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SUMMARY 

Portable electronics such as wireless microsystems incorporate functions such as sensing, 

data processing, and transreceiver that allows adding intelligence, improve use of resources 

and even saves lives. These systems are powered by tiny batteries to achieve a small overall 

solution to reduce costs and allow a large deployment of microsystems. These various 

functionalities in these systems require different supply levels optimized for their 

respectively technology used and performance requirements. Moreover, as battery depletes 

and for transmitting signals with enough power over large distances, regulating a boosted 

supply from the battery becomes necessary. In addition, the voltage levels can be dynamic 

to optimize for the instantaneous workload of the function and the system might duty cycle 

blocks when not in use to conserve energy. These system designs impose stricter 

requirements on the power-supply system on board since it must quickly react to load 

dumps and changes in supply levels in a compact and cheap solution. The incorporated tiny 

battery exacerbates the challenges as power losses must be minimized to prevent a costly 

battery replacement. 

 The objective of this research is to investigate, develop, test and evaluate a compact 

and efficiency power converter capable of regulating buck and boost voltages while 

quickly responding to load dumps. Among power converter topologies, switched-inductor 

converters achieve the highest efficiency across operating conditions. However, inductors 

are bulky and difficult to integrate and therefore limiting the power converter to a single 

inductor while regulating multiple outputs balances size and efficiency. The fundamental 

challenge is in the operation and sharing of the single inductor to generate buck and boost 

voltages, increase regulation bandwidth and reduce cross-regulation between outputs.    
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Literature commonly uses the well-understood PWM to accurately regulate 

multiple supplies in a SIMO; however, its takes multiple switching cycles to respond and 

correct the output after a load dump. Luckily, hysteretic current-mode control achieves 

good dynamic performance but literature has not analyzed its stability and applied it to 

SIMO converters. A fully hysteretic control for SIMO achieves a fast response closest to 

the fast but inefficient linear regulators.  

A boosted output from a buck power stage is possible without changing operation. 

Fundamentally, as long inductor energizes through buck outputs, it can energize through 

any buck and boost outputs without changing operation. However, a limited quantity power 

can be boosted, and therefore an auxiliary switch is proposed when a higher boosted power 

must be delivered. Although hysteretic control has good dynamic response, it is noise 

sensitive as it regulates instantaneous signal. Therefore, a novel PWM−hysteretic hybrid 

control is proposed for applications that have stricter noise requirements that balances the 

good dynamic performance of hysteretic control with accuracy of a PWM control. 

 This dissertation starts by discussion motivation, and benefits and challenges of 

switched-inductor converters in Chapter 1. Chapter 2 reviews the literature and discusses 

the state-of-the-art control and operation of single-inductor multiple-output (SIMO) 

converters with their benefits and disadvantages for portable electronics. Chapter 3 

analyses the stability and discusses the design of hysteretic current-mode control for single-

output converter at first; and then expand it for SIMOs. Chapter 4 presents the proposed 

fully hysteretic control for SIMOs that achieves a fast response time while having a low 

silicon real state per output. Chapter 5 elaborates on how to generate a boosted output from 

a buck power stage without altering its operation under certain restrictions. Therefore, this 
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allows to conserve the efficiency by avoiding using a buck-boot power stage operation 

unless necessary. Chapter 6 discusses the noise sensitivity challenge of the hysteretic 

control and then proposes a hybrid PWM−hysteretic control that balances response time 

while having lower noise sensitivity. Finally, Chapter 7 summarizes the resulting 

contributions of this research along with the technical challenges and future research 

directions. 
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CHAPTER 1  

POWERING MULTIFUNCTIONAL MICROSYSTEMS 

1.1  Emerging Applications 

Current trends in portable electronics increases the integrated functionalities and 

capabilities in products such as laptops, tablets, phones, and networked microsystems. 

Specifically, networked (or wireless) microsystems can sense, process, store, transmit, and 

receive information in hospitals, factories, farms, and homes and can save lives, energy, 

and money [1−9]. As an example, Figure 1.1 (a) shows an air quality monitor for industrial 

applications by sensing temperature and velocity [3]. Also, Figure 1.1 (b) shows an 

implantable wireless neural recorder that circumvent limitations of wired versions during 

brain studies [4]. These wireless microsystems have the advantage on reaching tough 

places like the inside of walls or the human body for monitoring and reporting. Therefore, 

it is imperative for microsystems to be as small as possible to be non-intrusive and avoid 

frequent, if any, battery replacement by extending battery life.  

 
Figure 1.1. Wireless microsystem examples: (a) air temperature and velocity monitor for industrial 

applications [3] © 2010 IEEE and (b) implantable neural recorder for biomedical applications [4] © 

2009 IEEE. 
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These microsystems generally have three main functionalities: sensing, data 

processing, and communication. Sensing has an analog interface to the real world and 

commonly an analog-to-digital converter (ADC) for a digital-signal processor (DSP) to 

process the information. These can be implemented in a low-cost CMOS technology and 

either on the same or separate dies. Finally, wireless communication for these 

microsystems requires a power amplifier (PA) which can output enough power to 

communicate over the required distance required.  

Unfortunately, higher cost technologies, such as GaAs and InP, implement the PA 

to transmit high enough power at fast communication speeds [10]. These technologies 

achieve high performance in a PA because they can tolerate higher voltages in the range of 

4–5 V [11]. These high voltages reduces current levels during transmission and therefore 

losses [12], while maintaining high mobility in transistors for higher bandwidth. In the 

other hand, DSPs are low voltage and noise tolerant, so noisy 0.5–1-V power supplies can 

drive them to conserve energy [13–14]. Sensors and ADCs, on the other hand, usually 

require higher supplies with lower noise content to keep a high signal to noise ratio [15]. 

Efficient power-supply systems, like Figure 1.2 illustrates, must therefore supply and 

regulate several outputs for all these functions [16–17]. 

 
Figure 1.2. Power management for wireless microsystems. 

 



3 

 

A battery provides energy and portability for these systems but different chemistries 

provide a wide range of voltages to regulate from. Also, as the battery drains and its state 

of charge changes, so is their voltage. For example, a high energy-density chemistry as 

lithium-ion batteries can have a voltage between 2.7−4.2 V depending of its state of charge 

[18]. This would require the power supply to boost a voltage for the PA to use, while 

regulating a supply lower than the battery voltage for the other functions. Hence, the power 

supply must supply a mix of buck (step-down) and boost (step-up) voltages. 

The overall size of these networked microsystems need to be compact and non-

intrusive, and thus battery is often small with limited energy storage which makes battery 

lifetime becomes a challenge. In despite work to harvest ambient energy to extend battery 

lifetime [19−22], ambient energy is limited or often not continuously abundant; therefore, 

an efficient power converter is imperative to preserve energy regardless if the system 

harvests ambient energy. Plus, tiny batteries cannot sustain power for long, so even though 

DSPs, ADCs, and power amplifiers (PAs) can tolerate higher voltages, they (for the sake 

of saving energy) should not as long as they meet performance requirements [23]. 

1.2  Power Management Requirements 

To conserve the limited energy in wireless microsystems, there exists two main approaches 

at the system level: block duty-cycling and dynamic voltage scaling (DVS). Block duty-

cycling turns off or idle blocks when they are unnecessary for the proper operation of the 

system [24−26]. For instance, while the system waits for an external trigger, the digital 

processing and communication blocks can be turned off, until they are necessary to process 

and transfer data like Figure 1.3 shows. On the other hand, DVS minimizes the power 
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consumption without sacrificing required throughput by adjusting supply voltage [27−29]. 

Figure 1.3 displays voltage scaling on the digital signal processor power profile PDSP that 

during heavy processing it has the highest supply voltage and decreases when the 

computation demand reduces. Moreover, process variation can affect the optimal supply 

power efficient throughput such as in multi-core applications [14], [30]. Hence a higher 

supply granularity provides more flexibility for a more efficient system as long as the 

performance degradation does not overwhelms energy loss reduction given the added 

complexity [31]. 

 
Figure 1.3. Sample power profile of their function in a wireless microsystem. 

 

These system-level energy-savings techniques imposes tougher efficiency and 

accuracy requirements on the power supply. Since the maximum to idle power 

consumption ratio can be large, the converter must be efficient across the wide load range. 

Otherwise, battery can excessively discharge during short operation at maximum capacity 

or long idling (or standby) periods. Thus, the converter must have high power conversion 

efficiency across a wide output load range. This means that besides a power converter 

having a high peak conversion efficiency ηC(PK), it should also have a high average 

efficiency ηC(AVG) across the power range, or a high full-load efficiency ηC(FL) depending 

on the most likely power profile for a given application. 
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Regulation accuracy become more constrained since either block-duty cycle or DVS 

also requires the converter to quickly provide energy demanded to the corresponding 

function. When waking up from an idling state, for instance, latency reduces efficient use 

of energy resources and functions as they wait for the supply to settle [32]. Moreover, the 

supply regulator should follow the optimum target, under DVS operation, to minimize 

losses as long as energy savings outweighs losses from increasing tracking speed [33]. 

Hence, each output of the power converter needs a high bandwidth to handle fast full-load 

transients while maintaining a high efficiency across a wide range of loads. 

1.3  Power Supplies 

Potential power converters topologies include non-switching options such as linear 

regulator that is a simple linear system and produces negligible noise. Another set of option 

are switching topologies like the switched-capacitor and switched-inductor variations, 

although noisy they are more efficient. Each has their own advantages and disadvantages 

that must be weighted in for each microsystems application. 

1.3.1 Linear Regulators 

A linear regulator consist of a pass transistor MP which resistance is modulated to regulate 

the output voltage to the target like Figure 1.4 depicts. Deploying dedicated linear 

regulators to each block is a compact solution and can accurately regulate at a high 

bandwidth [34–35]. Also, since linear regulators is a linear system, they tend to have a 

simpler design and stabilization for high bandwidth contrary to switching converters. 
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Figure 1.4. Linear regulator for regulating a supply. 

 

 Unfortunately, linear regulators tend to be lossy since the modulated resistance RP 

absorbs considerable ohmic losses by sitting across input voltage vIN and output voltage 

vO. Its conversion efficiency ηC(LR) depends linearly on the output power PO or vOiO divided 

by the input power PIN. Since all output current iO flows through the pass transistor MP and 

originates at vIN, PIN depends on output load iO. In addition, quiescent power PQ from the 

control also comes from the input supply vIN. In the ideal case where there is no quiescent 

power PQ, ηC(LR) is theoretically limited by the output voltage vO to input voltage vIN ratio:  

 
 

O O O O
C(LR)

IN ININ O Q

P v i v

P vv i i
   


. (1.1) 

For applications where input to output voltage spread is large, their low efficiency will 

shorten battery life as operating condition changes. In addition, linear regulators can only 

regulate voltages below the battery voltage, or in other words, can only buck. These 

drawbacks limit their use among applications requiring high efficiency and at least one 

boosted supply such as in wireless microsystems. 

1.3.2 Switched-Capacitor Converters 

Switching converters incorporate switches with low voltage across when closed to reduce 

conduction losses. Therefore, switched capacitor supplies have higher efficiency than 
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linear regulators and although they occupy a larger silicon real estate than linear regulators, 

they can be fully integrated [36–37]. Switched capacitors can either buck or boost supplies 

depending how its flying capacitor is charge and discharged. For instance, Figure 1.5  

depicts a series to parallel sequence that downconverters a supply from the input. 

 
Figure 1.5. Sample switched-capacitor converter with a series to parallel sequence. 

 

For every state in the sequence, the converter will charge each capacitance to a 

certain voltage as a function of the input and output voltages. This means that every 

switching sequence has an associated voltage gain, e.g. Figure 1.5 has a voltage input-to-

output translation of 0.5 V/V. The converter regulates the output by replenishing the flying 

capacitor(s), CF1 and CF2 in Figure 1.5, and the output capacitor more frequently or 

reconfiguring gain stages in between cycles [38]. As load increases, so is ripple voltage 

and thus the charge to be replenished on the capacitors. This will slightly increase the 

voltage across switches during charge redistribution because capacitor's voltages will be 

farther apart, hence increasing losses. 

When the power-stage gain does not match input to output voltage vo, irrespective 

of load level, the converter regulates by allowing more ripple voltage. This decreases 

efficiency as the required voltage conversion mismatches the power stage gain [38–39]. 

Therefore, efficiency will be dependent on the output to input voltage although to a much 

lesser degree than linear regulators. Topologies with modifiable gain stages moderately 

increase efficiency at the expense of design complexity and more switches [38]. Also, 
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integrated switched capacitors have an additional loss due to their bottom plate capacitance, 

which further degrades the efficiency unless expensive technologies or manufacturing 

steps are used such as deep trench capacitors [40−42]. 

1.3.3  Switched-Inductor Converters 

Switched-inductor converters adjust the inductor current to satisfy the output demand and 

replenish the output capacitor. It does so by switching the voltage across the inductor in 

alternating cycles by engaging and disengaging switches. The voltage across engaged 

switches can be minimum unlike a switched-capacitor converter, hence switched-inductor 

converter can achieve a higher efficiency among the power topologies considered for a 

wider range of operating conditions such as input and output voltages, and load currents. 

The switched-inductor converter can either buck or boost depending in the switch 

configuration like in Figure 1.6. 

 
Figure 1.6. Switch-inductor converters in the buck (a) and boost (b) configuration. 

 

The switched-inductor converter is the most suitable power topology for power 

management in a wireless microsystem. Minimizing losses is imperative when operating 

from a tiny battery with a wide range of battery voltage and regulation voltages which 

switched-inductors can provide. However, as Figure 1.6 shows, it requires two passives 

which present some challenges due to the required compactness on the overall system 
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specially if multiple regulated supplies are required in microsystem applications or portable 

electronics in general. 

1.4  Challenges 

Although switched-inductor converters provide high efficiency, they have integration 

challenges. Since they require at least two passives, i.e. a capacitor and inductor, it is 

difficult to integrate both on the same die at a reasonable cost. Also, generating a multiple-

output solution based in a switched-inductor converter add more technical challenges to be 

addressed such as the optimum way to share the inductor. 

1.4.1 Miniaturization 

Unfortunately, integration of a switched-inductor converter is challenging. Research has 

been conducted to integrate the passives, i.e. inductor and capacitor, in the same integrated 

circuit (IC). Figure 1.7 summarizes state of the art switching converter using the literature 

survey reported in [43]. There are 4 main categories of integration: product modules (PCB), 

system-in-package (SiP), and system-on-chip (SoC) solutions. Products modules tend to 

have a lower power density because they require external passives. Increasing the 

switching frequency decreases the size of the required passives until the point they are 

possible to co-package in a SiP solution and hence, more power density. There is active 

research as well as products in a SiP solution (or SiPP), like in Figure 1.7 (b), that shows 

performance close to product modules. However, increasing switching frequency beyond 

10 MHz allows passives to be small enough to be integrated in the same die in a SoC design 

and ultimately improving power density; however, it is at the expense of higher switching 
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losses. The efficiency drop can be in the order of 10−30% due to the increased switching-

related losses of switches and quiescent power [44−46]. 

 
Figure 1.7. Power density of single-output supplies as a function of frequency [43]. 

 

On the passive integration, the inductor is the most challenging element to integrate 

[47−49]. Figure 1.8 shows a summary of state-of-the-art inductors, compiled from data 

surveyed at [43], which shows quality, or inductance per resistance, versus energy density 
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for a given volume and saturation current. Inductors with no magnetic materials, such as 

air-core [44] or spiral-shaped inductors, tend to have low energy density and quality due to 

the low permeability of air. Inductor with magnetic materials, on the other hand, can store 

more energy per length, hence better quality due to lower series parasitic resistance. The 

magnetic material increases the magnetic flux the inductance can store for a given current 

flowing through because of a higher permeability [50]. However, this magnetics materials 

are not readily available in all processes and can increase manufacturing fabrication steps 

and challenges [51]. Because external inductors have better quality and large energy 

density by more than an order of magnitude compared to the state of the art, this research 

will concentrate on solving the generation of multiple supplies in a lower cost and size 

without adding the challenges of an integrated inductor. However, inductor integration 

should ultimately be part of the solution in the future. 

 
Figure 1.8. Quality vs energy density for integrated and external inductor [43]. 
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1.4.2 Multiple Outputs 

A simple alternative to efficiently generate various regulated supplies from a battery or 

unregulated supply is to dedicate a whole switched-inductor converter for each. In despite 

of being an efficient option, using multiple inductors increase the size of the solution as 

well as the cost. Therefore, generating multiple supplies using a single inductor balances 

efficiency and size (and cost) [52]. 

A single-inductor multiple-output converter (SIMO) will present its own set of 

technical and design challenges. Most of them stem from the fact that the inductor is shared 

among the outputs in alternating cycles and the increased complexity of the design. The 

principal challenges are: 

1. Insightful stability analysis 

2. Accuracy of individual outputs 

3. Output cross-regulation 

4. Efficient buck-boost supplies 

1.4.2.1  Insightful Stability Analysis 

The switching nature of SIMOs makes them a non-linear system which complicates the 

analysis and design to ensure a fast and stable converter. Despite work to simplify design 

and analysis for the single-output switching converters, analysis for the SIMO is seldom. 

The multiple regulating loops in SIMOs complicates the analysis as they can interact and 

affect others. This adds complexity in the design because heavy simulations or math-

intensive approaches are needed to ensure stability. 
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1.4.2.2  Accuracy 

While in a single output switched-inductor buck converter the output will continuously 

receive energy, it will be duty-cycle irrespective if it is a buck or boosted output in a SIMO. 

In other words, a SIMO replenishes each output for less time and less often and it has an 

inherent increased delay when responding to load transients/dumps. This increases output 

voltage deviations from the target because the output capacitor must provide all the energy 

for a fraction of the switching period. Therefore, accuracy will degrade as compared to the 

single-output counterpart by increasing voltage ripple and voltage deviations from load 

dumps. 

1.4.2.3  Cross Regulation 

Another challenge with SIMOs is that a change in one output's energy needs will affect the 

energy remaining for distribution among the rest of the outputs. This is known as cross-

regulation because the outputs are coupled through the energy stored in the inductor. There 

are two main types of cross-regulation: transient and load disparity. Transient-induced 

cross-regulation is when a load step or dump on an output suddenly disturb the energy in 

the inductor to cause an undershoot or overshoot on the other outputs due to excessive or 

lack of energy received.  

Load-disparity cross-regulation occurs when the load between the outputs is 

considerable large. During steady-state, the inductor must carry enough energy to satisfy 

all outputs, and since one output is heavily loaded the inductor must carry at least this 

current. When a lightly-loaded output connects to the inductor and quickly receives a lot 

of energy, control must react almost immediately to prevent an overshoot. However, 
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limitations on minimum on-time in the light-loaded output’s switch, its driver, and control 

would make the output receive more energy than consumed every cycle. This can create a 

run-away condition with the lightly-loaded voltage as it keeps increasing that must be 

prevented. 

1.4.2.4  Efficient Buck-Boost Supplies 

Single-output switched-inductor converters can only generate a buck or boost supply unless 

a four-switch buck-boost topology is used. A single-inductor multiple-output inherently 

has a higher number of switches to connect the output supplies. Fortunately, this also 

provides flexibility in the control to adapt the switching sequences to generate a mix of 

buck and boost supplies. However, this must be done with the minimum number of 

switching transitions to reduce power losses and design complexity. 

1.5  Summary 

Portable electronics, such as wireless microsensors, incorporate many features and 

functions that improve our quality life, save energy and money, and can save lives. These 

microsystems, powered by a small battery, incorporate blocks that often include sensing 

and converting sensed signals to a digital domain, a digital signal processor and 

communications to a central location for reporting. Each of these functions have their own 

specific supply and power requirements to optimize energy usage and performance which 

includes step-down and step-up regulation. Also, at the system level, blocks are duty-

cycled when not in use and their supplies adaptively adjusted depending on their workload 

to minimize power consumption. Regulators, besides supplying a mix of buck and boosted 
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supplies, must be efficient and quick responding to this energy optimizing techniques to 

leverage their impact. 

Linear regulators are fast and compact, but can only buck and are energy inefficient. 

Meanwhile, switched-capacitor circuits can be integrated and are more efficient, however 

they can only transfer limited energy per cycle and therefore have limited accuracy and 

their efficiency is still dependent on voltage conversion. Luckily, switched-inductor 

converters are the most efficient, but inductor are difficult to integrate. Even though 

research is being conducted to reduce the size of the passive to allow integration, tradeoffs 

with efficiency and manufacturing cost prohibits such implementation for wireless 

microsystems. Fortunately, using a single-inductor to regulate and supply several outputs 

balances efficiency and size, and hence costs. 

Single-inductor multiple-output (SIMO) converters present their own challenges: 

analysis, accuracy, and cross-regulation. SIMO is multi-loop and non-linear system that 

increases complexity in the analysis and design. Accuracy degrades in a SIMO because 

each output is duty cycled and forces the output capacitor to solely provide the output’s 

energy for a longer period compared to the single-output counterpart. Also, during transient 

events such as load dumps, outputs must wait for their turn to receive the energy necessary 

to replenish the output capacitor and adjustment of energy delivered. Because the inductor 

is shared, a sudden energy change in an output affects what other receives, therefore 

causing transient cross-regulation. During steady-state, load disparity between outputs also 

causes cross-regulation when an output receives much more energy than it needs. If left 

uncontrolled, this can continuously charge lightly loaded outputs and loose regulation. 
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Also, a SIMO will inherently have a higher number of switches and switches events. 

Regulating a mix of buck and boost outputs can make them advantageous given their 

flexibility on switching sequences; however, it must be done efficiently. In conclusion, 

SIMO converters can greatly improve the form factor for microsystems, or more generally 

portable electronics, with high efficiency to prevent excessive battery drain. Research 

groups has been focusing on understanding and solving the challenges with SIMO during 

operation and control. Bridging the performance gap between single-output and multiple-

output switched-inductor converters will propel a cost reduction and miniaturization that 

will help to deploy more microsystems to leverage their benefits. 
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CHAPTER 2  

SINGLE-INDUCTOR MULTIPLE-OUTPUT CONVERTERS 

2.1 SIMO Operation 

The control scheme in a single-inductor multiple-output (SIMO) allocates time to each 

output to receive energy from the inductor and adjust their on-time to achieve regulation 

against variations. There are two basic approaches for time allocation: dedicated energy 

packets or shared energy packets [52–53]. This section discusses the advantages and 

shortcomings for both operations used in the state of the art. 

2.1.1 Dedicated Energy Packets 

A dedicated energy transfer allocates a full inductor energizing and de-energizing sequence 

to each output [54−58]. This means that the SIMO behaves like independent single-output 

switching converters that shares the inductor after each switching period. Figure 2.1 (a) 

shows a buck power stage with the output shared by two outputs while Figure 2.1 (b) shows 

its operation with dedicated energy packets. From the beginning of a cycle, output vO1 

receives energy until the inductor current iL completely de-energizes and stays de-

energized until the end of the next period. Similarly, output vO2 will receive energy on the 

following cycle. Equivalently, each output operates at a higher switching period, which for 

the example in Figure 2.3 will be at twice the switching period for two outputs. 
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Figure 2.1. A sample two-output SIMO (a) and dedicated energizing operation (b). 

 

Since there is no sharing of the energy packet that inductor transfers, its main 

advantage is no output interferences in the regulation of other outputs, or in other words, 

minimum cross-regulation. However, for minimum cross-regulation, the converter requires 

that inductor completely de-energizes before the end of the period otherwise known as 

discontinuous conduction mode (DCM) operation. This way, the current will always start 

from a known value independent of load conditions among the outputs. However, this 

imposes a maximum deliverable output power with a given time allocation [58]. For 

instance, in the SIMO from Figure 2.1, the maximum power PO1(MAX) for output vO1 is 

when the energy packet occupies the entire allocation period TSW. By calculating the 

maximum charge QO1 that can be delivered, PO1(MAX) can be expressed as: 

 

  
  2

O1(MAX ) O1 IN O1 O1 SW
O1 MAX

SW O IN

Q V V V V T
P

T 4L V


  . (2.1) 

To increase the maximum output power, the inductance should be low at the expense of 

higher conduction losses due to the current ripple increase. Alternatively, switching period 

can be high to increase output power but regulation suffers because each output receives 

energy less frequently compromising dynamic and voltage ripple performance [52]. 
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 To circumvent the power limitation, the inductor current iL can stop de-energizing 

before it reaches zero and operate in a pseudo continuous-conduction mode (PCCM) [56]. 

As Figure 2.2 shows, instead of the inductor current iL starting from zero, it starts from a 

fixed value IPCCM, which allows the outputs to receive more energy from the beginning of 

the cycle. Unfortunately, an additional switch is necessary to circulate the IPCCM current 

around the inductor when no output receives energy. This extra switch introduces more 

power losses that are more noticeable at higher load currents that can limit the full-load 

efficiency ηC(FL). The dedicated energy packet scheme, irrespective of DCM or PCCM 

operation, has either higher current ripples or more switching losses that limits the power 

conversion efficiency at full load ηC(FL) to below 80% [55–56], [58]. 

 
Figure 2.2. Pseudo CCM operating mode to increase power delivery. 

2.1.2 Shared Energy Packet 

The other energy transferring scheme is to share the energy packet in the inductor among 

outputs in a single switching cycle [59−78], as Figure 2.3 shows the corresponding inductor 

current iL waveform under this scheme. The main advantage is that there is no output power 

limitation since it can operate in continuous conduction mode (CCM) unlike the dedicated 

energy packets scheme. Another benefit is that every output receives energy every 

switching cycle, or in other words, every output refresh rate is the switching frequency. 

This keeps accuracy high compared to the dedicated energy packet scheme [52].  
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Figure 2.3. Inductor current waveform during shared energy packet operation. 

 

However, the fact that the outputs share the same energy packet results in cross-

regulation. If a single output requires more energy, it can deprive subsequent outputs of 

energy and thus affecting their regulation. For instance, in a two-output buck power stage, 

when inductor ripple is very small, the duty cycle, or fraction of the period that connects 

to the inductor, of an output voltage vO1 is a function of the ratio between its load iO1 to the 

total load: 

 
O1

O1
O1 O2

i
d

i i



. (2.2) 

This means that duty cycle of one output has a load dependence on the other making them 

susceptible to interaction, and therefore cross-regulation. 

2.1.2.1 Cross Regulation 

There are two ways to mitigate the cross-regulation with a shared energy packet scheme: 

matching output and inductor current [69], and having a freewheeling period or auxiliary 

output as an energy buffer [63], [72], [78]. Matching output current iO to the closest level 

of inductor current iL reduces cross regulation when there is a load disparity among outputs. 

It achieves so by connecting the output with the lightest load at the beginning and near the 

end of the switching period when inductor current is low. The disadvantage of this 

technique is the control complexity for comparing and sorting output loads for more than 
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two outputs. Also, the benefit reduces as inductor current ripple is very small compared to 

the DC value because the current discrepancy between iL and iO is reduced only slightly 

after sorting. 

 
Figure 2.4. Matching load to inductor current level reduces load-disparity cross regulation [69]. 

 

 A limitation to matching current levels of the load to inductor is that it still does not 

address transient cross regulation as when one output's energy demand suddenly change. 

An alternative to mitigate this cross regulation is to add an energy buffer through a 

freewheeling period [78] or an auxiliary output [63], [73]. Since cross regulation 

propagates towards the last output in the sequence, an energy buffer at the end of the period 

provides or absorbs energy require to recover from a sudden load change. Figure 2.5 shows 

the power stage and operation with an extra switch that circulates a regulated fixed current 

across the inductor toward the end of the switching period [78]. This forces the inductor to 

store more and prevent energy starvation if any or multiple outputs suddenly need more 

energy. Likewise, if outputs need less energy, it prevents the last output in the sequence, 

e.g. vON in Figure 2.5, to receive excess energy and allow the excess to flow in the 

freewheeling period tFW. The control eventually readjusts energy in the inductor to 

compensate for the excess. Since the regulation target of the current during the 

freewheeling period can be relatively high during heavy loads, it represents an additional 

power loss when flowing through the additional free-wheeling switch SFW. 
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Figure 2.5. Freewheeling period as an energy buffer based on [78]. 

 

 Alternatively, an auxiliary output can act as the energy buffer. It can either be stored 

in another temporary output and then transferred back to the supply with an auxiliary 

switched-inductor converter [63], or connect the input supply as the auxiliary output to 

reduce component count [73]. Figure 2.6 shows the respective power stage (a) and 

operating waveforms (b) to use the input supply vIN as an auxiliary output. This is slightly 

more efficient than recirculating the extra energy through the inductor because the energy 

is recovered and store back at the input capacitor or battery. Nevertheless, the extra switch 

and switching events can limit the peak efficiency ηC(PK) to below 85% [63], [73]. 

 
Figure 2.6. Auxiliary output to reduce cross-regulation [73]. 

2.1.2.2 Mixed Output 

Fortunately, a major benefit of the shared energy packet operation is the opportunity to 

create a mix of buck, boost and inverting supplies. Figure 2.7 shows a generic power stage 

with possible power flows to generate buck, boost and inverting supplies.  Initial inductor 

energizing can occur from supply to ground (SE & SG engages) or from supply to a buck 
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output vBU (SE & SBU engages). Afterwards, because the inductor still carries current, a 

boost output can de-energize the inductor by engaging SBO and the supply SE or input-side 

ground SD switch. Moreover, if inductor still carries current, an inverting output vIN can 

connect on the input switching node vSWI by closing SINV to generate a negative voltage. 

Fundamentally, the inductor can only energize through buck outputs or a ground path but 

can be de-energize with either buck or boost outputs if the input switching node vSWI is 

connected to ground; otherwise, if the input side is connected to the supply, it can only de-

energize through a boosted output. 

 
Figure 2.7. Power paths for mixed output generation on a SIMO. 

 

 Literature shows various configurations to generate a mix of output voltages 

including buck & boost outputs [57], [64], [67], [68], [70], [75], and [78]. For the portable 

microsystem applications, the majority of outputs are buck and few or one needs to be a 

boosted voltage. When using a boost-derived topology such as in [64] or [67], boost power 

must dominate the total buck power to prevent overcharging boost outputs. Otherwise, 

control bypasses inductor and transfer energy directly to the outputs to prevent the runaway 

condtion, and doing so reduces power conversion efficiency between 5-10%. Therefore, a 

buck-derived boost is more compatible with the targeted application to avoid unnecesary 

switching events and minimize losses. 
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 Other work uses single energy packet scheme which as previously discussed limit 

efficiency [78]. Work at [70] avoids such extra losses with adaptively adjusting the switch 

sequence to generate buck and boost outputs; however, its extended-PWM, which 

compares the ramps for each output, to generate such control adds higher complexity for 

more than two outputs. Therefore, a scalable, simple implementation and efficient mixed 

output converter able to generate buck and boost supplies is neccesary for microsystems 

applications. 

2.2 SIMO Control 

The shared energy packet scheme increases control complexity because it needs to regulate 

both the stored energy in the inductor as well as the distribution among the outputs. 

Although voltage-mode control is possible [59], [61]; it often limits the control bandwidth 

due to the complex conjugate pole of the power stage that must be compensated for. A 

current loop that regulates inductor current effectively transforms the inductor in a current 

source up to the loop's bandwidth. This eliminates the pole that the inductor contributes in 

the system or main loop leading to a simpler compensation, design and higher bandwidth 

[79]. Most of the state of the art uses a pulse width modulation (PWM) approach with few 

variations on the control that distributes the energy among outputs. 

2.2.1 Current-Mode PWM Variations 

When implementing the current loop, state-of-the-art SIMOs commonly uses peak current 

control [60], [63], [64], [67], [69], [72], [73], [76], and [77]. Figure 2.8 (a) shows the 

control structure that includes a sampling point for the inductor current iL, a conversion to 



25 

 

voltage vIL through equivalent resistor RS and a comparator. When a cycle begins, a clock 

engages the inductor LO into energizing until its peak equates a reference point vERR. The 

reference vERR set by an amplified total error among outputs, or alternatively only the last 

output in the sequence, dictates how long energizing time tE, or duty cycle dE, lasts as 

Figure 2.8 (b) shows. This control provides a simple and robust control; however, it needs 

a saw tooth voltage vSAW added to the sensed current to compensate for sub-harmonics 

oscillations when energizing duty cycle dE is higher than 50% as the single-output 

counterpart requires [80]. 

 
Figure 2.8. Peak current control for SIMO converters (a) and operating waveforms (b). 

 

 The current loop will store enough energy in the inductor to satisfy all outputs; but 

additional loops are required to distribute this energy. Because one output can be connected 

for the reminder of the switching period until a new cycle begins, an additional N – 1 loops 

are required for an N-output SIMO converter. These loops are local to each output, which 

makes them independent of the of the current loop, or in other words independent voltage 

loops. There are two main approaches for the independent voltage loops in literature: PWM 

and peak-voltage control. 

2.2.1.1 Fully PWM 
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The independent voltage vOI(K) loops, i.e. all outputs except the last in the sequence, can be 

controlled using a simple PWM loop [69], [77]. Under this scheme, an output starts to 

receive energy, and when ramp voltage vRAMP reaches the amplified error of the controlled 

output, it disconnects from the inductor like implementation in Figure 2.9. This control 

provides good accuracy for a simple implementation.  

 
Figure 2.9. PWM control for the independent voltage loops. 

 

 The incorporation of the inductor current in the modulation while the output 

receives energy improves accuracy and cross-regulation specially when there is load 

disparity among outputs [64], [67], [73]. Figure 2.10 shows such implementation by 

replacing the modulation from a constant-slope ramp to a ramp with slope proportional to 

the sensed current through the switch. As an example, if an output receives a large current 

through its switch, the modulation ramp increases faster. This effectively increases the loop 

gain and the comparator can resolve finer duty cycles that helps reduce load-disparity cross 

regulation.  

 
Figure 2.10. PWM control with current feed forward on independent loops. 
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 Although any of the discussed PWM methods can regulate independent outputs 

accurately, they are slow responding to load dumps. They require multiple cycles to recover 

from a load dump because they control an average quantity of the output voltage [81]. 

Because portable microsystems must react and regulate supplies to a moving target or after 

a waking up a block, bandwidth is an important requirement for the control. 

2.2.1.2 Peak Voltage 

Direct regulation of an instantaneous signal is faster because it bypasses any filtering or 

intermediate block. A simple implementation, as shown in Figure 2.11, is to regulate the 

voltage of the independent outputs to a reference directly with a comparator to determine 

the on-time. This control effectively regulates the output's peak voltage [60], [63], [66], 

[72], [76]. The direct regulation of the outputs creates a challenging aspect of this simple 

control since it is noise sensitive due to the lack of filtering. Also, because this control is 

often combined with a current-mode PWM approach, the total response of the converter is 

limited by the PWM bandwidth of the current regulation. 

 
Figure 2.11. Peak voltage control for independent outputs. 

2.2.2 Linear Regulator Hybrids 

An alternative power stage topology and control combines the high efficiency of a 

switched-inductor converter with the high bandwidth of a linear regulator. Figure 2.12 (a) 

shows a power stage that adds a linear regulator to each output while Figure 2.12 (b) shows 
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the switched-inductor control's block diagram [55]. Each linear regulator directly corrects 

any error in the output while the SIMO drives the current in each linear regulator to zero. 

This allows the converter to react to a rising load dump in less than 50 ns, while achieving 

a peak efficiency of 83% at steady-state. However, since the linear regulators can only 

supply currents, the benefits are less for a falling load step, increasing to a 2 μs response 

time. Also, since the linear regulator has high bandwidth, it will try to regulate against the 

output voltage ripple at steady-state. This means that its current will be non-zero and will 

reduce efficiency specially at high current levels as noted by the 72% reported in [55]. 

 
Figure 2.12. (a) Switching-linear hybrid converter with dedicated linear regulator on each output (a) 

and (b) PWM control scheme that multiplex between outputs [55]. 

 

Despite the integrability of a linear regulator, dedicating one per out increases 

silicon real estate and hence cost. An alternative is to allocate one linear regulator available 

for all outputs from the switching node [54]. Figure 2.13 shows the concept where the 

linear regulator sources or sink current from the output switching node vSWO according to 

the total error among outputs. This implementation results in a higher power conversion 

efficiency because the steady-state current the linear regulator provides is closer to zero 

due to ripple cancelation because of the error summation. In addition, because it is a shared 

linear regulator, its quiscent power is less. This results in a peak efficiency ηC(PK) of 88.7% 

but can drop to 82% at full load conditions [82]. Leveraging a single linear regulator for 
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many outputs can be very challenging because no independent loop regulate the output 

voltages directly.  Using an error-based approach, in which only the output with the largest 

error receives energy in a given cycle, is possible but it can result in cross-regulation and 

unregular switching at steady-state [82]. 

 

 
Figure 2.13. Switching-linear hybrid converter with single linear shunt regulator for all outputs [82]. 

2.3 Context and Comparison 

A quantitative comparison among proposed supplies is necessary to evaluate the merits of 

control and operation techniques given a certain context and application. For a fairer 

comparison, the approach would be divided between control approaches and mixed-output 

(buck and boost) operation to account for the inherent design tradeoffs of the later. 

Nevertheless, the same figure of merit (FoM) will compare both as it is focused on the 

SIMO performance for wireless microsystem applications. 

2.3.1 Figure of Merit 

Comparing the state of the art (SoA) is difficult because too many metrics describe the 

performance of a switched-inductor power supply. Plus, the significance and relative 

weight of each parameter can vary widely from one application to the next. Still, comparing 
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under equivalent conditions and uniform weights can be useful. So, for the purposes of the 

following discussion, all independent parameters carry equal weight. 

A multiple-output inductor is more appealing when it supplies higher total current 

iO(MAX) and more outputs NO with higher power-conversion efficiency ηC. Although ηC can 

be more important at one level, peak and full-load efficiencies ηC(PK) and ηC(FL) reflect what 

is possible when optimized and stretched to output as much power as possible. And 

although maximum output-voltage variation ΔvO(MAX) is important, ΔvO(MAX) ultimately 

depends on output capacitance CO, maximum load dump ΔiO(MAX), and response time tR. 

tR, however, is largely independent of the others. Plus, given tR and any of the other two, 

the third is simply their consequence. Hence, tR is arguably the one that represents the rest. 

A power supply is also more attractive when it costs less and occupies less space. 

In this respect, fewer off-chip components NOC and smaller silicon die size ASI cost and 

occupy less, and longer channel-length technologies LMIN cost less. Plus, longer LMIN 

technologies can sustain higher voltages. Assuming all these parameters are equally 

significant, an all-encompassing figure of merit (FoM) should rise with higher iO(MAX), NO, 

ηC(PK), ηC(FL), and LMIN and lower tR, NOC, and ASI. Normalizing the FoM to one point of 

reference PoR reveals a relative FoM or RFoM that is useful when comparing devices: 

 
O(MAX) O C(PK) C(FL) MIN

R OC SI

i N LFoM
RFoM

PoR t N A PoR

 
  , (2.3) 

where PoR is the FoM of the best SoA in each comparison. 

2.3.2 Mixed-Output SIMO Comparison 
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The mixed-output SoA, summarized in Table 2.1, commonly uses a PWM control 

approach. This control consistently has a peak efficiency ηC(PK) close or higher than 90%. 

However, [63] and [78] uses an energy buffer as an auxiliary output that increases losses 

as [78]'s full-load efficiency ηC(FL) of 74% shows. Also, Table 2.1 shows that the design 

has been focused on operation and steady-state performance given the lack of report for 

response time tR. 

Table 2.1. SoA Comparison of Mixed-Output (Buck & Boost) SIMO Converters. 

 Units [63] [78] [67] [64] 

Notes – 
I-PWM, V-PK 

Energy Buffer 

Fully PWM 

Energy Buffer 
Fully PWM Fully PWM 

LMIN μs 0.5 0.25 0.25 0.25 

ASI mm2 3.6 10 2.1 3.8 

vIN  V 2.5–4.5 2.7 0.9–1.6 1.8–2.2 

vO V 2–12 1.8–3.3 0.6, 1.8 1.25–2.25 

iO(MAX) mA 145 650 240 400 

NO # 5 4 2 4 

NOC # 10 5 3 5 

ηC(PK) % 83 91 92 93 

ηC(FL) % –1 74 92 92 

tR μs –1 102 –1 –1 

RFoM % 393 49 903 1003 

 1Not reported. 2Estimate. 3assumes tR = 10 μs for comparison. 

2.3.3 Control Comparison 

Table 2.2 compiles the state of the art (SoA) which reported almost all considered 

parameters and with the best control performance for wireless microsystem applications. 

The best performing technique using the discussed FoM in equation (2.3) is the hybrid with 



32 

 

dedicated linear regulators [55], thanks from its 2 μs response time in despite its low 72% 

full-load efficiency ηC(FL). Using a dedicated energy transfer scheme resulted in a low 72% 

full-load efficiency ηC(FL) and slow response time of 20 μs [58]. A full PWM approach 

helps balance the response time to around 5 to 40 μs while maintaining a full-load 

efficiency ηC(FL) above 80%. Using a peak voltage control can provide bandwidth benefits 

but the complexity of the particular implementation of [76] of a shared comparator and a 

time limit for any outputs increases response time to 200 μs. 

Table 2.2. SoA Comparison of Control schemes for SIMO Converters. 

 Unit [58] [55] [65] [77] [69] [72] [73] [76] 

Notes  
Dedicated 

E-Packet 
Hybrid 

Fully 

PWM 

Fully 

PWM 

Fully  

PWM 

Fully 

PWM 

Fully 

PWM 

I-PWM 

V-PK 

LMIN μm 0.5 0.35 0.25 0.04 0.055 0.5 0.065 0.35 

ASI mm2 2.4  3.84 5.29 4.00 0.98 4.40 1.86 5.04 

vIN V 
1.3− 

2.85 

2.7− 

3.3 

2.7− 

5 

2.7− 

3.6 

2.7− 

3.6 

1.2− 

2.2 

3.4− 

4.3 

2.0− 

3.0 

vO V 
3,  

3.6  

1.2, 

1.8 

1.2,  

1.8 

1.1− 

2.25 

1.8,  

1.2 

3.0, 

 2.5 

1.2− 

2.8 

2.5– 

5 

iO(MAX) mA 1702 200 600 900 600 100 1150 400 

NO # 2 2 2 4 2 2 5 8 

NOC # 3 3 4 5 3 3 6 9 

tR μs 202  21 152 402 82 52 122 2002 

ηC(PK) % 88 83 87 89 91 81 83 92 

ηC(FL) % 722 722 802 862 832 802 832 742 

RFoM % 21 100 18 4 58 27 53 2 

   1uses linear regulator, 2estimated from reported measurements. 

2.4 Summary 
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A SIMO can operate by delivering a dedicated energy packet or a shared energy packet to 

the outputs. By dedicating a full energizing/de-energizing event to a single output per 

switching cycle, the converter can isolate the outputs from each other if the inductor current 

consistently reaches a known value at the end of the cycle. This minimizes interaction, or 

cross regulation, among outputs. However, the maximum output power is limited when 

inductor current reaches zero at the end of the cycle. An alternative is to de-energize the 

inductor current to a fixed value greater than zero at the cost of higher conduction losses. 

Also, this operation also decreases accuracy since each output is refreshed less frequently 

and must wait several switching cycles to receives energy again. 

 Operation under a shared energy packet scheme, on the contrary, refreshes every 

output more frequently and does not have a maximum output power restriction. However, 

because the energy packet is shared, interaction between outputs, or cross regulation, is 

possible. This means that one output can disturb the remnant energy for the other outputs. 

Ordering the output sequence such that the load is close to the inductor current level can 

alleviate the load disparity cross regulation but is limited when inductor current ripple is 

small and increases complexity due to the sorting every cycle. Having an energy buffer to 

absorb most of the cross-regulation at the end of the cycle is possible but this increases 

losses and silicon real estate due to the added switches and sequence. 

 An additional benefit of a shared energy packet is the flexibility to generate mixed 

outputs voltages, this means buck and boost. An inductor always energizes through a buck 

and de-energizes through a boost output; hence, having the correct sequence allows for the 

SIMO to generate a mix of buck and boost voltages without increasing complexity. 
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However, most work in literature use a boost-derived buck where boost are the dominant 

output. If not, it can create a runaway problem in the inductor current that currently is 

solved by transferring energy bypassing the inductor and therefore increasing losses. 

 Besides the power stage and its operation, a SIMO requires two control knobs: one 

to sufficiently energize the inductor and another to distribute energy among outputs. 

Literature mostly uses a current-mode PWM approach to adjust the inductor current. 

Specifically, it uses peak current control which is simple and provides and inherent current 

protection, but requires slope compensation to prevent subharmonic oscillations. For 

energy distribution control, there exist two main approaches: fully PWM solution and peak-

voltage. Incorporating a local PWM loop among independently controlled outputs provides 

accurate regulation and uncomplicated design. Even though feedforwarding the inductor 

current as the modulation ramp improves the control, the total solution is PWM which takes 

several cycles to respond to load dumps. Peak voltage can improve response time by using 

a simpler circuit but the bandwidth is still limited by the current-mode PWM loop. 

 Combining a linear regulator which handle fast transients can improve response 

time, while keeping the high efficiency of a switched inductor at steady-state. However, 

linear regulators increase losses because even at steady-state, they provide a small current 

to regulate against the ripple voltage. Dedicating a single linear regulator for each output, 

which can be integrated, occupies a large silicon real state. Using a single linear regulator 

that provides all the current at a shared node such as the switching node decreases die area 

but increases complexity in the distribution of the energy. 
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Comparison of the state of the art (SoA) reveals that operation validation has been 

the objective among the mixed-outputs converters with buck and boost outputs. Hence, 

there is lack of discussions in the literature on techniques to improve response time, and 

the pro and cons of generating a mix of voltages at varying power ratios between buck and 

boost outputs. Also, the SoA has been focused on mostly fully PWM schemes that balances 

a high efficiency with a modest response time. Adding a parallel linear regulation to each 

output provides the fastest response time for the SoA at the expense of higher losses at high 

current levels. Hence, a control technique that can respond close as a linear regulator but 

without the sacrifices of efficiency and silicon real estate will improve the state of SIMO 

converters for wireless microsystems. 
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CHAPTER 3  

STABILITY ANALYSIS OF HYSTERETIC CURRENT-MODE 

CONTROL FOR SWITCHED-INDUCTORS CONVERTERS 

3.1 Hysteretic Control 

PWM control loops are well understood, robust and easy to stabilize but require multiple 

cycles to respond to a sudden load change [81]. Fortunately, hysteretic loops respond when 

their controlled variables surpass the hysteretic window limits, so they react within one 

switching cycle [83]. Despite its transient benefits, understanding the nonlinear feedback 

dynamics of hysteretic converters is arduous. Phase-plot portraits [84], sliding-mode theory 

[85-87], state-space averaging [88–89], and circuit averaging [90−94] help in the design 

process of single output hysteretic converters, but the equations they generate are often 

abstract and difficult to relate to circuit operation, to inductor-current and output-voltage 

ripples, response time, and others. Thus, an intuitive and insightful analysis that asses the 

stability of a hysteretic converter is necessary for easier design and understanding.  

Moreover, analysis and design of single-inductor multiple-output (SIMO) supplies 

are largely absent in literature. To simplify the analysis, the hysteretic current mode must 

be analyzed for a single-output converter before extending it to the multiple output 

counterpart that has additional feedback loops. The following sections break down the 

analysis by starting for a single-output switched-inductor converter and then extending the 

analysis to a multiple output converter and the interactions among its feedback loops. 
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3.2 Single-Output Hysteretic Current-Mode Design 

Current-mode control turns the inductor LO into a current source and thus removing its pole 

in the main loop [79]. In the hysteretic case, which Figure 3.1 illustrates, like a relaxation 

oscillator, the control keeps LO's iL rippling about iL's average iL(AVG) between the hysteretic 

limits that comparator CPOSC and feedback resistor RS set. This way, LO's ripple ΔiL is 

constant and the oscillator is a transconductor block GOSC inside the voltage loop that 

outputs iL(AVG) set by amplified error voltage vERR. 

 
Figure 3.1. Hysteretic current-mode switched-inductor buck dc-dc converter. 

3.2.1 Operation 

Since the system regulates output voltage vO and vO's ripple ΔvO is miniscule with respect 

to vO, vO for the oscillator is practically constant at VO. As such, iL in Figure 3.1 and the 

voltage iLRS that iL generates across RS rise linearly when input switch SIN energizes LO 

from vIN to vO with voltage vE at vIN – vO at diL
+/dt or vE/LO, as Figure 3.2 shows. When 

iLRS surpasses comparator CPOSC's upper threshold, CPOSC trips and opens SIN and closes 

ground switch SG, which drains LO to vO. With a negative de-energizing voltage –vD at –

vO across LO, iL and iLRS reverse direction at diL
–/dt or –vD/LO until iLRS reaches CPOSC's 

lower threshold. This way, iLRS rises and falls to traverse CPOSC's hysteresis VHYS across 

energizing and de-energizing times tE and tD, and together, across tOSC, so 
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In short, ΔiL is constant and traverses across VHYS/RS every tOSC period. 

 
Figure 3.2. Single-output steady-state waveforms of the hysteretic buck converter. 

 

 Since the load sinks iL(AVG), iL's ripple ΔiL flows entirely into CO to establish how 

much the output vO ripples in steady state. The charge qC that ΔiL sources and sinks across 

every half period 0.5tOSC, is basically the area under ΔiL about iL(AVG) during CO's charging 

time tCHG. So, since ΔiL is a triangular waveform, CO's ripple ΔvO reduces to 
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3.2.2 Loop Analysis 

To the overall system, the oscillator is simply a block that outputs and adjusts iL(AVG) in 

response to a voltage vERR. To see this, recall that comparator CPOSC's hysteresis voltage 

VHYS is about its input vERR. This means vERR is the center voltage iL(AVG)RS about which 

iLRS oscillates. In other words, the block's low-frequency transconductance gain GOSC0 or 

iL(AVG)/vERR is: 

 
l(avg)

OSC0
err SLow  frequency

i 1G
v R

  . (3.6) 

Since bandwidth essentially describes response time, the time tR the oscillator 

requires to adjust iL(AVG) to a new value is a measure of its bandwidth fIBW. A 

straightforward way to characterize the current loop as a close loop system is to step its 

input vERR and observe and model its response with an equivalent linear system that 

similarly responds. In this light, a voltage step in vERR, as Figure 3.3 shows at 5 and 20 μs, 

shift CPOSC's thresholds. Hence, iL's rising and falling rates diL
+/dt at vE/LO and diL

–/dt at –

vD/LO determine response time tR. Since the RC-equivalent bandwidth that corresponds to 

reaching 98% of iL's target is 1/2πREQCEQ from iL
* in Figure 3.3 and 

  R EQ EQ EQ EQ
IBW

1 4t R C ln 4R C
1 0.98 2 f

  
 

, (3.7) 

1/2πREQCEQ is a linear equivalent that can model fIBW. 
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Figure 3.3. Step response of inductor current iL and its REQCEQ equivalent iL*. 

 

Although iL slews to 98% of its target and its linear counterpart iL
* rises 

exponentially, both reach 98% at the same time. Since iL
* slows as it nears its ultimate 

target and the actual does not, modeling iL to 80% with iL
* means iL

* requires more time to 

reach its final value than iL. This is a pessimistic expectation that results in an over-sized 

CO. As simulations will later prove, modeling the response to 98% predicts the oscillator's 

bandwidth and response fairly well. 

For iL(AVG) to traverse across ΔiL(AVG), iL must rise or fall by an equivalent amount. 

Since quasi-constant voltages vE and vD energize and de-energize LO, iL ramps at a constant 

rate diL/dt according to LO's impressed voltage vL. Since vL is vE when iL rises and vD 

otherwise, the response time tR for rising and falling load dumps is different: 

 
L(AVG) O O

R L(AVG) O
L L L

i L L
t i i

di / dt v v

           
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, (3.8) 

where iL(AVG) flows to the load as iO as in the buck converter. Unfortunately, modeling fIBW 

with the longest tR is overly pessimistic and with the shortest delay overly optimistic. Plus, 

a real response incorporates ringing that invokes both rising and falling slopes. Therefore, 

emulating the average of these delays with the previously defined 98% REQCEQ model 
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balances the approximation and reduces vL to two times the parallel equivalent of vE and 

vD, fIBW to 

   E D
IBW

O O E D

v v4 1 2f
2 i L v v
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, (3.9) 

and the oscillator's close loop gain GOSC to 
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Since iL requires more time to reach its target with higher load dumps ΔiO, fIBW is inversely 

proportional to ΔiO. This means the worst-case delay across the oscillator corresponds to 

the highest load dump. In other words, hysteretic current-mode converters are least stable 

when subjected to wider load dumps, when fIBW is lowest and closest to the systems unity-

gain bandwidth f0dB. Incidentally, fIBW's dependence on ΔiO is an indication of the nonlinear 

nature of the hysteretic transconductor block. 

 Amplifier AE in Figure 3.1 compares vO to reference vR to generate an error voltage 

vERR as in Figure 3.4. When multiplied by AE and the oscillator's GOSC, vERR produces and 

feeds iL(AVG) to the load's CO and RO. So, with negative feedback, offsetting vO from vR 

raises and amplifies vERR to oppose and reduce the offset between vO and vREF to zero. 

 
Figure 3.4. Equivalent block diagram of the hysteretic buck dc-dc converter. 

 

The loop is stable with more than 45° of phase margin when the loop gain ALG 

reaches zero dB and the unity-gain frequency f0dB at 20 dB per decade, which can only 
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happen after one pole. For this, the output pole pO that RO and CO establish must be low 

enough to ensure ALG reaches f0dB before GOSC's bandwidth fIBW: 

 O
LG E OSC O

R O O

v 1A A G R ||
v v sC

      
. (3.11) 

Because ALG falls linearly with frequency past pO, the gain–bandwidth product that ALG0 

and pO establish is constant between pO and f0dB and equivalent to f0dB at 0 dB: 
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. (3.12) 

CO must therefore be sufficiently high to ensure f0dB is near or below the oscillator's fIBW. 

In feedback terms, ALG must reach f0dB with enough phase margin PM to maintain stable 

conditions. Since pO is well below f0dB and fIBW near or above f0dB, pO lowers 90° of phase 

from the loop's 180° and fIBW another fraction of 90° to reduce PM to 

 
1 0dB

IBW

f
PM 90 tan

f
     
 

. (3.13) 

 Since the oscillator's bandwidth fIBW changes with load dumps ΔiO, so does phase 

margin PM. With 10 μF of output capacitance CO, the design of Figure 3.1 when vIN is 3.6 

V, vO  is 1 V,  LO is 20 μH, RS is 0.277 Ω, and AE is 10 V/V gives a PM of roughly 64° 

when subjected to 50-mA load dumps and 45° under 100-mA dumps, as Figure 3.5 shows. 

With 20 μF, PM is 76° with 50 mA and 45° with 200 mA. In other words, the lowest 

allowable PM and the largest ΔiO ultimately dictate the lowest possible CO. 
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Figure 3.5. Stability curves for a given capacitance and load dump size. 

 

Figure 3.6b shows the simulated response of the designed system. The resulting 

current and voltage ripples ΔiL and ΔvO are, as expected, roughly 36 mA and 0.4 mV. 

Inductor current iL undergoes two oscillating rings before it settles after 100-mA rising and 

falling load dumps. The second ring is basically an oversized current ripple ΔiL of 45 mA. 

This means the system has, as expected, about 45° of phase margin [95]. 

 
Figure 3.6. Simulation of load dump response across various capacitance and load dump sizes 

 

 With less output capacitance CO, as Figure 3.6a demonstrates for 5 μF, iL settles 

after four to five rings, which corresponds to less than 45° of phase margin. In contrast, 17 
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μF produces no more than one ring, as Figure 3.6c shows, so phase margin is higher at 

roughly 60° [95]. Note phase margin is worse for falling load dumps in Figure 3.6a and 

Figure 3.6c, when CO is 5 and 17 μF, than for rising load dumps. This is because LO's 

energizing voltage vE at 2.6 V is higher than its de-energizing counterpart vD at 1.0 V, so 

iL rises more quickly than it falls. In other words, the oscillator is faster when iL climbs 

than when iL drops. 

 With a higher load dump at 150 mA, the system recovers after three rings, as Fig. 

Figure 3.6d illustrates. In other words, phase margin falls below 45° when ΔiO rises above 

its specified target. To maintain 45°, CO must therefore rise to 15 μF, and for 60°, to 26 μF, 

as Figure 3.6e–f further show. Irrespective of the conditions, however, phase margin for 

rising load dumps is, as before, equal or better than for their falling counterparts. 

3.2.3 Measurement Results 

To verify the analysis and corroborate simulations, the hysteretic current-mode buck 

converter was designed in a 0.18-μm CMOS and was implemented as in Figure 3.7. Current 

sensing was implemented by using RC sensing [96] for ease of implementation and testing 

flexibility. When LO's and CIL's corner frequencies with RIL and RLESR are well below the 

oscillating frequency fOSC, sLO and RIL overwhelm RLESR and 1/sCIL near fOSC. So LO's 

voltage vL is iLsLO, vC is vL/sRILCIL or iLLO/RILCIL, and vI is iL(10LO/RILCIL) or iLAR. 
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Figure 3.7. Implemented hysteretic current-mode switched-inductor converter. 

 

For a vIN, vO , ΔiLD, and LO of 1.5 V, 1 V, 180 mA, and 3.3 uH set current bandwidth 

fIBW to 714 kHz. However, when accounting for parasitics resistances from the PCB, 

switches, inductor and traces, energizing effective voltage can drop to as low as 0.1 V 

which pushes fIBW to 195 kHz. For 45° of phase margin, f0dB should not exceed fIBW's 195 

kHz. CO should therefore be no less than 10 μF when AE is 12, RIL is 33 kΩ, and CIL is 1 

nF, so AR is 1 Ω, but, for margin, the design on Figure 3.7 uses a CO of 15 μF. 

The measured output vO in Figure 3.8 ripples 5 to 10 mV and responds within 5.6 

μs to rising 40-, 80-, and 180-mA load dumps. The delay tR is basically how long LO 

requires to slew iL across these load steps. The system responds faster (within 3.4 μs) to 

similar falling load dumps because LO's drain voltage vD is higher at vO's 1.0 V than LO's 

energizing counterpart vE, which is vIN – vO or 1.5 – 1.0 V less any voltage drops from 

parasitic resistances. 
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Figure 3.8. Measured response to 40-, 80-, and 180-mA load dumps when input voltage vIN is 1.5 V. 

 

In Figure 3.8, the feedback loop is more prone to ringing when responding to rising 

than to falling load dumps. This is because LO requires more time to respond to rising loads. 

In other words, the bandwidth pole of the current loop is lower, and as a result, closer to 

the unity-gain frequency f0dB of the loop. Similarly, the ringing worsens as the load step 

increases from 40 to 180 mA because LO requires more time to slew across wider load 

steps. Ringing also worsens as input voltage falls in Figure 3.9 from 1.8 to 1.4 V for the 

same reason, because with a lower voltage across LO, iL slews more slowly. 

 
Figure 3.9. Measured response to 180-mA load dump when input voltage vIN is 1.4 and 1.8 V. 
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3.3 Multiple-Output Hysteretic Current-Mode Design 

As in the single output case, the current loop in a multiple-output converter is a hysteretic 

oscillator that outputs a rippling current iL about an average current level that the error 

amplifier AE sets as Figure 3.10 shows. Each independent output, i.e. vO1 through vON, 

incorporates a regulating loop that feeds sufficient energy from the inductor to satisfy each 

load. With AE, the master loop then adjusts iL so that the last output vOM receives enough 

leftover iL to satisfy vOM's load. LO therefore feeds one output at a time, from vO1 to vOM. 

 
Figure 3.10. Hysteretic current-mode SIMO buck converter. 

 

3.3.1 Operation 

The hysteretic control around inductor current iL in a SIMO converter operates like the 

single output counterpart. So irrespective of which output LO feeds, iL in Figure 3.11 climbs 

until iLRS rises above vERR, by engaging MIN, by half of comparator CPOSC's hysteresis vHYS. 

After that, MIN opens and MG closes and then drains LO until iLRS reaches CPOSC's lower 
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threshold vERR – 0.5vHYS. iL therefore swings across vHYS/RS and about vERR/RS. And the 

time that lapses across these events is the oscillating period tOSC. 

 In the hysteretic SIMO, inductor LO dictates response time when it slews when 

responding to a step at the loop's reference vERR. Contrary to the single output, the voltage 

across the inductor during slewing depends on the combination of output voltages given a 

set of load and operating conditions. So, the worst-case inductor voltage vL(MIN) can 

guarantee stability, with the risk of over compensation and simplify the analysis unless 

simulations are readily available to interactively determine an effective inductor voltage vL 

during response time. At the worst case, lowest bandwidth fIBW(MIN) occurs when delay is 

longest, or response time tR(MAX), at ΔiO(MAX) and vL(MIN), which is LO's lowest possible 

energizing or drain voltage vE or vD: 

 L(MIN )
IBW (MIN )

O(MAX ) O

v4 1f
2 i L

   
        

. (3.14)  

 
Figure 3.11. Simulated inductor current waveform for an evenly loaded 5-output SIMO. 

3.3.2 Independent Loop Analysis 

The oscillator starts every cycle by energizing LO (with fOSC in Figure 3.10) to the first 

independent output vO1 (by way of MIN and MO1). LO's iL then charges CO1 like Figure 3.12 

shows until vO1 reaches comparator CPO1's threshold vR1. At that point, CPO1 opens MO1 

and closes MO2 to redirect iL to the next output. This lets vO1's load discharge CO1 until fOSC 

reconnects LO back to vO1. Since identical feedback loops close each independent output 
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vOI, iL feeds all outputs like a current source and each independent output voltage vOI ripples 

and peaks to its respective target vRI. 

 
Figure 3.12. Simulated waveform of the first independent output in a 5-output SIMO. 

 

 Each independent loop regulates peak voltage like peak-current converters regulate 

inductor current. Similarly, it can suffer from sub-harmonics if not properly compensated. 

Figure 3.13 shows how a perturbation ΔvOI(k) at the beginning of a cycle to a steady state 

output voltage waveform propagates to the next cycle as ΔvOI(k+1). An initial perturbation 

ΔvOI(k) changes the on time toi and, with a fixed period tOSC, so will the off time toffi with the 

amount dictated by the rising and falling slopes of vOI: 
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Where dOI is approximately the ratio of load current to inductor current or iLDI/iL. 

 
Figure 3.13. Sub-harmonic propagation in peak-voltage regulation of independent outputs. 

 

So, when LO connects to an output longer than 50% of the period tOSC, small 

variations grow to produce the subharmonic oscillations in Figure 3.14. But like in peak-

current control, adding a ramp [79] to each threshold vRI that shortens LO's connection to 
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vOI when responding to loop variations reduces the growth rate of these oscillations. And 

if the ramp drops at half the falling rate of vOI, which its load iLDI dictates and the maximum 

load iLDI(MAX) sets to 0.5iLDI(MAX)/COI, oscillations disappear for all duty cycles dOI. 

 
Figure 3.14. Simulated peak-voltage control showing sub-harmonics oscillations and compensated 

waveform. 

 

Each CPOI, flip-flop, and MOI combination closes a feedback loop that regulates 

vOI(PK) to vRI like shown in Figure 3.15. So, variations in vOI prompt CPOI to adjust vOI's 

connection time tOI and connecting duty cycle dOI. This, in turn, modifies the current iLI 

that vOI receives. The small-signal loop gain AVLG is therefore the gain from CPOI's error 

voi(pk) – vri to voi(pk) via toi, doi, and ili: 

 

 

oi(pk)oi oi li
VLG

oi(pk) oi oi li

OI
L OI

L LDI LDI(MAX) OSC OI

vt d i
A

v t d i

C 1 1i R ||
i i 0.5i t sC

           
     

               

. (3.16) 

 
Figure 3.15. Equivalent small-signal model of peak-voltage control of independent outputs. 
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vOI's rising and vRI's falling ramps dictate how soon CPOI ends tOI. Since vRI's fall 

into CPOI reinforces vOI's rise, toi is the combined slew-rate translation COI/(iL − iLDI + 

0.5iLDI(MAX)) of the error voi(pk) – vri. LO connects a toi/tOSC fraction of the time doi to deliver 

with ili a doi fraction of LO's current iL. This current ili into the combined impedance that 

vOI's resistance ROI and COI establish determines vOI(PK)'s variation voi(pk). 

COI sets the only shunting pole pOI at 1/2πROICOI that attenuates AVLG to unity-gain 

frequency fV0dB. Thus, the product of AVLG's low-frequency gain AVLG0 and its bandwidth 

pOI is constant and equivalent to fV0dB: 

 
 

OSC
V0dB VLG0 OI

LDI(MAX) LDI L

f 1f A p
2 1 0.5i i / i

             
. (3.17) 

This means AVLG reaches fV0dB with 90° of phase margin. Using the replica circuit time-

domain simulation technique in [97] when iLD1 is iLDI(MAX), iLDI(MAX) is 20% of iL, RO1 is 10 

kΩ, CO1 is 4.7 μF, and tOSC is 1 μs, Figure 3.16 shows that AVLG0 is 94 dB, fV0dB is 177 kHz, 

and phase margin is 90°, which matches theory. 

 
Figure 3.16. Simulated Bode response of peak-voltage control. 

 

 Although the analysis uses the hysteretic control scheme for the independent loops 

regulation to achieve fast dynamic performance, the analysis procedure is applicable to any 

other control scheme. For instance, if the voltage peak is not effectively being regulated, it 
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does not require compensation for sub-harmonic oscillations. Also, if required, modulation 

from voltage error to time can occur with a fixed-slope ramp like PWM control schemes 

with added frequency shaped amplification for the desired control response. 

3.3.3 Master Loop Analysis 

For GOSC's output iL to behave like a current source within the master loop's bandwidth 

fM0dB, GOSC's minimum bandwidth fIBW(MIN) should surpass fM0dB. Irrespective of iL, 

however, each independent output sinks a dOI fraction of iL before connecting LO to the 

next output. To vOM, these fractional losses dOIiL are equivalent to current loads iO1–iON in 

Figure 3.17. Stated differently, the bandwidths of the independent loops fV0dB are closer to 

fOSC and therefore higher than fM0dB, so their closed-loop effects on vOM up to fM0dB are like 

independent load currents. 

 
Figure 3.17. Equivalent small-signal model of the master feedback loop. 

 

Although COM keeps vOM's ripple ΔvOM low, AE can amplify ΔvOM to an extent that 

iL's average can also ripple. But since outputs receive iL at separate times, summing output 

ripples into AE, like Figure 3.10 illustrates, tends to produce a ripple-free sum. Since 

independent loops regulate their outputs near their targets, their small-signal errors in AE 

are largely absent. AE therefore senses vOM's median error to vRM, as Figure 3.17shows. 

 AE and GOSC in Figure 3.10 close a loop that regulates vOM to vRM. For this, AE 

senses and amplifies vOM's error vOM – vRM to adjust the current iL that GOSC feeds to all 
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independent outputs and vOM's load ROM and COM. The loop gain AMLG is therefore the gain 

translations across AE and GOSC to vom: 

 OSC0
MLG E OM

OM

IBW

G 1A A R ||
s sC1

2 f

 
      

   

. (3.18) 

Since this loop's bandwidth fM0dB should precede fIBW(MIN), COM should shunt well 

below fIBW to set a pole pOM at 1/2πROMCOM that attenuates AMLG to unity at fM0dB. So the 

product of AMLG's low-frequency gain AMLG0 and its bandwidth pOM is constant and equal 

to fM0dB: 

 E
M0dB MLG0 OM

S OM

A
f A p

2 R C
 

�
. (3.19) 

pOM's and fIBW's phase shifts therefore determine the phase margin left PMM at fM0dB to the 

180° inversion point: 
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p f
         
   

. (3.20) 

 The simulation in Figure 3.18 shows that fM0dB is 191 kHz and PMM is 83° when 

AE is 28 V/V; RS is 5 Ω; ROM is 10 kΩ; CO1, CO2, CO3, CO4, and COM are 4.7 μF; iO1, iO2, 

iO3, iO4, and iOM are 50 mA; and tOSC is 1 μs. PMM nears 90° because the small-signal 

simulation cannot account for the large-signal delay that wide load dumps produce. fIBW is 

therefore close to fOSC, near which switching feedback dynamics reduce PMM to 83°. 
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Figure 3.18. Simulated small-signal master feedback's loop gain for a 5-output SIMO. 

3.3.4 Five-Output SIMO Validation  

For validation, consider a 5-output supply with a 2.7–4.2-V input vIN; 1.00-, 1.25-, 1.50-, 

1.75-, and 2.00-V outputs; 100-mA loads; and combined 400-mA load dumps. LO's drain 

voltages are therefore vO1's, vO2's, vO3's, vO4's, and vOM's 1–2 V. LO energizes from vIN into 

these outputs, so LO's lowest energizing voltages are 0.7–1.7 V. This means, LO's lowest 

weighted average voltage vL(MIN) happens when LO energizes, which from simulations is 

0.98 V when evenly loaded. 

To keep iL's ripple at 20% of the highest combined load: at 100 mA, RS and 

comparator CPOSC's hysteresis in Figure 3.10 can be 5 Ω and 500 mV. For iL to oscillate at 

1 MHz when evenly, but half-way loaded and supplied from vIN's 2.7 V, LO should be 8.2 

μH. This way, 4.7 μF per channel can keep 100-mA loads from rippling outputs more than 

20 mV. 
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 The bandwidths of the independent loops fV0dB when evenly loaded are therefore 

177 kHz. The oscillating transconductor's minimum bandwidth fIBW(MIN) can be 191 kHz. 

So, to keep the phase margin of the master loop PMM above 45°, its bandwidth fM0dB should 

be no greater than 191 kHz, for which AE can be 28 V/V. This way, iL can slew up to 

1/fIBW(MIN) or 5 μs and independent outputs can recover 1/fV0dB or 6 μs after that and vOM 

1/fM0dB or 5 μs after that. 

To test this, all loads in Figure 3.19 rise 80 mA in 10 ns at 20 μs. When reaching 

vOM, the master loop energizes LO until iL slews to a level that can supply and replenish all 

outputs, so vOM overshoots to 2.40 V. vO1–vO4 stop drooping within 4 μs of one another 

and recover within another 12 μs. vOM under- and overshoots like 45° of phase margin 

would predict [95]. 

 
Figure 3.19. Simulated 100-500 mA load-dump response of the 5-output SIMO. 
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All transitions are faster for the falling load dump at 60 μs because LO drains with 

higher voltages than with which LO energizes. So iL requires less time to slew and outputs 

drift less. All outputs therefore recover within 9 μs without under- or overshooting, as 90° 

of phase margin would predict [95]. So, like theory predicts, iL slews across 1/fIBW, 

independent outputs stop drooping within 1/fV0dB of one another, and the last output settles 

1/fM0dB after the previous outputs recover. 

3.3.5 Limitations 

Due to the sequential nature of the control, each subsequent output that receives energy 

will have a slightly higher response time while the previous output recovers like depicted 

in Figure 3.19. The analysis does not consider this large signal effect during large load 

steps. Fortunately, as each output responds, it does so stably and with enough phase margin.  

Also, to simplify the analysis, it assumed that the master's loop bandwidth is well 

below the oscillating, or switching, frequency so that its effect in negligible. However, a 

very high bandwidth can approach the oscillating frequency such that it affects the phase 

margin by adding phase delay and therefore decreasing phase margin [98]. Thus, to 

minimize this effect, the design can assume to push the bandwidth about five time lower 

than the oscillating frequency. 

3.4 Summary 

Hysteretic converters can react within a switching cycle allowing them to have a good 

dynamic performance. However, its non-linear control increases the difficulty of designing 

the control loop, especially when applied on time-variant systems such switched-inductor 
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converters. In literature, there has been design approaches and equations derived that help 

but lack to insightfully relate them to circuit operation for an intuitive design. Thus, an 

intuitive and simple analysis help understand hysteretic control to an easier stable and 

robust design of hysteretic current mode control for both single- and multiple-output 

converters. 

 On the single output converter, the hysteretic current-mode behaves as a relaxation 

oscillator by constraining the inductor current ripple within a hysteretic window around an 

average current. The voltage loop adjusts the average current to correct for any voltage 

regulation error. The current loop can be modeled as a close-loop gain from voltage error 

to inductor current with a gain and a bandwidth. The feedback gain dictates the low 

frequency gain while the response time to a step can be used to model its bandwidth with 

an equivalent linear system that takes the same amount of time to respond. So, because 

hysteretic control forces the inductor current to slew up or down during a step, the rate in 

which inductor current increases (or decreases) and the amount it must change determines 

the response time. Incidentally, the fact that the inductor current slews during the whole 

response is the reason why hysteretic control enjoys excellent dynamic performance. The 

model of the current loop can be used to easily find the output capacitance in the voltage 

loop to stabilize the system with enough phase margin. 

 The hysteretic control can be applied on the SIMO with additional feedback loops 

around all output voltages except the last one, or master loop. This locally regulated, or 

independent, output voltages, bypasses the inductor current, and therefore, are inherently 

stable with the dominant pole at their output. Hysteretic comparator on the independent 
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voltages effectively regulate their peak voltages. Like peak current control, this control 

would suffer from sub-harmonic oscillations which would require compensation. 

Otherwise, it is a single pole loop with its bandwidth scaling with the oscillating frequency. 

 The master loop receives the left-over energy from the inductor after all 

independently regulated outputs. So, it measures the energy need of all outputs to adjust 

the inductor current to the level that satisfy all outputs. For this reason, the independent 

loops' bandwidth should be higher than the master's bandwidth to propagate the 

information quickly to the current loop. Under this condition, the independent loops behave 

as current loads in the master loop so that all small signal changes in the inductor reaches 

the master output. In this way, the master loop will be a single-pole and stable system if 

the current loop or oscillator's bandwidth is at or higher than the cross-over frequency. 

 The hysteretic current-mode converter design and analysis presented helps to 

insightfully understand bandwidth limitations and design for a robust and stable system. 

Moreover, it is scalable and can be applied to any number of outputs in a hysteretic current-

mode SIMO converter.  Therefore, it helps to design stable hysteretic controlled SIMO for 

high bandwidth converters ideal for microsystems. 
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CHAPTER 4  

PROPOSED FULLY HYSTERETIC SINGLE-INDUCTOR  

DUAL-OUTPUT BUCK CONVERTER 

The proposed single-inductor dual-output (SIDO) buck converter in this chapter reduces 

cycling time by supplying all outputs within one energize/drain sequence of the inductor. 

It shortens response time by using a hysteretic current-mode control to quickly establish 

the inductor's current to the appropriate level. It also regulates the independently controlled 

output with a hysteretic comparator to speed its recovery during load dumps. Shortening 

response time of the control loops reduces the burden on the filtering output capacitors and 

cross-regulation interactions because outputs are corrected quicker. 

4.1 Dual-Output Power Supply 

The circuit in Figure 4.1 essentially transforms inductor LO into an adjustable current 

source iL that supplies and responds to the demands of two outputs. So when first 

energizing LO, GOSC's vOSC connects LO to vO1 until comparator CPO1 senses that LO 

satisfies vO1. LO then connects to vO2, and if LO's leftover energy is insufficient or excessive, 

vO2's error adjust and tune GOSC's iL to meet total load demand. Functionally, GOSC is an 

oscillating current source that implements the function of the current loop in this current-

mode system as analyzed in Chapter 3. CPO1 closes the independent voltage loop that 

ensures vO1 peaks near target voltage vR1. Comparator CPOSC mixes and closes the master 

loop that adjusts GOSC's current iL to ensure vO2 nears target vR2. 
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Drivers insert dead times between the conduction periods of adjacent switches MIN 

and MG and MO1 and MO2 to keep them from shorting the input voltage vIN, ground, and 

vO1 and vO2. MG's and MO2's body terminals connect to their drains to ensure their body 

diodes conduct LO's iL during MIN–MG's and MO1–MO2's dead-time periods. MG's driver, in 

conjunction with comparator CPZCS, also opens MG when LO's current reaches zero to keep 

LO from conducting negative current. This way, in discontinuous-conduction mode 

(DCM), MG does not consume unnecessary ohmic power and output discharge is avoided. 

MO1 is an NFET because vIN's 2.6–4.2 V is high enough above vO1's 1.5 V to drive MO1's 

gate. Also, the use of an NFET blocks current in both direction when the bulk is grounded; 

and even though there is a threshold shift, the resistance is the same or lower than a PFET 

given the same area. MO2 is a PFET because ground is similarly low enough below vO2's 

2.5 V to drive MO2's gate across operating conditions. 

 
Figure 4.1. Prototyped 0.6-μm CMOS SIDO hysteretic current-mode converter. 

 

The IC includes switches and their drivers, comparators, control and test logic in a 

1.4 × 2.0-mm2 0.6-μm CMOS die as in Figure 4.2. A finer-pitched CMOS process is 

possible, but also costlier, with lower breakdown voltages, and for proof of concept, 
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unnecessary. Nonetheless, the concept and limitations presented here also applies for any 

technology operating within its limits such as breakdown voltage. 

 
Figure 4.2. Die of prototyped 0.6-μm CMOS SIDO converter. 

4.1.1 Operation 

Comparator CPOSC, MIN, MG, LO, and current sensor implement a relaxation oscillator that 

ramps LO's current iL between the hysteretic limits that CPOSC and equivalent feedback gain 

RS from the current sensor establish and about the total output load demand set. For this, 

CPOSC closes MIN and MO1 to energize LO from vIN to vO1 with energize voltage vE1 or vIN 

– vO1 until iL into RS reaches CPOSC's upper threshold. Therefore, iL in Figure 4.3 climbs 

across energize period tE. After that, CPOSC opens MIN and closes MG to drain LO from 

ground into vO1 with drain voltage vD1 or 0 – vO1, and after iL satisfies vO1's load, into vO2 

with vD2 or 0 – vO2. iL therefore falls across drain period tD, first at vD1/LO and then at 

vD2/LO. Current sensor network, with equivalent gain of RS, senses iL and translates CPOSC's 

hysteresis VHYS into a current. iL therefore oscillates across VHYS/RS which sets the ripple 

ΔiL. Since LO's voltage determines how fast iL crosses ΔiL, energize voltage vE sets tE, drain 

voltage vD sets tD, and together, they set oscillating period tOSC to: 
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Figure 4.3. Measured steady-state waveform in continuous-conduction mode. 

 

Relative load levels dictate the fraction of time LO connects to each output. In 

Figure 4.3, for example, iO1's 60 mA is 75% of the combined 80-mA load, so vO1's 

connection time tO1 is roughly 75%, or iO1/iO(TOT), of tOSC, well past LO's energizing period 

tE. As a result, energize voltage vE is vE1 or vIN – vO1 and drain voltage vD is first vD1 or –

vO1 and then vD2 or –vO2.  

Voltage across inductor LO must be balance and equal to zero in steady-state, 

otherwise, the current will continuously increase or decrease. For this, the average voltage 

on the input switching node vSW.I or dEvIN must equal the average on the output switching 

node vSW.O: 

 E IN SW .I SW .O O1 O1 O 2 O 2d v v v d v d v    . (4.2) 

When iO2 is approximately higher than 46% of the combined load when vIN, vO1 and vO2 

are 3.6 V, 1.5V and 2.5 V, vO2's connection time tO2 extends into tE, so vE is first vE1 or vIN 
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– vO1 and then vE2 or vIN – vO2, and vD is vD2 or –vO2. This shift in relative connectivity 

translates to a variation in the oscillating period tOSC and resulting frequency fOSC or 1/tOSC. 

When the combined load is light, the loop lowers the error voltage to the current 

loop to the point iL reaches zero before iLRS reaches CPOSC's lower threshold. Once at zero, 

MG's driver opens MG to keep iL from reversing, so vO2's load discharges CO2 past 1.5 μs in 

Figure 4.4 until total vO2's error finally trips CPOSC. In other words, iL's lower ripple 

produces an offset VHYS – ΔiLRS that vO2's fall must overcome to trip CPOSC. This means, 

iO2 reduces vO2's lower peak when LO is in discontinuous conduction, from 2.5 V in Figure 

4.3 to 2.44 V in Figure 4.4, and iO2 extends tOSC, from equation to tOSC': 

   O2
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O2

C
t ' t t t V i R

i
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 

. (4.3) 

 
Figure 4.4. Measured steady-state waveform discontinuous-conduction mode. 

 

fOSC, or 1/tOSC', in Figure 4.5 climbs with iO1 (and iO2) until discontinuous time tDCM 

in Figure 4.4 vanishes, after which tOSC' levels to tOSC and fOSC to 1/tOSC. Also, when 

similarly loaded, the frequency is relatively constant in continuous-conduction mode at 

about 800 kHz. Although the oscillating, or switching, frequency of a hysteretic switching 
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converter can move or drift, it is deterministic when components values and operating 

conditions are known [99–100]. For applications that requires an accurate value of 

switching frequency, techniques exist to stabilize it with feedback and by direct 

compensation [101–102]. In either case, frequency stabilizers can have a low bandwidth 

so that hysteretic control maintains its transient performance and the analysis in Chapter 3 

still applicable. 

 

 
Figure 4.5. Measured oscillating frequency with balanced loads 

4.2 Design Implementation 

Feedback resistors R1T, R1B, R2T, and R2B in Figure 4.1 translate reference voltages vR1 and 

vR2 to vO1's and vO2's actual targets of 1.5 and 2.5 V. Comparator CPZCS opens MG when iL 

into MG's resistance reaches zero to keep iL from reversing and push LO into discontinuous 

conduction. vO1's CPO1 incorporates hysteresis VH1 to keep noise in vO1 from inadvertently 

tripping CPO1. To complete the system, it requires a current sensor and a feedback mixer 

at the hysteretic comparator CPOSC. 

4.2.1 Dead Time Generator and Drivers 

The dead time generator and drivers shown in Figure 4.1 drives the power switches MIN 

and MG depending if comparator CPOSC commands an energizing or de-energizing event. 

For this, a chain of inverters with a gain factor from stage to stage implements the drivers 
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as in Figure 4.6. The gain is such that switches turns fully turns on (or off) in less than 15 

ns. This way the turn-on (and turn-off) time is low enough compared to the switching 

period tOSC to avoid effects from this delays and large enough to minimize power 

consumption, silicon area, and shoot-through currents of the drivers [79]. 

 
Figure 4.6. Implementation of dead time generator and drivers for the input side switches. 

 

 To prevent both MIN and MG engaging simultaneously and short the supply to 

ground, a dead time generator is inserted before turning on of any switch. Figure 4.6 

implements this by adding a 10-ns delay to the sensed gate voltage and using the resulting 

signal to disable the other switch. For instance, when output of CPOSC or vCPOSC goes low, 

it will quickly turn off MG and want to turn on MIN. However, because MG was previously 

engaged, its gate vGG is high and prevents MIN to turn on until MG completely turns off. 

After vGG falls, the fall edge extender adds an additional 10 ns for extra margin, after which 

MIN can safely engaged. 

 In addition, the logic for the drives, has an enable signal vEN that is held low as the 

system starts to ensure none of the switches accidentally turns off while control signals 

settle. It also has a discontinuous conduction mode (DCM) signal vDCM that immediately 
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turns off MG when its current reaches zero. This prevents unnecessary losses and allows 

discontinuous-conduction mode operation. 

4.2.2 Current Sensor 

For testing purposes, the current sensor is the off-chip filter network in Figure 4.1. Here, 

RSI and CSI and RSO and CSO, from Figure 4.7, filter LO and RESR's voltage vL or vSWI – vSWO 

into voltages vSI and vSO like LO and RESR filter vL into current iL. It requires a differential 

current sensing because it must distinguish also when the output switching node changes 

to accurately mimic the inductor current iL. Otherwise, the sensed signal would not 

distinguish when another output connects to the output switching node vSW.O if it only filter 

vSW.I. If both sides of the RC filter have equal values, when RSICSO and LO/RESR time 

constants match, vSI – vSO is a linear translation of iL with a gain of RESR [96]: 

   CSI O ESR
SI SO L O ESR L ESR

CSI SI SI SI

Z sL / R 1
v v i sL R i R

Z R sC R 1

   
      
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. (4.4) 

However, for high efficiency, RESR must be low which makes the sensed signal small and 

difficult to discern when accounting for noise. Therefore, RSICSI is different than LO/RESR, 

such that at least a decade below fOSC, current sense gain RS reduces to LO/RSICSI. 

 
Figure 4.7. Current sensing and filter circuit. 
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 With variations of vIN, vO1, and vO2; averages voltages on either side of LO can shift 

which difficult CPOSC to accommodate such wide input common-mode range. CFI–RFI and 

CFO–RFO high-pass filter vSI and vSO block dc components from propagating to the input 

terminals of CPOSC but still allowing the sensed iL without attenuation. vCM is a bias dc 

voltage that establishes vFI and vFO's common-mode level. Hence, with an adjustable vCM, 

vFI and vFO can be within the input common-mode range of CPOSC.  

For a simpler implantation, the high-pass filter can be in series with the low-pass 

filter if it does not load the low-pass filter. For this, the equivalent load of the high-pass 

filter ZHI must be greater than the equivalent impedance of the low-pass filter ZLO at node 

vSI or low-pass filter's output: 

 HI FI LO SI
FI SI

1 1
Z R Z R ||

sC C
    . (4.5)  

Because in this design, ZHI is a minimum of 200kΩ while ZLO is a maximum of 89 kΩ, the 

inequality is always true and the difference increases past the pole located at 1/(2πRSICSI). 

When considering the impedance of the capacitors, ZHI is at least five time larger than ZLO. 

Hence, the high-pass filter does not significantly load the low-pass filter and a buffer is 

unnecessary between them. 

Summing comparator CPOSC in Figure 4.1 adds vO2 – vR2 to vFO – vFI, where vFO – 

vFI is the voltage representation of inductor current vI. But for the system to regulate vO2 

about vR2 accurately, vFO – vFI's dc component should be negligibly low. This is another 

reason why the differential current sensing helps, to ensure vFO – vFI is near zero at dc and 

low frequencies. This way, CPOSC and the master loop can keep vO2 near vR2. 
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4.2.3 Summing Comparator 

When LO is in discontinuous conduction, iL reaches zero before iL's translation vI in Figure 

4.1 reaches CPOSC's lower threshold. Assuming only vO2's error feed CPOSC, vO2's load 

therefore discharges CO2 until vO2's droop finally trips CPOSC to start another cycle. When 

vO2's load is very light, discontinuous-conduction time tDCM between cycles (from Figure 

4.4) is long. Therefore, if vO1's load suddenly rises, response time tR is that much longer. 

Feeding vO1's error vO1 – vR1 into CPOSC in Figure 4.1 allows vO1's error to trip CPOSC sooner 

for a faster response. In steady state, vO1's loop keeps vO1 near vR1, so vO1 – vR1 is low at 

dc. Since vFO – vFI is also low at dc, CPOSC keeps vO2 near vR2.  

The IC implementation of the summing comparator, shown in Figure 4.8, is based 

on current summation in a folded cascode multi-stage comparator. It achieves so by 

summing current from multiple differential input stages including one that sets the 

hysteresis voltage vHYS. Since all pairs contributes a small signal change proportional to 

the input voltage differential vP − vN or vD, matching their transconductances with same 

transistor sizing and tail currents ensures the summation is at the same scale: 
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Hence, CPOSC sums and mixes output voltages errors along with the inductor current. 

An extra differential pair creates an offset which sets the hysteretic window. Due 

to the offset across pair MP7-8 in Figure 4.8 (a), the total error sum of voltages and inductor 

current must overcome this offset. When the comparator trips, switches interchange the 
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drain connections of MP7-8 to create the same offset in the opposite direction effectively 

implementing a hysteresis. Hence, CPOSC's hysteresis implementation is symmetric and the 

reason the differential voltage across MP7-8's inputs requires half of the target hysteretic 

window or 0.5vHYS. Finally, after the low-gain pre-amplifier, the comparator has three 

more gain stages, two low gain and one high gain as in Figure 4.8 (b), that amplifies the 

summed voltages into a rail-to-rail signal. The uses of multiple stages with small gain and 

large gain at the last helps minimize propagation delay with a given current budget [103], 

[95]. 

 
Figure 4.8. (a) Summing pre-amplifier stage and its bias, and (b) multiple stages afterwards of 

summing comparator CPOSC. 
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Considering stability, adding vO1's error at CPOSC creates a feedforward path in 

parallel to the local loop that may inadvertently increase the total loop gain and extend the 

bandwidth of independent voltage vO1. It does so by modifying the inductor current through 

its close-loop gain GOSC, and by vO1's steady-state duty cycle DO1: 

  o1 o1l
VLG(FF) O1 O1

o1 l o1 S O1

i vi 1 1A D R ||
v i i R sC

               
       

. (4.7)  

For the implemented design, this feedforward gain is low compared to the local 

independent loop to have a major effect on stability. Thus, error summation helps to 

accurately regulate vO1 under unbalanced loads without compromising stability. 

4.2.4 Independent Loop Comparator and Zero Current Detector 

Comparator CPO1 accurately regulates the peak voltage of independent output vO1. 

However, to keep regulation with unbalanced loads, allow skipping output voltage during 

a cycle, and be immune to switching noise it requires a hysteretic window. For this reason, 

the comparator CPO1 implementation in Figure 4.9 engages an asymmetrical hysteretic 

after the comparator detects vO1's peak reaches its target. After this transition, CPO1 adds a 

bias current IHYS at the folding node of its pre-amplifier stage (first stage) which sets a 

hysteresis voltage vHYSO1 translated by the input pair transconductance gMP1: 

 
HYS

HYSO1
MP1

I
v

g
 . (4.8) 

Output voltage vO1 must fall below the target voltage by vHYSO1 to enable it to receive 

energy at the next available opportunity, which for vO1 is at the beginning of a cycle. 



71 

 

Unfortunately, to discern a large enough signal the hysteresis window must be in 

the few millivolts range. With the gain of the feedback resistive network, this sets a lower 

limit to the ripple ΔvO1 on the independent voltage vO1. Hence the minimum ripple voltage 

ΔvO1(MIN) is the amplified hysteretic window vHYSO1, where the gain is set by the inverse of 

the feedback gain of the resistor network R1T and R1B: 

 1T HYS 1T
O1(MIN) HYSO1

1B MP1 1B

R I R
v v 1 1

R g R

   
       

   
. (4.9) 

In this design, vHYSO1 is set to 5 mV which results in a minimum ripple ΔvO1(MIN) of 10 mV. 

 
Figure 4.9. (a) Pre-amplifier stage and its bias, and (b) multiple stages afterwards of comparator 

CPO1. 

 

 Like comparator CPOSC, CPO1 has three pre-amplifier stages and a high gain stage 

with inverters to achieve a rail-to-rail output signal. The multi stage approach helps to 
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minimize delay by keeping high bandwidth in the low gain pre-amplifier so the high gain 

stage has enough overdrive to quickly drive the output. The first pre-amplifier has a diode-

connected PMOS as the active loads to minimize variations across process and temperature 

ensuring the gain is sufficient to amplify the signal for later stages. 

 Zero current detector comparator CPZCS uses a similar topology as CPO1. Its main 

difference is that it injects hysteresis at the high gain stage instead of the initial stage. 

Because the CPZCS's hysteresis requirements is more relaxed compared to CPO1, it can 

tolerate more variation due to the gain of the pre-amplifiers stages. Thus, injecting 

hysteresis at the last stage saves area because matching is not as critical in the last high-

gain stage. 

4.2.5 Power Management 

Resistances, switching gates, and the controller consume ohmic, gate-drive, and quiescent 

power PR, PG, and PQ. To minimize switches' conduction and gate losses PR(SW) and PG, 

transistor channel lengths are minimum at 0.6 μm and widths are wide enough to balance 

their ohmic and gate-drive losses by minimizing the total power for a given switching 

frequency fOSC and gate voltage vG [104]: 

 2 2
L(SW) R (SW) G SW O(RMS) G OSC GP P P R i C f V    , (4.10) 

where  

 

2

O O O
O(RMS) O O O(TOT)

O O O O(TOT)

i i i
i d i i

d d i i

 
    

 
. (4.11) 
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Interestingly, the output's RMS current iO(RMS) climbs with the other output load current 

iO(TOT) since it must receive the same energy in less amount of time as duty cycle shortens. 

Even for a fixed load iO, the pulsed current through the switch is narrower with a 

proportionally higher amplitude, and hence higher RMS current. 

This way, LO's series resistance 400 mΩ and other ohmic losses in PR climb in 

Figure 4.10 with load power from nearly zero to 22 mW, when the combined load is 200 

mW. Logic and other gate-drive losses in PG rise with fOSC from Figure 4.5 in discontinuous 

conduction and flatten past 96 mW, when fOSC settles in continuous conduction. CPOSC, 

CPO1, and CPZCS dissipate about 2 mW as PQ across load levels. 

 
Figure 4.10. Simulated power losses with balanced losses. 

4.3 Measured Performance 

The hysteretic current-mode converter must be assessed and evaluated with an appropriate 

test setup. The test sweep should explore output regulation when loads are similar and with 

unbalanced conditions. Also, the response to load dumps must be carefully measured for 

fast responding converters because bandwidth and/or delays of the test setup may alter the 

measured performance. 
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4.3.1 Test Setup 

Load emulation needs special consideration for fast responding converters. If the rising and 

falling edges of the load steps are not faster than the converter, the voltage response is 

optimistic as the controller start reacting in the middle of the transition and not at the worst 

case, when the load has settled [105–106]. For sub 10-μs response times, the edges of the 

load step should be ideally less than 1μs, and although switching a resistor might achieve 

so, it models the whole output load as resistive. To have the flexibility of an arbitrary 

current shape with desired output resistance such as for a mixed load that contains resistive 

and current source loads, Figure 4.11 shows a high-bandwidth current regulator with a load 

resistance RLD.  

 
Figure 4.11. Flexible high-bandwidth load emulation circuit. 

 

It consists of a high bandwidth amplifier, such as Texas Instruments' OPA747, 

regulating the voltage across current-setting resistor RSET through a small-signal transistor, 

such as On Semiconducot's NTR4003N. To accommodate and regulate to low output 

voltages vO, a –5 V is used as the reference instead of ground to circumvent headroom 

limitations. This is the reason a Schottky diode DSC is necessary to protect the device under 

test if regulation is lost by limiting vO just below ground. This circuit can achieve rising or 

falling edge time of around 100-300 ns for a 1 V amplitude input stepped signal at vSET 

referenced to –5 V. 
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 Figure 4.12 shows the two-layer PCB board used for evaluation, which including 

the current sensor and feedback resistors for testing flexibility. LO occupies 3.5 × 2.7 × 2.4 

mm3 of the board shown and incorporates 400 mΩ of equivalent series resistance RESR. CO1 

and CO2 each occupy 1.6 × 0.81 × 0.91 mm3 and incorporate 10 mΩ of series resistance. 

The test circuits in Figure 4.12 allow to change test modes, move reference voltages, adjust 

hysteretic voltage for CPOSC, and components for current measurements. The PCB board 

has dimensions of 15.6 cm  10 cm or roughly 6.1 in.  4 in. 

  
Figure 4.12. Two-layer board for prototype testing. 

4.3.2 Regulation with Balanced Loads 

A starting point for evaluation of the proposed dual-output converter is to have both outputs 

equally loaded within their respective load range. This way, the converter is characterized 

from the lowest loading to the full-load condition. It also decouples possible issues or 

operation variations to when loads are unbalanced because each output might not receive 

energy every cycle. 

4.3.2.1 Steady State 
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Since vOSC connects LO to vO1 and comparator CPO1 disconnects LO from vO1 when vO1 

rises to vR1, CPO1 keeps vO1's peak near vR1. After, vO1's load droops vO1 across what 

remains of tOSC after vO1's connection time tO1 lapses. So as iO1 and iO2 together climb above 

25 mA in Figure 4.13, vO1's bottom and average levels droop to lower levels: 

 
O1 OSC O1

O1(AVG) R1 LR R1
O1

i t t
v v v v

2 C

       
  

. (4.12) 

Also, noticeable in Figure 4.13, the regulated peak of vO1 varies slightly with load. Because 

CPO1 has finite delay, and vO1's rising rate increases with either higher iL or low load iO1, 

vO1's peak shift higher above or below when both loads are 25 mA. 

 
Figure 4.13. vO1's measured load regulation with balanced loads. 

 

In discontinuous conduction, when iO1 and iO2 are both below 25 mA in Figure 4.13, 

raising vO2's load reduces discontinuous time tDCM in Figure 4.4, which shortens tOSC and 

the time vO1's load discharges CO1. As a result, tOSC's reduction counters the effect of iO1's 

rise on vO1 to produce less variation in vO1's low and average values. This means, load 

regulation is worse in continuous conduction as load increases. 

Since the master loop adjust GOSC's iL, vO2's average vO2(AVG) in Figure 4.14 is near 

vR2's 2.5 V when LO is in continuous conduction and both load currents are above 25 mA. 

Below 25 mA, when LO is in discontinuous conduction, iL reaches zero before iLRS reaches 

CPOSC's lower threshold. vO2's load therefore continues to discharge CO2 until vO2's error 
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overcomes the difference. Thus, vO2 drops, and as the loads continue to lighten, iL's ripple 

diminishes and vO2 falls further. 

 

 
Figure 4.14. vO2's measured load regulation with balanced loads. 

4.3.2.2 Load Dumps 

Response time tR in power supplies sets how long load dumps slew their outputs. So after 

a rising load dump +ΔiO1, the difference between the load and iO1 (which is equivalent to 

ΔiO1) discharges CO1 across tR to produce a falling variation –ΔvLD in vO1. After a falling 

load dump –ΔiO1, the difference between iO1 and the load (which is equivalent to ΔiO1) 

charges CO1 to produce a similar rising variation +ΔvLD. Unfortunately, these load dumps 

are often fast and wide, so ±ΔvLD can be ±7% to ±10%, high enough to overwhelm other 

effects and to, alone, limit a supply's accuracy [79]. This worsens when several outputs 

share one inductor because cycling between outputs extends tR. 

In this case, vO1's load regulation –ΔvLR from Figure 4.13 is significant by design. 

ΔvLR, however, does not affect vO1(MIN) because a fast-rising load dump normally pulls vO1 

well below vR1 – ΔvLR to vR1 – ΔvLD. But since a falling load dump raises vO1 from its 

loaded level vR1 – ΔvLR, –ΔvLR counters +ΔvLD to reduce vO1(MAX) to (vR1 – ΔvLR) + ΔvLD. 

In other words, load regulation mitigates the effect of the falling load dump [107]. So 

adding a positive offset vOS to vR1 that is similar, but opposite in magnitude to –ΔvLR can 
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reduce vO1(MIN) to vOS – ΔvLD, and when vOS matches ΔvLR, reduce vO1's total variation 

ΔvO1(MAX) to 

 O1(MAX) O1(MAX) O1(MIN) LD LRv v v v v        . (4.13) 

Therefore, vR1 is slightly above 1.5 V and vO1 in Figure 4.15 and Figure 4.16 ripples about 

1.5 V when loaded with 50 mA. 

 During a simultaneous rising load dump of 45 mA for both channels, the converter 

recovers within 3 μs at which point vO2 stops falling as capacitor CO2 starts being 

replenished as in Figure 4.15. vO1 regulates with an accuracy of ±78 mV or ±5% about 1.5 

V. vO2 undershoots up to 140 mV for an accuracy within ±6% of 2.5 V. 

 
Figure 4.15. Measured response to simultaneous rising 45-mA load steps. 

 

 
Figure 4.16. Measured response to simultaneous falling 45-mA load step. 
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The controller responds faster to a falling load dump because the de-energizing 

voltage of LO is higher and iL slew faster to the new target. As in Figure 4.16, the control 

reacts within 1 μs as vO2 overshoots about 120 mV. vO1's ripple decreases without any 

overshoot during the load dump because the local loop can accurately regulate the peak 

voltage. Also, vO2 slews down as it recovers as load discharges CO2; hence, both sets the 

settling time after a falling load dump. 

4.3.3 Regulation under Unbalanced Loads 

In certain applications, such as microsystem some blocks or functions might turn off to 

save energy in the system as explained in Chapter 1. This means, that the converter must 

supply each output different power levels even when one load is fully engaged and the 

other are in idle or turned off. This can create unbalanced load conditions where the 

converter must regulate both outputs while dedicating more time on the heavily loaded 

output. 

For good regulation performance, the system should be able to skip outputs that do 

require less energy as when lightly loaded. In this way, an output does not receive excessive 

energy until the load has discharge the output capacitance enough. Therefore, vO1's flip-

flop in Figure 4.1 does not set when both set and reset signals are high. This way, if CPO1 

senses vO1 is already near or above vR1, vOSC cannot set MO1's flip-flop to connect LO to 

vO1. CPO1 inherently senses if vO1 need energy through its hysteretic window. The flip-

flop's low output therefore sets vO2's flip-flop to close MO2 and connect LO to vO2.  
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Skipping vO2 is more natural because, when vO1's load is much greater than vO2's 

load, LO's energy per cycle is not enough to satisfy vO1's load. Thus, vO1 does not reach vR1 

until the next or following cycles. Extending vO1's connection time tO1 to tOSC this way 

keeps LO from connecting to vO2 across that cycle. 

4.3.3.1 Steady State 

When vO2's load is constant, at 25 mA for example, and vO1's load exceeds 7 mA, iO1 is 

high and close enough to iO2 for vO1 to demand current every oscillating cycle. Therefore 

vO1's switching frequency fO1 and vO2's fO2 in Figure 4.17 (black traces) match iL's 

oscillating frequency fOSC above 7 mA when iO2 is 25 mA. LO starts skipping vO1 when iO1 

falls below 7 mA, when one cycle is enough to satisfy vO1 for two cycles. Moreover, when 

vO1's load iO1 falls below 1 mA, the system skips vO1 an additional cycle. Thus, fO1 falls 

below fO2 for low levels of iO1.  

 
Figure 4.17. Outputs' switching frequencies across unbalanced load levels. 

 

Similarly, when iO2 is 5 mA and iO1 is less than 60 mA, iO2 is close enough to iO1 

for vO2 to demand current every cycle. fO1 and fO2 in Figure 4.17 (gray traces) therefore 

match iL's fOSC below 62 mA when iO2 is 5 mA. LO starts skipping vO2 above 62 mA because 

vO1's demand is so much greater than vO2's that vO1's load sinks LO's iL continuously across 

multiple cycles. In this case, vO2 receives iL every other cycle. 
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Skipping an output will cause their switching frequencies to differ and therefore 

their harmonic content. To set a benchmark of the frequency spectrum, Figure 4.18 and 

Figure 4.19 respectively show the frequency spectrum of outputs vO1 and vO2 with balanced 

loads of 80 mA and 48 mA. Both shows the same switching frequency of 793 kHz at its 

harmonics with their magnitudes decreasing in a comparable way. 

 
Figure 4.18. Frequency spectrum of output vO1 with balanced loads. 

 

 
Figure 4.19. Frequency spectrum of output vO2 with balanced loads. 

 

 With unbalanced load, such as when vO1 has a much lower load than vO2, the control 

skips vO1 every other cycle. That is why Figure 4.20 shows its dominant frequency, or 

switching frequency fO1, of 312 kHz which decreases at a rate of approximately 8 dBm or 

about a decade in power for every harmonic. On the other hand, output vO2 receives energy 

every switching cycle: one whole cycle and partially when vO1 receives energy. 



82 

 

Accordingly, Figure 4.21 shows two frequencies, one at 312 kHz and its second harmonic 

with only a 0.7 dBm difference on their strength. The first harmonic accounts for the 

fundamental frequency of receiving energy every other cycle, and the second harmonic to 

account for the fact that every switching cycle, vO2 receives energy. Also, note that the 

fundamental frequency changes when compared to the balanced load condition because the 

fraction that each output is connected to the inductor changes. 

 
Figure 4.20. Frequency spectrum of output vO1 with unbalanced loads. 

 

 
Figure 4.21. Frequency spectrum of output vO2 with unbalanced loads. 

4.3.3.2 Load Dumps 

When vO1's load iLD1 suddenly rises to a vastly higher level, LO's initial current cannot 

satisfy the higher load. CPO1 and the flip-flops in Figure 4.1 therefore skip vO2 until iL 

satisfies iLD1. As a result, load dump ΔiLD1 droops vO1, like Figure 4.22 shows, and vO2 
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indirectly. And because vO2 does not receive energy until LO satisfies vO1, vO2 recovers 

after vO1 does. But since GOSC's hysteretic loop responds within CPOSC's and drivers' 

combined propagation delay, iL rises quickly to recover vO1 within one oscillating cycle 

and recover vO2 3.8 μs after vO1's load dump when oscillating frequency is 760 kHz. 

 
Figure 4.22. Measured response to a rising 65-mA load step at vO1. 

 

 
Figure 4.23. Measured response to a falling 65-mA load step at vO1. 

 

When a heavy load suddenly disappears from vO1, CPO1 disconnects LO from vO1 

quickly enough to keep vO1 in regulation. LO's excess current, however, charges CO2 above 

vO2's target vR2, like Figure 4.23 demonstrates. Like before, though, CPOSC respond quickly 

to recover vO2 2.2 μs after vO1's falling load dump. In other words, vO1's rising and falling 
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load dumps, for the most part, only affect vO2, but the hysteretic loop is fast enough to 

recover vO2 within 3.8 μs. 

Since the system always satisfies vO1 first, fast and wide load dumps at vO2 induce 

little to no effects on vO1. vO2's rising load dumps in Figure 4.24, for example, lower vO2 

out of regulation, but not vO1. The control keeps supplying energy to vO1 first before 

delivering energy to vO2 as it recovers in 3 μs. This results in vO1 having the same ripple 

voltage before and after the load dump. 

 
Figure 4.24. Measured response to a rising 45-mA load step at vO2. 

 

 

Similarly, vO2's falling load dumps in Figure 4.25 raises vO2 during the response of 

2 μs. As vO2 decays, the control continuously provides energy to vO1 and skips vO2 until vO2 

requires energy again. That is why vO1's ripple is lower as vO2 droops than when it reaches 

steady-state since it received a continuous current as opposed to pulsed.  
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Figure 4.25. Measured response to a falling 45-mA load step at vO1. 

 

4.3.4 Efficiency 

Like Figure 4.26 shows, power-conversion efficiency ηC peaks at 88% when iO1 is 25 mA 

and iO2 is 43 mA, when the combined load is 145 mW. ηC remains above 85% when iO2 

pulls at least 25 mA or 62 mW and above 80% when iO2 pulls more than 5 mA or 13 mW. 

ηC is generally higher when iO2 is greater than iO1 because MO2's current–voltage overlap 

loss is lower. This is because MO2's initial voltage when it shorts is about 0.65 V (across its 

body diode) and MO1's is about 1.65 V (between vO1 and vO2 and MO2's body-diode voltage). 

 
Figure 4.26. Measured power-conversion efficiency across load levels. 

4.4 State-of-the-Art Comparison 

As explained in section 2.3 from Chapter 2, a figure of merit (FoM) helps to compare 

unique designs across technologies by weighting tradeoffs and performance metrics. Using 

equation 2.3, the design presented has a 93% relative FoM (RFoM) compared to the best 



86 

 

available SoA in control for SIMOs. Table 4.1 summarizes performance metrics of the SoA 

and the system discussed in this chapter. 

Table 4.1. SoA Comparison of Control schemes for SIMO Converters. 

 
Unit 

[58] [55] [65] [77] [69] [72] [73] 
This 

Work 

Notes  
Dedicated 

E-Packet 
Hybrid 

Fully 

PWM 

Fully 

PWM 

Fully  

PWM 

Fully 

PWM 

Fully 

PWM 

Fully  

Hysteretic 

LMIN μm 0.5 0.35 0.25 0.04 0.055 0.5 0.065 0.6 

ASI mm2 2.4  3.84 5.29 4.00 0.98 4.40 1.86 2.80 

vIN V 
1.3− 

2.85 

2.7− 

3.3 

2.7− 

5 

2.7− 

3.6 

2.7− 

3.6 

1.2− 

2.2 

3.4− 

4.3 

2.6− 

4.2 

vO V 
3,  

3.6  

1.2, 

1.8 

1.2,  

1.8 

1.1− 

2.25 

1.8,  

1.2 

3.0, 

 2.5 

1.2− 

2.8 

1.5, 

2.5 

iO(MAX) mA 1702 200 600 900 600 100 1150 120 

NO # 2 2 2 4 2 2 5 2 

NOC # 3 3 4 5 3 3 6 3 

tR μs 202  21 152 402 82 52 122 3.8 

ηC(PK) % 88 83 87 89 91 81 83 88 

ηC(FL) % 722 722 802 862 832 802 832 85 

RFoM % 21 100 18 4 58 27 53 93 

   1Uses linear regulator, 2Estimated from reported measurements. 

 The work presented has a higher RFoM than [58], [65], [77], and [73] because their 

response times are higher than 10 μs versus a 3.8 μs of the proposed converter. Also, 

although [73] only has 12 μs of response time, it only has peak conversion efficiency ηC(PK) 

to a 83% while [58]'s and [65]'s full load efficiency ηC(FL) drops to 72% and 80% 

respectively compared to the proposed converter at 85%. Work from [69] achieve 8 μs and 

has a third of the area but uses a 10x smaller technology node which increases cost. [72]'s 
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response time of 5 μs is close to the proposed design's 3.8 μs. However, even though it uses 

a similar technology node, it occupies 57% more area and has 7% less peak efficiency 

ηC(FL). 

 Work from [55] has a 7% higher RFoM to the propose design thanks to its fast 

response time because it combines a linear regulator, that handles transient events, with a 

SIMO. This is why it occupies 37% higher area ASI even though that uses an almost half-

size technology node as compared to the proposed SIMO. [55]'s efficiency drops at full 

load to 72% because it uses a dedicated energy packet transfer scheme and the lossy linear 

regulators can supply a small fraction of the output load at steady-state as it tries to 

counteract the ripple. Because all performance metrics are equally weighted the advantages 

of the proposed control balances with the disadvantages of [55]. The proposed would serve 

best for compact microsystems where efficiency across a wide load range is of utmost 

importance with the fastest response time without the aid of linear regulators to minimize 

silicon real estate. 

4.5 Limitations 

A limitation of the control is caused by the mixing at the summing comparator CPOSC. 

Because summing comparator sums all output voltages errors, load regulation at the 

independent output will be reflected as an offset in the opposite direction at the master 

loop. If the master loop's error is not amplified as in this design, master loop can have the 

same load regulation, but opposite direction, as the other output. 

Also, as discussed above, CPO1's hysteresis window sets a minimum ripple at the 

output voltage. Unfortunately, this limits how much the output can be filter with 
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capacitance to be able to allow the output to receive energy at every switching cycle under 

nominal conditions and balanced loads. This is the main reason the proposed design has 

more ripple voltage that the state of the art despite responding quickly to load dumps. 

4.6 Summary 

To improve bandwidth and response time to load dumps, the proposed design uses a fully 

hysteretic current-mode control. It was fabricated in a 0.6 μm CMOS technology and can 

regulate two outputs. The control first delivers energy, if needed, to the independent output 

voltage that has its own local loop and after it receives enough energy, the last output, or 

master output, receives energy for the reminder of the period. It requires two hysteretic 

comparators, a current sensor, a zero-current sensing comparator for discontinuous mode 

operation, and switches and their drivers. 

   The external current sensor, for testing purposes, uses a differential RC filter that 

generates a scaled version of the inductor current. A series high pass filter blocks the wide 

range dc voltage from the switching nodes and therefore, alleviates the input common- 

mode range requirements of the summing comparator. Incidentally, the summing 

comparator, besides mixing the error from the master loop with the inductor current 

information, also mixes error information from the independent voltage. This provides a 

low-gain feedforward path in the control loop of the independent voltage and improves 

regulation under unbalanced conditions specifically when the master is lightly loaded. 

 A hysteretic comparator regulates the peak voltage of the independent output 

voltage and hence has load regulation as its load increases. This means that the average 

voltage will decrease with load. However, if an offset is induced in the reference voltage, 
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the control can compensate load dump voltage error with the load regulation. The same 

hysteretic control naturally skips the output if the output voltage has not droop enough. 

This permits regulation for unbalanced loads and the control can focus on regulation of the 

master loop. 

 The master loop receives energy only after the independent voltage has or if it was 

skipped. The control can regulate the master loop accurately in continuous-conduction 

mode. However, in discontinuous-conduction mode the average voltage falls with falling 

load level when the inductor current ripple cannot cover the whole hysteretic window. 

 During load dumps, the converter can react within 3.8 μs at which point the outputs 

start recovering. Also, an individual load dump in the independent output results in cross-

regulation in the master loop because it does not receive energy (or the excess) after the 

independent output recovers. For the same reason, the independent output does not suffer 

from cross-regulation when the master loop suffers from a load dump. 

 The hysteretic control allows a short response time that minimizes the error voltage 

at the output. Albeit the proposed design has twice the response time from a hybrid 

converter that combines linear and switching regulators, it does so with higher efficiency 

across the full power range and in a smaller silicon area. Extending this control where it 

can generate buck and boost power stage can provide a high bandwidth, efficient and 

compact power management for microsystems. 
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CHAPTER 5  

PROPOSED SINGLE-INDUCTOR TRIPLE-OUTPUT  

BUCK–BOOST POWER SUPPLY 

Designing one power supply to meet the power demands of all function is challenging and 

inefficient. As detailed in Chapter 1, DSPs are low voltage and noise tolerant while sensors 

and ADCs usually require higher supplies with lower noise content. And to drive the power 

that antennas require, power amplifiers often need higher voltages to decrease ohmic 

losses. In these applications, the power management calls for multiple buck and boost 

supplies. Moreover, as battery discharges and its voltage decreases, the converter might 

need to boost instead of buck to one or more outputs. The proposed triple-output power 

supply can generate two bucks and one boost voltages with the least number of switching 

events to meet the demands of multi-functional microsystems while preserving high 

efficiency. 

5.1 Power-Supply System 

Switched-inductors converters deliver power by energizing and draining an inductor LO 

from input source vIN into an output vO in alternating phases of a switching sequence. In a 

SIMO, the outputs share the inductor, and in the proposed controller, outputs share a single 

inductor energy packet during a switching cycle. This allows the inductor to keep 

delivering energy to all outputs regardless if they are buck or a boost. For instance, if a 

buck output energizes the inductor, any buck or boost output can de-energize it. However, 

there will be a power limitation for the boosted output as buck outputs can only receive 
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limited energy. When boosted output's power limit is surpassed, the power stage must be 

able to supply enough energy by having assisting the energizing period. 

5.1.1 Power Stage 

The power stage in Figure 5.1 regulates two buck outputs, vO1 and vO2, and a boost output 

vO3 from a 2.7−4 V supply vIN. vO1 can provide energy to analog loads with a target of 1.8 

V because it receives energy first and therefore suffers from the least cross-regulation as 

measured and explained in Chapter 4. vO2 targets a voltage of 1.2 V suitable for digital 

circuits such a digital signal processor (DSP) and even though can suffer from cross-

regulation, digital circuits are noise tolerant. Lastly, vO3 is a boost voltage that can provide 

up to 30 mA to a 4 V load such a power amplifier. As explained in detail later, vO3 receives 

energy last to allow the inductor to energize as much as possible through buck outputs to 

maintain high efficiency across the most load combinations. 

Since switches M1 and M2 feed buck outputs at relatively low targets, they can be 

NFETs. Moreover, to reduce size and conserve high over drive over the vIN range for M1 

and M2, vO3 serves as the supply of their drivers. On the other hand, M3 is a PFET because 

vO3 is high enough to give a high overdrive. To avoid shorting vIN to ground, MIN's and 

MG's gate signals include a dead period across which MG's body diode conducts iL. M1's, 

M2's, and M3's gates similarly incorporate a dead period to keep M1, M2, and M3 from 

shorting their outputs. But since iL must nevertheless flow, M3's bulk connection to vO3 

adds a body diode that conducts iL to vO3 through this dead-time period. 
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Figure 5.1. One-inductor triple-output buck–boost power supply. 

5.1.2 Operation – Five-Switch Mode 

The buck–boost supply in Figure 5.1  closes MIN and M1 first to energize LO from the input 

vIN into the first output vO1. LO's current iL and vO1 in Figure 5.2 therefore rise past 450 ns. 

When vO1 reaches its 1.84-V target vT1, after t1, M1 opens and M2 closes to supply vO2. But 

since LO still does not hold enough energy to feed the rest of the loads, MIN continues to 

energize LO. As a result, iL and vO2 both rise after 1.25 μs. 

When LO holds enough energy to feed the rest of the loads, MIN opens and MG 

closes to begin draining LO. So iL starts to fall at 1.75 μs. But since M2 still supplies vO2, 

vO2 continues to climb. When vO2 reaches its 1.24-V target vT2 (at 2.05 μs), M2 opens and 

M3 closes to feed vO3. vO3 therefore rises until the feedback controller finishes draining LO 

at 2.45 μs. This way, LO feeds all outputs across one energize–drain sequence. Notice that 

in this scenario with the given load conditions, the converter must energize through both 

vO1 and vO2. However, the converter can stop energizing when delivering energy to vO1 if 

vO1's load is high relative to vO2 and vO3. 
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Figure 5.2. Measured waveforms when operating in the five-switch mode. 

 

LO operates in discontinuous conduction when loads are so light that LO can satisfy 

them with small and infrequent energy packets. Still, the operation is generally the same. 

In Figure 5.3, for example, LO energizes to vO1 across t1 and vO2 for part of t2. Then, MIN 

opens and MG closes to drain LO to vO2 for the remainder of t2 and to vO3 across t3. In this 

mode, the energy the outputs receive is sufficient to satisfy them for the rest of the 

oscillating period tOSC. The sequence repeats after that. 

LO can energize and drain into any buck output vBK because LO's energizing voltage 

vE or vIN – vBK is always positive and LO's drain voltage vD or 0 – vBK is always negative. 

Without ground switch MA in Figure 5.1, however, LO can drain, but not energize into a 

boost output vBT because vIN – vBT is negative. But if LO energizes sufficiently into buck 

outputs, LO can drain into boost outputs. Therefore, LO in Figure 5.2 and Figure 5.3 can 

drain into vO3's boosted 4.0 V. 
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Figure 5.3. Measured waveforms in discontinuous conduction. 

 

5.1.3 Operation – Six-Switch Mode 

If vIN's power when energizing through buck outputs is not sufficient to supply boost 

power, MA in Figure 5.1 can help. So, if after energizing to buck outputs LO's energy is not 

. 

 
Figure 5.4. Measured waveforms when operating in the six-switch mode. 
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enough to supply boost outputs, MA can energize LO further. In Figure 5.4, for example, 

MIN and M1 and M2 first energize LO into vO1 and vO2 across t1 and t2. But since energy in 

LO is not enough, M2 opens and MA closes. In this way, LO continues to energize (from vIN 

to ground). Then, with sufficient energy in LO, MA opens and M3 closes to feed vO3.  

When vO3's load iO3 just rises above the five-switch limit PO3' in discontinuous 

conduction, vO3 needs MA's assistance, but at first, only occasionally. In Figure 5.5, for 

example, vO3 requires additional energy every other cycle or about every 50 μs. That is in 

addition to the energy packet vO1, vO2, and vO3 receive every 25-μs cycle. When iO3 rises 

above a threshold level, vO3 starts receiving energy every cycle. At that point, LO operates 

more like Figure 5.4 shows, but with intervening zero-current time gaps tDCM between 

energy packets like Figure 5.3 illustrates. 

 
Figure 5.5. Measured six-switch waveforms in discontinuous conduction. 
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5.2 Design and Implementation 

Since microsystems adapts power consumption for each function to conserve power, the 

converter must react quickly providing energy when required. Ideally, the converter should 

have a simple control that can incorporate a boosted output to minimize area consumption 

while having a high bandwidth. Adapting the hysteretic controller from the previously 

proposed in the dual-output switched-inductor converter from Chapter 4 helps maintain the 

dynamic performance of hysteretic control while keeping the overall control simple.   

5.2.1 Boost Control 

The triple-output buck–boost power supply in Figure 5.6 adapts the controller in Figure 4.1  

to include MA. This way, M1 feeds LO to vO1 until comparator CP1 senses that vO1 reaches 

target vT1. M2 then feeds LO to vO2 until CP2 similarly senses vO2 reaches vT2. M3 ends the 

sequence by directing LO to vO3.  

If control tries to energize through boosted vO3, it will first engage MA to extend 

LO's energizing. The control, as shown in Figure 5.6, achieves this if hysteretic comparator 

CPOSC does not stop energizing LO by the time LO satisfies vO2; then, ANDA invokes MA's 

assistance. For this, NAND3 keeps M3 from opening, and instead, directs LO to ground. LO 

therefore continues to energize to ground until CPOSC opens MIN to stop energizing LO. At 

that point, ANDA opens MA and NAND3 closes M3 to supply vO3. 

Like the dual-supply system proposed in Chapter 4, a DCM detector disengages 

MG to prevent unnecessary conduction and therefore losses. Because vO3 is a boosted 

output, M3 must be off after iL reaches zero in DCM. Otherwise, a conduction path exists 

between vO3 and supply vIN through M3 and MIN's body diode. This conduction path 
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discharges vO3 to the supply vIN if vO3 is higher than vIN by one diode voltage drop or 0.6 

V. This would increase losses as the M3's lost energy gets replenished at the next cycle. 

However, turning M3 off (in addition to MG) when iL reaches zero eliminates this loss since 

there will be back-to-back diodes between vIN and vO3. 

 
Figure 5.6. Triple-output buck-boost switched-inductor supply system. 

5.2.2 Output Sequence Logic 

Combinational logic implements the sequence control while giving priority to output vO1, 

followed by vO2, and lastly vO3. The logic decides which outputs receives energy at the 

beginning of the cycle using the status of comparator output's vERR1 and vERR2 which senses 

if their outputs are satisfied. Figure 5.7 shows the logic to engage vO1 which simply consists 

of setting the latch of control signal v1 if the output requires energy at the beginning of the 

cycle. A fall edge detector creates a 20-ns pulse signal vOSC used throughout the logic 

control at the beginning of a new cycle when CPOSC commands a new energizing event. 

After setting v1's reset-dominant latch, it commands drivers to engage M1. As soon as vO1 

gets satisfied (by vERR1 going logic high), it reset the latch and M1 turns off. 



98 

 

 
Figure 5.7. Logic to engage and turn off output vO1. 

 

 To engage vO2, output vO1 must be satisfied (vERR1 logic high), and vO2 require 

energy (vERR2 logic low) as Figure 5.8 shows. If at the beginning of the cycle vO1 requires 

energy, the latch resets and command the M2's driver to turn off through control signal v2. 

To prevent error and lock in the sequence, as soon the last output starts receiving energy 

v3 is logic high and resets the latch for v2. This prevents inadvertently engaging vO2 if it 

requires energy again and vO1 is still satisfied while the converter supplies energy to vO3. 

To minimize glitching events if vO1 is engaged, v1 also keep resetting v2's latch. 

 
Figure 5.8. Logic to engage and turn off output vO2. 

 

 The last output in the sequence engages for the remaining of the cycle after output 

vO2 receives energy. For this, as soon as vO2 gets satisfied, i.e. vERR2 is logic high, and vO1 

is not engaged and not satisfied this will set the last output to receive energy as in Figure 

5.9. If at any time both outputs are satisfied, it will allow vO3 to receive energy by giving a 

logic high to control signal v3. Setting v3 logic high allow the output to receive energy but 

additional logic gates, as shown in Figure 5.6, decides to turn on auxiliary switch MA or 

M3 depending if the converter is energizing or de-energizing the inductor. Also shown in 
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Figure 5.9, logic resets signal v3 and disallow vO3 to receive energy whenever any previous 

outputs are engaged or if any of them are not satisfied at the beginning of a cycle. 

 
Figure 5.9. Logic to engage and turn off output vO3. 

5.2.3 Output Dead-Time Generator and Drivers 

The proposed triple-output buck-boost converter has a similar implementation of dead-

time generator and drivers for the input switches MIN and MG as in Figure 4.6. However, 

switching among outputs switches M1, M2, M3, and MA requires more consideration to 

avoid engaging two or more switches in all possible sequence combinations. To avoid two 

switches turning on simultaneously and introduce a dead time period, the logic in Figure 

5.10 creates a signal for each switch that extends beyond the actual on time and then 

combine them in an OR operation so that if there are two or more switches trying to turn 

on, none of them will. 

For example, if switch M1 is on, signal v1(ON) is logic high and force switches M2, 

M3, and MA to be off. If logic want to engage M2 by making v1 and v2 logic low and high, 

M1's gate will start falling quickly. However, v1(ON) will be logic high for around 10 ns as 

the fall edge extender will delay the sensed fall of vG1. During the extension of 10 ns, both 

v1(ON) and v2(ON) will be logic high and therefore force all the switches to be off, and hence 

creating the dead-time period. After the 10-ns extension, v1(ON) falls and M2 turns on. 
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Although the control logic does not allow any two outputs to be on at any time, the 

implementation of the dead-time period gives extra protection in case of an unexpected or 

unforeseen glitch. 

 
Figure 5.10. Drivers and dead-time generator for outputs' switches. 

 

Figure 5.10 also shows the drivers size for the output switches. They are sized to 

achieve almost symmetrical turn on and off times of about 5-10 ns. In this way, their sizes 

and switching noise during the hard-switching event are decreased without the turn-on and 

turn-off times affecting the performance. Note that M3's body diode conducts before 

engaging the switch making the switching on or off smoother and less noise generating. 

Thus, its driver is sized more aggressively. 
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5.2.4 Power Management 

As explained in Chapter 4, the converter will incur in power losses due to resistances, 

switching gates, and controller consuming ohmic, gate-drive, and quiescent power PR, PG, 

and PQ. To minimize switches' conduction and gate losses PR(SW) and PG, transistor channel 

lengths LMIN are minimum at 0.6 μm and widths WSW are wide enough to balance their 

ohmic and gate-drive losses by minimizing the total power for a given switching frequency 

fOSC and gate voltage vG [104]: 
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To find such width WSW that balance minimizes losses, the loss equation should be derived, 

equated to zero and then solve for WSW: 
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where k is the transconductance, COX the oxide capacitance per area and VTH the threshold 

voltage of the switch. This gives a minimum switch loss PLSW(MIN) of: 
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. (5.3) 

 Below the optimization point which is half the full load in this design, switching 

losses from the gate drive PG increases the fastest, and above conduction losses PR does. 
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Hence, the fractional loss of losses to input power PLOSS/PIN bottoms at around half the full 

power of the converter as simulations shown in Figure 5.11. A benefit of hysteretic control 

is that it scales the frequency as load decreases and converter operates in discontinuous-

conduction mode. This improves efficiency for light load conditions and the main reason 

PG decreases when combined power load is below 100 mW. This efficiency enhancement 

is limited by the quiescent power of the controller PQ that slightly scales with frequency 

but has a minimum loss of 1.4 mW. Hence, fractional loss increases sharply when 

combined load power is below 20 mW. 

 
Figure 5.11. Simulated losses of the triple-output buck-boost converter. 

5.2.5 Stability 

The stability design follows the same methodology presented in Chapter 3 for a SIMO with 

all buck outputs. The hysteretic current mode control will form an oscillator with inductor 

current iL, where the hysteretic window fixes the ripple ΔiL around its average iL(AVG). The 

output error will adjust iL(AVG) until all outputs receive the required energy. Independent 

outputs vO1 and vO2 will have their own local loop which regulates the peak voltage of their 

outputs. The master loop forms the outer loop through output vO3 which commands the 

current loop to adjust iL until all outputs are satisfied.  
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Even though vO3 is a boosted output, the same analysis from Chapter 3 still applies 

because during a five-switch operation it operates just like an all buck SIMO. The current 

loop's bandwidth is limited by the rising or falling rate of the inductor current. The 

bandwidth of the independent loop still scales with switching frequency fOSC and depends 

on load conditions while the master loop depends on the output impedance. The only time 

the analysis requires modification is when the SIMO resembles a boost converter during 

six-switch operation where, for a brief time, none of the output receive energy as inductor 

energizes from supply to ground. 

Like in boost converters, disconnecting all outputs to energize LO introduces an 

out-of-phase right-half-plane zero zRHP. This is because, while energizing LO with switch 

MA, which without zRHP should raise vO3, load iO3 discharges C3. In other words, what 

should raise vO3 also lowers vO3. zRHP therefore appears at the frequency when the fall 

exceeds the rise [79]. 

To find zRHP, first consider that LO's energizing and drain voltages vE or vIN and vD 

or –vO3 across LOs and across and after MA's connection time tA set how much additional 

current LO collects il [79]. The fraction of the oscillating period tOSC that LO connects to 

vO3: d3 or t3/tOSC which can be approximated to iO3/(iO1+iO2+iO3), determines how much of 

il reaches vO3. So, a rise in tA ultimately delivers il+ to vO3: 

 E D O3 a IN O3 O3
l l o3 a

O OSC OSC O OX

v v t t v v i
i i d d

sL t t sL i

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      
 (5.4)  

The current MA sinks, however, does not reach vO3. This current: ilA, is the charge iL 

supplies at its peak iL(PK) across ta: 



104 

 

 L(PK) al
l L(PK) a

OSC osc

i tq
i i d

t t


     (5.5)  

The loop is inverting as long as il+ surpasses il–. But since il+ drops with frequency, vO3 

inverts when il+ falls below il–. This means that zRHP appears when il– matches and exceeds 

il+: 
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 (5.6) 

5.3 Measured Performance 

The 0.6-μm CMOS die in Figure 5.12 shows the prototyped triple-output buck-boost 

supply system. The die integrates the power switches, drivers, and the controller, except 

for the current sensor, 18-μH inductor LO, and 0.47-, 0.82-, and 1-μF capacitors C1, C2, and 

C3. Also, the die, packaged in a SOIC, has a silicon area of 2.0 × 1.4 mm2 including 28 

bond pads and test circuits.  

 
Figure 5.12. Prototyped 0.6-μm CMOS die. 

 

Aside from the integrated circuit (IC), LO, C1, C2, and C3, the board also includes 

test and load circuits as Figure 5.13 shows. LO, and each of the capacitors occupy 3.5 × 2.7 

× 2.4 mm3, and 1.6 × 0.81 × 0.91 mm3. With these dimensions, LO's equivalent series 
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resistance (ESR) is 590 mΩ and those of C1, C2, and C3 are 10 mΩ. All included circuits, 

proposed and test, occupies an area of 8.6 × 13.2 mm2 of the two-layer PCB board. 

 
Figure 5.13. Two-layer board for testing buck-boost prototype. 

5.3.1 Operation Mode Boundary 

LO can feed vO3 during de-energizing, after supplying vO1 and vO2, LO can still satisfy vO3's 

load PO3 across the time tO3 that LO feeds vO3. To determine this limit, first consider that 

the feedback controller ensures LO delivers enough current to satisfy all outputs. With that 

much current, LO connects to each output vOX the fraction dOX of the oscillating period tOSC 

that iL requires to satisfy each load iOX. When iL's ripple is much lower than iL's average, 

dOX is nearly the fraction of current that iOX demands of all the loads combined ΣiOX: 

 OX OX OX OX
OX

OSC O1 O2 O3 OX O1 O2 O3

t t i i
d

t t t t i i i i
   

   
. (5.7)  

LO can supply the most PO3 when LO energizes the entire time LO connects to vO1 

and vO2 and drains the entire time LO connects to vO3. But to balance iL, iL must rise as 

much as iL falls across tOSC. iL must therefore climb ΔiL with vO1's and vO2's energizing 

voltages vE1 and vE2 or vIN – vO1 and vIN – vO2 and fall ΔiL with vO3's drain voltage vD3 or –

vO3: 
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When factoring LO out and noting tO1, tO2, and tO3 relate like iO1, iO2, and iO3, the expression 

reveals that, of the power vIN supplies with iO1 and iO2, vO3 receives as PO3' what vO1 and 

vO2 do not collect with PO1 and PO2 or vO1iO1 and vO2iO2: 
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 The system, however, loses power to the controller and switches. To generalize and 

adjust for losses, of what vIN supplies with buck currents ΣiBK, boost outputs can receive 

as ΣPBT' what buck outputs and losses do not consume with ΣPBK and PLOSS: 

  BT IN BK BK LOSS IN BK C BKP ' v i P P v i P          , (5.10) 

where (vINΣiBK)ηC is the fraction of vIN's power not lost to PLOSS. Incidentally, efficiency 

depends also on power levels, which means that the boundary must be found in an iterative 

process during the design and/or evaluation phase.  

Since vIN is greater than all buck outputs, vIN's buck power vINΣiBK climbs faster 

with buck currents ΣiBK than buck power ΣPBK. Boost power limit ΣPBT' therefore rises 

with buck currents and input voltage vIN. Therefore, the six-switch boundary that vO3's 

boost power limit PO3' establishes in Figure 5.14 increases with input voltage vIN and buck 

currents iO1 and iO2. In other words, even with constant current loads, rising buck voltages 

vO1 and vO2 reduces available boost power as buck power increases, and hence the limiting 

available boosted power. 
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Figure 5.14. Theoretical and measured maximum boost power with five switches when vIN is 3.6 V. 

 
 Figure 5.15 corroborates the five-switch boundary dependency to supply vIN while 

holding output voltages at the same targets. Since energizing time must increase with lower 

vIN to deliver the same power to buck outputs, the boost power PO3' available reduces. For 

instance, each data point on Figure 5.14 and Figure 5.15 correspond to the same total buck 

current (horizontal axis scaled with vIN) and for each corresponding data point, PO3' is 

significantly lower when comparing the vertical axis scales. 

 
Figure 5.15. Theoretical and measured maximum boost power with five switches when vIN is 2.7 V. 

 

5.3.2 Load Regulation 

As load levels and combinations changes, so will the regulated average voltage due to load 

regulation. Figure 5.16 shows average voltage for vO1 across buck and boost load where 

buck loads has a fixed ratio of iO2 = 2·iO1. Because the independent loop regulates the peak 

voltage, vO1's load droops vO1 across what remains of tOSC after vO1's connection time t1 

lapses. Therefore, average voltage vO1(AVG) decreases by an effective load regulation 
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voltage vLR that increases proportionally to vO1's discharge rate iO1/C1, disconnect time tOSC 

– t1: 
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LR1
1

i t t
v

2 C

     
  

. (5.11) 

That is why, vO1(AVG) decreases linearly as the buck loads increases. Also, notice that 

vO1(AVG) slightly increases with boost load iO3. This is due to a smaller period tOSC as 

boosted output vO3 connects for a larger fraction of the total de-energizing time and hence 

decreasing tOSC. 

 
Figure 5.16. Measured load regulation for output vO1. 

 

 The average voltage for vO2 or vO2(AVG) will behave similarly as vO2(AVG) as Figure 

5.17 shows. Both outputs also exhibit a decrease in their average voltages when increasing 

total buck load at a high boost load. As boost load iO3 is disparately large compared to the 

buck loads, controller will skip vO1 and vO2 to deliver more energy to vO3. Thus, buck 

voltages will decrease with increases buck load until the converter no longer skip any 

output as it approaches the mode boundary as shown in Figure 5.17 when iO3 is 30 mA.  
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Figure 5.17. Measured load regulation for output vO2. 

 

 
Figure 5.18. Measured load regulation for output vO3. 

 

 

Since the current loop mixes the outputs of all errors as shown in Figure 5.6, any 

error on vO1 and vO2 will transfer as an offset on vO3. Therefore, average voltage vO3(AVG) 

climbs with buck load in Figure 5.18. Because both buck outputs decrease at a rate of vLR1 

and vLR2, vO3's load regulation vLR3 climbs with sum of both but opposite in direction: 

  LR3 LR1 LR2v v v  . (5.12) 

Also, because vO1 and vO2 falls when boost load is high approaching the mode 

boundary by increasing buck loads, vO3 will increase in this region. Also, as explained in 
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Chapter 4, as current ripple reduces in DCM, vO3 will suffer an offset to cover the remaining 

of the hysteretic window that the inductor current ripple fails to completely cover. Hence 

vO3(AVG) falls for the plane when iO3 is less than 20 mA and buck load (iO1 + iO2) is less than 

50 mA as shown in Figure 5.18. 

5.3.3 Efficiency 

Figure 5.19 shows the simulated and measured efficiency under balanced loads which 

always operates in the five-switch mode. However, simulated efficiency considers 

idealized connections to the PCB board from the die and therefore tends to be 5−6% higher 

than the measured one. The difference is due to parasitics capacitances and traces such 

from bondwire, package's leadframe and PCB connections. Also, due to the inherent offset 

of comparator CPZCS, control signals DCM has reached before iL reaches zero and 

therefore, for a brief time the conduction loss increases as inductor completed de-

energizing through two body diodes instead of switches MG and M3. 

 
Figure 5.19. Loss comparison of simulated and measured efficiency during five-switch operation. 

When MA energizes LO, none of the outputs receive power. As a result, all outputs 

droop across tA in Figure 5.4, and accuracy suffers. Engaging MA also requires power that 

adds to losses in PLOSS. Thus, power-conversion efficiency ηC also drops. Two non-

negligible extra loss mechanisms are conduction and switch losses. Like a boost converter, 
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because MA engages for a brief time, the inductor must carry more current to provide 

required total load power is less than a switching period tOSC. This translates to higher 

conduction losses in switches and parasitics resistances due to the increased dc current 

level in the inductor. The other loss mechanism, and perhaps more straightforward, is 

power loss due to engaging MA: gate, current-voltage overlap (hard-switching) and 

conduction losses related to the switch itself. 

This is why ηC in Figure 5.20 for the proposed supply is generally higher when 

operating in the five-switch mode, maxing at ηC(PK) or 87%. When delivering the same total 

current, ηC is 2% to 3% higher with five switches than with six. Full-load efficiency ηC(FL) 

when iO1, iO2, and iO3 are 50, 100, and 30 mA is 81%. Also, the proposed converter has a 

minimum efficiency of 75% when total load current is at least 20 mA. 

 
Figure 5.20. Measured power-conversion efficiency across load power. 

5.3.4 Dynamic Response 

When all loads suddenly rise four times their initial 12.5-, 25-, and 7.5-mA levels while in 

five-switch operation, the system responds in 5.2 μs and all outputs settle within another 

15 μs, as Figure 5.21 shows. During the load step, outputs discharges the capacitors as the 
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inductor start replenishing them and provides the new required energy to the loads. Since 

by design, the converter feeds and satisfies vO1 and vO2 first, they recover and settle faster 

than vO3. 

 
Figure 5.21. Measured rising load-dump response when operating with five switches. 

 
Figure 5.22. Measured falling load-dump response when operating with five switches. 
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The system similarly responds in 5.4 μs and all outputs recover within another 40 

μs when those same loads return to their initial levels. As in Figure 5.22, the system 

requires more time to settle after the loads disappear because, with such a light load, C3 

slews slowly back to its target. Irrespective of direction, vO3 suffers the most variation at 

−176 and +268 mV while vO1 and vO2 overshoot are negligible as their peak voltages are 

accurately regulated.  

The system responds a little less quickly when operating in the six-switch mode. 

This is because connecting LO to ground requires additional time. So, when subjected to 

the sudden 1.67× load variations in Figure 5.23, the system responds in 6.2 μs and outputs 

settle within another 17 μs with a rising load step. During this time, vO3 drops 118 mV or 

3% while vO1 and vO2 about 40 mV and 48 mV, respectively. 

 
Figure 5.23. Measured rising load-dump response when operating with six switches. 

 

During the falling load step, the system similarly responds in 7 μs and outputs settle 

within another 20 μs as in Figure 5.24. Independent outputs do not have overshoot as 
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expected while vO3 only overshoots 60 mV or 1.5%. Also, notice that the system 

overshoots/undershoots once when operating constantly under five-switch or six-switch 

mode which shows a response with phase margin close to 90°. 

 
Figure 5.24. Measured falling load-dump response when operating with six switches. 

 

 

Transitioning between modes adds additional overhead. So, when responding to 

vO3's 3–30-mA load dumps in Figure 5.25, the system responds in 8 μs and outputs settle 

within another 20 μs to rising load step on vO3 as its move from the five-switch to the six-

switch mode. Notice, vO3 over-reacts before finally settling with a slight second ring when 

iO3 increases. This is because zRHP reduces the phase margin of the system as its moves to 

lower frequencies as the converter transitions to the six-switch operation. Still, the system 

recovers within one or two rings, which corresponds to 60° to 70° of phase margin [95]. 



115 

 

 
Figure 5.25. Measured rising load-dump response across switching modes. 

 

 
Figure 5.26. Measured falling load-dump response across switching modes. 

 

The controller reacts within 10 μs and outputs settle within another 26 μs for a 

falling load step in vO3 as in Figure 5.26. In this case, no extra ring is noticeable in the 

response as zRHP moves to higher frequencies and disappears. During the response vO3 



116 

 

overshoots 100 mV or 2.5% while vO2 slightly undershoots as converter adjust power 

delivery. vO1, however, do not overshoot as it has the highest priority. 

5.4 State-of-the-Art Comparison 

Table 5.1 summarizes he performance of the proposed triple-output buck-boost converter 

and compared it to the state of the art that (SoA) generates a mix of buck and boost voltages. 

Due to limited information on response time tR, the relative figure of merit (RFoM) from 

Chapter 2 (Equation 2.3), uses the same 10 μs for all designs, effectively cancelling it for 

the comparison. The proposed converter achieved 13% higher performance than the next 

best SoA, work presented in [64]. The advantage comes from the simpler implementation 

which results in the same silicon area per output but with a more than twice bigger 

technology node which reduces costs. Similarly, although the third best performing SoA, 

[67] uses less than half the technology size compared to the proposed and dedicated 13% 

more silicon area for each output. 

 Other implementations from the SoA, such as [78] don't maintain high efficiency 

across the load range. Work from [63] requires two external components per output 

increasing solution cost and size at the board level. Although note reported for most SoA, 

response time tR will most likely be higher than 10 μs for those that did not reported. These 

works used control relaying on PWM control, and as showed in Chapter 4, fully hysteretic 

control like used in the proposed buck-boost can respond faster to load dumps. This will 

likely increase the RFoM for the proposed converter relative to the SoA when accounting 

of performance metrics. 
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Table 5.1. SoA Comparison of Mixed Output (Buck & Boost) SIMO Converters. 
 Units [63] [78] [67] [64] Proposed 

Notes – 
I-PWM, V-PK 

Energy Buffer 

Fully PWM 

Energy Buffer 
Fully PWM Fully PWM 

Fully 

Hysteretic 

LMIN μs 0.5 0.25 0.25 0.25 0.6 

ASI mm2 3.6 10 2.1 3.8 2.8 

vIN  V 2.5–4.5 2.7 0.9–1.6 1.8–2.2 2.7–4.0 

vO V 2–12 1.8–3.3 0.6, 1.8 1.25–2.25 1.2–4.0 

iO(MAX) mA 145 650 240 400 180 

NO # 5 4 2 4 3 

NOC # 10 5 3 5 4 

ηC(PK) % 83 91 92 93 87 

ηC(FL) % –1 74 92 92 81 

tR μs –1 102 –1 –1 10 

RFoM % 393 49 903 1003 113 

     1Not reported. 2Estimate. 3Assumes tR = 10 μs for comparison. 

5.5 Summary 

Microsystems that optimizes subsystems, such as sensing, processing and transmission; 

requires different voltage supplies for optimal performance. In some operating conditions, 

it requires a mix of regulated buck and boost voltages. Luckily, when the energy packet of 

the inductor is shared among all outputs in one switching cycle, the distribution sequence 

can be used to generate both buck and boost voltages with few modifications. 

 The proposed converter has a triple-output buck power stage that can regulate two 

bucks and one boost output. It can regulate a boosted output because it receives energy last 

when inductor de-energizes. This operating mode continues if the buck load is high enough 

that the inductor can fully energize when only supplying energy to buck outputs. This five-
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switch operating mode behaves like a triple buck converter which results in same stability 

criteria, and similar performance in regulation. 

 Unfortunately, as for microsystems that have dynamic power consumption for each 

sub-system, the buck power is not always required or high enough to fully energize the 

inductor to deliver to the boosted output. In such cases that the inductor already satisfied 

buck outputs but still requires more energy, the power stage uses an additional switch to 

ground to extend energizing. This six-switch operation results in higher power losses due 

to the extra switch but not significant to negate the size and simplicity benefits. 

 The mode transition between five- and six-switch operation occurs when the five-

switch mode reaches the maximum boost power it can provide while energizing entirely 

on the two buck outputs. This boost power limit increases as input supply increases, and 

buck power increases because it respectively decreases energizing time or shorten the time 

the boost output connects to the inductor. 

 The six-switch mode adds a right-half plane zero that must be considered in the 

design and analysis. As in boost converter, this result because when inductor energizes to 

ground, none of the outputs receives energy. This implies that it must energize further to 

compensate for the additional droop from the time of all the outputs discharged 

simultaneously. 

 The proposed triple-output buck-boost supply system can regulate three outputs 

while minimizing switching transitions only when necessary. This keep losses low when 

operating in the five-switch mode. Although losses increase when in the six-switch mode, 

the extra switch engages for a brief period of time which keeps its size relatively low and 
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hence does not increases silicon real estate and losses considerably. This helps to maintain 

a compact and efficiency power management system for microsystems capable of 

regulating buck and boost voltages. 
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CHAPTER 6  

BALANCING SPEED AND ACCURACY WITH 

PROPOSED HYSTERETIC–PWM CONTROL 

A fully hysteretic control implementation can achieve sub 10-μs response time as shown 

in Chapter 4 and 5. However, using a hysteretic comparator to directly regulate an output 

voltage is noise sensitive from switching noise generated by parasitic resistances and 

inductances from external components and PCB traces. Although noise can be reduced 

through filtering, filters can increase the external component count or silicon real state in 

the die. Alternatively, output voltage comparator can have a large hysteretic window to 

reduce noise sensitivity at the expense of imposing a larger minimum output voltage ripple 

that can reach tens of millivolts. This chapter proposes the combination of PWM and 

hysteretic control to reduce noise sensitivity while preserving the dynamic performance 

benefits of hysteretic control. 

6.1 PWM–Hysteretic Power Supply System 

Current-mode control transforms the inductor LO into a voltage-dependent current source 

GOSC and as a result its pole in the main loop disappears. Therefore, using hysteretic control 

for current regulation, as in Figure 6.1, allows to push system's bandwidth to higher levels 

compared to PWM control. The dual–supply requires an additional control loop for the 

independent output. For this, a simple high-bandwidth PWM control can regulate the 

energy of the independently control output vOI and allow the LO's remnant energy to flow 

to the master output vOM. Additionally, the proposed controller adds amplifiers to improve 
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accuracy of regulation instead of buffering the output errors as in previously discussed 

control schemes in Chapter 4 and 5. 

 
Figure 6.1. Proposed PWM–Hysteretic dual-output power supply system. 

 

 The operation of the dual-supply system is like the fully hysteretic converter 

previously discussed. The current loop will energize the inductor for time tE until it can 

supply both outputs as in Figure 6.2. The PWM loop connects the independent output vOI 

for time tOI until it receives enough energy while master output vOM receives energy for 

time tOM or the remaining of the switching period.  

 
Figure 6.2. Measured waveforms of proposed PWM–hysteretic dual-supply. 
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The fact that vOI's PWM control loop is less sensitive to noise, it allows for lower 

voltage ripple across the outputs. Because the loop regulates the average voltage on vOI, 

and an amplifier AEI amplifies vOI with limited bandwidth, comparator can have a lower 

hysteretic window, just enough to ensure a robust comparison. That is why Figure 6.2 

shows 10 mV or less across the outputs at maximum load of 100 mA on each output.  

6.2 Load Regulation Cross–regulation 

Summing all outputs' errors at the current loop improves transient performance and helps 

to regulate when there is load disparity across outputs. However, at the same time any 

deviation from the target, such as with load regulation, on the independently controlled 

output vOI (or outputs if more than two) will appear in the master output vOM as an offset 

and hence error. The proposed PWM–hysteretic control, adds a filter across vOI's mixing 

point in the current loop to reduces cross–regulation to vOM. 

6.2.1 Non-Filtered Error Summation 

Figure 6.3 shows simulation results when summing amplifier adds all output voltages 

errors. Due to finite gain across vOI, its average, or dc, voltage decreases as its load level 

iOI increases. Summing amplifier AEM will drive the total difference across its inputs to 

zero by adjusting the inductor current iL target to the appropriate level. Thus, as vOI 

decreases with increasing iOI, vOM increases by the same amount even though vOM keeps 

the same load level at half the full–load 50 mV while sweeping vOI's load. 
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Figure 6.3. Simulated load regulation of vOI and cross–regulation to vOM while summing all frequency 

components of vOI in the current loop. 

6.2.2 High–frequency vOI's Error Summation 

Including a filter that attenuates frequencies lower than 8 kHz from vOI at the summing 

amplifier reduces the cross–over regulation. In Figure 6.4, simulations show that vOI has 

the same load regulation as the main control loop, its local PWM control, has the same 

finite gain as when summing all frequencies. However, vOM has the same finite gain but 

unlike in Figure 6.3, summing amplifier AEM drivers only vOM's error to zero at low 

frequencies since AEM filters vOI's low-frequency components. Therefore, vOM's low-

frequency cross–regulation is negligible when kept at a fixed load. Interestingly, Figure 6.4 

also shows voltage ripple decrease on vOM when vOI's load decreases even though vOM has 

a fixed 50 mA load. This happens because inductor current level iL matches more closely 

that of vOM's load iOM and the connection time is longer. This allows the capacitor to receive 

or deliver only the difference in current between iL and iOM for longer times, resembling a 

buck converter, hence reducing ripple. 
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Figure 6.4. Simulated load regulation of vOI and cross–regulation to vOM while summing all frequency 

components higher than 8kHz of vOI in the current loop. 

6.3 PWM Independent Loop Control 

The PWM loop across independently controlled output vOI reduces noise sensitive. 

However, even though a high bandwidth can be achieved, the modulation of its duty cycle 

differs from the hysteretic. This section explores its differences and how it will affect the 

stability while also taking in account the filtered mixing point in the current loop. 

6.3.1 Operation 

The PWM control for independent outputs consists of an error amplifier AEI, a ramp signal 

vRMP, and a comparator CPI as Figure 6.5 (a) shows. At the beginning of a new cycle, 

indicated with pulse signal vOSC, sets the latch for vOI to start receiving energy. At that point 

switch MOI turns on vRMP starts increasing until it surpasses a reference point vEI defined 

by the output of AEI. This reference vEI is proportional to vOI's error and sets vOI's on time 

tOI and hence when MOI turns off as in Figure 6.5 (b). 
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 When having a load disparity among the outputs, skipping outputs improves 

regulation as the converter focus on outputs with heavier loads and avoids overcharging 

those with light loads. To have the ability to skip the output, CPI must have a logic high at 

the output at the beginning of a cycle, when vOSC has a pulse, so that the reset-dominant 

latch does not engages MOI. For that, the AEI's output must go lower than the minimum 

value of vRMP after a reset or vRMP(MIN). That is why Figure 6.5 (b) highlights that the low 

end of input common-mode range of CPI vCPI(ICMR) must be lower than vRMP. Also, AEI's 

output must be able to swing below vRMP(MIN) as well. 

 
Figure 6.5. PWM control for independent output vOI (a) schematic and (b) operating waveforms. 

 

6.3.2 Stability 

Although the proposed PWM differs from hysteretic control on how the modulation occurs, 

the loop gain analysis and incorporation into the master loop follows the same approach as 

previously discussed. When a deviation on the output voi occurs, it changes the amplified 

error vei through gain AEI. This in turn updates the duty cycle doi through vRMP with 
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modulation gain of APWM. This change in connection increases (or decreases) the current 

ioi that output vOI receives proportionally to the average inductor current IL in steady–state 

which in turns update voi through its output impedance and sets the total loop gain AOI.M: 

   ei oi oi oi
OI.M EI PWM L OI

oi ei oi oi OI

v d i v 1A A A I R ||
v v d i sC

             
      

. (6.1) 

 The modulation gain APWM defines how much duty doi changes from voltage vei 

through change in connection time toi. This happens through modulating ramp vRMP as its 

rate of change determines change in toi with respect to amplifier error vei. This change toi 

with respect to total period tOSC gives duty change doi and defines total modulation gain: 
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. (6.2) 

 Since the control implementation sums vOI's error higher than a certain frequency 

from to that of vOM's, the path through the mixing point and current loop provides a feed-

forward path with gain AOI.S to vOI. This effectively increases loop gain near the cross-over 

frequency which can affect stability depending on the design and application. A change in 

output error voi higher than the corner frequency fSUM that summing happens, will change 

error reference to the current loop vem through summing amplifier gain AEM. This change 

prompts the current loop to update inductor current il according to its close-loop gain 1/RS, 

which increases, or decreases, current ioi into vOI proportionally to the steady–state duty 

cycle DOI. Finally, the extra, or less, current ioi updates vOI through its output impedance: 

  
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. (6.3) 
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 Under the assumption that fSUM is well below the cross-over frequency fOI.0dB, both 

paths contribute to the total gain. Hence adding both gain and equation to one, gives fOI.0dB:  

 

EM OI
EI PWM L

S
OI.0dB

OI

A D
A A I

R
f

2 C




 . (6.4) 

Since DOI approximates to iOI/IL and IL to iOI + iOM, and assuming AEI are at a similar level, 

AOI.S becomes influential when: 

  
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OI OM

d
R A

i i



. (6.5) 

This means, that when iOM is very light–load so that the left terms approximate to 1/iOI can 

be relatively higher than RSAPWM and become the dominant term in the loop gain. 

However, when iOM is high so that dOI is below one and closer to zero, the left term most 

likely is below RSAPWM. This is how the feedforward path helps to keep vOI in regulation 

when vOM has a very light load but has less influence otherwise. 

6.3.3 Dynamic Response 

Unlike the hysteretic control, the PWM loop regulate the average output voltage instead of 

an instantaneous value such as the vOI's peak voltage in hysteretic control. Therefore, vOI 

would not completely recover after a load dump in one cycle. Instead, it will require 

multiple cycles to completely recover. However, because the hysteretic current loop has a 

high bandwidth and recovers quickly, PWM loop across vOI can have high bandwidth to 

minimize response and recovering time after a load dump.  

On the rising load dump of a simultaneous 10–100 mA load step on both vOI and 

vOM, the converter responds in 10 μs. In that time vOI's error reaches −33 mV or −3.3% of 



128 

 

a 1 V target and vOM increases by 14 mV or 1.2% of 1.2V as in Figure 6.6. After the 

response time, takes about 12 μs to completely recover to the target while vOM does in about 

15 μs. 

 
Figure 6.6. Measured response to simultaneous rising 90-mA load dumps. 

 

Figure 6.7 displays the response to simultaneous falling load dumps of 90 mA on 

each output. The converter responds within 4 μs for the falling load dump in which vOI 

increases by 15 mV or 1.5 % and vOM's error is −16 mV or −1.3%. Because of the light 

load condition on vOM, it completely recover after an additional 60 μs while the light load 

discharges the output capacitance back to the target voltage.  

 
Figure 6.7. Measured response to simultaneous falling 90-mA load dumps. 
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6.4 Implementation 

The prototype of the proposed PWM–hysteretic controller was implemented in a 0.18 μm 

CMOS technology. The target of the output voltages is 1 V for vOI and 1.2 for vOM when 

the input voltage is within the range of 1.4−1.8 V. Figure 6.8 shows the die of the prototype 

which includes power switches, drivers and control. It occupies a total area of 1.6 mm2 

including the bond pads. 

 
Figure 6.8. Die of proposed PWM–hysteretic controller in 0.18 μm CMOS process. 

 

 Figure 6.9 shows the PCB boars to test and evaluate the prototype. Besides the 

prototyped IC, it includes inductor LO, output capacitors (COI and COM), inductor current 

sensing, load emulator and test circuits. It occupies a total area of 10.2  8.6 cm2 for a two-

layer board. 

 The implementation of the prototype requires some consideration when designing 

the IC. Among such are bulk biasing of the power switch, current sensor design, input 

common–mode considerations for amplifiers and comparators. Albeit a few differences 

with other technologies such as the type of transistors and passives availability, the 

concepts can be implemented in all technologies. 
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Figure 6.9. Testing PCB to measure performance of the dual-supply system. 

 

6.4.1 Power Switch Bulk Bias Circuit 

By design, current in the inductor freewheels to one of the output voltages during the 

deadtime period.  In the proposed design, master output vOM power switch's body diode 

serves this purpose. However, the other (or others if more than two) output must block any 

current flow by using a back-to-back diode configuration when the switch is off. This 

prevents energy sharing among the outputs as the output switching node moves during 

switching transitions. A simple implementation is using two PMOS switches in series and 

connect their bulk connections at the intermediate node to achieve back-to-back connection 

of their body diodes. However, driving two gates and having two series resistances 

increases total power loss across the switch [79]. 

 Figure 6.10 shows the implementation that consists of a single power switch and 

two cross-coupled switches to bias the bulk node vBULK. Connections of the bulk 

connections allow all the body diodes to conduct to the bulk and function as a peak voltage 

detector. During the dead-time period, as vSWO goes a diode above vOM, transistor MBU1 
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has enough overdrive to increase the bulk voltage as in this design vOI is lower than vOM. 

If control engages switch MOI, MBU1 will discharge the bulk up to a threshold above output 

voltage or vO1 + vTHN. This allows to minimize the bulk effect when the switch is on to 

keep lower switch resistance. Transistor MBU2 seldom engages during normal operation as 

the bulk voltage vBULK does not need to go below vOI. However, its relatively small size 

keeps the functionality of keeping the bulk biased to the highest potential during transient 

events and, combined with its higher threshold voltage compared to MBU1 minimizes 

leakage current through the cross-coupled bulk-biasing transistors. 

 
Figure 6.10. Circuit to bias bulk of power switch of independent output vOI. 

6.4.2 External Current Sensor 

Like the proposed dual-supply system in Chapter 4, the current sensing implementation for 

the proposed PWM–Hysteretic power supply uses an RC to sense the inductor current. 

However, because of the small energizing and de-energizing voltage across the inductor, 

the inductance is lower to meet inductor slewing demands to achieve fast transient 

response. Due to the lower inductance and because sensing gain is LO/RSCS, the RC filter 

time constant tS is lower to achieve similar or higher bandwidth in the master loop as 

discussed on the current sensor design of Chapter 4. 
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 When energizing and de-energizing times are much lower than S the response of 

the RC sensor is approximately linear and the reason it can replicate the shape of the 

inductor current. Unfortunately, during a relatively large response time or switching period, 

the RC filter will show an exponential voltage across sensing capacitor when ideally it 

should be linear. This creates a sensing error eSEN from the ideal response which becomes 

a function of the time t at a single state (i.e. long energizing or de-enegizing) relative to S: 
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 To maintain an error lower than 10%, time at any state should be lower than 0.2S. 

With a total sensing gain of one, means that S must be 3.3 μs for a 3.3 μH inductor. This 

limit any energizing or de-energizing state, during steady–state or a transient, to be below 

0.66 μs. However, a transient event can easily take over this limit even for fast responding 

converters. As a trade–off, Figure 6.11 includes a discrete differential amplifier with a 

small gain of ten. Amplifying the output of the current sensor, allows to use a higher S 

while maintaining the same current sensing gain. In this case, the time in any state can be 

within 6.6 μs to limit the error within 10% which is more suitable for the proposed control. 

Even though differential amplifier might be integrated, a discrete amplifier was used for 

testing and debugging purposes such as to adjust its gain. 
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Figure 6.11. Current sensor implementation for low voltage converters. 

6.4.3 Summing Amplifier 

Figure 6.12 shows the circuit implementation of the summing amplifier AEM that filters out 

the dc component of independent output voltage vOI. To achieve this summing above a 

certain frequency fSUM, a RC filter is included across the input terminals for vOI or v1P–1M. 

This way, above fSUM, the differential pairs have matching gain since they sum each 

differential current at the folding stage before reaching output nodes vOP and vOM. When 

the frequency of the input signal is below the cutoff frequency fSUM, amplifier only consider 

master output vOM to adjust inductor current level which reduces cross–regulation from vOI 

to vOM. 

 

Figure 6.12. Summing amplifier AEM implementation in 0.18 μm CMOS process. 
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 The implementation of the RC filter consists of a resistor RF in between input 

terminals of the differential stage, and a capacitor CF between the vOI's feedback point and 

the negative terminal vIMF as in Figure 6.12. To maintain high linearity against voltage, a 

poly-poly capacitor is used for CF but the bottom poly or plate must be connected to the 

feedback point of vO1. Otherwise, a voltage divider results between feedback point to 

ground due to the bottom poly-substrate capacitance [108], effective reducing the total gain 

of vOI across AEM relative to that of vOM. The corner frequency of the RF–CF filter in this 

design is 8.4 kHz, low enough to for the filter's gain to settle before any crossover 

frequency of any loop. This avoids interaction with the other loops and does not affect 

previous stability analysis discussed. 

 Another implementation alternative is to degenerate the gain of the differential pair 

at low frequencies as Figure 6.13 suggests. At low frequencies, the gain is reduced by the 

degeneration magnitude 1/(1+gm1RDEG). As frequency increases past 1/(2π2CFRDEG), the 

gain of the input pair increases until capacitor's impedance is well below transconductance 

gm of the input differential pair. In this design gm was approximately 40 μs, and achieving 

the same corner frequency as the circuit in Figure 6.12 would require a CF of 760 pF which 

is prohibitively large. To balance size, implementation in this design uses the RFCF filter 

but depending on the application requirements using resistor degeneration might be 

feasible or even optimal choice. 
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Figure 6.13 Filtered summing implementation alternative. 

6.4.4 Hysteretic Comparator CPOSC 

Hysteretic comparator CPOSC mixes the output error from amplifier AEM and sensed 

inductor current. Since AEM provides a differential signal as the current sensing circuit also 

does, CPOSC consists of input differential pairs that mixes current in a folding cascode pre–

amplifier as in Figure 6.14. The differential implementations avoid conversion to a single-

ended signal and reduces noise sensitivity to noise injected due to routing in the die and 

PCB [109]. This implementation follows the same approach as the summing comparator 

discussed in Chapter 4. It has an initial pre–amplifier stage with a small gain followed by 

multiple small-gain amplifier stages that ends with a large-gain single-ended class A 

amplifier. This way, the amplifier can have balanced quiescent current and speed. 

 
Figure 6.14. Pre–amplification of hysteretic comparator CPOSC of the current loop. 



136 

 

 

 On this implementation, however, a current iHYST flowing through a resistor RHYST 

sets half of the hysteretic voltage across an additional differential pair, M3A−B in Figure 

6.14, while a diode connected transistor MR sets a reference on one input of the differential 

pair. This method is easier to integrate and provides a low impedance to shunt noise that 

the node might encounter while connecting to a test circuit on the PCB board. MR is a high 

threshold device to allow common-mode voltage at the input pair to track and be within 

the comparator's common-mode range. 

6.4.5 PWM Control 

As explained in section 6.3, the PWM control consist of error amplifier AEI, ramp signal 

vRMP and comparator CPI. AEI uses a folded cascode implementation, shown in Figure 6.15 

to use a NMOS input differential pair and be compatible with the input-common range 

(ICMR) of CPI. The target gain for this amplifier is about 10 V/V set by the input pair's gm 

and output resistance RGA–B. Using diode-connected NMOS transistors through resistors 

decouples the bias point at the output node and gain. The bias point is set by the gate-source 

voltage across transistors MGA–B since there is no current flowing through the resistors. In 

the other hand, the small-signal gain is set by resistors RGA–B. This helps to ensure the 

output is within CPI's ICMR which uses an NMOS differential pair. 



137 

 

 

Figure 6.15. PWM loop's AEI implementation. 

 

A current that charge a capacitor implements the modulating ramp vRMP as in Figure 

6.16. A diode-connected high-threshold NMOS MLS ensures vRMP has a minimum voltage 

within CPI's input common-mode range and higher than AEI's output voltage range. It is to 

this value that vRMP resets every cycle before increasing at a nominal rate of 0.12 V/μs. 

NMOS and PMOS switches MRS1 and MRS2 resets the ramp every cycle and both are 

required since vRMP has a typical range a diode above ground and a couple hundred 

millivolts below the supply. 

 

Figure 6.16. Modulating ramp for PWM control of independent voltage vOI. 

 

 Figure 6.17 show comparator CPI's implementation in the prototyped IC. It has a 

NMOS input differential pair going to a folding cascode output stage as the pre-amplifier 



138 

 

stage. Then a second stage provides high gain while a class–A stage ensures the output 

signal goes rail to rail. The output signal goes through additional inverters to sharpen the 

edges of the output signal vO and provide enough signal strength for parasitic capacitances. 

The small hysteresis to avoid a false trip during the transitions due to noise is implemented 

before the class-A stage by engaging a sinking current after the CPI's output goes logic 

high. Engaging hysteresis after CPI goes high helps having an accurate comparison as vOI 

rises (when it is receiving energy). 

 

Figure 6.17. PWM loop's CPI CMOS implementation. 

  

6.4.6 Scalable Output Logic 

Despite designing a dual-output supply, the logic for output sequencing was designed to 

allow easy scaling while increasing the number of regulated output voltages. 

Unfortunately, combinational logic requires anticipating possible scenarios and figuring 

which output receives energy first at the beginning of each cycle as shown in Chapter 5. 

Conceptually, the proposed scalable logic enables every output to receive energy in 

sequence and it passes control to the next output after receiving enough energy or if it is 

being skipped. One key is to use reset-dominant latches so even if the logic tries to enable 
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output to receive energy, its comparator, from the PWM loop or hysteretic control, can 

force the output to be skipped if it is already satisfied.  

Figure 6.18 shows the circuit diagram for such scalable logic control. The first 

independently controlled output vO1 will receive energy at the beginning of a new cycle, 

when pulse signal vOSC goes high sets vO1's latch. If vO1 is already satisfied, output of 

comparator or signal vCP1 is high and keep the output from engaging. vO2 will engage either 

when vO1 receives enough energy and vO1's latch resets or if vO1 was skipped. During the 

later, vO2's latch sets if vO1's comparator is high and vOSC pulse starts to fall. This means 

that vO1 can engage as long as vOSC is high when vO1's latch has a logic high at the set input, 

if it does not at the end of vOSC's pulse, then vO1 is skipped and vO2 engages. The sequence 

continues for the other outputs until the last output vOM engages until the remaining of the 

period where at the next pulse at vOSC, vOM's latch resets. 

 
Figure 6.18.  Scalable output logic that sequences the output by priority. 

 



140 

 

Unlike the previous approach of using combinational logic, the sequence tries to 

set each latch of every output. As a result, the pulses at each set input of the latch represents 

a delay to engage the following output if the previous output (or outputs) is being skipped. 

For instance, if at the beginning of a new cycle, vO1 and vO2 are satisfied already, vO3 has 

to wait past the pulse of vOSC and the pulse at the set input of vO2's latch (after vOSC goes 

low) to finally engage. This results in additional dead–time period as these pulses are 

around tens of nanoseconds to gives enough time to the logic to settle. Also, the pulse from 

vOSC must be wider than the other pulses generated in the sequence to allow enough time 

for all latches to reset even as disengaging one output is interpreted as if it has received 

enough energy. 

6.5 SIDO Measured Performance 

Figure 6.19 shows vOI's load regulation of the proposed dual-supply converter. During 

continuous-conduction mode (CCM) operation, the converter regulates both outputs with 

a finite output resistance which makes their dc value decrease as both load increases at a 

rate of 0.24 mV/mA. When vOI's load is fixed to 20 mA the output voltages settle and 

changes less versus vOM's load. Due to its priority to receive energy first at the beginning 

of each cycle, vOI have low cross–regulation from vOM. 

 
Figure 6.19. Measured load regulation of independent output vOI. 
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Similarly, master output vOM has a finite close-loop output impedance in regulation 

and therefore its output decreases as load increases as in Figure 6.20. When vOM has a 100–

mA constant load, its value changes slightly at a rate of 0.02 mV/mA even though vOI 

decreases at a rate of 0.24 mV/mA. This reduced low-frequency cross–regulation is due to 

the decoupling of the low-frequency components from outputs at AEM. During 

discontinuous conduction mode (DCM), vOM dc voltage decreases with decreasing load 

since inductor ripple decreases below VHYS and induces a dc offset at the summer that vOM 

compensates. However, it is less than in the fully-hysteretic control because this 

implementation includes an amplifier in the master loop instead of a buffer. 

 
Figure 6.20. Load regulation of master output vOI. 

 

Resistances, switching gates, and the controller consume ohmic, gate-drive and 

quiescent power. Power transistors balance gate-drive and ohmic losses by optimally sizing 

their widths with minimum channel length. With the resulting design, the peak efficiency 

ηC(PK) for the proposed controller is 94% when delivering full load to vOM and less than 5 

mA to vOI Figure 6.21. At full-load conditions, when each output consume 100 mA, the 

efficiency ηC(PK) settles to 91.3%. Also, the converter achieves 85% when delivering more 

than 2 mA when targets for vOI and vOM are 1− and 1.2−V, and supply is 1.5 V. 
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Figure 6.21. Efficiency of PWM–hysterteic SIDO supply system. 

6.6 SIDO Comparison to Similar Single-Output 

Although saving an inductor and using a single integrated circuit to generate one, or many, 

additional outputs is an appealing and obvious benefit of a SIMO converter, it is valuable 

to keep in mind the trade–offs associated with such a topology. The main difference to 

dedicating a switch-inductor converter to each output is that all outputs are duty–cycled 

regardless if they are buck or boost voltages. Also, the fact that output shares the inductor 

current can increase cross–regulation between them as previously discussed.  

For the comparison of performance between a single- and dual-supply, the 

proposed dual-output converter is used for both. To operate the converter as a single output, 

the independent output voltage is forced high to the supply through a resistor. This forces 

the converter to sense that vOI is always satisfied and therefore is always skipped in the 

control logic. Also, to discard performance differences due to the output targets, both 

outputs are targeted to 1 V in the dual-supply as in the single-supply system. 

6.6.1 Power Losses 

From an efficiency point of view, the dual-supply incurs in about 4% more losses than the 

single-supply at higher load levels as Figure 6.22. At light–loads, the difference is higher 

and dominated by the quiescent power for the output switches control. At mid-load 
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conditions, gate charge and I–V overlap losses become a dominant while conduction losses 

dominate as load levels continue to increase. In summary, although using multiple supplies 

allow energy savings higher than 5% at the system level, the dual supply provides a smaller 

solution for the application with low percent loss in efficiency. 

 
Figure 6.22. Conversion efficiency comparison between single and dual supplies. 

 

 To account for topologies inaccuracies, the single-supply efficiency measurements 

contains two adjustments. First, because there is an unnecessary series power switch, i.e. 

MOM, in the single-supply topology, its losses were subtracted using the measured output 

current and MOM's resistance. Secondly, because vOI's control is not turned off, its measured 

quiescent current was subtracted from the total losses measured. 

6.6.2 Accuracy 

A dual-output converter must duty cycle outputs to share the inductor irrespective if it has 

buck or boosted outputs. Therefore, the output capacitor CO must provide the load current 

iO when disconnected from LO. Thus, ripple voltage ΔvO climbs as iO(TOT) increases like in 

Figure 6.23. For comparison, Figure 6.23 also include the measured ripple for a similar 

converter delivering same power to a single output. In a single-output buck converter, the 

output capacitor CO receives or provides the difference between iL and load iO. Hence, in 
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CCM the ripple is independent of the load level and the lowest since CO only provides, or 

receives, a fraction less than the load. 

 
Figure 6.23. Ripple comparison between single and dual supplies. 

 

6.6.3 Dynamic Response 

Figure 6.24 shows the response for the dual output, in which it took 10 μs to respond to a 

rising load step of 180 mA split equally among the outputs when both outputs target 1 V. 

This is like the response in Figure 6.6 when outputs vOI and vOM target 1 V and 1.2 V 

respectively. For the falling load dump, Figure 6.25 shows the converter reacting and 

responding within 4 μs like the response in Figure 6.7. Hence, the response of the dual 

supply does not change noticeably when the target of vOM is between 1–1.2 V. For 

comparison with the single-supply converter, the total load change was kept constant so 

that the inductor moves for the same time to the same levels null its effect. 

 When responding to rising load step in the single-supply converter, the control takes 

about 5.6 μs to react and start correcting the output error as in Figure 6.26. Even though 

the total load is the same as in the dual-supply system, it takes almost have the time to 

respond. One reason for this is that the output receives energy continuously, and therefore, 

it does not have to wait for another output to receive energy like in the dual supply. Hence, 



145 

 

sharing the inductor among several outputs adds a delay as each output recovers which 

would tend to increase as more outputs are being regulated from the same inductor.  

 
Figure 6.24. Measured dynamic response for a rising load dump in the dual-supply system. 

 

 
Figure 6.25. Measured dynamic response for a falling load dump in the dual-supply system. 

 

 In the case of a falling load dump of 180 mA in the single-supply system, the 

converter reacts within 3.4 μs as in Figure 6.27. Comparing to the dual-supply system, the 

converter responds only 0.6 μs faster suggesting that even when supplying multiple 

outputs, the hysteretic control reacts fast to start decreasing the inductor current to avoid 

overcharging the outputs. 
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Figure 6.26. Measured dynamic response for a rising load dump in the single-supply system. 

 

 
Figure 6.27. Measured dynamic response for a falling load dump in the single-supply system. 

6.7 Summary 

Hysteretic control for switching converter enjoys fast dynamic performance; however, 

because it senses instantaneous voltages it is sensitive to noise generated at the IC and 

board level. That is why, in the previously proposed fully hysteretic converter, the 

hysteretic comparator that regulates the peak voltage for the independent output requires 

tens of millivolt of hysteretic window. This results in higher minimum ripple at the output 

when the target is to share the energy packets in the inductor every cycle among the outputs. 

 This chapter proposed a balanced tradeoff to keep good dynamic performance but 

increase accuracy. For this the current loop has hysteretic control to achieve the highest 

bandwidth. Also, because the independent output does not reside within the master loop, it 

can have a high bandwidth PWM loop to maintain high speed but decrease noise sensitivity 
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and therefore output ripple. Although the approach to analyze the stability does not change, 

this implementation gives more control as the stability is dependent on the amplifier, 

modulation gain, and the output capacitor. 

 In addition, this chapter proposed mixing output error in the current loop by 

summing all frequency components except the low-frequency component of the 

independent output. This helps to reduce cross regulation to the master loop as the 

summation would otherwise transfer any error on the independent output as an offset. 

Simulations and measurements showed that with increasing independent output load, 

master loop seldom droops if its load is fixed. Also, this summation scheme does not 

interfere with stability, as the summing starts more than a decade before any other cross-

over frequency among the loops. 

 The implementation on a 0.18 μm CMOS process was also discussed including all 

components of the PWM loop and current loop. In addition, a new logic control showed 

that it can be scaled to any number of outputs. Unlike combinational logic which requires 

anticipating cases, the new sequential logic try to engage all output in a sequence after each 

one has received enough energy. If an output must be skipped, a reset-dominant latch does 

not engage but allows the next output to do after its allowed time to engaged has passed. 

Also, the current sensing was modified to accommodate a lower inductance. In this case, 

an amplifier with small gain was included to allow the use of a higher time-constant RC 

filter. This helped reduced error from the exponential response of the filter due to long 

response times during transients. 
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 Finally, this chapter also compared the single- and dual-supply systems under the 

same control and operation conditions. The additional switches at the outputs and their 

respective drivers increase losses by approximately 5% in the dual-supply converter 

compared to the single supply counterpart. Also, the response time of the converter 

increased substantially from the single supply to the dual for a rising load dump. This is 

because in the dual-supply system, master output must wait for independent output to 

recover, adding a delay in the total response time even though the total load change in both 

converters. However, for the falling load dump, the converter reacts in a similar amount of 

time. This is because the hysteretic control in the current loop reacts faster and decreases 

the inductor current quickly to stop the outputs to keep overcharging. 
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CHAPTER 7  

CONCLUSIONS 

7.1 Applications 

Portable electronics and microsystems, such as wireless micro sensors, adds intelligence to 

larger systems leading to energy savings, best use of resources and even saving lives. For 

this, microsystems incorporate diverse on-board functions such as sensing, data processing 

and transmission powered by a tiny battery. To optimize energy consumption and battery 

size, each function has unique voltage requirements while simultaneously adjusting its 

power consumption proportionally to the workload by means of block-duty cycle and/or 

voltage scaling. This imposes stricter requirements on supply regulators fur such systems 

since it must react quickly to load dumps as blocks turn on (or off) while maintaining a 

high efficiency and compactness.  

Also, as battery discharges, it is necessary for the power converter to boost a voltage 

or voltages such as when transmitting information through power amplifiers. Although 

inductors are difficult to integrate, switched-inductor converters enjoy a high efficiency 

across wide operating conditions. Therefore, limiting the converter to a single inductor and 

generating multiple outputs (i.e. supplies) balances the requirements of high efficiency and 

compactness for the power-supply system for microsystems and, more generally, portable 

electronics with several functionalities. 
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7.2 Single-Inductor Multiple-Output Converters (SIMO) 

A single-inductor multiple-output converter shares the inductor among the outputs by 

partitioning the switching cycle and delivering energy to an output at a time. As an 

example, a dual-output converter shown in Figure 7.1 stores energy in the inductor LO 

while simultaneously delivering energy to output vO1. When inductor has enough stored 

energy to supply all outputs, the converter begins de-energizing the inductor. Also, when 

vO1 receives sufficient energy, the other output vO2 receives energy for the remaining of the 

cycle. The time allocation for each output during the switching period is proportionally 

dependent on each output's load level relative to the other. In other words, the heavier the 

load is the longer the fraction of time connected to the inductor. 

 
Figure 7.1. (a) A dual-output converter and (b) its operating waveform when sharing the energy 

packet. 

 

Literature presents full current-mode PWM control as the most common method to 

regulates a SIMO converter. It consists of a current-mode PWM to regulate energy stored 

in the inductor as shown in Figure 7.2 (a)-(b) and a PWM loop, as in Figure 7.2 (c), for 

each independently-controlled output (all outputs except the output that receives energy 

last). This control approach is easy to implement and well understood since it has been 

vastly used for single-output converters. Unfortunately, PWM has an inherent delay when 

responding to sudden load dumps as it goes through multiple cycles to start responding to 
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load dumps and correcting the outputs. In addition, because the current loop is an inside 

loop, limiting its bandwidth also limit the bandwidth of other loops that relay on it. 

 
Figure 7.2. (a) Current-mode PWM control to regulate energy in inductor and (b) its operation 

waveform; and (c) PWM control to regulate voltage on the independent loops. 

 

As detailed in Chapter 2, an alternative method of delivering energy to the outputs is 

trough dedicating a full energizing/de-energizing cycle for each output. It provides 

immunity among the outputs but refreshes them less frequently and hence is less accurate. 

Also, equally important, it cannot efficiently generate buck and boost outputs because a 

full buck-boost power stage would be required when outputs are a mix of buck and boosted 

voltages. Using the shared-energy packet operation (as in Figure 7.1), with minimum or no 

alteration to the operation, a SIMO can generate both buck and boosted voltages. However, 

for large discrepancies between the delivered buck power and boost power the inductor can 

be over-energized (or under-energized) each cycle resulting in an unstable operation. 

Careful consideration and management of these load conditions can reduce unnecessary 

losses and maintain a high efficiency across load combinations. 
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7.3 Research Objective 

The objective of this research is to explore, develop, analyze, prototype, test, and evaluate 

how one switched inductor can derive power from a small battery to supply, regulate, and 

respond to several independent buck and boost outputs reliably and accurately. One 

fundamental challenge with this work is integration, because miniaturized dc-dc converters 

cannot afford to accommodate more than one off-chip power inductor. Managing and 

stabilizing the feedback loops that supply several outputs at different voltages under 

diverse and dynamic loading conditions with one CMOS chip and one inductor is also 

challenging. Plus, since a single inductor cannot supply all outputs at once, steady-state 

ripples and load steps produce cross-regulation effects that are difficult to manage and 

suppress. Small batteries exacerbate these issues because, with limited energy, the power-

supply system cannot consume much power. So with several microwatt to milliwatt loads 

to manage and supply, the state of the art in this area trades accuracy and response time for 

footprint and power consumption to such an extent that using one inductor to supply several 

outputs is often impractical. The underlying aim of this research is this, to diminish these 

tradeoffs to practical levels. 

7.4 Research Contributions 

The main contributions of this research are a fully hysteretic control for SIMO converters 

and its analysis, and an efficiency generation of buck and boost voltages. The stability 

analysis covers hysteretic control for single-output converter and then expand it to SIMO 

converters. Then it uses this in the design and evaluation of a fully-hysteretic control and 

in the generation of boost outputs from a buck power stage. This research also proposes a 
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balanced PWM−hysteretic control approach that address the limitations of a fully 

hysteretic approach. In addition, the research also contributes in specifics of the design 

during the development process. 

7.4.1 Hysteretic Current-Mode Analysis 

The hysteretic control achieves fast response against load dumps because when error 

surpasses hysteretic window, the natural oscillation at steady-state stops and the inductor 

current slews to a new current as in Figure 7.3. This is unlike PWM control that engages 

in a new cycle during the response interrupting it and therefore delaying the response. 

Forcing the inductor current to slew and maintain that state until it provides the new 

appropriate amount of current, is the fastest the current loop can respond and the highest 

achievable bandwidth. This in turn, allows for the other loops in the system to have a higher 

bandwidth while conserving stability and hence faster response. 

 
Figure 7.3. Slew response of inductor current with hysteretic control. 

 

 Since bandwidth relates to delay, the delay it takes for the current to slew to the 

new target sets the bandwidth of the current loop. This means that bandwidth has a non-

linear dependence to the amount the inductor current must travel between the old and new 

target. Finding the equivalent RC time constant that gives a similar delay approximates the 

bandwidth of the hysteretic current loop. 
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Resulting publications: 

 C. J. Solis, and G. A. Rincón-Mora, “Stability Analysis & Design of Hysteretic 

Current-Mode Switched-Inductor Buck DC-DC Converters,” International 

Conference on Electronics, Circuits, and Systems, pp. 811–814, Dec. 2013. 

 C. J. Solis, and G. A. Rincon-Mora, “Stability and Design Limits of Hysteretic 

Current-Mode Switched-Inductor Converters,” IEEJ Transactions on Electrical, 

and Electronic Engineering, [Submitted for Review: January 2018]. 

7.4.2 Analysis and Design of Hysteretic Current-Mode Buck SIMOs 

One of the research main contribution is a novel fully-hysteretic control that achieves a 

high bandwidth with a compact implementation for a SIMO. The simplicity of the control 

reduces silicon area per output which allows to reduce cost by higher throughput in 

manufacturing or the possibility of using a low-cost technology. The control, shown in 

Figure 7.4, is realized by a hysteretic current-loop and an additional hysteretic control 

across only one of the outputs, hence the independent output.  

 
Figure 7.4. Simplified proposed current-mode fully hysteretic SIMO converter. 
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The current-mode hysteretic control regulates the inductor current ripple as its self 

oscillates as in a relaxation oscillator. This current loop converts inductor LO into a current 

source up to the regulation bandwidth. The hysteretic loop for the independently-controlled 

outputs vO1 equivalently regulate its peak voltage, and due to its highest priority, it will 

receive energy first until it reaches such target. After vO1 receives enough energy, vO2 

receives energy for the remaining of the period and if vO2 does not reaches its target, 

hysteretic current loop will readjust the current in the inductor proportionally to the 

summation of error voltages. 

The hysteretic control stability analysis was extended to SIMO converter by 

modeling the additional loop around independently controlled output and how to 

incorporate them in the total loop. Since the independently-controlled output, e.g. vO1 in 

Figure 7.4,  has its own local loop, the inductor and its hysteretic current loop does not 

influence the independent output loop, unless independent output's error is mixed in the 

current loop. This would create a small gain feedforward path through the summation at 

hysteretic comparator CPOSC. Similarly, independently-controlled outputs do not influence 

the master output stability, e.g. vO2 in Figure 7.4, if their bandwidth is lower than the one 

of the master loop. As a result, master loop is only influenced by the hysteretic current loop 

even though it is a multiple-output converter. This simplifies the analysis and design of the 

control scheme for SIMO converters. 

The hysteretic response across the independent output naturally skips the outputs if 

it is disparately lower than the others. This simplifies the skipping capabilities necessary 

to avoid overcharging outputs during such load differences among outputs load levels. As 
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a benefit, unnecessary losses are avoided and the converter can dedicate more time 

regulating the heavily loaded outputs. Also, because the hysteretic current loop naturally 

oscillates, the switching frequency lowers proportionally with total load current during 

discontinuous conduction mode which maintains a higher efficiency across a wider range 

of load levels and combinations. This converter achieved an efficiency of up to 88% while 

being able to respond within 3.8 μs and regulating the outputs within 7%.  

Resulting publications: 

 C. J. Solis, and G. A. Rincón-Mora, “Nested hysteretic current-mode single-

inductor multiple-output (SIMO) boosting buck converter,” IEEE International 

New Circuits and Systems, pp. 1–4, Jun. 2013. 

 C. J. Solis, and G. A. Rincon-Mora, “0.6-μm CMOS-Switched-Inductor Dual-

Supply Hysteretic Current-Mode Buck Converter,” IEEE Transactions on Power 

Electronics, vol. 32, no. 3, pp. 2387–2394, Mar. 2017. 

 C. J. Solis, and G. A. Rincón-Mora, “Stability and Design of Hysteretic Current-

Mode Single-Inductor Multiple-Output Power Supplies,” IEEE International 

Midwest Symposium on Circuits and Systems, pp. 1368–1371, Aug. 2017. 

7.4.3 Analysis and Design of Buck-Boost SIMOs 

An energized inductor in a buck power stage can be de-energized by any voltage as long it 

reverses the its voltage polarity. Hence, a boosted output might de-energized the inductor 

after being energized through the buck outputs. Ordering the outputs such that the boosted 

one receives energy last, allow to keep a high efficiency as long the boosted output only 

de-energizes the inductor since the inductor energizes the most through buck outputs. In 
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the case the inductor does not sufficiently energizes through the buck outputs, an additional 

power switch, MA in Figure 7.5, assist the energizing process of the inductor only for the 

extra energizing time required. This ultimately avoid increasing silicon real estate for the 

extra switch (as current through it is a fraction of the total inductor current compared to an 

equivalent buck-boost power stage) and minimize losses by simultaneously delivering 

energy as inductor energizes as much as possible. 

 
Figure 7.5. Proposed current-mode fully hysteretic buck-boost SIMO converter. 

 

Resulting publications: 

 C. J. Solis, and G. A. Rincon-Mora, “87%-Efficient 330-mW 0.6-μm Single-

Inductor Triple-Output Buck-Boost Power Supply,” IEEE Transactions on Power 

Electronics, [Accepted: September 2017]. 

7.4.4 Hysteretic Current-Mode SIMO with Independent PWM Loops 

Albeit its fast response and dynamic accuracy, hysteretic control is noise sensitive and as 

a result, has a large voltage ripple to avoid false tripping in the comparators. To alleviate 

this output ripple in applications sensitive to it, this research proposed a hybrid between 
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hysteretic and PWM loops that balances dynamic and steady-state performance for the next 

generation SIMO. As Figure 7.6 shows, a hysteretic current-loop regulates the current in 

the inductor allowing it to have the highest bandwidth possible. Instead of a hysteretic 

comparator, a high-bandwidth PWM loop regulates the voltage on the independent loops. 

With this hybrid, the control can respond quickly to load dumps thanks to the hysteretic 

current loop and have less steady-state ripple since PWM loops are less noise sensitive. 

However, future research should investigate the further features and shortcomings. 

 
Figure 7.6. Hysteretic current-mode SIMO with independent PWM loops. 

7.4.5 Other Contributions 

In addition to the main contributions already discussed above, the research had other 

contributions related to the development and design of the prototypes. A scalable logic was 

developed to ease the design process for applications which requires a SIMO with a larger 

number of outputs. A dead-time logic was designed to protect all outputs by preventing 

any two outputs to simultaneously engaged even if the converter had a bug and tried to 

engage more than one output at a time. Blocks for all prototypes had a common trade-off 

between power consumption and bandwidth which required consideration. Comparators 
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and amplifiers were design to have just enough low delay to become negligible to minimize 

power dissipation which becomes important at light-load conditions. Also, power switches 

selection was a challenge when outputs were mid-levels compared to input supply or high 

output voltages, the design had to be adapted to the best option given by the technology 

either by levering a boosted output already present or by optimizing the bias point of the 

bulk terminal for PMOS switches. 

7.5 Design Considerations 

7.5.1 Process Technology 

The process technology used in the design of the SIMO converter has several effects on 

the performance for the proposed work and in general. For instance, technology with 

smaller dimensions has faster speed and can therefore achieve lower delays with a smaller 

power budget [115]. Hence quiescent losses can be lower which results in higher efficiency 

primordially at light-load conditions. Another example where finer technologies can excel 

is in applications that requires higher switching frequencies in the power supply system.  

 In the other hand, finer technologies have a higher manufacturing cost and lower 

breakdown voltages. In such cases, as when regulating energy from a lithium-ion battery, 

larger technologies nodes are more appropriate. So the technology choice is driven by the 

best available and affordable technology capable to sustain the required voltages from the 

application. Other factors that can influence technology choice such as if integration in the 

same die of the entire system is required for a compacter solution. 

7.5.2 Accuracy versus Power 
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Component, such as inductor and capacitors, values have an impact across several 

performance metrics of a SIMO converter. A high inductance value reduces current ripple 

which helps to increase accuracy and lower conduction losses (through lower rms current). 

However, as shown in the proposed converters, a higher inductance also reduces the 

bandwidth of the hysteretic control which results in longer response time and more 

susceptible to instability.  

 Similarly, higher capacitance values increase accuracy by decreasing ripple, or, if 

accuracy is fixed, allows to deliver higher current levels. But also, a higher capacitance 

limits the bandwidth of the system and hence increases response time. During the design 

process, the inductance and capacitance should be chosen to meet the more stringent 

requirement and interactively find the values to meet all specifications while balancing the 

inherent tradeoffs. 

7.5.3 Startup 

A controlled startup sequence avoids high inrush current as the initial output voltage errors 

are large. Forcing all references to zero at startup, the same voltage at the outputs for a 

discharged power converter, avoids the converter to engage aggressively. Then, the 

references voltages can rise slowly and then settle to their steady-state value. A topological 

possibility is to use a ramp signal at a third input terminal of a PMOS based differential 

amplifier parallel to the reference voltage input PMOS [79]. In addition, to avoid large 

current levels during start-up, each output can be charged individually so that the inductor 

only charges one output capacitor at a time. The sequence then should start by charging the 
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output that freewheels the inductor current and then the other outputs as determined by the 

application. 

 For the proposed buck-boost SIMO converter in Chapter 5, several extra 

considerations for the startup sequence are important. One is that the driver's supply for the 

boosted output PMOS switch must use the regulated boost voltage itself to be able to turn 

fully off. And since a higher supply for one driver already is required, the remaining NMOS 

output switches also use the same boosted supply for their drivers to use less area. When 

the converter is discharged at startup and all output voltages are (or close to) zero, the 

supply for the output drivers is not high enough to reliably engage/disengage the switches. 

Fortunately, because the PMOS switch's body diode is the freewheeling path for the 

inductor current, it allows the boost output to charge during startup. As it charges beyond 

several threshold voltages of the transistors, the supply becomes strong enough to allow 

the drivers to control the gate of the output switches. Therefore, boosted output voltage 

charges first and then each buck output voltage for a controlled startup sequence. 

7.5.4 Boost Ratio 

The boost ratio for a buck-boost SIMO is limited by the breakdown voltage of the 

technology. Even if an external high-voltage diode replaces the switch for the boosted 

output that freewheels the inductor current, the output switching node is shared among 

other outputs and therefore their switches must be able to withstand the highest voltage. As 

a result, the maximum measured boost ratio was 1.67 (from 2.7V to 4.5V) for the proposed 

circuit in Chapter 5. If a higher boost ratio is desired, a high-breakdown technology is 

necessary to sustain such voltages. 
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7.6 Publications 

The current work has resulted in two published journal publications, three conference 

publications and an additional journal paper under consideration. Among the conference 

publications, conference from ICECS presented the new analysis approach for stability in 

hysteretic controllers using simulations across various operating conditions as shown in 

Chapter 3. Also, the paper presented in MWSCAS conference extended the stability 

analysis to SIMO converters also discussed in Chapter 3. Finally, conference from 

NEWCAS presented the fully hysteric control for SIMO detailed in Chapter 4 with 

simulations and a general design approach. 

Both published journals on TPE presents the converter and controller discussed in 

Chapter 4 and 5 with measurement results. Journal paper published on Mar 2017 discusses 

the performance of hysteretic control on SIMO. The TPE journal paper accepted in 

September 2017, measures the performance and limits of the buck-boost capability in a 

triple-output SIMO converter. The third journal publication under review in TEEE journal 

presents measurements on the stability under various conditions as discussed in Chapter 3 

for single-output converters. 

7.6.1 Peer-Reviewed Journals 

 C. J. Solis, and G. A. Rincon-Mora, “0.6-μm CMOS-Switched-Inductor Dual-

Supply Hysteretic Current-Mode Buck Converter,” IEEE Transactions on Power 

Electronics, vol. 32, no. 3, pp. 2387–2394, Mar. 2017. 
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 C. J. Solis, and G. A. Rincon-Mora, “87%-Efficient 330-mW 0.6-μm Single-

Inductor Triple-Output Buck-Boost Power Supply,” IEEE Transactions on Power 

Electronics, [Accepted: September 2017]. 

 C. J. Solis, and G. A. Rincon-Mora, “Stability and Design Limits of Hysteretic 

Current-Mode Switched-Inductor Converters,” IEEJ Transactions on Electrical, 

and Electronic Engineering, [Submitted for Review: January 2018]. 

7.6.2 Peer-Reviewed Conferences 

 C. J. Solis, and G. A. Rincón-Mora, “Nested hysteretic current-mode single-

inductor multiple-output (SIMO) boosting buck converter,” IEEE International 

New Circuits and Systems, pp. 1–4, Jun. 2013. 

 C. J. Solis, and G. A. Rincón-Mora, “Stability Analysis & Design of Hysteretic 

Current-Mode Switched-Inductor Buck DC-DC Converters,” International 

Conference on Electronics, Circuits, and Systems, pp. 811–814, Dec. 2013. 

 C. J. Solis, and G. A. Rincón-Mora, “Stability and Design of Hysteretic Current-

Mode Single-Inductor Multiple-Output Power Supplies,” IEEE International 

Midwest Symposium on Circuits and Systems, pp. 1368–1371, Aug. 2017. 

7.7 Technological Challenges 

Technical limitations with the proposed SIMO converter exists in despite of its benefits 

over the state of the art. A limitation of the proposed SIMO is the lack of integration of 

various energy sources as energy harvesting circuits useful in microsystems application. 

Since replacing batteries in microsystems is costly and cumbersome, energy harvesting is 
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vital to achieve a completely independent microsystem for a longer period. Therefore, the 

power management system should efficiently incorporate other energy sources to supply 

energy to the outputs while storing the excess in the battery.  

The proposed SIMO uses an auxiliary switch only when required to supply enough 

boost power, but the sequence can be further optimized to minimize switching transitions 

and therefore losses. One way is to push the energizing phase as the boosted output receives 

energy. This would increase the deliverable boosted power without affecting operation. In 

addition to this benefit, the output sequence might also be optimized to reduce switching 

losses by using zero-voltage switching in certain applications. 

Finally, hysteretic controller has fast response time as it regulates instantaneous 

signals but, due to the same reason, it will be sensitive to switching noise which results in 

a voltage ripple including a large enough hysteretic window. Mixing PWM and hysteretic 

balances the trade-offs but, unfortunately, slightly increases response time. Being able to 

use a fully hysteretic control while reducing noise sensitivity might improve these 

tradeoffs. These challenges pave the path for future research and improvements for SIMO 

converters in microsystems applications. 

7.8 Future SIMO Research 

7.8.1 Single-Inductor Multiple-Input Multiple-Output Converter 

Since microsystems has a tiny battery, harvesting energy from the environment prolongs 

the time without a costly replacement of the battery [21–22]. To this end, a SIMO converter 

should also incorporate a mix of input sources to achieve a multiple-input multiple-output 
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converter. Figure 7.7 shows the concept of a switched-inductor converter that receives 

energy from two harvesting sources vHR1 and vHR2 to regulate two output voltages vO1 and 

vO2. Also, it includes a battery vBAT which act as a load when harvesting energy is higher 

than the power the load requires and as an energy source when harvested energy is below 

the energy the loads needs.  

 
Figure 7.7. Single-inductor multiple-input multiple-output converter for microsystems applications. 

 

Research for multiple-input multiple-output is at its infancy [74], [110−112]; and 

most approaches aim to prove the concept with discrete implementation. Some works 

already include the functionality of using the battery as an input and an output [22], [113]. 

Albeit efficient, these works can only deliver a few miliwatts to the load. Hence, the 

challenge is to explore an integrated solution that simultaneously maximizes bandwidth, 

deliverable power, and efficiency. 

7.8.2 Switch Sequence Optimization 

Wireless microsystems duty-cycle blocks when not needed; so, when transmitting data, 

sensing and data processing functions might be idling or less frequent. Because the supply 

for the power amplifier might need boosting, generating an efficient boost is important. 

The proposed operation in Chapter 5 allowed to generate an efficient boost output without 
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adding additional switches. However, the deliverable power at the boundary is limited and 

proportional to the buck power delivered. Figure 7.8 shows a possible scheme that extend 

energizing time tE even as the boosted output receives energy. Technically, the inductor is 

not energizing, but the benefit is that the input supply and the inductor simultaneously 

deliver energy to boosted output instead of just the inductor as in Chapter 5. 

 
Figure 7.8. Converter operation by extending energizing time to boosted output. 

 

 The maximum power deliverable to boosted output power PO3 without changing 

operation occurs when energizing time extends for the whole switching cycle or tE equals 

tO1 + tO2 + tO3. During this time, although the inductor is truly de-energizing, input supply 

vIN is providing more power as it sees the inductor current iL (or iO1 + iO2 + iO3) all the time 

instead of the buck loads (outputs vO1 and vO2) as equation (5.9): 

    O3 IN O1 O2 O3 O1 O2P ' v i i i P P     . (7.1) 

Substitution of iO3 as PO3/vO3 and grouping of terms gives the maximum deliverable boost 

power: 
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Compared to equation (5.9) the boost power limit is increased by the fraction vO3/(vO3 – 

vIN). When supply is 2.7 V for the proposed buck-boost converter it can deliver three times 

more boosted power as Figure 7.9 shows, and up to ten times when supply is 3.6 V. 

 
Figure 7.9. Maximum deliverable boosted power when energizing only through buck outputs and 

extended comparison. 

 

 Unfortunately, the challenge is implementing this technique with hysteretic control 

since, during the energizing period tE, the controller is expecting the inductor current to hit 

the upper limit of a hysteretic window. This happens because the hysteretic control 

regulates the instantaneous value of the inductor current and not reaching the upper 

hysteretic limit would stall the converter in an indefinite energizing state. A controlled 

timer or a hybrid control with some fixed period can prevent the converter to get stuck and 

would increase deliverable boosted power without assistance of an additional power switch 

for a wider set of operating conditions. 

7.8.3 Output Switches Zero Volt Switching 

Another opportunity to increase efficiency is trying to implement zero-voltage switching 

(ZVS) across the output switches. This is relevant as the number of outputs increase since 

more switching transitions occurs among output switches. Figure 7.10 shows a power stage 

suitable for zero volt switching on the outputs switches which are PMOS transistors and 

outputs receives energy starting from the lowest voltage to the highest. The goal is to avoid 
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each output discharge the switching node vSW.O from a high voltage. This work best when 

outputs receives energy in an ascending order with respect to their voltage levels, so than 

when a lower voltage is disconnected, the next one is ready to clamp the switching node 

voltage to its output level. 

 
Figure 7.10. Power stage for output switches zero-voltage switching technique. 

 

 After output vO1 receives energy, switch MO2's driver can set its gate vG2 to vO2 

before control turns-off switch MO1. As inductor current freewheels and charges switching 

node vSW.O, MO2 will clamp vSW.O a source-gate voltage above vO2 as in Figure 7.11. In 

other words, forcing vG2 to vO2 will make vO2 the free-wheeling path for the inductor current 

instead of the highest voltage (vO3 in this example) as previously proposed. After some 

dead-time tDT, MO2 fully engages as vG2 is driven to ground. Similarly, because vO3 is the 

supply of the drivers, turning off MO2 makes MO3 naturally clamp vSW.O a vSG or diode 

voltage vDIO above vO3, whichever is lower. When vO1 turns on for the next cycle, it does 

without zero volts across the switch because it must discharge vSW.O from the highest 

potential. 
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Figure 7.11. Operating waveform for output switches with zero-volt switching. 

 

 In summary, this ZVS technique can reduce switching losses for all switches except 

one. It also reduces switching noise, as switches with ZVS does not have to discharge vSWO 

as much and therefore reducing current spikes at the transition from one output to another. 

The challenges for this technique, however, is when the application does not allow the 

output sequence to be with ascending output voltage. Also, the potential for loss reduction 

depends on the spread of the output voltages where benefits increases proportional to the 

voltage spread. Hence, the added complexity might be justified for microsystems with a 

load that requires a relatively high voltage supply such as a power amplifier and other load 

requires a much lower supply. 

7.8.4 Noise Sensitivity 

As previously mentioned, the hysteretic control is sensitive to noise as it regulates 

instantaneous values, especially for the independent loops where noisy voltages are 



170 

 

regulated. To prevent false triggering or noisy switching, the hysteretic windows include a 

large enough hysteresis that unfortunately set a minimum output voltage ripple. Even 

though filtering might help the noise at the input of comparators [114], they slow the 

response and complicates loop compensation, and in some cases, requires knowledge of 

the filtered frequencies. Using the fact that the logic control in the proposed SIMOs has an 

all-or-nothing control in a cycle (no output is re-engaged in the same cycle), increasing the 

hysteresis only at the transitions might reduce noise sensitivity while imposing a lower 

steady-state minimum ripple at the outputs. 

 Figure 7.12 (a) shows a possible comparator implementation and its operating 

waveform (b). When the signal being regulated, i.e. feedback voltage vFB, crosses the 

reference vR comparator trips and the comparator's output vO is ac coupled to vFB though 

capacitor CHYS. During the transition, this effectively creates a hysteretic windows ΔvH(AC) 

depending on the voltage divider from the sypply by capacitors CHYS and equivalent CFB 

at vFB: 

 
HYS

H(AC) DD
FB HYS

C
v V

C C

     
. (7.3) 

After the comparator trips the hysteretic window ΔvH(AC) will relax to the inherent 

hysteresis in the comparator as total capacitance at vFB discharges through equivalent 

resistance RFB. Hence, ΔvH(AC) will last for approximately five time-constants from node 

vFB: 

  H(AC) FB FB HYSt 5R C C  . (7.4) 
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This relaxation time tH(AC) can be set-up high enough until the point that does not affects 

the operation of the converter. 

 
Figure 7.12. AC hysteresis (a) schematic and (b) operating waveforms for hysteretic control on 

independent outputs. 

 

7.9 Conclusions 

The contributions presented here allows SIMO to advance and reduce trade-offs to 

practical levels and circumvent previous challenges such as response time, size and cost. 

Such advances help to expand the application space and ease the design of SIMO 

converters. However, limitations still exist in despite of the contributions presented here. 

Tackling these limitations will accelerate the use and availability of SIMO converters.  

7.9.1 Advances 

Contributions presented here decrease response time without increasing silicon real-estate 

or decreasing efficiency, and regulate supplies suitable for applications with a wide range 

of output and input voltages. This means that components such as output capacitors can be 

smaller because the converter reacts faster, and that supplies has improved accuracy during 

load dumps. Also, a system is not limited to only step down or step up the battery voltage 

to power its circuits. Without increasing board component count, the proposed converter 
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can operate to regulate mix of buck and boost voltages from the same energy source. This 

means that as the energy source depletes, or if higher voltage technology is preferred for 

certain functions, the power management system can handle a wider combination of 

conditions. 

7.9.2 Limitations 

The main limitation that impedes SIMOs to proliferate its presence in multi-functional 

systems is the cross-regulation among the outputs. Although a SIMO can have minimal 

cross-regulation under certain operation schemes such as dedicating a full energizing/de-

energizing cycle to each output, it comes at the expense of efficiency and limited power 

delivery. For high efficiency and output power requirements sharing inductor current 

within the same cycle is appropriate. However, cross-regulation will be present but can be 

equally balanced or weighted according to the sensitivity of each load. Unfortunately, this 

limitation is addressed specifically to an application by weighting priority and sensitivity 

to cross regulation. 

 Another limitation that should be address is the mixing of more energy sources. 

This enables a complete solution for portable electronics or wireless microsystems with 

energy harvesting for portable electronics. It allows to harvest energy while using a storage 

element such as a battery or capacitor to assist power delivery at peak load and save when 

in low power state. Power management systems for these applications are proven but with 

limited deliverable power or a single regulated supply. Increasing the capacity of power 

delivery, and the number of regulated supplies for these application makes SIMO 
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converters not only advance in the portable electronics space, but also in bigger power 

systems such as hybrid vehicles, photovoltaic systems, and lighting. 

7.10 SIMOs in the Future 

SIMOs offer a compact and low-cost solution by means of using less board components 

while conserving the benefits of high efficiency of a switching converter. This means that 

wireless microsystems can be light in weight, compact and cheaper which can improve 

products in markets such as medical devices, power utilities, surveillance and military to 

name a few. Specifically, the low-cost advantage can propel a large deployment of 

microsystems to add intelligence to large systems and/or objects. For instance, homes and 

buildings can add temperature sensors in all rooms or as a grid to better gauge insulation 

and precise control of air conditioning. Another example is to add sensor that detect tilt or 

movement in walls and floors to monitor their integrity to remedy them before an accident 

or repair cost raises. Also, markets such as consumer electronics, such as phones, can cost 

less and reduce time to market due to the lower component count in the design and 

manufacturing process.  

For a successful adoption of the SIMO converters, its limitations, such as cross-

regulation, must be considered and their impact considered to maintain the same or 

improved performance in the current products. This is critical in application such as in 

communication which can result in unwanted crosstalk or interference. As technologies 

advances and becomes faster, cheaper, and smaller; SIMOs can improve such that its 

limitations would become negligible or minimized. This will allow market penetration and 
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adoption starting a new generation of compact and cheaper power management systems in 

an increasingly complex and function-heavy application space. 

7.11 Summary 

A microsystem includes several functions with their unique supply voltage level and power 

profiles. A single-inductor multiple-output (SIMO) converter can compactly and 

efficiently generate multiple supplies that these functions require. Doing so balances size 

and efficiency trade-offs as inductors are bulk and difficult to integrate. Literature provides 

several control schemes but most rely on some variation of PWM. Although accurate, they 

require multiple cycle before responding to load dump. Since microsystem duty-cycle 

functions to save energy, a quick responding control improves accuracy for frequent load 

dumps. Luckily, hysteretic control has a fast-dynamic response but its stability is seldom 

insightful and has not been analyzed and implemented for SIMO controllers.  

The objective of this research is to explore, develop, analyze, prototype, test, and 

evaluate a SIMO with hysteretic control at the core capable of regulating a mix of buck 

and boost supplies. The research has produced analysis for a stable design of hysteretic 

single-output converters and for SIMO converters. Also, it provided with measurements 

and assessment of SIMO converters that can efficiently generate buck and boost outputs 

simultaneously. The research resulted in a control with fast response, a compact solution, 

and an efficient converter compared to the literature. Albeit its benefits, there is still 

limitations and potential future research such as including additional input supplies from 

energy-harvesting sources and further optimizing the energy delivery sequence to further 

reduces losses and increase output power. This will allow SIMO converter to become the 
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default power management system in portable electronics with a continuous grow of 

capabilities and features. 

  



176 

 

REFERENCES 

[1] D. Puccinelli, and M. Haenggi, “Wireless Sensor Networks Applications and 

Challenges of Ubiquitous Sensing,” IEEE Circuits and Systems Magazine, vol. 5, 

no. 3, pp. 19–31,  2005. 

[2] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P. Chandrakasan, 

“A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction 

Processor for a Chronic Seizure Detection System,” IEEE Journal of Solid-State 

Circuits, vol. 45, no. 4, pp. 804–816, Apr. 2010. 

[3] E. Sardini, and M. Serpelloni, “Self-Powered Wireless Sensor for Air Temperature 

and Velocity Measurements With Energy Harvesting Capability,” IEEE 

Transactions on Instrumentation and Measurement, vol. 60, no. 5, pp. 1838–1844, 

May 2011. 

[4] R. R. Harrison, R. J. Kier, C. A. Chestek, V. Gilja, P. Nuyujukian, S. Ryu, B. 

Greger, F. Solzbacher, and K. V. Shenoy, “Wireless Neural Recording with Single 

Low-Power Integrated Circuit,” IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 17, no. 4, pp. 322–329, Aug. 2009. 

[5] Z. Cao, R. Zhu, and R. Y. Que, “A Wireless Portable System with Microsensors 

for Monitoring Respiratory Diseases,” IEEE Transactions on Biomedical 

Engineering, vol. 59, no. 11, pp. 3110–3116, Nov. 2012. 

[6] K. Nishihara, W. Iwasaki, M. Nakamura, E. Higurashi, T. Soh, T. Itoh, H. Okada, 

R. Maeda, and R. Sawada, “Development of a Wireless Sensor for the 

Measurement of Chicken Blood Flow Using the Laser Doppler Blood Flow Meter 

Technique,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 6, pp. 

1645–1653, Jun. 2013. 

[7] E. G. Kilinc, G. Conus, C. Weber, B. Kawkabani, F. Maloberti, and C. Dehollain, 

“A System for Wireless Power Transfer of Micro-Systems In-Vivo Implantable in 

Freely Moving Animals,” IEEE Sensors Journal, vol. 14, no. 2, pp. 522–531, Feb. 

2014. 

[8] H. Hafezi, T. L. Robertson, G. D. Moon, K. Y. Au-Yeung, M. J. Zdeblick, and G. 

M. Savage, “An Ingestible Sensor for Measuring Medication Adherence,” IEEE 

Transactions on Biomedical Engineering, vol. 62, no. 1, pp. 99–109, Jan. 2015. 



177 

 

[9] A. Somov, E. F. Karpov, E. Karpova, A. Suchkov, S. Mironov, A. Karelin, A. 

Baranov, and D. Spirjakin, “Compact Low Power Wireless Gas Sensor Node With 

Thermo Compensation for Ubiquitous Deployment,” IEEE Transactions on 

Industrial Informatics, vol. 11, no. 6, pp. 1660–1670,  2015. 

[10] C. Nguyen, and M. Micovic, “The State-of-the-Art of GaAs and InP Power Devices 

and Amplifiers,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 

472−478, Mar. 2001. 

[11] Y. Li, J. Lopez, P.-H. Wu, W. Hu, R. Wu, and D. Y. C. Lie, “A SiGe Envelope-

Tracking Power Amplifier With an Integrated CMOS Envelope Modulator for 

Mobile WiMAX/3GPP LTE Transmitters,” IEEE Transactions on Microwave 

Theory and Techniques, vol. 59, no. 10, pp. 2525–2536, Oct. 2011. 

[12] B. Razavi, RF Microelectronics - Second Edition, Pearson Education, New Jersey, 

2012. 

[13] T. Niiyama, P. Zhe, K. Ishida, M. Murakata, M. Takamiya, and T. Sakurai, 

“Dependence of Minimum Operating Voltage on Block Size of 90-nm CMOS Ring 

Oscillators and Its Implications in Low Power DFM,” International Symposium on 

Quality Electronic Design, pp. 133–136, Mar. 2008. 

[14] S. Dighe, S. R. Vangal, P. Aseron, S. Kumar, T. Jacob, K. A. Bowman, J. Howard, 

J. Tschanz, V. Erraguntla, N. Borkar, V. K. De, and S. Borkar, “Within-Die 

Variation-Aware Dynamic-Voltage-Frequency-Scaling With Optimal Core 

Allocation and Thread Hopping for the 80-Core TeraFLOPS Processor,” IEEE 

Journal of Solid-State Circuits, vol. 46, no. 1, pp. 184–193, Jan. 2011. 

[15] B. Bae, Y. Shim, K. Koo, J. Cho, J. S. Pak, and J. Kim, “Modeling and 

Measurement of Power Supply Noise Effects on an Analog-to-Digital Converter 

Based on a Chip-PCB Hierarchical Power Distribution Network Analysis,” IEEE 

Transactions on Electromagnetic Compatibility, vol. 55, no. 6, pp. 1260–1270,  

2013. 

[16] M. K. Stojčev, M. R. Kosanović, and L. R. Golubović, “Power Management and 

Energy Harvesting Techniques for Wireless Sensor Nodes,” International 

Conference on Telecommunication in Modern Satellite, Cable, and Broadcasting 

Services, pp. 65–72, Oct. 2009. 



178 

 

[17] H. Shaoxiong, and Q. Gang, “Voltage Setup Problem for Embedded Systems With 

Multiple Voltages,” IEEE Transactions on Very Large Scale Integration Systems, 

vol. 13, no. 7, pp. 869–872, Jul. 2005. 

[18] T. B. Reddy, Linden's Handbook of Batteries - Fourth Edition, McGraw-Hill, 2011. 

[19] S. Sudevalayam, and P. Kulkarni, “Energy Harvesting Sensor Nodes: Survey and 

Implications,” IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 443–

461,  2011. 

[20] R. J. M. Vullers, R. v. Schaijk, H. J. Visser, J. Penders, and C. V. Hoof, “Energy 

Harvesting for Autonomus Wireless Sensor Networks,” IEEE Solid-State Circuits 

Magazine, vol. 2, no. 2, pp. 29–38, Spring 2010. 

[21] D. Kwon, and G. A. Rincon-Mora, “A single-inductor 0.35µm CMOS energy-

investing piezoelectric harvester,” IEEE Journal of Solid-State Circuits, vol. 49, 

no. 10, pp. 2277–2291, Oct. 2014. 

[22] R. D. Prabha, and G. A. Rincon-Mora, “0.18-μm Light-Harvesting Battery-

Assisted Charger–Supply CMOS System,” IEEE Transactions on Power 

Electronics, vol. 31, no. 4, pp. 2950–2958, Apr 2016. 

[23] E. Sanchez-Sinencio, and A. G. Andreou, Low-Voltage/Low-power Integrated 

Circuits and Systems, IEEE Press, New York, 1998. 

[24] Y. H. Lu, and G. D. Micheli, “Comparing System Level Power Management 

Policies,” IEEE Design & Test of Computers, vol. 18, no. 2, pp. 10–19,  2001. 

[25] C. Alippi, G. Anastasi, M. D. Francesco, and M. Roveri, “Energy Management in 

Wireless Sensor Networks with Energy-Hungry Sensors,” IEEE Instrumentation & 

Measurement Magazine, vol. 12, no. 2, pp. 16–23, Apr. 2009. 

[26] A. Sinha, and A. Chandrakasan, “Dynamic Power Management in Wirelesss Sensor 

Networks,” IEEE Design & Test of Computers, vol. 18, no. 2, pp. 62−74, Mar./Apr. 

2001. 

[27] E. Beigne, F. Clermidy, H. Lhermet, S. Miermont, Y. Thonnart, X.-T. Tran, A. 

Valentian, D. Varreau, P. Vivet, X. Popon, and H. Lebreton, “An Asynchronous 



179 

 

Power Aware and Adaptive NoC Based Circuit,” IEEE Journal of Solid-State 

Circuits, vol. 44, no. 4, pp. 1167−1177, Apr. 2009. 

[28] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A Dynamic 

Voltage Scaled Microprocessor System,” IEEE Journal of Solid-State Circuits, vol. 

35, no. 11, pp. 1571−1580, Nov. 2000. 

[29] K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C. Brock, K. I. 

Ishii, T. Y. Nguyen, and J. L. Burns, “A 32-bit PowerPC System-on-a-Chip With 

Support for Dynamic Voltage Scaling and Dynamic Frequency Scaling,” IEEE 

Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1441–1447, Nov. 2002. 

[30] N. Drego, A. Chandrakasan, D. Boning, and D. Shah, “Reduction of Variation-

Induced Energy Overhead in Multi-Core Processors,” IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 6, pp. 

891−904,  2011. 

[31] I. Vaisband, and E. G. Friedman, “Heterogeneous Methodology for Energy 

Efficient Distribution of On-Chip Power Supplies,” IEEE Transactions on Power 

Electronics, vol. 28, no. 9, pp. 4267–4280, Sep. 2013. 

[32] J. Park, D. Shin, N. Chang, and M. Pedram, “Accurate Modeling and Calculation 

of Delay and Energy Overheads of Dynamic Voltage Scaling in Modern High-

Performance Microprocessors,” ACM/IEEE International Symposium on Low-

Power Electronics and Design, pp. 419–424, Aug. 2010. 

[33] P. Sangyoung, P. Jaehyun, S. Donghwa, W. Yanzhi, X. Qing, M. Pedram, and C. 

Naehyuck, “Accurate Modeling of the Delay and Energy Overhead of Dynamic 

Voltage and Frequency Scaling in Modern Microprocessors,” IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 5, pp. 

695–708, May 2013. 

[34] G. A. Rincon-Mora, Analog IC Design with Low-Dropout Regulators - Second 

Edition, McGraw-Hill, New York, 2014. 

[35] R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, “Full On-Chip CMOS 

Low-Dropout Voltage Regulator,” IEEE Transactions on Circuits and Systems I: 

Regular Papers, vol. 54, no. 9, pp. 1879–1890, Sep. 2007. 



180 

 

[36] Y. Lu, J. Jiang, W.-H. Ki, C. P. Yue, S.-W. Sin, S.-P. U, and R. P. Martins, “A 123-

Phase DC-DC Converter-Ring with Fast-DVS for Microprocessors,” IEEE 

International Solid-State Circuit Conference, pp., Feb. 2015. 

[37] B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtić, B. Keller, S. Bailey, M. 

Blagojević, P.-F. Chiu, H.-P. Le, P.-H. Chen, N. Sutardja, R. Avizienis, A. 

Waterman, B. Richards, P. Flatresse, E. Alon, K. Asanović, and B. Nikolić, “A 

RISC-V Vector Processor With Simultaneous-Switching Switched-Capacitor DC–

DC Converters in 28 nm FDSOI,” IEEE Journal of Solid-State Circuits, vol. 51, 

no. 4, pp. 930–942, Apr. 2016. 

[38] I. Chowdhury, and D. Ma, “Design of Reconfigurable and Robust Integrated SC 

Power Converter for Self-Powered Energy-Efficient Devices,” IEEE Transactions 

on Industrial Electronics, vol. 56, no. 10, pp. 4018–4028, Oct. 2009. 

[39] H.-P. Le, S. R. Sanders, and E. Alon, “Design Techniques for Fully Integrated 

Switched-Capacitor DC-DC Converters,” IEEE Journal of Solid-State Circuits, 

vol. 46, no. 9, pp. 2120−2131, Sep. 2011. 

[40] R. D. Prabha, G. A. Rincon-Mora, and S. Kim, “Harvesting Circuits for 

Miniaturized Photovoltaic Cells,” IEEE International Symposium on Circuits and 

Systems, pp. 309–312, May 2011. 

[41] T. M. Andersen, F. Krismer, J. W. Kolar, T. Toifl, C. Menolfi, L. Kull, T. Morf, M. 

Kossel, M. Brändli, P. Buchmann, and P. A. Francese, “A Deep Trench Capacitor 

Based 2:1 and 3:2 Reconfigurable on-Chip Switched Capacitor DC-DC Converter 

in 32 nm SOI CMOS,” IEEE Applied Power Electronics Conference and Expo, pp. 

1448–1455, Mar. 2014. 

[42] S. A. Campbell, Fabrication Engineering: at the Micro- and Nanoscale, Oxford, 

New York, 2008. 

[43] C. O. Mathúna, W. Ningning, S. Kulkarni, and S. Roy, “Review of Integrated 

Magnetics for Power Supply on Chip (PwrSoC),” IEEE Transactions on Power 

Electronics, vol. 27, no. 11, pp. 4799–4816, Nov. 2012. 

[44] P. Hazucha, G. Schrom, J. Hahn, B. A. Bloechel, P. Hack, G. E. Dermer, S. 

Narendra, D. Gardner, T. Karnik, V. De, and S. Borkar, “A 233-MHz 80%–87% 



181 

 

efficient four-phase DC-DC converter utilizing air-core inductors on package,” 

IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 838–845, Apr. 2005. 

[45] M. Lee, Y. Choi, and J. Kim, “A 500-MHz, 0.76-W/mm Power Density and 76.2% 

Power Efficiency, Fully Integrated Digital Buck Converter in 65-nm CMOS,” IEEE 

Transactions on Industry Applications, vol. 52, no. 4, pp. 3315–3323,  2016. 

[46] D. Bhatia, L. Xue, P. Li, Q. Wu, and R. Bashirullah, “High-Voltage Tolerant 

Digitally Aided DCM/PWM Multiphase DC-DC Boost Converter With Integrated 

Schottky Diodes in 0.13 µm 1.2 V Digital CMOS Process,” IEEE Journal of Solid-

State Circuits, vol. 48, no. 3, pp. 774–789, Mar. 2013. 

[47] C. R. Sullivan, “Integrating Magnetics for on-Chip Power: Challenges and 

Opportunities,” Custom Integrated Circuits Conference, pp. 291–298, Sep 2009. 

[48] P. Artillan, M. Brunet, D. Bourrier, J.-P. Laur, N. Mauran, L. Bary, M. Dilhan, B. 

Estibals, C. Alonso, and J. L. Sanchez, “Integrated LC Filter on Silicon for DC–

DC Converter Applications,” IEEE Transactions on Power Electronics, vol. 26, no. 

8, pp. 2319−2325, Aug. 2011. 

[49] F. C. Lee, and Q. Li, “High-Frequency Integrated Point-of-Load Converters: 

Overview,” IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 

4127−4136, Sep. 2013. 

[50] P. Dhagat, S. Prabhakaran, and C. R. Sullivan, “Comparison of Magnetic Materials 

for V-Groove Inductors in Optimized High-Frequency DC-DC Converters,” IEEE 

Transactions on Magnetics, vol. 40, no. 4, pp. 2008–2010, Jul. 2004. 

[51] C. R. Sullivan, D. V. Harburg, J. Qiu, C. G. Levey, and D. Yao, “Integrating 

Magnetics for On-Chip Power: A Perspective,” IEEE Transactions on Power 

Electronics, vol. 28, no. 9, pp. 4342–4353, Sep. 2013. 

[52] K. Dongwon, and G. A. Rincon-Mora, “Single-Inductor–Multiple-Output 

Switching DC–DC Converters,” IEEE Transactions on Circuits and Systems II: 

Express Briefs, vol. 56, no. 8, pp. 614–618, Aug. 2009. 

[53] D. Ma, and R. Bondade, “Enabling Power-Efficient DVFS Operations on Silicon,” 

IEEE Circuits and Systems Magazine, vol. 10, no. 1, pp. 14–30, Mar. 2010. 



182 

 

[54] M. Y. Jung, S. H. Park, J. S. Bang, and G. H. Cho, “An Error-Based Controlled 

Single-Inductor 10-Output DC-DC Buck Converter With High Efficiency Under 

Light Load Using Adaptive Pulse Modulation,” IEEE Journal of Solid-State 

Circuits, vol. 50, no. 12, pp. 2825–2838, Dec. 2015. 

[55] Y. Zhang, and D. Ma, “A Fast-Response Hybrid SIMO Power Converter with 

Adaptive Current Compensation and Minimized Cross-Regulation,” IEEE Journal 

of Solid-State Circuits, vol. 49, no. 5, pp. 1242−1255, May 2014. 

[56] D. Ma, W. H. Ki, and C. Y. Tsui, “A Pseudo-CCM/DCM SIMO Switching 

Converter with Freewheel Switching,” IEEE Journal of Solid-State Circuits, vol. 

38, no. 6, pp. 1007–1014, Jun. 2003. 

[57] Y. Zheng, M. Ho, J. Guo, K. L. Mak, and K. N. Leung, “A Single-Inductor 

Multiple-Output Auto-Buck-Boost DC–DC Converter With Autophase 

Allocation,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2296–

2313, Mar. 2016. 

[58] D. Ma, W. H. Ki, C. Y. Tsui, and P. K. T. Mok, “Single-inductor multiple-output 

switching converters with time-multiplexing control in discontinuous conduction 

mode,” IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 89–100, Jan. 2003. 

[59] E. Bonizzoni, F. Borghetti, P. Malcovati, F. Maloberti, and B. Niessen, “A 200mA 

93% Peak Efficiency Single-Inductor Dual-Output DC-DC Buck Converter,” IEEE 

International Solid-State Circuits Conference, pp. 526–619, Feb. 2007. 

[60] H. P. Le, C. S. Chae, K. C. Lee, S. W. Wang, G. H. Cho, and G. H. Cho, “A Single-

Inductor Switching DC-DC Converter With Five Outputs and Ordered Power-

Distributive Control,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 

2706–2714, Dec. 2007. 

[61] M. Belloni, E. Bonizzoni, E. Kiseliovas, P. Malcovati, F. Maloberti, T. Peltola, and 

T. Teppo, “A 4-Output Single-Inductor DC-DC Buck Converter with Self-Boosted 

Switch Drivers and 1.2A Total Output Current,” IEEE International Solid-State 

Circuits Conference, pp. 444–626, Feb. 2008. 

[62] C. S. Chae, H. P. Le, K. C. Lee, G. H. Cho, and G. H. Cho, “A Single-Inductor 

Step-Up DC-DC Switching Converter With Bipolar Outputs for Active Matrix 



183 

 

OLED Mobile Display Panels,” IEEE Journal of Solid-State Circuits, vol. 44, no. 

2, pp. 509–524, Feb. 2009. 

[63] K. S. Seol, Y. J. Woo, G. H. Cho, G. H. Gho, and J. W. Lee, “A Synchronous 

Multioutput Step-Up/Down DC–DC Converter With Return Current Control,” 

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 3, pp. 

210–214, Mar. 2009. 

[64] M. H. Huang, and K. H. Chen, “Single-Inductor Multi-Output (SIMO) DC-DC 

Converters With High Light-Load Efficiency and Minimized Cross-Regulation for 

Portable Devices,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1099–

1111, Apr. 2009. 

[65] W. Xu, Y. Li, X. Gong, Z. Hong, and D. Killat, “A Dual-Mode Single-Inductor 

Dual-Output Switching Converter With Small Ripple,” IEEE Transactions on 

Power Electronics, vol. 25, no. 3, pp. 614–623, Mar. 2010. 

[66] K. C. Lee, C. S. Chae, G. H. Cho, and G. H. Cho, “A PLL-Based High-Stability 

Single-Inductor 6-Channel Output DC-DC Buck Converter,” IEEE International 

Solid-State Circuits Conference, pp. 200–201, Feb. 2010. 

[67] M. H. Huang, Y. N. Tsai, and K. H. Chen, “Sub-1 V Input Single-Inductor Dual-

Output (SIDO) DC–DC Converter With Adaptive Load-Tracking Control (ALTC) 

for Single-Cell-Powered Systems,” IEEE Transactions on Power Electronics, vol. 

25, no. 7, pp. 1713–1724, Jul. 2010. 

[68] C.-S. Huang, D. Chen, C. J. Chen, and K. H. Liu, “Mix-Voltage Conversion for 

Single-Inductor Dual-Output Buck Converters,” IEEE Transactions on Power 

Electronics, vol. 25, no. 8, pp. 2106–2114, Aug. 2010. 

[69] Y. H. Lee, T. C. Huang, Y. Y. Yang, W. S. Chou, K. H. Chen, C. C. Huang, and Y. 

H. Lin, “Minimized Transient and Steady-State Cross Regulation in 55-nm CMOS 

Single-Inductor Dual-Output (SIDO) Step-Down DC-DC Converter,” IEEE 

Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2488–2499, Nov. 2011. 

[70] W. Xu, Y. Li, Z. Hong, and D. Killat, “A 90% Peak Efficiency Single-Inductor 

Dual-Output Buck-Boost Converter with Extended-PWM Control,” IEEE 

International Solid-State Circuits Conference, pp. 394–396, Feb. 2011. 



184 

 

[71] S. W. Wang, G. H. Cho, and G. H. Cho, “A High-Stability Emulated Absolute 

Current Hysteretic Control Single-Inductor 5-Output Switching  DC-DC Converter 

with Energy Sharing and Balancing,” IEEE International Solid-State Circuits 

Conference, pp. 276–278, Feb. 2012. 

[72] Y. J. Moon, Y. S. Roh, J. C. Gong, and C. Yoo, “Load-Independent Current Control 

Technique of a Single-Inductor Multiple-Output Switching DC–DC converter,” 

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 1, pp. 

50–54, Jan. 2012. 

[73] C. W. Kuan, and H. C. Lin, “Near-Independently Regulated 5-Output Single-

Inductor DC-DC Buck Converter Delivering 1.2W/mm2 in 65nm CMOS,” IEEE 

International Solid-State Circuits Conference, pp. 274–276, Feb. 2012. 

[74] C. N. Onwuchekwa, and A. Kwasinski, “A Modified-Time-Sharing Switching 

Technique for Multiple-Input DC–DC Converters,” IEEE Transactions on Power 

Electronics, vol. 27, no. 11, pp. 4492–4502, Nov. 2012. 

[75] P. Patra, A. Patra, and N. Misra, “A Single-Inductor Multiple-Output Switcher 

With Simultaneous Buck, Boost, and Inverted Outputs,” IEEE Transactions on 

Power Electronics, vol. 27, no. 4, pp. 1936–1951, Apr. 2012. 

[76] J. Kim, D. S. Kim, and C. Kim, “A Single-Inductor Eight-Channel Output DC–DC 

Converter With Time-Limited Power Distribution Control and Single Shared 

Hysteresis Comparator,” IEEE Transactions on Circuits and Systems I: Regular 

Papers, vol. 60, no. 12, pp. 3354–3367, Dec. 2013. 

[77] W. C. Chen, Y. P. Su, T. C. Huang, T. W. Tsai, R. H. Peng, K. L. Lin, K. H. Chen, 

Y. H. Lin, C. C. Lee, S. R. Lin, and T. Y. Tsai, “Single-Inductor Quad-Output 

Switching Converter With Priority-Scheduled Program for Fast Transient Response 

and Unlimited Load Range in 40 nm CMOS Technology,” IEEE Journal of Solid-

State Circuits, vol. 50, no. 7, pp. 1525–1539, Jul. 2015. 

[78] Y. Zheng, M. Ho, J. Guo, and K. N. Leung, “A Single-Inductor Multiple-Output 

Auto-Buck–Boost DC–DC Converter With Tail-Current Control,” IEEE 

Transactions on Power Electronics, vol. 31, no. 11, pp. 7857–7875, Nov. 2016. 

[79] G. A. Rincon-Mora, Power IC Design - Fifth Edition, Lulu, Raleigh, 2016. 



185 

 

[80] A. I. Pressman, K. Billings, and T. Morey, Switching Power Supply Design, 

McGraw-Hill, 2009. 

[81] X. Duan, and A. Q. Huang, “Current-Mode Variable-Frequency Control 

Architecture for High-Current Low-Voltage DC–DC Converters,” IEEE 

Transactions on Power Electronics, vol. 21, no. 4, pp. 1133–1137, Jul. 2006. 

[82] M. Y. Jung, S. H. Park, J. S. Bang, D. C. Park, S. U. Shin, and G. H. Cho, “An 

Error-Based Controlled Single-Inductor 10-Output DC-DC Buck Converter with 

High Efficiency at Light Load Using Adaptive Pulse Modulation,” IEEE 

International Solid-State Circuits Conference, pp. 1–3, Feb. 2015. 

[83] N. Keskar, and G. A. Rincon-Mora, “Designing an Accurate and Robust LC-

Compliat Asynchronous DS Boost DC-DC Converter,” IEEE International 

Symposium on Circuits and Systems, pp. 549–552, May 2007. 

[84] K. Lee, F. C. Lee, and M. Xu, “A Hysteretic Control Method for Multiphase 

Voltage Regulator,” IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 

2726–2734, Dec. 2009. 

[85] P. Mattavelli, L. Rossetto, and G. Spiazzi, “Small-Signal Analysis of DC–DC 

Converters with Sliding Mode Control,” IEEE Transactions on Power Electronics, 

vol. 12, no. 1, pp. 96–102, Jan. 1997. 

[86] S. C. Tan, Y. M. Lai, and C. K. Tse, “General Design Issues of Sliding-Mode 

Controllers in DC–DC Converters,” IEEE Transactions on Industrial Electronics, 

vol. 55, no. 3, pp. 1160–1174, Mar. 2008. 

[87] P. Garces, J. Calvente, R. Leyva, R. Giral, and L. Martinez-Salamero, “Simulation-

Oriented Continuous Model of Hysteretic Controlled DC-to-DC Converters,” IEEE 

International Symposium on Industrial Electronics, pp. 633–637, Jun. 2007. 

[88] S. K. Mishra, and K. D. T. Ngo, “Dynamic Characterization of the Synthetic Ripple 

Modulator in a Tightly Regulated Distributed Power Application,” IEEE 

Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1164–1173, Apr. 2009. 

[89] Y. F. Liu, and P. C. Sen, “Large-Signal Modeling of Hysteretic Current-

Programmed Converters,” IEEE Transactions on Power Electronics, vol. 11, no. 3, 

pp. 423–430, May 1996. 



186 

 

[90] J. Sun, “Small-Signal Modeling of Variable-Frequency Pulsewidth Modulators,” 

IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 3, pp. 1104–

1108, Jul. 2002. 

[91] C. C. Chuang, H. P. Chou, and M. L. Chiu, “A Buck Converter Using Accurate 

Synthetic Ripple Hysteresis Control Scheme,” IEEE International Conference on 

Power Electronics and Drive Systems, pp. 682–686, Dec. 2011. 

[92] R. Redl, “Small-Signal High-Frequency Analysis of the Free-Running Current-

Mode-Controlled Converter,” IEEE Power Electronics Specialists Conference, pp. 

897–906, Jun. 1991. 

[93] J. h. Park, and B. H. Cho, “Small signal modeling of hysteretic current mode control 

using the PWM switch model,” IEEE Workshops on Computers in Power 

Electronics, pp. 225–230, Jul. 2006. 

[94] M. Castilla, L. Garcia de Vicuna, J. M. Guerrero, J. Matas, and J. Miret, “Design 

of voltage-mode hysteretic controllers for synchronous buck converters supplying 

microprocessor loads,” IEE Proceedings - Electric Power Applications, vol. 152, 

no. 5, pp. 1171–1178, Sep. 2005. 

[95] P. E. Allen, and D. R. Holberg, CMOS Analog Circuit Design, Oxford University 

Press, New York, 2002. 

[96] H. P. Forghani-zadeh, and G. A. Rincon-Mora, “An Accurate, Continuous, and 

Lossless Self-Learning CMOS Current-Sensing Scheme for Inductor-Based DC-

DC Converters,” IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 665–679, 

Mar. 2007. 

[97] S. Kim, G. A. Rincon-Mora, and D. Kwon, “Extracting the Frequency Response of 

Switching DC–DC Converters in CCM and DCM from Time-Domain 

Simulations,” International SoC Design Conference, pp. 385–388, Nov. 2011. 

[98] Y. Qiu, M. Xu, J. Sun, and F. C. Lee, “A Generic High-Frequency Model for the 

Nonlinearities in Buck Converters,” IEEE Transactions on Power Electronics, vol. 

22, no. 5, pp. 1970–1977, Sep. 2007. 



187 

 

[99] R. Redl, and S. Jian, “Ripple-Based Control of Switching Regulators–An 

Overview,” IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2669–

2680, Dec. 2009. 

[100] C.-C. Fang, and R. Redl, “Switching Frequency Determination of DC-DC 

Converters with Hysteretic Control,” IEEE Transactions on Power Electronics, 

vol. PP, no. 99, pp. 1–1, DOI: 10.1109/tpel.2017.2695584 2017. 

[101] Y. Wen, and O. Trescases, “Analysis and Comparison of Frequency Stabilization 

Loops in Self-Oscillating Current Mode DC–DC Converters,” IEEE Transactions 

on Power Electronics, vol. 28, no. 10, pp. 4753–4766, Oct. 2013. 

[102] T. Szepesi, “Stabilizing the Frequency of Hysteretic Current-Mode DC-DC 

Converters,” IEEE Transactions on Power Electronics, no. 4, pp. 302–312, Oct. 

1987. 

[103] J. Doernberg, P. R. Gray, and D. A. Hodges, “A 10-bit 5-Msample/s CMOS Two-

Step Flash ADC,” IEEE Journal of Solid-State Circuits, vol. 24, no. 2, pp. 241–

249, Apr. 1989. 

[104] S. Kim, and G. A. Rincon-Mora, “Achieving High Efficiency under Micro-Watt 

Loads with Switching Buck DC-DC Converters,” Journal of Low Power 

Electronics, vol. 4, no. 2, pp. 229–240, Aug. 2009. 

[105] H. C. Foong, Y. Zheng, Y. K. Tan, and M. T. Tan, “Fast-Transient Integrated 

Digital DC-DC Converter With Predictive and Feedforward Control,” IEEE 

Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 7, pp. 1567–

1576, Jul. 2012. 

[106] P. J. Liu, W. S. Ye, J. N. Tai, H. S. Chen, J. H. Chen, and Y. J. E. Chen, “A High-

Efficiency CMOS DC-DC Converter With 9-s Transient Recovery Time,” IEEE 

Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 3, pp. 575–

583, Mar. 2012. 

[107] R. Redl, B. P. Erisman, and Z. Zansky, “Optimizing the Load Transient Response 

of the Buck Converter,” Applied Power Electronics Conference and Exposition, pp. 

170–176, Feb. 1998. 



188 

 

[108] A. B. Grebene, Bipolar and MOS Analog Integrated Circuit Design, John Wiley & 

Sons, New York, 1984. 

[109] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 

2000. 

[110] K. Filsoof, and P. W. Lehn, “A Bidirectional Multiple-Input Multiple-Output 

Modular Multilevel DC–DC Converter and its Control Design,” IEEE Transactions 

on Power Electronics, vol. 31, no. 4, pp. 2767–2779, Apr. 2016. 

[111] B. Wang, L. Xian, V. R. K. Kanamarlapudi, K. J. Tseng, A. Ukil, and H. B. Gooi, 

“A Digital Method of Power-Sharing and Cross-Regulation Suppression for Single-

Inductor Multiple-Input Multiple-Output DC–DC Converter,” IEEE Transactions 

on Industrial Electronics, vol. 64, no. 4, pp. 2836–2847, Apr. 2017. 

[112] H. Behjati, and A. Davoudi, “A Multiple-Input Multiple-Output DC–DC 

Converter,” IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1464–

1479, Jun. 2013. 

[113] S. Kim, and G. A. Rincόn-Mora, “Dual-source hysteretic switched-inductor 0.18 

µm complementary metal–oxide–semiconductor charger-supply system,” IET 

Circuits, Devices & Systems, vol. 9, no. 4, pp. 275–282,  2015. 

[114] Y. Jiang, and A. Fayed, “A 1 A, Dual-Inductor 4-Output Buck Converter With 20 

MHz/100 MHz Dual-Frequency Switching and Integrated Output Filters in 65 nm 

CMOS,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2485–2500, Oct. 

2016. 

[115] R. Baker, CMOS Cricuit Design, Layout, and Simulation - Revised Second Edition, 

John Wiley & Sons, New Jersey, 2008. 

 



189 

 

VITA 

 

CARLOS J. SOLIS 

 

Carlos Solis received the B.S. in Electrical and Computer Engineering in 2010 from the 

University of Puerto Rico – Mayaguez Campus. In 2012, he received the M.S. from 

Georgia Institute of Technology in Electrical and Computer Engineering. He joined 

Georgia Tech Analog, Power, and Energy IC Lab (GTAPE) in 2010, where he started to 

pursue his Ph.D. degree. He was the recipient of the GEM Fellowship from 2010 to 2012 

and from the Goizueta Foundation Fellowship from 2012 to 2016. His research interest 

includes switched-inductor power converter ICs, stability analysis, analog IC design. 

Currently, he is working in Analog Devices as a Design Engineer for Power Products. 

 


