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Abstract 
Support Vector Machines (SVMs) are widely used classifiers for detecting physiological patterns in 

Human-Computer Interaction (HCI). Their success is due to their versatility, robustness and large 

availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM 

implementation and/or parameters selection are reported, making it impossible to reproduce study 

analysis and results. In order to perform an optimized classification and report a proper description of 

the results, it is necessary to have a comprehensive critical overview of the application of SVM.  

The aim of this paper is to provide a review of the usage of SVM in the determination of brain and 

muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) 

techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with 

a description of several relevant literature implementations. Furthermore, details concerning reviewed 

papers are listed in tables, and statistics of SVM use in the literature are presented. Suitability of SVM 

for HCI is discussed and critical comparisons with other classifiers are reported. 
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1. Introduction 

Human-Computer Interaction/Interface (HCI) and Human-Machine Interface (HMI) consist of 

technologies that allow humans to control external peripherals or electronic devices. In order to achieve 

such control, humans can either interact with the devices by means of a “direct” medium, such as vision, 

hearing, touch, and gesture [1-4], or an “indirect” one, such brain or muscular activity. The indirect 

activity can be measured using techniques, such as ElectroEncephaloGram (EEG) and 

Electromyograms (EMG), which furnish data to be converted into commands for the peripherals.  

Specifically, EEG and EMG play a fundamental role in HCI, being the main source of data for driving 

electronic/electromechanical devices used to support disables’ life routines and rehabilitation. In 

particular, EEG can be the core of a special interface, that is, the Brain-Computer Interface (BCI) used 

by people who are paralyzed after a trauma or a degenerative disease [5, 6]. In addition, EMG can be 

the source signal for amputees to drive prostheses, artificial limbs or exoskeletons, so to recover missed 

limb functionalities by using residual muscles activity [7, 8].  

Physiological signal-based HCIs have also found applications in non-strictly related medical fields, 

such as emotions recognition [9], smart home control [10], drivers' distraction avoidance [11] and 

musical expression [12]. 

Independently from the input signal, a unique functional model is accepted to describe HCI systems, 

see figure 1 [13], made by the following components: 1) the acquisition, which concerns the signal 

measurement and data transmission; 2) the transducer, which is devoted to the extraction of the features, 

that are special characteristics of the measured signals, and to the recognition of the user’s intent, by 

means of a classification algorithm; 3) the control interface, which translates the classification output 

into a control command for the external device; 4) the output device, which is the peripheral to be 

driven. A visual, acoustic and/or tactile feedback is provided from the device back to the user in order 

to allow performance adjustments.  

The core of the whole HCI chain is the detection of the patterns associated to the user’s volition: while 

the user must be trained at correctly performing the task, the classifier, that is a set of software routines, 

must be trained to correctly recognize the particular task among a set of others, which are the classes. 

For these reasons, many studies in the literature have been devoted to find classification algorithms with 

the accuracy as high as possible (see [14] for a review of classification techniques in EEG-BCIs and 

[15] for details about EMG classification). Among classifiers, Support Vector Machines (SVMs) have 

been widely implemented for HCI due to their versatility and robustness with non-stationary data [16]. 

Moreover, SVMs can be easy to implement even for non-experts, thanks to the availability of different 

free toolboxes for SVM-based classification, e.g. LIBSVM [17], SVM-light 

(http://svmlight.joachims.org/), SVMTorch [18], mySVM (http://www-ai.cs.uni-

dortmund.de/SOFTWARE/ MYSVM/index.html), just to name a few, or to the many SVM 

implementations in Matlab (The MathWorks Inc., Natick, MA, 2000). However, if not fully understood, 

sometimes a non-optimal choice of the SVM parameters for the classification can be adopted. Moreover, 

many works lack in details on the setting of SVM, which are strategical in replicating the analysis and 

the results, as it occurs for research matters. 

The objective of this review is to describe the use of SVMs in the HCI field, with the aim to provide 

 
Figure 1. Functional model of a generic HCI system. 
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some practical hints for correct SVM-based classification. We limited the search to electrophysiological 

signal-based HCIs, in particular EEG and EMG-based, and mainly to HCIs used for device control. A 

description of the main theoretical aspects underlying SVMs is provided, including an overview of the 

mostly adopted SVM implementations, and details are tabled. A statistical analysis of the occurrences 

of SVM features in the literature is performed, including a critical comparison with other classifiers. 

Source bibliography comes from the main online databases, in particular Pubmed, Scopus, IEEE Xplore, 

up to year 2015. The list of all the main acronyms used in the manuscript can be found in Appendix A. 

 

2. Introduction to SVM-based classification 

For the sake of clarity, the following introduction to SVM will start from intuitive geometric concepts. 

Nevertheless, SVM classification has very strong theoretical bases in the theory of statistical learning 

developed by Vapnik and Chervonenkis [19]. 
 

2.1. Margin maximization 

In machine learning, a classification problem consists in the identification, within a set of categories, of 

the category a new observation belongs to; such identification is performed on the basis of the 

information previously deducted from a set of observations whose category membership is known. The 

phase of information extraction is called training, while the phase of unknown instances categorization 

is called testing. 

Let’s consider the binary classification problem depicted in figure 2, where squares denote objects 

belonging to class 1, and circles represent objects belonging to class 2. In principle, the separation in 

two classes can be realized by any line (in general infinite lines) that separates the two regions 

containing only squares and only circles, respectively, as the examples of line “A” or line “B” in figure 

2. Intuitively, line “A” seems to realize a better separation between classes with respect to line “B”, 

since it separates with a safer margin, key concept of the SVM approach towards classification [20].  

In the binary case, that is, the classification between only two classes, in a multiple-dimension space, 

SVM is used to find the hyperplane having the maximum distance (or margin) from both classes [21]. 

Regardless the class, the points closest to the hyperplane are called support vectors (black squares and 

circles in figure 2). 

Let 𝑥𝑖 ∈ 𝑅𝑛, with 𝑖 = 1, 2, … 𝑁, be the 𝑖𝑡ℎ point of a set 𝑆, 𝑛 being the total number of features and R 

the space of the features; 𝑥𝑖  can belong to class 𝜔1 or to class 𝜔2, which are assumed to be linearly 

separable. A hyperplane in 𝑅𝑛 can be written as 𝑤𝑡𝑥 + 𝑤0 = 0, where 𝑤 ∈ 𝑅𝑛 is an n-dimensional 

weight vector, and 𝑤0 is a bias term. Many conventional hyperplane-based classifiers, e.g. Linear 

Discriminant Analysis (LDA) [22, 23], aim at finding optimal values for 𝑤 and 𝑤0 so that 𝑤𝑡𝑥 + 𝑤0 >
0 if 𝑥 belongs to class 𝜔1, and 𝑤𝑡𝑥 + 𝑤0 < 0 if 𝑥 belongs to class 𝜔2 (the case 𝑤𝑡𝑥 + 𝑤0 = 0 is a 

point of uncertainty and 𝑥 is typically assigned to one of the two classes arbitrarily). Differently, SVM 

does not only require that the training patterns lie on the correct side of the decision boundary, but also 

requires the safety margin, for a better generalization capability. In particular, during the training phase 

we require more stringent inequalities, such as: 

𝑤𝑡𝑥𝑖 + 𝑤0 ≥ 1 if 𝑥𝑖 belongs to class 𝜔1                             (1) 

𝑤𝑡𝑥𝑖 + 𝑤0 ≤ −1 if 𝑥𝑖 belongs to class 𝜔2                               (2) 

 
Figure 2: A binary classification problem. 
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which can be trivially satisfied by taking a large enough 𝑤. The maximization of the margin is obtained 

with the minimization of the norm of 𝑤, 𝐽(𝑤) =  
1

2
𝑤 ∙ 𝑤, while being bounded by the above constraints. 

𝐽(𝑤) is called the objective function (1/2 is for computation convenience). 

Finally, in the test phase, we classify the new instances according to the usual rules: 

If 𝑤𝑡𝑥𝑖 + 𝑤0 > 0, then assign 𝑥𝑖 to class 𝜔1    (3) 

If 𝑤𝑡𝑥𝑖 + 𝑤0 < 0, then assign 𝑥𝑖 to class 𝜔2    (4) 

It turns out that the above described optimization problem can be put in terms of a convex quadratic 

program and therefore: (i) it has a single global optimum and (ii) it can be solved using well-known 

techniques (see [24] for further details). In addition, this program has a number of relevant properties: 

 Its complexity depends on the number of training instances only, i.e. the size of the training dataset, 

and not on the feature space dimensionality. This is a very important peculiarity of SVMs, which 

makes them insensitive to the so-called “curse of dimensionality”, a major concern when designing 

EMG and EEG-based systems [14]. The “curse of dimensionality” depends on the fact that, if the 

number of training data is small compared to the number of extracted features, the classifier will 

probably perform poorly due to insufficient data to build the classification rule. This curse affects 

mainly BCI systems as small training samples are usually available (training is consuming for the 

subjects) and many channels (and features) are needed to describe the classification problem.   

 The weight vector 𝑤 depends only on the training patterns that lie on the margin (for those instances 

we have 𝑤𝑡𝑥 + 𝑤0 = ±1), i.e. the support vectors. 

 Given 𝑤, it is simple and straightforward to compute the bias parameter 𝑤0. 
 

2.2. Non linearly separable data: the soft-margin 

When data are not linearly separable, no hyperplane that perfectly discriminates classes exists. 

Consequently, we can find a hyperplane with the lowest error, as our best. In such an occurrence, two 

error sources are considered: misclassifications, i.e. points that lie on the wrong side of the hyperplane, 

and within-the-margin anomalies, i.e. points that lie on the correct side of the hyperplane but within the 

margin. To model those errors, a slack variable 𝜉𝑖 ≥ 0 is introduced for each training instance 𝑥𝑖. If 𝑥𝑖 

is correctly classified, then 𝜉𝑖 = 0. If 𝑥𝑖 lies within-the-margin or gets misclassified, then 𝜉𝑖 is set to the 

distance of 𝑥𝑖 from the separating hyperplane. In this way, the constraints of the optimization problem 

become: 

𝑤𝑡𝑥𝑖 + 𝑤0 ≥ 1 − 𝜉𝑖 if 𝑥𝑖 belongs to class 𝜔1    (5) 

𝑤𝑡𝑥𝑖 + 𝑤0 ≤ −1 + 𝜉𝑖 if 𝑥𝑖 belongs to class 𝜔2    (6) 

and the sum of the slack variables, i.e. the overall error, is added as a penalty factor to the objective 

function. The resulting program can then be solved similarly to the linearly-separable data case [24]. 

Usually, a regularization parameter C is introduced to weight the penalty term in the objective function, 

which then becomes 𝐽(𝑤, 𝜉) =  
1

2
𝑤 ∙ 𝑤 + 𝐶(∑ 𝜉𝑖

𝑁
𝑖=1 ), thus allowing the experimenter to trade the 

training set accuracy off for the expected generalization capability. If a large value of C is chosen, then 

the resulting hyperplane will commit fewer errors on training data but will be characterized by a smaller 

margin (thus a minor expected generalization capability). On the contrary, a small value of C will lead 

to an SVM with greater expected generalization capability (larger margin) but misclassifying more 

training instances. The soft-margin implementation is advisable for EEG and EMG classification: in 

fact, both signals are often characterized by high levels of outliers and noisy examples, which can derive 

from artefacts (e.g. motion artefacts, equipment artefacts, etc.) and by a poor signal-to-noise ratio. The 

possibility to have adjustable margins which take into account the effect of outliers in the training 

dataset is definitively beneficial. 

The choice of C is critical, leading to overfit or underfit risks for too high or too low values of C 

respectively, as schematically represented in figure 3. A binary classification problem is depicted. It can 

be easily seen how the choice of different values of C affects the number of support vectors and, 

definitively, classification performances, which range from 75% with C=1 to 81.48% with either C= 

100 or C= 1000. 

No optimal criteria are given to set a value for C, but grid-search and cross-validation can be considered, 

assigning values within 10−6-10+6 on a logarithmic scale [24]. The introduction of the slack variables 

simply softens the aforementioned margin, so that we can refer to soft margin SVM or C-SVM; it 
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Figure 3: Binary classification with a linear SVM and different values of C (1, 10, 100 and 1000). Red dots 

represent samples in class 1, cyan dots represent samples in class 2, and circles indicate support vectors. X1 and 

X2 represent the first two dimensions of the feature vector. Accuracy is reported in brackets. Data come from an 

EMG-based protocol, where the subject was asked to perform 5 different hand gestures (see [25] for details on 

protocol implementation and data analysis). For the sake of simplicity, just two tasks are considered. 

 

represents the standard configuration for a typical SVM classification problem. 

Even though the value of C can be associated to the extent of the margin, such a relationship is difficult 

to visualize and quantify. Therefore, it is worth considering another implementation of the soft margin 

concept, called 𝜈-SVM, which results in an easier interpretation, thanks to the introduction of 

parameters 𝜈 and 𝜌 [26], with 𝜈 ∈ [0,1] and 𝜌 ≥ 0. The penalty factor becomes: 

−𝜈𝜌 +
1

𝑁
∑ 𝜉𝑖

𝑁

𝑖=1

  (7) 

and the constraints: 

𝑤𝑡𝑥𝑖 + 𝑤0 ≥ 𝜌 − 𝜉𝑖  if 𝑥𝑖 belongs to class 𝜔1  

𝑤𝑡𝑥𝑖 + 𝑤0 ≤ −𝜌 + 𝜉𝑖  if 𝑥𝑖 belongs to class 𝜔2 

(8) 

(9) 

The role of 𝜈 and 𝜌 can be figured out considering that when all instances lie on the correct side of the 

hyperplane, and outside the margin, 𝜉𝑖 equals zero for all input data 𝑥𝑖, and the constraints (8-9) reduce 

to 𝑤𝑡𝑥𝑖 + 𝑤0 ≥ 𝜌 and 𝑤𝑡𝑥𝑖 + 𝑤0 ≤ −𝜌. It follows that 2𝜌 ‖𝑤‖⁄  is the margin that separates the 

classes. In general, considering misclassifications and within-the-margin anomalies, 𝜌 is linearly related 

to the size of margin. In the occurrence of 𝜌 = 1, corresponding to the soft margin constraints, according 

to the eq. (7), the term (1 𝑁⁄ ) ∑ 𝜉𝑖
𝑁
𝑖=1  represents the fraction of errors relative to the training data, while 

𝜈 represents a sort of compensation: the higher the value of 𝜈, the lower the penalty factor. In other 

words, 𝜈 indicates the fraction of errors we can accept. It turns out that this interpretation is valid for 

any 𝜌 ≥ 0 and that 𝜈 represents both an upper bound on the fraction of errors (misclassifications and 

within-the-margin anomalies), and a lower bound on the fraction of input instances that will be selected 

as support vectors (see [27] for further details). 

All considered, the 𝜈-SVM allows a more evident and direct interpretation of the parameters with 

respect to C-SVM, but needs the optimization of two variables (𝜈 and 𝜌) instead of one (C). 

 

2.3.  Non linearly separable data: the kernel trick 

Soft-margin admits a certain error so to allow a linear approach for non-linearly separable data. Such 

an approach is useless in case the separating function is “inherently” non-linear, so that it is worth to 

consider the option of projection. In fact, data not-linearly separable in their original space can get 

linearity when mapped into another one (especially when of higher dimensionality), so that SVM can 

be further applied.  
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Figure 4: Space Projection. The two classes, circles and rectangles, are non-linearly separable in the original space 

(the top arrow), but become linearly separable in another space provided by the abs(-) function (the bottom arrow). 

 

As an example, figure 4 shows four mono-dimensional instances belonging to two classes (circles vs. 

rectangles). In the original space (top row), no single point separates the two classes, but the abs(-) 

function provides mapping into another space allowing linear separation between classes (bottom row).  

Let 𝜙 ∶  𝑅𝑛 → 𝐻 denote the mapping function. Firstly, each input instance 𝑥𝑖 is mapped according to 

𝜙(𝑥𝑖). Then we train our SVM model, typically using a soft-margin formulation, to discriminate the 

mapped points. Adopting the quadratic program computations [24], the training algorithm will depend 

on 𝜙 only trough dot products of mapped instances, i.e. 𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑗). Since there must exists a function 

𝐾: 𝑅𝑛 × 𝑅𝑛 → 𝑅 such that 𝐾(𝑥𝑖, 𝑥𝑗) =  𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑗), it is sufficient to use 𝐾 in the training algorithm, 

avoiding computing the mapping functions 𝜙(𝑥𝑖) and 𝜙(𝑥𝑗) explicitly. 𝐾 is known as the kernel 

function, while the whole procedure is known as the kernel trick, as it allows advantages of the mapping 

procedure without higher computational costs. The fact that the decision rule of SVM is a simple linear 

function in the kernel space makes SVM stable and characterized by low variance (variance reflects the 

sensitivity of the classifier to the training set used [14]). This is a useful property when dealing with 

EEG and EMG data, which are non-stationary signals with features changing over time; low-variance 

classifiers, such as SVM, can cope with such signals better than others. 

A valid kernel function has to be positive definite (Mercer’s condition), symmetric, and has to reflect 

the similarity between its inputs, i.e. 𝐾(𝑥𝑖, 𝑥𝑗) should be high (low) if 𝑥𝑖 and 𝑥𝑗 are similar (dissimilar) 

with respect to the problem at hand [20]. The most used kernels are: 

 Radial Basis Function (RBF), 𝐾(𝑥𝑖, 𝑥𝑗) =  𝑒
−

‖𝑋𝑖−𝑋𝑗‖
2

2𝜎2 , 𝜎 ≠ 0. 

 Polynomial, 𝐾(𝑥𝑖 , 𝑥𝑗) =  (𝑥𝑖 ∙ 𝑥𝑗 + 1)
𝑑

, 𝑑 > 0.  

 Sigmoidal, 𝐾(𝑥𝑖, 𝑥𝑗) = tanh(𝑘𝑥𝑖 ∙ 𝑥𝑗 − 𝛿). 

 Cauchy, 𝐾(𝑥𝑖, 𝑥𝑗) = (1 +
‖𝑥−𝑦‖2

2𝜎2 )
−1

, 𝜎 ≠ 0. 

 Logarithmic, 𝐾(𝑥𝑖, 𝑥𝑗) = − log(‖𝑥 − 𝑦‖𝑑 + 𝑐), 𝑑 > 0.  

 

The linear problem can be considered as a subset of the non-linear one with kernel 𝐾(𝑥𝑖, 𝑥𝑗) =  𝑥𝑖 ∙ 𝑥𝑗. 

For each kernel choice, the values of other parameters, besides C, should to be set. For example in the 

popular RBF kernel the experimenter has to choose also the kernel width 𝜎. To do so, the grid-search 

is usually adopted; anyway other techniques, such as Particle Swarm Optimization (PSO) [28] and 

Genetic Algorithms (GA) [29] are also used in the literature.  

Values determined for the kernel and the related parameters greatly influence the decision surface and, 

consequently, the classification performance. In figure 5 and for the same dataset used for figure 3, an 

RBF kernel is optimized considering for both C and 𝜎 values of 1, 10, 100 and 1000. According to the 

results, the selection of C=1000 and 𝜎=1 allows an accuracy as high as 97.22%. In figure 6, instead, the 

results of the optimization of a polynomial kernel-SVM with degree d are reported, considering for C 

values of 1, 10, 100 and 1000 and for d values of 2, 5, 7 and 10. As a result, the highest accuracy 

(97.22%) is obtained both with C=1000, d=2 and with C=1000, d=7. In case of equal accuracies, the 

time spent for the training can be used as a metric to choose the most performing configuration. 
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Figure 5: Binary classification of EMG data with an SVM with RBF kernel. C and 𝜎 can be 1, 10, 100 and 1000. 

Red dots represent samples in class 1, cyan dots represent samples in class 2, and circles indicate support vectors. 

X1 and X2 represent the first two dimensions of the feature vector. Accuracy is reported in brackets. Data come 

from an EMG-based protocol, where the subject was asked to perform 5 different hand gestures (see [25] for 

details on protocol implementation and data analysis). For the sake of simplicity, only two tasks are considered. 

 

 
Figure 6: Binary classification of EMG data with an SVM with polnomial kernel. C can be 1, 10, 100 and 1000, 

while the degree (d) of the polynomial can be 2, 5, 7 and 10. Red dots represent samples in class 1, cyan dots 

represent samples in class 2, and circles indicate support vectors. X1 and X2 represent the first two dimensions of 

the feature vector. Accuracy is reported in brackets. Data come from an EMG-based protocol, where the subject 

was asked to perform 5 different hand gestures (see [25] for details on protocol implementation and data analysis). 

For the sake of simplicity, only two tasks are considered. 

 

2.4. Multiclass SVM 
In principle, the margin criterion of SVM can perform multi-class classification but it is useless, 
resulting in a quadratic program with too many variables to be optimized. Differently, more 
computationally efficient techniques, although potentially inaccurate, are typically used in order to build 
a multi-class SVM starting from many 2-class SVMs [22, 24], namely One-Vs-One (OVO) (also called 
in the literature One-Against-One (OAO)) and the One-Vs-All (OVA) (also called in the literature One-
Against-All (OAO) and One-Against-Rest (OAR)). 

For OVO, the 𝑀-class problem is split into 𝑀(𝑀 − 1) 2⁄  binary problems aimed at separating one class 

from another. To obtain the final response, i.e. the class to which a new input instance is expected to 

Page 8 of 35



9 

 
 

belong, a majority voting strategy is employed. 

For OVA, 𝑀 classifiers are built. The task of the 𝑖-th (𝑖 = 1, … , 𝑀) classifier is to separate the instances 

belonging to class 𝑖 from all the others. When a new input has to be classified, every classifier is asked 

for its corresponding score and the class having the highest result is selected as the final response. 

All those strategies can have the drawbacks to determine unclassifiable/uncertain regions in the feature 

space, and to meaningfully increase the computational time with the number of classes. In order to 

overcome such limitations, the Directed Acyclic Graphs (DAG) approach, consisting in assigning 

unclassifiable regions to the classes associated with the leaf nodes of a decision tree, was suggested 

[30]. 

 

2.5. SVM variants 

In view of the intrinsic limitations of each of the aforementioned approaches, many variants of SVM 

have been developed; the most relevant for our purposes are: 

 Least-Squares SVM (LS-SVM): differently from solving a quadratic programming problem with 

linear inequality constraints with standard SVM, LS-SVM involves solving a set of linear 

equations, thus making the solution less time-consuming in the presence of large training sets 

[31]. Large datasets are typical of EMG-based studies, where a huge number of classes is usually 

taken into account (e.g. 18 different hand gestures in [32]) and to a minor extent of BCI protocols 

which usually involve less classes (2 to 5). 

 Fuzzy SVM (FSVM): allows integrating in SVM a means for assigning a utility value to the training 

data [33]. Indeed, in many real-world applications, some of the training instances could be more 

important than the others, and the learning algorithm should take into account this difference. This 

is useful when the training set is suspected of containing outliers and/or mislabeled points, a 

condition typical of both EEG and EMG data which are highly sensible to different sources of 

noise. 

 Fuzzy Least-Squares SVM (FLS-SVM): overcomes the issue of unclassifiable regions in the feature 

space, which can occur with standard SVM or LS-SVM in solving multiclass problems by means 

of the OVO or the OVA approach [34]. This advantage can be obtained using learner-specific fuzzy 

membership functions, combinable to obtain (fuzzy) class-specific membership functions that are 

well-defined in each portion of the feature space. This implementation can be very useful when 

dealing with EMG-based datasets, which usually contain a huge number of classes.  

 Multiple Kernel Learning SVM (MKL-SVM): the kernel function becomes a linear or nonlinear 

combination of multiple base kernels [35]. Consequently, data can come from non-homogeneous 

information sources. Moreover, the optimal combination is itself learned from data, thereby 

eliminating the need for a preliminary, possibly arbitrary, kernel selection. This can be very useful 

for reducing variance in the problem and making SVMs more stable, a property that allows them 

to cope with non-stationary data such as EEG and EMG. 

 Spatially-weighted SVM (sw-SVM): proposes to integrate spatial feature weights into the SVM 

optimization problem and to tune these weights as if they were hyperparameters [36]. In this way 

the classifier learns from spatially filtered data, thus improving class separation, while reducing 

errors. This implementation allows to enhance just the weight of the most informative channels 

and can be efficient in case of high-density datasets, typical of EEG recordings.   

 K-means SVM: a 𝑘-means procedure can be implemented before SVM classification in order to 

avoid possible shortcomings due to input data redundancy and to speed up training [37]. Clusters 

containing only vectors belonging to the same class can be disregarded, while the others are 

retained and considered. SVM training is then carried on the new reduced training dataset, with a 

noteworthy reduction of complexity. This could be a valuable property when dealing with the 

classification of large datasets, such as the EEG and EMG ones. 

 Relevance Vector Machine (RVM): it can overcome some of the typical limitations of SVMs (e.g. 

determination of the C parameter, non-probabilistic predictions) [38]. RVMs have the same 

functional form of SVMs but within a Bayesian framework. 

 Twin SVM: uses two different SVMs, one for each class, for binary problems, and generates two 

distinct hyperplanes, each one being close to the patterns of the relative class, “1” outdistanced 

from the point of the other class. The class of a point 𝑥 is determined by the closest hyperplane. 
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Twin SVM allows a smaller number of constraints with respect to a standard SVM, and enhances 

operational speed [39], a property valuable for online implementations of HCI systems. 

 ε-Support Vector Regression (ε-SVR): SVMs can be used also for regression [40]. The task of 휀-

SVR is to find a continuous function 𝑓(𝑥) that has at most 휀 deviation from the actual targets of 

data samples and is as flat as possible. This is equivalent to estimating regression coefficients of 

𝑓(𝑥) with these requirements. It can happen that the linear function 𝑓 is not able to fit the training 

data. Hence, as for the classification case, slack variables 𝜉 (and therefore C) or kernels can be 

introduced.  

 

2.6. Performance Evaluation 

The performances of SVMs, and of classifiers in general, are usually evaluated by means of accuracy 

(or success rate or recognition rate), defined as the number of correct classifications over the total 

classifications. They can also be expressed in terms of error rate (or misclassification rate), defined as 

(100 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)% and representing the number of errors over the total classifications. If a classifier 

is not able at distinguishing the classes, its performances equate the chance level (50% of accuracy in a 

binary problem). 

Different methods can be used to evaluate accuracy:  

 Train-Test evaluation: consists in randomly or sequentially splitting the whole dataset into a training 

and a testing set and in computing accuracy on the testing set.  

 N-fold Cross Validation (CV): consists in partitioning the whole dataset in 𝑁 not-intersecting 

subsets, approximately of the same size, and in using the ith subset as a testing set and the remaining 

𝑁 − 1 subsets as training set; the process iterates until each subset is used once as a testing set, and 

the accuracy comes from the average of the 𝑁-tests accuracies.  

 Leave-One-Out (LOO) CV: consists in leaving one sample out of the whole available dataset to build 

the testing set and using all the remaining samples as training set; the process iterates until each 

sample of the dataset is used once as a testing set. 

CV is more computationally demanding than train-test, but allows to have an unbiased performance 

estimate, since all data are used (at least once) for testing; in this way the performance is independent 

from the particular dataset division which is adopted. 

When accuracies of different classifiers need to be compared and statistical significance among different 

classifiers needs to be assessed, confidence intervals and statistical tests can be used [41]. Although 

these methods are well-founded and can provide the experiment with more reliable estimates, they are 

rarely used in HCI studies because of the huge amount of data necessary for meaningful results. 

Even if widely used, accuracy has some limitations as an evaluation criterion, as it does not take into 

account the class distribution among examples (e.g. less frequent classes have smaller weight in the 

total accuracy) and the loss of information due to different types of errors (e.g. did the classifier 

misclassify the class or simply abstain from classification? [42]). For these reasons, many indicators 

can be introduced in order to have a more realistic evaluation of the whole classification process (e.g. 

sensitivity, specificity, precision, recall, Cohen’s kappa coefficient, Area under Roc Curve (AUC), etc.). 

The interested reader can refer to [43] for a generic overview of evaluation criteria in machine learning 

and to [44] for an overview of performance evaluation in BCI and HCI in general. 

 

3. EEG-based HCI and SVM 
3.1. Overview of BCI systems 

BCIs rely on the recording of user-modulated brain signals to drive a device. Brain signals can be 

measured by means of different technologies either invasive, such as the ElectroCorticoGraphy (ECoG) 

[45] or non-invasive, such as the EEG [46], the functional Near-Infrared Spectroscopy (fNIRS) [47], 

the MagnetoEencephaloGraphy (MEG) [48] , the functional Magnetic Resonance Imaging (fMRI) [49], 

etc. 

In this paper we focus on EEG-based BCIs, since they are popular for device control, thanks to the 

manageability and relatively low cost of the EEG technique. Anyway the interested reader can refer to 

the many reviews devoted to BCI (e.g. [50] for a complete review of processing algorithms for fNIRS-

BCIs or [51] for a review of ECoG-based BCIs) to have a deeper understanding of the other techniques. 

Many brain patterns have been used and many protocols have been implemented for BCI. The most 
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studied ones are based on Event-Related Potentials (ERPs), which consist in brain responses evoked by 

external stimulations when the user performs a specific mental activity. This activity could be, for 

example, the mental discrimination of a rare acoustic stimulus in a set of frequent stimuli, the 

discrimination of a verbal incongruity or of a known face among anonymous ones, etc. These cognitive 

tasks evoke in the EEG a specific ERP response, which can be discriminated by means of algorithms 

and used to control a device. The most relevant application of ERP-based BCIs is the P300-speller [52, 

53]. A subject is asked to focus the attention on a particular symbol in a matrix of symbols whose rows 

and columns iteratively flash. Three hundred milliseconds after the flashing of the row/column 

containing of the chosen symbol, a positive voltage spike, named P300, is measured on the subject’s 

scalp. When the P300 occurs, the classifier recognizes the symbol, so allowing the subject to 

communicate. Other than a symbol, ERP-based BCIs were used to recognize an intention of movement 

to drive a wheelchair [54], to drive an analogue mouse [55], a mobile robot [56], a domotic interface 

[57], to surf on the internet [58], to paint [59], to browse photographs [60], etc. 

The control of a device can be also realized by means of Sensorimotor Rhythms (SMRs)-based BCI, 

on the basis of brain signal variations evoked by actual or imagined mental tasks [61]. When a subject 

moves or imagines to move a body segment or to perform a specific mental task, alpha (8-13Hz), beta 

(14-26Hz) and gamma (>30Hz) frequency bands, recorded on the brain sensorimotor cortex, vary in 

voltage amplitude (the first two increasing and the third decreasing). After a training stage, the subject 

learns how to voluntarily modulate those voltages and thus control a device, e.g. a helicopter in a 3D 

space [62], a cursor on a screen [46], a robotic arm [63], a wheelchair [64], a spelling program [65], etc. 

The third big class of BCIs is based on Steady-State Visually Evoked Potentials (SSVEP), which are 

responses evoked in the EEG spectrum by long trains of flickering visual stimuli and characterized by 

a frequency peak at the same frequency of the stimuli themselves. Being easily recognizable in the EEG 

spectrum, SSVEPs have been widely used to implement BCIs, with high accuracy and throughput rates, 

devoted e.g. to the selection of buttons on a screen [66], to the communication by means of a speller 

[67], to the driving of a wheelchair [68], to the control of a robotic arm [69], etc. 

Finally, there is a class of BCI systems making use of Slow-Cortical Potentials (SCPs), which are slow 

(<1Hz) negative or positive potential shifts voluntary modulated by a subject to implement a binary 

communication [70]. SCPs-based BCIs have not found a wide diffusion for communication and control 

purposes, due to the slowness of brain responses, but were exploited for implementing neuro-

rehabilitation strategies [71]. 

The following sections concern the review of the BCI literature, focusing on the exploited brain feature: 

ERPs, SMRs, SSVEPs and SCPs. Details of the SVM implementation and its performances are 

reported, making a comparison with those of other classifiers. The BCI protocol, the system and the 

applications are run over or just mentioned for the sake of simplicity.  
 

3.2. Event-Related Potentials (ERPs)-based BCI systems 

For typical speller-based applications, SVM was successfully adopted in [72], where a self-training 

semi-supervised linear-kernel SVM achieved an accuracy similar to that of a standard SVM (up to 

98.5%) by using a smaller training dataset. In [73] an ensemble of linear SVMs achieved the same 

accuracy of a standard SVM, 96.5%, with the full training set, and accuracy higher by 5% with 1/3 of 

the training set. In [74] a sequential updating self-training LS-SVM, whose kernel gradually improved 

with the insertion in the training set of upcoming unlabeled data, was used with an online spelling 

accuracy greater than 85%. In [75] data from a P300 speller, with modifications in symbols size, 

symbols distances and speller colors, were classified with an RBF-SVM and an LDA, with RBF-SVM 

performing better in each condition (in the best configuration, accuracy up to 90% was achieved by 

SVM vs. 80% of LDA). 

In ERPs-based protocols different from the speller one, as the one in [36], spatio-temporal filtering and 

an ensemble of linear sw-SVMs were used to classify data acquired from a visual feedback experiment, 

consisting in memorizing the position of a set of digits and in indicating the exact position of a random 

target number. The obtained classification accuracy was 87.80%±3.63%, higher than the ones achieved 

by linear SVM and simple sw-SVM (70.71%±10.77% and 80.71%±6.61%, respectively). In [76] 

authors compared an RBF-SVM against a linear SVM and a Linear Logistic Classifier (LLC) in 

classifying ERPs acquired during an image Rapid Serial Visual Presentation (RSVP) protocol. SVMs 

outperformed LLC, while RBF-SVM was more accurate than linear-SVM. In [77] ERPs following true 
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and false statements were classified with the aim to separate covert "yes" from covert "no"-thinking. 

Four classifiers were compared, namely a linear SVM, an RBF-SVM, a stepwise LDA and a shrinkage 

LDA. All the classifiers performed at chance level when separating "yes" from "no"; however, when 

the single responses were discriminated against baseline, RBF-SVM showed the highest accuracy 

(68.8%). In [9] a non-verbal communication-based BCI was created on the basis of the ERP associated 

to implicit negative emotional responses to specific neutral faces. SVMs were used with both linear and 

RBF kernels, with features both in time and time/frequency domains. The classifiers exhibited accuracy 

up to 80% in discriminating emotional responses. In [78] the imagination of Japanese vowels 

vocalization was investigated as an input to control a speech prosthesis. An RBF-SVM, a linear RVM 

(RVM-L) and an RVM with Gaussian kernel (RVM-G) were compared. Accuracy obtained by RVM-L 

was around chance level and also significantly worse than RVM-G’s one. Linear classification was 

ineffective for silent speech. In comparison to SVM-G, RVM-G achieved slightly better accuracy but 

with a significant reduction of relevant vectors, while its accuracy worsened in case of few training 

points. 

Table 1 summarizes the main SVM features used in ERPs-BCI works, namely, type of protocol, 

maximum achieved performances, SVM implementation, type of kernel, number of classes involved in 

the classification, type of multiclass implementation, adopted methodology to set hyperparameters, 

chosen methodology to evaluate performances, used tool. In particular, performances refer to the best 

obtained result, in terms of accuracy, or error rate, or AUC, etc. If not differently indicated, 

performances correspond to accuracy. In any case, a comparison among performances of different 

systems cannot be directly evidenced since the different implementations used.  

 
Table 1: SVM features in ERP-based BCI papers. NA= Not Available. 

Paper Protocol Performances Implementation Kernel Nr. of classes Multiclass 

implementation 

Hyperparameters 

setting 

Performance 

evaluation 

Tool 

[72] Speller 98.5% Self-Training Semi-

supervised 

Linear 2 - Fisher score Self-training semi-

supervised 

LIBSVM 

[73] Speller 96.5% Ensemble SVM Linear 2 - Five values of C Train-Test NA 

[74] Speller 85% LS-SVM Linear 2 
 

Fixed Train-Test LIBSVM 

[75] Speller 90% Standard RBF 2 - 5-fold CV 3-fold CV LIBSVM 

[36] Visual  

feedback 

70.71%±10.77% 

80.71%±6.61% 

87.80%±3.63% 

Standard  

sw-SVM 

modified sw-SVM 

Linear 2 - Fixed 5-fold CV NA 

[76] RVSP AUC=0.927 

AUC= 0.941 

Standard Linear 

RBF 

2 

2 

- Fixed 

10-fold CV 

Monte Carlo 

Monte Carlo 

NA 

[77] Yes/No 

discrimination 

68.8% Standard Linear 

RBF 

2 

2 

- 

- 

10-fold CV 

10-fold CV 

10-fold CV 

10-fold CV 

LIBSVM 

[9] Emotion 

recognition 

80% ν-SVM Linear 

RBF 

3 NA ν Fixed 

γ different values 

36-fold CV LIBSVM 

[78] Letters  

Imagination 

77% 

50% 

79% 

Standard 

RVM 

RVM 

RBF 

Linear 

RBF 

2 - C Fixed, σ CV Train-Test SVM and Kernel 

Methods Matlab 

toolbox; 

Sparse Logistic 

Regression 

toolbox 

Table 1 evidences that SVM, either with linear or RBF kernel, achieves high accuracy in ERPs 

discrimination and near 100% accuracy in speller applications. The implementations different from the 

standard C-SVM (sw-SVM for example) can boost ERPs-based BCI system performances, accordingly 

to the type of data and the final application. Hyperparameters setting is performed in different ways, 

mainly by fixing their values or by using CV. CV remains the method of choice for performance 

evaluation. As a final remark, LIBSVM results to be the most used toolbox. 

 

3.3. Sensor-motor rhythms (SMRs)-based BCI 

The SMRs-based BCI review regards papers dealing with different mental tasks which can be pure 

motor tasks, both motor and non-motor tasks and other typologies of tasks. 

 

3.3.1. Motor tasks 

The imagination of left and right hand movements is widely used in BCI, because such tasks evoke 

highly discriminable patterns in well-defined and opposite sides of the brain. For these reasons, many 

studies have tried to find the best combination of extracted features and classifier to boost their detection 

performances. For example, spatial and temporal Principal Component Analyses (PCA) and a linear 

SVM were used in [79] with accuracy of 73.65%, while in [80] an RBF-SVM outperformed five 

different classifiers (Linear Mahalanobis Distance, Quadratic Mahalanobis Distance, Bayesian 

Classification, two types of Artificial Neural Networks (ANN)) independently from the spatial and the 
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temporal filter used for the preprocessing. Also in [81] three different feature-extraction methods and 

three different classifiers (LDA, Adaboost and RBF-SVM) were compared, with SVM and LDA 

performing better (error rates of 0%-23.81% and 9.61%-14.33%, with SVM and LDA respectively) 

both with single features and with combinations of features. In [82] RBF-SVM outperformed LDA and 

ANN either with the proposed features (9% vs. 10% of ANN and 12% of LDA) and with simple AR 

features (18% vs. 21% of ANN and 22% of LDA). In [83] an RBF-SVM and a fuzzy RBF-SVM were 

compared with ANN and LDA and outperformed them in terms of amount of information transmitted 

per second. In [84] an RBF-SVM was used in combination with neuro-fuzzy prediction and multi-

resolution fractal feature vector, with accuracy of 91%. In [85] authors proposed a kernel fisher (KF)-

posterior-probability (PP)-SVM, consisting in calculating the within-class scatter matrix of the two 

classes, in integrating it into the RBF kernel of an LS-SVM, and in calculating the output of the 

classification with posterior probabilities. When compared to a simple SVM, a PP-SVM and a KF-

SVM, the KF-PP-SVM achieved higher accuracy (75.73% vs. 70.86%, 71.52% and 74.11%). Finally, 

in [86] a feature selection technique, based on genetic algorithm (GA) and an RBF-SVM, resulted with 

accuracy higher than that obtained with feature combination (80.8% vs. 72.3%). With the adoption of 

GA, SVM showed higher accuracy with respect to ANN (80.8% vs. 75.6%). 
In some studies, the imagery of feet movements was used together to other mental tasks, as in [87] 
where a linear SVM was compared to LDA, Mahalanobis Distance, Generalized Distance Based 
classifier and Bayes classifier, in the discrimination of left hand, right hand, feet and tongue movements. 
Accuracy higher than 80% was achieved by both LDA and SVM. Similarly, right foot imagery was 
classified in [88], where authors compared a Bayesian LDA (BLDA) with two different versions of 
LDA (simple and regularized) and with an RBF-SVM, with BLDA resulting the most accurate classifier. 
In [89] authors classified two datasets, which are right-hand/right-foot motor imagery and left-
hand/right-foot motor imagery, with cross-correlation feature extraction and LS-SVM with RBF kernel. 
A logistic regression classifier and a kernel logistic regression classifier were used for comparison. LS-
SVM achieved higher success rates than the two logistic regression classifiers (first dataset: 
95.72%±4.35% vs. 89.54%±8.61% and 93.38%±6.76%; second dataset: 97.89%±2.96% vs. 
95.31%±5.88% and 94.87%±6.98%). In [90] a PCA-based feature selection and RBF-SVM allowed 
discriminating data from two different datasets, including right-hand and foot motor imaginary and left-
hand and foot motor imagery, with accuracies ranging from 61.36% to 90.63%. In [91] movement-
related independent components and RBF-SVM were used for the classification of left-hand, right-hand 
and foot motor imagery, with accuracy of 65%. In [92] authors proposed a method based on spatial 
filtering and “classifiability” of features for the classification of two different datasets, one consisting 
of left-hand, right-hand, foot and tongue motor imagery and one of left-hand and right-hand motor 
imagery, by means of both standard SVM and twin SVM with RBF kernel. For binary classification, 
accuracy with twin SVM increased by up 20% with respect to the one obtained by standard SVM. In 
the multiclass case, accuracy was significantly higher when using twin SVM (up to 79%±5.8% in one 
subject) against SVM (49%±8.8%). In [93] authors introduced multiclass posterior probability for twin 
SVM in order to classify both several datasets of motor imagery tasks, made of different classes (from 
3 to 11) and a dataset from BCI competitions (left-hand, right-hand, feet, tongue, 
http://www.bbci.de/competition/). Twin SVM performed with less computational time and higher 
accuracy with respect to SVM, especially with fewer samples. In [94] authors applied an optimal 
allocation-based approach for a discriminative feature extraction to data from binary motor imagery 
datasets (right-hand vs. right-foot and left-hand vs. right-foot) and used LS-SVM with RBF kernel and 
a Naïve Bayes for classification. LS-SVM performed better than Naïve Bayes (accuracy of 
90.60%±11.31% and 96.62%±3.72% vs. 75.56%±22.35% and 96.36%±2.32%, with 6 and 11 features 
respectively). In [95] authors optimized Common Spatial Patterns (CSP) computed on multiple signals 
filtered at a set of overlapping bands, and used RBF-SVM in order to discriminate the imagination of 
right-hand and foot and of right-hand and left-hand. Results showed a lower error rate when an 
optimized filter was used (7.95%±2.45% vs. 13.33%±2.92% of simple CSP in the first dataset; 
18.83%±3.55% vs. 23.10%±5.04% of simple SVM in the second dataset). In [96] the imagination of 
two different motor tasks (slow and fast right-arm flexion) and error potentials were classified by means 
of two linear SVMs with an average error rate lower by 14% than the case with no error potentials. The 
imagination of wrist extension was classified in [97], with a linear SVM used for recursive feature 
elimination and LDA for classification.  
Besides classical motor imagery patterns, also parameters related to the imagined movements were 

discriminated, as in [98], where a wavelet-based feature extraction and an RBF-SVM were used to 

classify brain signals generated by variations of force-related parameters, during four different 
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voluntary tasks. The error rate provided by RBF-SVM, when compared with a simpler classifier (nearest 

representative classifier, NR), was significantly lower (15.8% in the best SVM case versus 40.2% in the 

best NR case). In [99] authors investigated the discriminability of real and imaginary isometric plantar-

flexion of the right-foot at different target torques (TT) and at different rates of torque development 

(RTD), by using wavelets for feature extraction and an RBF-SVM for classification. Results showed 

that the TTs under ballistic and moderate RTD were discriminated with error rates of 16%±9% and 

26%±13% respectively, while RTDs under high and low TT were discriminated with error rates of 

16%±11% and 19%±10%, respectively, thus indicating the possibility to detect task parameters in 

single-trial EEG. 

Finger movement imagery was widely used in SMR-based BCI, as in [100] where authors combined 

different spatio-temporal brain patterns, different spatial filtering and a linear SVM to discriminate left 

and right-hand fingers movements, with an accuracy higher than 85%. In [101] an SMR-BCI based on 

the discrimination of right-index finger lifting versus left-index finger lifting tasks was proposed. Four 

different classifiers were compared, namely a Fisher’s LDA, two types of ANN and an RBF-SVM 

which was the best performing classifier on average. In [102] the author used two different datasets, 

one consisting in the imagination of left- and right-hand movements and one in left- and right-finger 

lifting movements, and implemented a wavelet-based methodology to localize brain responses in the 

time-frequency domain, a fractal feature extraction and an RBF-SVM classification. Also he compared 

SVM-RBF with LDA and demonstrated the former to be more accurate than the latter (82.5% vs. 

78.7%). Finger movements were also discriminated in [103] by using RBF-SVM, with an average 

accuracy of 77.11% in detecting movements on all possible couples of fingers. In [104] authors 

proposed Artificial Bee Colony (ABC) for feature selection in order to discriminate left and right finger 

lifting. Different features were extracted and both GA and ABC were used for selecting the best feature 

set. An RBF-SVM was used for classification. Average accuracy was 88.8% with ABC and 83.1% with 

GA. In [105] authors implemented a method for the recognition of real and imagined finger movements. 

Numerical and symbolic signal regression procedures were used for feature extraction in order to avoid 

the loss of information regarding the time localization of features. Then ANN and an RBF-SVM were 

used for classification. Results showed that SVM accuracy increased with the increasing of the number 

of trials (from 45% to 62%), while ANN performed better at single-trial discrimination. 

Finally a new couple of motor imagery tasks, swallowing and tongue protrusion, was analyzed in [106] 

for post-stroke dysphagia rehabilitation. Features based on dual-tree complex wavelet transform and a 

linear SVM were used for classification. Results showed that average accuracies of 70.89% and 73.79% 

could by achieved when swallowing and tongue-protrusion were classified against idle state in healthy 

subjects. Also accuracy of 66.40% for swallowing and 70.24% for tongue protrusion were obtained 

with data from a stroke patient. Finally authors demonstrated that swallowing could be detected from 

tongue protrusion-models due to the high correlation between their classification accuracies. 

Table 2 summarizes the main SVM features of motor imagery-based BCI works. Differently from ERP-

based papers, the second column of the table lists the tasks performed by the subjects rather than the 

specific protocol. 
 

Table 2: SVM features in motor tasks-based SMR-BCI. L= left, R= right, H= hand. Err= Error Rate. NA= Not 

Available. 
Paper Tasks Performances Implementation Kernel Nr. of 

classes 

Multiclass 

implementation 

Hyperparameters 

setting 

Performance 

evaluation 

Tool 

[79] LH, RH 73.65% Standard Linear 2 - NA 10-fold CV NA 

[80] LH, RH 75% Standard RBF 2 - 20-fold CV 5-fold CV SVMLIB 

[81] LH, RH Err.= 0 - 23.81% Standard RBF 2 - CV 10-fold CV SVM3 

Toolbox 

[82] LH, RH 91% Standard RBF 2 - Genetic Algorithm Train-Test NA 

[83] LH, RH Err.= 10.17% 

Err.= 12.14% 

Standard 

Fuzzy 

RBF 

RBF 

2 - Low fraction of SV Train-Test NA 

[84] LH, RH 91% Standard RBF 2 - NA Train-Test NA 

[85] LH, RH 75.73% vs.70.86%, 71.52% 

and 74.11% 

Kernel-Fisher-Posterior-

Probability LS-SVM 

RBF 2 - Fixed 5-fold CV NA 

[86] LH, RH 80.8% Standard RBF 2 - 5-fold CV 5-fold CV NA 

[87] LH, RH, feet, 

tongue 

>80% Standard Linear 4 NA Fixed 5-fold CV Biosig 

Toolbox 

[88] LH, RH, R foot, 

tongue 

Kappa coefficient up to 0.68 Standard RBF 4 

4 

NA 2x5-fold CV 

5-fold CV 

20-fold CV 

Train-Test 

LIBSVM 

[89] RH/R foot 

LH/L foot 

95.72%±4.35% 

97.89%±2.96% 

LS-SVM RBF 2 - Grid-search 10-fold CV LS-

SVMLab 

for 

Matlab 

[90] RH/foot 

LH/foot 

61.36% to 90.63%. Standard RBF 2 - Fixed Train-Test NA 

Page 14 of 35



15 

 
 
[91] LH, RH, foot 65 Standard RBF 3 NA NA 5-fold CV NA 

[92] LH, RH, foot, 

tongue; 

LR, RH 

80% 

100% 

Twin SVM RBF 4 

2 

NA Grid-search 5-fold CV LIBSVM 

[93] Different datasets 

with 3-11 Classes; 

LH, RH, foot, 

tongue 

Up to 100% Standard 

Twin SVM 

RBF 3-11 

4 

OVA k-fold CV Train-Test  Matlab 

[94] RH/R foot 

LH/L foot 

96.62%±3.72% 

97.39%±4.77% 

LS-SVM RBF 2 - Grid-search 10-fold CV LS-

SVMlab 

toolbox 

[95] RH/foot 

RH/LH 

Err.= 7.95%±2.45% 

18.83%±3.55% 

Standard Linear 2 - CV 10x10 CV NA 

[96] Arm flexion 88% Standard Linear 2 OVA Online learning LOO NA 

[98] Force-related 

parameters 

84.2% 

 

Standard RBF 4 Binary 3-fold CV 3-fold CV NA 

[99] Plantar flexion R 

foot 

Err= 16%±9% Standard RBF 2 - 3-fold CV 3-fold CV NA 

[100] L/R finger >85% Standard Linear 2 - 5-fold CV 20-fold CV LIBSVM 

[101] L/R finger 77.3% Standard RBF 2 - Fixed Train-Test NA 

[102] L/R hand 

L/R finger 

82.5% Standard RBF 2 - NA 5-fold CV NA 

[103] Fingers 77.11% Standard RBF 2 - Grid-search 5-fold CV LIBSVM 

[104] L/R finger 88.8% Standard RBF 2 - 5-fold CV k-fold CV NA 

[105] Thumb/index  62% Standard RBF 4 OVO Grid-search Train-test LIBSVM 

[106] Swallowing 

Tongue Protrusion 

70.89% 

73.79% 

Standard Linear 2 - Fixed 10-fold CV Matlab 

 

As table 2 reports, SVM with RBF kernel and in the standard C-SVM implementation is the most 

adopted configuration, also resulting with the best performances in the classification of motor tasks 

discrimination, having accuracy up to 90% especially in binary protocols. Grid-search and CV are 

widely used for hyperparameters setting, while CV is the chosen method for performance evaluation. 

Even if the information about the used tool is frequently missing, LIBSVM is widely used. 

 

3.3.2. Motor and non-motor tasks 

Combinations of motor and non-motor tasks have been used in SMRs-based BCI. For example the triad 

left-hand, right-hand and word generation imagery was discriminated in [107], by means of SVM-

recursive feature elimination and linear SVM. Obtained accuracies ranged between 60% and 86.9% 

against 67.1%-90.2% and 66.7%-86.6% for the left/right-hand, left-hand/word generation and the right-

hand/word generation pair, respectively. Those three tasks were classified in [108] too, features being 

extracted by means of an adaptive CSP and classified by means of an RBF-SVM; this combination 

resulted more accurate on average (65.12%) than stationary CSP (58.25%) and windowed CSP 

(59.14%). And also in [109] where linear and RBF-Transductive SVMs (TSVMs are recommended 

when data distributions differ in the training and testing sets, because they make use of both labeled and 

unlabeled data to build the learning model) were compared with a linear and an RBF-SVM. With smaller 

training sets, TSVM outperformed simple SVM by 2%-9% of accuracy, leading to a reduction of 

calibration time. Moreover non-linear TSVM outperformed linear-TSVM with larger datasets. In [110] 

feature extraction based on signal wavelet decomposition, tensor discriminant analysis and Fisher 

scoring (to eliminate redundant features) and RBF-SVM were used to discriminate three different 

datasets, consisting in 1) the imagination of left- and right-hand movements, 2) the imagination of figure 

perception and mental arithmetic and 3) a memory task. With motor imagery tasks the method 

performed with an accuracy comparably to CSP (76.3%), while in cognitive and memory tasks and 

using a broad frequency band (4-45Hz), it achieved higher accuracy (up to 92.5% and 75.3%) than CSP 

(74.9% and 56.9%). In [111] two features extraction methods and two classifiers, Bayesian and RBF-

SVM, were compared to discriminate spatial navigation from auditory imagery. The features being 

equal, there was no significant difference in the accuracy achieved by the Bayesian classifier and the 

RBF-SVM. In [112] the so called Immune Feature Weighted SVM (IFWSVM) was proposed to classify 

five different mental tasks (baseline, geometric figure rotation, multiplication problem, letter composing 

and visual counting). The immune algorithm, which sees the objective function as an Antigen and its 

optimal solution as an Antibody, was introduced to search for the optimal feature weights and the 

optimal SVM hyperparameters. When compared with a simple Immune SVM (without feature weight), 

IFWSVM with an RBF kernel attained higher accuracy in all the tasks (e.g. 97.57% vs. 95.75% in the 

baseline, 91.51% vs. 89.69% for the rotation and so on). In [113] the movement of a robot was controlled 

by means of the motor imagery of four different tasks (move right, move left, move forward and no 

movement), the stopping on reaching the goal position was controlled by means of P300 and trajectory 

was adjusted by detecting error potentials. The four tasks were classified by means of an AdaBoost 

SVM [114], while P300 responses and error potentials were detected by means of linear SVMs. Average 
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accuracies of 79.20%, 81.50% and 80.10% were obtained for motor imagery, P300 and error potentials 

detectors respectively. Success rate of 95% was obtained in the real-time control of the robot arm. In 

[115] authors tested the classification of three different mental tasks (spatial navigation, calculation and 

reading), when subjects interacted with Mixed Reality scenarios. An RBF-SVM and an LDA were 

compared, with SVM achieving accuracy of 86.59% and LDA of 88.56%. In [116] authors implemented 

a MKL-SVM as a linear combination of RBF and polynomial kernels, for the discrimination of five 

mental tasks (relax, visual counting, letter composing, mathematical multiplication, geometric figure 

rotation) and of cognitive tasks (identification of specific target stimulations within a stream of non-

target stimulations). Accuracy of MKL-SVM in discriminating mental tasks was higher than accuracy 

achieved by single-kernel SVMs, both when all the five tasks were classified together and when 2, 3, 

or 4 tasks were considered; the same was found for cognitive tasks. In the single-kernel case, RBF-

SVM was more accurate than polynomial-SVM. In [117] authors investigated the continuous evaluation 

of mental calculation as a valuable signal to control a BCI system. Active states and rest states were 

discriminated by means of an RBF-SVM. Average AUC values up to 0.89±0.056 and of 0.67±0.122 

were achieved in each session and intra session respectively. 

Table 3 shows the SVM features relative to motor and non-motor tasks-based BCI systems, with second 

column reporting performed tasks. 

 
Table 3: SVM features in motor-non motor tasks based SMR-BCI. R= Right, L= Left, H= Hand, WG= word 

generation. NA= Not Available. 
Paper Tasks Performances Implementation Kernel Nr. of 

classes 

Multiclass 

implementation 

Hyperparameters 

setting 

Performance 

evaluation 

Tool 

[107] RH, LH, WG 60% and 86.9% 

67.1%-90.2% 

66.7%-86.6%. 

Standard Linear 3 OVO Fixed Train-Test NA 

[108] RH, LH, WG 65.12% Standard RBF 3 NA 20-fold CV Train-Test NA 

[109] RH, LH, WG >70% Standard  

Transductive SVM 

Linear  

RBF 

3 OVA 5-fold CV Train-Test LIBSVM 

[110] RH,/LH 

Figure 

perception/mental 

arithmetic 

Memory task/no task 

76.3% 

92.5% 

75.3% 

Standard RBF 2 

2 

2 

- 5-fold CV Train-Test 

1Train-4tests CV 

1Train-4tests CV 

NA 

[111] Spatial 

navigation/auditory 

imagery 

72.2% Standard RBF 2 - 5-fold CV Train-Test  Matlab 

[112] Baseline, geometric 

figure rotation, 

mathematical 

multiplication, letter 

composing, visual 

counting 

97.57% 

91.51% 

Immune Feature 

Weighted 

RBF 5 OVA Immune algorithm Train-Test NA 

[113] Robot movements (L, 

R, forward, no 

movement) 

79.20%, 81.50%, 

80.10% 

95% online 

Adaboost 

Standard 

- 

Linear 

4 

2 

OVO 

- 

NA 

NA 

Train-Test 

Train-Test 

NA 

[115] Spatial navigation, 

mental calculation, 

mental reading 

86.59% Standard RBF 3 OVO Fixed 7-fold CV LIBSVM 

[116] Relax, visual counting, 

letter composing, 

mathematical 

multiplication, 

geometric figure 

rotation 

99.20% 

81.25% 

76.76% 

75.25% 

MKL Polynomial 

RBF 

2 

3 

4 

5 

- 

OVA 

OVA 

OVA 

Multiple values search 5-fold CV  Matlab 

[117] Continuous mental 

calculation 

AUC up to 

0.89±0.056 

Standard RBF 2 - 20-fold CV CV LIBSVM 

 

According to table 3, SVM with RFB kernel results to be the most adopted and accurate configuration 

when dealing with both motor and non-motor tasks. Different implementations are tested, even if the 

standard one is still the most used. CV is often adopted for hyperparameters setting, while train-test is 

usually considered for performance evaluation. Again, LIBSVM is widely used, even if the information 

about the tool is frequently omitted. 

 

3.3.3. Other tasks 

Imagery tasks different from the classical ones were used in [118], where the imagery of the “yes” and 

“no” words was discriminated by means of an RBF-SVM with accuracy higher than 70%. In [119] 

authors designed a protocol based on the imagination of two Chinese characters and used RBF-SVM to 

discriminate them with high accuracy (from 73.65% to 95.76%). In [120] a three-layer scheme for 

emotion recognition in single-trial EEG was proposed. Emotion-inductive pictures were used and 

valence and arousal were classified by means of imbalanced (quasi-conformal) SVM with RBF kernel. 

Results showed that the proposed scheme could achieve the highest classification accuracy of valence 
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(82.68%) and arousal (84.79%) when compared to k-Nearest Neighbors (kNN) or standard SVM. In 

[121] a real-time algorithm for the classification of EEG-based self-induced emotions (disgust and 

relax) was proposed. RBF-SVM was used for classification, achieving average accuracy higher than 

90%. In [122] authors proposed a method for the recognition of implicit human intentions for 

developing an interactive web service engine. Brain state changes associated to navigational and 

informational intention were measured by using EEG phase synchrony values in different frequency 

bands as features. Different classifiers were compared: SVM with RBF and polynomial kernels, 

Gaussian Mixture Models (GMM) and Naïve Bayes. Classification accuracy was the highest for RBF-

SVM: for example, for one subject, accuracy with RBF-SVM was 77.4% whereas with polynomial-

SVM, Naive Bayesian and GMM it was 72.4%, 52.2% and 50.5%. The same trend was observed in all 

subjects. 

In Table 4 SVM features relative to the “other tasks”-based BCIs are listed. 

 
Table 4: SVM features in other tasks based SMR-BCI. NA= Not Available. 

Paper Tasks Performances Implementation Kernel Nr. of 

classes 

Multiclass 

implementation 

Hyperparameters 

setting 

Performance 

evaluation 

Tool 

[118] YES/NO 

imagination 

>70% Standard RBF 2 - Fixed 10-fold CV OSU SVM 

Classifier 

[119] Chinese 

characters 

imagination 

73.65% - 95.76% Standard RBF 2 - 10-fold CV 10-fold CV LIBSVM 

[120] Emotion 

reconition 

82.68%-84.79% Imbalanced quasi-

conformal kernel SVM 

RBF 2 - 2-fold CV CV NA 

[121] Emotion 

reconition 

Up to 99.4%±0.6% Standard RBF 2 - 10-fold CV Train-Test LIBSVM 

[122] Human intention 

recognition 

77.4% Standard RBF 

Polynomial 

2 - Grid search+10 fold CV 10-fold CV NA 

 

RBF-SVM in its standard configuration is widely used for the classification of unconventional imagery 

tasks, with high accuracy. CV is widely used both for hyperparameters setting and for performance 

evaluation. 

 

3.4. Steady states Visual Evoked Potentials (SSVEPs) and Slow Cortical Potentials (SCPs) 

For the classification of SCPs, Qin et al. [123] proposed a semi-supervised SVM aiming at reducing the 

time-consuming training process. The method consisted in using both a small labeled dataset and a large 

unlabeled dataset to train the classifier and in implementing a batch-mode incremental training to 

iteratively improve the training performances. A 1-norm linear SVM further decreased training time. 

The method was validated with data from an EEG-based cursor control experiment and CSP was 

adopted for data filtering. The proposed semi-supervised SVM increased the accuracy by more than 

14% with respect to a standard SVM. Moreover, the accuracy reduced by 3.25% when the standard 

SVM was trained with all the data (labeled plus unlabeled), but a decrease in CPU time was achieved. 

In [124] a method to improve BCI accuracy was proposed, based on polynomial fitting of training data 

and the use of a very simple kNN. This was made to discriminate brain potentials generated when 

moving a cursor up and down on the screen. An RBF-SVM and an ANN were also compared to the 

simple kNN. The latter outperformed both SVM and ANN in terms of accuracy and speed. In [125] an 

automated feature selection strategy, based on a decision tree, was implemented. Subjects were asked 

to move a cursor up and down on a screen and their SCPs were classified by means of a sigmoidal-

kernel SVM, which performed with an average accuracy of 89.12%. This result was by 0.9% higher 

than the one obtained with an optimal electrode recombination method for feature extraction. 

For SSVEPs classification, instead, in [68] authors developed a prototype of BCI-controlled wheelchair. 

SSVEPs elicited by four different flickering frequencies were used to control the movement of the 

wheelchair in four directions. Four colors (green, red, blue and violet) were used for the stimuli to 

investigate the influence of colors on SSVEPs. Two ANNs and an SVM were used as classifiers; 

different kernels were tested (order 4th order-polynomial, quadratic, linear) in order to select the most 

accurate one. On the basis of the results, when using violet stimuli, SVM achieved the best accuracy 

(between 75 and 100%). 

Table 5 reports SVM features relative to SCPs and SSVEPs-based BCI systems. In particular, the second 

column lists the exploited brain feature (SCPs or SSVEPs). 
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Table 5: SVM features in SSVEP/SCP based SMR-BCI. NA= Not Available. 
Paper Brain 

Feature 

Performances Implementation Kernel Nr. of 

classes 

Multiclass 

implementation 

Hyperparameters 

setting 

Performance 

evaluation 

Tool 

[123] SCPs Up to 97.39% Semisupervised 1-norm Linear 2 - NA Train-Test LP-solve 2.0 C 

library 

[124] SCPs Up to 88.6%±1.9% Standard RBF 2 - Fixed values for C 

CV for σ 

CV Matlab 

[68] SSVEPs Up to 100% Standard Order4-polynomial, 

quadratic, linear 

4 OVA NA Train-Test Matlab 

[125] SCPs 89.12% Standard Sigmoid 2 - NA 10x10-fold CV NA 

 
From table 5 it is evident that different kernels are used to set a standard SVM in order to classify 
SSVEPs and SCPs, with almost perfect accuracy. The information about the hyperparameters setting is 
often missing. 

 
3.5. Some Statistics 
Figure 7 represents the percent occurrence of SVM features related to papers focused on BCI and here 
reviewed. The standard C-SVM implementation and the RBF kernel result as the most popular. 
Moreover, when dealing with multiclass problems, the OVA approach is preferred. Concerning 
hyperparameters setting, the CV is the most frequent method, whereas the performance evaluation 
adopts a train-test approach in most of the cases. Among tools, LIBSVM results the mostly utilized one. 
However, it is important to stress that, despite the easy accessibility of all the information regarding 
SVM algorithms, 20% of the available papers (not reported here) did not described the kernel type, even 
if its choice dramatically affects the final results. Moreover, in most of the reviewed papers, the 
multiclass implementation and the hyperparameters setting methodology are not described, thus leading 
to only partially reproducible results. 
 

4. EMG-based HCI and SVM 

4.1. Overview of EMG-based HCI systems 

Surface EMG (sEMG) signals are the result of the capture of the electrical activity of muscles, recorded 

on skin surface. Similarly to BCI systems, sEMG-based HCIs found their major applications in the field 

of assistive devices and rehabilitation. They have been mainly exploited to control multifunction 

prostheses of the upper limb [126] or the lower one [127]; to drive electric power wheelchairs [128]; to 

recognize facial gestures [129]; to control a mobile robot [130] or a manipulator system [131]; to 

 

 
 

Figure 7: Percent occurrence of the different SVM features (Implementation, Kernel, Multiclass Implementation, 

Hyperparameters setting, Performance evaluation, Tool). Values are obtained from literature works regarding EEG-

based HCIs. LS= Least-Squares; sw= Spatially-weighted; RVM= Relevance Vector Machine; MKL= Multiple 

Kernel Learning; RBF= Radial Basis Function; DAG= Directed Acyclic Graph; CV= Cross Validation; GA= 

Genetic Algorithm; PSO= Particle Swarm Optimization; LOO= Leave-One-Out; NA= Not Available. 
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implement functional electrical stimulation-control systems for hemiplegic patients rehabilitation [7], 

and so on.  

In the following sections a review of all the literature studies based on SVMs to implement HCI systems 

is provided. The focus is mainly on HCI used for controlling purposes, thus disregarding, for example, 

papers using SVM to detect neuromuscular disorders [132, 133], to discriminate contaminated from 

clean EMG [134], to discriminate efforts stages in prolonged running [135].  

Papers are divided according to the body segment involved and/or the tasks to be recognized: hand 

movements, finger movements, arm movements, walking modes, facial and whole body movements.  

 

4.2. EMG-based HCI for hand gestures recognition 

Hand gestures recognition is one of the most useful applications of sEMG-based HCI systems for the 

control of robotic hands as reported in [136], where wavelet transform for feature extraction and a linear 

SVM allowed to discriminate six hand movements with a misclassification rate of 5%. In [137] six hand 

motions and the relative forces were recorded by means of EMG and force sensors and classified with 

RBF-SVM. Classification accuracy was up to 95%, while error rate was lower than 7% in force 

regression. In [32] authors developed an EMG-controlled humanoid hand to discriminate active modes 

from idle modes and then eighteen different hand gestures within the active modes. An RBF-SVM was 

used and accuracy close to 100% was obtained. For the online design, the RBF kernel was substituted 

with a linear one to relieve the computational burden, with a slight decrease in accuracy. In [138] fifteen 

different hand gestures were recorded in senior and young people and classified with an RBF-SVM 

with accuracy of 90.62% (seniors) and of 97.60% (young volunteers) respectively. In [139] ten hand-

performed Chinese numbers were classified. Three feature sets and four classifiers (kNN, LDA, 

Quadratic Discriminant Analysis (QDA), and SVM) were combined and compared; moreover the 

combination of the three features and of an MKL-SVM, with RBF and polynomial kernels, was 

investigated. The latter was the most accurate combination, with average accuracy of 97.93%. In [25] 

authors compared supervised and unsupervised data processing for the classification of five hand 

gestures in both healthy and amputee subjects. Two preprocessing algorithms were compared, PCA and 

CSP, together with different extracted features and three different classifiers, namely ANN, RBF-SVM 

and LDA. Results in both healthy and amputee subjects showed no significant difference in accuracy 

when using CSP or PCA, and that ANN was more accurate than SVM and LDA. In [140] six different 

hand motions were recorded and different combinations of feature extraction and classifiers (Simple 

Logistic Regression (SRL), Decision Tree (DT), Logistic Model Tree (LMT), ANN, LDA, and SVM) 

were compared. Results showed an error rate lower than 15% when using time-domain features. SRL 

and LMT outperformed all the other classifiers. SVM achieved error rates similar to those of the other 

classifiers (10% with time domain features). In [141] data relative to seven different hand motions were 

recorded and a combination of autoregressive model coefficients and time-domain features was used as 

feature set. Incremental-learning adaptive SVM was implemented for classification, consisting in online 

incorporating useful information from testing data into the classification model, thus creating an 

incremental learning. When compared to a traditional SVM, the adaptive SVM obtained performances 

higher by 3.3% and 8% in intra-session and inter-session tests respectively. 

Table 6 reports SVM features relative to EMG-based hand movements recognition papers. 

 
Table 6: SVM features in hand gesture recognition EMG-based HCI. Err= Error rate. NA= Not Available. 

Paper Tasks Performances Implementation Kernel Nr. of classes Multiclass 

implementation 

Hyperparameters 

setting 

Performan

ce 

evaluation 

Tool 

[136] Wrist flexion and 

extension, hand 

supination, pronation, 

opening and closing 

95% Standard Linear 6 OVA NA 3-fold CV NA 

[137] Rest, index pointing, 

power grasp, precision 

pinch grip, precision 

tripodal grip and hand 

stretching 

95% Standard; 

ε-SVR 

RBF 6 OVO Logarithmic Grid-

search + 5-fold CV 

10-fold CV LIBSVM 

[32] Hand gestures 100% Standard RBF 

Linear 

18 OVO 4-fold CV 

fixed 

Train-Test LIBSVM 

[138] Hand gestures 90.62% (seniors) 

97.60% (young) 

Standard RBF 15 OVO Grid-search + 8-fold 

CV 

Train-Test LIBSVM 

[139] Hand-performed Chinese 

numbers  

97.60% Standard 

MKL 

RBF 

Polynomial 

10 OVA Grid-search LOO NA 

[25] Hand gestures Up to 97% Standard RBF 5 OVA Fixed 5-fold CV Matlab 

[140] Hand close, hand open, 

wrist flexion, wrist 

Err.= 10% Standard 

 

RBF 6 OVA Fixed Train-Test WEKA 
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extension, ulnar deviation 

(healthy subjects) or hand 

supination (transradial 

patients) and radial 

deviation 

[141] Rest, hand open, hand 

close, supination, 

pronation, wrist flexion 

and wrist extension 

93.3%±4.1% 

96.6%±1.5% 

Standard 

Incremental learning 

adaptive SVM 

Linear 7 OVO Adaptive 5-fold CV NA 

 

From table 6 it can be seen that even with a high number of classes, SVM achieves accuracy near 100%. 

RBF-SVM in standard implementation is the most used configuration; moreover, there is not a univocal 

choice about multiclass implementation, while CV is the preferred method for both hyperparameters 

setting and performance evaluation. LIBSVM occurs many times as the used toolbox.  

 

4.3. EMG-based HCI for finger movement recognition 

SVM performed with high accuracy in the recognition of finer finger movements, as reported in [142], 

where forearm sEMG, force/torque sensors and an optimized machine learning technique allowed on-

line control of both finger positions and finger force of a dexterous robotic hand. Three classifiers were 

compared, ANN, RBF-SVM and locally-weighted Projection Regression, in the discrimination of five 

grasping modes. For force detection, the regression produced one single output, that is, the target force 

value. With healthy subjects, grasping modes were classified with an accuracy of 89.67%±1.53%, while 

the applied force was predicted with an average error of 7.89%±0.09%. The RBF-SVM resulted only 

marginally better than the other classifiers. Finger motions were also discriminated in [143], where a 

method for optimizing the online learning of SVMs was introduced. Such method consisted in updating 

the constant term of the decision function whenever a misclassification occurred. The optimized SVM, 

with RBF kernel, was compared with a classical SVM and an ANN, in discriminating six different 

finger motions. Results showed an increase in accuracy when using the proposed SVM (83.6%-87.1%) 

against ANN (75.5%- 77.3%) and simple SVM (75.9%-82.8%). In [144] authors proposed twin SVMs 

for the classification of seven tasks involving finger and wrist flexion and compared them with ANN. 

Results showed that the performances of ANN degraded with the increasing of the number of classes 

(99.34% in accuracy with three classes vs. 59.34% in accuracy with seven classes). When using twin 

SVMs with linear and polynomial kernels, accuracy reached up to 85.07%; with a sum of RBF kernels, 

accuracy was 86.94%, while with the sum of three different kernels (linear, polynomial and RBF) 

accuracy was as high as 87.27%. In [7] a muscle-computer interface was designed to detect drivers’ 

movements and avoid their distraction. Twelve classes of finger pressure and 2 of finger pointing were 

recorded and seventeen different features were extracted from each channel and reduced by means of a 

fuzzy neighborhood discriminant analysis. Several classifiers were compared, namely RBF-SVM, 

LDA, Regression Tree and Naïve Bayes classifier. SVM achieved the lowest average error rate (7%). 

Table 7 reports SVM features relative to EMG-based finger movement recognition papers. 

 
Table 7: SVM features in EMG finger movement recognition-based HCI. NA= Not Available. 

Paper Tasks  Performances Implementation Kernel Nr. of 

classes 

Multiclass 

implementation 

Hyperparameters 

setting 

Performance 

evaluation 

Tool 

[142] Grasp by opposing thumb 

and index, thumb and 

middle, thumb and ring, 

thumb and all the other 

fingers, and no grasping 

89.67%±1.53% Standard 

Regression 

RBF 5 

1 

NA Grid-search 5-fold CV LIBSVM 

[143] Finger motions 83.6 to 87.1% Standard + additional 

learning 

RBF 6 OVO NA Train-Test NA 

[144] Fingers and wrist flexion 87.27% Twin SVM Linear, 

polynomial, 

RBF 

7 OVA Optimization Scheme  10-fold CV Matlab 

[7] Finger pressures and finger 

pointing 

93.9%±4.4% Standard RBF 14 NA Fixed Train-Test LIBSVM 

 

For finger movement recognition, RBF-SVM is used with high accuracy, even in case of a huge number 

of classes (up to 14). 

 

4.4. EMG-based HCI for arm movement recognition 

Many EMG-based systems are related to the control of the movements of a robotic arm. In [145] authors 

proposed cascading generalized discriminant analysis for dimensionality reduction, optimal features 

selection, and an RBF-SVM for the recognition of eight arm postures for prosthesis control. When 

compared to kNN or ANN, performance of the cascade-approach was significantly higher both in terms 
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of accuracy (accuracy was 93.54% on average) and of recognition time (20.7ms). Oskoei et al. [146] 

discriminated six classes of limb motions by means of different classifiers, namely SVM with linear, 

RBF, sigmoid and polynomial kernels, LDA and Multi-Layer Perceptron (MLP)-ANN with 1 or 2 

hidden layers. The four applied kernels performed similarly over the considered features, with an 

average accuracy of 95.5%±3.8%. Also LDA performed similarly to SVM; MLP-ANN with two hidden 

layers performed similarly to LDA and SVM and finally MLP-ANN with one hidden layer achieved 

accuracy inferior by 6% with respect to the other classifiers. In [147] eight arm positions were 

discriminated by means of a linear SVM, with accuracy within 92% and 98%, while in [148] a four-

level wavelet transform was investigated as a novel kernel for an LS-SVM aiming at classifying four 

different limb motions. Accuracy > 90% was obtained with just ten features, better than the one found 

with a MLP, especially with small training sets. Khokhar et al. [149] explored the possibility to control 

the torque applied by the wrist by means of sEMG classification and of a wrist exoskeleton prototype 

in real-time. An RBF-SVM was employed to discriminate nineteen different force intensities, with 

average accuracy of 88.20%±3.45%. When reducing the motion set to thirteen classes, accuracy raised 

to 96.52%±1.98%. In [150] pointing movements (north, south, west and east) on a horizontal plane 

while holding a robotic manipulandum were discriminated with an RBF-SVM. With healthy subjects, 

an average accuracy of 93.9%±4.4% was achieved; with stroke subjects, accuracy dropped to the 30%-

70% range, when a subset of muscles was used, and to the 36.7%-83.3% interval when all muscles were 

used. In [151] authors proposed a system for real-time myoelectric control of multiple degrees of 

freedom (DOFs), including wrist flexion-extension, abduction-adduction and forearm pronation-

supination. Both healthy subjects and amputees took part to the experiment, performing fourteen 

different arm movements aimed at moving a cursor on a screen. Two classifiers were compared, an 

ANN and an RBF-SVM-based algorithm using 𝜈-SVR. For the healthy subjects, SVM significantly 

outperformed ANN in throughput, completion rate, overshoot and path efficiency. For the amputees, 

SVM outperformed ANN in path efficiency and throughput with the first amputee and in throughput 

with the second one. SVM significantly reduced the computational time for both training and real-time 

control. In [152] authors proposed a Deep Belief Network for the classification of five different wrist 

motions. When compared to LDA, SVM with RBF and polynomial kernels and back-propagation 

classifier, the proposed classifier achieved significantly higher accuracy (89.95% vs. 83.74%, 80.64%, 

87.66% and 89.53%, respectively) and lower training time. In [153] a new feature ranking method, 

based on short-time Fourier transform, was proposed for the classification of two series of shoulder and 

elbow motion patterns driven by an exoskeleton robot arm. The proposed feature extraction method 

was compared to classical time-domain and frequency-domain approaches. RBF-SVM was used for 

classification. Results showed that with the ranking feature approach, the accuracy was greater than 

with conventional features (93.9% vs. 33.3%-90.8%). In [154] authors compared the performances of 

fuzzy-RVM and LS-FSVM for the discrimination of six classes of hand/wrist motions. Both time-

domain and frequency domain features were extracted and compared. Results showed that FRVM 

achieved accuracy similar to FSVM with time domain features (93.22%±4% vs. 93.28%±7%) and 

frequency-domain features (90.86%±6% vs. 92.81%±4%). On the other hand, processing delay was 

significantly lower for FRVM than FSVM (e.g. 34.47ms±29.36ms vs. 123.46ms±54.35ms with time 

domain features). Training time was significantly higher in FRVM than in FSVM. 

Table 8 summarizes SVM features relative to EMG-based arm movement recognition papers. 

 
Table 8: SVM features in EMG-based arm movement recognition papers. NA= Not Available. 

Paper Tasks Performances  Implementation Kernel Nr. of classes Multiclass 

implementation 

Hyperparameters 

setting 

Performance 

evaluation 

Tool 

[145] Arm postures 93.54% Standard RBF 8 OVO Grid search Train-Test NA 

[146] Limb motions 95.5%±3.8% Standard Linear 

RBF 

Sigmoid 

Polynomial 

6 OVO 5-fold CV 5-fold CV LIBSVM 

[147] Arm positions 92% and 98% Standard Linear 8 OVO Across-session CV 5-fold CV LIBSVM 

[148] Fist clench, fist stretch, 

wrist 

pronation and wrist 

supination 

Up to 100 % LS-SVM Wavelet Packet 

Transform 

4 OVA NA Random Train-

Test 

NA 

[149] Wrist motions 88.20%±3.45% Standard RBF 19 

13 

OVO Grid-search +  

8-fold CV 

Train-Test LIBSVM 

[150] Movement directions 

(north, south, west and 

east) 

90.62%  Standard RBF 4 NA Fixed Iterative Train-

Test 

LIBSVM 

[151] Arm movements Up to 90% ν-SVR RBF 14 NA Fixed 4-fold CV LIBSVM 

[152] Wrist motions 80.57% Standard RBF 5 NA NA 10-fold CV NA 
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85.69% Polynomial 

[153] Shoulder flexion and 

extension, elbow flexion 

and extension 

93.9%±4.3% Standard RBF 4 OVO 5-fold CV Train-Test LIBSVM 

[154] Hand/wrist motions 93.22%±4% 

93.28%±7% 

Fuzzy RVM 

Fuzzy LS-SVM 

- 6 OVO NA Train-Test  Matlab 

From table 8 it can be seen that SVM with RBF kernel and standard implementation is the most used 

configuration and achieves high accuracy even in case of a high number of classes. OVO is preferred 

for multiclass implementation, CV for hyperparameters setting and train-test for performance 

evaluation. Again, LIBSVM is the most used toolbox. 

 

4.5. EMG-based HCI for walking modes recognition 

In [155] authors developed an algorithm aimed at recognizing different locomotion modes performed 

by trans-femoral amputees, by means of sEMG and force/moments measurements. Six locomotion 

modes and five transition modes were recorded, while maximum/minimum/average amplitudes of force 

or moment were measured as the mechanical signal features. LDA and RBF-SVM were compared. 

Joining EMG and mechanical features in the discrimination of static states resulted with accuracy higher 

than when using one-mode features. SVM's accuracy was higher than LDA's one by 1.5%-5.9%. Also 

in the identification of transition modes, fusion-based SVM's accuracy was higher than EMG only-

based SVM and fusion-based LDA's accuracies. In [156] authors implemented a classification 

algorithm to discriminate myoelectric walking modes in transtibial amputees from sEMG, in order to 

improve control of prostheses. An LDA and a linear SVM were compared and their average accuracies 

resulted similar both in the amputees (97.90%±0.22% vs. 97.90%±1.39%) and in the non-amputees 

(93.30%±2.62% vs. 94.70%±2.82%).  

Table 9 reports SVM features relative to EMG-based walking modes recognition papers. 

 
Table 9: SVM features in walking modes recognition EMG-based HCI. NA= Not Available. 

Paper Tasks Performances Implementation Kernel Nr. of classes Multiclass 

implementation 

Hyperparameters 

setting 

Performance 

evaluation 

Tool 

[155] Locomotion modes; 

transition modes 

96.52%±1.98% Standard RBF 5 

5 

OVO Fixed  LOO NA 

[156] Stair ascent and descent, 

ramp ascent and descent, 

level ground walking at 

three different speeds 

97.90%±1.39% Standard Linear 7 OVO NA k-fold CV Matlab 

 

4.6. EMG-based HCI for facial and body movement recognition 

In [157] authors used an SVM with Wigner kernel (the Wigner kernel is defined as 𝐾(𝑥𝑖, 𝑦𝑖) =
 |〈𝑥𝑖, 𝑦𝑖〉|2, with <.,.> denoting the inner product) for the discrimination of five body pointing tasks with 

or without postural or focal constraints. A mean accuracy close to or higher than 80% was achieved in 

discriminating constrained from unconstrained movements. Xu et al. [158] presented an sEMG-based 

HCI for the hand-free control of an intelligent wheelchair. Forehead sEMG signal was recorded and 

two control signals were produced, namely single jaw click and double jaw click, which allowed 

selecting five different control states designed for the wheelchair (forward, backward, left, right and 

stop). An online incremental SVM, with RBF kernel, was used for classification, and achieved higher 

accuracy and lower training time than a simple SVM. In [159] an EMG-based HCI for the recognition 

of ten different facial gestures was implemented. Different models of multi-class LS-SVM were 

designed and kernel parameters were tuned both manually and automatically. In particular authors 

compared linear and RBF kernels, different model validation techniques (e.g. LOO-CV, k-fold CV and 

Generalized CV) and different encoding schemes (e.g. OVO, OVA, etc.). Results showed that when 

parameters were automatically tuned, the most accurate model included RBF as kernel and OVO as 

encoding scheme (accuracy 88.90%±2.16%). With manual tuning, a model containing RBF as kernel 

and OVA as encoding scheme was the most performing (accuracy 93.1%±1.30%). As a result, RBF was 

the most accurate kernel at the price of high computational time. LS-SVM resulted also the most 

performing classifier (93.1%±1.30%) when compared to standard SVM (85.50%±2.85%), fuzzy c-

means (90.41%±3.12%) and fuzzy Gath-Geva clustering (91.82%±2.71%). 

Table 10 shows SVM parameters for EMG-based body and facial movement recognition papers. 

 
Table 10: SVM features in facial and body movement recognition EMG-based HCI. NA= Not Available. 

Paper Tasks Performances Implementation Kernel Nr. of classes Multiclass 

implementation 

Hyperparameters 

setting 

Performance 

evaluation 

Tool 

[157] Pointing task towards 80% Standard Wigner 5 NA NA 5-fold CV Matlab 
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a target under 

unconstrained, knee 

extended, reduced base 

of support, 

imposed straight finger 

trajectory and imposed 

semicircular finger 

trajectory  

[158] Wheelchair control 

states  

90-93% 

73-81% 

Adaptive Incremental 

online; 

Standard 

RBF 2 - Fixed Train-Test LIBSVM 

[159] Facial gestures 93.1%±1.30% LS-SVM 

Standard 

RBF 

Linear 

10 OVO 

OVA 

Manual 

Automatic  

LOO 

k-fold CV 

Generalized CV 

LS-

SVMlab 

toolbox 

 

4.7. Some Statistics 

Figure 8 shows the percent occurrence of the SVM characteristics reviewed across EMG papers. In 

accordance to the EEG-based HCI works, the standard C-SVM with RBF kernel results to be the most 

adopted implementation. Then the multiclass OVO approach is preferred (please note that, in general, 

such systems are based on a larger number of tasks to be recognized with respect to the EEG-based 

systems). CV and grid-search and train-test modalities are mostly adopted for hyperparameters setting 

and performance evaluation, as in the EEG case. LIBSVM is the most used tool.  

 

5. Discussion  

Given the great advances of SVM for EEG-based and EMG-based HCI systems, a comprehensive 

review of related works can be useful to develop optimized analysis strategies and correctly design up-

to-date systems. The aim of this paper is exactly to cover all the main aspects at the base of SVM-

classification for HCI. 

Concerning EEG-based HCI, SMRs are considered to be more complex brain signal features than event-

related/evoked responses (P300 and SSVEP), as they are not event-locked and need complex 

preprocessing before classification (SSVEPs are dominant in the EEG spectrum and ERPs can be 

detected after a simple signal averaging). Moreover, SMRs’ amplitude increases after intensive subject 

training, whereas SSVEPs and ERPs features can be identified since the first use of the system. As a 

consequence, SMRs detection needs algorithms able at working with complex datasets and not-

 

 
 

Figure 8: Percent occurrences of the different SVM features (Implementation, Kernel, Multiclass Implementation, 

Hyperparameters setting, Performance evaluation, Tool) in the literature of EMG-based HCIs. LS= Least-Squares; 

SVR= Support Vector Regression; MKL= Multiple Kernel Learning; RBF= Radial Basis Function; CV= Cross 

Validation; GA= Genetic Algorithm; PSO= Particle Swarm Optimization; LOO= Leave-One-Out; NA= Not 

Available. 
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enhanced features, while SSVEPs are sometimes detectable with a threshold method and ERPs are 

sufficiently discriminable with a simple LDA. Due to their robustness, SVMs are highly preferred to 

classify SMRs-based BCI data.  

In general, our review underlines that, when different classification approaches are compared, SVM 

outperforms the others in terms of accuracy [68, 75-77, 80-83, 87, 89, 98, 101, 102, 105, 122]. However 

a minority of works report SVM with lower performance than other classifiers [88], even if the statistical 

significance of such difference is not assessed [115]. 

With respect to kernels, RBF usually outperforms linear or polynomial ones [76-78]. All considered, 

SVMs adopting RBF kernel result to be suitable classifiers for detecting brain responses in EEG-based 

BCIs. This is more evident with SMRs-based paradigms and with large datasets. 

When dealing with EMG-based HCIs, special care is given to the online performances of the classifiers, 

due to the real-time requirements of prosthesis/device control. When different classification approaches 

are considered, SVM outperforms other classifiers (generally LDA, ANN or kNN) in the most part of 

cases [11, 76, 139, 142-144, 148, 151, 159]. Differently in [25, 146] SVM achieves accuracy worse than 

ANN and in [152] SVM performs worse than Deep Belief Networks. In case of different kernels, usually 

RBF results the most accurate one, whereas in [146] linear, RBF, polynomial and sigmoidal kernels 

achieve similar performances.  

In general SVM, mainly with RBF kernel, performs with excellent accuracy even in case of a high 

number of tasks to be recognized, as in [11, 32, 138, 149, 151]. Also the low recognition time, typical 

of some particular SVM implementations, as pointed out in [145, 149, 151, 158], makes SVM preferable 

for real-time control. 

As a result, with respect to other classifiers commonly employed in the HCI literature for the 

classification of physiological patterns, such as LDA and ANN, SVMs have peculiarities that make 

them recommended when dealing with particular classification scenarios: 

1) Insensitivity to big amount of features: SVM is insensitive to the number of features extracted to 

describe data, thus leading to a reduction of the problem complexity. This does not occur in LDA-based 

classifiers, which suffer from the “curse of dimensionality” (see section 2.1): if the number of training 

samples is less or equal to the number of features, the problem becomes ill-posed (the covariance matrix 

becomes singular and cannot be inverted) and some regularization strategies are needed [160]. SVM 

being insensitive to big data size is particularly appreciated in HCI field, especially in the EEG-based 

case. Indeed, EEG is usually recorded with many electrodes (up to 256), with a high number of features 

extracted to describe the classification problem. Also, performing BCI training sessions can be 

particularly stressful and exhausting for the subjects, so it is not uncommon to have only a few training 

samples available due to subjects' fatigue. Differently, in the EMG-case the problem of dimensionality 

is less important, as EMG patterns are easily discriminable with few channels (and few features) and 

EMG recording sessions are easier to afford. Nevertheless SVMs are still recommended for their high 

performance. 

2) Generalization: SVM penalty term C allows controlling the complexity of the model and hence to 

avoid overfitting, which occurs when a statistical model describes random error rather than the real data 

structure, decreasing the ability of the classifier to discriminate unseen data (generalization). LDA, 

instead, unless it is provided with some regularization approach, suffers from overfitting if the number 

of training samples is not sufficient with respect to the feature set size. ANNs usually overfit if training 

is too long or if the model is too complex (e.g. too many hidden neurons). The overfitting issue is 

particularly relevant when training data are noisy. This is frequent with brain signals, which are not 

stationary, and can be contaminated by different sources: eyes' movements, head muscles' contractions, 

sweating, heart beating, and so on. A robust and outliers-insensitive classifier is therefore needed to deal 

with such complex signals. 

3) Unique solution: training of SVM always finds a global minimum; therefore, the solution to the 

classification problem is global and unique, whereas ANNs usually converge only to locally optimal 

solutions. This means that each time a neural network is trained, it can result in a different solution due 

to initial network weights. 

4) Training complexity: usually a time-consuming training phase is necessary in HCI systems in order 

to allow the classifier to learn the specific characteristics of the signals and reducing the training process 

is always a challenge. LDA training may result very slow and inefficient in case of big dimensionality 

of data, due to the presence of matrix inversions and of matrix decompositions (unless regularization 
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strategies are adopted). ANN training may be slow with big data size as well, because the complexity 

of the network increases. Conversely, if SVMs, especially the kernelized ones, could be slow in training 

and much slower in testing, a lot of different implementations, which dramatically decrease training 

burden, exist (see for example LS-SVM or transductive SVMs [109]). 

5) Suitability for online implementations: strictly connected to the training complexity is also the 

suitability of the classifier for online applications. In BCI, for example, online feedback is very 

important to boost the performances of the subject and the classifier needs to be efficient to not slow 

down the whole system. In the same way in EMG-based HCI for device control, there is a time limit 

between the user's command and the prosthesis response that has to be respected to avoid the decay of 

prosthesis performance (near 100ms) [161]. 

In a classical online learning scenario, training data are available in a sequential order, while in an 

offline (batch) mode, all training examples are available at once. In case of very large and non-stationary 

data, such as physiological data, offline classification algorithms might not be suitable; in fact, with 

large dataset, training can be computationally expensive, while if different data distributions varying 

over time are presented and integrated into the learning rule all together, problem can arise for the 

learning [162]. Hence the necessity of having online implementations for the used classifier, such as the 

incremental algorithms, which update the solution of a classification problem after one training sample 

is added to or removed from the training set. A lot of incremental algorithms have been implemented 

for SVMs in the machine learning literature; see for example [163], where LASVM, an approximate 

C++ SVM solver that uses online approximation, is presented; or http://www.cpdiehl.org/code.html, 

where a Matlab implementation of incremental SVM learning is provided. Anyway, despite their 

undoubted utility for online applications, a limited interest was shown by the HCI community to 

incremental SVM, maybe due to the absence of well-accepted implementations, as it happens with 

LIBSVM or SVMLight for SVM batch learning [162]. In fact, within this review incremental SVMs 

were used in [141, 158] for EMG-based HCIs and in [123] for BCIs. Incremental algorithms were also 

proposed for LDA [164] and ANN [165]. 

Nevertheless the superiority of SVM in HCI online scenarios, with respect to other classifiers such as 

LDA or ANN, is still a subject matter of discussion. In [166] authors compared accuracies and Matlab 

runtimes of four different classifier, LDA, non-linear SVM, BDLA and batch-perceptron, in the 

classification of P300-speller data, in order to test their feasibility for online implementation on a small 

digital signal processing board; LDA showed the slowest runtime (60s vs. 14.5s of BLDA) and also 

average runtime twice the SVM’s one. In [151] SVM and SVM–delayed scheme outperformed ANN in 

all real-time control performance metrics in the control of multiple myoelectric degrees of freedom. In 

the study reported in [167], instead, while SVM exceeded LDA in the accuracy of discrimination of two 

fNIRS-based mental tasks, LDA was faster in generating control commands. 

Undoubtedly SVMs have several weaknesses: the choice of the kernel and of the hyperparameters may 

be extremely time-consuming. Moreover, the optimal design for multiclass SVM classifiers is still in 

question, whereas ANNs can have any number of outputs, thus easily solving such problem. Also, in 

large-scale tasks, the required quadratic programming of a standard SVM may require extensive 

memory and high algorithmic complexity and the big amount of support vectors may slow test phases. 

The choice of the overall best classifier to detect physiological patterns is still questionable, but 

evidences coming from the literature support the idea that SVMs and all their implementations are 

among the most appropriate choice for HCI design due to their robustness and versatility. 

 

6. Conclusion 

SVMs result to be among the most versatile classifiers for pattern recognition. Due to the numerous 

SVM implementations available and to the possibility to create a virtually unlimited number of SVMs, 

by changing kernel and hyperparameters, SVMs allow investigating the most different scenarios. In the 

case of HCI driven by EEG and EMG, SVMs proved to be more accurate and efficient than other 

classifiers, such as LDA and ANNs, and furthermore SVMs result to be particularly suitable for online 

implementations. Anyway, in order to provide correct results and to allow other researchers to replicate 

studies, it is essential to report all the details of the adopted SVM strategy: kernel type, SVM 

implementation, multiclass strategy, hyperparameters setting methodology, performance evaluation. In 

such a view, this review paper can furnish a valid help to get fundamental information to correctly 

design SVM-based systems. 
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Appendix A-List of Acronyms 

 

 

Area under Roc Curve (AUC) 

Artificial Neural Networks (ANN) 

Brain-Computer Interface (BCI) 

Common Spatial Patterns (CSP) 

Cross Validation (CV) 

Decision Tree (DT) 

Directed Acyclic Graphs (DAG) 

ElectroCorticoGraphy (ECoG) 

ElectroEncephaloGram (EEG) 

ElectroMyoGram (EMG) 

Event-Related Potentials (ERPs) 

functional Magnetic Resonance Imaging (fMRI) 

functional Near-Infrared Spectroscopy (fNIRS) 

Fuzzy Least-Squares SVM (FLS-SVM) 

Fuzzy SVM (FSVM) 

Gaussian Mixture Models (GMM) 

Genetic Algorithms (GA) 

Human-Computer Interaction (HCI) 

Human-Machine Interface (HMI) 

Immune Feature Weighted SVM (IFWSVM) 

k-Neirest Neighbors (kNN) 

Least-Squares SVM (LS-SVM) 

Leave-One-Out (LOO) 

Linear Discriminant Analysis (LDA) 

Linear Logistic Classifier (LLC) 

Logistic Model Tree (LMT) 

MagnetoEencephaloGraphy (MEG) 

Multi-Layer Perceptron (MLP) 

Multiple Kernel Learning SVM (MKL-SVM) 

One-Against-Rest (OAR) 

One-Against-All (OAO) 

One-Against-One (OAO) 

One-Vs-All (OVA) 

One-Vs-One (OVO) 

Particle Swarm Optimization (PSO) 

Principal Component Analyses (PCA) 

Quadratic Discriminant Analysis (QDA) 

Radial Basis Function (RBF) 

Rapid Serial Visual Presentation (RSVP) 

Rates of Torque Development (RTD) 

Relevance Vector Machine (RVM) 

Sensorimotor Rhythms (SMR) 

Simple Logistic Regression (SRL) 

Slow-Cortical Potentials (SCP) 

Spatially-weighted SVM (sw-SVM) 

Steady-State Visually Evoked Potentials (SSVEP) 

Support Vector Machines (SVMs) 

Target Torques (TT) 

Transductive SVMs (TSVM) 

ε-Support Vector Regression (ε-SVR) 
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