1,543 research outputs found

    Investigating SAR algorithm for spaceborne interferometric oil spill detection

    Get PDF
    The environmental damages and recovery of terrestrial ecosystems from oil spills can last decades. Oil spills have been responsible for loss of aquamarine lives, organisms, trees, vegetation, birds and wildlife. Although there are several methods through which oil spills can be detected, it can be argued that remote sensing via the use of spaceborne platforms provides enormous benefits. This paper will provide more efficient means and methods that can assist in improving oil spill responses. The objective of this research is to develop a signal processing algorithm that can be used for detecting oil spills using spaceborne SAR interferometry (InSAR) data. To this end, a pendulum formation of multistatic smallSAR carrying platforms in a near equatorial orbit is described. The characteristic parameters such as the effects of incidence angles on radar backscatter, which support the detection of oil spills, will be the main drivers for determining the relative positions of the small satellites in formation. The orbit design and baseline distances between each spaceborne SAR platform will also be discussed. Furthermore, results from previous analysis on coverage assessment and revisit time shall be highlighted. Finally, an evaluation of automatic algorithm techniques for oil spill detection in SAR images will be conducted and results presented. The framework for the automatic algorithm considered consists of three major steps. The segmentation stage, where techniques that suggest the use of thresholding for dark spot segmentation within the captured InSAR image scene is conducted. The feature extraction stage involves the geometry and shape of the segmented region where elongation of the oil slick is considered an important feature and a function of the width and the length of the oil slick. For the classification stage, where the major objective is to distinguish oil spills from look-alikes, a Mahalanobis classifier will be used to estimate the probability of the extracted features being oil spills. The validation process of the algorithm will be conducted by using NASA’s UAVSAR data obtained over the Gulf of coast oil spill and RADARSAT-1 dat

    Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR

    Get PDF
    Monitoring and detection of ships and oil spills using synthetic aperture radar (SAR) have received a considerable attention over the past few years, notably due to the wide area coverage and day and night all-weather capabilities of SAR systems. Among different polarimetric SAR modes, dual-pol SAR data are widely used for monitoring large ocean and coastal areas. The degree of polarization (DoP) is a fundamental quantity characterizing a partially polarized electromagnetic field, with significantly less computational complexity, readily adaptable for on-board implementation, compared with other well-known polarimetric discriminators. The performance of the DoP is studied for joint ship and oil-spill detection under different polarizations in hybrid/compact and linear dual-pol SAR imagery. Experiments are performed on RADARSAT-2 -band polarimetric data sets, over San Francisco Bay, and -band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico

    Wavelet Analysis for Wind Fields Estimation

    Get PDF
    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms

    Evaluation of Operation IceBridge quick-look snow depth estimates on sea ice

    Get PDF
    We evaluate Operation IceBridge (OIB) ‘quick-look’ (QL) snow depth on sea ice retrievals using in situ measurements taken over immobile first-year ice (FYI) and multi-year ice (MYI) during March of 2014. Good agreement was found over undeformed FYI (-4.5 cm mean bias) with reduced agreement over deformed FYI (-6.6 cm mean bias). Over MYI, the mean bias was -5.7 cm but 54% of retrievals were discarded by the OIB retrieval process as compared to only 10% over FYI. Footprint scale analysis revealed a root mean square error (RMSE) of 6.2 cm over undeformed FYI with RMSE of 10.5 cm and 17.5 cm in the more complex deformed FYI and MYI environments. Correlation analysis was used to demonstrate contrasting retrieval uncertainty associated with spatial aggregation and ice surface roughness

    Wavelet Analysis of SAR Images for Coastal Monitoring

    Get PDF
    The mapping of mesoscale ocean features in the coastal zone is a major potential application for satellite data. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ice edge can be tracked by the wavelet analysis using satellite data from repeating paths. The wavelet transform has been applied to satellite images, such as those from Synthetic Aperture Radar (SAR), Advanced Very High-Resolution Radiometer (AVHRR), and ocean color sensor for feature extraction. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite SAR imagery employing wavelet analysis have been developed. Case studies on two major coastal oil spills have been investigated using wavelet analysis for tracking along the coast of Uruguay (February 1997), and near Point Barrow, Alaska (November 1997). Comparison of SAR images with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data for coccolithophore bloom in the East Bering Sea during the fall of 1997 shows a good match on bloom boundary. This paper demonstrates that this technique is a useful and promising tool for monitoring of coastal waters

    Satellite remote sensing for ice sheet research

    Get PDF
    Potential research applications of satellite data over the terrestrial ice sheets of Greenland and Antarctica are assessed and actions required to ensure acquisition of relevant data and appropriate processing to a form suitable for research purposes are recommended. Relevant data include high-resolution visible and SAR imagery, infrared, passive-microwave and scatterometer measurements, and surface topography information from laser and radar altimeters

    DNA Analysis of Surfactant-Associated Bacteria in a Natural Sea Slick Observed by TerraSAR-X and RADARSAT-2 Over the Gulf of Mexico

    Get PDF
    The damping of short gravity-capillary waves (Bragg waves) due to surfactant accumulation under low wind speed conditions results in the formation of natural sea slicks. These slicks are detectable visually and in synthetic aperture radar (SAR) imagery. Surfactants are produced by natural life processes of many organisms, such as bacteria, phytoplankton, seaweed, and zooplankton. By using DNA analysis, we are able to determine the relative abundance of surfactant-associated bacteria in the sea surface microlayer and the subsurface water column. A method to reduce contamination of samples during collection, storage, and analysis (Kurata et al., 2016; Hamilton et al., 2015) has been implemented and advanced by increasing the number of successive samples and changing sample storage procedures. In this work, microlayer samples have been collected in the Gulf of Mexico during a research cruise (LASER) on the R/V F.G. Walton Smith during RADARSAT-2 and TerraSAR-X overpasses. We found that in slick areas surfactant-associated bacteria mostly reside in subsurface waters, producing surfactants, which move to the surface, accumulate on and enrich the sea surface microlayer. This is consistent with previous studies (Kurata et al., 2016; Hamilton et al., 2015) and with the experimental results of Cunliffe et al. (2010)

    Classification of low backscatter ocean regions using log-cumulants

    Get PDF
    Paper presented at ‘PolInSAR 2015, Frascati, Italy 26–30 January 2015 (ESA SP-729, April 2015)In a synthetic aperture radar image, low backscatter regions of various origin can be observed in ocean areas. Operational oil spill detection services work to discriminate anthropogenic oil spills from natural phenomena such as seeps, low wind fields, thin ice and biogenic slicks. In this paper, we investigate the potential of using matrix log-cumulants for this purpose

    U.S. Law of the Sea Cruise to Map the Foot of the Slope and 2500-m Isobath of the U.S. Arctic Ocean Margin

    Get PDF
    U.S. Law of the Sea cruise to map the foot of the slope and 2500-m isobath of the US Arctic Ocean margin CRUISE HEALY 1102 August 15 to September 28, 2011 Barrow, AK to Dutch Harbor, A
    corecore