time applications due to their high 

computational requirements. Because of the great amount of data required for keyhole 

analysis and the associated time and cost, other studies focusing on keyhole dynamics 

have been carried out through multiple experimental observation techniques.  

Among these, a high-speed camera-based vision system has been developed by 

Fabbro et al. [26-28] to learn the keyhole behavior in full-penetration laser welding. The 

penetration depth and keyhole front tilting angle were two significant areas of focus in 

this study, for which the collected data are shown in Figure 1.4. The analysis of this 

penetration curve on a very large range of welding speeds, typically from 0 to 15 m/min, 

allowed them to observe very different regimes, which are mainly characterized 
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according to the physical processes by which they impede the laser beam penetration 

inside the material. Additionally, the dynamics of the keyhole and its complete geometry, 

including front wall inclination, and top and bottom apertures, were analyzed for 

differing experimental condition.The related keyhole dynamic models were also 

introduced to validate their experimental results.  

 

Figure 1.4. Collected data for inclination angle and penetration depth with different 

welding conditions (for four different focal spot diameters: 125 and 200 μm (4 kW, 

Nd–Yag laser), 600 and 1000 μm (4 and 6.3kW, diode laser)) [26]. 
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A study at Osaka University incorporated more complicated measurement 

techniques, utilizing high-speed video cameras and an X-ray transmission real-time 

imaging system to investigate the dynamic phenomena inside the keyhole and the weld 

pool with different materials, such as stainless steel and magnesium alloy [29,30]. In the 

process of deep-penetration laser welding, due to the high energy density of the heat 

input source on the workpiece, the material evaporates rapidly and the formed keyhole is 

unstable. As the liquid flow is very complicated and the keyhole geometry fluctuates 

frequently under some welding conditions, this would influence the quality and 

performance of the welding joint. For instance, the bubbles formed from keyhole collapse 

and shrinkage cause keyhole-induced porosity. Based on the X-ray imaging system, the 

formation of bubbles and welding porosities could also be captured in real time, as shown 

in Figure 1.5 [29,31-33]. However, the high cost of the whole system and overly 

complicated imaging signals of the keyhole make this monitoring system unsuitable for 

implementation as a real welding process control system.  

  

Figure 1.5. Detection of welding porosity and bubble of using X-ray imaging system [29]. 
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1.1.5 Neural Network Based System Identification and State Observer Design 

              Keyhole dynamics is very important in the keyhole welding process because it 

can directly impact welding quality. However, an accurate mathematical model that could 

depict the keyhole dynamics is not readily available, and it would be difficult to use for 

real-time applications. Thus, to learn the keyhole dynamics, some system identification 

techniques could be considered. Among these, the neural network-based system 

identification methods are most popular.  

            Lu et al. [34] studied the problem of identification for nonlinear systems in the 

presence of unknown driving noise, using both feedforward multilayer neural network 

and radial basis function network models. Xu et al. [35] developed and implemented 

neural network-based system identification techniques for nonlinear systems with the 

specific goal of residual generation for default detection purposes. Two neural network 

structures were investigated: the partially connected neural network (PCNN) and the 

conventional fully connected neural network (FCNN). Both methods were tested on a 

Boeing 747 aircraft model. Ranković and Nikolić [36] studied nonlinear system 

identification via feedforward neural networks (FNN) and digital recurrent networks 

(DRN). A dynamic backpropagation algorithm was employed to adapt weights and biases 

of the DRN. Moreover, fuzzy logic and neuro-fuzzy systems (ANFIS) have also been 

used in identification of nonlinear dynamics.   

            In control theory, a state observer provides an estimate of the internal state of a 

given real system by using measurements of the input and output of the real system. In 

most practical cases, the physical state of the system cannot be determined by direct 

http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/State_space_(controls)
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Output
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observation. However, indirect effects of the internal state are observed through the 

system outputs.  

            For the linear system, Kalman [37] developed a very well-known filter, named the 

Kalman filter, to operate recursively on a series of noisy input data to produce a 

statistically optimal estimate of the system state. This theory has been applied to many 

fields, such as navigation, vehicle control, etc. For nonlinear systems, extended Kalman 

filter methods [38] were developed relying on linearized state and output equations. The 

EKF is based on first-order Taylor approximations of state transition and observation 

equations about the estimated state trajectory. However, the Taylor linearization provides 

an insufficiently accurate representation in many cases, and significant bias, or even 

divergence, due to the overly crude approximation. Norgaard et al. [39] proposed a new 

set of estimators, divided difference filter (DDF), which were based on polynomial 

approximations of the nonlinear transformations obtained with a particular 

multidimensional extension of Stirling's interpolation formula. In contrast to Taylor's 

formula, no derivatives are needed in the interpolation formula. On the basis of the DDF, 

Subrahmanya and Shin [40] presented a novel adaptive version of the DDF applicable to 

non-linear systems with a linear output equation. In order to make the filter robust to 

modeling errors, upper bounds on the state covariance matrix were derived, which made 

this filter capable of estimating the states in a time-varying system.  

However, all the estimation methods introduced above require exact models of 

underlying nonlinear systems, which are often difficult to obtain in reality and can also 

lead to divergence when modeling errors exist. Therefore, Elanayar and Shin [41] used a 

radial basis function neural network (RBFNN) to approximate the unknown nonlinear 

http://en.wikipedia.org/wiki/State_observer
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Estimation_theory
http://en.wikipedia.org/wiki/State_space_(controls)
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system and developed a new state observer based on RBFNN. Since the parameters 

appeared in the RBFNN as a linear form, least squares estimation was possible. The state 

estimator was designed for use with the RBFNN and the gain matrix was derived on the 

basis of an upper bound covariance matrix. In addition, the consideration of 

approximation error in the estimation algorithm successfully minimized filter divergence. 

After the development of this observer, Elanayar and Shin [42] used it for tool wear 

estimation in real time. The dynamic process of flank wear and crater wear with respect 

to time under different cutting forces and feed rates were identified by RBFNN. The on-

line estimation of both types of wear was then conducted successfully based on this well-

trained RBFNN and proposed state observer.  

 

1.2 Objectives of Thesis 

The main objective of the present work, which focuses on weld pool and keyhole 

dynamic analysis based on visual system and neural network in laser keyhole welding, 

could be divided into the following parts:  

(1) Design an easily-implementable monitoring system, which could detect the 

weld pool and keyhole geometry from the top side in real time during a 

welding process.  

(2) Develop an efficient and accurate weld pool boundary extraction algorithm 

that aims at dealing with the noise in captured weld pool images.  

(3) Based on experimental data, establish a static neural network model to 

correlate the welding parameters and system measurements to unobservable 

keyhole geometric features. 
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(4) Based on a well-trained static neural network model, develop a dynamic 

neural network model which could approximate the keyhole dynamics and use 

the radial basis function neural network-based state observer [41] to estimate 

the keyhole dynamics in the transient state of welding.  

(5) Predict the welding defects (bubbles or porosities) by analyzing the captured 

imaging signals of the keyhole area. 

 

1.3 Overview of Thesis 

Chapter 2 describes the experimental system with the coaxial monitoring setup 

and presents the algorithms used for boundary extraction of the weld pool and calculation 

of the weld pool width. The results are compared with the accurate weld pool width and 

prediction of numerical simulation [8].    

Chapter 3 introduces the methodology of estimating keyhole dynamics, data 

collection, static neural network and dynamic neural network training results and 

estimation results of keyhole dynamics under different welding conditions. In addition, 

this chapter presents the methods of welding defect prediction along with experimental 

validation with both stainless steel and magnesium alloys.    

Chapter 4 presents the conclusion of the current work and the recommendations 

for future work. 
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CHAPTER 2. EXTRACTION OF WELD POOL BOUNDARY 

This chapter describes an efficient weld pool boundary extraction algorithm 

that aims at dealing with the noisy captured weld pool images in keyhole fiber laser 

welding based on a coaxial monitoring system with the green laser illumination. 

According to the different noise disturbance level, a searching technique for the local 

maximum gradient of grayness is developed for detecting clear weld pool edges (in the 

head and tail parts of the captured images). Although the boundary points can be defined 

straightforwardly as the ones with the maximum gradient of grayness [14], more well 

considered image processing procedures and initial point or start line selection methods 

are used to reduce the effects of noise and to guarantee the rightness of weld pool width 

calculation. The linear interpolation is adopted to reshape the blurred weld pool boundary 

(in the middle part). The width of the weld pool is then calculated via the acquired edge 

data in order to analyze the relationship between the different welding conditions and the 

corresponding weld pool geometries. Eventually, some unique methods are proposed to 

validate the image processing results. 

 

2.1 Experimental Setup 

The keyhole welding is performed by a fiber laser (IPG photonics YLS-1000, 

details of which are shown in Table 2.1) with a focal diameter of 200 μm.  The laser
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 beam is transmitted through the fiber to the laser head and its wavelength is 1070 nm. 

The laser details are shown in Table 2.1. The assisted gas Argon is blown into the weld 

pool to improve the weldment quality in the experiments. The 304 stainless steel with 2 

mm of thickness is used as the substrate material. The chemical composition of the 304 

stainless steel is listed in Table 2.2. The welding process is controlled by the three-axis 

Mazak Controller. 

Table 2.1. Description of IPG YLS-1000 fiber laser. 

Available Output Power ≤ 1000 W 

Emission Wavelength 1070 nm~1080 nm 

Diameter of feed fiber 200 μm 

Dope material Ytterbium 

Wall-plug efficiency > 30% 

 

Table 2.2. Chemical composition of stainless steel 304. 

Element C Mn P S Si Cr Ni N Fe 

Portion(%) 0.08 2 0.045 0.03 0.75 10 10 0.1 balance 

 

To observe the keyhole from the topside, a coaxial vision-based monitoring system 

was designed. The coaxial monitoring system is composed of two dichroic mirrors, a 

complementary metal-oxide-semiconductor (CMOS) camera (DFK 42BUC03), and an 

illumination resource and optic filters. The entire monitoring system and the laser head 

are all mounted on the Mazak CNC machine, as illustrated in Figure 2.1. Two dichroic 

mirrors are set parallel to each other into a parallelogram block so that the output beam 

can be perfectly focused on the base material, as schematically shown in Figure 2.2. The 
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pre-set resolution of the camera is 1280x720 pixels with a maximum frame speed of 33 

frames/s.  

  

Figure 2.1. Photo of coaxial monitoring system and Mazak Controller. 

 

 

Figure 2.2. Coaxial visual monitoring system. 
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In the keyhole welding, the irradiation object is not only the light emission of 

weld pool, but also ionized metal plasma, which is much weaker though. To get a better 

understanding of the spectra of disturbing irradiations, a spectrometer is mounted 

horizontally above the workpiece to gather the wavelength distribution of the welding 

plasma prior to the actual weld pool measurement. The average result attained from the 

multiple experiments is shown in Figure 2.4. It is apparent that the wavelength from 550 

nm to 650 nm (ionized iron) is the strongest portion, which is consistent with the  

Table 2.2. The sharp peak at around 1070 nm happens due to the reflected laser beam.  

According to the collected data by the spectrometer, the green light with the low 

plasma interference and the high camera sensitivity response is chosen as illumination 

resource to capture the clear image of the weld pool. A 200 mW focus-adaptable green 

laser with the wavelength close to 530 nm was chosen as the illuminant. The illuminating 

area is adjusted to cover the entire weld pool region. Simultaneously, a narrow band pass 

filter with the center wavelength of 532nm and a ND16 filter were coupled together in 

front of the CMOS camera to enhance the illuminated weld pool features. 
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Figure 2.3. Relative sensitivity response of CMOS camera used. 

 

 

Figure 2.4. Plasma spectrum in keyhole welding. 
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2.2 Boundary Extraction and Width Measurement 

In the welding experiments, the coaxial weld pool monitoring consists of video 

recording and on-line image processing. The images of the monitored welding process 

are recorded in ‘AVI’ format and then each frame is processed to extract weld pool 

boundary, followed by the calculation of the welding width. The experimental welding 

speed ranges from 1 m/min to 5 m/min. Figure 2.5 shows the original unprocessed 

images with varied welding speeds. The welding power is maintained at 1 kW for all the 

experiments. Although the green laser illumination helps increase the contrast level of 

weld pool boundary, from the images shown in Figure 2.5 (b), much of imaging noises 

are mostly induced by both undesired Illumination refection and the imaging capability of 

the camera, such as the limited frame-per-second (FPS). Intuitively, the weld pool 

becomes narrow as the welding speed increases. However, to measure the exact 

variations of weld pool geometry, further steps are made as described in following 

sections.   
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Figure 2.5. Original images of weld pool under different welding speed 

(a) 1 m/min (b) 2 m/min (c) 3 m/min (d) 5m/min. 

 

2.2.1   Analysis of image signal 

According to the characteristics of the weld pool images, the edge detection 

process is classified into three groups: the head, the middle and the tail part, as shown in 

Figure 2.6. In the head part, the existence of keyhole increases the overall brightness 

nearby so that the region inside the head part of weld pool is much brighter than the other 

areas. In the tail part, however, the difference between the weld pool and the imaging 

background (non-melt material) is not that distinctive, but the weld pool profile and the 

heat affected zone (HAZ) [14] are separated by the slim dark gap. Between the head part 

and the tail part, there is a relatively narrow but special region, the middle part, where the 
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imaging noises of isolated arbitrary bright spots make the edge of the weld pool difficult 

to locate. 

 

Figure 2.6. Image segmentation for processing. 

 

            Regarding the green light illumination, only the green primary component of the 

original color images is processed in this study to improve the image processing speed. 

The transformed gray image based on the green primary color is shown as Figure 2.7. 

The proposed boundary extraction procedure is schematically shown in Figure 2.8. 

 

Figure 2.7. (a) Original color image (b) Transformed grey image. 
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Figure 2.8. Flowchart of boundary extraction. 

 

2.2.2   Keyhole Extraction and Central Line Location 

For the transformed image, each pixel has a grey level value between 0 and 255. 

The algorithm proposed for extracting the keyhole area is based on the binarization with 

a high threshold value in terms of the extreme bright feature of the keyhole. In this 

work, the threshold is defined as 245 according to the image feature that the greyness 

value of the keyhole area is close to saturation. Any pixels with a value greater than this 

threshold are set to 255 in grey level, otherwise 0. Due to the symmetry of the weld pool 

image, a symmetric central line (SCL) of the weld pool is calculated for the convenience 

of searching candidate edge points in the following sections. The calculation of SCL is 

conducted through the extracted keyhole boundary in this part. Since the relative 

positions of the weld pool in all captured images are fixed, the SCL only needs to be 

obtained once in the real experiments. The keyhole edge detection and the SCL 

calculation algorithm are described in the following. 

(1) Boundary point is defined as the point with grey level value 255, but at least one of 

all the other 8 pixels around is 0, as illustrated in Figure 2.9. 
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Figure 2.9. (a) Non-edge point (b) Edge point. 

 

(2) Scan all pixels in the binarized image and use the criterion of (1) to mark all the 

boundary points.  

(3) After attaining all the boundary points, as shown in Figure 2.10 (b), calculate the 

distance between the most left point 𝑃𝑙
𝑖 and the most right point 𝑃𝑟

𝑖 in each row 𝑖 

as 𝐿𝑖 = 𝑃𝑟
𝑖 − 𝑃𝑙

𝑖 , where 0 < 𝑖 < 𝑚, 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠. The distance 𝐿 

represents the number of pixels between these two edge points. Find the row i𝑚𝑎𝑥, 

which has the largest value of 𝐿, which indicates the widest part of the keyhole area. 

The coordinate position of the center point in this row is P(i𝑚𝑎𝑥, (𝑃𝑟
𝑖 + 𝑃𝑙

𝑖) 2⁄  ). 

Then the central symmetric line can be described as a vertical line which goes 

through the point P. Figure 2.10 shows the extracted keyhole boundary and the 

calculated SCL. 
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 Figure 2.10. (a) Extracted keyhole area by binarization (b) Extracted keyhole boundary   

(c) Central line and keyhole boundary. 

 

2.2.3   Weld Pool Boundary Extraction for Tail Part 

From the grey level image, even though the boundary of weld pool in the tail part 

might be clear to human’s vision, it is still not clearly distinguishable for the machine 

vision. Some improvements of the image quality need to be made In advance. In this 

work, the histogram equalizer is used to increase the contrast of the image. This method 

usually increases the global contrast of the image, especially when the usable data of the 

image is represented by close contrast values, such as the case of the weld pool edge here. 

Through this adjustment, the intensities can be better distributed on the histogram. This 

allows for the weld pool areas of lower local contrast to gain a higher contrast, as shown 

in Figure 2.11.  

http://en.wikipedia.org/wiki/Contrast_(vision)
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Luminous_intensity
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Figure 2.11. Histogram and image before (top) and after (bottom) using the histogram 

equalizer. 
 

(1) Start line: Pick up one row in the tail part as start line. This line should be chosen 

between the middle part and the bottom part of the image because of the edge in this 

area is relatively easy for detecting. In the actual processing, the bottom 130th row is 

picked, shown as the white line in the second image of Figure 2.11.  

(2)  First edge point: As mentioned earlier the dark area separates the background and 

weld pool area, so the inner border of the dark area is regarded as weld pool 

boundary, as shown in Figure 2.12, which has a higher gradient of greyness. To seek 

the boundary, define the gradient of greyness along -X direction as GL and the one 

along +X direction as GR, then GL = G(x, y + σ) − G(x, y − σ) and GR =
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G(x, y − σ) − G(x, y + σ), where G( ∙ ) represents the value of greyness, and σ is 

specified as the step length of greyness, usually 1 or 2. For the first edge point 

searching, x is set as the row number of the start line. From the central line to the left 

side, the maximum value of GL in the range of 120 pixels is determined as the left 

edge point. Similarly, from the central line to the right side, the maximum value of 

GR in the range of 120 pixels is the right edge point, as shown in Figure 2.13.  

 

    Figure 2.12. Pixel greyness of the start line.   
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Figure 2.13. Searched left and right boundary point. 

 

(3) Tail part boundary extraction algorithm (Local maximum gradient of greyness 

searching method): The local maximum gradient of grayness searching algorithm is 

used to find the new boundary point, which is defined as the one with the maximum 

gradient of greyness in a certain range determined by the position of current searched 

boundary point. Assume the first left edge point is 𝑃𝑙 = (𝑥𝑙 , 𝑦𝑙) and the first right 

edge point is 𝑃𝑟 = (𝑥𝑟 , 𝑦𝑟). The imaging coordinate and the searching direction are 

depicted in Figure 2.14. The next searched boundary point of the left side is defined 

by 𝑃𝑙+1 = (𝑥𝑙+1, 𝑦𝑙+1) while the one of the right side is defined by  𝑃𝑟+1 =

(𝑥𝑟+1, 𝑦𝑟+1). 
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Figure 2.14. Coordinate of captured image and searching direction in different part. 

 

For the left side,  

𝑥𝑙+1 = 𝑥𝑙 − 1 

𝑦𝑙+1 = max
λ∈[−θ1,θ2 ]

𝐺𝐿(𝑥𝑙+1, 𝑦𝑙 + λ) 

𝐺𝐿(𝑃𝑙+1) > 𝑇 

𝑥𝑙 =  𝑥𝑙+1 

  𝑦𝑙 =  𝑦𝑙+1 

 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑠.  

𝐺𝐿 has been defined in the first edge point of step (2). However, since the weld pool 

boundary becomes less clear along the searching direction, σ here is selected as a larger 

number, i.e. 4, so that the gradient values for candidates of the boundary point could still 

remain distinguishable. Two positive numbers of θ1 and θ2 determine the searching 

range. In terms of the blurred boundary, the searching ranges for both the left and right 

sides are not perfectly symmetric. For the left side, θ1 > θ2. Thus, the new boundary 

points are much more likely to be located to the left side of the previous ones, which is 

the same as the expectation of actual weld pool boundary profile. When the boundary 

searching moves to the middle part, the dark area disappears gradually due to the 
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influence of the keyhole, and the gradient of greyness becomes too small to discern the 

weld pool boundary. Therefore, a threshold value 𝑇 is introduced as a permission of the 

boundary searching process. If the gradient of the candidate boundary point is less than 𝑇, 

the tail part searching of the left side ceases.  

For the right side, algorithm is similar to the left except that the gradient 𝐺𝐿 is 

replaced by 𝐺𝑅 and θ1 < θ2. 

𝑥𝑟+1 = 𝑥𝑟 − 1 

𝑦𝑟+1 = max
λ∈[−θ1,θ2]

𝐺𝑅(𝑥𝑟+1, 𝑦𝑟 + λ) 

𝐺𝑅(𝑃𝑟+1) > 𝑇 

𝑥𝑟 =  𝑥𝑟+1 

  𝑦𝑟 =  𝑦𝑟+1 

 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑠. 

The extracted boundary of the tail part is shown in Figure 2.15. For the part 

below the start line, the same algorithm could also be used except that the searching 

direction and the relationship between θ1 and θ2 are changed. For the instance of 

searching downwards for the left side, θ1 < θ2. Similarly, θ1 > θ2 for the right side. The 

searching will not stop until the searched boundary point gets to the SCL. The entire 

processing result is shown as Figure 2.15 (c). It is notable that the most interesting feature 

of the weld pool is its width in this work, which could be used to not only evaluate the 

welding process but also validate the extracted weld pool geometry. However, the region 

below the start line is obviously too narrow to influence the analysis of weld pool width. 

Thus, to boost the image processing efficiency, the edge searching doesn’t have to 

proceed downwards from the start line in actual experiments. 
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Figure 2.15. Extracted tail part boundary. 

    

2.2.4   Weld Pool Boundary Extraction for Head Part 

In the search of the head part edge, the original grey scale image without 

utilizing the histogram equalizer has a more clear and detailed boundary information. So 

the non-equalized image is used for the edge detection in the head part. The boundary 

searching method is similar to the tail part one, which is also divided into the left part and 

the right part.  

(1) Start point: Searching downwards along the central line (SCL), find the first point 

with the grey value larger than 230. Record its position as (𝑥𝑐 , 𝑦𝑐𝑙), as shown in Figure 

2.16. In order to remove the influence of the bright isolated dots on the central line, 

repeat the searching method along the two lines that are 10 pixels away from the central 

line on the left side and right side. The searched first points are marked as 

(𝑥𝑐𝑙 , 𝑦𝑐𝑙 − 10) and (𝑥𝑐𝑟 , 𝑦𝑐𝑙 + 10). If |𝑥𝑐𝑙 − 𝑥𝑐| < 25 or |𝑥𝑐𝑟 − 𝑥𝑐| < 25, then point 

(𝑥𝑐 , 𝑦𝑐𝑙) is decided to be the start point of the head part. Otherwise, test the second 

point with the grey value larger than 230 along the central line until an appropriate start 
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point is found.  

 

Figure 2.16. First point search on central line. 

 

(2) Head part boundary extraction algorithm (Local maximum gradient of greyness 

searching method): The same algorithm based on the local maximum gradient of 

greyness is also applicable in terms of the same boundary feature in both the head and 

tail part. The searching direction is shown in Figure 2.14. However, the head part 

searching has to stop when it reaches the middle part where the image quality is lowest 

due to the transitional region between the extremely bright keyhole area and the 

relatively dark tail part of weld pool. The result of extracted boundary in the head part 

is shown as Figure 2.17.  
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Figure 2.17. Extracted head part and tail part boundary. 

 

2.2.5   Weld Pool Boundary Extraction for Middle Part 

In the experiment, the middle part is regarded as the searching gap between 

the head part and the tail part. Usually, the middle part ranges from 30 pixels to 50 

pixels. In this part, besides the transitional region of the bright and the dark, the non-

vaporized metal materials (spatters) as well as the plume also strongly reflect the 

green illumination. These undesired imaging signals generate the arbitrary bright 

shapes and isolated bright dots (regarded as imaging noises) that increase the 

difficulty of locating the correct weld pool profile in this part. Therefore, the direct 

implementation of the proposed searching algorithm could probably generate the 

serious consequence, even leading to a failure of the calculation for weld pool width.  

However, considering the small area of the middle part and the continuity of 

the weld pool profile, the linear interpolation method is adopted to approximate the 

actual weld pool boundary. The last searching edge point in the head part and the last 

searching edge point in the tail part on both the left and right side are connected 
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through linear interpolation. The interpolated weld pool boundary is eventually 

shown in Figure 2.18. 

 

Figure 2.18. Entire boundary of weld pool. 

 

2.2.6   Weld Pool Width Measurement 

From the extracted boundary, the width of weld pool is defined as the widest 

distance between the right edge and the left edge. Hence, the width of weld pool can be 

calculated by the following expression: 

Width = max
𝐼𝜖[1,𝑚]

(𝑦𝑅𝐼 − 𝑦𝐿𝐼), 

where 𝑚 is the total number of rows in the captured images,  𝑦𝑅𝐼 is the 𝑦 position of the 

right edge point on the 𝐼𝑡ℎ row, and 𝑦𝐿𝐼 is the 𝑦 position of the left edge point  in the 𝐼𝑡ℎ 

row. Finally, to calculate the actual width of the weld pool, the imaging scaling is 

indispensable. In this hardware set-up, the length of 230 pixels of the image is 1 mm. So 

the actual width is scaled as:  

Real Width =  max
𝐼𝜖[1,𝑚]

(𝑦𝑅𝐼 − 𝑦𝐿𝐼) 230⁄  mm. 
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2.3 Validation of Extracted Weld Pool Boundary 

Figure 2.19 shows the actual welding seam and the corresponding weld pool 

boundary extraction results under varied welding speeds. The images are collected as the 

welding process reaches the steady state when the weld pool geometry can exactly reflect 

the welding situation of the desired speed. In each case of Figure 2.19, six processed 

images are chosen randomly and displayed from all the recorded frames. It is clear that 

there only exist small variations of the extracted boundaries (bright contour in Figure 

2.19), which matches the expected results of the constant-velocity welding. 

To validate the accuracy of the edge detection, the calculated widths from 30 

continuous frames of the different welding speed are retrieved to compare with the actual 

experimental weld pool widths, and plotted in Figure 2.20. In Figure 2.20, the width 

variations of the different cases owe to the different laser power distribution. The fast 

welding speed makes less laser energy stay on the same welding spot so that the formed 

size of the weld pool shrinks. On the other hand, the actual width value was measured 

from both the top view (Figure 2.21) and the cross-section view (Figure 2.22) of the weld 

pool by an optical microscope. Interestingly, the polished and eroded cross-section view 

provides a more exact measurement result. By synthesizing the measured results of the 

width, the average values of all the welding speeds are summarized in Table 2.3. The 

relative error between the monitored value and the measurement is less than 8%, which 

means that the monitoring system and the proposed algorithm are effective for on-line 

weld pool monitoring.   
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Figure 2.19. Real weld seam and corresponding extracted weld pool geometry. 



37 

 

3
7
 

 

Figure 2.20. Calculated weld pool width. 

 

Table 2.3.  Average of weld pool width. 

No. Welding speed Average of monitoring Average of Measurement 

1 1 m/min 1.8156 mm 1.784 mm 

2 2 m/min 1.2519 mm 1.361mm 

3 3 m/min 1.0494 mm 1.010mm 

4 4 m/min 0.6767 mm 0.710mm 
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Figure 2.21. Top view of welding seam. 

 

 

Figure 2.22. Cross-section view of weld pool.  

 

Additionally, to further validate the extracted weld pool geometry and also to 

establish the correlations between the weld pool profile and the inherent dynamic 
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parameters of the keyhole welding, a well-developed three dimensional transient model 

for keyhole welding [11] is used to predict weld pool geometry. The model has taken into 

account the transport phenomena in the molten pool and keyhole plume, as well as the 

complicated boundary conditions on the sharp keyhole wall. The model is based on the 

sharp interface formulation and therefore the temperature on the keyhole wall and weld 

pool region can be accurately calculated.   

In this model, the free interface between the condensed region (including liquid 

and solid phases) and the non-condensed region (including metallic vapor and ambient 

gas), a part of which is the keyhole wall, is tracked by the solution of the Level-set 

equation:   

𝜕𝜑

𝜕𝑡
= −(�⃗� +

𝑀𝑒𝑣𝑎𝑝

𝜌𝑣
∙ �⃗⃗� ) ∙ ∇𝜑.                                                               (2.1) 

Here 𝜑 is the LS value, which is defined to be zero at the interface of interest. Any points 

off the interface will have the LS value being the signed distance from this point to the 

interface, with the sign being positive in the non-condensed region and negative in the 

condensed region. The source term on the Right Hand Side (RHS) of the equation 

calculates the normal velocity of the interface, which includes two components. The first 

one is due to the local convection flow �⃗� , and the second one is due to the surface 

recession induced by evaporation mass loss. Here 𝑀𝑒𝑣𝑎𝑝 is the mass evaporation rate and 

𝜌𝑣 is the vapor density. The transport phenomena in both the condensed and non-

condensed regions are calculated based on the conservation equations of mass, 

momentum, energy and chemical species ((2.2) ~ (2.5)): 
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𝜕

𝜕𝑡
(𝜌) + ∇ ∙ (𝜌�⃗� ) = 0                                           (2.2) 

𝜕

𝜕𝑡
(𝜌�⃗� ) + ∇ ∙ (𝜌�⃗� �⃗� ) = +∇ ∙ (𝜇∇�⃗� ) − ∇p −

𝜇

𝐾
�⃗� + 𝜌𝑟𝑔 𝛽𝑇(𝑇 − 𝑇𝑟) +

𝜕𝛾

𝜕𝑇
∇𝑠𝑇𝛿𝑚(𝜑)   (2.3) 

𝜕

𝜕𝑡
(𝜌ℎ) + ∇ ∙ (𝜌�⃗� ℎ) = ∇ ∙ (𝑘∇𝑇)                      (2.4) 

𝜕

𝜕𝑡
(𝜌𝑌) + ∇ ∙ (𝜌�⃗� 𝑌) = ∇ ∙ (𝐷𝜌∇Y).                      (2.5) 

In the above equations, 𝜌 is the density, �⃗�   is the velocity, 𝜇 is the viscosity, 𝐾 is the 

isotropic permeability expressed by the Kozeny-Carman equation, 𝜌𝑟 is the reference 

density at the reference temperature 𝑇𝑟, 𝛽𝑇 is the thermal expansion coefficient, ∇𝑠𝛾 is 

the thermo-capillary force, 𝛿𝑚(𝜑) is the modified delta function, h is the material 

enthalpy, k is the thermal conductivity, 𝑓𝑠 is the fraction of solid phase in a control 

volume, 𝑌𝑖  is the mass fraction of the i-th species, and  𝐷𝑖is the mass diffusion coefficient 

for the species. The boundary conditions on the interface consisting of sharp jump of 

temperature, heat flux, fluid velocity and pressure are discussed completely in the work 

[11].  

Figure 2.23 shows the combined view of the monitored weld pool and the 

modeling result with the welding speed of 2 m/min. For the model, since the melting 

point of the material is 1670K, the boundary of the weld pool is approximated as the 

isotherm of 1670K. The welding conditions are exactly the same as the actual 

experiments. As can be seen, the profiles of the weld pool and the keyhole are quite 

close. The extracted weld pool boundary has been validated by the multi-physics 

modeling of keyhole welding. 
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Figure 2.23. Combined view of monitored weld pool and modeling result for stainless 

steel. 
 

The effectiveness of proposed image processing method has been verified as 

discussed. Especially, the algorithm is proved to be tolerant to the undesired imaging 

noises introduced by the illumination during the welding process with the base material 

of 304 stainless steel. To test the expansibility of the proposed algorithm in a general 

application, some implementations of the algorithm are explored. The algorithms 

developed for the tail part and head part can also be used to detect the weld pool 

boundary when base material used is magnesium alloys AZ31B. Although many image 

features of welding with magnesium alloys are different, the weld pool boundaries (bright 

profiles) of them could still be extracted successfully, as shown in Figure 2.24 and Figure 

2.25. The chemical composition of magnesium alloys AZ31B is shown in Table 2.4. 

Further, the combined view of the numerical simulation result and extracted weld pool 

boundary of magnesium alloys is shown as Figure 2.26.  
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Table 2.4. Chemical composition of magnesium alloy AZ31B. 

 Element Al Zn Mn Si Cu Ca Fe Ni Mg 

Portion(%) 2.5-3.5 0.7-1.3 0.2 0.05 0.05 0.04 0.005 0.005 balance 

  

 

Figure 2.24. Boundary extraction for magnesium alloys AZ31B (800W, 2 m/min). 

 

 

Figure 2.25. Boundary extraction for magnesium alloys AZ31B (900W, 2 m/min). 
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Figure 2.26. Combined view of monitored weld pool and simulation result for 

magnesium alloys (900W, 2 m/min). 

      

In addition, Figure 2.27 shows the extracted boundaries of the weld pools on the 

different welding materials with using the algorithms of this work. The images were 

captured by the other similar setups [16, 17]. In Figure 2.27 (a), the bright dots are the 

extracted keyhole edge and weld pool edge of the welding on a 2mm thin 304 stainless 

steel without any illuminations. Figure 2.27 (b) shows the extracted contour of the weld 

pool by the white curve and the edge of keyhole by the black circle in the Zn-coated steel 

sheet keyhole welding. The image processing results in Figure 2.27 are pretty close to the 

recognition of weld pool by the human vision. So the developed algorithms in this work 

prove to be effective for the in-process weld pool monitoring system. 
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Figure 2.27. Extracted boundary of other cases. 

 

 



45 

 

4
5
 

CHAPTER 3. ESTIMATION OF KEYHOLE GEOMETRY AND PREDICTION OF 

WELDING DEFECTS 

In this chapter, the coaxial monitoring system is used to detect the keyhole 

shape from the top side. To approximate the keyhole dynamics in more straighforward 

and efficient manner under different welding conditions, a data-based static radial basis 

function neural network (RBFNN) is trained in order to establish the relationship 

among different welding parameters, system measurements and unobservable keyhole 

dynamics. Futher, a dynamic RBFNN identification method [41] is used to estimate the 

penetration depth and keyhole front tilting angle for the transient state welding when 

some welding conditions change suddenly. The purpose of using this observer is to 

estimate the change of weld pool geometry due to unknown reasons, such as the 

nonuniformity of work material and absorptivity changes, so that a feedback welding 

control system can be design. Lastly, based on the visual monitoring system, two 

approaches are proposed to estimate in-process welding porosities. 

 

3.1 Methodology of Estimating Keyhole Dynamics 

3.1.1 Radial Basis Function Neural Network  

Keyhole dynamics is very important in the keyhole welding process since it can 

directly impact welding quality. However, an accurate mathematical model of the 

keyhole dynamics is not readily available. Thus, in this section, the application of a radial
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basis function neural network is introduced to identify the keyhole dynamics. In system 

identification, the output of RBFNN is a linear combination of radial basis functions of 

the inputs and neuron parameters. 

 Given a continuous function 𝐹: 𝑅+ → 𝑅, and points {𝑿𝒋
𝒄: 𝑗 = 1,⋯ , 𝑝}, 𝑿𝒋

𝒄 ∈ 𝑅+, 

the function 𝐹 can be defined using radial basis functions as [41]: 

𝑡𝑝(𝑿) = ∑ 𝜆𝑗
𝑝
Φ(|𝑿 − 𝑿𝒋

𝒄|) + 𝜆0
𝑇𝑿

𝑝
𝑗=1           (3.1) 

where, | ∙ | is the Euclidean norm. Φ(∙) is the radial basis function whose value depends 

only on the distance from the origin.  𝑿 is the input vector. The vector 𝑿𝒋
𝒄 contains the 

centers of the basis function, which are determined by the training algorithm. The 

parameters 𝜆𝑗
𝑝
 are the weights between the nodes of basis function and output layer, and 

𝜆0
𝑇 is the weight for the linear term. The value 𝑝 is the number of basis functions in the 

neural network. The goal of using RBFNN is to reduce the errors between 𝐹(𝑿) and 

𝑡𝑝(𝑿) by choosing the proper coefficients of 𝜆𝑗
𝑝
 and 𝜆0

𝑇. The structure of RBFNN is 

shown in Figure 3.1. 

 

Figure 3.1. Schematic diagram of RBFNN. 

 

http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Origin_(mathematics)
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3.1.2 Static RBFNN for Keyhole Dynamic   

 In order to generate a dynamic RBFNN to approximate keyhole dynamics in the 

transient state of keyhole welding, a static RBFNN is first developed to capture the 

correlation between welding parameters and keyhole geometric features. Because the 

welding speed range is from 1 m/min to 4 m/min in this work, the detected keyhole 

boundary is quite similar to a circle. Thus the keyhole diameter is used as a measurable 

keyhole feature. The inputs of the proposed static RBFNN include laser power, welding 

speed, and focal diameter, as well as keyhole diameter. The outputs consist of the 

penetration depth and keyhole front tilting angle. The schematic of the static RBFNN is 

shown in Figure 3.2. The radial basis function used is the Gaussian function, as shown in 

equations (3.2) and (3.3). 𝑿 and 𝑿𝒋
𝒄 have been defined in section 3.1.1. 

Φ(r) = exp (−𝑟2)                                                                                               (3.2) 

𝒓 = |𝑿 − 𝑿𝒋
𝒄|.                                                                                               (3.3) 

The noteworthy point of the static RBFNN in Figure 3.2 is the scaling factor 

between the input data and hidden neurons. To guarantee the accuracy of the neural 

network, the scaling factors are utilized to map all the inputs to the same range, from 0 to 

1. Considering the upper limit of the laser power as 1000 W and the maximum welding 

speed used as 4 m/min, the scaling factors for laser power, welding speed, focal diameter 

and keyhole diameter are respectively 0.001, 0.1, 0.001 and 1. The orthogonal least 

square genetic algorithm (OLSGA) [43] is adopted to train this static RBFNN.   
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Figure 3.2. Static radial basis function neural network for keyhole dynamics.  

 

3.1.3 Dynamic RBFNN for Keyhole Dynamic Estimation   

In the welding process, although the well-trained static RBFNN is able to 

approximate the penetration depth and keyhole inclination angle in steady state welding, 

the keyhole dynamics in transient state welding cannot be predicted. Therefore, a 

dynamic RBFNN model is proposed to approximate the keyhole dynamic process with 

three state variables: keyhole diameter, penetration depth and keyhole inclination angle. 

Among these three, the keyhole diameter is a measurable state variable, but the other two 

are unmeasurable. The dynamic model is illustrated in Figure 3.3. In this dynamic model, 

the input includes both the welding parameters and the past values of three state 

variables.  
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Figure 3.3. Dynamic radial basis function neural network model for keyhole dynamics. 

 

In modeling the dynamic system, the neural network approach [41] is to generate 

an approximation through the input-output measurements. Once data is collected over a 

range of initial conditions for several experiments, the neural network must be trained to 

properly approximate the system dynamics. An unknown plant is described by: 

𝒙𝒌+𝟏 = 𝑓(𝒙𝒌, 𝒖𝒌) + 𝒘𝒌                                                                                  (3.4) 

𝒚𝒌 = ℎ(𝒙𝒌) + 𝒗𝒌                                                                                (3.5) 

where state vector 𝒙𝒌 is n-dimensional and the output vector 𝒚𝒌 is assumed as m-

dimensional. State and measurement noise vectors 𝒘𝒌 and 𝒗𝒌 are assumed to be 

independent Gaussian white processes with zero mean. The RBFNN then approximates 

the plant dynamics for each experiment 𝑖 as: 

𝒙𝒌+𝟏
𝒊 = [Λ Λ0] [

𝚿(𝑿𝒌
𝒊 )

𝑿𝒌
𝒊

] + 𝒘𝒌
𝒊                                                                                                               (3.6) 

𝒛𝒌
𝒊 = 𝒙𝒌

𝒊 + 𝜻𝒌
𝒊                                                                                                                                     (3.7) 
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where 𝑿𝒌
𝒊  contains the state variables and the input for experiment 𝑖, and 𝚿(𝑿𝒌

𝒊 ) =

[𝚽𝟏(𝑿𝒌
𝒊 ), ⋯ , 𝚽𝒑(𝑿𝒌

𝒊 )]
𝑇
 contains the basis functions corresponding to 𝑝 centers. 

Each row of the matrices Λ and Λ0 correspond to an element of the approximated vector 

function𝑓(∙). If define the vector 𝜽𝒋
𝑻 as the 𝑗th row of the matrix [Λ Λ0], then (3.6) can 

be rewritten as: 

𝒙𝒌+𝟏
𝒊 =

[
 
 
 
Ψ𝑖𝑘

𝑇 0 ⋯ 0

0 Ψ𝑖𝑘
𝑇 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 ⋯ 0 Ψ𝑖𝑘

𝑇 ]
 
 
 

[

𝜽𝟏

𝜽𝟐

⋮
𝜽𝒏

] + 𝒘𝒌
𝒊 .                                                             (3.8) 

For 𝑖 = 1,… ,𝑀 experiments, where the notation Ψ𝑖𝑘
𝑇 ≜ [𝚿𝑻(𝑿𝒌

𝒊 ) 𝑿𝒌
𝒊𝑻]. Finally, to 

simplify (8), further define Θ = [𝜽𝟏 ⋯ 𝜽𝒏]𝑇 and combine all 𝑀 experiments, a 

system with 𝑀𝑛 hyperstate variables and 𝑛𝑝 parameters is described as: 

𝜼𝒌+𝟏 = 𝜉𝑘(𝜼𝒌, 𝒖𝒌)Θ + 𝒘𝒌                                                                                    (3.9) 

𝜸𝒌 = 𝜼𝒌 + 𝜻𝒌.                                                                                                 (3.10) 

Here 𝜼𝒌 = [𝒙𝟏𝒌
𝟏 𝒙𝟏𝒌

𝟐 ⋯ 𝒙𝟏𝒌
𝑴 𝒙𝟐𝒌

𝟏 ⋯ 𝒙𝒏𝒌
𝑴 ]𝑇, 𝜸 and 𝜻 denote output and 

measurement noise respectively. The matrix 𝜉𝑘(𝜼𝒌, 𝒖𝒌) is of dimension 𝑀𝑛 × 𝑛𝑝 and is 

defined as: 

𝜉𝑘(𝜼𝒌, 𝒖𝒌) =

[
 
 
 
 
 
 
 
(

Ψ1𝑘
𝑇

⋮
Ψ𝑀𝑘

𝑇
) 0 ⋯ 0

⋮ ⋮ ⋯ ⋮

0 ⋯ 0 (
Ψ1𝑘

𝑇

⋮
Ψ𝑀𝑘

𝑇
)

]
 
 
 
 
 
 
 

 .                                                                          (3.11) 



51 

 

5
1
 

The goal of the training algorithm is restated as determining the values of the 

matrix Θ̂ such that the error between the measurements 𝜸𝒌 and the output of the system 

estimate 𝜉𝑘(𝜼𝒌, 𝒖𝒌) is minimized. The recursive update equation of Θ̂ becomes: 

Θ̂𝑁+1 = Θ̂𝑁 + 𝑅𝑁 𝜉𝑁−1
𝑇 [𝐼 + 𝜉𝑁𝑅𝑁 𝜉𝑁−1

𝑇 ]
−1

× [𝜸𝑵+𝟏 − 𝜉𝑁Θ̂𝑁]                                  (3.12) 

𝑅𝑁+1 = 𝑅𝑁 − 𝑅𝑁 𝜉𝑁−1
𝑇 [𝐼 + 𝜉𝑁𝑅𝑁 𝜉𝑁−1

𝑇 ]
−1

𝜉𝑁𝑅𝑁.                                                   (3.13) 

The faster convergence of the training algorithm (3.12) and (3.13) can be obtained by 

choosing 𝑅0 = 𝜎𝐼 with a sufficiently large value of 𝜎. Approximation of the system 

output equations can be carried out similarly. 

A state estimator gain was then designed for the RBFNN to adapt its state 

estimations based on predicted states and actual measured states. For convenience, we 

write the approximated system using the RBFNN as: 

𝒙𝒌+𝟏 = 𝑓′(𝒙𝒌, 𝒖𝒌) + 𝐹𝒙𝒌 + 𝑏𝒖𝒌 + 𝒘𝒌                                                                                                (3.14) 

𝒚𝒌 = ℎ′(𝒙𝒌) + 𝐻𝒙𝒌 + 𝒗𝒌.                                                                                             (3.15) 

The estimated states can then be determined by the following state estimator equation, 

�̂�𝒌+𝟏 = 𝑓′(�̂�𝒌, 𝒖𝒌) + 𝐹�̂�𝒌 + 𝑏𝒖𝒌 + 𝐾𝑘[𝒚𝒌 − ℎ′(�̂�𝒌) − 𝐻�̂�𝒌].                                                 (3.16) 

The minimum variance gain 𝐾𝑘
∗ can then be calculated as: 

𝐾𝑘
∗ = 𝐹�̂�𝑘𝐻

𝑇 [(
𝑙4

𝑙1
+

𝑙5

𝑙1
𝑇𝑟(�̂�𝑘)) 𝐼 +

1

𝑙1
𝑉 + 𝐻�̂�𝑘𝐻

𝑇]

−1

.                                                                (3.17) 

And the estimated covariance of the states �̂�𝑘 follows the update equation: 

�̂�𝑘+1 = 𝑙1(𝐹 − 𝐾𝑘𝐻)�̂�𝑘(𝐹 − 𝐾𝑘𝐻)𝑇 + (𝑙2 + 𝑙3𝑇𝑟(�̂�𝑘)) 𝐼 + (𝑙4 + 𝑙5𝑇𝑟(�̂�𝑘))𝐾𝑘𝐾𝑘
𝑇 + 

𝑊 + 𝐾𝑘𝑉𝐾𝑘
𝑇.                                                                                                                                                       (3.18) 
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In (3.17) and (3.18), 𝑉 is the covariance matrix of the measurement noise, 𝑊 is the 

covariance matrix of the system noise. 𝑇𝑟(�̂�𝑘) = ∑ �̂�𝑖,𝑖
𝑛
𝑖=1 , which is the sum of the 

diagonal entries of the estimated state covariance matrix �̂�𝑘, and the values 𝑙1−5 are 

defined as: 

𝑙1 = 1 + 𝑎 + 𝑑 + 2𝑒𝑓 + 𝑒ℎ                                                                                                                    (3.19) 

𝑙2 = 𝑛𝑒𝑓(2 + 𝑎 + 𝑑 + 𝑒𝑓 + 𝑒ℎ) 

𝑙3 = 𝑎(𝑎 + 𝑑 + 𝑒𝑓 + 𝑒ℎ) 

𝑙4 = 𝑚𝑒𝑓(1 + 𝑎 + 𝑑 + 𝑒𝑓 + 𝑒ℎ) 

𝑙5 = 𝑎 + 𝑑 + 𝑎𝑑 + 𝑑2 + 𝑒𝑓𝑑 + 𝑒ℎ𝑑.  

The constants 𝑒𝑓 and 𝑒ℎ are the maximum error in approximating the states and 

measurements respectively, and are determined by the training algorithm. The constants 

𝑎 and 𝑑 are the Lipschitz constants, and are defined as: 

‖𝑓′(𝒙𝒌, 𝒖𝒌) − 𝑓′(𝒙𝒌 + 𝜹𝒌, 𝒖𝒌)‖∞ ≤ 𝑎‖𝜹𝒌‖∞                                                                                 (3.20) 

‖ℎ′(𝒙𝒌 + 𝜹𝒌) − ℎ′(𝒙𝒌)‖∞ ≤ 𝑑‖𝜹𝒌‖∞.                                                                                                 (3.21) 

Since the parameters appear in the RBFNN as a linear form, least squares 

estimation is possible. The state estimator is designed for use with the RBFNN and the 

gain matrix is derived on the basis of an upper bound covariance matrix. In addition, the 

consideration of approximation error in the estimation algorithm successfully minimizes 

filter divergence.  

For the keyhole dynamics, the structure of the dynamic estimator is shown in  

Figure 3.4. The experiment number 𝑖 is determined by the actual transient welding 

situations that are considered in the next section.  
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Figure 3.4. Structure of estimator based on RBFNN. 

 

3.2 Data Collection and Static Neural Network Training 

  Since the training of static RBFNN is based on the input and output data, 

experiments are necessary to collect the data for training the neural network. In 

consideration of the range of interest for welding parameters, the experiments are 

designed as shown in Table 3.1. The focal diameter of the laser equipment is kept at 200 

μm, so it is not listed in Table 3.1, but should still be regarded as an input for the 

expandability of the proposed RBFNN.  

Table 3.1. Designed experiments. 

Experiment 

No.  

Laser 

power 

Welding 

speed 

Experiment 

No.  

Laser power Welding 

speed 

1 400 W 1 m /min 9 800 W 1 m /min 

2 400 W 2 m/min 10 800 W 2 m/min 

3 400 W 3 m/min 11 800 W 3 m/min 

4 400 W 4 m/min 12 800 W 4 m/min 

5 600 W 1 m /min 13 1000 W 1 m /min 

6 600 W 2 m/min 14 1000 W 2 m/min 

7 600 W 3 m/min 15 1000 W 3 m/min 

8 600 W 4 m/min 16 1000 W 4 m/min 
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3.2.1 Detected Keyhole Diameters 

The keyhole diameters are detected by the coaxial monitoring system, as shown in 

Figure 3.5. The average values of keyhole diameters under different welding parameters 

are plotted in Figure 3.6 and the corresponding captured images are summarized in Table 

3.2. As can be seen, the change of keyhole size is not quite linear with respect to the 

change of welding condition. Generally, an increase in laser power or a decrease in 

welding speed makes the keyhole size larger. 

 

Figure 3.5 Detected keyhole area and keyhole diameter. 

 

 

Figure 3.6. Keyhole diameters under different welding parameters. 
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Table 3.2. Average keyhole diameters from images: (150 pixels = 1 mm). 

 400 W  600 W 800 W 1000 W 

1 

m/min 

32 (0.213mm) 

 

73 (0.486mm) 

 

128(0.853mm) 

 

150 (1mm) 

 

2 

m/min 

29 (0.193mm) 

 

65 (0.433mm)

 

 

117 (0.78mm) 

 

132 (0.88mm) 

 

3 

m/min 

25 (0.167mm) 

 

 

63 (0.42mm) 

 

111 (0.74mm)

 

115 (0.767mm) 

 

4 

m/min 

22 (0.147mm) 

 

56 (0.373mm) 

 

97 (0.647mm) 

 

107 (0.713mm) 
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3.2.2 Penetration Depth and Inclination Angle 

The techniques for measuring penetration depth and inclination angle are different 

since both of them cannot be directly measured from the coaxial monitoring system. 

Therefore, the cross section view of the post-processed weld is used to realize the data 

collection. The cross section view perpendicular to the weld (Figure 3.7) provides 

sufficient information on the penetration depth. As for the inclination angle, the 

longitudinal cross section view (Figure 3.8) shows the angle clearly at the end of each 

weld. All the experimental data for the penetration depth and inclination angle are plotted 

in Figure 3.9.  

 

 

Figure 3.7. Cross section view to for penetration depth measurement (800 W, 2m/min). 



57 

 

5
7
 

 

Figure 3.8. Cross-section view for keyhole inclination angle 

(Left: 1000 W, 1 m/min. Right: 1000 W, 2 m/min). 

 

 

Figure 3.9. Experimental data for penetration depth (left) and inclination angle (right). 

 

 



58 

 

5
8
 

3.2.3 Training Results of Static RBFNN 

To conduct off-line training, OLSGA [43] is utilized since it can better 

approximate the system features even when the data set is insufficient. This algorithm 

adds a significant radial basis function node at each iteration during training based on an 

error reduction measure using the orthogonal least square method, while the genetic 

algorithm provides a way of achieving a global optimum than other gradient-based search 

methods for the calculation of width and center of RBF in each iteration within the 

predefined upper and lower bounds of the search range. The training result for 

penetration depth is shown in Figure 3.10, while the training result for inclination angle is 

shown in Figure 3.11. From the error plots, it can be seen that both errors are very small, 

less than 1%, when compared to the actual data sets. 

Figure 3.10. Training results and errors of penetration depth. 
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Figure 3.11. Training results and errors of inclination angle. 

 

3.2.4 Testing of Static Neural Network 

The well-trained static neural network covers the range of welding power from 

400 W to 1000 W and the welding speed from 1 m/min to 4 m/min. To test the 

effectiveness of the static RBFNN, data other than the training sets are used. In this work, 

the test experiments are conducted with the laser power of 500 W and the welding speeds 

of 2 m/min, 3 m/min and 4 m/min. The comparisons between the actual results and neural 

network approximation are summarized in Table 3.3 and Table 3.4. The respective 

experimental results are also shown in Figure 3.12 (a) and Figure 3.12 (b). When 

compared with the test results, the errors of the neural network are all less than 3 %, 

which means this static neural network can be utilized to approximate correlations 

between the different welding parameters and keyhole geometries in the steady state 

welding process.  
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Table 3.3. Test data for penetration depth. 

Power Welding 

speed 

Focal 

diameter 

Keyhole 

diameter(mm) 

Experimental 

keyhole depth (μm) 

Neural Network  

keyhole depth (μm) 

500 W 2 m/min 200 μm 0.35 981 1007.0 

500 W 3 m/min 200 μm 0.324 889 866.2 

500 W 4 m/min 200 μm 0.27 687 674.32 

 

Table 3.4. Test data for inclination angle. 

Power Welding 

speed 

Focal 

diameter 

Keyhole 

diameter(mm) 

Experimental 

Inclination angle (°) 

Neural Network  

Inclination angle (°) 

500 W 2 m/min 200 μm 0.35 30.6 31.86 

500 W 4 m/min 200 μm 0.27 35.5 36.57 

 

Figure 3.12 (a). Penetration depth of (a) 500 W, 2 m/min (b) 500 W, 3 m/min (c) 500 W, 

4 m/min. 

 

 

Figure 3.12 (b). Inclination angle of (a) 500 W, 2 m/min (b) 500 W, 4 m/min. 
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3.3 Dynamic RBFNN-based Observer for Keyhole Dynamic 

3.3.1 Data Training for Dynamic RBFNN 

As for the dynamic laser welding process, the keyhole geometry is estimated 

based on the dynamic RBFNN shown in Figure 3.3. In this work, two groups of 

experiments are carried out for transient state laser welding. The first one suddenly 

changes laser power from 400 W to 1000 W (changing time is less than 1 ms) with a 

constant welding speed of 2 m/min. The second changes the welding speed from 2 m/min 

to 3 m/min with a constant acceleration rate of 15 m/𝑠2 and laser power of 1000 W. The 

focal diameter used in the experiments is still 200 μm. To train the dynamic neural 

network model, the transient data is obtained from the numerical model [8] with an 

output every 0.1 ms. Figure 3.13 shows the keyhole dynamic changes predicted by this 

numeric model with respect to time. The entire transient state process lasts 41 ms and 68 

ms for the first and second case, respectively. The training results of the dynamic neural 

network are shown in Figure 3.14 (a) and Figure 3.14 (b). It is obvious that the trained 

RBFNN is capable of capturing the keyhole dynamics very well.  

.  

Figure 3.13. Training data from numerical simulations (Case of changing power). 

 



62 

 

6
2
 

 

Figure 3.14 (a). Dynamic neural network training results for changing laser power. 

 

Figure 3.14 (b). Dynamic neural network training results for changing welding speed.  
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3.3.2 Estimation Results of Dynamic RBFNN Observer 

After the training, the observer is used to estimate the penetration depth and 

inclination angle. The actual penetration depth from the cross section view along the 

centerline of the weld is compared with the estimated keyhole penetration depth. As 

shown in Figure 3.15, the red circles of the actual penetration depth are located very close 

to the blue line of estimated penetration depth. As for the keyhole inclination angle, the 

estimated results are compared to the actual model-based data in Figure 3.16, in which 

predicted inclination angle acceptably represents the actual experimental result. These 

results demonstrate the accuracy of keyhole dynamic estimation via the RBFNN-based 

observer.  
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Figure 3.15. Comparison of estimated penetration depth and experimental results for (a) 

changing power (b) changing speed. 
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Figure 3.16. Comparison of numerical model-based actual angle and estimated angle (a) 

Changing power (b) Changing speed. 

 

3.4 Prediction of Welding Defects 

To predict the potential porosity and evaluate the welding quality, two approaches 

with the coaxial monitoring system are proposed, one of which is based on the predefined 

bound of variation and the other derived from the statistical analysis. As can be seen in 

the experimental results, the detected keyhole size has fluctuations even in the steady 
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state of welding. Under certain welding conditions, variations of the keyhole size exceed 

the preset range due to the possiblity of a collapsed keyhole and porosities formed inside 

the weld pool. Through analyzing these imaging signals, welding porosities could be 

predicted in real time for both stainless steel 304 and magnesium alloy AZ31B.  

(1) Image binarization: After capturing the images of the keyhole, the color images are 

converted to grey ones, which consist of all pixels with the greyness value from 0 to 

255. For the welding of stainless steel, the brightest part of the captured image is the 

keyhole area. The threshold value for image binarization is chosen as 240. Thus, pixels 

with greyness value under 240 are reset to 0, while values above 240 are reset to 255, 

as shown in Figure 3.17. However, due to the difference of the absorptivity ratio of the 

green light, the keyhole for magnesium is darker than its surroundings, as marked out 

by red squares in Figure 3.18. The threshold value for image binarization of magnesium 

welding is chosen as 80 in the present work. The converted image and binarization 

results are also shown in Figure 3.18. 

 

Figure 3.17. Keyhole area detection with stainless steel (a) Original image (b) 

Converted grey image (c) Binarized image. 
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Figure 3.18. Keyhole area detection with magnesium alloy (a) Original image (b) 

Converted grey image (c) Binarized image. 

 

(2) Keyhole size determination: To describe the keyhole size, the total pixel number of 

the keyhole area is used. For stainless steel, the binarization is able to clearly separate 

the keyhole from the background, and thus the pixel number N with greyness value of 

255 is regarded as the size of the keyhole area. On the other hand, some additional 

locating techniques are necessary due to the noises of binarized magnesium images. 

The relative position of the keyhole center in an entire captured image is fixed since 

the monitoring system cannot be moved during the welding process; consequently, only 

the region bounded by lines A1, A2, B1 and B2 is considered, as shown in  

Figure 3.18 (c). From the actual experimental results, it is confirmed that no keyhole 

area is larger than this bounded region. The total pixel number with greyness value of 

0 inside this pre-defined search area is used to determine the keyhole size as N. 

(3) Mean value, upper and lower bound: After recording a series of keyhole  images 

that contain K consecutive frames, the mean value of keyhole size is determined as 

M =
1

𝐾
∑ 𝑁𝑖

𝐾
𝑖=1

. In the experiment with stainless steel, the fluctuation below the 10% 
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is taken as a reasonable change of the keyhole size, and the upper and lower bounds 

are 1.1 M and 0.9 M respectively. When considering the more unstable properties of 

the magnesium alloy, fluctuation of keyhole size around the mean value less than 

25% is assumed to be a reasonable change. Consequently, the upper and lower 

bounds for magnesium alloy are respectively 1.25 M and 0.75 M.  

(4) Experiment design for welding quality classification: In the experiment design, 

different welding parameters are selected for resultant welds classified as either good 

welding or poor welding. The designed welding parameters are listed in Table 3.5 and 

Table 3.6. Through the cross sectional views of the post-processed welds, as 

illustrated in Figure 3.19 and Figure 3.20, the corresponding welding quality is also 

determined. 

Table 3.5. Designed experiment parameters for stainless steel. 

Experiment 

No.  

Laser 

power 

Welding 

speed 

Welding 

quality 

1 1000 W 1 m/min Poor  

2 1000 W 2 m/min Poor  

3 500 W 2 m/min Good  

 

Table 3.6. Designed experiment parameters for magnesium alloys. 

Experiment 

No.  

Laser 

power 

Welding 

speed 

Welding 

quality 

1 700 W 0.9 m/min   Good 

2 800 W 2 m/min Poor 

3 900 W 2 m/min Poor 
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Figure 3.19. Horizontal cross section view of weld on stainless steel. 

 

 

Figure 3.20. Longitudinal cross section view of weld on magnesium. 

 

(5) Porosity prediction method 1: If there are calculated keyhole sizes located out of the 

lower and upper bounds, it means that the unusual keyhole changes happened in the 

welding process and there is a high chance of porosity formation in the base material. 

In Figure 3.21 (a) and (b) and Figure 3.22 (b) and (c), either many points are outside 

the pre-defined regions or sharp peaks occur in the plots, where the undesired points 

are all marked by red dots. On the other hand, all of the points are within the two bounds 

in Figure 3.21 (c) and Figure 3.22 (a), which means that few welding defects are 
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detected during the welding process. Therefore, the detected results from Figure 3.21 

and Figure 3.22 accurately reflect the welding qualities summarized in Table 3.5 and 

Table 3.6. 

(6) Porosity prediction method 2: As the variation of the keyhole size is a statistical 

process, the relative standard error (RSE) can be applied to get a more qualitative 

measure of the variance around the mean in estimating the welding quality, where 

RSE =
 𝜎(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)

𝑀(𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒)
. For the case in Figure 3.21, RSE1 = 0.1006 for the first 

one, RSE2 = 0.0633 for the second one, and RSE3 = 0.0377 for the third one. For the 

magnesium alloy in Figure 3.22, RSE1 = 0.1079 for the first one, RSE2 = 0.2657 for 

the second one and RSE3 = 0.213 for the third one. Apparently, the measurements 

with lower RSE indicate that the welding process is likely to run smoothly with less 

porosities. Based on experimental results, the “good welding” could be regarded as 

welding with RSE less than 0.05 for stainless steel and less than 0.15 for magnesium 

alloys.  
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Figure 3.21. Detected keyhole sizes with stainless steel. 
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Figure 3.22. Detected keyhole sizes with magnesium alloys. 
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CHAPTER 4. CONCLUSION AND RECOMMENDATION OF FUTURE WORK 

4.1 Conclusion 

In keyhole laser welding, the on-line weld pool monitoring plays a critical role 

in welding quality control. A coaxial monitoring system with a green laser illumination 

system was established to accurately detect the weld pool dynamics. Although the 

captured images still contained imaging noises, a complete weld pool boundary 

extraction algorithm was developed based on the local maximum gradient of greyness 

searching and linear interpolation, which efficiently resisted the potential imaging noises. 

Validation with the experimentally measured weld pool widths and predictions by the 

three-dimensional multi-phase model proved the effectiveness of the monitoring method. 

Another advantage is the potential for expansion of this work to multiple welding 

conditions with different base materials, such as stainless steel or magnesium alloys.     

In addition, as keyhole dynamics significantly influence welding quality, the 

proposed static radial basis function neural network provides an accurate prediction of the 

major keyhole features with different welding conditions and measurements of the 

system based on the designed monitoring system. Under the changing welding 

parameters, the dynamic radial basis function neural network observer performs well in 

estimating the penetration depth and inclination angle. Additionally, the proposed 

approaches of porosity prediction, based on the visual monitoring system, successfully 
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indicate the occurrence of potential porosities in real-time experimentation. 

 To sum up, some major contributions could be generalized as follows:  

(1) Considering the cost and flexibility of our designed monitoring system, the whole 

system is more likely to be applied to the actual laser welding process in many 

industrial fields.  

(2) Use of the boundary extraction algorithm, static neural network and dynamic neural 

network-based state observer allow the dynamic three-dimensional keyhole geometry 

and weld pool edge to be captured without relying on complex measurement techniques 

and an  accurate mathematic model.  

(3) The correlation between the change in keyhole size and potential welding defects is 

established so that a feedback welding control system can be designed.  

 

4.2 Recommendation of Future Work 

As for the monitoring system, the green laser illumination works better with 

stainless steel than magnesium alloys (the weld pool geometry for stainless steel is much 

clearer) since the illumination source was selected in terms of the spectral analysis of 

plasma and plume on stainless steel. Although the extraction of the weld pool boundary is 

sufficient when using the proposed algorithms, other illumination sources, such as a red 

or blue laser, could be considered in order to improve the imaging quality of welding 

with magnesium alloys.  

On the other hand, as has been mentioned above, more work with the controller 

design could be performed based on this well-established monitoring system. In 

particular, as the welding defects have been predicted in real time, welding speed and 
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laser power could be adjusted as inputs of the controller so that good welding quality can 

be guaranteed during the welding process.    

In this work, the spectrometer is only used as a technique to analyze the spectra 

of plasma and plume. However, considering the advantages of high sampling rate and 

easy operation, more information about the weld pool could be obtained by collecting 

data from the spectrometer. Thus, the spectrometer and monitoring system can be 

combined together to provide the measurements for the control system. Moreover, 

through analysis of spectral data, a new mechanism of welding defect prediction can be 

set up as a validation for the approaches proposed in this work.    
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