16 research outputs found

    Battery-sourced switched-inductor multiple-output CMOS power-supply systems

    Get PDF
    Wireless microsystems add intelligence to larger systems by sensing, processing and transmitting information which can ultimately save energy and resources. Each function has their own power profile and supply level to maximize performance and save energy since they are powered by a small battery. Also, due to its small size, the battery has limited energy and therefore the power-supply system cannot consume much power. Switched-inductor converters are efficient across wide operating conditions but one fundamental challenge is integration because miniaturized dc-dc converters cannot afford to accommodate more than one off-chip power inductor. The objective of this research is to explore, develop, analyze, prototype, test, and evaluate how one switched inductor can derive power from a small battery to supply, regulate, and respond to several independent outputs reliably and accurately. Managing and stabilizing the feedback loops that supply several outputs at different voltages under diverse and dynamic loading conditions with one CMOS chip and one inductor is also challenging. Plus, since a single inductor cannot supply all outputs at once, steady-state ripples and load dumps produce cross-regulation effects that are difficult to manage and suppress. Additionally, as the battery depletes the power-supply system must be able to regulate both buck and boost voltages. The presented system can efficiently generate buck and boost voltages with the fastest response time while having a low silicon area consumption per output in a low-cost technology which can reduce the overall size and cost of the system.Ph.D

    Applications of Power Electronics:Volume 1

    Get PDF

    Nonlinear vibration energy harvesters for powering the internet of things

    Get PDF
    The ever decreasing power consumption in electronic devices and sensors have facilitated the development of autonomous wireless sensor nodes (WSNs), which ushered in the era of the Internet of Things (IoT). However, the problem of long-term power supply to the numerous WSNs pervasively dispersed to enable the IoT is yet to be resolved. This work focuses on the development of novel vibration energy harvesting (VEH) devices and technologies for effective transduction of mostly wide-band and noisy ambient mechanical vibrations to power WSNs. In this thesis meso-scale and MEMS-scale nonlinear and frequency tunable VEH devices have been designed, fabricated and characterized. The first meso-scale VEH prototype developed in this thesis combines a nonlinear bistable oscillator with mechanical impact induced nonlinearity, which exhibits upto 118% broadening in the frequency response over a standalone bistable system. The second meso-scale prototype combines magnetic repulsion induced bistable nonlinearity with stretching induced monostable cubic nonlinearity in a single device structure. The device effectively merged the beneficial features of the individual nonlinear bistable and monostable systems, and demonstrates upto 85% enhanced spectral performance compared to the bistable device. The third prototype is a MEMS-scale device fabricated using spiral silicon spring structure and double-layer planar micro-coils. A magnetic repulsion induced frequency tuning mechanism was incorporated in the prototype, and it was demonstrated that both linear and nonlinear hysteretic frequency responses could be tuned (by upto 18.6%) to match various ambient vibration frequencies. In order to enhance the power generating capability of MEMS-scale electromagnetic devices, an ultra-dense multi-layer micro-coil architecture has been developed. The proposed ultra-dense micro-coil is designed to incorporate double number of turns within the same volume as a conventional micro-coil, and significantly enhance the magnetic flux linkage gradient resulting in higher power output (~4 times). However, attempts to fabricate the ultra-dense coil have not been successful due to lack of proper insulation between the successive coil layers. Finally, a power management system combining diode equivalent low voltage drop (DELVD) circuit and a boost regulator module was developed. It was demonstrated that energy harvested from harmonic and bandlimited random vibrations using linear, nonlinear bistable, and combined nonlinear VEH devices could be conditioned into usable electricity by the power management system with 60% - 75% efficiency. In addition to developing new prototypes and techniques, this thesis recommends directions towards future research for further improvement in vibration energy harvesting devices and technologies

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Investigation of a novel multiresonant beam energy harvester and a complex conjugate matching circuit

    Get PDF
    The aim of the work described in this thesis is firstly to improve the collection of vibration energy for piezoelectric cantilever harvesters, by a mechanical technique, so that the devices can harvest energy over a wider bandwidth. Secondly to investigate a new circuit topology for achieving complex conjugate load matching to the piezoelectric harvester. The thesis has been divided into two parts - the mechanical approach and the electrical approach. For the mechanical approach, a novel multiresonant beam, comprising piezoelectric fiber composites on a clamped-clamped beam and side mounted cantilevers, was proposed. The side cantilevers are tuned by tip masses to be resonant at different frequencies. A Rayleigh-Ritz model was developed to predict the vibration response of the proposed model multiresonant beam. This model showed that the bandwidth of the multiresonant beam was increased over that of a single cantilever harvester. A multiresonant beam for energy harvesting was experimentally tested and compared with a single cantilever energy harvester. The transmissibility and voltage responses were investigated, the beam showed a wide frequency response between 14.5Hz and 31Hz, whereas the single cantilever only showed one resonant frequency. Therefore the multiresonant beam system is feasible for wide band energy harvesting. For the electrical approach, the task was to investigate complex conjugate impedance matching for the piezoelectric energy harvesters, so that the output impedance from the piezoelectric harvester can be reduced, and maximum energy extracted from the device with a possibility of frequency tuning. A new amplified inductor circuit was proposed to enable the capacitive output impedance of the piezoelectric device to be cancelled. Experimental and software simulations are provided to verify the theoretical predictions. A prototype amplified inductor circuit was simulated and tested. The results showed that a variable effective inductance was achieved. However the circuit is lossy due to imperfections within the system, and needs further work to eliminate these imperfections.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization

    Get PDF
    The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites

    Advanced Microwave Circuits and Systems

    Get PDF
    corecore