447 research outputs found

    Boosting accuracy of automated classification of fluorescence microscope images for location proteomics

    Get PDF
    BACKGROUND: Detailed knowledge of the subcellular location of each expressed protein is critical to a full understanding of its function. Fluorescence microscopy, in combination with methods for fluorescent tagging, is the most suitable current method for proteome-wide determination of subcellular location. Previous work has shown that neural network classifiers can distinguish all major protein subcellular location patterns in both 2D and 3D fluorescence microscope images. Building on these results, we evaluate here new classifiers and features to improve the recognition of protein subcellular location patterns in both 2D and 3D fluorescence microscope images. RESULTS: We report here a thorough comparison of the performance on this problem of eight different state-of-the-art classification methods, including neural networks, support vector machines with linear, polynomial, radial basis, and exponential radial basis kernel functions, and ensemble methods such as AdaBoost, Bagging, and Mixtures-of-Experts. Ten-fold cross validation was used to evaluate each classifier with various parameters on different Subcellular Location Feature sets representing both 2D and 3D fluorescence microscope images, including new feature sets incorporating features derived from Gabor and Daubechies wavelet transforms. After optimal parameters were chosen for each of the eight classifiers, optimal majority-voting ensemble classifiers were formed for each feature set. Comparison of results for each image for all eight classifiers permits estimation of the lower bound classification error rate for each subcellular pattern, which we interpret to reflect the fraction of cells whose patterns are distorted by mitosis, cell death or acquisition errors. Overall, we obtained statistically significant improvements in classification accuracy over the best previously published results, with the overall error rate being reduced by one-third to one-half and with the average accuracy for single 2D images being higher than 90% for the first time. In particular, the classification accuracy for the easily confused endomembrane compartments (endoplasmic reticulum, Golgi, endosomes, lysosomes) was improved by 5–15%. We achieved further improvements when classification was conducted on image sets rather than on individual cell images. CONCLUSIONS: The availability of accurate, fast, automated classification systems for protein location patterns in conjunction with high throughput fluorescence microscope imaging techniques enables a new subfield of proteomics, location proteomics. The accuracy and sensitivity of this approach represents an important alternative to low-resolution assignments by curation or sequence-based prediction

    Evolutionary Granular Kernel Machines

    Get PDF
    Kernel machines such as Support Vector Machines (SVMs) have been widely used in various data mining applications with good generalization properties. Performance of SVMs for solving nonlinear problems is highly affected by kernel functions. The complexity of SVMs training is mainly related to the size of a training dataset. How to design a powerful kernel, how to speed up SVMs training and how to train SVMs with millions of examples are still challenging problems in the SVMs research. For these important problems, powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data reduction method is presented, and a new MEB-SVM algorithm is designed. All these kernel methods are designed based on Granular Computing (GrC). In general, Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels effectively, speed up training greatly and mine huge amounts of data efficiently

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    Learning to predict under a budget

    Get PDF
    Prediction-time budgets in machine learning applications can arise due to monetary or computational costs associated with acquiring information; they also arise due to latency and power consumption costs in evaluating increasingly more complex models. The goal in such budgeted prediction problems is to learn decision systems that maintain high prediction accuracy while meeting average cost constraints during prediction-time. Such decision systems can potentially adapt to the input examples, predicting most of them at low cost while allocating more budget for the few "hard" examples. In this thesis, I will present several learning methods to better trade-off cost and error during prediction. The conceptual contribution of this thesis is to develop a new paradigm of bottom-up approach instead of the traditional top-down approach. A top-down approach attempts to build out the model by selectively adding the most cost-effective features to improve accuracy. In contrast, a bottom-up approach first learns a highly accurate model and then prunes or adaptively approximates it to trade-off cost and error. Training top-down models in case of feature acquisition costs leads to fundamental combinatorial issues in multi-stage search over all feature subsets. In contrast, we show that the bottom-up methods bypass many of such issues. To develop this theme, we first propose two top-down methods and then two bottom-up methods. The first top-down method uses margin information from training data in the partial feature neighborhood of a test point to either select the next best feature in a greedy fashion or to stop and make prediction. The second top-down method is a variant of random forest (RF) algorithm. We grow decision trees with low acquisition cost and high strength based on greedy mini-max cost-weighted impurity splits. Theoretically, we establish near-optimal acquisition cost guarantees for our algorithm. The first bottom-up method we propose is based on pruning RFs to optimize expected feature cost and accuracy. Given a RF as input, we pose pruning as a novel 0-1 integer program and show that it can be solved exactly via LP relaxation. We further develop a fast primal-dual algorithm that scales to large datasets. The second bottom-up method is adaptive approximation, which significantly generalizes the RF pruning to accommodate more models and other types of costs besides feature acquisition cost. We first train a high-accuracy, high-cost model. We then jointly learn a low-cost gating function together with a low-cost prediction model to adaptively approximate the high-cost model. The gating function identifies the regions of the input space where the low-cost model suffices for making highly accurate predictions. We demonstrate empirical performance of these methods and compare them to the state-of-the-arts. Finally, we study adaptive approximation in the on-line setting to obtain regret guarantees and discuss future work.2019-07-02T00:00:00

    Analysis of Microarray Data using Machine Learning Techniques on Scalable Platforms

    Get PDF
    Microarray-based gene expression profiling has been emerged as an efficient technique for classification, diagnosis, prognosis, and treatment of cancer disease. Frequent changes in the behavior of this disease, generate a huge volume of data. The data retrieved from microarray cover its veracities, and the changes observed as time changes (velocity). Although, it is a type of high-dimensional data which has very large number of features rather than number of samples. Therefore, the analysis of microarray high-dimensional dataset in a short period is very much essential. It often contains huge number of data, only a fraction of which comprises significantly expressed genes. The identification of the precise and interesting genes which are responsible for the cause of cancer is imperative in microarray data analysis. Most of the existing schemes employ a two phase process such as feature selection/extraction followed by classification. Our investigation starts with the analysis of microarray data using kernel based classifiers followed by feature selection using statistical t-test. In this work, various kernel based classifiers like Extreme learning machine (ELM), Relevance vector machine (RVM), and a new proposed method called kernel fuzzy inference system (KFIS) are implemented. The proposed models are investigated using three microarray datasets like Leukemia, Breast and Ovarian cancer. Finally, the performance of these classifiers are measured and compared with Support vector machine (SVM). From the results, it is revealed that the proposed models are able to classify the datasets efficiently and the performance is comparable to the existing kernel based classifiers. As the data size increases, to handle and process these datasets becomes very bottleneck. Hence, a distributed and a scalable cluster like Hadoop is needed for storing (HDFS) and processing (MapReduce as well as Spark) the datasets in an efficient way. The next contribution in this thesis deals with the implementation of feature selection methods, which are able to process the data in a distributed manner. Various statistical tests like ANOVA, Kruskal-Wallis, and Friedman tests are implemented using MapReduce and Spark frameworks which are executed on the top of Hadoop cluster. The performance of these scalable models are measured and compared with the conventional system. From the results, it is observed that the proposed scalable models are very efficient to process data of larger dimensions (GBs, TBs, etc.), as it is not possible to process with the traditional implementation of those algorithms. After selecting the relevant features, the next contribution of this thesis is the scalable viii implementation of the proximal support vector machine classifier, which is an efficient variant of SVM. The proposed classifier is implemented on the two scalable frameworks like MapReduce and Spark and executed on the Hadoop cluster. The obtained results are compared with the results obtained using conventional system. From the results, it is observed that the scalable cluster is well suited for the Big data. Furthermore, it is concluded that Spark is more efficient than MapReduce due to its an intelligent way of handling the datasets through Resilient distributed dataset (RDD) as well as in-memory processing and conventional system to analyze the Big datasets. Therefore, the next contribution of the thesis is the implementation of various scalable classifiers base on Spark. In this work various classifiers like, Logistic regression (LR), Support vector machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), and Radial basis function network (RBFN) with two variants hybrid and gradient descent learning algorithms are proposed and implemented using Spark framework. The proposed scalable models are executed on Hadoop cluster as well as conventional system and the results are investigated. From the obtained results, it is observed that the execution of the scalable algorithms are very efficient than conventional system for processing the Big datasets. The efficacy of the proposed scalable algorithms to handle Big datasets are investigated and compared with the conventional system (where data are not distributed, kept on standalone machine and processed in a traditional manner). The comparative analysis shows that the scalable algorithms are very efficient to process Big datasets on Hadoop cluster rather than the conventional system

    Adaptive Automated Machine Learning

    Get PDF
    The ever-growing demand for machine learning has led to the development of automated machine learning (AutoML) systems that can be used off the shelf by non-experts. Further, the demand for ML applications with high predictive performance exceeds the number of machine learning experts and makes the development of AutoML systems necessary. Automated Machine Learning tackles the problem of finding machine learning models with high predictive performance. Existing approaches incorporating deep learning techniques assume that all data is available at the beginning of the training process (offline learning). They configure and optimise a pipeline of preprocessing, feature engineering, and model selection by choosing suitable hyperparameters in each model pipeline step. Furthermore, they assume that the user is fully aware of the choice and, thus, the consequences of the underlying metric (such as precision, recall, or F1-measure). By variation of this metric, the search for suitable configurations and thus the adaptation of algorithms can be tailored to the user’s needs. With the creation of a vast amount of data from all kinds of sources every day, our capability to process and understand these data sets in a single batch is no longer viable. By training machine learning models incrementally (i.ex. online learning), the flood of data can be processed sequentially within data streams. However, if one assumes an online learning scenario, where an AutoML instance executes on evolving data streams, the question of the best model and its configuration remains open. In this work, we address the adaptation of AutoML in an offline learning scenario toward a certain utility an end-user might pursue as well as the adaptation of AutoML towards evolving data streams in an online learning scenario with three main contributions: 1. We propose a System that allows the adaptation of AutoML and the search for neural architectures towards a particular utility an end-user might pursue. 2. We introduce an online deep learning framework that fosters the research of deep learning models under the online learning assumption and enables the automated search for neural architectures. 3. We introduce an online AutoML framework that allows the incremental adaptation of ML models. We evaluate the contributions individually, in accordance with predefined requirements and to state-of-the- art evaluation setups. The outcomes lead us to conclude that (i) AutoML, as well as systems for neural architecture search, can be steered towards individual utilities by learning a designated ranking model from pairwise preferences and using the latter as the target function for the offline learning scenario; (ii) architectual small neural networks are in general suitable assuming an online learning scenario; (iii) the configuration of machine learning pipelines can be automatically be adapted to ever-evolving data streams and lead to better performances

    3-D Content-Based Retrieval and Classification with Applications to Museum Data

    Get PDF
    There is an increasing number of multimedia collections arising in areas once only the domain of text and 2-D images. Richer types of multimedia such as audio, video and 3-D objects are becoming more and more common place. However, current retrieval techniques in these areas are not as sophisticated as textual and 2-D image techniques and in many cases rely upon textual searching through associated keywords. This thesis is concerned with the retrieval of 3-D objects and with the application of these techniques to the problem of 3-D object annotation. The majority of the work in this thesis has been driven by the European project, SCULPTEUR. This thesis provides an in-depth analysis of a range of 3-D shape descriptors for their suitability for general purpose and specific retrieval tasks using a publicly available data set, the Princeton Shape Benchmark, and using real world museum objects evaluated using a variety of performance metrics. This thesis also investigates the use of 3-D shape descriptors as inputs to popular classification algorithms and a novel classifier agent for use with the SCULPTEUR system is designed and developed and its performance analysed. Several techniques are investigated to improve individual classifier performance. One set of techniques combines several classifiers whereas the other set of techniques aim to find the optimal training parameters for a classifier. The final chapter of this thesis explores a possible application of these techniques to the problem of 3-D object annotation
    corecore