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Abstract 

The damping of short gravity-capillary waves (Bragg waves) due to surfactant accumulation 

under low wind speed conditions results in the formation of natural sea slicks. These slicks are 

detectable visually and in synthetic aperture radar (SAR) imagery. Surfactants are produced by 

natural life processes of many organisms, such as bacteria, phytoplankton, seaweed, and 

zooplankton. By using DNA analysis, we are able to determine the relative abundance of 

surfactant-associated bacteria in the sea surface microlayer and the subsurface water column. 

A method to reduce contamination of samples during collection, storage, and analysis (Kurata 

et al., 2016; Hamilton et al., 2015) has been implemented and advanced by increasing the 

number of successive samples and changing sample storage procedures. In this work, 

microlayer samples have been collected in the Gulf of Mexico during a research cruise (LASER) 

on the R/V F.G. Walton Smith during RADARSAT-2 and TerraSAR-X overpasses. We found that in 

slick areas surfactant-associated bacteria mostly reside in subsurface waters, producing 

surfactants, which move to the surface, accumulate on and enrich the sea surface microlayer. 

This is consistent with previous studies (Kurata et al., 2016; Hamilton et al., 2015) and with the 

experimental results of Cunliffe et al. (2010).  
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1. Introduction 

Sea surface microlayer 

The sea surface microlayer (SML) covers approximately 70% of the Earth’s surface and is the 

boundary between the atmosphere and ocean where many biogeochemical processes occur 

(Liss and Duce, 1997). It is considered an extreme environment due to high variability in fluxes 

of nutrients, salinity, temperature, radiation (solar and UV), heat, momentum, and gas.  

The aforementioned processes include particle cycling and microbial loops due to the 

SML’s input from and output to the subsurface water and atmosphere. Particles from the 

atmosphere, for instance aerosols and dust, are deposited into the SML from the air side of the 

air-sea interface. Organisms can either be permanent residents of the SML (bacteria, 

phytoplankton, zooplankton) or temporary inhabitants (fish eggs, invertebrate larvae). Sea 

slicks act as a physical barrier to gas exchange at the air-sea interface (Cunliffe et al., 2011).   

There have been several attempts to define the exact structure of the SML. Hardy 

(1982) depicted the SML as having distinct, stratified layers in which surface-active agents 

(surfactants), lipids, and alcohols are fixed above a protein and carbohydrate layer. Current 

models show a lesser degree of organization with gel-like particles and bacterioneuston mixed 

heterogeneously in the upper portion of the microlayer (See Figure 1 in Cunliffe et al., 2010).  

The physical structure of the SML consists of the viscous sublayer (~1500 μm thick), 

thermal sublayer (~500 μm thick), and salinity diffusion sublayer (~50 μm thick). Under 

moderate wind speed conditions, these molecular sublayers are mainly controlled by 

microscale wave-breaking associated with capillary waves and have a great impact on the gas 

exchange between the ocean and atmosphere (Soloviev and Lukas, 2014). 

There are several techniques to sample the microlayer, including hydrophilic and 

hydrophobic polycarbonate filters, glass plates, mesh screens (metal or nylon), and rotating 

drums. Each sampling technique defines the SML as a different thickness. For example, the 

hydrophilic polycarbonate filter used in this study has a maximum sampling depth of 42 μm. 

Glass plates sample from 20-150 μm, mesh screens from 150-400 μm, and membrane filters 
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from 6-42 μm. Subsurface water sample depths can also vary from 0.1-20 m and the sampling 

devices include bottles, pumps and rosettes. This discrepancy in sampling depth with different 

methods makes comparing microlayer community composition very difficult. Franklin et al. 

(2005) proposed using membrane filters for bacterial studies. Kurata et al. (2016) and Hamilton 

et al. (2015) substantially advanced those techniques.  

Surfactants and bacteria  

Surfactants are amphiphilic compounds composed of various phospholipids, glycolipids, 

lipopeptides, fatty acids, and other complex molecules. The amount and type of surfactant 

produced depends on many factors, including availability of nutrients, such as nitrogen, 

magnesium, and potassium, as well as physical factors of pH, temperature, salinity, etc. 

(Karanth et al., 1999).  

Many organisms, such as bacteria, phytoplankton, zooplankton, and seaweed, produce 

surface-active agents, or surfactants, during various life processes (Gade et al., 2013). For 

example, bacteria produce surfactants for food capture, motility, protection, and aggregation 

(Burch et al., 2010). Several bacteria genera that are well-known for producing, degrading, or 

having an unknown association with surfactants include Pseudomonas, Bacillus, 

Corynebacterium, Enterobacter, Rhodococcus, Halomonas, and Acinetobacer (Satpute et al., 

2010). It is interesting to note that Pseudomonas and Rhodococcus are also oil-associated 

bacteria (Sekhon et al., 2012). Since bacteria are part of the microbial loop and other important 

ecosystem functions at the air-sea interface, it is important to know their diversity and 

abundance in the SML. Kurata et al. (2016) and Hamilton et al. (2015) found that in slick areas, 

surfactant-associated bacteria mostly reside in subsurface waters, producing surfactants which 

move to the surface and enrich the sea surface microlayer. This is consistent with the 

experimental results of Cunliffe et al. (2010). 

Natural sea slicks 

Under low wind speed conditions, accumulation of surfactants forms natural sea slicks. These 

slicks cause dampening of the short ocean waves and can thus be detected visually and in 

optical and synthetic aperture radar (SAR) satellite imagery. The smoother surface reflects the 
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incoming light or radar beam and thus optically, the slicks are seen because of their glossy 

appearance; in SAR, they appear as dark areas. Natural slicks are believed to be highly variable 

in time and space. Increased wind speeds or wave breaking can easily disturb the slick and the 

associated microbial communities. We use satellite imagery to detect slicks and thus relate the 

findings of the microbiological campaign to their presence. There are many causes for natural 

sea slicks: build-up of organic material, terrestrial runoff (Wurl et al., 2011), oceanic features 

such as convergence zones or frontal interfaces (Gade et al., 2013), high biological productivity, 

and sediment upwelling/resuspension (Espedal et al., 1996). 

SAR Imaging of Slicks 

Satellite SAR imagery is used in this study to visualize slick presence. SAR satellite 

microwaves can penetrate cloud cover and fog in both daytime and nighttime conditions. 

Recently, high resolution SARs, like TerraSAR-X, that are well suited to image highly variable 

coastal and oceanographic processes are available to the scientific community (http://terrasar-

x.dlr.de). As the SAR images the properties of the scattering surface, this normalized calibrated 

radar backscatter can be used to measure the roughness of the sea surface, which has been 

related to wind speed (Lehner et al., 1998). The roughness of the surface is not just dependent 

on the wind speed though; surfactants or oil spills dampen the short gravity-capillary waves. 

This causes slicks to appear as a darker area in SAR imagery than the surrounding rougher sea 

surface, as the slick reflects the microwaves away from the receiving antenna. Other features 

besides biogenic slicks can cause dark patches in SAR imagery, such as oil spills, grease ice, wind 

shadowing/sheltering (Soloviev et al., 2010), rain, ship wakes, and internal waves (Velotto et al., 

2011). Bright targets (speckles) in SAR images are caused by man-made features (oil rigs, ships, 

etc.). Surfactant-associated bacteria is believed to be essentially invisible to ocean color 

satellite sensors, but can potentially be identified in SAR by the presence of surface slicks 

(Kurata et al., 2016; Hamilton et al., 2015; Soloviev and Lukas, 2014).  

This paper is organized as follows. Section 2 describes in situ and remote sensing 

methods. Section 3 presents the results of the experiment in the Gulf of Mexico. Discussion and 

conclusions are given in Section 4. 
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2. Methods 

In Situ Bacterial Sampling 

Over 100 samples were collected during a Gulf of Mexico Research Initiative (GoMRI/CARTHE) 

research cruise, LAngrangian Submesoscale ExpeRiment (LASER), in February 2016 in the Gulf of 

Mexico (Table 1). Figure 1 shows sampling locations. All sampling was recorded on video using a 

GoPro camera to identify the sea state and possible instances of contamination during 

sampling.  

Table 1. Sample collection information during the 2016 GoMRI LASER research cruise. 

Site Date Slick 

Present 

Wind Speed 

(m s
-1

 ) 

CTD Casts Sampling Platform 

1 2/6/16 No 4-5 0 Small Boat 

2 2/6/16 No 7-8 1 Small Boat 

3 2/6/16 No 5-7 1 Small Boat 

4 2/10/16 No 5-7 1 R/V Walton Smith 

5 2/10/16 No 7-8 1 R/V Walton Smith 

6 2/12/16 Intermittent 2-3 2 R/V Walton Smith 

7 2/12/16 Yes 2-3 2 R/V Walton Smith 
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Figure 1. In situ sampling sites in the Gulf of Mexico during the 2016 GoMRI LASER research cruise and footprints of SAR satellite 

images. The TerraSAR-X footprints are in blue (February 10) and green (February 11). The RADARSAT-2 footprints are in red 

(February 10) and yellow (February 13). 

 The method of Franklin (2005) was expanded upon by Kurata et al. (2016) and 

implemented in this study in order to decrease contamination of the sample by the ship wake, 

boat, and researcher.  A hydrophilic polycarbonate membrane filter was attached to a sterile 

hook and line, which was then stored in a sterile bag until its deployment in the field. A fly-

fishing technique using a ten-foot fishing pole was used to reach an area outside the ship’s 

wake to lay the filter on the ocean surface for three to five seconds. Using the fishing pole, the 

filter was lifted off the surface and caught using sterile forceps. This study enhanced 

contamination safeguards and sample collection/storage methods in comparison to Kurata et 

al. (2016), for example the filter was directly placed in a labeled MoBio bead tube, which is later 
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used for DNA extraction. This ensured there was no loss of sample, which is vital since only a 

small amount is collected on the filters. The 47 mm hydrophilic polycarbonate filter used in this 

study defined the sampling depth of the microlayer, which ideally was on the order of 40 μm. 

Samples were stored on ice in the field and transferred to a -80°C freezer prior to extraction.  

The SSW was sampled at 0.2 m, using a peristaltic pump with tubing sterilized with 90% 

isopropanol and then rinsed with SSW. After approximately 45 s of SSW flowing through the 

tube, the water sample was collected in a sterile bag. A filter was dipped in the bag, swirled 

around, and then placed in a labeled MoBio bead tube for DNA extraction. Samples were stored 

on ice during collection and then placed in a -80°C freezer prior to extraction.  

 Control filters were collected as a baseline for DNA analysis and in addition analyzed for 

possible contamination. Air-control filters were exposed to the air at the sampling site for 

approximately 30 s. Non-exposed control filters were never removed from the lab space, which 

would provide insight into laboratory contamination.  

 

Remote Sensing Data 

For this study, we selected RADARSAT-2 satellite Wide Scan and TerraSAR-X in Stripmap mode. 

The SAR data help identify slicks. The reduced roughness of the sea surface in the slick results in 

reduced radar backscatter, which shows up as a dark area on the image. The presence of slicks 

is dependent mainly on wind speed, and other environmental conditions (internal waves, 

fronts, etc.).  

Slicks were observed during sampling on February 12. The sampling conducted on 

February 12 occurred several hours after a TerraSAR-X satellite overpass, during rather low 

wind speed conditions of 2 m s
-1

 to 3 m s
-1

. The TerraSAR-X Stripmap intensity image shows an 

area 30 km wide by 50 km long acquired in VV polarization (Fig. 2). 
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A)                                             B)                                                        

 

Figure 2. A) The TerraSAR-X image acquired in VV on February 11, 2016 at 23:49:10 UTC with sampling Sites 6 and 7 

superimposed. Scale bar represents 5 km.  B) Photograph of the intermittent slick on February 12. 

There was a well-defined convergence zone in the sampling area on February 12. 

Convergence zones associated with downwelling are known for the accumulation of organic 

matter and microbial life (Espedal and Johannessen, 1996). The dark elongated area and 

surrounding dark areas in the middle of the SAR image shows the slick. The lighter area at the 

bottom of the image is rougher water, and indicates the presence of atmospheric convective 

cells due to warmer temperature on the southern side of the front. Oil rigs appear in this image 

as bright spots.  

A RADARSAT-2 ScanSAR mode image passed over the area of in situ sampling site at 

23:57 UTC on February 13, 2016, one day after the in situ sampling. The wide coverage of 

ScanSAR image (500km by 500km) shows a dark pattern during the observation time. The low 

wind speed of 2 m s
-1

 was measured from the research vessel one day before.  

The SAR images on February 10, 2016 (Figs 4 and 5) were collected under moderate 

wind speed conditions. During the experiment on February 10, no slicks were detected visually 

due to wind speeds above 5 m s
-1

 (Table 1). Neither TerraSAR-X nor RADARSAT-2 images 

showed slick presence (Figs 4 and 5). However, these images were collected not exactly over 
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the sampling site on this day. The cellular structure in images in Figures 4 and 5 is due to the 

strong atmospheric convection. Note that this was wintertime and water was warmer than the 

air, while the cold, northern wind came from the land. 

 

 

Figure 3. The RADARSAT-2 (C-band) image acquired in VV on February 13, 2016 at 23:57 UTC, corresponding to the yellow box in 

Fig 1. Red star indicates sampling location on February 12, 2016.  
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Figure 4. The RADARSAT-2 (C-band) image acquired in VV on February 10, 2016 at 23:44 UTC, corresponding to the red box in 

Fig 1. 

  

Figure 5. The TerraSAR-X image acquired in VV on February 10, 2016 at UTC, corresponding to light blue box in Fig 1.  
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DNA Analysis 

Bacterial DNA was extracted from SML and SSW samples using a MoBio PowerWater DNA 

Isolation Kit and the associated protocol was followed (MoBio Laboratories, Inc., Carlsbad, CA). 

Quantitative polymerase chain reaction (qPCR) is real-time monitoring of the amplification of a 

target gene, and was performed on the extracted DNA.  All samples were processed in 

duplicate.  

The 16S ribosomal RNA genes were targeted using Bacillus-specific primers (Bac265F 

and Bac525R) in order to amplify a 260-basepair gene sequence. Bacillus cereus, provided by 

the Microbiology Lab at Nova Southeastern University, served as the positive control for this 

study. Bacillus is a well-known surfactant- associated bacteria that was not found on the control 

filters from Kurata et al (2016) and Hamilton et al. (2015b). It was chosen as a positive control 

due to the probability it would not be found on the future control filters or in the lab setting. A 

FastStart Essential DNA Green Master Kit and LightCycler were used to follow the qPCR 

procedure by Hamilton et al. (2015), except without the nested PCR prior to qPCR analysis. The 

LightCycler software sets an automatic threshold and the sooner a sample crosses that 

threshold, the more of the targeted gene sequence is in the sample. Figure 6 is an example 

qPCR plot generated by the LightCycler software, without the threshold shown. The bright blue 

line is the positive Bacillus cereus control and the red line is the non-template (PCR-grade 

water) control.  
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Figure 6. Example of a qPCR plot. Cycle number is on the x-axis and fluorescence is on the y-axis. The automatically set threshold 

is not shown. 

Each sampling day was analyzed in a separate qPCR run and the numerical values of 

each run cannot be compared due to possible pipetting differences in reagent and sample 

amounts. Only the relative abundances within each sampling day can be compared.  

Relative abundance (A) of Bacillus spp. was calculated as follows: 

� � 2�����	
     (1) 

where ct is the cycle number generated by the LightCycler software (Hamilton et al., 2015b). 

The cycle number threshold is set based on the linear phase of amplification for each sample. 

The 95% confidence intervals are then calculated using Student’s distribution.  The mean 

relative abundance per site for SML and SSW was calculated using the average relative 

abundance of all samples per water type per location (rather than averaging the cycle number, 

which would not account for conversion from the log scale).  

3. Results 

Our results elucidate the difference of abundance of Bacillus spp. between the SML and 

SSW. Sites 3, 6, and 7 show a statistically significant difference in the relative abundance 

between the SML and SSW, while Sites 2, 4, and 5 do not (Fig. 7). A 95% confidence interval was 

calculated using a Student’s t-distribution test. Site 3, which had a wind speed of 5-7 m/s and 

no visible slicks, showed higher relative abundance of Bacillus spp. in the SML compared to 
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SSW. Sites 6 and 7 with wind speeds of 2-3 m s
-1

 had an intermittent and better-defined slicks, 

respectively, had a higher relative abundance of Bacillus spp. in the SSW compared to the SML. 

Note, Site 1 has been removed from analysis since only SML samples were taken at that 

location so there is no SSW for relative abundance comparison. There is significant variation of 

Bacillus abundance in both the SML and SSW, which is consistent with previous work of 

Hamilton et al. (2015). 

A slick was observed during sampling on February 12, which was confirmed by 

TerraSAR-X imagery (Fig. 2). Site 6 samples were collected in an intermittent slick area, while 

Site 7 samples were collected in a better defined slick. In both cases, the SSW contained more 

Bacillus spp. than the associated SML.  

February 10 was sampled under moderate wind speed conditions. No slicks were 

observed in SAR imagery. There were no statistically significant differences between SML and 

SSW in Sites 4 and 5 on February 10.  
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 Figure 7. Relative abundance of Bacillus spp. from samples collected in the Gulf of Mexico during the 2016 LASER research 

cruise.  
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4. Discussion and Conclusion 

Our experimental results can be summarized as follows. Sites 6 and 7, sampled under low wind 

speed conditions, and Site 3, sampled under moderate wind speed conditions, showed 

statistically significant differences in relative abundance of surfactant-associated bacteria in the 

SML compared to the SSW. Sites 2, 4, and 5, sampled under moderate wind speed conditions, 

however, did not produce statistically significant differences between the SML and SSW. (Note 

that abundance of surfactant-associated bacteria was, in general, smaller under moderate 

rather than low wind speed conditions.) In this study, the number of successive SML samples 

was increased from a few in Kurata et al. (2016) and Hamilton et al. (2015) to as many as ten, 

which resulted in better confidence intervals. A further increase of the number of successive 

samples above ten is not feasible because the ship drifts and often leaves the slick area before 

completing the sampling set. One way to improve statistics is to increase the number of SSW 

samples. Note that the number of SSW samples was nine in Sites 3, 6, and 7 compared to three 

or six samples in Sites 2, 4, and 5. This is the probable explanation for the statistical significance 

of the results in Sites 3, 6, and 7 and the lack of statistical significance for Sites 2, 4, and 5. 

Our results suggest that under calm weather conditions, more surfactant-associated 

bacteria are present in the SSW compared to the SML. This is consistent with observations by 

Kurata et al. (2016) and Hamilton et al. (2015). This indicates that surfactants are produced in 

SSW and transported to the SML via physical processes such as advection, bubble scavenging, 

and convection, accumulating on and enriching the sea surface microlayer, which is consistent 

with Cunliffe et al. (2010). 

During the field campaign, we collected SAR images from TerraSAR-X and RADARSAT-2 

satellites. It is very difficult to obtain in situ samples from a research vessel at exactly the same 

time and location as the satellite images because high-resolution SAR has a very limited 

footprint. In this work, the time of in situ sampling and SAR overpasses were reasonably close in 

time. (It should be noted that most SAR images collected in the World Ocean are never 

corroborated with field measurements.) 
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Surfactant-associated bacteria are in general transparent and not visible in ocean color 

satellite imagery. SAR technology can help to visualize the slick areas often related to 

surfactant-associated bacteria, which are involved in processing organic material in the water 

column and production of surfactants. SAR technology can thus be implemented to track 

organic material, such as dissolved oil and other pollution in the water column, by the presence 

of surface slicks (Kurata et al. 2016).  
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