2,054 research outputs found

    Polarimetric Synthetic Aperture Radar (SAR) Application for Geological Mapping and Resource Exploration in the Canadian Arctic

    Get PDF
    The role of remote sensing in geological mapping has been rapidly growing by providing predictive maps in advance of field surveys. Remote predictive maps with broad spatial coverage have been produced for northern Canada and the Canadian Arctic which are typically very difficult to access. Multi and hyperspectral airborne and spaceborne sensors are widely used for geological mapping as spectral characteristics are able to constrain the minerals and rocks that are present in a target region. Rock surfaces in the Canadian Arctic are altered by extensive glacial activity and freeze-thaw weathering, and form different surface roughnesses depending on rock type. Different physical surface properties, such as surface roughness and soil moisture, can be revealed by distinct radar backscattering signatures at different polarizations. This thesis aims to provide a multidisciplinary approach for remote predictive mapping that integrates the lithological and physical surface properties of target rocks. This work investigates the physical surface properties of geological units in the Tunnunik and Haughton impact structures in the Canadian Arctic characterized by polarimetric synthetic aperture radar (SAR). It relates the radar scattering mechanisms of target surfaces to their lithological compositions from multispectral analysis for remote predictive geological mapping in the Canadian Arctic. This work quantitatively estimates the surface roughness relative to the transmitted radar wavelength and volumetric soil moisture by radar scattering model inversion. The SAR polarization signatures of different geological units were also characterized, which showed a significant correlation with their surface roughness. This work presents a modified radar scattering model for weathered rock surfaces. More broadly, it presents an integrative remote predictive mapping algorithm by combining multispectral and polarimetric SAR parameters

    Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars

    Get PDF
    The Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor spacecraft, has measured the topography, surface roughness, and 1.064-μm reflectivity of Mars and the heights of volatile and dust clouds. This paper discusses the function of the MOLA instrument and the acquisition, processing, and correction of observations to produce global data sets. The altimeter measurements have been converted to both gridded and spherical harmonic models for the topography and shape of Mars that have vertical and radial accuracies of ~1 m with respect to the planet's center of mass. The current global topographic grid has a resolution of 1/64° in latitude × 1/32° in longitude (1 × 2 km^2 at the equator). Reconstruction of the locations of incident laser pulses on the Martian surface appears to be at the 100-m spatial accuracy level and results in 2 orders of magnitude improvement in the global geodetic grid of Mars. Global maps of optical pulse width indicative of 100-m-scale surface roughness and 1.064-μm reflectivity with an accuracy of 5% have also been obtained

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples

    Venus Data Analysis Program: Directory of Research Projects (1993-1994)

    Get PDF
    This directory provides information about the scientific investigations funded by the NASA Venus Data Analysis Program (VDAP) during fiscal year 1993. The VDAP Directory consists of summary sheets from the proposals that were selected by NASA for funding in FY 93. Each summary sheet indicates the title, principal investigator, institution of the investigation, and information related to the objectives of the research activities proposed for FY 93. The objective of the VDAP Program is to advance our understanding of the nature and evolution of Venus. VDAP supports scientific investigation using data obtained from the Magellan, Pioneer Venus, and other Venus missions, as well as earth-based observations that contribute to understanding the physical and evolutionary properties of Venus. The program intends to enhance the scientific return from these missions by broadening the participation in the analysis of Venus data. Categories of research funded by VDAP are atmosphere, ionosphere, geology, geophysics, and mapping. The directory is intended to provide the science community with an overview of the research projects supported by this program. Research activities identified in this directory were selected for funding in FY 93 on the basis of scientific peer review conducted by the VDAP Review Panel

    Comparing Terrestrial and Extraterrestrial Lava Surface Roughness Using Digital Elevation Models From High Resolution Topography and Structure From Motion

    Get PDF
    If patterns of lava flow surface roughness at large and small scales can be tied features at similar scales using observations of active volcanoes, then roughness across a lava flow can be related to eruption characteristics such as rate of flow, viscosity, and underlying slope. This will further current understanding of emplacement rates and styles during the volcanically active period of mars’ history. Additionally, describing the effect of the Martian environment on volcanism is necessary to learn the full range of possible volcanic activity in the Solar System. This will also provide insight regarding volcanic hazards here on Earth. To investigate lava flow roughness on Earth and Mars, I acquired high resolution topography for lava flows from Mauna Ulu, Hawaii, Obsidian Dome and Amboy, California using Structure from Motion and/or LiDAR, as well as topography data of Tharsis from the HiRISE camera on the Mars Reconnaissance Orbiter. Mauna Ulu and Amboy were used as earthly analogues for the range of possible lava flow surfaces on mars. I applied two new approaches to determining roughness on lava flows – the Topographic Position Index and Roughness Doughnut. The approaches presented here may allow scientists to observe much finer features in flow fields than previously possible, thus providing new insights about the quantitative relationships between surface morphology and eruption characteristics. Finally, I used Principal Component Analysis to better understand the relationships between terrestrial and martian roughness. iv The goal of this project was to develop an efficient and cost-effective method of roughness comparison that can be applied to a variety of volcanic environments and scales. Mauna Ulu offers an opportunity to observe young flows, but the dominant weathering processes in this humid, tropical location are significantly different from processes active on Mars. Lava flows at Amboy are older than those produced by Mauna Ulu, and display varying levels of mantling by wind-blown sand, similar to expectations of Mars. Using datasets from both locations, I described how martian lava flows compare to the range of roughness measurements at both terrestrial sites. I also sought to investigate the effect of mantling of aeolian material on lava flow roughness, and if roughness is a useful tool to detect mantled lava flow features on Mars. Additionally, I aimed to relate roughness data from the terrestrial locations to lava flow features visible in Structure from Motion and LiDAR digital elevation models. Finally, I discuss the use of these methods to map volcanic features and environments in new locations on Earth and on Mars. Though Obsidian Dome was not a central part of this project, 1 meter per pixel LiDAR data was used to illustrate the roughness differences between silicic and mafic lava flows. Roughness values are higher at Obsidian Dome than values at the other locations, at every scale tested. This is consistent with observations by Plaut et al. (2004). Results show that suspected basaltic lava flows on Mars show similarities to the range of roughness values for basaltic flows at Amboy, California and Mauna Ulu, Hawaii. Roughness values for the basaltic environments are significantly different from those of Obsidian Dome. I was able to use roughness of lava flows within and outside of the main wind shadow at Amboy to describe the effect of mantling on the lava topography. Though a roughness trend was observed across mantled surfaces in v California, it is not robust enough to be used as the only method to detect mantled lava flows on Mars. Finally, both the RD and TPI methods can be used to map volcanic environments but would benefit from additional datasets

    Sudden drop of fractal dimension of electromagnetic emissions recorded prior to significant earthquake

    Full text link
    The variation of fractal dimension and entropy during a damage evolution process, especially approaching critical failure, has been recently investigated. A sudden drop of fractal dimension has been proposed as a quantitative indicator of damage localization or a likely precursor of an impending catastrophic failure. In this contribution, electromagnetic emissions recorded prior to significant earthquake are analysed to investigate whether they also present such sudden fractal dimension and entropy drops as the main catastrophic event is approaching. The pre-earthquake electromagnetic time series analysis results reveal a good agreement to the theoretically expected ones indicating that the critical fracture is approaching

    Characterization and mapping of surface physical properties of Mars from CRISM multi-angular data: application to Gusev Crater and Meridiani Planum

    Full text link
    The analysis of the surface texture from the particle (grain size, shape and internal structure) to its organization (surface roughness) provides information on the geological processes. CRISM multi-angular observations (varied emission angles) allow to characterize the surface scattering behavior which depends on the composition but also the material physical properties (e.g., grain size, shape, internal structure, the surface roughness). After an atmospheric correction by the Multi-angle Approach for Retrieval of the Surface Reflectance from CRISM Observations, the surface reflectances at different geometries are analyzed by inverting the Hapke photometric model depending on the single scattering albedo, the 2-term phase function, the macroscopic roughness and the 2-term opposition effects. Surface photometric maps are created to observe the spatial variations of surface scattering properties as a function of geological units at the CRISM spatial resolution (200m/pixel). An application at the Mars Exploration Rover (MER) landing sites located at Gusev Crater and Meridiani Planum where orbital and in situ observations are available, is presented. Complementary orbital observations (e.g. CRISM spectra, THermal EMission Imaging System, High Resolution Imaging Science Experiment images) are used for interpreting the estimated Hapke photometric parameters in terms of physical properties. The in situ observations are used as ground truth to validate the interpretations. Varied scattering properties are observed inside a CRISM observation (5x10km) suggesting that the surfaces are controlled by local geological processes (e.g. volcanic resurfacing, aeolian and impact processes) rather than regional or global. Consistent results with the in situ observations are observed thus validating the approach and the use of photometry for the characterization of Martian surface physical properties

    Earth resources: A continuing bibliography with indexes (issue 52)

    Get PDF
    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth resources: A continuing bibliography with indexes (issue 51)

    Get PDF
    This bibliography lists 382 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore