
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2018

Learning to predict under a budget

https://hdl.handle.net/2144/30726
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/215934674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

LEARNING TO PREDICT UNDER A BUDGET

by

FENG NAN

B.S., National University of Singapore, 2008

M.S., Massachusetts Institute of Technology, 2009

Submitted in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

2018

c⃝ 2018 by

FENG NAN

All rights reserved

Approved by

First Reader

Venkatesh Saligrama, PhD
Professor of Electrical and Computer Engineering
Professor of Systems Engineering
Professor of Computer Science

Second Reader

David A. Castañón, PhD
Professor of Electrical and Computer Engineering
Professor of Systems Engineering

Third Reader

Lorenzo Orecchia, PhD
Assistant Professor of Computer Science

Fourth Reader

Alexander Olshevsky, PhD
Assistant Professor of Electrical and Computer Engineering
Assistant Professor of Systems Engineering

Acknowledgments

I have been fortunate to receive much support for the work of this thesis.

First, I am happy to give thanks to God and the Lord Jesus Christ for His love.

He opened the door for me to pursue doctorate study and has carried me through.

I would also like to thank my advisor Professor Venkatesh Saligrama for his guid-

ance and encouragement. The breath and depth of his intellect will continue to be

my aspiration. In addition, I have learned what doing good research is about from

seeing him at work. It is about being optimistic and enjoying the process even when

the goal seems far; it is also about never giving up an idea without knowing why it

does not work.

I also had the privilege of working with Professor Yannis Paschalidis, who kindly

mentored me for the �rst year at BU and introduced me to topics in computational

biology. I would also like to acknowledge Professor David Castañón and Professor

Lorenzo Orecchia for their availability to share their insights with me on optimization.

I also thank Professor Alexander Olshevsky for agreeing to be on my thesis committee.

I must also thank my colleagues and friends in BU for their numerous help and

encouragement. They made my doctorate study a lot more enjoyable.

Last but not least, I would like to thank my family, especially my wife Yanping.

She gave up much to support me through my study and gave birth to our two beautiful

girls. Her sacri�ce and support are indispensable to my success. I also thank our

parents for their sel�ess love and unconditioned support.

iv

LEARNING TO PREDICT UNDER A BUDGET

FENG NAN

Boston University, College of Engineering, 2018

Major Professor: Venkatesh Saligrama, PhD

Professor of Electrical and Computer Engineering

Professor of Systems Engineering

Professor of Computer Science

ABSTRACT

Prediction-time budgets in machine learning applications can arise due to mon-

etary or computational costs associated with acquiring information; they also arise

due to latency and power consumption costs in evaluating increasingly more complex

models. The goal in such budgeted prediction problems is to learn decision systems

that maintain high prediction accuracy while meeting average cost constraints during

prediction-time.

In this thesis, I will present several learning methods to better trade-o� cost and

error during prediction. The conceptual contribution of this thesis is to develop a new

paradigm of bottom-up approaches instead of the traditional top-down approaches.

A top-down approach attempts to build out the model by selectively adding the most

cost-e�ective features to improve accuracy. It leads to fundamental combinatorial

issues in multi-stage search over all feature subsets. In contrast, a bottom-up approach

�rst learns a highly accurate model and then prunes or adaptively approximates it to

trade-o� cost and error. We show that the bottom-up approach has several bene�ts.

To develop this theme, we �rst propose two top-down methods and then two

bottom-up methods. The �rst top-down method uses margin information from train-

v

ing data in the partial feature neighborhood of a test point to either select the next

best feature in a greedy fashion or to stop and make prediction. The second top-

down method is a variant of random forest (RF) algorithm. We grow decision trees

with low acquisition cost and high strength based on greedy minimax cost-weighted

impurity splits. Theoretically, we establish near-optimal acquisition cost guarantees

for our algorithm.

The �rst bottom-up method we propose is based on pruning RFs to optimize

expected feature cost and accuracy. Given a RF as input, we pose pruning as a

novel 0-1 integer program and show that it can be solved exactly via LP relaxation.

We further develop a fast primal-dual algorithm that scales to large datasets. The

second bottom-up method is adaptive approximation, which signi�cantly generalizes

the RF pruning to accommodate more models and other types of costs besides feature

acquisition cost. We �rst train a high-accuracy, high-cost model. We then jointly learn

a low-cost gating function together with a low-cost prediction model to adaptively

approximate the high-cost model. The gating function identi�es the regions of the

input space where the low-cost model su�ces for making highly accurate predictions.

We demonstrate empirical performance of these methods and compare them to

the state-of-the-arts. Finally, we study adaptive approximation in the on-line setting

to obtain regret guarantees and discuss future work.

vi

Contents

1 Introduction 1

1.1 Resource-constrained Machine Learning: Motivation 1

1.2 Problem De�nition . 3

1.2.1 Feature Acquisition Cost . 4

1.2.2 Computational Cost . 5

1.2.3 Communication/Latency Cost 5

1.3 Challenges . 5

1.4 Contribution . 7

1.5 Related Work . 8

1.5.1 Non-adaptive methods . 9

1.5.2 Fixed feature acquisition . 9

1.5.3 Myopic feature acquisition . 10

1.5.4 Non-myopic feature acquisition 11

1.5.5 Other methods . 12

1.6 Organization . 13

2 Margin-based Nearest Neighbor Approach 15

2.1 Related Work . 16

2.2 Problem Setup . 16

2.3 Algorithm . 19

2.4 Experiments . 21

vii

3 Feature-Budgeted Random Forest 25

3.1 Related Work . 26

3.2 Problem Setup . 27

3.3 Algorithm . 28

3.4 Bounding the Cost of Each Tree . 30

3.4.1 Admissible Impurity Functions 35

3.4.2 Discussions . 38

3.5 Experiments . 40

4 Pruning Random Forests 49

4.1 Related Work . 51

4.2 Problem Setup . 52

4.2.1 Pruning with Costs . 53

4.3 Theoretical Analysis . 56

4.3.1 A Naive Pruning Formulation 59

4.4 Algorithm . 61

4.5 Experiments . 65

4.5.1 Baseline Comparison . 65

4.5.2 Additional Experiments . 70

4.5.3 Discussion and Conclusion . 73

5 Adaptive Approximation 75

5.1 Related Work . 78

5.2 Problem Setup . 79

5.3 Algorithms . 84

5.4 Experiments . 87

6 On-line Adaptive Approximation 95

6.1 Problem Setup . 95

viii

6.2 Upper Bound . 97

6.3 Lower Bound . 100

7 Future Work 103

7.1 Distributed Prediction . 103

7.1.1 Adaptive Sparse Regression 104

7.1.2 Local Convexity - Hessian Computation 105

7.1.3 Optimization . 106

7.1.4 Theorems to be proved . 107

7.1.5 Algorithms . 108

7.1.6 Experiments . 109

7.2 Extending the Regret Lower Bound 112

7.2.1 Non-uniform sampling of patterns 114

8 Conclusions 120

A Appendix 122

A.1 Adapt-Lstsq for Chapter 5 . 122

A.2 Experimental Details for Chapter 5 124

A.2.1 Synthetic-1 Experiment . 124

A.2.2 Synthetic-2 Experiment: . 124

A.2.3 Letters Dataset (Dheeru and Karra Taniskidou, 2017) 124

A.2.4 MiniBooNE Particle Identi�cation and Forest Covertype Datasets

(Dheeru and Karra Taniskidou, 2017): 126

A.2.5 Yahoo! Learning to Rank(Chapelle et al., 2011): 127

A.2.6 CIFAR10 (Krizhevsky, 2009): 128

References 129

Curriculum Vitae 135

ix

List of Tables

2.1 The actual and estimated probabilities of correct classi�cation for neigh-

borhood sizes 65, 125 and 185. 22

4.1 Typical feature usage in a 40 tree RF before and after pruning (our

algorithm) on the MiniBooNE dataset. Columns 2-4 list percentage of

test examples that do not use the feature, use it 1 to 7 times, and use

it greater than 7 times, respectively. Before pruning, 91% examples

use the feature only a few (1 to 7) times, paying a signi�cant cost for

its acquisition; after pruning, 68% of the total examples no longer use

this feature, reducing cost with minimal error increase. Column 5 is

the average feature cost (the average number of unique features used

by test examples). Column 6 is the test error of RFs. Overall, pruning

dramatically reduces average feature cost while maintaining the same

error level. 50

5.1 Dataset Statistics . 90

x

List of Figures

2·1 An example of cost sensitive learning. Given 8 training points, each

is binary with 3 features: x(1) = x(2) = (1,−1,−1), x(3) = x(4) =

(−1, 1, 1), x(5) = (−1, 1,−1), x(6) = x(7) = x(8) = (1, 1, 1), with labels

y(1), . . . , y(4) = −1, y(5), . . . , y(8) = 1. They are linearly separable with

optimal SVM solution y = w′∗x+b = (0.9995, 1.4998,−0.5002)x−0.9997 20

2·2 Experiment result of classi�cation accuracy vs number of features mea-

sured on Letters, LandSat MiniBooNE datasets. FMCC is consistent

across all datasets while the VoC does not perform well on the Mini-

BooNE dataset. 24

3·1 A synthetic example to show max-cost of GreedyTree can be �smoothed�

to approach the expected-cost. The left and right �gures above show

the classi�er outcomes of feature t1 and t2, respectively. 39

3·2 The error-cost trade-o� plot of the subroutine GreedyTree using

threshold-Pairs on the synthetic example. 0.39% error can be achieved

using only a depth-2 tree but it takes a depth-10 tree to achieve zero

error. 40

3·3 Comparison of BudgetRF against ASTC (Kusner et al., 2014) and

CSTC (Xu et al., 2013) on 4 real world datasets. BudgetRF has a

clear advantage over these state-of-the-art methods as it achieves high

accuracy/low error using less feature costs. 42

xi

3·4 Comparison of classi�cation error vs. max-cost for the Powers impurity

function in (3.13) for l = 2, 3, 4, 5 and the threshold-Pairs impurity

function. Note that for both House Votes and WBCD, the depth 0 tree

is not included as the error decreases dramatically using a single test.

In many cases, the threshold-Pairs impurity function outperforms the

Powers impurity functions for trees with smaller max-costs, whereas

the Powers impurity function outperforms the threshold-Pairs function

for larger max-costs. 48

4·1 An ensemble of two decision trees with node numbers and associated

feature in subscripts . 58

4·2 Turning pruning to equivalent shortest path problems. 64

4·3 Comparison of BudgetPrune against CCP, BudgetRF with early

stopping,GreedyPrune andGreedyMiser on 4 real world datasets.

BudgetPrune (red) outperforms competing state-of-art methods.

GreedyMiser dominates ASTC (Kusner et al., 2014), CSTC (Xu

et al., 2013) and DAG (Wang et al., 2015) signi�cantly on all datasets.

We omit them in the plots to clearly depict the di�erences between

competing methods. 66

4·4 Comparing BudgetPrune and CCP with uniform and non-uniform

feature cost on MiniBooNE dataset. BudgetPrune is robust when

the feature cost is non-uniform. 71

4·5 Comparisons of various pruning methods based on entropy and Pairs

splitting criteria on MiniBooNE and Forest datasets 72

xii

4·6 Comparing various pruning approaches on RF built with k=20 and

k=120 on Scene15 dataset. The initial RF has higher accuracy and

higher cost for k=20. GreedyPrune performs very well in k=20 but

very poorly in k=120. 72

5·1 Left: single stage schematic of our approach. We learn low-cost gat-

ing g and a LPC model to adaptively approximate a HPC model.

Right: Key insight for adaptive approximation. x-axis represents fea-

ture space; y-axis represents conditional probability of correct predic-

tion; LPC can match HPC's prediction in the input region correspond-

ing to the right of the gating threshold but performs poorly otherwise.

Our goal is to learn a low-cost gating function that attempts to send

examples on the right to LPC and the left to HPC. 76

5·2 Synthetic-1 experiment without feature cost. (a): input data. (d):

decision contour of RBF-SVM as f0. (b) and (c): decision boundaries

of linear g and f1 at initialization and after 10 iterations of Adapt-

Lin. (e) and (f): decision boundaries of boosted tree g and f1 at

initialization and after 10 iterations of Adapt-Gbrt. Examples in

the beige areas are sent to f0 by the g. 88

5·3 A 2-D synthetic example for adaptive feature acquisition. On the left:

data distributed in four clusters. The two features correspond to x

and y coordinates, respectively. On the right: accuracy-cost trade-

o� curves. Our algorithm can recover the optimal adaptive system

whereas a L1-based approach cannot. 89

xiii

5·4 Comparison of Adapt-Gbrt against GreedyMiser and Budget-

Prune on four benchmark datasets. RF is used as f0 forAdapt-Gbrt

in (a-c) while an RBF-SVM is used as f0 in (d). Adapt-Gbrt achieves

better accuracy-cost tradeo� than other methods. The gap is signi�-

cant in (b) (c) and (d). Note the accuracy of GreedyMiser in (b)

never exceeds 0.86 and its precision in (c) slowly rises to 0.138 at cost

of 658. We limit the cost range for a clearer comparison. 91

5·5 Compare the L1 baseline approach, Adapt-Lin and Adapt-Gbrt

based on RBF-SVM and RF as f0's on the Letters dataset. 93

6·1 Feedback graph for four experts. ξ1 and ξ2 request for label and receives

full feedback; ξ3 and ξ4 classify using h and receives no feedback. . . . 96

7·1 A distributed mixture of expert model for 104

7·2 Sigmoid parameter is the constant multiplier inside the exponential of

the sigmoid function; noise is the noise level; ss is the step size 119

xiv

List of Abbreviations

DAG Directed Acyclic Graph
GBRT Gradient Boosted Regression Tree
RF Random Forest
ℜK the K-dimensional Euclidean space

xv

1

Chapter 1

Introduction

1.1 Resource-constrained Machine Learning: Motivation

Machine learning plays an increasingly important role in many scienti�c and engi-

neering problems. It includes problems such as classi�cation, regression, ranking,

clustering and so on. Much of machine learning research has focused on improving

accuracy. But more recently, as the scale and complexity of machine learning appli-

cations grow, costs in both training and test time have gained importance. To limit

scope, we consider exclusively supervised learning in this thesis. Training time thus

typically involves the cost of collecting labeled data and the computational cost of

processing the collected data to learn the model. In many applications such as health

care, labeled data is scarce and expensive. The area of active learning (Settles, 2009)

is devoted to e�ciently using fewer labeled examples to train models. Once a model

is trained, it is used for prediction of new examples. Prediction-time costs can arise

due to monetary costs associated with acquiring information or computation time (or

delay) involved in extracting features and running the algorithm; they can also arise

in mobile computing due to limited memory, battery and communication.

In many machine learning applications training can be carried out o�-line, sep-

arate from the production system. On the other hand, prediction typically occurs

in production and is subject to more stringent budget constraints. Therefore, this

thesis focuses primarily on reducing costs incurred during prediction or test time.

Only toward the end (Chapter 6) we will discuss an on-line learning scenario where

2

we bring together training and test time costs. Consider the following applications

as motivation for prediction time budget constraints.

• Automated medical diagnosis: This is a classi�cation task. During training,

an algorithm is given medical records of diagnosed patients as input features and

the diagnosis as labels. The goal is to learn a model to automatically diagnose

new patients based on the outcome of their medical test results. Some of these

medical tests are simple and inexpensive such as blood pressures, vitals. Others

are more expensive and could potentially be harmful to the human body such

as X-ray, MRI. The prediction time cost consists of the monetary cost of each

medical test as well as its associated risk. When a new patient is presented

to the system, it is thus undesirable to require him or her to undertake all

possible medical tests and then make a prediction. Instead, we aim to learn a

system that recommends only the necessary medical tests to reduce cost while

maintaining high diagnosis accuracy.

• Document ranking: (Chapelle et al., 2011) This is a ranking task. During

training, an algorithm is given a set of queries as well as a set of documents

associated with each query ranked according to the relevance to the query. The

goal is to learn a model so that given a new query and a set of documents, it

can rank the documents according to the relevance to the query. To achieve

this, features of each query-document pair must be extracted. Some features

are cheap to extract, such as key word search; other features are computation-

ally more expensive, such as textual similarity and proximity measures. Each

of these features require CPU time to extract, yet the ranking has to be done

in milliseconds to be displayed to the user. This precludes extraction of com-

putationally expensive features for all query-document pairs. We aim to learn

a system that extracts the expensive features only if it is necessary to reduce

3

cost while maintaining high ranking accuracy.

• Deep neural networks (DNNs): DNNs have been successfully applied in

many application including visual object recognition, speech recognition and

machine translation. They achieve the state of the art accuracy yet require

considerable computational budget during prediction due to their increasing

complexity. For example, the Resnet152 (He et al., 2016) architecture with 152

layers has 4.4% accuracy gain in top-5 performance over GoogLeNet (Szegedy

et al.,) on the large-scale ImageNet dataset (Russakovsky et al., 2015) but is

14X slower at test-time(Bolukbasi et al., 2017). We aim to learn systems that

can reduce the computational cost while maintaining high accuracy.

• Mobile computing, Internet of Things (IoT): Smart devices include phones,

watches, cameras and sensors (known as edge devices) have been widely used to

gather and process information for tasks such as activity recognition and surveil-

lance. Such devices typically have limited battery, memory and computational

power. Machine learning models that run on such devices are constrained by

these physical limitations. For real-time applications, there is also a communi-

cation cost in terms of latency whenever the edge devices communicate with the

server(cloud). We aim to develop machine learning systems that are suitable to

be deployed on such edge devices and use small budget to achieve high accuracy.

1.2 Problem De�nition

In this section, we introduce some basic notations and present the general problem

of learning with prediction-time costs similar to the formulation in (Trapeznikov and

Saligrama, 2013; Wang et al., 2014b). We focus on the supervised setting where we

assume fully annotated datasets are available for training. We seek to learn deci-

sion systems that maintain high-accuracy while meeting average resource constraints

4

during prediction-time.

Suppose an example-label pair (x, y) is drawn from distribution P . The goal is to

learn a prediction function f from a family of functions F that minimizes expected

prediction error subject to a budget constraint:

min
f∈F

E(x,y)∼P [err (y, f(x))] , s.t. Ex∼Px [C (f, x)] ≤ B, (1.1)

where err (y, ŷ) is the error function; C(f, x) is the cost of evaluating the function f

on example x and B is a user speci�ed budget constraint.

In practice, we are not given the distribution but instead are given a set of train-

ing data (x(1), y(1)), . . . , (x(n), y(n)) drawn i.i.d. from distribution P . We can then

minimize an empirical approximation of the expected error function:

min
f∈F

1

n

n∑
i=1

L
(
y(i), f(x(i))

)
, s.t.

1

n

n∑
i=1

C
(
f, x(i)

)
≤ B, (1.2)

where L (y, ŷ) is a loss function. Note our budget constraint is on prediction costs

averaged over the examples. This allows the �exibility to spend the budget in an

example-dependent manner.

The de�nition of C(f, x) is application speci�c as seen in the motivation examples

in Section 1.1. We shall focus on the feature acquisition cost in this thesis while

addressing other types of costs such as computational and communication/latency

costs as well.

1.2.1 Feature Acquisition Cost

Features (or covariates in statistics) are the numerical attributes associated with an

input example. They provide information about the examples as a basis for prediction.

There is often a cost associated with acquiring or extracting these feature values.

Suppose x ∈ ℜK is the feature vector with an acquisition cost cα ≥ 0 assigned to each

5

of the features α = 1, . . . , K. 1

For a given example x, we assume that once it pays the cost to acquire a feature,

its value can be e�ciently cached; and subsequent use of the feature value does not

incur additional cost. Thus, the cost of utilizing a particular prediction function,

denoted by C(f, x), is computed as the sum of the acquisition cost of unique features

required by f for x.

1.2.2 Computational Cost

C(f, x) can also measure the amount of computation required to compute f(x). In

a decision tree f , for example, it is proportional to the number of internal nodes x

traverses. In a neural network, it is proportional to the number of layers and the

number of connections between the layers.

1.2.3 Communication/Latency Cost

In mobile applications, prediction f(x) may involve communication between the edge

device and the server (cloud). C(f, x) can capture such costs in terms of communi-

cation/latency cost.

1.3 Challenges

The problem of learning to prediction under a budget might appear well-studied as

formulated in Eq.(1.2), which consists of an empirical loss minimization subject to

a constraint. Indeed, the sparse learning or feature selection problem is an instance

of learning to predict under a budget. Consider each feature element carries a unit

acquisition cost and F is the space of linear regressors. Each f ∈ F can be parame-

1Note that our algorithms can be adapted to handle group-structured features where several
elements in x may be associated with one feature acquisition cost. In other words, several elements
in the x vector can be obtained together by paying the acquisition cost for one feature. We avoid it
in the exposition for clarity purpose.

6

terized by w ∈ ℜK . The cost C(f, x) is equal to the number of non-zero elements in

w: C(f, x) = ∥w∥0. The budget constraint on the prediction-time feature acquisition

cost thus reduces to a sparsity constraint on w. The sparse linear regression problem

is

min
w∈ℜK

1

n

n∑
i=1

(
y(i) − wTx(i)

)2
, s.t. ∥w∥0 ≤ B. (1.3)

Algorithms including LASSO (Tibshirani, 1996) and other subset selection methods

have been well established (Miller, 2002). Yet we highlight that the goal of traditional

sparse learning or feature selection is to identify a subset of the features to be used

for all the examples. The assumption is that there exists a common subset of features

that are useful for predicting all examples. But in practice, di�erent examples may

bene�t from di�erent subsets of features. Consider the medical diagnosis example,

it makes sense to recommend di�erent subsets of medical tests for di�erent patients,

depending on their individual conditions. In other words, the decision functions that

we seek to learn are more general, able to adapt to di�erent input examples.

The key idea in our budgeted prediction framework is to recognize that in many

machine learning tasks not all input examples are created equal. There are �easy�

examples that can be predicted at low cost (e.g. using a few low cost features or

going through a small number of layers in a neural network). Only the �di�cult�

examples require more cost (e.g. using more features or going through many layers

in a neural network). Since the budget constraint is on the average prediction cost

over the examples, we can achieve high prediction accuracy by allocating less budget

on the �easy� examples and more budget on the �di�cult� ones.

In some sense, the family of decision functions F in Eq. (1.2) that we optimize

over is a family of adaptive decision rules, or decision policies, rather than static

models such as a linear predictor. We highlight several challenges this entails.

7

• Distinguish �easy� V.s. �di�cult� examples: Given a training dataset, it

is not clear how to partition the examples into �easy� V.s. �di�cult� ones. The

partition function itself is a classi�er that needs to be learned. Furthermore,

how the dataset is partitioned impacts the data distribution for the downstream

prediction models. In other words, the partition function should be learned

jointly with a �cheap� prediction model that handles the �easy� examples as well

as an �expensive� prediction model that handles the �di�cult� ones. This inter-

dependency translates to products of indicator functions in the optimization

objective and leads to non-convexity.

• Combinatorial state space: With feature acquisition costs, the adaptive

decision rule can be represented by a Directed Acyclic Graph (DAG) (Wang

et al., 2015). The internal nodes correspond to feature subsets and decision

functions at each node choose whether to acquire a new feature or predict using

the already acquired features. The edges correspond to acquiring new features,

transitioning from one feature subset to another. The number of states, or

feature subsets, is 2K , where K is the number of features. Learning decision

functions for each state becomes intractable when the number of features is

large.

1.4 Contribution

We develop several novel algorithmic approaches to the learning under prediction

budget problem, improving the state of the art performance with each method. More

importantly, through these methods, we develop a new bottom-up paradigm for the

learning under prediction budget problem. Here we give a summary of the contribu-

tions made in this thesis.

• We propose a nearest neighbor approach to feature selection that incorporates

8

margins in classi�cation.

• We propose to learn the adaptive decision rule as random forests. We propose

a family of impurity measures and a splitting criteria so that the decision trees

we grow are guaranteed to have near-optimal feature acquisition costs.

• Given any random forest, we propose to prune it to optimize expected feature

cost & accuracy. We pose pruning RFs as a novel 0-1 integer program and estab-

lish total unimodularity of the constraint set to prove that the corresponding LP

relaxation solves the original integer program. We further exploit connections

to combinatorial optimization and develop an e�cient primal-dual algorithm

that scales to large problems. This bottom-up pruning approach circumvents

the need for combinatorial search faced by the top-down approaches.

• We develop an adaptive approximation framework as a general bottom-up ap-

proach. The framework incorporates general machine learning models such as

RF, boosting, SVM and neural networks. It also accounts for various types

of costs such as feature acquisition, computational and communication/latency

costs.

• We propose an on-line learning framework for the adaptive approximation and

provide regret analysis.

1.5 Related Work

The problem of learning from full training data for prediction-time cost reduction

(MacKay, 1992) has been extensively studied. We summarize related work according

to the key properties in their approaches. We focus on the feature acquisition costs

�rst.

9

1.5.1 Non-adaptive methods

The non-adaptive methods reduce prediction-time cost by identifying a common

sparse subset of features that are used by all examples. Some of these methods include

subset selection (Miller, 2002) and L1 regularization (Tibshirani, 1996). The Greedy

Miser (Xu et al., 2012) is a non-linear method in this category. It is an adaptation

of gradient boosted regression trees in the setting of feature acquisition costs. The

algorithm iteratively adds weak learners (low-depth regression trees) to the ensemble

by trading o� the goodness �t to the current gradient and the additional feature cost

introduced. The typical trees are limited to low-depth (4 or 5 levels) to avoid over-

�tting. As a result, we consider it a non-adaptive method because all the examples

typically encounter the same set of features. Furthermore, the training algorithm

does not consider feature usage at a per-example basis and it bears more similarity

to a stepwise feature selection process. In contrast, the methods we propose in this

thesis are adaptive in the sense that di�erent examples can be routed di�erently in

the decision rule and incur di�erent costs.

1.5.2 Fixed feature acquisition

Among the adaptive methods, some assume a feature acquisition graph is given a

prior, which is �xed by domain experts or enumerated in the case of just a few

features. The task reduces to learning reject functions as well as end classi�ers in

the case of detection cascades (Viola and Jones, 2001). (Trapeznikov and Saligrama,

2013) generalize detection cascades to classi�er cascades to handle balanced and/or

multi-class scenarios. They solve a stage-wise empirical minimization problem and

use cyclic optimization to iterate over the stages. (Wang et al., 2014b) extends the

cascade to tree structures and formulated a convex surrogate that bounds the global

empirical risk. (Wang et al., 2015) extend the tree structure to directed acyclic graphs

10

(DAGs) and trains decision functions for each node of the graph according to a child-

to-parent order. In contrast to these methods based on �xed feature acquisition graph,

ours proposed in this thesis aim to learn such sequential feature acquisition graphs.

1.5.3 Myopic feature acquisition

Due to the combinatorial search space for sequential feature acquisition, many meth-

ods resort to greedy/myopic strategies based on utility of acquiring each feature. (Ji

and Carin, 2007) model the sequential decision process for feature acquisition and

classi�cation as a POMDP. But due to the di�culty associated with a POMDP for-

mulation such as high computational cost, the need to quantize features and the lack

of mechanism to rule out repeated actions, the authors proposed a myopic approxima-

tion. The utility of an action is evaluated by the di�erence between its cost and the

reduction in the Bayes risk, as computed from the probability model. On the other

hand, (Kanani and Melville, 2008) propose to de�ne utility as di�erence in unlabeled

margin divided by feature acquisition cost. Without assuming probability model,

they propose to estimate feature value distribution by discretizing the feature values

and learning classi�ers based on available features to predict its distribution. (Gao

and Koller, 2011) propose a locally weighted regression method during test time and

assume a Gaussian model to myopically select features based on information gain of

unknown features. The above methods tend to have high computational cost during

prediction-time and require generative assumptions.

(Sheng and Ling, 2006) propose a sequential batch test algorithm to minimize

total cost of acquiring features and misclassi�cation. Used with decision trees, it

selects features to split the internal nodes based on their utility values. This heuristic

utility is de�ned as the di�erence of the expected cost before and after acquiring

the feature. In Chapter 3, we propose a di�erent utility measure as well as splitting

criteria that lead to near-optimal cost guarantee.

11

1.5.4 Non-myopic feature acquisition

In general, learning non-myopic feature acquisition rules is computationally intractable.

However, under certain assumptions and for specialized settings, this is achievable.

(Busa-Fekete et al., 2012) formulate the decision process as an MDP. The features

they consider are ordered base learners obtained from AdaBoost. At each base learner,

the actions to take are to Evaluate, Skip or Quit. The Quit action leads to a �nal

classi�cation. The state is composed of the sum of evaluated weak learner outputs

so far as well as the index of current base learner. By associating each Evaluate ac-

tion with a cost, the MDP reward is to minimize the �nal classi�cation loss plus the

total cost. The formulation in (Busa-Fekete et al., 2012) is primarily based on the

�xed weak learner order, which helps reduce the action space. (Bilgic and Getoor,

2007) introduce a novel data structure called Value of Information Lattice (VOILA)

to calculate value of information for subsets of features. VOILA is a directed graph

where each node represents a unique subset of the features and each edge represents

a subset relationship between its nodes. In order to reduce the exponential number

of feature subsets, a Bayesian network over the features as well as the class variable is

assumed given. (Karayev et al., 2012) formulates a problem of object recognition un-

der time constraint as an MDP. The actions correspond to running di�erent detectors

or classi�ers. A state includes current estimates of the distribution of class presence,

the history of actions taken together with the resulting observations, as well as the

time costs so far and the time budget left. The state-action pair is featurized by con-

catenating the prior distribution of the classes for the action, the distribution of the

classes as well as the entropies for all classes conditioned on observations so far. The

long term reward function Q is modeled as a inner product of the state-action pair

and a vector parameterizing the policy. A convenient property in the above problem

is that the evaluation function is additive per action, as computed by the change in

12

average precision introduced by the action. (Zubek and Dietterich, 2002) also for-

mulates the problem of classi�cation with feature acquisition costs as an MDP. They

use heuristic search algorithms to reduce the search space for the optimal policy. But

this approach requires discretization of the feature values and is ine�cient when the

state space is large.

Another line of methods aims to learn feature acquisition rules in a discriminative

framework through empirical risk minimization. (Chen et al., 2012) aim to re-order

a set of pre-training base learners to reduce prediction costs. It optimizes the param-

eters of the stages in cycles. Multiple levels of relaxations are proposed to make the

optimization objective continuous and di�erentiable. Still, the proposed algorithm

faces computational di�culty as it needs to solve a non-convex optimization problem

during each cycle.

(Xu et al., 2013) propose to learn a tree of classi�ers. The tree structure is a

limited-depth balanced binary tree. Each path of the tree requires a di�erent set of

features so as to reduce test-time feature cost. Similar to (Chen et al., 2012), they

propose to minimize the sum of losses at all internal nodes plus a weighted cost term.

Several relaxations are used to make computation tractable. Cyclic optimization is

used to learn the classi�er at each node while �xing all other nodes. During test

time, an example is routed at each internal node by a linear classi�er to determine

the probability of going left or right and the branch is taken with respect to these

probabilities. (Kusner et al., 2014) recognize that the method in (Xu et al., 2013)

is hard to train and requires involved optimization hyperparameter tuning. They

propose a simpler training procedure based on greedy selection.

1.5.5 Other methods

Besides feature acquisition costs, many researchers have considered reducing com-

putational costs as well as memory usage during prediction-time. The distillation

13

framework (Hinton et al., 2015; Lopez-Paz et al., 2016) aims to compress a complex

teacher model into a smaller student model without losing much accuracy. (Kumar

et al., 2017) propose a compact tree model called Bonsai that achieves high accuracy

with small model size. (Gupta et al., 2017) propose PtotoNN as a compressed K-

Nearest Neighbor algorithm. The main idea is to learn a small number of prototypes

to represent the entire training set and jointly learn a projection matrix to reduce

dimensionality as well. Reducing the prediction costs of deep neural networks has

also been an area of recent interest (Bolukbasi et al., 2017; Lin et al., 2017).

1.6 Organization

The rest of this thesis is organized in the following manner:

Chapter 2 will describe a myopic algorithm for feature acquisition based on mar-

gin and nearest neighbors. We will explain the intuitive advantage of this simple

algorithm and also show numerical experiments.

Chapter 3 will describe a new decision tree growing algorithm that incorporates

feature acquisition cost. Even though the algorithm is myopic, we will provide the-

oretical guarantee to show that it achieves near-optimal cost. We then expand to

ensembles of such decision trees and illustrate performance with numerical experi-

ments.

Chapter 4 will describe a novel method to prune random forests to optimize feature

acquisition costs and accuracy. We will provide detailed formulation and theoretical

guarantee that the pruning optimization problem can be solved in polynomial time.

We will further provide a specialized primal-dual algorithm that can scale to large

datasets. Finally, we will evaluate the performance with numerical experiments.

Chapter 5 will motivate and describe a novel framework of adaptive approxi-

mation of general models for prediction-time cost reduction. We will formulate an

14

optimization problem and point out the computational advantages compared to pre-

vious approaches. This general framework is then specialized into linear and gradient

boosted models. Again, we will evaluate the performance with numerical experiments.

Chapter 6 will study the adaptive approximation problem in an on-line setting

with limited feedback. We provide theoretical analysis of the regret.

Chapter 7 will discuss future directions. We will introduce the problem of dis-

tributed prediction and explain our formulation. We will also show some preliminary

experimental results. We will also consider extensions of the regret analysis of the

on-line adaptive approximation problem.

15

Chapter 2

Margin-based Nearest Neighbor Approach

We introduce a novel algorithm to dynamically select features for every test instance

until we reach a desired classi�cation accuracy. We assume we have access to a

training set with full features and corresponding class labels. For every test point,

there is a cost associated with measuring or computing each feature. Our system

acquires one feature at a time, adaptively deciding which feature to request next or

when to stop and classify. We learn such a policy by utilizing training examples within

a neighborhood of a test point. The key challenge in learning such a decision system is

to correctly determine the neighborhood. After acquiring a partial set of features, we

can not infer the true distance from a test point to training points in the full feature

space. In other words, the nearest neighbor based on partial feature measurement

may not be a true neighbor in the full feature space. We call this di�culty partial

neighborhood confusion. Algorithms that try to learn the label of a test point based

on the labels of training points in the partial neighborhood tend to perform poorly

due to this di�culty.

In contrast, to make our approach more robust to such partial neighborhood con-

fusion, we incorporate classi�cation margins in our system. In binary classi�cation,

a margin of an example is typically an output of a decision functions times the label

(+1/− 1) of an example. Margins are widely used as a measure of classi�cation con-

�dence. A large positive margin indicates high con�dence, while a negative margin

indicates an incorrect decision. Maximizing margins has led to many powerful tools

16

in machine learning such as SVM, boosting, etc ((Cortes and Vapnik, 1995)). We use

margins to estimate the probability of correct classi�cation and sequentially maxi-

mize this probability at each stage of the decision making process. Since the label

of a test point is unknown, its margin cannot be computed directly. To overcome

this problem, our algorithm learns the unknown test margin from the training data

in the partial neighborhood of this test point. Recall that feature values and labels

are known for the training data, hence margins are also fully known. Since our algo-

rithm learns margin information instead of class label from nearest neighbors based

on partial feature measurement, we are more robust to the partial neighborhood con-

fusion problem. Intuitively, points far from each other in the full feature space are

unlikely to share the same label but may produce the same sign margins on the same

feature. We will illustrate this point further through an example in Section 2.3 and

Experiments in Section 2.4.

The work presented in this chapter is published in (Nan et al., 2014).

2.1 Related Work

The method we propose in this chapter involves myopic feature acquisition as dis-

cussed in Section 1.5. Di�erent from (Ji and Carin, 2007; Gao and Koller, 2011), we

do not assume speci�c probability distribution. Di�erent from (Kanani and Melville,

2008), we use labeled margin of nearest neighbors rather than unlabeled margin.

2.2 Problem Setup

Given the training set of N data points and corresponding labels (x(l), y(l)), l =

1, . . . , n, each point has d features x(l) ∈ ℜd, and we assume all features are known for

training. Given an unknown test point, a feature j can be measured or acquired for a

cost cj, j = 1, . . . , d. We assume we are given a linear classi�er, f(x) = wTx, trained

17

on the entire training set. Note we omit the o�set term in our discussion because it

can be considered as an additional (constant) feature of the data point.

Remark: We assume a linear classi�er is used for the entire data set. This is

not as restrictive as it may appear. In fact, kernel SVM is linear in the transformed

feature space and Boosting (Freund and Schapire, 1997) is linear once we consider

weak learners as transformed features. We will show in our experiment that our

algorithm works with both SVM and Boosting.

In the rest of this section, we explain our dynamic feature selection approach for

a new test point, x. Let O be the index set of measured features and O be the index

set of the remaining features. We use wO to denote the elements of w indexed by O.

For ease of notation we use i to denote the index of the next potential feature to be

measured. Initially O = ∅. We can choose the most discriminative feature as the �rst

feature. Let xO denote the measurement values obtained about the test point and we

set the unmeasured feature values to be 0 1, xO = 0. If a classi�cation is needed with

the current measurements we can simply compute

y = wT
OxO, (2.1)

and decide based on its sign.

Given any measured feature setO, it is not clear how wT
OxO relates wTx (a decision

when all features are measured). However, assume we choose the features in O to

produce positive margins on the neighboring training points. In this scenario, these

features will most likely also produce positive margins on the test point and result

in accurate classi�cation based on (2.1). To be more concrete, we de�ne a partial

neighborhood N(O) of the test point as the index set of those training points that

are close to xO on the index setO. We de�neN(O) to contain theK nearest neighbors

1Note that this is a missing feature classi�er. While there has been some work (see (Maaten
et al., 2013)) on learning classi�ers robust to missing features, this is outside the scope of this paper.

18

(with respect to Euclidean distance) of xO in the training set, where K is a positive

natural number.2

Next, de�ne the partial margin of the kth training point in the neighbood N(O)

based on the current measurement feature set O as

ηOk = y(k)(wT
Ox

(k)
O), k ∈ N(O). (2.2)

If ηOk is positive then (2.1) will give correct classi�cation based on the measured

feature set O. Similarly, de�ne the one-step-ahead partial margin of the kth training

point in the neighbood N(O) based on the current measurement feature set O and

feature i as

ηOi,k = y(k)(wT
Ox

(k)
O + wix

(k)
i), k ∈ N(O), i ∈ O. (2.3)

To estimate classi�cation accuracy, we de�ne the partial probability of correct clas-

si�cation of the test point based on current measurement feature set O as the ratio

of the number of correct classi�cations to the total number of training points within

the neighborhood:

pO =
#{k : ηOk > 0}
|N(O)|

. (2.4)

Similarly we de�ne the one-step-ahead partial probability of correct classi�cation of

the test point based on current measurement feature set O and feature i as

pOi =
#{k : ηOi,k > 0}
|N(O)|

. (2.5)

At each step, we can decide to measure the next feature or to stop based on the

accuracy estimate pO. And pOi provides an estimate of how much accuracy we can

get by measuring i as the next feature. We can thus choose the i that gives the best

accuracy-cost trade-o�.

2While there are many ways to de�ne a neighborhood (i.e. based on thresholding a distance
metric between xO's), we focus on KNN in this paper

19

2.3 Algorithm

We present our algorithm in Algorithm 1.

Algorithm 1 Fast Margin-based Cost-sensitive Classi�cation (FMCC)

1: Train classi�er y = wTx on the entire training data
2: Fix accuracy-cost tradeo� parameter α
3: Given a test point x:
4: Measure feature i
5: for t = 1→ d do ◃ Iterate through the total number of features
6: if pO > threshold then
7: Stop, make classi�cation
8: else
9: Compute neighborhood N(O)
10: for i ∈ O do
11: Update partial margins ηOi,k for k ∈ N(O) according to (2.3)
12: Compute pOi according to (2.5)

13: Select feature imax = argmaxip
O
i − αci to measure next, O ← (O, imax).

14: Update partial margins ηOk for k ∈ N(O) according to (2.2)
15: Compute pO according to (2.4)

Suppose there are 8 training data points as shown in Figure 2·1. The class labels

are indicated in red disks (label −1) and black triangles (label 1), with the weight

(number of repeated training examples) shown besides them. For each training point,

we also display the coordinates. By inspection, to locate an unknown test point

(assuming it follows the distribution of the training data), the optimal strategy would

be to measure x2, then x1 and lastly x3. We show that our algorithm indeed follows

this strategy by simply computing the margins.

20

x1
x2

x3

(1,-1,-1)

(-1,1,-1)

(1,1,1)

(-1,1,1)

2

2

3

1

Figure 2·1: An example of cost sensitive learning. Given 8 training
points, each is binary with 3 features: x(1) = x(2) = (1,−1,−1), x(3) =
x(4) = (−1, 1, 1), x(5) = (−1, 1,−1), x(6) = x(7) = x(8) = (1, 1, 1), with
labels y(1), . . . , y(4) = −1, y(5), . . . , y(8) = 1. They are linearly separable
with optimal SVM solution y = w′∗x+b = (0.9995, 1.4998,−0.5002)x−
0.9997

Suppose all the features carry the same measurement cost. And the partial neigh-

borhood is de�ned to be those training points having exactly the same feature values

as the test point on xO. We apply our algorithm sequentially as follows. Step 1. Mea-

suring x1, x2, x3 will give 2+2 = 4, 2+1+3 = 6, 2+2 = 4 correct classi�cations based

on (2.1), respectively. So measuring x2 will result in higher accuracy. Step 2. Sup-

pose x2 has been measured and it's equal to -1, there are 2 points in N(O) = {1, 2}.

Compute ηO1 = ηO2 > 0 using (2.2). So the estimated accuracy pO = 1. Stop and

classify, giving the correct classi�cation. Suppose x2 is measured to be 1, there are 6

points in N(O) = {3, 4, 5, 6, 7, 8}. As we contemplate on measuring x1 next, compute

ηO1,3 = ηO1,4 > 0, ηO1,5 < 0, ηO1,6 = ηO1,7 = ηO1,8 > 0 using (2.3). Therefore we obtain pO1 = 5
6

using (2.5). Similarly we obtain pO3 = 3
6
. This suggests measuring x1 next will results

21

in higher accuracy, which agrees with the optimal strategy.

Analysis: When the full set of features are measured, pO in (2.4) is unbiased

estimator of the correct classi�cation probability. The training points in the neigh-

borhood N(O) obey the probability distribution of the training points. And (2.4)

is the sample mean of the actual classi�cation accuracy according to (2.1). And we

assume all data points are i.i.d hence we get the result. We can regard pO as a good

estimate of the probability of correct classi�cation in the (�nite) limit sense (when

the number of measured features increases to the maximum). We can also show our

algorithm has test time complexity that scales linearly in sample size. There are

at most d iterations (the total number of features) and each iteration involves only

O(ndK) operations, where K is a constant neighborhood size. Thus, our algorithm

is well suited when the number of training examples are not too large or the test time

computation budget is large. In contrast, the VoC algorithm requires solving a locally

weighted least square problem at each iteration and the per iteration complexity is

O(n2d3), which is much higher.

2.4 Experiments

We evaluate our algorithm on three UCI data sets (Dheeru and Karra Taniskidou,

2017). To demonstrate the wide applicability of our algorithm, we base our algorithm

on Boosting for the �rst two data set and linear SVM for the third data set.

Performance Metric: A natural way to evaluate performance of budged learning

is compare accuracy vs the number of features acquired. The objective is to achieve

high classi�cation accuracy while acquiring as few features as possible. We assume

acquisition cost for all features is uniform.

Letter Recognition Data Set: This is a multi-class data set with the goal

of distinguishing 26 capital letters in the English alphabet from a large number of

22

Number of measured features
1 5 10 15 20 25 30 35 40 45 50

65 Act .503 .663 .746 .847 .881 .888 .895 .895 .895 .890 .895
Est .513 .657 .763 .868 .908 .914 .918 .920 .917 .905 .910

125 Act .503 .672 .769 .870 .883 .887 .888 .891 .891 .882 .895
Est .514 .653 .778 .884 .902 .907 .910 .910 .907 .895 .909

185 Act .503 .676 .779 .875 .879 .883 .884 .889 .892 .879 .895
Est .513 .647 .783 .887 .897 .901 .904 .904 .901 .888 .909

Table 2.1: The actual and estimated probabilities of correct classi�-
cation for neighborhood sizes 65, 125 and 185.

black-and-white rectangular pixel displays. Each data point consists of 16 features.

We randomly draw 200 examples from each letter as training points and 100 examples

as test points and assign the �rst 13 letters to one class and the other 13 letters to

the other class. Results are shown from 50 randomly drawn sets of data to prevent

sampling bias. We train a boosted collection of 1000 stumps on the training set, where

each stump thresholds a single feature. Evaluating the stumps for each feature yields a

set of margins. For comparison, we implement the probabilistic model-based Value of

Classi�er (VoC) algorithm (Gao and Koller, 2011), with the negative of classi�cation

loss as the reward function. We set λ = 0.5 in the locally weighted regression and

the bandwidth parameter β is set to be the median of the distances from the test

point to the training points at each step. We also compare to a random order scheme,

where the next feature to measure is chosen at random and classi�cation at each step

is computed by (2.1). We see from Fig. 2·2 that our FMCC is close to VoC and

outperforms the baseline. For small budgets (few observed features), VoC achieves

higher accuracy than FMCC, however after measuring 6 features, FMCC outperforms

VoC. This behavior is expected, as the estimated neighborhood of each example are

unreliable when few features have been observed. Additionally, the FMCC algorithm

has lower computational complexity than VoC; at each stage of feature acquisition,

FMCC computes the partial neighborhood of the test example and the estimated

probability of correct classi�cation. which

23

Landsat Satellite Data Set: The Landsat data set contains 4435 and 2000

training and test points, respectively. Each data point is 36-dimensional satellite

image features and belongs to 1 of 6 classes of soil. We consider binary classi�cation

by assigning the �rst 3 classes to class −1 and the other 3 classes to class 1. We

train a boosted collection of 1000 stumps on the training set, where each stump

thresholds a single feature. Fig. 2·2 shows that FMCC outperforms VoC after 4

feature measurements and outperforms the baseline, which gives similar result as in

the Letters dataset.

MiniBooNE Particle Identi�cation Data Set: The MiniBooNE data set is

a binary classi�cation task, with the goal of distinguishing electron neutrinos (signal)

from muon neutrinos (background). Each data point consists of 50 experimental

particle identi�cation variables (features). We train a linear SVM on 1000 training

points randomly chosen, with an equal number drawn from each class. The test

classi�cation accuracy is evaluated by randomly drawing 300 data points from each

class and the results are averaged over 50 cross validations. Fig. 2·2 shows that

FMCC achieves higher classi�cation accuracy than VoC and the random schemes for

any given number of measured features (cost) greater than 2. We believe that VoC

performs poorly on this data set as the features are poorly modeled by a mixture of

Gaussian distributions. In Table 2.1 we also compare the partial probability of correct

classi�cation pO (See Eq(2.4)), against the actual test classi�cation accuracy across

di�erent neighborhood sizes. We observe that pO in our algorithm provides a good

estimate of the true probability of correct classi�cation thus it can be used reliably

for accuracy-cost trade-o�. Furthermore, it also shows our algorithm is robust to the

neighborhood N(O) de�nition.

24

0 2 4 6 8 10 12 14 16
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of measured features

te
s
t

c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

Letters dataset

random order

FMCC

VoC

0 5 10 15 20 25 30 35 40

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of measured features

te
s
t
c
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y

LandSat dataset

random order

FMCC

VoC

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of measured features

te
s
t

c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

MiniBooNE dataset

random order

FMCC

VoC

Figure 2·2: Experiment result of classi�cation accuracy vs number of
features measured on Letters, LandSat MiniBooNE datasets. FMCC is
consistent across all datasets while the VoC does not perform well on
the MiniBooNE dataset.

25

Chapter 3

Feature-Budgeted Random Forest

In this chapter we propose a novel random forest learning algorithm to minimize

prediction error for a user-speci�ed average feature acquisition budget. Random

forests (Breiman, 2001) construct a collection of trees, wherein each tree is grown

by random independent data sampling and feature splitting, producing a collection

of independent identically distributed trees. The resulting classi�ers are robust, are

easy to train, and yield strong generalization performance.

Although well suited to unconstrained supervised learning problems, applying

random forests in the case of prediction-time budget constraints presents a major

challenge. First, random forests do not account for feature acquisition costs. If two

features have similar utility in terms of power to classify examples but have vastly

di�erent costs, random forest is just as likely to select the high cost feature as the

low cost alternative. This is obviously undesirable. Second, a key element of random

forest performance is the diversity among trees (Breiman, 2001). Empirical evidence

suggest a strong connection between diversity and performance, and generalization

error is bounded not only with respect to the strength of individual trees but also the

correlation between trees (Breiman, 2001). High diversity among trees constructed

without regard for acquisition cost results in trees using a wide range of features, and

therefore a high acquisition cost (See Section 3.5).

Thus, ensuring a low acquisition cost on the forest hinges on growing each tree with

high discriminative power and low acquisition cost. To this end, we propose to learn

26

decision trees that incorporates feature acquisition cost. Our random forest grows

trees based on greedy minimax cost-weighted-impurity splits. Although the problem

of learning decision trees with optimally low-cost is computationally intractable, we

show that our greedy approach outputs trees whose cost is closely bounded with

respect to the optimal cost. Using these low cost trees, we construct random forests

with high classi�cation performance and low prediction-time feature acquisition cost.

Abstractly, our algorithm attempts to solve an empirical risk minimization prob-

lem subject to a budget constraint. At each step in the algorithm, we add low-cost

trees to the random forest to reduce the empirical risk until the budget constraint

is met. The resulting random forest adaptively acquires features during prediction

time, with features only acquired when used by a split in the tree. In summary,

our algorithm is greedy and easy to train. It can not only be parallelized, but also

lends itself to distributed databases. Empirically, it does not over�t and has low gen-

eralization error. Theoretically, we can characterize the feature acquisition cost for

each tree and for the random forest. Empirically, on a number of benchmark datasets

we demonstrate superior accuracy-cost curves against state-of-the-art prediction-time

algorithms.

The work presented in this chapter is published in (Nan et al., 2015).

3.1 Related Work

Supervised learning approaches with prediction-time budgets have previously been

studied under an empirical risk minimization framework to learn budgeted decision

trees (Xu et al., 2013; Kusner et al., 2014; Trapeznikov and Saligrama, 2013; Wang

et al., 2014b; Wang et al., 2014a). In this setting, construction of budgeted decision

cascades or trees has been proposed by learning complex decision functions at each

node and leaf, outputting a tree of classi�ers which adaptively select sensors/features

27

to be acquired for each new example. Common to these systems is a decision structure,

which is a priori �xed. The entire structure is parameterized by complex decision

functions for each node, which are then optimized using various objective functions.

In contrast we build a random forest of trees where each tree is grown greedily so

that global collection of random trees meets the budget constraint. (Xu et al., 2012)

incorporates feature acquisition cost in stage-wise regression during training to achieve

prediction-time cost reduction.

Construction of simple decision trees with low costs has also been studied for

discrete function evaluation problems (Cicalese et al., 2014; Moshkov, 2010; Bellala

et al., 2012). Di�erent from our work these trees operate on discrete data to minimize

function evaluations, with no notion of test time prediction or cost.

As for Random forests despite their widespread use in supervised learning, to our

knowledge they have not been applied to prediction-time cost reduction.

3.2 Problem Setup

As discussed in Section 1.2, we minimize the empirical loss subject to a budget con-

straint according to (1.2), copied below for easy reference.

min
f∈F

1

n

n∑
i=1

L
(
y(i), f(x(i))

)
, s.t.

1

n

n∑
i=1

C
(
f, x(i)

)
≤ B, (3.1)

In our context the classi�er f is a random forest, T , consisting of m random trees,

D1, D2, . . . , Dm, that are learned on training data. Consequently, the expected cost

for an instance x during prediction-time can be written as follows:

Ef [Ex [C (f, x)]] ≤
m∑
j=1

EDj
[Ex [C (Dj, x)]] (3.2)

where, in the RHS we are averaging with respect to the random trees. As the trees in

a random forest are identically distributed the RHS scales with the number of trees.

28

This upper-bound captures the typical behavior of a random forest due to the low

feature correlation among trees.

As a result of this observation, the problem of learning a budgeted random forest

can be viewed as equivalent to the problem of �nding decision trees with low expected

evaluation cost and error. This motivates our algorithm BudgetRF, where greedily

constructed decision trees with provably low feature acquisition cost are added until

the budget constraint is met according to validation data. The returned random

forest is a feasible solution to (1.2) with strong empirical performance.

3.3 Algorithm

During Training: As shown in Algorithm 2, there are seven inputs to BudgetRF:

impurity function F , prediction-time feature acquisition budget B, a cost vector C ∈

ℜm that contains the acquisition cost of each feature, training class labels ytr and data

matrixXtr ∈ ℜn×K , where n is the number of samples andK is the number of features,

validation class labels ytv and data matrix Xtv. Note that the impurity function F

needs to be admissible, which essentially means monotone and supermodular. We

defer the formal de�nition and theoretical results to Section 3.4. For now it is helpful

to think of an impurity function F as measuring the heterogeneity of a set of examples.

Intuitively, F is large for a set of examples with mostly di�erent labels and small for

a set with mostly the same label.

BudgetRF iteratively builds decision trees by calling GreedyTree as a sub-

routine on a sampled subset of examples from the training data until the budget B

is exceeded as evaluated using the validation data. The ensemble of trees are then

returned as output. As shown in subroutine GreedyTree, the tree building process

is greedy and recursive. If the given set of examples have zero impurity as measured

by F , they are returned as a leaf node. Otherwise, compute the risk R(t) for each

29

Algorithm 2 BudgetRF

1: procedure BudgetRF(F,B,C, ytr,Xtr, ytv,Xtv)
2: T ← ∅.
3: while Average cost using validation set on T ≤ B do
4: Randomly sample n training data with replacement to form X(i) and y(i).
5: Train T ← GreedyTree(F,C, y(i), X(i)).
6: T ← T ∪ T .
7: return T \T .

Subroutine - GreedyTree

8: procedure GreedyTree(F,C, y,X)
9: S ← (y,X) ◃ the current set of examples
10: if F (S) = 0 then return

11: for each feature t = 1 to K do
12: Compute R(t) := min

gt∈Gt

max
i∈outcomes

c(t)
F (S)−F (Si

gt
)
, ◃ risk for feature t

13: where Si
gt is the set of examples in S that has outcome i using classi�er gt

with feature t.
14: t̂← argmintR(t)

15: ĝ ← argmin
gt̂∈Gt̂

max
i∈outcomes

c(t̂)
F (S)−F (Si

g
t̂
)

16: Make a node using feature t̂ and classi�er ĝ.
17: for each outcome i of ĝ do
18: GreedyTree(F,C, yiĝ, X

i
ĝ) to append as child nodes.

30

feature t, which involves searching for a classi�er gt among the family of classi�ers

Gt that minimizes the maximum impurity among its outcomes. Intuitively, a feature

with the least R(t) can uniformly reduce the impurity among all its child nodes the

most with the least cost. Therefore such a feature t̂ is chosen along with the corre-

sponding classi�er ĝ. The set of examples are then partitioned using ĝ to di�erent

child nodes at which GreedyTree is recursively applied. Note that we allow the

algorithm to reuse the same feature for the same example in GreedyTree.

During Prediction: Given a test example and a decision forest T returned by

BudgetRF, we run the example through each tree in T and obtained a predicted

label from each tree. The �nal predicted label is simply the majority vote among all

the trees.

Di�erent from random forest, we incorporate feature acquisition costs in the tree

building subroutine GreedyTree with the hope of reducing costs while maintaining

low classi�cation error. Our main theoretical contribution is to propose a broad class

of admissible impurity functions such that on any given set of n′ examples the tree

constructed by GreedyTree will have max-cost bounded by O(log n′) times the

optimal max-cost tree.

3.4 Bounding the Cost of Each Tree

Given a set of examples S with features and corresponding labels, a classi�cation tree

D has a feature-classi�er pair associated with each internal node. A test example is

routed from the root of D to a leaf node directed by the outcomes of the classi�ers

along the path; the test example is then labeled to be the majority class among

training examples in the leaf node it reaches. The feature acquisition cost of an

example s ∈ S on D, denoted as cost(D, s), is the sum of all feature costs incurred

along the root-to-leaf path in D traced by s. Note that if s encounters a feature

31

multiple times in the path, the feature cost contributes to cost(D, s) only once because

subsequent use of a feature already acquired for the test example incurs no additional

cost. We de�ne the total max-cost as

Cost(D) = max
s∈S

cost(D, s).

We aim to build a decision tree for any given set of examples such that the max-cost

is minimized. Note that the max-cost criterion bounds the expected cost criterion of

Eq. 3.2. While this bound could be loose we show later (see Sec. 3.4.2) that by param-

eterizing a suitable class of impurity functions, the max-costs of our GreedyTree

solution can be �smoothed" so that it approaches the expected-cost.

First de�ne the following terms: n′ is the number of examples input to

GreedyTree and K is the number of features, each of which has (a vector of) real

values; F is a given impurity function; F (S) is the impurity on the set of examples

S; DF is the family of decision trees with F (L) = 0 for any of its leaf L; each feature

has a cost c(t); a family of classi�ers Gt is associated with feature t; CostF (S) is

the max-cost of the tree constructed by GreedyTree using impurity function F

on S; and assume no feature is used more than once on the same example in the

optimal decision tree among DF that achieves the minimum max-cost, which we

denote as OPT (S) for the given input set of examples S. Note the assumption here

is a natural one if the complexity of Gt is high enough. This assumption is used in

the proof of Lemma 3.4.1 to lower bound the cost of the optimal tree. We show the

O(log n′) approximation holds for the max-cost of the optimal testing strategy using

the GreedyTree subroutine if the impurity function F is admissible.

De�nition A function F of a set of examples is admissible if it satis�es the following

�ve properties: (1) Non-negativity: F (G) ≥ 0 for any set of examples G; (2) Purity:

F (G) = 0 if G consists of examples of the same class; (3) Monotonicity: F (G) ≥

32

F (R),∀R ⊆ G; (4) Supermodularty: F (G ∪ j) − F (G) ≥ F (R ∪ j) − F (R) for any

R ⊆ G and example j /∈ R; (5) log(F (S)) = O(log n′), where n′ is the number of

examples in S.

In Section 3.4.1 we provide several natural impurity functions that satisfy the above

de�nition.

Since the set S is always �nite, by scaling F we can assume the smallest non-

zero impurity of F is 1. Let τ and ĝτ be the �rst feature and classi�er selected by

GreedyTree at the root and let Si
ĝτ

be the set of examples in S that has outcome

i using classi�er ĝτ . Note the optimization of classi�er in Line (12) of Algorithm 2

needs not to be exact. We say GreedyTree is λ-greedy if ĝτ is chosen such that

max
i∈outcomes

c(τ)

F (S)− F (Si
ĝτ
)
≤ min

gt∈Gt

max
i∈outcomes

λc(t)

F (S)− F (Si
gt)
,

for some constant λ ≥ 1. By de�nition of max-cost,

CostF (S)

OPT (S)
≤
c(τ) + max

i
CostF (S

i
ĝτ
)

OPT (S)
,

because feature τ could be selected multiple times by GreedyTree along a path

and the feature cost c(τ) contributes only once to the cost of the path.

Let q be such that CostF (S
q
ĝτ
) = max

i
CostF (S

i
ĝτ
). We �rst provide a lemma to

lower bound the optimal cost, which will later be used to prove a bound on the cost

of the tree.

Lemma 3.4.1 Let F be monotone and supermodular; let τ and ĝτ be the �rst feature

and classi�er chosen by GreedyTree λ-greedily on the set of examples S, assume

no feature is used more than once on any path of the optimal tree, then

c(τ)F (S)/(F (S)− F (Sq
ĝτ
)) ≤ λOPT (S).

Proof Let D∗ ∈ DF be a tree with optimal max-cost. Let v be an arbitrarily chosen

33

internal node in D∗, let γ be the feature associated with v and g∗γ the corresponding

classi�er. Let R ⊆ S be the set of examples associated with the leaves of the subtree

rooted at v. Let i be such that c(τ)/(F (S) − F (Si
ĝτ
)) is maximized. Let gmin

γ =

argmin
gγ∈Gγ

max
i∈outcomes

c(γ)
F (S)−F (Si

gγ
)
. Let w be such that c(γ)/(F (S)−F (Sw

gmin
γ

)) is maximized;

similarly let j be such that c(γ)/(F (S)− F (Sj
g∗γ
)) is maximized. We then have:

c(τ)

F (S)− F (Sq
ĝτ
)
≤ c(τ)

F (S)− F (Si
ĝτ
)
≤ λc(γ)

F (S)− F (Sw
gmin
γ

)

≤ λc(γ)

F (S)− F (Sj
g∗γ
)
≤ λc(γ)

F (R)− F (Rj
g∗γ
)
. (3.3)

The �rst inequality follows from the de�nition of i. The second inequality follows from

the λ-greedy choice at the root. The third inequality follows from the minimization

over classi�ers given feature γ. To show the last inequality, we have to show F (S)−

F (Sj
g∗γ
) ≥ F (R) − F (Rj

g∗γ
). This follows from the fact that Sj

g∗γ
∪ R ⊆ S and Rj

g∗γ
=

Sj
g∗γ
∩ R and therefore F (S) ≥ F (Sj

g∗γ
∪ R) ≥ F (Sj

g∗γ
) + F (R) − F (Rj

g∗γ
), where the

�rst inequality follows from monotonicity and the second follows from the de�nition

of supermodularity.

For a node v, let S(v) be the set of examples associated with the leaves of the

subtree rooted at v. Let v1, v2, . . . , vp be a root-to-leaf path on D∗ as follows: v1

is the root of the tree, and for each i = 1, . . . , p − 1 the node vi+1 is a child of vi

associated with the branch of j that maximizes c(ti)/(F (S)−F (Sj
g∗ti
)), where ti is the

test associated with vi. It follows from (3.3) that

[F (S(vi))− F (S(vi+1))]c(τ)

λ(F (S)− F (Sq
ĝτ
))

≤ cti . (3.4)

Since the cost of the path from v1 to vp is no larger than the max cost of the D∗, we

34

have that

OPT (S) ≥
p−1∑
i=1

cti

≥ c(τ)

λ(F (S)− F (Sq
ĝτ
))

p−1∑
i=1

(F (S(vi))− F (S(vi+1))

=
c(τ)(F (S)− F (S(vp))
λ(F (S)− F (Sq

ĝτ
))

=
c(τ)F (S)

λ(F (S)− F (Sq
ĝτ
))
,

where the �rst inequality follows by the assumption that no feature is used more than

once on any path of the optimal tree.

The main theorem of this section is the following.

Theorem 3.4.2 GreedyTree constructs a decision tree achieving O(log n′)-factor

approximation of the optimal max-cost in DF on the set S of n′ examples if F is

admissible and no feature is used more than once on any path of the optimal tree.

Proof This is an inductive proof:

CostF (S)

OPT (S)
≤
c(τ) + CostF (S

q
ĝτ
)

OPT (S)
(3.5)

≤ c(τ)

OPT (S)
+
CostF (S

q
ĝτ
)

OPT (Sq
ĝτ
)

(3.6)

≤ λ
F (S)− F (Sq

ĝτ
)

F (S)
+
CostF (S

q
ĝτ
)

OPT (Sq
ĝτ
)

(3.7)

≤ λ log(
F (S)

F (Sq
ĝτ
)
) + λ log(F (Sq

ĝτ
)) + 1 (3.8)

= λ log(F (S)) + 1 = O(log(n′)). (3.9)

The inequality in (3.6) follows from the fact that OPT (S) ≥ OPT (Sq
ĝτ
). (3.7) follows

from Lemma 3.4.1. The �rst term in (3.8) follows from the inequality x
x+1
≤ log(1+x)

for x > −1 and the second term follows from the induction hypothesis that for each

G ⊂ S, CostF (G)/OPT (G) ≤ λ log(F (G))+1. If F (G) = 0 for some set of examples

G, we de�ne CostF (G)/OPT (G) = 1.

35

We can verify the base case of the induction as follows. if F (G) = 1, which is the

smallest non-zero impurity of F on subsets of examples S, we claim that the optimal

decision tree chooses the feature with the smallest cost among those that can reduce

the impurity function F :

OPT (G) = min
t|∃gt,s.t. F (Gi

gt
)=0,∀i∈outcomes

c(t).

Suppose otherwise, the optimal tree chooses �rst a feature t with a child node G′

such that F (G′) = 1 and later chooses another feature t′ such that all the child nodes

of G′ by gt′ has zero impurity, then t′ could have been chosen in the �rst place to

reduce all child nodes of G to zero impurity by supermodularity of F . On the other

hand, R(t) = ∞ in GreedyTree for the features that cannot reduce impurity and

R(t) = c(t) for those features that can. So the algorithm would pick the feature

among those that can reduce impurity and have the smallest cost. Thus, we have

shown that CostF (G)/OPT (G) = 1 ≤ λ log(F (G)) + 1 for the base case.

3.4.1 Admissible Impurity Functions

A wide range of functions falls into the class of admissible impurity functions. We

employ a particular function called threshold-Pairs de�ned as

Fα(G) =
∑
i ̸=j

[[ni
G − α]+[n

j
G − α]+ − α

2]+, (3.10)

where ni
G denotes the number of objects in G that belong to class i, [x]+ = max(x, 0)

and α is a threshold parameter.

Lemma 3.4.3 Fα(G) is admissible.

Before showing admissibility of the threshold-Pairs function in the multi-class set-

ting, we �rst show Fα(G) is admissible for the binary setting. Consider the binary

36

classi�cation setting, let

Fα(G) = [[n1
G − α]+[n2

G − α]+ − α2]+.

All the properties are obviously true except supermodularity. To show supermodu-

larity, suppose R ⊆ G and object j /∈ R. Suppose j belongs to the �rst class. We

need to show

Fα(G ∪ j)− Fα(G) ≥ Fα(R ∪ j)− Fα(R). (3.11)

Consider 3 cases:

(1) Fα(R) = Fα(R ∪ j) = 0: The right hand side of (3.11) is 0 and (3.11) holds

because of monotonicity of Fα.

(2) Fα(R) = 0, Fα(R ∪ j) > 0, Fα(G) = 0: (3.11) reduces to Fα(G ∪ j) ≥ Fα(R ∪ j),

which is true by monotonicity.

(3) Fα(R) = 0, Fα(R ∪ j) > 0, Fα(G) > 0: Note that Fα(G) > 0 implies that [n1
G −

α]+[n
2
G − α]+ − α2 > 0 which further implies n1

G > α, n2
G > α. Thus the left hand

side is

Fα(G ∪ j)− Fα(G) = (n1
G − α+ 1)(n2

G − α)− α2 − ((n1
G − α)(n2

G − α)− α2)

= n2
G − α.

The right hand side is

Fα(R ∪ j) = (n1
R − α+ 1)(n2

R − α)− α2 = (n1
R − α)(n2

R − α)− α2 + (n2
R − α).

If n1
R ≥ α, Fα(R) = max((n1

R−α)(n2
R−α)−α2, 0) = 0 because Fα(R∪ j) > 0 implies

n2
R > α. So Fα(R ∪ j) ≤ n2

R − α ≤ n2
G − α = Fα(G ∪ j)− Fα(G).

(4) Fα(R) > 0: We have

Fα(G ∪ j)− Fα(G) = n2
G − α ≥ n2

R − α = Fα(R ∪ j)− Fα(R).

37

This completes the proof for the binary classi�cation setting. To generalize to the

multiclass threshold-Pairs function, again, all properties are obviously true except su-

permodularity, which follows from the fact that each term in the sum is supermodular

according to the proof for binary setting.

The following polynomial impurity function is also admissible.

Lemma 3.4.4 Suppose there are k classes in G. Any polynomial function of n1
G, . . . ,

nk
G with non-negative terms such that n1

G, . . . , n
k
G do not appear as singleton terms is

admissible. Formally, if

F (G) =
M∑
i=1

γi(n
1
G)

pi1(n2
G)

pi2 . . . (nk
G)

pik , (3.12)

where γi's are non-negative, pij's are non-negative integers and for each i there exists

at least 2 non-zero pij's, then F is admissible.

Proof Properties (1),(2),(3) and (5) are obviously true. To show F is supermodular,

suppose R ⊂ G and object ĵ /∈ R and ĵ belongs to class j, we have

F (R ∪ ĵ)− F (R)

=
∑
i∈Ij

γi[(n
1
R)

pi1 . . . (nj
R + 1)pij . . . (nk

R)
pik − (n1

R)
pi1 . . . (nj

R)
pij . . . (nk

R)
pik]

≤
∑
i∈Ij

γi[(n
1
G)

pi1 . . . (nj
G + 1)pij . . . (nk

G)
pik − (n1

G)
pi1 . . . (nj

G)
pij . . . (nk

G)
pik]

= F (G ∪ ĵ)− F (G),

where the �rst summation index set Ij is the set of terms that involve nj
R. The

inequality follows because (nj
R + 1)pij can be expanded so the negative term can be

canceled, leaving a sum-of-products form for R, which is term-by-term dominated by

that of G.

Another family of admissible impurity functions is the Powers function.

38

Corollary 3.4.5 Powers function

F (G) = (
k∑

i=1

ni
G)

l −
k∑

i=1

(ni
G)

l (3.13)

is admissible for l = 2, 3,

Neither entropy nor Gini index satisfy the notion of admissibility because they are

not monotonic set functions, that is a subset of examples does not necessarily have a

smaller entropy or Gini index compared to the entire set. Therefore traditional deci-

sion tree learning algorithms do not incorporate feature costs and have no guarantee

on the max-cost as stated in our paper.

3.4.2 Discussions

Before concluding the BudgetRF algorithm and its analysis, we discuss further

various design issues as well as their implications.

Choice of threshold α. In subroutine GreedyTree, each tree is greedily built

until a minimum leaf impurity is met, then added to the random forest. The threshold

α can be used to trade-o� between average tree depth and number of trees. A lower

α results in deeper trees with higher classi�cation power and acquisition cost. As a

result, fewer trees are added to the random forest before the budget constraint is met.

Conversely, a higher α yields shallower trees with poorer classi�cation performance,

however due to the low cost of each tree, many are added to the random forest before

the budget constraint is met. As such, α can be viewed as a bias-variance trade-o�.

In practice, it is selected using validation dataset.

Minimax-splits. The splitting criterion in the subroutineGreedyTree is based

on the worst case impurity among child nodes, we call such splits minimax-splits as

opposed to expected-splits, which is based on the expected impurity among child

nodes. Using minimax-splits, our theoretical guarantee is a bound on the max-cost of

39

𝑡1
Outcome 1

Outcome 2

𝑡2

O
u

tco
m

e 1

O
u

tco
m

e 2

Figure 3·1: A synthetic example to show max-cost of GreedyTree
can be �smoothed� to approach the expected-cost. The left and right
�gures above show the classi�er outcomes of feature t1 and t2, respec-
tively.

individual trees. Note such minimax-splits have been shown to lead to expected-cost

bound as well in the setting of GBS (Nowak, 2008); an interesting future research

direction is to show whether minimax-splits can lead to a bound on the expected-cost

of individual trees in our setting.

Smoothened Max-Costs. We emphasize that by adjusting α in threshold-

Pairs function - essentially allowing some error, the max-costs of the GreedyTree

solution can be �smoothened" so that it approaches the expected-cost. Consider

the synthetic example as shown in Figure 3·1. Here we consider a multi-class

classi�cation example to demonstrate the e�ect of �smoothened" max-cost of the

tree approaching the expected-cost. Consider a data set composed of 1024 examples

belonging to 4 classes with 10 binary features available. Assume that is no two

examples that have the same set of feature values. Note that by �xing the acquisition

order of the features, the set of feature values maps each example to an integer in

the range [0, 1023]. From this mapping, we give the examples in the ranges [1, 255] ,

[257, 511] , [513, 767], and [769, 1023] the labels 1, 2, 3, and 4, respectively, and the

examples 0, 256, 512, and 768 the labels 2, 3, 4, and 1, respectively (Figure 3·1 shows

the data projected to the �rst two features). Suppose each feature carries a unit cost.

40

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Worst Testing Cost

A
v
e
ra

g
e
 E

rr
o
r

R
a
te

Figure 3·2: The error-cost trade-o� plot of the subroutine
GreedyTree using threshold-Pairs on the synthetic example. 0.39%
error can be achieved using only a depth-2 tree but it takes a depth-10
tree to achieve zero error.

By Kraft's Inequality (Cover and Thomas, 1991), the optimal max-cost in order to

correctly classify every object is 10, however, using only t1 and t2 as selected by the

greedy algorithm, leads to a correct classi�cation of all but 4 objects, as shown in

Figure 3·2. Thus, the max-cost of the early stopped tree is only 2 - much closer to

the expected-cost.

3.5 Experiments

For establishing baseline comparisons we apply BudgetRF on 4 real world bench-

marked datasets. The �rst one has varying feature acquisition costs in terms of

computation time and the purpose is to show our algorithm can achieve high ac-

curacy during prediction while saving massive amount of feature acquisition time.

The other 3 datasets do not have explicit feature costs; instead, we assign a unit

cost to each feature uniformly. The purpose is to demonstrate our algorithm can

achieve low test error using only a small fraction of features. Note our algorithm is

41

adaptive, meaning it acquires di�erent features for di�erent examples during testing.

So the feature costs in the plots should be understood as an average of costs for all

test examples. We use GreedyMiser (Xu et al., 2012), CSTC (Xu et al., 2013) and

ASTC (Kusner et al., 2014) for comparison because they have been shown to have

state-of-the-art cost-error performance. For comparison purposes we use the same

con�guration of training/validation/test splits as in ASTC/CSTC. The algorithm

parameters for ASTC are set using the same con�guration as in (Kusner et al., 2014).

We report values for CSTC from (Kusner et al., 2014). We use the code provided

by the authors for GreedyMiser, tuning the learning rate and loss-cost trade-o� pa-

rameter λ using grid search. In all our experiments we use the threshold-Pairs (3.10)

as impurity function. We use stumps as the family of classi�ers Gt for all features t.

The optimization of classi�ers in line 12 of Algorithm 2 is approximated by randomly

generating 80, 40 and 20 stumps if the number of examples exceeds 2000, 500 and less

than 500, respectively and select the best among them. All results from our algorithm

were obtained by taking an average of 10 runs and standard deviations are reported

using error bars.

Yahoo! Learning to Rank: (Chapelle et al., 2011) We evaluate BudgetRF on

a real world budgeted learning problem: Yahoo! Learning to Rank Challenge 1. The

dataset consists of 473, 134 web documents and 19, 944 queries. Given a set of training

query-document pairs together with relevance ranks of documents for each query, the

Challenge is to learn an algorithm which takes a new query and its set of associated

documents and outputs the rank of these documents with respect to the new query.

Each example xi contains 519 features of a query-document pair. Each of these

features is associated with an acquisition cost in the set {1, 5, 20, 50, 100, 150, 200},

which represents the units of time required for extraction and is provided by a Yahoo!

employee. The labels are binarized so that yi = 0 means the document is unrelated

1http://webscope.sandbox.yahoo.com/catalog.php?datatype=c

42

50 100 150 200 250 300 350 400 450 500
0.1

0.105

0.11

0.115

0.12

0.125

0.13

Expected Feature Costs

A
v
e
ra

g
e
 P

re
c
is

io
n
@

5
(h

ig
h
e
r

is
 b

e
tt
e
r)

BudgetRF

ASTC

CSTC

Greedy Miser

(a) Yahoo! Rank

5 10 15 20 25 30 35 40 45 50
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Expected # Features Used

E
x
p
e
c
te

d
 T

e
s
t
E

rr
o
r

BudgetRF

ASTC

CSTC

Greedy Miser

(b) MiniBooNE

5 10 15 20 25 30 35 40 45 50
0.1

0.15

0.2

0.25

0.3

0.35

Expected # Features Used

E
x
p
e
c
te

d
 T

e
s
t
E

rr
o
r

BudgetRF

ASTC

CSTC

Greedy Miser

(c) Forest Covertype

0 50 100 150 200 250

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Expected # Features Used

E
x
p
e
c
te

d
 T

e
s
t
E

rr
o
r

BudgetRF

ASTC

CSTC

Greedy Miser

(d) CIFAR-10

Figure 3·3: Comparison of BudgetRF against ASTC (Kusner et al.,
2014) and CSTC (Xu et al., 2013) on 4 real world datasets. BudgetRF
has a clear advantage over these state-of-the-art methods as it achieves
high accuracy/low error using less feature costs.

to the query in xi whereas yi = 1 means the document is relevant to the query. There

are 141, 397/146, 769/184, 968 examples in training/validation/test sets. We use the

Average Precision@5 as performance metric, same as that used in (Kusner et al.,

2014). To evaluate a predicted ranking for a test query, �rst sort the documents

in decreasing order of the predicted ranks - that is, the more relevant documents

predicted by the algorithm come before those that are deemed irrelevant. Take the

top 5 documents in this order and reveal their true labels. If all of the documents

43

are indeed relevant (y = 1), then the precision score is increased by 1; otherwise, if

the �rst unrelated document appears in position 1 ≤ j ≤ 5, increase the precision

score by j−1
5
. Finally, the precision score is averaged over the set of test queries. We

run BudgetRF using the threshold α = 0 for the threshold-Pairs impurity function.

To incorporate prediction con�dence we simply run a given test example through the

forest of trees to leaf nodes and aggregate the number of training examples at these

leaf nodes for class 0 and 1 seperately. The ratio of class 1 examples over the sum of

class 1 and 0 examples gives the con�dence of relevance. The comparison is shown in

plot (a) of Figure 3·3. The precision for BudgetRF rises much faster than ASTC and

CSTC. At an average feature cost of 70, BudgetRF already exceeds the precision

that ASTC/CSTC can achieve using feature cost of 450 and more. GreedyMiser has

an initial precision higher than BudgetRF but rises more slowly. In this experiment

the maximum number of trees we build is 140; the precision is set to rise even higher

if we were to use more trees. BudgetRF thus represents a better ranking algorithm

requiring much less wait time for users of the search engine.

MiniBooNE Particle Identi�cation Data Set: (Dheeru and Karra Taniski-

dou, 2017) The MiniBooNE data set is a binary classi�cation task, with the goal of dis-

tinguishing electron neutrinos (signal) from muon neutrinos (background). Each data

point consists of 50 experimental particle identi�cation variables (features). There

are 45, 523/19, 510/65, 031 examples in training/validation/test sets. We apply Bud-

getRF with a set of 10 values of α = [0, 2, 4, 6, 8, 10, 15, 25, 35, 45]. For each α we

build a forest of maximum 40 trees using BudgetRF. Each point on the BudgetRF

curve in (b) of Figure 3·3 corresponds to a α setting and the number of trees that

meet the budget level. The �nal α is chosen using validation set. Our algorithm

clearly achieves lower test error than both ASTC and CSTC on every point of the

budget level. Indeed, using just about 6 features on average out of 50 , BudgetRF

44

achieves lower test error than what can be achieved by ASTC or CSTC using any

number of features. GreedyMiser achieves similar performance with BudgetRF.

Forest Covertype Data Set: (Dheeru and Karra Taniskidou, 2017) The Forest

data set contains cartographic variables to predict 7 forest cover types. Each example

contains 54 (10 continuous and 44 binary) features. There are 36, 603/15, 688/58, 101

examples in training/validation/test sets. We use the same α values as in MiniBooNE.

The �nal α is chosen using validation set. In (c) of Figure 3·3, ASTC and CSTC

struggles to decrease test error even at high feature budget whereas the test error

of BudgetRF decreases rapidly as more features are acquired. GreedyMiser again

does better than ASTC/CSTC but uses much more features than BudgetRF for

similar test error. We believe this dramatic performance di�erence is partly due to

the distinct advantage of BudgetRF in handling mixed continuous and discrete

(categorical) data where the optimal decision function is highly non-linear.

CIFAR-10: (Krizhevsky, 2009) CIFAR-10 data set consists of 32x32 colour im-

ages in 10 classes. 400 features for each image are extracted using technique described

in (Coates and Ng, 2011). The data are binarized by combining the �rst 5 classes

into one class and the others into the second class. There are 19, 761/8, 468/10, 000

examples in training/validation/test sets. As shown in (d) of Figure 3·3 BudgetRF

and GreedyMiser initially have higher test error than ASTC when the budget is low;

from a budget about 90 onward BudgetRF and GreedyMiser outperform ASTC

while they outperform CSTC on the entire curve. An important trend we see is that

the errors for both ASTC and CSTC start to increase after some budget level. This

indicates an issue of over�tting with these methods. We do not see such an issue with

BudgetRF and GreedyMiser.

As a general comment, we observe that in low-cost regions using higher α achieves

lower test error whereas setting α = 0 leads to low test error at a higher cost. This

45

is consistent with our intuition that setting a high value for α terminates the tree

building process early and thus saves on cost, as a consequence more trees can be

built within the budget. But as budget increases, more and more trees are added

to the forest, the prediction power does not grow as fast as setting α to low values

because the individual trees are not as powerful.

Comments on standard Random Forest Cost is not incorporated in the stan-

dard random forest (RF) algorithm. One issue that arises is how to incorporate

budget constraint. Our strategy was to limit the number of trees in the RF to control

the cost. But this does not work well even if the acquisition costs are uniform for

all features. We run Breiman's RF as implemented in Matlab's TreeBagger using

default settings: fraction of input data to sample with replacement from the input

data for growing each new tree is 1; number of features to select at random for each

decision split is square root of the total number of features; minimum number of

observations per tree leaf is 1. We report our �ndings in Table 3.1. Each entry in the

table contains the cost as percentage of total number of features used, together with

test error in parenthesis. All results are averaged over 10 runs. The test errors of

the 3 methods are quite close in all 3 datasets with increasing number of trees. But

BudgetRF using threshold-Pairs impurity with α = 0 has signi�cantly lower costs

than RF(Gini) and RF(entropy) uniformly across all datasets. For example in Forest

dataset, after building 40 trees, RF(Gini) uses 76.63% of total number of features

for an average test example whereas BudgetRF uses only 29.01%. In terms of test

error BudgetRF achieves 0.1156, slightly better than 0.1196 obtained by RF(Gini).

For Yahoo! Rank dataset, RF does even worse because some features have very high

cost and yet RF still uses them just like the less expensive features, resulting in high

cost.

46

Num. Trees 1 10 20 40

MiniB
RF(Gini) 27.32(0.1278) 85.06(0.0803) 94.83(0.0730) 98.42(0.0693)
RF(entropy) 20.67(0.1230) 75.54(0.0775) 90.35(0.0713) 97.54(0.068)
BudgetRF 16.4(0.1241) 57.8(0.0786) 73.57(0.0721) 86.78(0.0689)

Forest
RF(Gini) 22.57(0.2107) 63.04(0.1307) 70.76(0.1238) 76.63(0.1196)

RF(entropy) 21.68(0.2045) 63.56(0.1313) 72.37(0.1239) 79.34(0.1200)
BudgetRF 11.37(0.2122) 23.21(0.1364) 25.92(0.1232) 29.01(0.1156)

CIFAR
RF(Gini) 3.8(0.4284) 30.35(0.3604) 49.85(0.3349) 72.20(0.3106)
RF(entropy) 3.46(0.4267) 28.34(0.3561) 46.45(0.3296) 68.47(0.3080)
BudgetRF 2.62(0.4264) 21.09(0.3600) 35.45(0.3332) 54.24(0.3125)

Table 3.1: Percentage of average number of features used together
with test error in parenthesis for di�erent number of trees.

Threshold-Pairs V.s. Powers functions: Finally, we compare the threshold-

Pairs with various α values against the Powers function to study the e�ect of them

on the tree building subroutine GreedyTree. We compare performance using 9

data sets from the UCI Repository in Figure 3·4. We assume that all features have a

uniform cost. For each data set, we replace non-unique objects with a single instance

using the most common label for the objects, allowing every data set to be complete

(perfectly classi�ed by the decision trees). Additionally, continuous features are trans-

formed to discrete features by quantizing to 10 uniformly spaced levels. For trees with

a smaller cost (and therefore lower depth), the threshold-Pairs impurity function out-

performs the Powers impurity function with early stopping (higher α leads to earlier

stopping), whereas for larger cost (and greater depth), the Powers impurity function

outperforms threshold-Pairs. If α is set to 0, the di�erence between threshold-Pairs

and Powers function is small.

Figure 3·4 shows that the Powers function does not o�er signi�cant advantage

over the threshold-Pairs used in this paper.

47

Details of Data Sets The house votes data set is composed of the voting records

for 435 members of the U.S. House of Representatives (342 unique voting records) on

16 measures, with a goal of identifying the party of each member. The sonar data

set contains 208 sonar signatures, each composed of energy levels (quantized to 10

levels) in 60 di�erent frequency bands, with a goal of identifying The ionosphere data

set has 351 (350 unique) radar returns, each composed of 34 responses (quantized

to 10 levels), with a goal of identifying if an event represents a free electron in the

ionosphere. The Statlog DNA data set is composed of 3186 (3001 unique) DNA se-

quences with 180 features, with a goal of predicting whether the sequence represents

a boundary of DNA to be spliced in or out. The Boston housing data set contains 13

attributes (quantized to 10 levels) pertaining to 506 (469 unique) di�erent neighbor-

hoods around Boston, with a goal of predicting which quartile the median income of

the neighborhood the neighborhood falls. The soybean data set is composed of 307

examples (303 unique) composed of 34 categorical features, with a goal of predicting

from among 19 diseases which is a�icting the soy bean plant. The pima data set is

composed of 8 features (with continuous features quantized to 10 levels) correspond-

ing to medical information and tests for 768 patients (753 unique feature patterns),

with a goal of diagnosing diabetes. The Wisconsin breast cancer data set contains 30

features corresponding to properties of a cell nucleus for 569 samples, with a goal of

identifying if the cell is malignant or benign. The mammography data set contains 6

features from mammography scans (with age quantized into 10 bins) for 830 patients,

with a goal of classifying the lesions as malignant or benign.

48

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

Worst Testing Cost

A
ve

ra
ge

 E
rr

or
 R

at
e

l=2
l=3
l=4
l=5
HP

(a) House Votes

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Worst Testing Cost

A
ve

ra
ge

 E
rr

or
 R

at
e

l=2
l=3
l=4
l=5
HP

(b) Sonar

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Worst Testing Cost

A
ve

ra
ge

 E
rr

or
 R

at
e

l=2
l=3
l=4
l=5
HP

(c) Ionosphere

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Worst Testing Cost

A
ve

ra
ge

 E
rr

or
 R

at
e

l=2
l=3
l=4
l=5
HP

(d) Statlog DNA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Worst Testing Cost

A
ve

ra
ge

 E
rr

or
 R

at
e

l=2
l=3
l=4
l=5
HP

(e) Boston Housing

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Worst Testing Cost
A

ve
ra

ge
 E

rr
or

 R
at

e

l=2
l=3
l=4
l=5
HP

(f) Soybean

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Worst Testing Cost

A
ve

ra
ge

 E
rr

or
 R

at
e

l=2
l=3
l=4
l=5
HP

(g) Pima

1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Worst Testing Cost

A
ve

ra
ge

 E
rr

or
 R

at
e

l=2
l=3
l=4
l=5
HP

(h) WBCD

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Worst Testing Cost

A
ve

ra
ge

 E
rr

or
 R

at
e

l=2
l=3
l=4
l=5
HP

(i) Mammography

Figure 3·4: Comparison of classi�cation error vs. max-cost for the
Powers impurity function in (3.13) for l = 2, 3, 4, 5 and the threshold-
Pairs impurity function. Note that for both House Votes and WBCD,
the depth 0 tree is not included as the error decreases dramatically
using a single test. In many cases, the threshold-Pairs impurity function
outperforms the Powers impurity functions for trees with smaller max-
costs, whereas the Powers impurity function outperforms the threshold-
Pairs function for larger max-costs.

49

Chapter 4

Pruning Random Forests

We propose a two-stage algorithm. In the �rst stage, we train a random forest (RF)

of trees using an impurity function such as entropy or more specialized cost-adaptive

impurity (Nan et al., 2015). Our second stage takes a RF as input and attempts

to jointly prune each tree in the forest to meet global resource constraints. During

prediction-time, an example is routed through all the trees in the ensemble to the

corresponding leaf nodes and the �nal prediction is based on a majority vote. The

total feature cost for a test example is the sum of acquisition costs of unique features1

acquired for the example in the entire ensemble of trees in the forest. 2

We derive an e�cient scheme to learn a globally optimal pruning of a RF min-

imizing the empirical error and incurred average costs. We formulate the pruning

problem as a 0-1 integer linear program that incorporates feature-reuse constraints.

By establishing total unimodularity of the constraint set, we show that solving the

linear program relaxation of the integer program yields the optimal solution to the

integer program resulting in a polynomial time algorithm for optimal pruning. We

develop a primal-dual algorithm by leveraging results from network-�ow theory for

scaling the linear program to large datasets. Empirically, this pruning outperforms

state-of-the-art resource e�cient algorithms on benchmarked datasets. Our approach

1When an example arrives at an internal node, the feature associated with the node is used to
direct the example. If the feature has never been acquired for the example an acquisition cost is
incurred. Otherwise, no acquisition cost is incurred as we assume that feature values are stored once
computed.

2For time-sensitive cases such as web-search we parallelize the implementation by creating parallel
jobs across all features and trees. We can then terminate jobs based on what features are returned.

50

No Usage 1�7 > 7 Cost Error
Unpruned RF 7.3% 91.7% 1% 42.0 6.6%
BudgetPrune 68.3% 31.5% 0.2% 24.3 6.7%

Table 4.1: Typical feature usage in a 40 tree RF before and after
pruning (our algorithm) on the MiniBooNE dataset. Columns 2-4 list
percentage of test examples that do not use the feature, use it 1 to
7 times, and use it greater than 7 times, respectively. Before prun-
ing, 91% examples use the feature only a few (1 to 7) times, paying
a signi�cant cost for its acquisition; after pruning, 68% of the total
examples no longer use this feature, reducing cost with minimal error
increase. Column 5 is the average feature cost (the average number of
unique features used by test examples). Column 6 is the test error of
RFs. Overall, pruning dramatically reduces average feature cost while
maintaining the same error level.

is motivated by the following considerations:

(i) RFs are scalable to large datasets and produce �exible decision boundaries yielding

high prediction-time accuracy. The sequential feature usage of decision trees lends

itself to adaptive feature acquisition. (ii) RF feature usage is super�uous, utilizing

features with introduced randomness to increase diversity and generalization. Prun-

ing can yield signi�cant cost reduction with negligible performance loss by selectively

pruning features sparsely used across trees, leading to cost reduction with minimal

accuracy degradation (due to majority vote). See Table 4.1. (iii) Optimal pruning

encourages examples to use features either a large number of times, allowing for com-

plex decision boundaries in the space of those features, or not to use them at all,

avoiding incurring the cost of acquisition. It enforces the fact that once a feature

is acquired for an example, repeated use incurs no additional acquisition cost. Intu-

itively, features should be repeatedly used to increase discriminative ability without

incurring further cost. (iv) Resource constrained prediction has been conventionally

viewed as a top-down (tree-growing) approach, wherein new features are acquired

based on their utility value. This is often an intractable problem with combinatorial

(feature subsets) and continuous components (classi�ers) requiring several relaxations

51

and heuristics. In contrast, ours is a bottom-up approach that starts with good ini-

tialization (RF) and prunes to realize optimal cost-accuracy tradeo�. Indeed, while

we do not pursue it, our approach can also be used in conjunction with existing

approaches.

The work presented in this chapter is published in (Nan et al., 2016).

4.1 Related Work

Learning decision rules to minimize error subject to a budget constraint during

prediction-time is an area of recent interest, with many approaches proposed to solve

the prediction-time budget constrained problem (Gao and Koller, 2011; Xu et al.,

2012; Trapeznikov and Saligrama, 2013; Wang et al., 2015; Kusner et al., 2014).

These approaches focus on learning complex adaptive decision functions and can be

viewed as orthogonal to our work. Conceptually, these are top-down �growing� meth-

ods as we described earlier (see (iv)). Our approach is bottom-up that seeks to prune

complex classi�ers to tradeo� cost vs. accuracy.

Our work is based on RF classi�ers (Breiman, 2001). Traditionally, feature cost

is not incorporated when constructing RFs, however we have shown in Chapter 3 an

approximation of budget constraints to learn budgeted RFs (Nan et al., 2015). The

tree-growing algorithm in in Chapter 3 does not take feature re-use into account.

Rather than attempting to approximate the budget constraint during tree construc-

tion, our work focuses on pruning ensembles of trees subject to a budget constraint.

Methods such as traditional ensemble learning and budgeted random forests can be

viewed as complementary.

Decision tree pruning has been studied extensively to improve generalization per-

formance; we are not aware of any existing pruning method that takes into account

the feature costs. A popular method for pruning to reduce generalization error is

52

Cost-Complexity Pruning (CCP), introduced by Breiman et al. (Breiman et al.,

1984). CCP trades-o� classi�cation ability for tree size, however it does not account

for feature costs. As pointed out by Li et al. (Li et al., 2001), CCP has undesir-

able �jumps" in the sequence of pruned tree sizes. To alleviate this, they proposed

a Dynamic-Program-based Pruning (DPP) method for binary trees. The DPP algo-

rithm is able to obtain optimally pruned trees of all sizes; however, it faces the curse

of dimensionality when pruning an ensemble of decision trees and taking feature cost

into account. (Zhang and Huei-chuen, 2005; Sherali et al., 2009) proposed to solve the

pruning problem as a 0-1 integer program; again, their formulations do not account

for feature costs that we focus on in this chapter. The coupling nature of feature usage

makes our problem much harder. In general pruning RFs is not a focus of attention

as it is assumed that over�tting can be avoided by constructing an ensemble of trees.

While this is true, it often leads to extremely large prediction-time costs. Kulkarni

and Sinha (Kulkarni and Sinha, 2012) provide a survey of methods to prune RFs in

order to reduce ensemble size. However, these methods do not explicitly account for

feature costs.

4.2 Problem Setup

In this chapter, we consider solving the Lagrangian relaxed problem of learning under

prediction-time resource constraints, also known as the error-cost tradeo� problem:

min
f∈F

E(x,y)∼P [err (y, f(x))] + λEx∼Px [C (f, x)] , (4.1)

where example/label pairs (x, y) are drawn from a distribution P ; err(y, ŷ) is the

error function; C(f, x) is the cost of evaluating the classi�er f on example x; λ is a

tradeo� parameter. A larger λ places a larger penalty on cost, pushing the classi�er

to have smaller cost. By adjusting λ we can obtain a classi�er satisfying the budget

53

constraint. The family of classi�ers F in our setting is the space of RFs, and each

RF f is composed of T decision trees T1, . . . , TT .

Our approach: Rather than attempting to construct the optimal ensemble by

solving Eqn. (4.1) directly, we instead propose a two-step algorithm that �rst con-

structs an ensemble with low prediction error, then prunes it by solving Eqn. (4.1)

to produce a pruned ensemble given the input ensemble. By adopting this two-step

strategy, we obtain an ensemble with low expected cost while simultaneously preserv-

ing the low prediction error.

There are many existing methods to construct RFs, however the focus of this

chapter is on the second step, where we propose a novel approach to prune RFs to

solve the tradeo� problem Eqn.(4.1). Our pruning algorithm is capable of taking any

RF as input, o�ering the �exibility to incorporate any state-of-the-art RF algorithm.

4.2.1 Pruning with Costs

In this section, we treat the error-cost tradeo� problem Eqn. (4.1) as an RF pruning

problem. Our key contribution is to formulate pruning as a 0-1 integer program with

totally unimodular constraints.

We �rst de�ne notations used throughout the chapter. A training sample S =

{(x(i), y(i)) : i = 1, . . . , N} is generated i.i.d. from an unknown distribution, where

x(i) ∈ ℜK is the feature vector with a cost assigned to each of theK features and y(i) is

the label for the ith example. In the case of multi-class classi�cation y ∈ {1, . . . ,M},

where M is the number of classes. Given a decision tree T , we index the nodes as

h ∈ {1, . . . , |T |}, where node 1 represents the root node. Let T̃ denote the set of leaf

nodes of tree T . Finally, the corresponding de�nitions for T can be extended to an

ensemble of T decision trees {Tt : t = 1, . . . , T} by adding a subscript t.

Pruning Parametrization: In order to model ensemble pruning as an optimiza-

tion problem, we parametrize the space of all prunings of an ensemble. The process

54

of pruning a decision tree T at an internal node h involves collapsing the subtree of T

rooted at h, making h a leaf node. We say a pruned tree T (p) is a valid pruned tree of

T if (1) T (p) is a subtree of T containing root node 1 and (2) for any h ̸= 1 contained

in T (p), the sibling nodes (the set of nodes that share the same immediate parent

node as h in T) must also be contained in T (p). Specifying a pruning is equivalent to

specifying the nodes that are leaves in the pruned tree. We therefore introduce the

following binary variable for each node h ∈ T

zh =

{
1 if node h is a leaf in the pruned tree,
0 otherwise.

We call the set {zh,∀h ∈ T } the node variables as they are associated with each

node in the tree. Consider any root-to-leaf path in a tree T , there should be exactly

one node in the path that is a leaf node in the pruned tree. Let p(h) denote the set

of predecessor nodes, the set of nodes (including h) that lie on the path from the

root node to h. The set of valid pruned trees can be represented as the set of node

variables satisfying the following set of constraints:
∑

u∈p(h) zu = 1 ∀h ∈ T̃ . Given

a valid pruning for a tree, we now seek to parameterize the error of the pruning.

Pruning error: As in most supervised empirical risk minimization problems,

we aim to minimize the error on training data as a surrogate to minimizing the

expected error. In a decision tree T , each node h is associated with a predicted label

corresponding to the majority label among the training examples that fall into the

node h. Let Sh denote the subset of examples in S routed to or through node h on T

and let Predh denote the predicted label at h. The number of misclassi�ed examples

at h is therefore eh =
∑

i∈Sh
1[y(i) ̸=Predh]. We can thus estimate the error of tree T in

terms of the number of misclassi�ed examples in the leaf nodes: 1
N

∑
h∈T̃ eh, where

N = |S| is the total number of examples.

Our goal is to minimize the expected test error of the trees in the random forest,

55

which we empirically approximate based on the aggregated probability distribution

in Step (6) of Algorithm 3 with 1
TN

∑T
t=1

∑
h∈T̃t eh. We can express this error in terms

of the node variables: 1
TN

∑T
t=1

∑
h∈Tt ehzh.

Pruning cost: Assume the acquisition costs for the K features, {ck : k =

1, . . . , K}, are given. The feature acquisition cost incurred by an example is the

sum of the acquisition costs of unique features acquired in the process of running the

example through the forest. This cost structure arises due to the assumption that

an acquired feature is cached and subsequent usage by the same example incurs no

additional cost. Formally, the feature cost of classifying an example i on the ensemble

T[T] is given by Cfeature(T[T],x
(i)) =

∑K
k=1 ckwk,i, where the binary variables wk,i serve

as the indicators:

wk,i =

{
1 if feature k is used by x(i) in any Tt, t = 1, . . . , T
0 otherwise.

The expected feature cost of a test example can be approximated as

1

N

N∑
i=1

K∑
k=1

ckwk,i.

In some scenarios, it is useful to account for computation cost along with feature acqui-

sition cost during prediction-time. In an ensemble, this corresponds to the expected

number of Boolean operations required running a test through the trees, which is equal

to the expected depth of the trees. This can be modeled as 1
N

∑T
t=1

∑
h∈Tt |Sh|dhzh,

where dh is the depth of node h.

Putting it together: Having modeled the pruning constraints, prediction perfor-

mance and costs, we formulate the problem of pruning using the relationship between

the node variables zh's and feature usage variables wk,i's. Given a tree T , feature k,

and example x(i), let uk,i be the �rst node associated with feature k on the root-to-

leaf path the example follows in T . Feature k is used by x(i) if and only if none of

56

the nodes between the root and uk,i is a leaf. We represent this by the constraint

wk,i +
∑

h∈p(uk,i)
zh = 1 for every feature k used by example x(i) in T . Recall wk,i

indicates whether or not feature k is used by example i and p(uk,i) denotes the set

of predecessor nodes of uk,i. Intuitively, this constraint says that either the tree is

pruned along the path followed by example i before feature k is acquired, in which

case zh = 1 for some node h ∈ p(uk,i) and wk,i = 0; or wk,i = 1, indicating that

feature k is acquired for example i. We extend the notations to ensemble pruning

with tree index t: z
(t)
h indicates whether node h in Tt is a leaf after pruning; w

(t)
k,i

indicates whether feature k is used by the ith example in Tt; wk,i indicates whether

feature k is used by the ith example in any of the T trees T1, . . . , TT ; ut,k,i is the �rst

node associated with feature k on the root-to-leaf path the example follows in Tt; Kt,i

denotes the set of features the ith example uses on tree Tt. We arrive at the following

integer program.

min
z
(t)
h ,w

(t)
k,i,

wk,i∈{0,1}

error︷ ︸︸ ︷
1

NT

T∑
t=1

∑
h∈Tt

e
(t)
h z

(t)
h +λ


feature acquisition cost︷ ︸︸ ︷
K∑
k=1

ck(
1

N

N∑
i=1

wk,i)+

computational cost︷ ︸︸ ︷
1

N

T∑
t=1

∑
h∈Tt

|Sh|dhzh

 (IP)

s.t.
∑

u∈p(h) z
(t)
u = 1, ∀h ∈ T̃t, ∀t ∈ [T], (feasible prunings)

w
(t)
k,i +

∑
h∈p(ut,k,i)

z
(t)
h = 1, ∀k ∈ Kt,i,∀i ∈ S, ∀t ∈ [T], (feature usage/ tree)

w
(t)
k,i ≤ wk,i, ∀k ∈ [K],∀i ∈ S, ∀t ∈ [T]. (global feature usage)

4.3 Theoretical Analysis

Even though integer programs are NP-hard to solve in general, we show that (IP)

can be solved exactly by solving its LP relaxation. We prove this in two steps: �rst,

we examine the special structure of the equality constraints; then we examine the

inequality constraint that couples the trees. Recall that a network matrix is one with

each column having exactly one element equal to 1, one element equal to -1 and the

remaining elements being 0. A network matrix de�nes a directed graph with the

57

nodes in the rows and arcs in the columns. We have the following lemma.

Lemma 4.3.1 The equality constraints in (IP) can be turned into an equivalent net-

work matrix form for each tree.

Proof We observe the �rst constraint
∑

u∈p(h) z
(t)
u = 1 requires the sum of the node

variables along a path to be 1. The second constraints w
(t)
k,i +

∑
h∈p(ut,k,i)

z
(t)
h = 1 has

a similar sum except the variable w
(t)
k,i. Imagine w

(t)
k,i as yet another node variable for

a �ctitious child node of ut,k,i and the two equations are essentially equivalent. The

rest of proof follows directly from the construction in Proposition 3 of (Sherali et al.,

2009).

Figure 4·1 illustrates such a construction. There are two decision trees with the nodes

numbered 1 to 12. The subscript at each node number is the feature index used in

the node. For simplicity we consider only one example being routed to nodes 4 and

11 respectively on the two trees. The equality constraints in (IP) can be separated

based on the trees and put in matrix form:



z1 z2 z3 z4 z5 w
(1)
1,1 w

(1)
2,1

r1 1 1 0 0 0 0 0
r2 1 0 1 1 0 0 0
r3 1 0 1 0 1 0 0
r4 1 0 1 0 0 0 1
r5 1 0 0 0 0 1 0

,

for tree 1 and 

z6 z7 z8 z9 z10 z11 z12 w
(2)
2,1 w

(2)
3,1

r1 1 1 1 0 0 0 0 0 0
r2 1 1 0 1 0 0 0 0 0
r3 1 0 0 0 1 1 0 0 0
r4 1 0 0 0 1 0 1 0 0
r5 1 0 0 0 1 0 0 0 1
r6 1 0 0 0 0 0 0 1 0

,

for tree 2. Through row operations they can be turned into network matrices, where

58

11

32

54

2

(a) Tree 1

62

103

1211

71

98

(b) Tree 2

Figure 4·1: An ensemble of two decision trees with node numbers and
associated feature in subscripts

there is exactly two non-zeros in each column, a 1 and a −1.



z1 z2 z3 z4 z5 w
(1)
1,1 w

(1)
2,1

−r1 −1 −1 0 0 0 0 0
r1−r2 0 1 −1 −1 0 0 0
r2−r3 0 0 0 1 −1 0 0
r3−r4 0 0 0 0 1 0 −1
r4−r5 0 0 1 0 0 −1 1
r5 1 0 0 0 0 1 0

,

for tree 1 and



z6 z7 z8 z9 z10 z11 z12 w
(2)
2,1 w

(2)
3,1

−r1 −1 −1 −1 0 0 0 0 0 0
r1−r2 0 0 1 −1 0 0 0 0 0
r2−r3 0 1 0 1 −1 −1 0 0 0
r3−r4 0 0 0 0 0 1 −1 0 0
r4−r5 0 0 0 0 0 0 1 0 −1
r5−r6 0 0 0 0 1 0 0 −1 1
r6 1 0 0 0 0 0 0 1 0


for tree 2. Note the above transformation to network matrices can always be done as

long as the leaf nodes are arranged in a pre-order fashion in binary tree traversal.

Next, we deal with the inequality constraints and obtain our main result.

Theorem 4.3.2 The LP relaxation of (IP), where the 0-1 integer constraints are

relaxed to interval constraints [0, 1] for all integer variables, has integral optimal so-

lutions.

Proof The main idea is to show the constraints are still totally unimodular even after

59

adding the coupling constraints and the LP relaxed polyhedron has only integral

extreme points (Nemhauser et al., 1978). Denote the equality constraints of (IP)

with index set J1. They can be divided into each tree. Each constraint matrix in

J1 associated with a tree can be turned into a network matrix according to Lemma

4.3.1. Stacking these matrices leads to a larger network matrix. Denote the w
(t)
k,i ≤ wk,i

constraints with index set J2. Consider the constraint matrix for J2. Each w
(t)
k,i only

appears once in J2, which means the column corresponding to w
(t)
k,i has only one

element equal to 1 and the rest equal to 0. If we arrange the constraints in J2

such that for any given k, i w
(t)
k,i ≤ wk,i are put together for t ∈ [T], the constraint

matrix for J2 has interval structure such that the non-zeros in each column appear

consecutively. Finally, putting the network matrix from J1 and the matrix from J2

together. Assign J1 and the odd rows of J2 to the �rst partition Q1 and assign the

even rows of J2 to the second partition Q2. Note the upper bound constraints on the

variables can be ignored as this is an minimization problem. We conclude that the

constraint matrix of (IP) is totally unimodular according to Theorem 2.7, Part 3 of

(Nemhauser and Wolsey, 1988) with partition Q1 and Q2. By Proposition 2.1 and

2.2, Part 3 of (Nemhauser and Wolsey, 1988) we can conclude the proof.

As a result, solving the LP relaxation results in the optimal solution to the integer

program (IP), allowing for polynomial time optimization. The nice result of totally

unimodular constraints is due to our speci�c formulation. We illustrate an alternative

formulation that does not have such a property.

4.3.1 A Naive Pruning Formulation

The nice property of totally unimodular constraints in Theorem 4.3.2 is due to our

speci�c formulation. Here we present an alternative integer program formulation and

60

show its de�ciency. Recall we de�ned the following node variables

zh =

{
1 if node h is a leaf in the pruned tree,
0 otherwise.

and indicator variables of feature usage:

wk,i =

{
1 if feature k is used by x(i) in any Tt, t = 1, . . . , T
0 otherwise.

First, note that if zh = 1 for some node h, then the examples that are routed to h

must have used all the features in the predecessor nodes p(h), excluding h. We use

k ∼ p(h) to denote feature k is used in any predecessor of h, excluding h. Then

for each feature k and example i, we must have wk,i ≥ zh for all nodes h such that

i ∈ Sh and k ∼ p(h). Combining these constraints with the pruning constraints we

formulate pruning as a 0-1 integer program for an individual tree:

min
zh∈{0,1}
wk,i∈{0,1}

1
N

∑
h∈N

ehzh + λ

K∑
k=1

ck(
1

N

N∑
i=1

wk,i)

s.t. zh +
∑

u∈p(h) zu = 1 ∀h ∈ T̃ ,
wk,i ≥ zh ∀h : i ∈ Sh ∧ k ∼ p(h),

∀k ∈ [K],∀i ∈ S.

To solve the integer program, a common heuristic is to solve its linear program re-

laxation. Unfortunately, the constraint set in the above formulation has fractional

extreme points, leading to possibly fractional solutions to the relaxed problem. It

is not clear how to perform rounding to obtain good prunings. Consider the �rst

tree in Figure 4·1. Feature 1 is used at the root node and feature 2 is used at node

3. There are 7 variables (assuming there is only one example and it goes to leaf 4):

61

z1, z2, z3, z4, z5, w1,1, w2,1. The LP relaxed constraints are:

z1 + z3 + z4 = 1, z1 + z3 + z5 = 1, z1 + z2 = 1,

w1,1 ≥ z4, w1,1 ≥ z3, w2,1 ≥ z4, 0 ≤ z ≤ 1.

The following is a basic feasible solution:

z1 = 0, z2 = 1, z3 = z4 = z5 = 0.5, w1,1 = w2,1 = 0.5,

because the following set of 7 constraints are active:

z1 + z3 + z4 = 1, z1 + z3 + z5 = 1,

w1,1 ≥ z4, w1,1 ≥ z3, w2,1 ≥ z4, z1 = 0, z2 = 1.

Even if we were to interpret the fractional solution of zh as probabilities of h being a

leaf node, we see an issue with this formulation: the example has 0.5 probability of

stopping at node 3 or 4 (z3 = z4 = 0.5). In both cases, feature 1 at the root node has

to be used, however w1,1 = 0.5 indicates that it is only being used half of the times.

This solution is not a feasible pruning and fails to capture the cost of the pruning.

Attempting to use an LP relaxation of this formulation fails to capture the desired

behavior of the integer program.

4.4 Algorithm

Even though we can solve (IP) via its LP relaxation, the resulting LP can be too

large in practical applications for any general-purpose LP solver. In particular, the

number of variables and constraints is roughly O(T × |Tmax|+N × T ×Kmax), where

T is the number of trees; |Tmax| is the maximum number of nodes in a tree; N is

the number of examples; Kmax is the maximum number of features an example uses

62

in a tree. The runtime of the LP thus scales O(T 3) with the number of trees in

the ensemble, limiting the application to only small ensembles. In this section we

propose a primal-dual approach that e�ectively decomposes the optimization into

many sub-problems. Each sub-problem corresponds to a tree in the ensemble and

can be solved e�ciently as a shortest path problem. The runtime per iteration is

O(T
p
(|Tmax|+N×Kmax) log(|Tmax|+N×Kmax)), where p is the number of processors.

We can thus massively parallelize the optimization and scale to much larger ensembles

as the runtime depends only linearly on T
p
. To this end, we assign dual variables β

(t)
k,i

for the inequality constraints w
(t)
k,i ≤ wk,i and derive the dual problem.

max
β
(t)
k,i≥0

min
z
(t)
h ∈[0,1]

w
(t)
k,i∈[0,1]

wk,i∈[0,1]

1
NT

T∑
t=1

∑
h∈Tt

ê
(t)
h z

(t)
h + λ

(
K∑
k=1

ck(
1

N

N∑
i=1

wk,i)

)
+

T∑
t=1

N∑
i=1

∑
k∈Kt,i

β
(t)
k,i(w

(t)
k,i − wk,i)

s.t.
∑

u∈p(h)

z(t)u = 1, ∀h ∈ T̃t,∀t ∈ [T],

w
(t)
k,i +

∑
h∈p(ut,k,i)

z
(t)
h = 1, ∀k ∈ Kt,i, ∀i ∈ S,∀t ∈ [T],

where for simplicity we have combined coe�cients of z
(t)
h in the objective of (IP)

to ê
(t)
h . The primal-dual algorithm is summarized in Algorithm 3. It alternates

between updating the primal and the dual variables. The key is to observe that given

dual variables, the primal problem (inner minimization) can be decomposed for each

tree in the ensemble and solved in parallel as shortest path problems due to Lemma

4.3.1. Figure 4·2 illustrates such a construction based on the network matrices shown

above. The nodes in the graphs correspond to rows in the network matrices and the

arcs correspond to the columns, which are the primal variables zh, w
(t)
k,i's. There is a

cost associated with each arc in the objective of the minimization problem. The task

is to �nd a path from the �rst node (source) to the last node (sink) such that the

sum of arc costs is minimized. Note each path from source to sink corresponds to a

feasible pruning. For example, in (a) of Figure 4·2, consider the path of 1-2-5-6, the

63

Algorithm 3 BudgetPrune

During Training: input - ensemble(T1, . . . , TT), training/validation data
with labels, λ

1: initialize dual variables β
(t)
k,i ← 0.

2: update z
(t)
h , w

(t)
k,i for each tree t (shortest-path algo). wk,i = 0 if µk,i > 0, wk,i = 1

if µk,i < 0.

3: β
(t)
k,i ← [β

(t)
k,i + γ(w

(t)
k,i − wk,i)]+ for step size γ, where [·]+ = max{0, ·}.

4: go to Step 2 until duality gap is small enough.

During Prediction: input - test example x

5: Run x on each tree to leaf, obtain the probability distribution over label classes
pt at leaf.

6: Aggregate p = 1
T

∑T
t=1 pt. Predict the class with the highest probability in p.

active arcs are z2, z3 and w
(1)
1,1, Setting these variables to 1 and others to 0, we see

that it corresponds to pruning Tree 1 at node 3 in Figure 4·1. (Note the nodes in

Figure 4·2 and Figure 4·1 are not to be confused - they do not have a relation with

each other.)

The primal variables wk,i can be solved in closed form: simply compute µk,i =

λck/N −
∑

t∈Tk,i
β
(t)
k,i, where Tk,i is the set of trees in which example i encounters

feature k. So wk,i should be set to 0 if µk,i > 0 and wk,i = 1 if µk,i < 0.

Note that our prediction rule aggregates the leaf distributions from all trees instead

of just their predicted labels. In the case where the leaves are pure (each leaf contains

only one class of examples), this prediction rule coincides with the majority vote rule

commonly used in random forests. Whenever the leaves contain mixed classes, this

rule takes into account the prediction con�dence of each tree in contrast to majority

voting. Empirically, this rule consistently gives lower prediction error than majority

voting with pruned trees.

64

(a) Tree 1

(b) Tree 2

Figure 4·2: Turning pruning to equivalent shortest path problems.

65

4.5 Experiments

4.5.1 Baseline Comparison

We test our pruning algorithm BudgetPrune on four benchmark datasets used

for prediction-time budget algorithms. The �rst two datasets have unknown feature

acquisition costs so we assign costs to be 1 for all features; the aim is to show that

BudgetPrune successfully selects a sparse subset of features on average to classify

each example with high accuracy. 3 The last two datasets have real feature acquisition

costs measured in terms of CPU time. BudgetPrune achieves high prediction

accuracy spending much less CPU time in feature acquisition.

For each dataset we �rst train a RF and apply BudgetPrune on it using di�erent

λ's to obtain various points on the accuracy-cost tradeo� curve. We use in-bag data

to estimate error probability at each node and the validation data for the feature cost

variables wk,i's. We implement BudgetPrune using CPLEX (cpl, 2010) network

�ow solver for the primal update step. The running time is signi�cantly reduced

(from hours down to minutes) compared to directly solving the LP relaxation of (IP)

using standard solvers such as Gurobi (Gurobi Optimization, 2015). Futhermore,

the standard solvers simply break trying to solve the larger experiments whereas

BudgetPrune handles them with ease. We run the experiments for 10 times and

report the means and standard deviations.

Competing methods: We compare against four other approaches. (i) Bud-

getRF(Nan et al., 2015): the recursive node splitting process for each tree is stopped

as soon as node impurity (entropy or Pairs) falls below a threshold. The threshold

is a measure of impurity tolerated in the leaf nodes. This can be considered as a

naive pruning method as it reduces feature acquisition cost while maintaining low

3In contrast to traditional sparse feature selection, our algorithm allows adaptivity, meaning
di�erent examples use di�erent subsets of features.

66

5 10 15 20 25 30 35 40
0.88

0.89

0.9

0.91

0.92

0.93

T
e

s
t

A
c

c
u

r
a

c
y

Average Feature Cost

BudgetPrune

CCP [Breiman et al. 1984]

BudgetRF [Nan et al. 2015]

GreedyPrune

GreedyMiser [Xu et al. 2012]

(a) MiniBooNE

8 10 12 14 16 18 20 22
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

T
e

s
t

A
c

c
u

r
a

c
y

Average Feature Cost

BudgetPrune

CCP [Breiman et al. 1984]

BudgetRF [Nan et al. 2015]

GreedyPrune

GreedyMiser [Xu et al. 2012]

(b) Forest Covertype

40 60 80 100 120 140 160 180 200

0.12

0.125

0.13

0.135

0.14

A
v

e
r
a

g
e

 P
r
e

c
is

io
n

@
5

Average Feature Cost

BudgetPrune

CCP [Breiman et al. 1984]

BudgetRF [Nan et al. 2015]

GreedyPrune

GreedyMiser [Xu et al. 2012]

(c) Yahoo! Rank

5 10 15 20 25 30 35
0.72

0.74

0.76

0.78

0.8

0.82

0.84

T
e

s
t

A
c

c
u

r
a

c
y

Average Feature Cost

BudgetPrune

CCP [Breiman et al. 1984]

BudgetRF [Nan et al. 2015]

GreedyPrune

GreedyMiser [Xu et al. 2012]

(d) Scene15

Figure 4·3: Comparison of BudgetPrune against CCP, Bud-
getRF with early stopping, GreedyPrune and GreedyMiser on
4 real world datasets. BudgetPrune (red) outperforms competing
state-of-art methods. GreedyMiser dominates ASTC (Kusner et al.,
2014), CSTC (Xu et al., 2013) and DAG (Wang et al., 2015) signi�-
cantly on all datasets. We omit them in the plots to clearly depict the
di�erences between competing methods.

impurity in the leaves. (ii) Cost-Complexity Pruning (CCP) (Breiman et al., 1984):

it iteratively prunes subtrees such that the resulting tree has low error and small

67

size. We perform CCP on individual trees to di�erent levels to obtain various points

on the accuracy-cost tradeo� curve. CCP does not take into account feature costs.

(iii) GreedyPrune: is a greedy global feature pruning strategy that we propose;

at each iteration it attempts to remove all nodes corresponding to one feature from

the RF such that the resulting pruned RF has the lowest training error and average

feature cost. The process terminates in at most K iterations, where K is the number

of features. The idea is to reduce feature costs by successively removing features that

result in large cost reduction yet small accuracy loss. We also compare against the

state-of-the-art methods in budgeted learning (iv) GreedyMiser (Xu et al., 2012):

it is a modi�cation of gradient boosted regression tree (Friedman, 2000) to incorpo-

rate feature cost. Speci�cally, each weak learner (a low-depth decision tree) is built

to minimize squared loss with respect to current gradient at the training examples

plus feature acquisition cost. To build each weak learner the feature costs are set to

zero for those features already used in previous weak learners. Other prediction-time

budget algorithms such as ASTC (Kusner et al., 2014), CSTC (Xu et al., 2013) and

cost-weighted l-1 classi�ers are shown to perform strictly worse than GreedyMiser

by a signi�cant amount (Kusner et al., 2014; Nan et al., 2015) so we omit them in our

plots. Since only the feature acquisition costs are standardized, for fair comparison we

do not include the computation cost term in the objective of (IP) and focus instead

on feature acquisition costs.

MiniBooNE Particle Identi�cation and Forest Covertype Datasets

(Dheeru and Karra Taniskidou, 2017): The MiniBooNE data set is a binary

classi�cation task to distinguish electron neutrinos from muon neutrinos. There are

45523/19510 /65031 examples in training/validation/test sets. Each example has 50

features, each with unit cost. The Forest data set contains cartographic variables

to predict 7 forest cover types. There are 36603/15688/58101 examples in train-

68

ing/validation/test sets. Each example has 54 features, each with unit cost. Our

base RF consists of 40 trees using entropy split criteria and choosing from the full

set of features at each split. We use 1000 trees for GreedyMiser and search over

learning rates in [10−5, 102] for MiniBooNE and Forest. As shown in (a) and (b) of

Figure 4·3, BudgetPrune (in red) achieves the best accuracy-cost tradeo�. The

advantage of BudgetPrune is particularly large in (b). GreedyMiser has lower

accuracy in the high budget region compared to BudgetPrune in (a) and signi�-

cantly lower accuracy in (b). The gap between BudgetPrune and other pruning

methods is small in (a) but much larger in (b). This indicates large gains from glob-

ally encouraging feature sharing in the case of (b) compared to (a). In both datasets,

BudgetPrune successfully prunes away large number of features while maintaining

high accuracy. For example in (a), using only 18 unique features on average instead

of 40, we can get essentially the same accuracy as the original RF.

Yahoo! Learning to Rank:(Chapelle et al., 2011) This ranking dataset

consists of 473134 web documents and 19944 queries. Each example in the dataset

contains features of a query-document pair together with the relevance rank of the

document to the query. There are 141397/146769/184968 examples in the train-

ing/validation/test sets. There are 519 features for each example; each feature is

associated with an acquisition cost in the set {1, 5, 20, 50, 100, 150, 200}, which rep-

resents the units of CPU time required to extract the feature and is provided by a

Yahoo! employee. The labels are binarized so that the document is either relevant or

not relevant to the query. The task is to learn a model that takes a new query and

its associated set of documents to produce an accurate ranking using as little feature

cost as possible. We use 3000 trees for GreedyMiser and search over learning rates

in [10−5, 1]. As in (Nan et al., 2015), we use the Average Precision@5 as the per-

formance metric, which gives a high reward for ranking the relevant documents on

69

top. Our base RF consists of 140 trees using cost weighted entropy split criteria as in

(Nan et al., 2015) and choosing from a random subset of 400 features at each split.

As shown in (c) of Figure 4·3, BudgetPrune achieves similar ranking accuracy as

GreedyMiser using only 30% of its cost.

Scene15 (Lazebnik et al., 2006): This scene recognition dataset contains 4485

images from 15 scene classes (labels). Following (Xu et al., 2012) we divide it into

1500/300/2685 examples for training/validation/test sets. we use a diverse set of

visual discriptors varying in computation time: GIST, spatial HOG, Local Binary

Pattern, self-similarity, texton histogram, geometric texton, geometric color and 177

object detectors from the Object Bank (Li et al., 2010). We treat each individual

detector as an independent descriptor so we have 184 di�erent visual descriptors in

total. The acquisition costs of these visual descriptors range from 0.0374 to 9.2820.

For each descriptor we train 15 one-vs-rest kernel SVMs and use the output (margins)

as features. The best classi�er based on individual descriptors achieves an accuracy

of 77.8%. Note the features are grouped based on the visual descriptors. Once any

feature corresponding to a visual descriptor is used for a test example, an acquisition

cost of the visual descriptor is incurred and subsequent usage of features from the

same group is free for the test example. Our base RF consists of 500 trees using

entropy split criteria and choosing from a random subset of 20 features at each split.

As shown in (d) of Figure 4·3, BudgetPrune and GreedyPrune signi�cantly

outperform other competing methods. BudgetPrune has the same accuracy at

the cost of 9 as at the full cost of 32. BudgetPrune and GreedyPrune perform

similarly, indicating the greedy approach happen to solve the global optimization in

this particular initial RF.

70

4.5.2 Additional Experiments

We perform additional experiments to evaluate BudgetPrune with di�erent costs,

input RFs.

Non-uniform cost on MiniBooNE We observe that CCP performs similarly to

BudgetPrune on MiniBooNE when the costs are uniform in the case of entropy

splitting criteria, indicating little gain from global optimization with respect to feature

usage. We suspect that uniform feature costs work in favor of CCP because there's no

loss in treating each feature equally. To con�rm this intuition we assign the features

non-uniform costs and re-run prunings on the same RF. We �rst normalize the data so

that the data vectors corresponding to the features have the same l-2 norm. We then

train a linear SVM on it and obtain the weight vector corresponding to the learned

hyperplane. We around the absolute values of the weights and make them the costs for

the features. Intuitively the feature with higher weight tends to be more relevant for

the classi�cation task so we assign it a higher acquisition cost. The resulting costs lie

in the range of [1, 40] and we normalize them so that the sum of all feature costs is 50

- the number of features. We plot BudgetPrune and CCP for uniform cost as well

as the non-uniform cost described above in Figure 4·4. BudgetPrune still achieves

similar performance as uniform cost while CCP performance drops signi�cantly with

non-uniform feature cost. This shows again the importance of taking into account

feature costs in the pruning process.

Entropy Vs Pairs How does BudgetPrune depend on the splitting criteria used

in the underlying random forest? On two data sets we build RFs using the popular

entropy splitting criteria and the mini-max Pairs criteria used in (Nan et al., 2015)

and the results are shown in Figure 4·5. We observe that entropy splitting criteria

lead to RFs with higher accuracy while the Pairs criteria lead to RFs with lower cost.

71

0 5 10 15 20 25 30 35 40 45 50
0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

T
e
s
t

A
c
c
u

ra
c
y

Average Feature Cost

BudgetPrune(uniform)

CCP(uniform)

BudgetPrune(non−uniform)

CCP(non−uniform)

Figure 4·4: Comparing BudgetPrune and CCP with uniform and
non-uniform feature cost on MiniBooNE dataset. BudgetPrune is
robust when the feature cost is non-uniform.

This is expected as using Pairs biases to more balanced splits and thus provably low

cost (Nan et al., 2015). In (a) of Figure 4·5 we observe that as more of the RF is

pruned away BudgetPrune and CCP results for entropy and Pairs coincide. This

suggests that the two criteria actually lead to similar tree structures in the initial

tree-building process. However, as the trees are built deeper their structures diverge.

Plot (b) in Figure 4·5 shows that pruning based on the RFs from the Pairs criteria

can achieve higher accuracy in the low cost region. But if high accuracy in the high

cost region is desirable then the entropy criteria should be used.

Size of random feature subset at each split At each split in RF building, it

is possible to restrict the choice of splitting feature to be among a random subset

of all features. Such restriction tends to further reduce correlation among trees and

gain prediction accuracy. The drawback is that test examples tend to encounter a

diverse set of features, increasing feature acquisition cost. For illustration purpose,

we plot various pruning results on Scene15 dataset for feature subset sizes k = 20

and k = 120 in Figure 4·6. The initial RF has higher accuracy and higher cost for

72

5 10 15 20 25 30 35 40 45
0.88

0.89

0.9

0.91

0.92

0.93

T
e
s
t

A
c
c
u

ra
c
y

Average Feature Cost

BudgetPrune(Entropy)

CCP(Entropy)

RF + Early Stop(Entropy)

GreedyPrune(Entropy)

BudgetPrune(Pairs)

CCP(Pairs)

RF + Early Stop(Pairs)

GreedyPrune(Pairs)

(a) MiniBooNE

6 8 10 12 14 16 18 20 22
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

T
e
s
t

A
c
c
u

ra
c
y

Average Feature Cost

BudgetPrune(Entropy)

CCP(Entropy)

RF + Early Stop(Entropy)

GreedyPrune(Entropy)

BudgetPrune(Pairs)

CCP(Pairs)

RF + Early Stop(Pairs)

GreedyPrune(Pairs)

(b) Forest Covertype

Figure 4·5: Comparisons of various pruning methods based on entropy
and Pairs splitting criteria on MiniBooNE and Forest datasets

16 18 20 22 24 26 28 30 32
0.65

0.7

0.75

0.8

T
e

s
t

A
c

c
u

ra
c

y

Average Feature Cost

BudgetPrune(k=20)

CCP(k=20)

BudgetRF(k=20)

GreedyPrune(k=20)

BudgetPrune(k=120)

CCP(k=120)

BudgetRF(k=120)

GreedyPrune(k=120)

Figure 4·6: Comparing various pruning approaches on RF built with
k=20 and k=120 on Scene15 dataset. The initial RF has higher accu-
racy and higher cost for k=20. GreedyPrune performs very well in
k=20 but very poorly in k=120.

73

k = 20 as expected. BudgetPrune achieves slightly better accuracy in k = 20 than

k = 120. Note also how GreedyPrune performance drops signi�cantly for k = 120

so it is not robust. In our main experiments k is chosen on validation data to achieve

highest accuracy for the initial RF.

4.5.3 Discussion and Conclusion

We have empirically evaluated several resource constrained learning algorithms in-

cluding BudgetPrune and its variations on benchmarked datasets. We highlight

key features of our approach below. (i) State-of-the-art Methods. Recent work

has established that GreedyMiser and BudgetRF are among the state-of-the-art

methods dominating a number of other methods (Kusner et al., 2014; Xu et al., 2013;

Wang et al., 2015) on these benchmarked datasets. GreedyMiser requires building

class-speci�c ensembles and tends to perform poorly and is increasingly di�cult to

tune in multi-class settings. RF, by its nature, can handle multi-class settings e�-

ciently. On the other hand, as we described earlier, (Kusner et al., 2014; Wang et al.,

2015; Xu et al., 2013) are fundamentally "tree-growing" approaches, namely they are

top-down methods acquiring features sequentially based on a surrogate utility value.

This is a fundamentally combinatorial problem that is known to be NP hard (Chakar-

avarthy et al., 2011; Xu et al., 2013) and thus requires a number of relaxations and

heuristics with no guarantees on performance. In contrast our pruning strategy is

initialized to realize good performance (RF initialization) and we are able to globally

optimize cost-accuracy objective. (ii) Variations on Pruning. By explicitly mod-

eling feature costs, BudgetPrune outperforms other pruning methods such as early

stopping of BudgetRF and CCP that do not consider costs. GreedyPrune per-

forms well validating our intuition (see Table. 1) that pruning sparsely occurring fea-

ture nodes utilized by large fraction of examples can improve test-time cost-accuracy

tradeo�. Nevertheless, the BudgetPrune outperformsGreedyPrune, which is in-

74

dicative of the fact that apart from obvious high-budget regimes, node-pruning must

account for how removal of one node may have an adverse impact on another down-

stream one. (iii) Sensitivity to Impurity, Feature Costs, & other inputs.

We experiment BudgetPrune with di�erent impurity functions such as entropy

and Pairs (Nan et al., 2015) criteria. Pairs-impurity tends to build RFs with lower

cost but also lower accuracy compared to entropy and so has poorer performance.

We also explored how non-uniform costs can impact cost-accuracy tradeo�. An ele-

gant approach has been suggested by (Benbouzid, 2014), who propose an adversarial

feature cost proportional to feature utility value. We �nd that BudgetPrune is

robust with such costs. Other RF parameters including number of trees and feature

subset size at each split do impact cost-accuracy tradeo� in obvious ways with more

trees and moderate feature subset size improving prediction accuracy while incurring

higher cost.

75

Chapter 5

Adaptive Approximation

So far in this thesis we have focused on feature acquisition cost. Other costs such

as communication and latency costs pose a key challenge in the design of mobile

computing, or the Internet-of-Things(IoT) applications, where a large number of sen-

sors/camera/watches/phones (known as edge devices) are connected to a cloud.

Adaptive System: Rather than having the edge devices constantly transmit mea-

surements/images to the cloud where a centralized model makes prediction, a more

e�cient approach is to allow the edge devices make predictions locally (Kumar et al.,

2017), whenever possible, saving the high communication cost and reducing latency.

Due to the memory, computing and battery constraints, the prediction models on the

edge devices are limited to low complexity. Consequently, to maintain high-accuracy,

adaptive systems are desirable. Such systems identify easy-to-handle input instances

where local edge models su�ce, thus limiting the utilization cloud services for only

hard instances. We propose to learn an adaptive system by training on fully anno-

tated training data. Our objective is to maintain high accuracy while meeting average

resource constraints during prediction-time.

There have been a number of promising approaches that focus on methods for

reducing costs while improving overall accuracy as discussed in Section 1.5. Many of

these methods train models in a top-down manner, namely, attempt to build out the

model by selectively adding the most cost-e�ective features to improve accuracy.

In contrast we propose a novel bottom-up approach. We train adaptive models on

76

annotated training data by selectively identifying parts of the input space for which

high accuracy can be maintained at a lower cost. The principal advantage of our

method is twofold. First, our approach can be readily applied to cases where it is

desirable to reduce costs of an existing high-cost legacy system. Second, training

top-down models in case of feature costs leads to fundamental combinatorial issues in

multi-stage search over all feature subsets (see Sec. 5.1). In contrast, we bypass many

of these issues by posing a natural adaptive approximation objective to partition the

input space into easy and hard cases.

Figure 5·1: Left: single stage schematic of our approach. We learn
low-cost gating g and a LPC model to adaptively approximate a HPC
model. Right: Key insight for adaptive approximation. x-axis rep-
resents feature space; y-axis represents conditional probability of cor-
rect prediction; LPC can match HPC's prediction in the input region
corresponding to the right of the gating threshold but performs poorly
otherwise. Our goal is to learn a low-cost gating function that attempts
to send examples on the right to LPC and the left to HPC.

In particular, when no legacy system is available, our method consists of �rst

learning a high-accuracy model that minimizes the empirical loss regardless of costs.

The resulting high prediction-cost model (HPC) can be readily trained using any of

the existing methods. For example, this could be a large neural network in the cloud

77

that achieves the state-of-the-art accuracy. Next, we jointly learn a low-cost gating

function as well as a low prediction-cost (LPC) model so as to adaptively approximate

the high-accuracy model by identifying regions of input space where a low-cost gating

and LPC model are adequate to achieve high-accuracy. In IoT applications, such

low-complexity models can be deployed on the edge devices to perform gating and

prediction. At test-time, for each input instance, the gating function decides whether

or not the LPC model is adequate for accurate classi�cation. Intuitively, �easy�

examples can be correctly classi�ed using only an LPC model while �hard� examples

require HPC model. By identifying which of the input instances can be classi�ed

accurately with LPCs we bypass the utilization of HPC model, thus reducing average

prediction cost. The left part of Figure 5·1 is a schematic of our approach, where x is

feature vector and y is the predicted label; we aim to learn g and an LPC model to

adaptively approximate the HPC. The key observation as depicted in the lower �gure

is that the probability of correct classi�cation given x for a HPC model is in general

a highly complex function with higher values than that of a LPC model. Yet there

exists regions of the input space where the LPC has competitive accuracy (as shown

to the right of the gating threshold). Sending examples in such regions (according

to the gating function) to the LPC results in no loss of prediction accuracy while

reducing prediction costs.

The problem would be simpler if our task were to primarily partition the input

space into regions where LPC models would su�ce. The di�culty is that we must

also learn a low-cost gating function capable of identifying input instances for which

LPC su�ces. Since both prediction and gating account for cost, we favor design

strategies that lead to shared features and decision architectures between the gating

function and the LPC model. We pose the problem as a discriminative empirical

risk minimization problem that jointly optimizes for gating and prediction models in

78

terms of a joint margin-based objective function. The resulting objective is separately

convex in gating and prediction functions. We propose an alternating minimization

scheme that is guaranteed to converge since with appropriate choice of loss-functions

(for instance, logistic loss), each optimization step amounts to a probabilistic ap-

proximation/projection (I-projection/M-projection) onto a probability space. While

our method can be recursively applied in multiple stages to successively approximate

the adaptive system obtained in the previous stage, thereby re�ning accuracy-cost

trade-o�, we observe that on benchmark datasets even a single stage of our method

outperforms state-of-art in accuracy-cost performance.

The work presented in this chapter is published in (Nan and Saligrama, 2017).

5.1 Related Work

Top-Down Methods: For high-dimensional spaces, many existing approaches focus on

learning complex adaptive decision functions top-down (Gao and Koller, 2011; Xu

et al., 2012; Kusner et al., 2014; Wang et al., 2015). Conceptually, during training,

top-down methods acquire new features based on their utility value. This requires

exploration of partitions of the input space together with di�erent combinatorial low-

cost feature subsets that would result in higher accuracy. These methods are based

on multi-stage exploration leading to combinatorially hard problems. Di�erent novel

relaxations and greedy heuristics have been developed in this context.

Bottom-up Methods: The work in this Chapter is somewhat related to that in

Chapter 4, where we propose to prune a fully trained random forests (RF) to reduce

costs. Nevertheless, in contrast to the adaptive system, the RF pruning perspective

is to compress the original model and utilize the pruned forest as a stand-alone model

for test-time prediction. Furthermore, the work in 4 is speci�cally tailored to random

forests whereas the adaptive approximation framework proposed in this chapter is for

79

general models.

The teacher-student framework (Lopez-Paz et al., 2016) is also related to our

bottom-up approach; a low-cost student model learns to approximate the teacher

model so as to meet test-time budget. However, the goal there is to learn a better

stand-alone student model. In contrast, we make use of both the low-cost (student)

and high-accuracy (teacher) model during prediction via a gating function, which

learns the limitation of the low-cost (student) model and consult the high-accuracy

(teacher) model if necessary, thereby avoiding accuracy loss. Our composite system

is also related to HME (Jordan and Jacobs, 1994), which learns the composite system

based on max-likelihood estimation of models. A major di�erence is that HME does

not address budget constraints. A fundamental aspect of budget constraints is the

resulting asymmetry, whereby, we start with an HPC model and sequentially approx-

imate with LPCs. This asymmetry leads us to propose a bottom-up strategy where

the high-accuracy predictor can be separately estimated and is critical to posing a

direct empirical loss minimization problem.

5.2 Problem Setup

We consider the standard learning scenario of resource constrained prediction with

feature costs. A training sample S = {(x(i), y(i)) : i = 1, . . . , N} is generated i.i.d.

from an unknown distribution, where x(i) ∈ ℜK is the feature vector with an acquisi-

tion cost cα ≥ 0 assigned to each of the features α = 1, . . . , K and y(i) is the label for

the ith example. In the case of multi-class classi�cation y ∈ {1, . . . ,M}, where M is

the number of classes. Let us consider a single stage of our training method in order

to formalize our setup. The model, f0, is a high prediction-cost (HPC) model, which

is either a priori known, or which we train to high-accuracy regardless of cost con-

siderations. We would like to learn an alternative low prediction-cost (LPC) model

80

f1. Given an example x, at test-time, we have the option of selecting which model,

f0 or f1, to utilize to make a prediction. The accuracy of a prediction model fz is

modeled by a loss function ℓ(fz(x), y), z ∈ {0, 1}. We exclusively employ the logistic

loss function in binary classi�cation: ℓ(fz(x), y) = log(1+exp(−yfz(x)), although our

framework allows other loss models. For a given x, we assume that once it pays the

cost to acquire a feature, its value can be e�ciently cached; its subsequent use does

not incur additional cost. Thus, the cost of utilizing a particular prediction model,

denoted by c(fz, x), is computed as the sum of the acquisition cost of unique features

required by fz.

Oracle Gating: Consider a general gating likelihood function q(z|x) with z ∈

{0, 1}, that outputs the likelihood of sending the input x to a prediction model, fz.

The overall empirical loss is:

ESnEq(z|x)[ℓ(fz(x), y)] = ESn [ℓ(f0(x), y)] + ESn

[
q(1|x) (ℓ(f1(x), y)− ℓ(f0(x), y))

]︸ ︷︷ ︸
ExcessLoss

The �rst term only depends on f0, and from our perspective a constant. Similar to

average loss we can write the average cost as (assuming gating cost is negligible for

now):

ESnEq(z|x)[c(fz, x)] = ESn [c(f0, x)]− ESn [q(1|x) (c(f0, x)− c(f1, x))︸ ︷︷ ︸
CostReduction

],

where the �rst term is again constant. We can characterize the optimal gating func-

tion (see (Trapeznikov and Saligrama, 2013)) that minimizes the overall average loss

subject to average cost constraint:

Excess loss︷ ︸︸ ︷
ℓ(f1, x)− ℓ(f0, x)

q(1|x)=0

>
<

q(1|x)=1

η

Cost reduction︷ ︸︸ ︷
(c(f0, x)− c(f1, x))

81

for a suitable choice η ∈ R. This characterization encodes the important principle

that if the marginal cost reduction is smaller than the excess loss, we opt for the

HPC model. Nevertheless, this characterization is generally infeasible. Note that the

LHS depends on knowing how well HPC performs on the input instance. Since this

information is unavailable, this target can be unreachable with low-cost gating.

Gating Approximation: Rather than directly enforcing a low-cost structure on

q, we decouple the constraint and introduce a parameterized family of gating func-

tions g ∈ G that attempts to mimic (or approximate) q. G can be the family of linear

classi�ers, gradient boosted trees or neural networks. By passing the output of g

through the sigmoid function σ(s) = 1/(1+ e−s), we obtain a probability distribution

over the gating output classes (sending the example to f0 or f1). To ensure the gating

distribution approximates q, we can minimize some distance measure D(q(·|x), g(x)).

A natural choice for an approximation metric is the Kullback-Leibler (KL) diver-

gence although other choices are possible. The KL divergence between q and g is

given by DKL(q(·|x)∥g(x)) =
∑

z q(z|x) log(q(z|x)/σ(sgn(0.5− z)g(x))). Besides KL

divergence, we have also proposed another symmetric metric �tting g directly to the

log odds ratio of q. See Appendix A for details.

Budget Constraint: With the gating function g, the cost of predicting x depends

on whether the example is sent to f0 or f1. Let c(f0, g, x) denote the feature cost of

passing x to f0 through g. As discussed, this is equal to the sum of the acquisition

cost of unique features required by f0 and g for x. Similarly c(f1, g, x) denotes the

cost if x is sent to f1 through g. In many cases the cost c(fz, g, x) is independent of

the example x and depends primarily on the model being used. This is true for linear

models where each x must be processed through the same collection of features. For

these cases c(fz, g, x) , c(fz, g). The total budget simpli�es to: ESn [q(0|x)]c(f0, g) +

(1− ESn [q(0|x)])c(f1, g) = c(f1, g) + ESn [q(0|x)](c(f0, g)− c(f1, g)). The budget thus

82

depends on 3 quantities: ESn [q(0|x)], c(f1, g) and c(f0, g). Often f0 is a high-cost

model that requires most, if not all, of features so c(f0, g) can be considered a large

constant.

Thus, to meet the budget constraint, we would like to have (a) low-cost g and f1

(small c(f1, g)); and (b) small fraction of examples being sent to the high-accuracy

model (small ESn [q(0|x)]). We can therefore split the budget constraint into two

separate objectives: (a) ensure low-cost through penalty Ω(f1, g) = γ
∑

α cα∥Vα +

Wα∥0, where γ is a tradeo� parameter and the indicator variables Vα,Wα ∈ {0, 1}

denote whether or not the feature α is required by f1 and g, respectively. Depending

on the model parameterization, we can approximate Ω(f1, g) using a group-sparse

norm or in a stage-wise manner as we will see in Algorithms 4 and 5. (b) Ensure only

Pfull fraction of examples are sent to f0 via the constraint ESn [q(0|x)] ≤ Pfull.

Putting Together: We are now ready to pose our general optimization problem:

min
f1∈F ,g∈G,q

ESn

Losses︷ ︸︸ ︷∑
z

[q(z|x)ℓ(fz(x), y)] +
Gating Approx︷ ︸︸ ︷

D(q(·|x), g(x))+
Costs︷ ︸︸ ︷

Ω(f1, g) (OPT)

subject to: ESn [q(0|x)] ≤ Pfull. (Fraction to f0)

The objective function penalizes excess loss and ensures through the second term that

this excess loss can be enforced through admissible gating functions. The third term

penalizes the feature cost usage of f1 and g. The budget constraint limits the fraction

of examples sent to the costly model f0.

Remark 1 : Directly parameterizing q leads to non-convexity. Average loss is

q-weighted sum of losses from HPC and LPC; while the space of probability distri-

butions is convex, a �nite-dimensional parameterization is generally non-convex (e.g.

sigmoid). What we have done is to keep q in non-parametric form to avoid non-

convexity and only parameterize g, connecting both via a KL term. Thus, (OPT)

83

is now convex with respect to the f1 and g for a �xed q. It is again convex in q for

a �xed f1 and g. Otherwise it would introduce non-convexity as in prior work. For

instance, in (Chen et al., 2012) a non-convex problem is solved in each inner loop

iteration (line 7 of their Algorithm 1).

Remark 2 : We presented the case for a single stage approximation system.

However, it is straightforward to recursively continue this process. We can then view

the composite system f0 , (g, f1, f0) as a black-box predictor and train a new pair of

gating and prediction models to approximate the composite system.

Remark 3 : To limit the scope of this chapter, we focus on reducing feature

acquisition cost during prediction as it is a more challenging (combinatorial) problem.

However, other prediction-time costs such as computation cost can be encoded in the

choice of functional classes F and G in (OPT).

Surrogate Upper Bound of Composite System: We can get better insight for the

�rst two terms of the objective in (OPT) if we view z ∈ {0, 1} as a latent variable

and consider the composite system Pr(y|x) =
∑

z Pr(z|x; g) Pr(y|x, fz). A standard

application of Jensen's inequality reveals that, − log(Pr(y|x)) ≤ Eq(z|x)ℓ(fz(x), y) +

DKL(q(z|x)∥Pr(z|x; g)). Therefore, the conditional-entropy of the composite system

is bounded by the expected value of our loss function (we overload notation and

represent random-variables in lower-case format):

H(y | x) , E[− log(Pr(y|x))] ≤ Ex×y[Eq(z|x)ℓ(fz(x), y) +DKL(q(z|x)∥Pr(z|x; g))].

This implies that the �rst two terms of our objective attempt to bound the loss of

the composite system; the third term in the objective together with the constraint

serve to enforce budget limits on the composite system.

Group Sparsity: Since the cost for feature re-use is zero we encourage feature

re-use among gating and prediction models. So the fundamental question here is:

84

How to choose a common, sparse (low-cost) subset of features on which both g and

f1 operate, such that g can e�ective gate examples between f1 and f0 for accurate

prediction? This is a hard combinatorial problem. The main contribution of this

chapter is to address it using the general optimization framework of (OPT).

5.3 Algorithms

To be concrete, we instantiate our general framework (OPT) into two algorithms via

di�erent parameterizations of g, f1: Adapt-lin for the linear class and Adapt-Gbrt

for the non-parametric class.

Algorithm 4 Adapt-Lin

Input: (x(i), y(i)),Pfull, γ
Train f0. Initialize g, f1.
repeat

Solve (OPT1) for q given g, f1.
Solve (OPT2) for g, f1 given q.

until convergence

Algorithm 5 Adapt-Gbrt

Input: (x(i), y(i)),Pfull, γ
Train f0. Initialize g, f1.
repeat

Solve (OPT1) for q given g, f1.
for t = 1 to T do

Find f t
1 using CART to minimize (5.1).

f1 = f1 + f t
1.

For each feature α used, set uα = 0.
Find gt using CART to minimize (5.2).
g = g + gt.
For each feature α used, set uα = 0.

until convergence

Both of them use the KL-divergence as distance measure. We also provide a

third algorithm Adapt-Lstsq that uses the symmetric distance in the Appendix.

85

All of the algorithms perform alternating minimization of (OPT) over q, g, f1. Note

that convergence of alternating minimization follows as in (Ganchev et al., 2008).

Common to all of our algorithms, we use two parameters to control cost: Pfull and γ.

In practice they are swept to generate various cost-accuracy tradeo�s and we choose

the best one satisfying the budget B using validation data.

Adapt-lin: Let g(x) = gTx and f1(x) = fT
1 x be linear classi�ers. A feature is

used if the corresponding component is non-zero: Vα = 1 if f1,α ̸= 0, and Wα = 1 if

gα ̸= 0. The minimization for q solves the following problem:

min
q

1
N

∑N
i=1 [(1− qi)Ai + qiBi −H(qi)]

s.t. 1
N

∑N
i=1 qi ≤ Pfull,

(OPT1)

where we have used shorthand notations qi = q(z = 0|x(i)), H(qi) = −qi log(qi)− (1−

qi) log(1 − qi), Ai = log(1 + e−y(i)fT
1 x(i)

) + log(1 + eg
T x(i)

) and Bi = − log p(y(i)|z(i) =

0; f0) + log(1 + e−gT x(i)
). This optimization has a closed form solution: qi = 1/(1 +

eBi−Ai+β) for some non-negative constant β such that the constraint is satis�ed. This

optimization is also known as I-Projection in information geometry because of the

entropy term (Ganchev et al., 2008). Having optimized q, we hold it constant and

minimize with respect to g, f1 by solving the problem (OPT2), where we have relaxed

the non-convex cost
∑

α cα∥Vα + Wα∥0 into a L2,1 norm for group sparsity and a

tradeo� parameter γ to make sure the feature budget is satis�ed. Once we solve for

g, f1, we can hold them constant and minimize with respect to q again. Adapt-Lin

is summarized in Algorithm 4.

min
g,f1

1

N

N∑
i=1

[
(1− qi)

(
log(1 + e−y(i)fT

1 x(i)

) + log(1 + eg
T x(i)

)
)
+ qi log(1 + e−gT x(i)

)
]

+ γ
∑
α

√
g2α + f 2

1,α. (OPT2)

Adapt-Gbrt: We can also consider the non-parametric family of classi�ers

86

such as gradient boosted trees (Friedman, 2000): g(x) =
∑T

t=1 g
t(x) and f1(x) =∑T

t=1 f
t
1(x), where g

t and f t
1 are limited-depth regression trees. Since the trees are

limited to low depth, we assume that the feature utility of each tree is example-

independent: Vα,t(x) u Vα,t,Wα,t(x) u Wα,t, ∀x. Vα,t = 1 if feature α appears in f t
1,

otherwise Vα,t = 0, similarly for Wα,t. The optimization over q still solves (OPT1).

We modify Ai = log(1 + e−y(i)f1(x(i))) + log(1 + eg(x
(i))) and Bi = − log p(y(i)|z(i) =

0; f0) + log(1 + e−g(x(i))). Next, to minimize over g, f1, denote loss:

ℓ(f1, g) =
1
N

∑N
i=1

[
(1− qi) ·

(
log(1 + e−y(i)f1(x(i))) + log(1 + eg(x

(i)))
)
+ qi log(1 + e−g(x(i)))

]
,

which is essentially the same as the �rst part of the objective in (OPT2). Thus,

we need to minimize ℓ(f1, g) + Ω(f1, g) with respect to f1 and g. Since both f1

and g are gradient boosted trees, we naturally adopt a stage-wise approximation for

the objective. In particular, we de�ne an impurity function which on the one hand

approximates the negative gradient of ℓ(f1, g) with the squared loss, and on the other

hand penalizes the initial acquisition of features by their cost cα. To capture the

initial acquisition penalty, we let uα ∈ {0, 1} indicates if feature α has already been

used in previous trees (uα = 0), or not (uα = 1). uα is updated after adding each

tree. Thus we arrive at the following impurity for f1 and g, respectively:

1

2

N∑
i=1

(−∂ℓ(f1, g)
∂f1(x(i))

− f t
1(x

(i)))2 + γ
∑
α

uαcαVα,t, (5.1)

1

2

N∑
i=1

(−∂ℓ(f1, g)
∂g(x(i))

− gt(x(i)))2 + γ
∑
α

uαcαWα,t. (5.2)

Minimizing such impurity functions balances the need to minimize loss and re-using

the already acquired features. Classi�cation and Regression Tree (CART) (Breiman

et al., 1984) can be used to construct decision trees with such an impurity function.

Adapt-GBRT is summarized in Algorithm 5. Note that a similar impurity is used in

87

GreedyMiser (Xu et al., 2012). Interestingly, if Pfull is set to 0, all the examples are

forced to f1, then Adapt-Gbrt exactly recovers the GreedyMiser. In this sense,

GreedyMiser is a special case of our algorithm. As we will see in the next sec-

tion, thanks to the bottom-up approach, Adapt-Gbrt bene�ts from high-accuracy

initialization and is able to perform accuracy-cost tradeo� in accuracy levels beyond

what is possible for GreedyMiser.

5.4 Experiments

Baseline Algorithms: We consider the following simple L1 baseline approach

for learning f1 and g: �rst perform a L1-regularized logistic regression on all data

to identify a relevant, sparse subset of features; then learn f1 using training data

restricted to the identi�ed feature(s); �nally, learn g based on the correctness of f1

predictions as pseudo labels (i.e. assign pseudo label 1 to example x if f1(x) agrees

with the true label y and 0 otherwise). We also compare with two state-of-the-art

feature-budgeted algorithms: GreedyMiser(Xu et al., 2012) - a top-down method

that builds out an ensemble of gradient boosted trees with feature cost budget; and

BudgetPrune(Nan et al., 2016) - a bottom-up method that prunes a random forest

with feature cost budget. A number of other methods such as ASTC (Kusner et al.,

2014) and CSTC (Xu et al., 2013) are omitted as they have been shown to under-

perform GreedyMiser on the same set of datasets (Nan et al., 2015). Detailed

experiment setups can be found in the Appendix.

We �rst visualize/verify the adaptive approximation ability of Adapt-Lin and

Adapt-Gbrt on the Synthetic-1 dataset without feature costs. Next, we illustrate

the key di�erence betweenAdapt-Lin and the L1 baseline approach on the Synthetic-

2 as well as the Letters datasets. Finally, we compare Adapt-Gbrt with state-of-

the-art methods on several resource constraint benchmark datasets.

88

(a) Input Data (b) Lin Initialization (c) Lin after 10 iterations

(d) RBF Contour (e) Gbrt Initialization (f) Gbrt after 10 iterations

Figure 5·2: Synthetic-1 experiment without feature cost. (a): input
data. (d): decision contour of RBF-SVM as f0. (b) and (c): decision
boundaries of linear g and f1 at initialization and after 10 iterations of
Adapt-Lin. (e) and (f): decision boundaries of boosted tree g and f1
at initialization and after 10 iterations of Adapt-Gbrt. Examples in
the beige areas are sent to f0 by the g.

Power of Adaptation: We construct a 2D binary classi�cation dataset

(Synthetic-1) as shown in (a) of Figure 5·2. We learn an RBF-SVM as the high-

accuracy classi�er f0 as in (d). To better visualize the adaptive approximation pro-

cess in 2D, we turn o� the feature costs (i.e. set Ω(f1, g) to 0 in (OPT)) and run

Adapt-Lin and Adapt-Gbrt. The initializations of g and f1 in (b) results in wrong

predictions for many red points in the blue region. After 10 iterations of Adapt-Lin,

f1 adapts much better to the local region assigned by g while g sends about 60% (Pfull)

of examples to f0. Similarly, the initialization in (e) results in wrong predictions in

89

Figure 5·3: A 2-D synthetic example for adaptive feature acquisition.
On the left: data distributed in four clusters. The two features corre-
spond to x and y coordinates, respectively. On the right: accuracy-cost
tradeo� curves. Our algorithm can recover the optimal adaptive system
whereas a L1-based approach cannot.

the blue region. Adapt-Gbrt is able to identify the ambiguous region in the center

and send those examples to f0 via g. Both of our algorithms maintain the same level

of prediction accuracy as f0 yet are able to classify large fractions of examples via

much simpler models.

Power of Joint Optimization: We return to the problem of prediction

under feature budget constrains. We illustrate why a simple L1 baseline approach

for learning f1 and g would not work using a 2D dataset (Synthetic-2) as shown in

Figure 5·3 (left). The data points are distributed in four clusters, with black triangles

and red circles representing two class labels. Let both feature 1 and 2 carry unit

acquisition cost. A complex classi�er f0 that acquires both features can achieve full

accuracy at the cost of 2. In our synthetic example, clusters 1 and 2 are given more

data points so that the L1-regularized logistic regression would produce the vertical

red dashed line, separating cluster 1 from the others. So feature 1 is acquired for both

g and f1. The best such an adaptive system can do is to send cluster 1 to f1 and

90

Table 5.1: Dataset Statistics

Dataset #Train #Validation #Test #Features Feature Costs

Letters 12000 4000 4000 16 Uniform
MiniBooNE 45523 19510 65031 50 Uniform

Forest 36603 15688 58101 54 Uniform
CIFAR10 19761 8468 10000 400 Uniform
Yahoo! 141397 146769 184968 519 CPU units

the other three clusters to the complex classi�er f0, incurring an average cost of 1.75,

which is sub-optimal. Adapt-Lin, on the other hand, optimizing between q, g, f1 in

an alternating manner, is able to recover the horizontal lines in Figure 5·3 (left) for

g and f1. g sends the �rst two clusters to the full classi�er and the last two clusters

to f1. f1 correctly classi�es clusters 3 and 4. So all of the examples are correctly

classi�ed by the adaptive system; yet only feature 2 needs to be acquired for cluster

3 and 4 so the overall average feature cost is 1.5, as shown by the solid curve in the

accuracy-cost tradeo� plot on the right of Figure 5·3. This example shows that the

L1 baseline approach is sub-optimal as it doesnot optimize the selection of feature

subsets jointly for g and f1.

Real Datasets: We test various aspects of our algorithms and compare with

state-of-the-art feature-budgeted algorithms on �ve real world benchmark datasets:

Letters, MiniBooNE Particle Identi�cation, Forest Covertype datasets from the UCI

repository (Dheeru and Karra Taniskidou, 2017), CIFAR-10 (Krizhevsky, 2009) and

Yahoo! Learning to Rank(Chapelle et al., 2011). Yahoo! is a ranking dataset where

each example is associated with features of a query-document pair together with the

relevance rank of the document to the query. There are 519 such features in total;

each is associated with an acquisition cost in the set {1,5,20,50,100,150,200}, which

represents the units of CPU time required to extract the feature and is provided by a

Yahoo! employee. The labels are binarized into relevant or not relevant. The task is

to learn a model that takes a new query and its associated documents and produce a

91

15 20 25 30 35 40 45 50
Average Feature Cost

0.920

0.925

0.930

0.935
T
e
s
t
 A

c
c
u
r
a
c
y

Adapt_Gbrt

GreedyMiser(Xu et al. 2012)
BudgetPrune (Nan et al. 2016)

(a) MiniBooNE

10 15 20 25 30
Average Feature Cost

0.84

0.86

0.88

0.90

0.92

T
e
s
t
 A

c
c
u
r
a
c
y

(b) Forest Covertype

50 100 150 200 250 300 350 400
Average Feature Cost

0.128

0.130

0.132

0.134

0.136

0.138

A
v
e
r
a
g
e
 P

r
e
c
is

io
n
@

5

(c) Yahoo! Rank

0 50 100 150 200 250 300 350 400
Average Feature Cost

0.65

0.70

0.75

0.80
T
e
s
t
 A

c
c
u
r
a
c
y

(d) CIFAR10

Figure 5·4: Comparison of Adapt-Gbrt against GreedyMiser
and BudgetPrune on four benchmark datasets. RF is used as f0
for Adapt-Gbrt in (a-c) while an RBF-SVM is used as f0 in (d).
Adapt-Gbrt achieves better accuracy-cost tradeo� than other meth-
ods. The gap is signi�cant in (b) (c) and (d). Note the accuracy of
GreedyMiser in (b) never exceeds 0.86 and its precision in (c) slowly
rises to 0.138 at cost of 658. We limit the cost range for a clearer
comparison.

92

relevance ranking so that the relevant documents come on top, and to do this using

as little feature cost as possible. The performance metric is Average Precision @ 5

following (Nan et al., 2016). The other datasets have unknown feature costs so we

assign costs to be 1 for all features; the aim is to show Adapt-Gbrt successfully

selects sparse subset of �usefull� features for f1 and g. We summarize the statistics of

these datasets in Table 5.1. Next, we highlight the key insights from the real dataset

experiments.

Generality of Approximation: Our framework allows approximation of pow-

erful classi�ers such as RBF-SVM and Random Forests as shown in Figure 5·5 as red

and black curves, respectively. In particular, Adapt-Gbrt can well maintain high

accuracy while reducing cost. This is a key advantage for our algorithms because we

can choose to approximate the f0 that achieves the best accuracy.

Adapt-Lin Vs L1: Figure 5·5 shows that Adapt-Lin outperforms L1 baseline

method on real dataset as well. Again, this con�rms the intuition we have in the

Synthetic-2 example as Adapt-Lin is able to iteratively select the common subset of

features jointly for g and f1.

Adapt-Gbrt Vs Adapt-Lin: Adapt-Gbrt leads to signi�cantly better per-

formance than Adapt-Lin in approximating both RBF-SVM and RF as shown in

Figure 5·5. This is expected as the non-parametric non-linear classi�ers are much

more powerful than linear ones.

Adapt-Gbrt Vs BudgetPrune: Both are bottom-up approaches that ben-

e�t from good initializations. In (a), (b) and (c) of Figure 5·4 we let f0 in Adapt-

Gbrt be the same RF that BudgetPrune starts with. Adapt-Gbrt is able to

maintain high accuracy longer as the budget decreases. Thus, Adapt-Gbrt im-

proves state-of-the-art bottom-up method. Notice in (c) of Figure 5·4 around the

cost of 100, BudgetPrune has a spike in precision. We believe this is because the

93

11 12 13 14 15 16
Average Feature Cost

0.88

0.90

0.92

0.94

0.96

0.98

T
e
s
t

A
c
c
u
ra

c
y

Adapt_Gbrt RF

Adapt_Lin RF

L1 RF

Adapt_Gbrt RBF

Adapt_Lin RBF

L1 RBF

GreedyMiser(Xu et al 2012)

Figure 5·5: Compare the L1 baseline approach, Adapt-Lin and
Adapt-Gbrt based on RBF-SVM and RF as f0's on the Letters
dataset.

initial pruning improved the generalization performance of RF.

But in the cost region of 40-80, Adapt-Gbrt maintains much better accuracy

than BudgetPrune. Furthermore, Adapt-Gbrt has the freedom to approximate

the best f0 given the problem. So in (d) of Figure 5·4 we see that with f0 being

RBF-SVM, Adapt-Gbrt can achieve much higher accuracy than BudgetPrune.

Adapt-GbrtVsGreedyMiser: Adapt-Gbrt outperformsGreedyMiser

on all the datasets. The gaps in Figure 5·5, (b) (c) and (d) of Figure 5·4 are especially

signi�cant.

Signi�cant Cost Reduction: Without sacri�cing top accuracies (within 1%),

Adapt-Gbrt reduces average feature costs during test-time by around 63%, 32%,

58%, 12% and 31% on MiniBooNE, Forest, Yahoo, Cifar10 and Letters datasets,

respectively.

In summary, we presented an adaptive approximation approach to account for

prediction costs that arise in various applications. At test-time our method uses a

gating function to identify a prediction model among a collection of models that is

94

adapted to the input. The overall goal is to reduce costs without sacri�cing accuracy.

We learn gating and prediction models by means of a bottom-up strategy that trains

low prediction-cost models to approximate high prediction-cost models in regions

where low-cost models su�ce. On a number of benchmark datasets our method leads

to an average of 40% cost reduction without sacri�cing test accuracy (within 1%). It

outperforms state-of-the-art top-down and bottom-up budgeted learning algorithms,

with a signi�cant margin in several cases.

95

Chapter 6

On-line Adaptive Approximation

As discussed in Chapter 5, we aim to learn a local predictor h together with a gating

function g given the remote model f , such that as many predictions as possible are

made locally, sending only �di�cult� examples to the remote server. In particular,

for a new example x, if g(x) ≤ 0 then it is sent to the remote model f ; otherwise it

is predicted using the local model h(x). In this chapter we would like to study this

problem in an on-line setting.

6.1 Problem Setup

Suppose the environment generates an arbitrary sequence of examples: (xt, yt) ∈

ℜm × {0, 1}, t = 1, 2, At each round, the player receives xt, and chooses a gating

function gt together with a local predictor ht. if gt(x
t) ≤ 0 (the example is sent to f),

an overhead cost c is incurred and a ground truth label yt is obtained; if gt(x
t) > 0

(the example is sent to ht), only the prediction ŷt = ht(x
t) is obtained. The loss at

round t is

lt(gt, ht) = 1[gt(xt)>0] · 1[ŷt ̸=yt] + 1[gt(xt)≤0] · c. (6.1)

The player gets full feedback if gt(x
t) ≤ 0 and no feedback otherwise. Our goal is to

minimize regret:

E[
T∑
t=1

lt(gt, ht)]− min
g∈G,h∈H

T∑
t=1

lt(g, h),

where the expectation is with respect to the internal randomness of the algorithm.

96

Discretizing g and h Suppose there are only a �nite number of g and h's as

experts, denoted as Ξ = {ξj = (gj, hj) :, j = 1, . . . , K} ⊂ G × H. Then we can cast

the problem as an online learning problem with feedback graph (Alon et al., 2015).

The feedback graph changes in each round because of xt. One instance of such a

graph is illustrated in Figure 6·1.

Figure 6·1: Feedback graph for four experts. ξ1 and ξ2 request for
label and receives full feedback; ξ3 and ξ4 classify using h and receives
no feedback.

We can apply the algorithm EXP3.G (Alon et al., 2015). The algorithm is copied

here for easy reference.

Algorithm 6 EXP3.G

Input: Feedback graph G = (V,E) , learning rate η > 0, exploration set U ,
exploration rate γ ∈ [0, 1].
Let u be the uniform distribution over U ;
Initialize q1 to the uniform distribution over V ;
for round t = 1, 2, . . . do

Compute pt = (1− γ)qt + γu;
Draw It ∼ pt, play It and incur loss ℓt(It);
Observe {(i, ℓt(i)) : i ∈ Nout(It)};
Update:
∀i ∈ V, ℓ̂t(i) = ℓt(i)

Pt(i)
1[i∈Nout(It)], Pt(i) =

∑
j∈N in(i) pt(j)

∀i ∈ V, qt+1(i) =
qt(i) exp(−ηℓ̂t(i))∑

j∈V qt(j) exp(−ηℓ̂t(j))

97

Remark 1: The context the player receives at each round (xt) is used to construct

the feedback graph. Once the graph is constructed, the problem turns into a non-

contextual problem.

Remark 2: The discretization of g, h's into di�erent experts ignores the underlying

relations among g, h's.

6.2 Upper Bound

We show that the upper bound of Theorem 2 of (Alon et al., 2015) can hold even

for small T 's in our setting. We assume that the feedback graph is always observable

in each round. We apply EXP3.G with the exploration set in each round Ut = {kt :

gkt(x
t) ≤ 0}. Note the exploration set has only one element, as the dominating

number of our feedback graphs is always 1.

Theorem 6.2.1 Let Gt = (V,Et) be the feedback graphs over the set of experts Ξ =

{ξj = (gj, hj), j = 1, . . . , K} for t = 1, . . . , T . Assume the graph is observable in each

round. Then the expected regret against any loss sequence is O((logK)1/3T 2/3) for

T ≥ logK.

Proof By the standard second-order regret bound of Hedge,

T∑
t=1

∑
i∈V

qt(i)ℓt(i)−
T∑
t=1

ℓt(i
∗) ≤ logK

η
+ η

T∑
t=1

K∑
i=1

qt(i)ℓt(i)
2. (6.2)

We apply the loss estimates and take expectations and arrive at:

E[
T∑
t=1

∑
i∈V

qt(i)Etℓ̂t(i)]−
T∑
t=1

Etℓ̂t(i
∗)] ≤ logK

η
+ ηE[

T∑
t=1

K∑
i=1

qt(i)Et[ℓ̂t(i)
2]. (6.3)

Since Etℓ̂t(i) = ℓt(i) and Et[ℓ̂t(i)
2] = ℓt(i)2

Pt(i)
, the above inequality can be written as

E[
T∑
t=1

∑
i∈V

qt(i)ℓt(i)]−
T∑
t=1

ℓt(i
∗) ≤ logK

η
+ ηE[

T∑
t=1

K∑
i=1

qt(i)

Pt(i)
]. (6.4)

98

Since our feedback graph has only two types of nodes: full observation nodes and

no observation nodes, the probability of observing the loss of expert i is equal for all

i = 1, . . . , K for any t. Thus, we can denote the probability of observation at t under

the distribution pt as:

P o
t =

∑
i:gi(xt)≤0

pt(i). (6.5)

We further have P o
t ≥ γ because pt = (1 − γ)qt + γut, where ut is the probability

concentrated on a single full observation expert kt. Thus, we bound the regret as:

E[
T∑
t=1

∑
i∈V

pt(i)ℓt(i)]−
T∑
t=1

ℓt(i
∗) (6.6)

≤ E[
T∑
t=1

∑
i∈V

qt(i)ℓt(i)]−
T∑
t=1

ℓt(i
∗) + γT (6.7)

≤ logK

η
+ ηE[

T∑
t=1

K∑
i=1

qt(i)

Pt(i)
] + γT (6.8)

≤ logK

η
+ η

T∑
t=1

1

P o
t

+ γT (6.9)

≤ logK

η
+
η

γ
T + γT (6.10)

= 3(logK)1/3T 2/3, (6.11)

where the �rst inequality follows from pt ≤ qt + γut and the last equality follows by

setting η = γ2 = (logK
T

)2/3.

99

Cost of full observation expert: If the cost of the full observation exeprt is c,

then we can modify the above regret bound as:

E[
T∑
t=1

∑
i∈V

pt(i)ℓt(i)]−
T∑
t=1

ℓt(i
∗) (6.12)

≤ E[
T∑
t=1

∑
i∈V

qt(i)ℓt(i)]−
T∑
t=1

ℓt(i
∗) + cγT (6.13)

≤ logK

η
+ ηE[

T∑
t=1

K∑
i=1

qt(i)

Pt(i)
] + cγT (6.14)

≤ logK

η
+ η

T∑
t=1

1

P o
t

+ cγT (6.15)

≤ logK

η
+
η

γ
T + cγT. (6.16)

Set η = c−
1
3 (logK

T
)2/3 and γ = c−

2
3 (logK

T
)1/3, then the regret upper bound becomes

3c
1
3 (logK)1/3T 2/3.

Relation to the label e�cient learning of partial monitoring Our problem

is related to the partial monitoring with a revealing action (Bianchi et al., 2006). The

algorithm in Figure 2 of (Bianchi et al., 2006) resembles our adaptation of EXP3.G.

Furthermore, the upper bounds in Theorem m4.1 of (Bianchi et al., 2006) matches

ours shown above. Although in our problem we may have many revealing actions

(experts), they are all equivalent in terms of the loss and feedback they provide at

any round. In other words, any one of the revealing experts can be picked for full

feedback without a�ecting the loss or feedback info if the player wants to explore.

VC Dimension In case of hypothesis classes containing in�nitely many g, h's and

�nite VC dimension, we can evoke Sauer's Lemma that says the growth function

τ(T) ≤ (eT/d)d, where T is the number of examples and d is the VC dimension of

100

the hypothesis class. Thus, given the number of rounds T , the e�ective number of

g, h's are less than or equal to K = (eT/d)d restricted to the examples.

6.3 Lower Bound

Here we try to incorporate the logK dependency in the lower bound. Given a set of

experts Ξ = {ξj = (gj, hj) :, j = 1, . . . , K}, assume the environment can choose the

samples such that the experts 1, . . . , K − 1 never request for the true label whereas

the Kth expert always requests for the true label for the rounds t = 1, . . . , T . We

further assume the environment can generate K−1 loss function distributions Pj, j =

1, . . . , K−1 such that under Pj, Lt(i) ∼ Ber(µi) be a Bernoulli random variable with

parameter

µi =


1
2
− ϵ if i = j,

1
2

if 1 ≤ i ≤ K − 1, i ̸= j
1 if i = K.

In words, the loss of each expert is i.i.d. Bernoulli random variable with the ith

expert having a slightly lower mean under Pi and the last expert has a deterministic

loss of 1. Consider for any deterministic player algorithm, the regret lower bound is

as follows:

sup
Lt(i)

[
T∑
t=1

Lt(It)−min
j

T∑
t=1

Lt(j)] ≥
1

K − 1

K−1∑
i=1

Ei[
T∑
t=1

Lt(It)−min
j

T∑
t=1

Lt(j)] (6.17)

≥ 1

K − 1

K−1∑
i=1

[Ei

T∑
t=1

Lt(It)−min
j

Ei

T∑
t=1

Lt(j)] (6.18)

≥ 1

K − 1

K−1∑
i=1

EMi

[
ϵEQMi

1

T∑
t=1

1[It≠i,It<K] +
1

2
Mi

]
(6.19)

where Mi is the number of times the true label is requested under Pi and Let ϕ be

the random variable with uniform distribution between 1 and K−1, representing the

choice of i for Pi. Let Z
M
1 be the collection of losses for all experts for the M times

101

when true label is requested. Let e = QM
1 [It ̸= i, It < K] be the probability of making

wrong prediction after observing the losses ZM
1 . Then we have the following Markov

Chain: ϕ→ ZM
1 → It. By Fano's inequality we have

p(e) log(K − 1) +H(e) ≥ H(ϕ|It) ≥ H(ϕ|ZM
1). (6.20)

So we need to bound the conditional entropy of ϕ given the observed losses.

H(ϕ|ZM
1) = H(ϕ)− I(ϕ;ZM

1)

≥ log(K − 1)− M

(K − 1)2

K−1∑
i=1

K−1∑
j=1

KL(Pi(Z),Pj(Z))

= log(K − 1)− M

(K − 1)2
2(K − 2)(K − 1)KL(Ber(1/2),Ber(1/2− ϵ))

≥ log(K − 1)− 8Mϵ2.

Combining the above with (6.20), we have a lower bound on p(e), which we will use

next.

Continuing with (6.19), We have the regret:

1

K − 1

K−1∑
i=1

EMi

[
ϵ(T −Mi)p(e) +

1

2
Mi

]
(6.21)

≥ 1

K − 1

K−1∑
i=1

EMi

[
ϵ(T −Mi)(1−

8ϵ2Mi + 1

log(K − 1)
) +

1

2
Mi

]
(6.22)

=
1

K − 1

K−1∑
i=1

EMi

[
8ϵ3

log(K − 1)
M2

i + (
ϵ

log(K − 1)
− 8ϵ3T

log(K − 1)
+
1

2
− ϵ)Mi

+Tϵ(1− 1

log(K − 1)
)

] (6.23)

≥ 1

K − 1

K−1∑
i=1

[
8ϵ3

log(K − 1)
M̄i

2
+(

ϵ

log(K − 1)
− 8ϵ3T

log(K − 1)
+

1

2
− ϵ)M̄i

+ Tϵ(1− 1

log(K − 1)
)

]
,

(6.24)

102

where we make use of the Fano's inequality in (6.22) and re-arrange terms into a

quadratic form in (6.23) and (6.24) follows because we set M̄i = EMi and E[(Mi)
2] ≥

(EMi)
2.

Next, we show that no matter what the value of M̄i, (6.24) is always

O(T 2/3(log(K − 1))1/3).

The approach we take is the following. We �rst minimize (6.24) with respect to M̄i

and then select ϵ to match the claimed lower bound.

The minimizer of the quadratic expression inside the sum in (6.24) is

M̄∗
i =

T

2
− ϵ+ (1/2− ϵ) log(K − 1)

16ϵ3
.

(Note we do not need to consider the boundary case of M̄∗
i ≤ 0 because in that case

(Mi = 0) the regret is large.) Substitute the above value into (6.24) we get

−
1

log(K−1)
+ log(K − 1)− 2

32ϵ
− ϵ3T 2 2

log(K − 1)
− log(K − 1)

128ϵ3

+ Tϵ
1− 1

log(K−1)

2
− 1− log(K − 1)

32ϵ2
+
T

4
.

Finally, set ϵ = (16T)−1/3(log(K − 1))1/3 and we obtain

− (16T)1/3(log(K − 1))−1/3(
1

log(K − 1)
+ log(K − 1)− 2)/32

+ 16−1/3T 2/3(log(K − 1))1/3(1− 1

log(K − 1)
)

− 162/3T 2/3(log(K − 1))−2/31− log(K − 1)

32

= O((T 2/3(log(K − 1))1/3).

103

Chapter 7

Future Work

The �rst part of our future work deals with the communication cost in a distributed

prediction setting, where a number of edge devices with sensors cooperate to make

prediction while trying to reduce communication. The second part of our future work

is to further develop the lower bound in Chapter 6 for function classes.

7.1 Distributed Prediction

Inspired by the sparsely-gated mixture of experts structure in (Shazeer et al., 2017),

we propose a novel architecture designed for Edge/Cloud computing as shown in

Figure 7·1.

Suppose there are K edge devices: s1, . . . , sK . For example x(i), we denote the

measurements by the K edge devices as x
(i)
1 , . . . , x

(i)
K .

Each edge device k has an embedded gating function gk and low-cost predictor

fk. For each example x(i), an edge device k transmits its output a
(i)
k to the Cloud:

a
(i)
k =

{
fk(x

(i)) if gk(x
(i)) = 1,

0 if gk(x
(i)) = 0.

The Cloud, having received a
(i)
k from all edge devices, predicts using a centralized

predictor f0 to get the �nal prediction.

The communication savings in this setup occurs when gk(x
(i)) = 0 and the edge

device only needs to transmit a binary bit 0, saving the communication cost. Our goal

is therefore to minimize prediction loss while limiting the number of �participation�

104

edge devices averaged over the examples.

Figure 7·1: A distributed mixture of expert model for

7.1.1 Adaptive Sparse Regression

Consider the following regression problem:

y =
K∑
k=1

vkxkϕ(wkxk + bk), (7.1)

where x ∈ ℜK is sampled from the multivariate Gaussian distribution N(0, IK) and ϕ

is an activation function taking values in [0, 1]. We �rst consider the noise-free case.

Given a dataset of n samples {(x(i), y(i))}, i = 1, . . . , n, we would like to recover the

weights v, w, b. Motivated by the budget constraint, we would like to perform the

following constrained optimization with the number of active features on average to

be less than or equal to B.

min
v,w,b

Ex∼N(0,IK)

(
K∑
k=1

vkxkϕ(wkxk + bk)− y

)2

subject to : Ex∼N(0,IK)

K∑
k=1

1[ϕ(wkxk+bk)>0.5] ≤ B.

(7.2)

105

7.1.2 Local Convexity - Hessian Computation

We show that the objective is locally convex around the ground truth parameters. Let

L(w, v) = E
[
(y −

∑K
k=1 vkxkϕ(wkxk))

2
]
. Note we have absorbed the o�set term into

w by augmenting x with a constant 1. We can thus compute the partial derivatives:

∂L(w, v)

∂vi
=

(
K∑
k=1

vkxkϕ(wkxk)− y

)
xiϕ(wixi).

∂L(w, v)

∂wi

=

(
K∑
k=1

vkxkϕ(wkxk)− y

)
vix

2
iϕ

′(wixi).

∂L(w, v)

∂vi∂vj
= xixjϕ(wixi)ϕ(wjxj).

∂L(w, v)

∂wi∂wj

= x2i vix
2
jvjϕ

′(wixi)ϕ
′(wjxj) +

(
K∑
k=1

vkxkϕ(wkxk)− y

)
1{i=j}vix

3
iϕ

′′(wixi).

∂L(w, v)

∂vi∂wj

= xix
2
jvjϕ(wixi)ϕ

′(wjxj) +

(
K∑
k=1

vkxkϕ(wkxk)− y

)
1{i=j}x

2
iϕ

′(wixi).

The Hessian evaluated at w∗, v∗ is positive semi-de�nite as it can be written as an

outer product form.

H(v∗, w∗) = ψψT ,

where

ψ =
[
x1ϕ(w1x1), . . . , xKϕ(wKxK), v1x

2
1ϕ

′(w1x1), . . . , vKx
2
Kϕ

′(wKxK)
]T
.

106

7.1.3 Optimization

Given samples (x(i), y(i)), i = 1, . . . , n, we can formulate the empirical optimization

problem as

min
v,w,b

n∑
i=1

(
K∑
k=1

vkx
(i)
k ϕ(wkx

(i)
k + bk)− y(i)

)2

subject to :
1

n

n∑
i=1

K∑
k=1

1[
wkx

(i)
k +bk>0

] ≤ B.

(7.3)

We can use projected gradient descent to solve the above problem. The projection

step involves

min
w,b

K∑
k=1

(wk − ŵk)
2 + (bk − b̂k)2

subject to :
1

n

n∑
i=1

K∑
k=1

1[
wkx

(i)
k +bk>0

] ≤ B,

(7.4)

where ŵ and b̂ are the parameters to be projected. We would like to solve the following

related problem.

min
z

n∑
i=1

K∑
k=1

(
z
(i)
k − ẑ

(i)
k

)2
subject to :

1

n

n∑
i=1

K∑
k=1

1[
z
(i)
k >0

] ≤ B,

(7.5)

where z
(i)
k = wkx

(i)
k + bk and ẑ

(i)
k = ŵkx

(i)
k + b̂k. The intuition behind going from (7.4)

to (7.5) is that

K∑
k=1

n∑
i=1

(z
(i)
k − ẑ

(i)
k)2 =

K∑
k=1

n∑
i=1

(wk − ŵk)
Tx

(i)
k x

(i)T
k (wk − ŵk)

+ (bk − b̂k)2 − 2(bk − b̂k)(wk − ŵk)x
(i)
k

≈
K∑
k=1

(wk − ŵk)
T (wk − ŵk) + (bk − b̂k)2,

107

where we assume E[x(i)k x
(i)T
k] = I and Ex(i)k = 0. Thus we hope to solve (7.5) for

z's and then recover w, b from z's using least square regression. Note the solution to

(7.5) simply involves ordering non-negative z
(i)
k 's in increasing order and setting those

small ones to 0 until the constraint is satis�ed.

7.1.4 Theorems to be proved

Let the ground truth parameters in (7.1) be v∗, w∗, b∗. Let the optimal solution to

the population optimization (7.2) be vc∗, wc∗, bc∗, and the optimal objective value be

optc∗, where the superscript c stands for constrained. Let the optimal solution to

the empirical optimization (7.3) be vcs∗, wcs∗, bcs∗, and the optimal objective value

be optcs∗, where the superscript cs stands for constrained and sampled optimization

problem.

Our �rst theorem relates optc∗ to optcs∗ in a PAC learning way.

Theorem 7.1.1 Under certain conditions, there exists m(ϵ, δ) =? such that when the

sample size n > m(ϵ, δ) we have |optc∗ − optcs∗| ≤ ϵ with probability at least 1− δ.

Our second theorem guarantees that the proposed projected gradient descend

converges to vcs∗, wcs∗, bcs∗.

Theorem 7.1.2 The vt, wt, bt obtained after t steps of projected gradient descend for

(7.3) converge to vcs∗, wcs∗, bcs∗ provided we can have a good initialization v0, w0, b0.

To prove the above theorem, we must show that the Hessian of the objective of

(7.3) around vcs∗, wcs∗, bcs∗ is PSD.

Lemma 7.1.3 The Hessian of the objective of (7.3) around vcs∗, wcs∗, bcs∗ is PSD.

Note in Section 7.1.2 we only showed the Hessian of the o bjective of (7.3) at v∗, w∗, b∗

is PSD.

108

7.1.5 Algorithms

Direct Parameterization We can approximately solve Eq. (7.3) by directly pa-

rameterizing the gating indicator function with the sigmoid activation function and

minimize the Lagrangian form:

min
v,w,a,b

1

n

n∑
i=1

log
[exp(

∑K
k=1 h

(i)
k g

(i)
k)]y(i)∑

j[exp(
∑K

k=1 h
(i)
k g

(i)
k)]j

+ λ
1

nK

n∑
i=1

K∑
k=1

g
(i)
k , (OPT-Direct-Clf)

where h
(i)
k = vTk x

(i)
k + ak ∈ ℜM with M being the number of classes and g

(i)
k =

σ(wT
k x

(i)
k + bk) =

1

1+exp(−wT
k x

(i)
k −bk)

∈ ℜ is the activation value of the kth device for the

ith example. Di�erent budget levels are achieved by varying λ. We use stochastic

gradient descend to minimize this non-convex objective.

Relaxation Rather than directly parameterizing the gating probability, we can

relax it by introducing intermediate quantities q
(i)
k and minimize the KL distance:

min
v,w,b,q

n∑
i=1

(
K∑
k=1

vkx
(i)
k q

(i)
k − y

(i)

)2

+ λ
n∑

i=1

K∑
k=1

KL(q(i)k , ϕ(wkx
(i)
k + bk)).

(OPT-Relax-Reg)

For classi�cation problems, the objective becomes

min
v,w,b,q

n∑
i=1

log
[exp(

∑K
k=1 h

(i)
k q

(i)
k)]y(i)∑

j[exp(
∑K

k=1 h
(i)
k q

(i)
k)]j

+ λ
n∑

i=1

K∑
k=1

KL(q(i)k , ϕ(wkx
(i)
k + bk)),

(OPT-Relax-Clf)

where h
(i)
k = vTk x

(i)
k + ak. The constraints on q

(i)
k are the following: 0 ≤ q

(i)
k ≤ 1,∀i, k

and 1
nK

∑n
i=1

∑K
k=1 q

(i)
k ≤ B.

We can perform alternating minimization over v, w, b and q to minimize the above

objective. To solve for q's, we use the Frank-Wolfe algorithm due to the simplicity of

the constraint set. In particular, let ∂L

∂q
(i)
k

be the gradient of the loss ((OPT-Relax-Reg)

109

or (OPT-Relax-Clf)) with respect to q
(i)
k . Starting from an initial q0, the Frank-Wolfe

algorithm chooses the point q̂1 in the constraint set to minimize the inner product

between ∂L
∂q

and q̂1. The next q is updated according to q1 = ηq0 + (1 − η)q̂1. This

process continues until convergence. Note the q̂'s can be e�ciently solved by sorting

the elements of ∂L
∂q

in ascending order and setting the top Floor(BnK) elements to

1, the Floor(BnK) + 1th element to BnK − Floor(BnK) and the rest to 0.

7.1.6 Experiments

Adaptive Sparse Regression

We �rst test the direct minimization via SGD of the adaptive sparse regression formu-

lation without the budget constraint. The purpose is to test the parameter recovery

ability of our algorithm with di�erent activation functions and di�erent initializations.

Data generation We generate n = 2000 sample data points x(i), i = 1, . . . , n,

each consists of features from K = 2 devices and each device has 2 dimensional

features: x
(i)
k ℜ2, k = 1, 2. The features are generated from an i.i.d. standard normal

distribution. We then generate the ground truth parameters V,W, b with each element

drawn from i.i.d. standard normal distribution. Finally, we generate the regression

targets based on:

y(i) =
K∑
k=1

vkx
(i)
k ϕ(wkx

(i)
k + bk)

.

Initialization We perform iterative algorithm to minimize the objective with dif-

ferent initialization of V,W, b by simply adding a scaled version of Gaussian noise to

the ground truth parameters: V0 = V +noise level×NV , where noise level is a scalar

value controlling the magnitude of the noise and NV is drawn from standard normal

distribution with the same dimension as V . Likewise we initialize W0 and b0.

110

Algorithm We perform alternating minimization of the following objective.

min
v,w,b

n∑
i=1

(
K∑
k=1

vkx
(i)
k ϕ(wkx

(i)
k + bk)− y(i)

)2

, where we have a choice of using ReLu or Sigmoid activation function for ϕ. The

algorithm proceeds as follows: �rst �x W, b, perform 50 steps of gradient descend for

V ; then �x V and perform the same number of gradient descend steps forW, b; repeat

for 1000 times.

To summarize the result shown in Figure 7·2, we observe the following:

• Decreasing initialization noise for Sigmoid shifts the loss curve down along the

y-axis. Ref. subplots (a,b,c).

• Decreasing initialization noise for ReLU does not impact the convergence of

loss. This indicates that ReLU is more robust for loss minimization. Ref.

subplots(g,h,i).

• The parameter di�erence in the Cosine metric show that ReLU activation con-

verges much faster to the ground truth parameters than Sigmoid activation.

Ref. subplots(j,k,l,m).

Alt-Min Vs Direct Parameterization

Next, we compare the direct and the relaxed parameterizations in classi�cation tasks.

We test on the Wearable Action Recognition Database (WARD) (Yang et al., 2009).

A human subject wears 5 wireless motion sensors on di�erent parts of the body

and performs 13 types of activities including walking, lying down, etc.. Each sensor

records a time series of 5-dimensional readings from a triaxial accelerator and a biaxial

gyroscope. Each example in the dataset consists of readings from these sensors in a

8-time-step window and a label indicating one of the 13 activities.

111

On the WARD activity recognition dataset, we apply the alternating minimization

algorithm with the parameters: 1) batch size: 100, 2) learning rate for ADAM in

minimizing w, v, a, b: 1e − 3, 3) number of epochs in minimizing w, v, a, b: 50, 4)

number of iterations in minimizing q: 20, 5) number of alternating steps: 30, 6) step

size in minimizing q: 1e−2, 7) KL term weight α: 1e−1, 8) budget: 0.26. We obtain

the following result:

e_update mean(q) 0.2607, max 1.0000, min 0.0000

Alt-min iter 29

Epoch 0, train loss 1.8263, train acc 0.8323, test acc 0.7006

Epoch 5, train loss 1.6878, train acc 0.8256, test acc 0.7480

Epoch 10, train loss 1.6693, train acc 0.8285, test acc 0.7284

Epoch 15, train loss 1.6641, train acc 0.8159, test acc 0.7232

Epoch 20, train loss 1.6619, train acc 0.8122, test acc 0.7133

Epoch 25, train loss 1.6612, train acc 0.8108, test acc 0.7219

Epoch 30, train loss 1.6606, train acc 0.8098, test acc 0.7133

Epoch 35, train loss 1.6603, train acc 0.8185, test acc 0.7178

Epoch 40, train loss 1.6597, train acc 0.8137, test acc 0.7235

Epoch 45, train loss 1.6595, train acc 0.8055, test acc 0.7164

e_update mean(q) 0.2606, max 1.0000, min 0.0000

whereas direct parameterization gives a test accuracy of 0.8 and training accuracy of

0.979 with the test budget of 0.254. Preliminary experiments show that the direct

parameterization achieves higher accuracy than the relaxed parameterization for the

same budget.

Using ReLU activation, the direct parameterization approach gives the following

cost-accuracy trade-o�:

alpha = 0:

train loss 0.0259, train accu 0.9930, budget 0.9034, test accu 0.822069

alpha = 0.1:

train loss 0.1476, train accu 0.9840, budget 0.7451, test accu 0.824594

alpha = 1:

112

train loss 0.3534, train accu 0.9615, budget 0.6124, test accu 0.796326

alpha = 2:

train loss 0.4767, train accu 0.9450, budget 0.4844, test accu 0.761428

The future direction is to adjust the architecture and the algorithm so that we can

improve this trade-o�. Our baseline target is the 1-nearest neighbor method that

achieves the test accuracy of 0.662226, 0.669200, 0.729655, 0.786623, 0.805743, respec-

tively using individual sensors and 0.8865 using majority vote of all the sensors.

7.2 Extending the Regret Lower Bound

Here we aim to derive a regret lower bound when the gating function g and the local

predictor h come from function classes G and H, respectively. Let Z denote the space

of examples X × Y .

We would like to show that there exists an outcome space Z, a loss function

ℓ : G ×H×Z → [0, 1], such that we can lower bound the cumulative expected regret:

sup
z1,...,zn∈Z

(
E(

n∑
t=1

ℓ(gt, ht, zt))− min
g∈G,h∈H

n∑
t=1

ℓ(g, h, zt)

)
(7.6)

To construct a probability distribution over Z, we �rst choose n distinct data

points Xn = {x1, . . . , xn} ⊂ X . For each x ∈ X , a (g, h)-pair produces a prediction

from the set {0, 1, r}; r means g decides to send x to the cloud whereas 0 or 1 means

g decides to use the local predictor h which then gives the binary prediction. For a

�xed set of examples Xn, we use S ∈ {r, 0, 1}N×n to denote the pattern matrix where

N is the number of di�erent patterns g ∈ G and h ∈ H can produce on Xn.

For each pattern i = 1, . . . , N , we de�ne the probability distribution Pi over

X × Y as follows. xt is drawn from Xn uniformly at random: xt = xJt , Jt ∼

113

uniform[1, . . . , n]. The label yt is such that if Si,Jt = r then

Yt =


1 with prob. c+ ϵ,

0 with prob. 1− c− ϵ.
(7.7)

If Si,Jt = 1 then

Yt =


1 with prob. 1− c+ ϵ,

0 with prob. c− ϵ.
(7.8)

If Si,Jt = 0 then

Yt =


1 with prob. c− ϵ,

0 with prob. 1− c+ ϵ.

(7.9)

Having de�ned the distributions Pi, we have

sup
z1,...,zn∈Z

(
EA(

n∑
t=1

ℓ(gt, ht, zt))− min
g∈G,h∈H

n∑
t=1

ℓ(g, h, zt)

)
(7.10)

≥ max
i=1,...,N

Ei

(
EA(

n∑
t=1

ℓ(gt, ht, Zt))− Li,n

)
(7.11)

= max
i=1,...,N

D∑
d=1

αdEi

(
n∑

t=1

N∑
k=1

1[Idt =k|Zt−1
1]ℓ(k, Zt)− Li,n

)
(7.12)

(7.13)

Under Pi, for any jth example, if the prediction is di�erent from Si,j, an expected

regret of at least ϵ is incurred. Since the patterns di�er from each other for at least

some x ∈ Xn, and x is chosen uniformly at random, whenever Idt ̸= i, the expected

regret is at least ϵ/n.

De�ne the error set as

ei = {k|Hamming(Si, Sk) > δn}, (7.14)

114

where Si is the ith row of S. Then in the event Idt ∈ ei, the expected regret is at least

ϵ
n
δn = ϵδ.

max
i=1,...,N

D∑
d=1

αdEi

(
n∑

t=1

N∑
k=1

1[Idt =k|Zt−1
1]ℓ(k, Zt)− Li,n

)
(7.15)

≥ max
i=1,...,N

D∑
d=1

αd

n∑
t=1

ϵδPi[I
d
t ∈ ei] (7.16)

≥
D∑

d=1

αd

n∑
t=1

ϵδEiPi[I
d
t ∈ ei] (7.17)

≥
D∑

d=1

αd

n∑
t=1

ϵδ

(
1− I(Φ;ZM

1) + log 2

log N
Nmax

t

)
, (7.18)

where Φ denotes the random choice of the patterns and the last inequality comes

from Duchi's note.

We can upper bound the mutual information as

I(Φ;Y M
1) ≤ M

(K − 1)2

K−1∑
i=1

K−1∑
j=1

KL(Pi(Z),Pj(Z)) (7.19)

≤ M

(K − 1)2
2(K − 2)(K − 1)KL(Ber(c− ϵ),Ber(1− c+ ϵ)) (7.20)

7.2.1 Non-uniform sampling of patterns

We can arrange the N patterns into two groups: i = 1, . . . , N1 corresponding to the

patterns with no r appearing in them; i = N1+1, . . . , N corresponding to the patterns

115

with at least one r in them.

sup
z1,...,zn∈Z

(
EA(

n∑
t=1

ℓ(gt, ht, zt))− min
g∈G,h∈H

n∑
t=1

ℓ(g, h, zt)

)

≥ c max
i=1,...,N1

Ei

(
EA(

n∑
t=1

ℓ(gt, ht, Zt))− Li,n

)

+ (1− c) max
i=N1+1,...,N

Ei

(
EA(

n∑
t=1

ℓ(gt, ht, Zt))− Li,n

)
.

The idea is that if c = 1, then the regret su�ered should be at least that of learning

the local predictor h. If c = 0, the regret should be 0 as the optimal action is to

request label for all the examples. Following previous analysis, the second term is

lower-bounded by

(1− c)
D∑

d=1

αd

n∑
t=1

ϵδ

(
1− I(Φ;ZM

1) + log 2

log N−N1

Nmax
t

)
(7.21)

≥ (1− c)
D∑

d=1

αd

n∑
t=1

ϵδ

(
1− 2MKL(Ber(c− ϵ),Ber(1− c+ ϵ)) + log 2

log N−N1

Nmax
t

)
. (7.22)

As for the �rst term, we can re-de�ne the probability distribution Pi over X ×Y as

follows. xt is drawn from Xn uniformly at random: xt = xJt , Jt ∼ uniform[1, . . . , n].

The label yt is such that if Si,Jt = 1 then

Yt =


1 with prob. 1/2 + ϵ,

0 with prob. 1/2− ϵ.
(7.23)

If Si,Jt = 0 then

Yt =


1 with prob. 1/2− ϵ,

0 with prob. 1/2 + ϵ.

(7.24)

116

Similar to the previous analysis, the �rst term can be bounded by

c
D∑

d=1

αd

n∑
t=1

ϵδ

(
1− I(Φ;ZM

1) + log 2

log N1

Nmax
t

)
(7.25)

≥ c

D∑
d=1

αd

n∑
t=1

ϵδ

(
1− 2MKL(Ber(1/2− ϵ),Ber(1/2 + ϵ)) + log 2

log N1

Nmax
t

)
. (7.26)

We would like to further simplify the expression so that the lower bound is in terms

of VC dimensions of G,H.

117

0 100 200 300 400 500
iterations

10-1

100

101

102 initialize noise=1.000000, budget=0.990000

loss
W_diff

b_diff

V_diff

(a) Sig 1, noise 1, ss 1e-2

0 100 200 300 400 500
iterations

10-3

10-2

10-1

100

101 initialize noise=0.100000, budget=0.990000

loss
W_diff

b_diff

V_diff

(b) Sig 1, noise 0.1, ss 1e-2

0 100 200 300 400 500
iterations

10-4

10-3

10-2

10-1

100 initialize noise=0.010000, budget=0.990000

loss
W_diff

b_diff

V_diff

(c) Sig 1, noise 0.01, ss 1e-2

0 100 200 300 400 500
iterations

10-3

10-2

10-1

100

101

102 initialize noise=1.000000, budget=0.990000

loss
W_diff

b_diff

V_diff

(d) Sig 10, noise 1, ss 1e-2

0 100 200 300 400 500
iterations

10-4

10-3

10-2

10-1

100

101 initialize noise=0.100000, budget=0.990000

loss
W_diff

b_diff

V_diff

(e) Sig 10, noise 0.1, ss 1e-2

0 100 200 300 400 500
iterations

10-5

10-4

10-3

10-2

10-1

100 initialize noise=0.010000, budget=0.990000

loss
W_diff

b_diff

V_diff

(f) Sig 10, noise 0.01, ss 1e-2

118

0 100 200 300 400 500
iterations

10-3

10-2

10-1

100

101

102 initialize noise=1.000000, budget=0.990000

loss
W_diff

b_diff

V_diff

(g) ReLu, noise 1, ss 1e-2

0 100 200 300 400 500
iterations

10-6

10-5

10-4

10-3

10-2

10-1

100

101 initialize noise=0.100000, budget=0.990000

loss
W_diff

b_diff

V_diff

(h) ReLu, noise 0.1, ss 1e-2

0 100 200 300 400 500
iterations

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 initialize noise=0.010000, budget=0.990000

loss
W_diff

b_diff

V_diff

(i) ReLu, noise 0.01, ss 1e-2

0 20 40 60 80 100
iterations

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102 initialize noise=1.000000, budget=0.990000

loss
W_diff

V_diff

(j) ReLu, noise 1, ss 1e-4, 100 dim, Cos

0 20 40 60 80 100
iterations

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

initialize noise=1.000000, budget=0.990000

loss
W_diff

V_diff

(k) ReLu, noise 1, ss 5e-3, 10 dim, Cos

0 100 200 300 400 500
iterations

10-2

10-1

100

101

102 initialize noise=1.000000, budget=0.990000

loss
W_diff

V_diff

(l) Sig 1, noise 1, ss 1e-4, 100 dim, Cos

119

0 100 200 300 400 500
iterations

10-4

10-3

10-2

10-1

100

101

102 initialize noise=1.000000, budget=0.990000

loss
W_diff

V_diff

(m) Sig 1, noise 1, ss 1e-3, 100 dim, Cos

Figure 7·2: Sigmoid parameter is the constant multiplier inside the
exponential of the sigmoid function; noise is the noise level; ss is the
step size

120

Chapter 8

Conclusions

In this thesis we proposed four learning methods for the problem of budgeted predic-

tion. The two methods presented in Chapters 2 and 3 follow a top-down approach,

where the most cost-e�ective features are acquired sequentially to improve accuracy.

The two methods presented in Chapters 4 and 5 form a new paradigm of bottom-up

approach. These methods start with a high accuracy model as initialization and then

reduce prediction cost while maintaining accuracy. The bene�ts of the bottom-up

approach are as follows.

• Computationally it circumvents the di�culty of multi-stage search over all fea-

ture subsets faced by the top-down approach. In the RF pruning method we

showed that the global optimization problem can be e�ciently solved; in the

adaptive approximation method we showed that the original non-convex prob-

lem can be relaxed via alternating minimization where each step is solving a

convex problem.

• Statistically it takes advantage of a good initialization. In some cases the best

accuracy of top-down methods cannot match that of the bottom-up methods

because the former are restricted by the model choices whereas the latter can

have much more general initialization models.

We also studied adaptive approximation in the on-line setting and provide matching

upper and lower bounds for the regret. For each method we empirically show that it

121

improves the state-of-the-art performance.

For the future work, we aim to study the computational and statistical properties

of the distributed prediction model. Also, we aim to extend the regret lower bound

in the on-line adaptive approximation problem to accommodate the fact that gating

and low-cost models are chosen from some function classes.

122

Appendix A

Appendix

A.1 Adapt-Lstsq for Chapter 5

Other Symmetric metrics: KL divergence is not symmetric and leads to widely

di�erent properties in terms of approximation. We also consider a symmetric metric:

D(r(z), s(z)) =

(
log

r(0)

r(1)
− log

s(0)

s(1)

)2

This metric can be viewed intuitively as a regression of

g(x) = log

(
Pr(1|g;x)
Pr(0|g;x)

)
against the observed log odds ratio of q(z|x).

The main advantage of using KL is that optimizing w.r.t. q can be solved in closed

form. The disadvantage we observe is that in some cases, the loss for minimizing w.r.t.

g, which is a weighted sum of log-losses of opposing directions, becomes quite �at and

di�cult to optimize especially for linear gating functions. The symmetric measure,

on the other hand, makes the optimization w.r.t. g better conditioned as the gating

function g �ts directly to the log odds ratio of q. However, the disadvantage of using

the symmetric measure is that optimizing w.r.t. q no longer has closed form solution;

furthermore, it is even non-convex. We o�er an ADMM approach for q optimization.

We still follow an alternating minimization approach. To keep the presentation

simply, we assume g, f1 to be linear classi�ers and there is no feature costs involved.

123

Algorithm 7 Adapt-Lstsq

Input: (x(i), y(i)), B
Train a full accuracy model f0.
Initialize g, f1.
repeat

Solve (OPT5) for q given g, f1.
Solve (OPT6) for g given q.
Solve (OPT7)for f1 given q.

until convergence

To minimize over q, we must solve

min
qi∈[0,1]

1
N

∑N
i=1

[
(1− qi)Ai + (log qi

1−qi
− g(x(i)))2

]
s.t. 1

N

∑N
i=1 qi ≤ Pfull,

(OPT5)

where qi = q(z = 0|x(i)), Ai = log(1 + e−y(i)fT
1 x(i)

) + log p(y(i)|z(i) = 1; f0). Unlike

(OPT3), this optimization problem no longer has a closed-form solution. Fortunately,

the qi's in the objective are decoupled and there is only one coupling constraint. We

can solve this problem using an ADMM approach (Boyd et al., 2011). To optimize

over g, we simply need to solve a linear least squares problem:

min
g

1

N

N∑
i=1

(log
qi

1− qi
− gT (x(i)))2. (OPT6)

To optimize over f1, we solve a weighted logistic regression problem:

min
f1

1

N

N∑
i=1

(1− qi) log(1 + e−y(i)fT
1 x(i)

). (OPT7)

We shall call the above algorithm Adapt-Lstsq, summarized in Algorithm 7. How-

ever, on a number of datasets, we found that Adapt-Lstsq is comparable to Adapt-

Gbrt thus we did not include it in the main plots.

124

A.2 Experimental Details for Chapter 5

We provide detailed parameter settings and steps for our experiments here.

A.2.1 Synthetic-1 Experiment

We generate the data in Python using the following command:

X, y = make_classification(n_samples=1000, flip_y=0.01, n_features=2,

n_redundant=0,n_informative=2,random_state=17,n_clusters_per_class=2)

For Adapt-Gbrt we used 5 depth-2 trees for g and f1.

A.2.2 Synthetic-2 Experiment:

We generate 4 clusters on a 2D plane with centers: (1,1), (-1,1), (-1,-1), (-1, -3)

and Gaussian noise with standard deviation of 0.01. The �rst two clusters have

20 examples each and the last two clusters have 15 examples each. We sweep the

regularization parameter of L1-regularized logistic regression and recover feature 1 as

the sparse subset, which leads to sub-optimal adaptive system. On the other hand,

we can easily train a RBF SVM classi�er to correctly classify all clusters and we use it

as f0. If we initialize g and f1 with Gaussian distribution centered around 0, Adapt-

Lin with can often recover feature 2 as the sparse subset and learn the correct g and

f1. Or, we could initialize g = (1, 1) and f1 = (1, 1) then Adapt-Lin can recover the

optimal solution.

A.2.3 Letters Dataset (Dheeru and Karra Taniskidou, 2017)

This letters recognition dataset contains 20000 examples with 16 features, each of

which is assigned unit cost. We binarized the labels so that the letters before "N"

is class 0 and the letters after and including "N" are class 1. We split the examples

12000/4000/4000 for training/validation/test sets. We train RBF SVM and RF (500

125

trees) with cross-validation as f0. RBF SVM achieves the higher accuracy of 0.978

compared to RF 0.961.

To run the greedy algorithm, we �rst cross validate L1-regularized logistic regres-

sion with 20 C parameters in logspace of [1e-3,1e1]. For each C value, we obtain

a classi�er and we order the absolute values of its components and threshold them

at di�erent levels to recover all 16 possible supports (ranging from 1 feature to all

16 features). We save all such possible supports as we sweep C value. Then for

each of the supports we have saved, we train a L2-regularized logistic regression only

based on the support features with regularization set to 1 as f1. The gating g is then

learned using L2-regularized logistic regression based on the same feature support

and pseudo labels of f1 - 1 if it is correctly classi�ed and 0 otherwise. To get di�erent

cost-accuracy tradeo�, we sweep the class weights between 0 and 1 so as to in�uence

g to send di�erent fractions of examples to the f0.

To run Adapt-Lin, we initialize g to be 0 and f1 to be the output of the L2-

regularized logistic regression based on all the features. We then perform the alterna-

tive minimization for 50 iterations and sweep γ between [1e-4,1e0] for 20 points and

Pfull in [0.1,0.9] for 9 points.

To run Adapt-Gbrt, we use 500 depth 4 trees for g and f1 each. We initialize

g to be 0 and f1 to be the GreedyMiser output of 500 trees. We then perform the

alternative minimization for 30 iterations and sweep γ between [1e-1,1e2] for 10 points

in logspace and Pfull in [0.1,0.9] for 9 points. In addition, we also sweep the learning

rate for GBRT for 9 points between [0.1,1].

For fair comparison, we run GreedyMiser with 1000 depth 4 trees so that the

model size matches that of Adapt-Gbrt. The learning rate is swept between [1e-5,1]

with 20 points and the λ is swept between [0.1, 100] with 20 points.

Finally, we evaluate all the resulting systems from the parameter sweeps of all

126

the algorithms on validation data and choose the e�cient frontier and use the corre-

sponding settings to evaluate and plot the test performance.

A.2.4 MiniBooNE Particle Identi�cation and Forest Covertype Datasets

(Dheeru and Karra Taniskidou, 2017):

The MiniBooNE data set is a binary classi�cation task to distinguish electron neu-

trinos from muon neutrinos. There are 45523/19510/65031 examples in training/

validation/test sets. Each example has 50 features, each with unit cost. The Forest

data set contains cartographic variables to predict 7 forest cover types. There are

36603/15688/58101 examples in training/validation/test sets. Each example has 54

features, each with unit cost.

We use the unpruned RF of BudgetPrune (Nan et al., 2016) as f0 (40 trees for

both datasets.) The settings for Adapt-Gbrt are the following. For MiniBooNE

we use 100 depth 4 trees for g and f1 each. We initialize g to be 0 and f1 to be the

GreedyMiser output of 100 trees. We then perform the alternative minimization for

50 iterations and sweep γ between [1e-1,1e2] for 20 points in logspace and Pfull in

[0.1,0.9] for 9 points. In addition, we also sweep the learning rate for GBRT for 9

points between [0.1,1]. For Forest we use 500 depth 4 trees for g and f1 each. We

initialize g to be 0 and f1 to be the GreedyMiser output of 500 trees. We then perform

the alternative minimization for 50 iterations and sweep γ between [1e-1,1e2] for 20

points in logspace and Pfull in [0.1,0.9] for 9 points. In addition, we also sweep the

learning rate for GBRT for 9 points between [0.1,1].

For fair comparison, we run GreedyMiser with 200 depth 4 trees so that the

model size matches that of Adapt-Gbrt for MiniBooNE. We run GreedyMiser

with 1000 depth 4 trees so that the model size matches that of Adapt-Gbrt for

Forest.

Finally, we evaluate all the resulting systems from the parameter sweeps on val-

127

idation data and choose the e�cient frontier and use the corresponding settings to

evaluate and plot the test performance.

A.2.5 Yahoo! Learning to Rank(Chapelle et al., 2011):

This ranking dataset consists of 473134 web documents and 19944 queries. Each

example is associated with features of a query-document pair together with the rele-

vance rank of the document to the query. There are 519 such features in total; each

is associated with an acquisition cost in the set {1,5,20,50,100,150,200}, which rep-

resents the units of CPU time required to extract the feature and is provided by a

Yahoo! employee. The labels are binarized into relevant or not relevant. The task is

to learn a model that takes a new query and its associated documents and produce a

relevance ranking so that the relevant documents come on top, and to do this using

as little feature cost as possible. The performance metric is Average Precision @ 5

following (Nan et al., 2016).

We use the unpruned RF of BudgetPrune (Nan et al., 2016) as f0 (140 trees for

both datasets.) The settings for Adapt-Gbrt are the following. we use 100 depth

4 trees for g and f1 each. We initialize g to be 0 and f1 to be the GreedyMiser

output of 100 trees. We then perform the alternative minimization for 20 iterations

and sweep γ between [1e-1,1e3] for 30 points in logspace and Pfull in [0.1,0.9] for 9

points. In addition, we also sweep the learning rate for GBRT for 9 points between

[0.1,1].

For fair comparison, we run GreedyMiser with 200 depth 4 trees so that the

model size matches that of Adapt-Gbrt for Yahoo.

Finally, we evaluate all the resulting systems from the parameter sweeps on val-

idation data and choose the e�cient frontier and use the corresponding settings to

evaluate and plot the test performance.

128

A.2.6 CIFAR10 (Krizhevsky, 2009):

CIFAR-10 data set consists of 32x32 colour images in 10 classes. 400 features for each

image are extracted using technique described in (Coates and Ng, 2011). The data

are binarized by combining the �rst 5 classes into one class and the others into the

second class. There are 19, 761/8, 468/10, 000 examples in training/validation/test

sets. BudgetPrune starts with a RF of 40 trees, which achieves an accuracy of

69%. We use an RBF-SVM as f0 that achieves a test accuracy of 79.5%. The settings

for Adapt-Gbrt are the following. we use 200 depth 5 trees for g and f1 each. We

initialize g to be 0 and f1 to be the GreedyMiser output of 200 trees. We then

perform the alternative minimization for 50 iterations and sweep γ between [1e-4,10]

for 15 points in logspace and Pfull in [0.1,0.9] for 9 points. In addition, we also sweep

the learning rate for GBRT for 10 points between [0.01,1].

For fair comparison, we run GreedyMiser with 400 depth 5 trees so that the

model size matches that of Adapt-Gbrt.

Finally, we evaluate all the resulting systems from the parameter sweeps on val-

idation data and choose the e�cient frontier and use the corresponding settings to

evaluate and plot the test performance.

References

(2010). IBM ILOG CPLEX Optimizer.
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

Alon, N., Cesa-Bianchi, N., Dekel, O., and Koren, T. (2015). Online learning with
feedback graphs: Beyond bandits. In Proceedings of The 28th Conference on
Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, pages 23�35.

Bellala, G., Bhavnani, S. K., and Scott, C. (2012). Group-based active query selection
for rapid diagnosis in time-critical situations. IEEE Transactions on Information
Theory, 58(1):459�478.

Benbouzid, D. (2014). Sequential prediction for budgeted learning : Application to
trigger design. Theses, Université Paris Sud - Paris XI.

Bianchi, N. C., Lugosi, G., and Stoltz, G. (2006). Regret Minimization Under Partial
Monitoring. Mathematics of Operations Research, 31:562�580.

Bilgic, M. and Getoor, L. (2007). Voila: E�cient feature-value acquisition for classi-
�cation. In Proceedings of the 22Nd National Conference on Arti�cial Intelligence
- Volume 2, AAAI'07, pages 1225�1230. AAAI Press.

Bolukbasi, T., Wang, J., Dekel, O., and Saligrama, V. (2017). Adaptive neural
networks for e�cient inference. In Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 527�536, International Convention Centre, Sydney, Australia. PMLR.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed opti-
mization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1�122.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5�32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classi�cation and
regression trees. CRC press.

Busa-Fekete, R., Benbouzid, D., and Kégl, B. (2012). Fast classi�cation using sparse
decision dags. In Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012.

129

130

Chakaravarthy, V. T., Pandit, V., Roy, S., Awasthi, P., and Mohania, M. K. (2011).
Decision trees for entity identi�cation: Approximation algorithms and hardness
results. ACM Transaction on Algorithms, 7(2):15:1�15:22.

Chapelle, O., Chang, Y., and Liu, T., editors (2011). Proceedings of the Yahoo!
Learning to Rank Challenge, held at ICML 2010, Haifa, Israel, June 25, 2010.

Chen, M., Xu, Z. E., Weinberger, K. Q., Chapelle, O., and Kedem, D. (2012). Classi-
�er cascade for minimizing feature evaluation cost. In Proceedings of the Fifteenth
International Conference on Arti�cial Intelligence and Statistics, AISTATS 2012,
La Palma, Canary Islands, April 21-23, 2012, pages 218�226.

Cicalese, F., Laber, E. S., and Saettler, A. M. (2014). Diagnosis determination:
decision trees optimizing simultaneously worst and expected testing cost. In Pro-
ceedings of the 31th International Conference on Machine Learning, ICML 2014,
Beijing, China.

Coates, A. and Ng, A. G. (2011). The importance of encoding versus training with
sparse coding and vector quantization. In Proceedings of the 28th International
Conference on Machine Learning. ACM.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273�297.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley-
Interscience, New York, NY, USA.

Dheeru, D. and Karra Taniskidou, E. (2017). UCI machine learning repository.
http://archive.ics.uci.edu/ml, University of California, Irvine, School of Informa-
tion and Computer Sciences.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119 � 139.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting ma-
chine. Annals of Statistics, 29:1189�1232.

Ganchev, K., Taskar, B., and Gama, J. (2008). Expectation maximization and
posterior constraints. In Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T.,
editors, Advances in Neural Information Processing Systems 20, pages 569�576.
Curran Associates, Inc.

Gao, T. and Koller, D. (2011). Active classi�cation based on value of classi�er. In
Advances in Neural Information Processing Systems (NIPS 2011).

131

Gupta, C., Suggala, A. S., Goyal, A., Simhadri, H. V., Paranjape, B., Kumar, A.,
Goyal, S., Udupa, R., Varma, M., and Jain, P. (2017). ProtoNN: Compressed and
accurate kNN for resource-scarce devices. In Precup, D. and Teh, Y. W., editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 1331�1340, International Con-
vention Centre, Sydney, Australia. PMLR.

Gurobi Optimization, I. (2015). Gurobi optimizer reference manual.
http://www.gurobi.com.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770�778.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531.

Ji, S. and Carin, L. (2007). Cost-sensitive feature acquisition and classi�cation.
Pattern Recognition, 40(5):1474�1485.

Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical mixtures of experts and the em
algorithm. Neural Computation, 6(2):181�214.

Kanani, P. and Melville, P. (2008). Prediction-time Active Feature-Value Acquisi-
tion for Cost-E�ective Customer Targeting. In Advances In Neural Information
Processing Systems (NIPS).

Karayev, S., Baumgartner, T., Fritz, M., and Darrell, T. (2012). Timely object
recognition. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems 25, pages 890�898.
Curran Associates, Inc.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.
Master's thesis, University of Toronto.

Kulkarni, V. and Sinha, P. (2012). Pruning of random forest classi�ers: A survey
and future directions. In International Conference on Data Science Engineering
(ICDSE), pages 64�68.

Kumar, A., Goyal, S., and Varma, M. (2017). Resource-e�cient machine learning
in 2 KB RAM for the internet of things. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1935�1944, International Convention Centre, Sydney, Australia.
PMLR.

132

Kusner, M., Chen, W., Zhou, Q., Zhixiang, E., Weinberger, K., and Chen, Y. (2014).
Feature-cost sensitive learning with submodular trees of classi�ers. In AAAI Con-
ference on Arti�cial Intelligence.

Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR'06),
volume 2, pages 2169�2178.

Li, L.-J., Su, H., Xing, E. P., and Fei-Fei, L. (2010). Object Bank: A High-Level
Image Representation for Scene Classi�cation and Semantic Feature Sparsi�cation.
In Advances in Neural Information Processing Systems. MIT Press.

Li, X.-B., Sweigart, J., Teng, J., Donohue, J., and Thombs, L. (2001). A dynamic
programming based pruning method for decision trees. INFORMS Journal on
Computing, 13(4):332�344.

Lin, J., Rao, Y., Lu, J., and Zhou, J. (2017). Runtime neural pruning. In Advances
in Neural Information Processing Systems, pages 2178�2188.

Lopez-Paz, D., Schölkopf, B., Bottou, L., and Vapnik, V. (2016). Unifying distillation
and privileged information. In International Conference on Learning Representa-
tions.

Maaten, L., Chen, M., Tyree, S., and Weinberger, K. Q. (2013). Learning with
marginalized corrupted features. In Dasgupta, S. and Mcallester, D., editors,
Proceedings of the 30th International Conference on Machine Learning (ICML-13),
volume 28, pages 410�418. JMLR Workshop and Conference Proceedings.

MacKay, D. J. C. (1992). Information-based objective functions for active data
selection. Neural computation, 4(4):590�604.

Miller, A. (2002). Subset selection in regression. CRC Press.

Moshkov, M. J. (2010). Greedy algorithm with weights for decision tree construction.
Fundamenta Informaticae, 104(3):285�292.

Nan, F. and Saligrama, V. (2017). Adaptive classi�cation for prediction under a
budget. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R., editors, Advances in Neural Information Processing
Systems 30, pages 4727�4737. Curran Associates, Inc.

Nan, F., Wang, J., and Saligrama, V. (2015). Feature-budgeted random forest. In
Blei, D. and Bach, F., editors, Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 1983�1991. JMLR Workshop and Conference
Proceedings.

133

Nan, F., Wang, J., and Saligrama, V. (2016). Pruning random forests for prediction
on a budget. In Advances in Neural Information Processing Systems 29, pages
2334�2342. Curran Associates, Inc.

Nan, F., Wang, J., Trapeznikov, K., and Saligrama, V. (2014). Fast margin-
based cost-sensitive classi�cation. In IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2014, Florence, Italy, May 4-9, 2014.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization.
Wiley-Interscience, New York, NY, USA.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approx-
imations for maximizing submodular set functions. Mathematical Programming,
14(1):265�294.

Nowak, R. (2008). Generalized binary search. In In Proceedings of the 46th Allerton
Conference on Communications, Control, and Computing, pages 568�574.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211�252.

Settles, B. (2009). Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin�Madison.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean,
J. (2017). Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. arXiv preprint arXiv:1701.06538.

Sheng, V. S. and Ling, C. X. (2006). Feature value acquisition in testing: A sequential
batch test algorithm. In Proceedings of the 23rd International Conference on
Machine Learning, ICML '06, pages 809�816, New York, NY, USA. ACM.

Sherali, H. D., Hobeika, A. G., and Jeenanunta, C. (2009). An optimal constrained
pruning strategy for decision trees. INFORMS Journal on Computing, 21(1):49�
61.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., Rick Chang, J.-H., et al. Going deeper with con-
volutions. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of
the Royal Statistical Society. Series B (Methodological), pages 267�288.

134

Trapeznikov, K. and Saligrama, V. (2013). Supervised sequential classi�cation un-
der budget constraints. In International Conference on Arti�cial Intelligence and
Statistics, pages 581�589.

Viola, P. and Jones, M. (2001). Robust Real-time Object Detection. International
Journal of Computer Vision, 4:34�47.

Wang, J., Bolukbasi, T., Trapeznikov, K., and Saligrama, V. (2014a). Model selection
by linear programming. In European Conference on Computer Vision, pages 647�
662.

Wang, J., Trapeznikov, K., and Saligrama, V. (2014b). An lp for sequential learning
under budgets. In International Conference on Arti�cial Intelligence and Statistics.

Wang, J., Trapeznikov, K., and Saligrama, V. (2015). E�cient learning by directed
acyclic graph for resource constrained prediction. In Advances in Neural Informa-
tion Processing Systems 28, pages 2143�2151. Curran Associates, Inc.

Xu, Z., Kusner, M., Chen, M., and Weinberger, K. Q. (2013). Cost-sensitive tree
of classi�ers. In Proceedings of the 30th International Conference on Machine
Learning.

Xu, Z. E., Weinberger, K. Q., and Chapelle, O. (2012). The greedy miser: Learning
under test-time budgets. In Proceedings of the 29th International Conference on
Machine Learning, ICML.

Yang, A. Y., Jafari, R., Sastry, S. S., and Bajcsy, R. (2009). Distributed recognition
of human actions using wearable motion sensor networks. Journal of Ambient
Intelligence and Smart Environments, 1(2):103�115.

Zhang, Y. and Huei-chuen, H. (2005). Decision tree pruning via integer programming.
Working paper, https://pdfs.semanticscholar.org/d8ce/
ddf3335dc9b7898e92fcc3ca823bd582397a.pdf.

Zubek, V. B. and Dietterich, T. G. (2002). Pruning improves heuristic search for
cost-sensitive learning. In Proceedings of the Nineteenth International Conference
on Machine Learning, ICML '02, pages 19�26, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

CURRICULUM VITAE

136

137

	Introduction
	Resource-constrained Machine Learning: Motivation
	Problem Definition
	Feature Acquisition Cost
	Computational Cost
	Communication/Latency Cost

	Challenges
	Contribution
	Related Work
	Non-adaptive methods
	Fixed feature acquisition
	Myopic feature acquisition
	Non-myopic feature acquisition
	Other methods

	Organization

	Margin-based Nearest Neighbor Approach
	Related Work
	Problem Setup
	Algorithm
	Experiments

	Feature-Budgeted Random Forest
	Related Work
	Problem Setup
	Algorithm
	Bounding the Cost of Each Tree
	Admissible Impurity Functions
	Discussions

	Experiments

	Pruning Random Forests
	Related Work
	Problem Setup
	Pruning with Costs

	Theoretical Analysis
	A Naive Pruning Formulation

	Algorithm
	Experiments
	Baseline Comparison
	Additional Experiments
	Discussion and Conclusion

	Adaptive Approximation
	Related Work
	Problem Setup
	Algorithms
	Experiments

	On-line Adaptive Approximation
	Problem Setup
	Upper Bound
	Lower Bound

	Future Work
	Distributed Prediction
	Adaptive Sparse Regression
	Local Convexity - Hessian Computation
	Optimization
	Theorems to be proved
	Algorithms
	Experiments

	Extending the Regret Lower Bound
	Non-uniform sampling of patterns

	Conclusions
	Appendix
	Adapt-Lstsq for Chapter 5
	Experimental Details for Chapter 5
	Synthetic-1 Experiment
	Synthetic-2 Experiment:
	Letters Dataset UCIrepository
	MiniBooNE Particle Identification and Forest Covertype Datasets UCIrepository:
	Yahoo! Learning to RankYahooChallenge2010:
	CIFAR10 CIFAR10:

	References
	Curriculum Vitae

