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ABSTRACT 

James, Davitia. Comparing Terrestrial and Extraterrestrial Lava Surface Roughness 
Using Digital Elevation Models from High Resolution Topography and Structure 
from Motion. Unpublished Master of Arts thesis, University of Northern 
Colorado, 2019.  

 
If patterns of lava flow surface roughness at large and small scales can be tied 

features at similar scales using observations of active volcanoes, then roughness across a 

lava flow can be related to eruption characteristics such as rate of flow, viscosity, and 

underlying slope. This will further current understanding of emplacement rates and styles 

during the volcanically active period of mars’ history. Additionally, describing the effect 

of the Martian environment on volcanism is necessary to learn the full range of possible 

volcanic activity in the Solar System. This will also provide insight regarding volcanic 

hazards here on Earth. To investigate lava flow roughness on Earth and Mars, I acquired 

high resolution topography for lava flows from Mauna Ulu, Hawaii, Obsidian Dome and 

Amboy, California using Structure from Motion and/or LiDAR, as well as topography 

data of Tharsis from the HiRISE camera on the Mars Reconnaissance Orbiter. Mauna Ulu 

and Amboy were used as earthly analogues for the range of possible lava flow surfaces 

on mars. I applied two new approaches to determining roughness on lava flows – the 

Topographic Position Index and Roughness Doughnut. The approaches presented here 

may allow scientists to observe much finer features in flow fields than previously 

possible, thus providing new insights about the quantitative relationships between surface 

morphology and eruption characteristics. Finally, I used Principal Component Analysis to 

better understand the relationships between terrestrial and martian roughness.  
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The goal of this project was to develop an efficient and cost-effective method of 

roughness comparison that can be applied to a variety of volcanic environments and 

scales. Mauna Ulu offers an opportunity to observe young flows, but the dominant 

weathering processes in this humid, tropical location are significantly different from 

processes active on Mars. Lava flows at Amboy are older than those produced by Mauna 

Ulu, and display varying levels of mantling by wind-blown sand, similar to expectations 

of Mars. Using datasets from both locations, I described how martian lava flows compare 

to the range of roughness measurements at both terrestrial sites. I also sought to 

investigate the effect of mantling of aeolian material on lava flow roughness, and if 

roughness is a useful tool to detect mantled lava flow features on Mars. Additionally, I 

aimed to relate roughness data from the terrestrial locations to lava flow features visible 

in Structure from Motion and LiDAR digital elevation models. Finally, I discuss the use 

of these methods to map volcanic features and environments in new locations on Earth 

and on Mars. Though Obsidian Dome was not a central part of this project, 1 meter per 

pixel LiDAR data was used to illustrate the roughness differences between silicic and 

mafic lava flows. Roughness values are higher at Obsidian Dome than values at the other 

locations, at every scale tested. This is consistent with observations by Plaut et al. (2004).  

Results show that suspected basaltic lava flows on Mars show similarities to the 

range of roughness values for basaltic flows at Amboy, California and Mauna Ulu, 

Hawaii. Roughness values for the basaltic environments are significantly different from 

those of Obsidian Dome. I was able to use roughness of lava flows within and outside of 

the main wind shadow at Amboy to describe the effect of mantling on the lava 

topography. Though a roughness trend was observed across mantled surfaces in 
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California, it is not robust enough to be used as the only method to detect mantled lava 

flows on Mars. Finally, both the RD and TPI methods can be used to map volcanic 

environments but would benefit from additional datasets.  
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CHAPTER I 

INTRODUCTION 

Identification of lava flows on Mars can further understanding of the geologic 

history of the planet by confirming the styles, timing, and geographic extent of volcanic 

activity that occurred. However, using only the planform shape observed in visible light 

images to identify these features is typically not diagnostic. For example, a lobate feature 

located on a slope cannot simply be called a lava flow as this shape in this setting may be 

a result of a variety volcanic and non-volcanic processes. Landslides and rock glaciers 

share the lobate appearance of pyroclastic flows, lahars, and lava flows. Despite similar 

planform appearances, each of these features have different roughness signatures that can 

be linked to their different origins. This concept is the foundation of my thesis research. 

Previous work (Plaut et al., 1994; Anderson et al., 1998; Shepard et al., 2001; Plaut et al., 

2002) evaluated lava roughness and concluded that some flows can be distinguished by 

roughness. Plaut and others (2002) found that silicic flows are much rougher at every 

scale than basalt flows. Differentiating other volcanic products using roughness is more 

complex. My assumption was that roughness patterns in addition to roughness values 

across a lava flow surface may be useful for this.  

Shepard and others (2001) defined surface roughness as the “topographic 

expression of surfaces at horizontal scales of millimeters to a few hundred meters”. The 

stories of some volcanic eruptions are told through the variations in lava flow roughness 

at different scales. Consider ropey folds preserved on the surface of a pahoehoe flow 
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(Fink, 1980). Though the rippled features may appear flat and devoid of height changes at 

the meter and decameter scale, the texture is quite rough when observed at the centimeter 

scale (Figure 1a). We know that these folds are indicative of slowly moving, low 

viscosity pahoehoe flows because of observations of terrestrial basaltic volcanic eruptions 

(Byrnes et al., 2001; Byrnes et al., 2004; Swanson, 1973; Moore et al., 1975). Tumuli 

also provide an example of relating roughness to emplacement conditions (Figure 1b) 

(Fink and Anderson, 2000; Anderson et al., 2012). These inflation features resemble the 

back of a whale and are smooth at smaller, centimeter scales but always display 

significant roughness at scales half a meter to tens of meters. Tumuli and folds are both 

different from a'a' lava flows, which are composed of piles of jagged blocks and are 

rough at centimeter to decameter scale (Figures 1c and 1d) (Peterson and Tilling, 1980; 

Gaddis et al., 1990; Farr, 1992; Shepard et al., 2001; Diniega et al., 2018). Table 1 shows 

lava surface features and the scales at which they are observed. 

Table 1: Features Affecting Lava Flow Roughness at Different Scales 
 Small scale Medium scale Large scale 

 
Millimeter 
to 
Centimeter  

Centimeter to 
meter  

Meter  
Decameter and 
larger  

Dominant features 
at this scale 

Gas bubble 
walls and 
minor folds 
and cracks 

Flow toes and 
blocks 

Tumuli, ridges 
and crease 
patterns 

Full flow 
fields, sheeted 
flows and 
levees 
 

Common 
techniques for 
assessing roughness 

RMS slope 
and height, 
stylus 
profiles 

RMS slope 
and height, 
laser and 
stylus profiles   

Laser profiles, 
RMS slope 
and height 

 

Radar, 
elevation 
standard 
deviation, 
RMS slope 
and height 

Minimum 
resolution required  

<1 m <1 m ~1 m  >5 m 
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Roughness has been quantified using multiple methods including radar scatter 

(Farr and Engheta, 1983; Evans et al., 1992; Campbell and Shepard, 1996; Greeley et al., 

1998), profile lengths measured by hand and with lasers (Brown and Scholz, 1985; 

Chapman, 1985), standard deviation of elevation (Whelley et al., 2011), root mean square 

height and slope (Campbell and Shepard, 1996; Tian et al., 2011) as well as ground-based 

and airborne stereo-photography (McCue and Green, 1965; Farr, 1992). As sand and dust 

settle over volcanic landforms, this deposition limits our confidence in interpreting visual 

and topographic data in the volcanic regions of Mars. Common techniques for describing 

roughness are variable across locations and are limited in their usefulness as descriptive 

Figure 1a (upper left): Ropey pahoehoe folds showing cm-scale roughness. Photo: 
Author.  
Figure 1b (upper right): Tumulus in a flow field showing meter to decameter-scale 
roughness. Photo: Author. 
Figure 1c (lower left): A’a’ lava over pahoehoe. Note the contrasting cm-scale 
roughness.  Photo: S.W. Anderson.  
Figure 1d (lower right): Active a ’a’ lava flowing older pahoehoe. Note the blocky 
texture of the flow front. Photo: Smithsonian Institution Global Volcanism Program. 
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measures of a surface. Additionally, previous studies have not sufficiently accounted for 

the effect of mantling on roughness. Hence the necessity of this project.  

In this thesis I evaluated two new approaches to lava surface roughness – the 

Topographic Position Index, and Roughness Doughnut – on three terrestrial analogue 

sites and several suspected lava flows on Mars. The terrestrial locations are Mauna Ulu in 

Hawaii, Amboy Crater and flow field in California, and Obsidian Dome in California. 

Lava flows from the most recent eruptions of Mauna Ulu and Amboy were used as 

terrestrial analogues for the range of possible lava flow surfaces on Mars. Both are 

basaltic volcanoes, and have similar surface features to flows in the Tharsis region of 

Mars (Byrnes and Crown, 2004; Glaze et al., 2005, Greeley and Bunch, 1976). Mauna 

Ulu offers an opportunity to observe young flows, although the dominant weathering 

processes in this humid, tropical location are significantly different from processes active 

on Mars (Byrnes et al, 2004). Amboy Crater ties both sites together. Lava flows at 

Amboy are older than those produced by Mauna Ulu, and are located in the Mojave 

Desert so there are varying levels of mantling by wind-blown sand in dry conditions 

similar to what is observed at Tharsis. Plaut and others (1993) showed that silicic domes 

in the Inyo Chain of eastern California’s Long Valley Caldera are among the roughest 

naturally occurring surfaces ever measured, at every scale. For this reason, Obsidian 

Dome, one of three rhyolitic feature analyzed by Plaut and others (1994), was included as 

an additional dataset in this research. Surface roughness values of Obsidian Dome 

provide a highly valuable comparison to roughness values of Mauna Ulu, Amboy and 

Tharsis. 
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Basaltic lava generally produces effusive eruptions due to low viscosity and high 

magma temperatures, though sudden contact with colder material can result in explosions 

near the surface (Bonatti and Harrison, 1988; Cervantes and Wallace, 2003). Explosive 

basaltic eruptions are also linked to confining pressure from overlying rock or the 

atmosphere which induces rapid expansion of molten material (Parfitt, 2004). The lava 

produced by explosive eruptions are frothy and much rougher at small scales (many 

bubbles and tiny cracks) compared to those produced by effusive activity (more likely to 

have denser, glassy, ropy surfaces). As a lava flow travels downslope, increased flow 

speed causes it to fold or break into blocks if the surface is steeply sloping due to the flow 

front stagnating from cooling (Anderson et al., 1998; Guest et al., 2011). This will affect 

centimeter to decameter-scale roughness. If the underlying surface is flat, the flow will  

advance slowly and have more time to cool, producing a smooth crust while intact, and a 

rougher surface if the crust breaks into blocks (Figure 1d) (Anderson et al., 1998). 

Additionally, a high rate of magma effusion causes transition to blocky a’a’ flows which 

are rougher than pahoehoe (Peterson and Tilling, 1980; Kilburn, 1981; Cervantes and 

Wallace, 2003). Thus, lava morphology reflects the characteristics and eruption history of 

the volcano that produced the flow. 

If roughness can be used to identify lava flow features, and if these features 

reflect eruption conditions, then using patterns of roughness across a lava flow may later 

be tied to emplacement conditions such as rate of flow, viscosity, and underlying slope 

(Fink and Anderson, 2000; Anderson and Fink, 1989; Anderson and Fink, 1992; 

Anderson et al., 1995; Anderson et al., 1998; Mallonee et al., 2017; Guest et al., 2011; 

Fink and Grifiths, 1998; Peterson and Tilling, 1980; Long and Wood, 1986; Swanson, 
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1973) this allows the use of high-resolution topographic datasets to interpret volcanic 

eruptions. This is particularly important in planetary settings when topography data is 

typically more abundant, and higher resolution than visible light images.   

The central goal of this project was to develop an effective method of 

quantitatively comparing morphological features on terrestrial and extraterrestrial lava 

flows from their roughness characteristics. With high-resolution topographic data sets of 

Mars available from the High Resolution Imaging Science Experiment (HiRISE) and 

Context (CTX) cameras aboard the Mars Reconnaissance Orbiter, scientists are now able 

to detect medium-scale features (~1m on the ground) such as tumuli, ridges, and large 

folds that previously were not clearly visible in older, lower resolution datasets. Although 

recent missions have provided imagery capable of detecting lava flow features as small as 

a few meters (Theilig and Greeley, 1986), image interpretation does not always provide 

an unambiguous interpretation regarding the identity of a feature on another planet. For 

this reason more quantitative approaches may be needed to positively identify lava flow 

surface structures. High resolution topographic dataset such as Mars Orbiter Laser 

Altimeter (MOLA) and HiRISE typically have even better resolution than visible 

imagery – up to 0.3 meters per pixel. Improved resolution allows for new quantitative 

approaches such as roughness analysis to interpret volcanic surfaces. This offers a path to 

answering fundamental questions about emplacement rates and styles of volcanism on 

Mars. Detailing the true effect of the environment on volcanism (such as differences in 

gravity and atmospheric pressure) will further our understanding of the full range of 

possible volcanic activity, as well as provide insight regarding volcanism and associated 

hazards here on Earth.  
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Hawaii’s pristine flows that have not yet experienced any significant erosion 

provide roughness values of fresh lava surfaces, whereas Amboy’s older lava flows are 

partially covered by sand and yield roughness values of partially weathered and mantled 

surfaces that are believed to be morphologically similar to flows on Mars (Huges et al., 

2019; Greeley and Bunch, 1976). Using datasets from all three locations, this research 

project aimed to answer the following questions:  

Q1  Can roughness data from terrestrial locations be confidently related to lava 
flow features using Structure from Motion and LiDAR DEMs? 

 
Q2  Do martian lava flows fit into the range of observations from both 

terrestrial analogue sites based on roughness? 
 

Q3  What is the effect of wind mantling on roughness of large- and small-scale 
terrestrial lava flow features and can roughness help us detect mantled 
lava flow features on Mars? 

 
Q4  Can roughness reliably map volcanic features and environments on both 

Earth and Mars? 
 

 
The techniques presented here may allow scientists to positively detect much finer 

features in flow fields than previously possible, thus providing new insights about the 

quantitative relationships between surface morphology and eruption characteristics.   
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CHAPTER II 

PROJECT BACKGROUND 

2.1 Previous Studies of Lava Flow Roughness 

As described in the previous chapter, there is a wide range of research on surface 

roughness, as well as a variety of methods that can be used to quantify roughness. 

Measurements of lava flow surface roughness on Earth are used to describe changes in 

eruption conditions across a flow (Swanson, 1973; Kilburn, 1981; Greeley and Martel, 

1988), surface processes that have occurred post-emplacement (Wells et al., 1985; 

Shepard et al., 2001), and to map flow units (Gaddis et al., 1990; Morris et al., 2008). The 

relationship between lava roughness and composition has been explored by scientists 

investigating of basaltic lava flows (Farr, 1992; Moncrief and Rowland, 1991; Evans et 

al., 1992) and silicic flows (Anderson et al., 1998; Ramsey and Fink, 1999; Plaut et al., 

2002).  

The roughness of lava flows is a key focus of planetary research, and is 

particularly important to comparative studies of volcanism throughout the solar system. 

Planetary surface roughness is crucial to geologic mapping (Kreslavsky and Head, 2000), 

determining the suitability of potential landing sites (Golombek et al., 1997; Simurda 

2018), and constraining emplacement dates and extent of volcanic activity (Lopes and 

Kilburn 1990; McSween et al., 2003). The most common targets of planetary studies of 

lava flow roughness are Venus (Theilig et al., 1988; Head et al., 1992; Plaut et al., 1994; 

Stofan et al 2000; Byrnes and Crown, 2002) and Mars (Garneau and Plaut, 2000; 
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Keszthelyi et al., 2000; Giacomini et al., 2009; Crown et al., 2015; Mallonee et al., 

2017a; Mallonee et al., 2017b; Tolometti et al., 2017; Hamilton et al., 2018; Zanetti et al., 

2018; Huges et al., 2019). 

2.2 Geologic Settings 

Since Amboy, Mauna Ulu and Tharsis are all characterized by mafic 

compositions, differences in flow morphology are a result of local emplacement 

conditions such as underlying topography, cooling rate, emplacement rate, and extrusion 

style, as well as by global constants like gravity and atmospheric pressure (Guest et al., 

1987; Lopes and Kilburn, 1990; Byrnes and Crown, 2002; Diniega et al., 2018). These 

sites vary in age, amount of erosion, and their degree of mantling by aeolian deposits, as 

summarized in Table 2. 

Table 2: Differences in flow morphology and emplacement styles at the terrestrial 
analogue sites 
 Mauna Ulu, Hawaii Amboy, California Tharsis, 

Mars 
Flow 
morphologies 

Proximal 1: dense, thin, 
vesicular flows. Proximal 2: 
shelly, buckley, warped flows. 
Distal: inflated, hummocky, 
glassy flows. 
 

Proximal: smooth, 
dense, flat 
surfaced flows. 
Proximal: inflated, 
fractured flows. 

Varied 

Emplacement 
conditions 

Lava fountaining, vent 
overflows, lava tubes. 

Slow moving, 
inflated vent lavas. 
 

Varied  

Suitability as 
martian analogue  

Proposed similarities in 
morphology to young lava 
flows on Mars, as well as those 
in areas with a low dust index. 

Older lava flows 
affected by 
erosional 
processes similar 
to those on Mars. 

      - 
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2.2.1 Mauna Ulu, Hawaii 

Mauna Ulu is a small Hawaiian shield volcano (Figure 2) along Kilauea’s East 

Rift Zone and was last active from 1969-1974 (Swanson, 1973). During this period, it 

displayed a variety of eruption styles and produced an extensive (~62 km2) flow field 

(Byrnes et al., 2004; Moncrief and Rowland, 1991). This field is composed of multiple 

overlapping, compound flow units of differing age and emplacement style (Figure 3). 

Small- and large-scale roughness elements are present, enabling researchers to link 

morphology to emplacement conditions. These flows have also been studied as a 

terrestrial analogue for martian lavas (Byrnes et al., 2004). Specific conditions known to 

affect morphology in this flow field are rates of effusion and inflation, mechanisms of 

lava transport, storage and distribution, flow rheology, degassing and topography.  

 

 

 

 

 

 

 Figure 2: Google Earth Satellite photo showing the Mauna Ulu 
volcano (red circle), Mauna Ulu field site (yellow pin), lava 
flowing over the Pali (fault scarp). 
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Variations in these conditions have produced three pahoehoe morphologies at 

Mauna Ulu. The distinctions between each morphology are not sharp, instead there are 

gradual transitions between the types (Swanson, 1973). Swanson (1973) first described 

two pahoehoe morphologies found primarily in areas proximal to the vent. The first is 

characterized by a smooth surface. This type is dense and thin with minimal vesicles as it 

formed from lava fountaining where most of the gas was released during eruption 

(Swanson, 1973; Byrnes et al., 2004). A second type of near-vent pahoehoe is produced 

by lava overflowing from the vent with higher gas content and are more likely to buckle 

and display a shelly, vesicular texture (Swanson, 1973). The third type is commonly 

found in the distal reaches of the flow field and is delivered via lava tube systems 

(Swanson, 1973). Lavas still had a relatively high gas content when emplaced. As a 

result, these lavas have an inflated, hummocky topography and multiple gas cavities. 

They are highly lobate with glassy surfaces and tumuli are a significant feature (Byrnes et 

Figure 3: Photo taken from the Hawaii field site facing the Pali (fault scarp). 
Overlapping flows from the 1974 Mauna Ulu eruption are visible. Darker flows are 
rougher a'a' flows overlying the smoother pahoehoe. Photo by author. The car is 
approximately 4 meters long. 
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al., 2004). This inflated morphology dominated our chosen field site for this project and 

is morphologically similar to flows mapped in the Tharsis region of Mars (Theilig and 

Greeley, 1986). If relationships exist between roughness variables and emplacement 

characteristics at Mauna Ulu, they could provide insight into flow field development in 

this area, as well as eruptive processes occurring in other, more remote, and planetary 

locations. The Mauna Ulu flows are essentially unweathered and unmantled at the scale 

of our study. 

2.2.2 Amboy, California 

Amboy Crater is an extinct, ~79,000-year-old cinder cone and flow field in the 

eastern Mojave Desert (Phillips, 2003) that has also been used as a martian analogue by 

several researchers (Greeley and Bunch, 1976; Finnegan et al., 2004; Kienenberger and 

Greeley, 2012). The Amboy lava field surrounds the crater and covers an approximately 

70 km2 area between the Bullion Mountains to the west and the Bristol Mountains to the 

east. (Chesterman et al., 1971; Finnegan et al., 2004). These mountains provide a steady 

supply of sand-sized sediment and wind direction is predominantly south-east based on 

prominent wind streaks visible in aerial photography (Figure 4). The Amboy crater and 

flow field are the southernmost features in a NW chain of alkali-basalt volcanic centers 

from the Pliocene-Pleistocene Periods (Greeley and Bunch, 1976; Phillips, 2003). 

Eruptions at Amboy produced pahoehoe flows of alkali basalts that are chemically 

similar to ocean island basalts. Variations in elemental and isotopic concentrations 

indicate that melts of pure mantle were contaminated by mafic crust (Glazner et al., 

1991). Volcanism in the Mojave Desert is a result of tectonic activity in the Neogene that 

caused crustal extension and thinning (Garfunkel, 1974).   
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Amboy was last active approximately 10,000 years ago, when it produced 

hummocky pahoehoe flows with both inflation and deflation features up to 5 meters high 

(Greeley and Bunch, 1976). Tumuli and pressure ridges are abundant across the flow, as 

are a small number of lava channels. The basalt at this site is primarily dense, but some 

Figure 4: Google Earth Satellite image showing the Amboy Crater, the 
distinct wind streaks extending south east, and field sites marked by the 
yellow pins. 

Figure 5: View of Amboy Crater and surrounding sand covered lava flows. 
Photo by author, image oriented to the southwest. 
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vesicular units are present (Greeley and Bunch, 1976). Circular pits linked to collapse of 

the plastic crust around a single point mark the oldest lava flows in the southeastern and 

eastern area of the lava field. Assessments by Greeley and Bunch (1976) confirmed that 

these features are approximately 10 meters across and a few meters deep.  

Greeley and Bunch (1976) also described two lava flow units that were clearly 

discernable from aerial photos of the site: platform and vent lavas. The isolated flat, 

generally smooth basalt surfaces were named platform units and assumed to form from 

inflation of slow-moving lava. They are 4-5 meters higher than the surrounding sand. 

Vent lavas were named for their proximity to the field’s vents. These are about twice as 

high as the platform lavas and are fractured around the edges, possibly due to lava 

draining back to the vent. The surfaces of both units are eroded such that the much of the 

glassy zone and most of the vesicular zone commonly found on fresh pahoehoe are no 

long present (Greeley and Bunch, 1976).  

Sand does not evenly cover the area – sand thickness ranges from barely a 

centimeter to over a meter, gathering in the lowest points (Figure 5) (Finnegan et al., 

2004). There are several minor wind streaks but the most prominent one extends from the 

Amboy Crater. These streaks are areas where the wind is blocked by the elevated edge of 

another feature, and the underlying lava is exposed as dark streaks (Greeley and Bunch, 

1976). The main wind streak allows investigation the effect on roughness of varying 

degrees of mantling at the same site - the locations within the wind streak should be less 

mantled than those outside it. At the scale of study, lava flows at Amboy are moderately 

to heavily mantled, and are affected by aeolian and, to a lesser extent, fluvial processes 

(Byrnes et al., 2007; Kienenberger and Greeley, 2012).  
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2.2.3 Tharsis, Mars 

Though the most recent volcanic eruptions on Mars occurred over 3 billion years 

ago, previous missions to the planet have found evidence of extensive, even older 

volcanic activity (Carr and Head, 2010). Volcanic products cover vast areas of the 

surface, though altered in some places by interactions with water, wind and impacts with 

other bodies (Werner, 2009). Head et al. (2006) outline the three geologic periods of 

martian history that have been identified based on widespread surface activity during 

each time period: the Noachian, Hesperian and Amazonian. Pre-Noachian describes 

everything from the accumulation and differentiation of the planet to the start of the 

Noachian period approximately 4.1 to 3.8 billion years ago (Gya). Very little remains of 

the Pre-Noachian, except for the topographic dichotomy between the northern and 

southern hemispheres that formed during this period (Carr and Head, 2010). The 

Noachian was the most active period of martian history and is often referred to as the 

‘warm, wet Mars’ since extensive river systems as well as large lakes existed at the 

surface and erosion was highest during this period (Craddock and Howard, 2002). The 

Tharsis region (Figure 6) first became active during the Noachian (Carr and Head, 2010; 

Head et al., 2006).  

When the Hesperian period began approximately 3.7 Gya, hydrologic activity 

sharply decreased while the cryosphere thickened, and rates volcanism increased globally 

(Carr and Head, 2010). Massive flood lavas were deposited, and Olympus Mons steadily 

grew into the largest volcano in the solar system (Carr and Head, 2010). Occasionally, 

epic floods scoured the planet’s surface and temporary lakes and confined seas formed in 

topographic lows (Carr and Head, 2010; Hamilton et al., 2018; Hauber et al., 2011). 
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Volcanic activity largely ceased nearly 3.0 Gya when the Hesperian ended. Volcanic 

activity during the early Amazonian (1.5 Gya to present) was limited to the plains of 

Tharsis and Elysium in the equatorial regions (Figure 6) (Brož et al., 2017; Crown et al., 

2015). Currently, surface processes are related to glaciers, mass wasting and mantling 

(Carr and Head, 2010).  

Contrary to expectations, Hesperian volcanic units are more extensively covered in fine 

grained sediment than units from the Noachian. Higher rates of mantling for younger 

units could be explained by more recent pyroclastic events, lower rock strength of 

Hesperian products and patterns in dust concentration (Rogers and Head, 2017). 

Although the exact rates of weathering and erosion during martian history are unknown, 

Greeley and Bunch (1976) suggest that flows at Amboy, California have similar degrees 

of erosion to older lava flows on Mars (Figure 7). However, younger volcanic units near 

the planet’s shield volcanos and vents should be glassier and more vesicular, similar to 

Hawaiian pahoehoe (Greeley and Bunch, 1976).  

Figure 6: Digital elevation model of the Martian Western Hemisphere 
highlighting the Tharsis Region in the white box. The area in the blue circle 
contains the sites studied in this project. HiRISE Image: NASA/JPL/University 
of Arizona. 
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2.3 Topographic Datasets 

2.3.1 Background on Structure  
from Motion  

 
Stereophotography is the use of photo pairs showing the same feature from 

different angles to produce overlapping sets of images which, when viewed at the same 

time, create the illusion of depth. Photogrammetry is the use of photographs to measure 

distance. Both stereophotography and photogrammetry are central concepts for extracting 

surface roughness from photo surveys. Both approaches allow researchers to monitor 

changes in small features on the lava surface that may not be clearly visible in recent 

Light Detection and Ranging (LiDAR) surveys of the Mauna Ulu and Amboy flow fields. 

The best currently available LiDAR datasets for each site have a resolution of 1 meter per 

pixel, but DEMs generated using photogrammetry may have sub-cm scale resolution.  

Figure 7: Zoomed in view of the blue circle shown in figure 6: mantled lavas in the 
Tharsis region of Mars. The location of site used in this study is marked by yellow pin. 
HiRISE Image: NASA/JPL/University of Arizona. 
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Structure from Motion (SfM) is an affordable answer to the time-consuming and 

expensive methods of acquiring high resolution topographic data (James and Robson, 

2012; Smith et al., 2016). The process of SfM utilizes multiple overlapping photos of a 

feature of interest to create a dense point cloud and DEM equivalent to those produced by 

terrestrial and airborne laser scanning systems without consulting experts (Smith et al., 

2016; Verma and Bourke, 2018). Additionally, since the only requirement is a hand held 

Digital Single-Lens Reflex (DSLR) camera, SfM is extremely beneficial to research in 

the earth sciences as it is not always possible to transport bulky surveying equipment to 

remote field locations (Micheletti et al., 2015; Westoby et al., 2012). As a result, SfM has 

recently been applied to numerous and diverse investigations of earth, ocean and 

atmosphere (Favalli et al., 2012; Westoby et al., 2012; James and Robson, 2014; 

Javernick et al., 2014; Smith et al., 2016; Bywater-Reyes et al., 2017). Multiple DEMs 

were produced using Agisoft Photoscan software from 3D recreations of sections of the 

Amboy and Mauna Ulu sites. 

Agisoft PhotoScan is an image-processing software that generates high-quality 

three-dimensional products that can be further manipulated in Geographic Information 

System (GIS) software. The process of making a 3D model and DEM requires initiating 

several automated steps, following an intuitive work flow toolbar (Verma and Bourke, 

2018). The creators of Agisoft also provide simple DEM generation tutorials for beginner 

users in the user manual (Agisoft LLC, 2018). The user first uploads photos to Agisoft, 

and sorts images to be used in the model based on quality. At this point image markers 

such a flags and poles should be identified and labelled if any were used. The software 

then adjusts camera positions for each image and aligns the images to produce a sparse 
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point cloud. The user must instruct Agisoft to build a dense point cloud using depth and 

distance data supplied by the cameras. The final steps are creating a polygonal mesh 

based on the dense point cloud, and draping images over the mesh (referred to as adding 

texture). Creating a tiled model produces an extremely detailed rendition of the surface 

but requires a large amount of processing power and time. Due to time restrictions, no 

tiled models were used in this project. At this point the 3D model can be exported as a 

DEM for use in other software, saved for later work or used to generate an orthomosaic. 

2.3.2 Light Detection and Ranging 

Light Detection and Ranging (LiDAR) is a type of active remote sensing that 

converts elevation data to 3D point clouds, which in turn are used to produce DEMs 

(Mallet and Bretar, 2009). A laser pulse is emitted from the ground-based or terrestrial 

scanning system and the distance of an object from the sensor is determined based on the 

speed and strength of the returning laser beam (Mallet and Bretar, 2009). LiDAR can 

acquire over 250,000 topographic points per second (Deeb and LeWinter, 2018). LiDAR 

datasets in this project were acquired from the OpenTopography database and through 

personal communications. Similar to SfM, LiDAR is valuable for a wide variety of 

research topics in the earth sciences (Lefsky et al., 1999; Drake et al., 2002; Jutzi et al., 

2003; Fidera et al., 2004; Sithole and Vosselman, 2006; Irish and Lilycrop, 1999) 

however terrain, amount of vegetation cover, and weather conditions affect the quality of 

the results (Hodgson and Bresnar, 2004). One-meter per pixel LiDAR data of Amboy and 

Obsidian Dome was obtained from OpenTopography (www.opentopography.org) and 

through personal communication with Dr. Steven Anderson and Adam LeWinter to 

determine roughness features greater than a meter. 
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2.3.3 High Resolution Digital Elevation  
Models 

 
The Mars Reconnaissance Orbiter (MRO) launched in 2005 with the goal of 

finding evidence persistent water on the surface of Mars (McEwen et al., 2007). The 

orbiter carries six research tools including the HiRISE and CTX cameras (Malin et al., 

2007). The HiRISE products have a pixel resolution as low as 0.25 meters per pixel in 

visible light wavelengths, and 1 meter in near-infrared wavelengths (Kirk et al., 2008). 

To obtain high resolution topographic data of Mars, stereo pairs of HiRISE images 

showing the same area from different observation angles are processed into DEMs (Li et 

al., 2011; Kirk et al., 2008). Images are corrected to remove distortion then triangulated 

to the Mars Orbiter Laser Altimeter (MOLA) global elevation map (Li et al., 2011). The 

terrain model is produced by a sophisticated software pipeline and any remaining 

inaccuracies are removed. Resolution slightly decreases during DEM creation, resulting 

in topographic products that are 1 – 2 meters per pixel (Kirk et al., 2008). Producing a 

HiRISE DEM is a labor and time-intensive process, so readily available visible light 

datasets greatly outnumber topographic data (Li et al., 2011). Though high resolution 

topographic coverage of the planet is steadily increasing, imaging areas for HiRISE are 

chosen based on scientific importance to upcoming missions and features of interest 

identified by Mars Global Surveyor, Mars Odyssey, or CTX images (Malin et al., 2007).  
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CHAPTER III 

METHODOLOGY 

The goals of this project are to develop a cost-effective, repeatable method to 

compare lava surface roughness of multiple volcanic environments at a variety of scales 

and investigate the effect of mantling on roughness. First, I acquired high resolution 

topography for the analogue sites using SfM (Agisoft, 2018; Verma and Bourke, 2018) 

and LiDAR, as well as topography data of Tharsis from HiRISE DEMs. Then I apply two 

new approaches to determining roughness on lava flows – the Topographic Position 

Index (TPI) and Roughness Doughnut (RD). Finally, I compare the terrestrial roughness 

values and patterns to those on Mars and use Principal Component Analysis (PCA) to 

better understand the relationships between terrestrial and martian roughness.  

Topographic Position Index (TPI) and Roughness Doughnut (RD) surface 

roughness values of Martian lavas were then compared to roughness of Hawaiian and 

Californian lavas from sub-meter to decameter scales. TPI is an extension for ArcGIS 10 

that calculates roughness values across a DEM and creates groupings of similar 

roughness values within the study area. The TPI extension uses detrended (corrected to 

decrease the effect of local slope) elevation grid data to automatically categorize each cell 

based on the elevation and slope of neighboring cells. RD is similar to the TPI, however 

elevation data is not adjusted for regional slope, and an annular neighborhood geometry 

was used in place of a circular one.  
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3.1 Field Data Collection  

3.1.1 Mauna Ulu, Hawaii 

On March 30 and 31st, 2018, I established a survey area on pahoehoe flows from 

the 1969-1974 eruption of Mauna Ulu, Hawaii. This was a 50-meter by 50-meter area 

near the Chain of Craters Road in the Volcanoes National Park (Figures 1, 8). This 

location was selected for the variety lava flow features of different scales present within 

an accessible, manageable area with minimal vegetation (Figure 9). For this project I 

used a Nikon D3300 digital single-lens reflex (DSLR) camera with an 18-55mm variable 

zoom lens. The focal length was kept fixed at 24 mm while capturing the surface of this 

site. Following the method suggested by the Agisoft user manual (Agisoft, 2018), I 

photographed the surface of this flow meticulously in parallel strips while maintaining 

the minimum 60% overlap between all frames needed to create a gapless DEM of the 

site. The full site was divided into 25 10-meter by 10-meter sub sections to better track 

progress over both days, ensure proper coverage and improve efficiency. The 3D models 

of the Mauna Ulu site compile over 3000 photos.  

Figure 8: Satellite Image from Google Earth showing the 50m by 50m study site on 
the Mauna Ulu flows, and proximity to Chain of Craters Road. 
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3.1.2 Amboy, California  

At Amboy, I was unable to fit all features of interest within a single 50-meter by 

50-meter area. Lava flow features were spread over greater distances than the Mauna Ulu 

site. For this reason, I chose to employ SfM on multiple smaller sites to ensure a variety 

of topographic features, scales and sand quantities were represented in DEMs. Since the 

primary flow features such as tumuli, folds, and inflation plateaus at Amboy were smaller 

than those observed at Mauna Ulu and altered by wind and sand erosion, I acquired 

images from four smaller sites on and off the wind streak (Figure 3).  These smaller, 

‘focus’, sites were either adjacent to or just outside of the larger study areas, and were 

selected to generate cm-scale DEMs of mantled areas in Agisoft PhotoScan.  

Each focus site at Amboy displayed distinct textures that were too small to be 

clearly resolved at the DSLR focal length used at both the main Amboy sites, and in 

Hawaii (24 mm). These focus sites were covered in higher detail (~75% overlap) and 

35mm focal length after zooming in on the surfaces. DEMs of these higher coverage, 

Figure 9: View from Mauna Ulu field site facing the Pacific Ocean to 
the south. 
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greater zoom, and smaller areas will provide topographic data of fine-scale features 

without overwhelming the software. Approximately 2000 photos were used to create 

DEMs of four sites at Amboy. 

3.2 Assessing Roughness 

DEMs from SfM and LiDAR were processed in ArcGIS at a range of resolutions 

to determine which scale was the most effective for identifying and describing different 

volcanic features based on roughness, as well as the effect of mantling. This was done to 

confirm the resolution necessary to classify similar features and processes on Mars 

(Whelley et al., 2014). Traditionally, statistical analyses are used to measure changes in 

roughness at varying scales (Farr, 1992). I used the highest accuracy settings for image 

alignment, and the default settings to optimize the alignment. To obtain an accurately 

scaled DEM from a textured model, I chose to manually rotate and check the scale of 

each model. 

This project utilized the Topographic Position Index (TPI) by Jenness (2006), in 

addition to the Roughness Doughnut method adapted for this project. Typically, most 

roughness investigations describe surfaces using the root-mean-square (RMS) height of a 

topographic profile (Bretar et al., 2013; Farr, 1992; Smith, 2014; Tian et al., 2011). RMS 

is a measure of how much the surface deviates from a perfectly smooth plane equal the 

mean of all elevation values across the profile. Elevations are squared to remove negative 

values, then these squared values averaged. Finally, the square root is calculated. This is 

also referred to as the standard deviation of elevation.  RMS is very useful as a tool for 

vertical roughness, but it does not incorporate horizontal patterns (Bretar et al., 2013). To 

accurately reflect lava surface roughness, elevations in 360 degrees around a point should 
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be considered, rather than only measuring topographic changes along one horizontal 

direction. For this reason, we opted to use circular and annular cell neighborhoods to 

describe roughness values at each site. Furthermore, doughnut-shaped cell neighborhoods 

show if the average elevation within the annulus is higher or lower than the central cell 

which has the potential to show low areas preferentially infilling with aeolian material, an 

ability that the other roughness approaches lack.  

3.2.1 The Topographic Position Index  

As shown in Figure 10, a positive TPI indicates that the cell is higher in elevation 

(or more steeply sloping) than the average of its neighbors up to a specified distance 

away, whereas a negative one shows the cell is lower than the average surrounding 

elevations (Figure 10) (Equation 1) (Weiss, 2001; Jenness, 2006). The cell is classified by 

the magnitude of the difference in elevation along with the slope value. The cell 

neighborhood can be adjusted to produce varying TPI values for different scales, thus 

changing the scale of roughness being measured (Jenness, 2006). This extension was 

originally created for use in geomorphology- and hydrology-based projects (Brasington et 

al, 2012; Jenness, 2006) but may be useful in assessing the topographic characteristics of 

a lava flow surface by building a catalogue of features present at each scale. This project 

utilized circular TPI neighborhoods at sub-meter, 1-, 10-, 25-, and 50-meter scales. 

However, since the TPI method averages all values within a specified radius, the 

roughness patterns and values were not distinct especially at small scales (<10m).   

𝑇𝑃𝐼 =
௖௘௡௧௥௔௟ ௖௘௟௟ି ௠௘௔௡ ௢௙ ௘௟௘௩௔௧௜௢௡௦ ௜௡ ௧௛௘ ௖௜௥௖௟௘

ௌ௧௔௡ௗ௔௥ௗ ஽௘௩௜௔௧௜௢௡ ௢௙ ௘௟௘௩௔௧௜௢௡௦ ௜௡ ௧௛௘ ௖௜௥௖௟௘
              (1) 
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3.2.2 The Roughness Doughnut Method 
 
The Roughness Doughnut (RD) method is a modified TPI approach that uses the 

Focal Statistics and Raster Calculator features in ArcGIS to produce a raster that 

effectively visualizes roughness at a specified scale. The goal of the RD was to compare 

only the elevations a certain distance away from the main cell but in every direction, 

rather than comparing and averaging all cells within a specified radius around the main 

pixel. To achieve this, I modified the TPI method so that only elevations a certain 

Figure 10a (above): Image showing the effect of neighborhood scale on TPI elevation. 
(Jenness, 2006). 
Figure 10b (below): Image showing the effect of neighborhood scale on TPI slope position 
(Weiss 2001). 
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distance from the central cell are considered. This provides a scale-dependent measure of 

roughness while also preserving data on the relative position of the source cell compared 

to average, which may be useful in determining if an area is mantled by aeolian material. 

Focal statistics generates a new raster based on a statistic of all the cells in the selected 

neighborhood of the original DEM. The statistics used for this project were mean and 

range. The neighborhoods were annular, or doughnut-shaped, with one circle inside of 

another. Only cells that were located outside the radius of the smaller circle but within the 

larger circle were counted as part of the neighborhood. As with TPI, the size of the 

neighborhood was adjusted to change the scale of roughness features being observed. In 

this case, the inner radius, or ‘doughnut hole’, was changed while the outer radius or 

‘doughnut thickness’ stayed constant at 2-3 cells larger than the inner circle to ensure 

only elevations near the inner circle radius were considered. Inner radii were 1-,10-, 50-, 

and 100-meters. Cells that had no elevation data attached, most often due to DEM dataset 

artifacts or errors, were excluded from calculations. After creating new rasters for the 

mean and range of elevation values for a specific scale, Raster Calculator was used to 

find the RD value by Equation 2:  

௠௘௔௡ ௢௙ ௣௢௜௡௧௦ ௜௡ ௧௛௘ ௔௡௡௨௟௨௦ି௖௘௡௧௥௔௟ ௣௢௜௡௧ 

௥௔௡௚௘ ௢௙ ௣௢௜௡௧௦ ௜௡ ௧௛௘ ௔௡௡௨௟௨௦ 
= 𝑅𝐷       (2) 

Based on this equation, a larger value indicates a minimal amount of topographic 

change of points in the annulus at the selected scale (the range), since the difference 

between the actual point and the average is larger than the range of values. A small value 

represents the inverse of this – the range is larger than the mean and central values, so 

there is a wider variety of elevations present. Values approaching 0 represents a smooth 

surface at the scale of the RD radius – there is no difference in the mean of values or in 
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the annulus, compared to the central point. Unlike standard deviation, RD values can be 

positive or negative. Values below 0 indicate more topographic variation in surrounding 

cells than the central cell.  

Though the TPI and RD methods have similarities, there are a few key 

differences. First, only TPI detrends the data during processing. Therefore, regional slope 

may influence the roughness values calculated by RD.  Additionally, the TPI method 

includes all values within the circular neighborhood to find the averages of slope and 

elevation that it uses to calculate the final value. This produces a more general roughness 

signature compared to RD which only includes cells within a tight 1-2 cell annulus along 

the circumference of the 1-, 10-, 50- and 100-meter specified radii.  

Basaltic lava flows flow farther before cooling than lavas with higher silica 

content due in part to their lower viscosity. As a result, the flows are typically much 

thinner than their silicic counterparts. At a location dominated by overlapping basalt 

flows, we expect the range of values to remain low at all scales since, except for tumuli 

and inflation features, pahoehoe does not typically have dramatic variations in height 

over decameter and larger scales.  Silicic environments, such as the Mono-Inyo Domes in 

California, form from more viscous lavas and are anticipated to be rougher at each scale 

(Lopes and Kilburn, 1990; Anderson et al., 1998; Stofan et al., 2000; Plaut et al., 2002).  

3.3 Comparisons to Roughness on Mars 

I then compared roughness values from Amboy and Mauna Ulu to lava flows on 

Mars. To directly describe roughness of larger martian features, I obtained DTMs of lava 

flows from the University of Arizona HiRISE online database.  I described lava flow 

roughness using both the TPI and RD methods. Hawaii’s pristine flows provide us with 
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roughness values of fresh lava surfaces, Amboy features recent lava surfaces partially 

covered by sand, and Martian flows could span what is observed at both sites. Thus, data 

from both locations on Earth should provide the range of roughness measurements 

needed for a full comparison of terrestrial lava flows with flows on Mars. 

3.4 Principal Component Analysis 

Principal Component Analysis (PCA) is statistical method of data compression. It 

is used to reduce a large dataset of correlated variables without sacrificing important 

information contained within the data. This method transforms the related variables into a 

smaller group of unrelated variables known as principal components. The first principal 

component contains most of the variability in the dataset, and successive components 

gradually account for less variability. The mean, variance, skewness and kurtosis of the 

distributions of RD, TPI and slope were calculated in Excel. The PCA was completed 

using the remotes (Csárdi et al., 2018) and ggbiplot (Vu, 2011) packages in R version 

3.5.1 (R Core Team, 2015).  PCA is often applied to geologic research with broad, 

complex datasets. For example, Bywater-Reyes et al. (2017) used PCA to identify the 

physiographic variables best related to sediment yield, whereas Burzynski (2015) utilized 

PCA and machine learning to classify lava lake thermal patterns and relate them to 

eruption processes. PCA was used highlight trends in roughness variables at different 

scales and locations.  
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CHAPTER IV 

RESULTS 

This chapter presents lava surface roughness values obtained from TPI and RD 

methods applied to the Mauna Ulu, Amboy, Obsidian Dome and Tharsis sites at a variety 

of scales. DEMs generated using SfM are shown first, followed by TPI maps and RD 

maps of each field location. Although Obsidian Dome was not a key part of this project, 1 

meter per pixel LiDAR data was obtained from the Opentopography website 

(opentopo.sdsc.edu) to illustrate the roughness differences between silicic and mafic lava 

flows. TPI values are higher along the surface of Obsidian Dome than TPI values at the 

other locations, at every scale observed, consistent with observations by Plaut et al. 

(2004). Only the best, most complete Agisoft model from each site was selected to create 

a DEM with sub-meter resolution that would be representative of large-scale processes at 

that location. At Mauna Ulu, the best model was of section #22 (Figure 11), whereas 

focus site #4 was the best product from Amboy (Figure 12).  

 

 

  



31 
 

 
 

4.1 Digital Elevation Models Using Structure  
from Motion 

 

 

 

 

 

 

  

Figure 11a (left): DEM of Mauna Ulu SfM section #22. Figure 11b (right): Hillshade of this 
DEM.  

Figure 12a (left): Digital Elevation Model of focus site #4 at Amboy. Figure 12b (right) A view 
of this DEM with hillshade applied in ArcGIS. 
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4.2 Topographic Position Index  
4.2.1 Obsidian Dome 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13a (top left): Hillshade of Obsidian Dome.  
Figure 13b (top right): TPI map of Obsidian Dome, California at the 
1-meter scale.  
Figure 13c (bottom left): TPI map of Obsidian Dome, California at 
the 10-meter scale. 
Figure 13d (bottom right): TPI map of Obsidian Dome, California 
at the 100-meter scale. 
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4.2.2 Mauna Ulu Section #22 
 

At Mauna Ulu, TPI values from 0.143 centimeter per pixel SfM DEMs had a 

range of -0.14 to 0.15. Ropey folds show an alternating pattern of low-high-low values in 

a wave-like pattern. Overlapping pahoehoe toes display a scalloped pattern of roughness 

characterized by high TPI values immediately followed by low ones (Figure 14). The 

Figure 14a (top left): Hillshade of Mauna Ulu section #22 
Figure 14b (top right): TPI map of Mauna Ulu section #22 at the 0.14cm scale.  
Figure 14c (bottom left): TPI map Mauna Ulu section #22 at the 1.4cm scale. 
Figure 14d (bottom right): TPI map of Mauna Ulu section #22 at the 14cm scale. 
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scale of features highlighted here appear to be flow margins, rippling folds and cracks 

less than a meter in size. Intermediate TPI values were assigned to the flat spaces 

surrounding more distinct features. The lowest values aligned with ripples, and cracks.  

 
4.2.3 Amboy Focus Site #4  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

The DEM from SfM focus site #4 had TPI ranges from -0.4 to 0.4. The roughest 

areas, marked by the highest TPI values (>0.2), outlined the top and sides of large cracks 

in the lava. Intermediate TPI values (-0.2< x <0.2) were assigned to the polygonal 

Figure 15a (top left): Visible light image of Amboy Focus site #4 
Figure 15b (top right): Hillshade of Amboy Focus site #4. 
Figure 15c (bottom left): TPI values for Amboy Focus site #4 at the 6mm 
scale. 
Figure 15d (bottom right): TPI values for Amboy Focus site #4 at the 6cm 
scale. 
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fractured plates and sand filling in the base of the large crack bisecting the site. The 

lowest values (<-0.2) were clustered in the base of smaller cracks on the surface of the 

feature.  

4.2.4 Amboy Light Detection and Ranging 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 16a (left): TPI values at the 1-meter scale on an area outside of the 
wind streak at Amboy.  
Figure 16b (right): TPI values at the 10-meter scale on an area outside of 
the wind streak at Amboy. 

Figure 17a (left): TPI values at the 1-meter scale on an area within the wind 
streak at Amboy.  
Figure 17b (right): TPI values at the 10-meter scale on an area within the 
wind streak at Amboy. 
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Figure 18a (left): TPI values at the 1-meter scale on an area within the 
wind streak at Amboy.  
Figure 18b (right): TPI values at the 10-meter scale on an area within the 
wind streak at Amboy. 

Figure 19a (left): TPI values at the 1-meter scale on an area within the 
wind streak at Amboy.  
Figure 19b (right): TPI values at the 10-meter scale on an area within the 
wind streak at Amboy. 
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TPI values at Amboy ranged from -0.9 to 2.31 on the 1 meter per pixel airborne 

LiDAR dataset. The sharpest transitions from low to high values were along lobate 

features, producing arcuate patterns (Figures 16-19). The scale of features highlighted 

here appear to be flow margins and flow toes upwards of 5 meters in size. The one-meter 

TPI maps were not as clear as the larger scales but seem to emphasize sand deposits 

surrounding and covering the lava flows.  

4.2.5 Tharsis 
 

 
 
 
 

Figure 20a (left): TPI Surface roughness at the 1-meter scale in the Tharsis region of Mars. 
Figure 20b (right): TPI roughness at the 10-meter scale in the Tharsis region of Mars. 
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TPI values of clipped regions near the Tharsis Tholus shield volcano span -0.4 to 

0.4. This aligns with TPI values of the Amboy focus site recreated using 

photogrammetry. TPI maps illustrate similar patterns to those observed at the Amboy 

lava field in the 1 meter per pixel LiDAR dataset. Linear trends of lobate features are 

clearly visible at scales equal to and greater than 10 meters. Scalloped TPI patterns also 

outline the remnants of martian lava flows as they do at Amboy. Again, one-meter TPI 

maps of Tharsis are pixelated but show undulating patterns on the surface of the flows 

related to sand dunes.  TPI values for the Amboy and Mauna Ulu SfM DEMs decrease as 

Figure 21a (left): TPI surface roughness at the 1-meter scale in the Tharsis region of 
Mars. 
Figure 21b (right): TPI surface roughness at the 10-meter scale in the Tharsis region of 
Mars. 
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neighborhood radius increases whereas the TPI roughness values for the Amboy LiDAR 

and Tharsis DEMs increase along with radius.  

4.3 Roughness Doughnut 

As described in the Methodology section, the RD method displays roughness 

values relative to a focus cell, based on neighborhood elevation statistics. RD considers 

cells along the circumference of a circle, unlike the TPI which averages all points within 

the full area of the circle, thereby dampening roughness signals at a specific distance 

from the source cell. RD values and related elevation products should identify surfaces 

partially mantled by sand cover as sand should preferentially fill in low areas resulting in 

a lower elevation range and less positive RD values than a non-mantled surface. The 

larger the RD value, the lower the topographic variation at the selected scale. A small 

value represents the inverse of this – a wider variety of elevations at the scale.  
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4.3.1 Obsidian Dome 
  

Figure 22a (top left): RD map of Obsidian Dome, California at the 1-meter scale.  
Figure 22b (top right): RD map of Obsidian Dome, California at the 10-meter 
scale. 
Figure 22c (bottom left): RD map of Obsidian Dome, California at the 50-meter 
scale. 
Figure 22d (bottom right): RD map of Obsidian Dome, California at the 100-meter 
scale. 
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4.3.2 Mauna Ulu Section #22 
 

  

Figure 23a (top left): RD map of Mauna Ulu section #22 at the 0.14cm 
scale.  
Figure 23b (top right): TPI map Mauna Ulu section #22 at the 1.4cm scale. 
Figure 23c (bottom): TPI map of Mauna Ulu section #22 at the 14cm 
scale. 
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4.3.3 Amboy Focus Site #4 
 

Figure 24a (left): RD values for Amboy Focus site #4 at the 0.6cm scale.  
Figure 24b (right): RD values for Amboy Focus site #4 at the 6cm scale. 
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4.3.4 Amboy Light Detection and Ranging  
  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 25a (left): RD values at the 1-meter scale on an area outside of the wind streak 
at Amboy.  
Figure 25b (right): RD values at the 10-meter scale on an area outside of the wind 
streak at Amboy.  

WS WS 

Figure 26a (left): RD values at the 1-meter scale on an area outside of the wind 
streak at Amboy.  
Figure 26b (right): RD values at the 10-meter scale on an area outside of the 
wind streak at Amboy. 

WS WS 
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Figure 27a (left): RD values at the 1-meter scale for an area within the wind streak 
at Amboy.  
Figure 27b (right): RD values at the 10-meter scale for an area within the wind 
streak at Amboy.  

 

Figure 28a (left): RD values at the 1-meter scale on an area within the wind streak 
at Amboy.  
Figure 28b (right): RD values at the 10-meter scale on an area outside of the wind 
streak at Amboy. 

OS OS 

OS OS 
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RD values acquired for the airborne LiDAR dataset at Amboy ranged from -2.44 

to 1.25. Ten-meter maps show the general outline of the exposed lava but not with the 

detail shown by TPI. 

4.3.5 Tharsis 
 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29a (left): Surface roughness at the 1-meter scale in the Tharsis region of 
Mars. 
Figure 29b (right): Surface roughness at the 10-meter scale in the Tharsis region 

Figure 30a (left): Surface roughness at the 1-meter scale on an area in the Tharsis 
region. 
Figure 30b (right): Surface roughness at the 10-meter scale on an area in the 
Tharsis region 
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At Amboy and Mauna Ulu, RD values decrease as doughnut radius increases. The 

opposite is true for lava flows on Tharsis – they show an increase in RD as the doughnut 

radius widens. Table 3 below summarizes the results of TPI and RD at each scale and 

location.  

Table 3: Results summary 
  TPI Scale RD Scale 
Site Resolution  1m 10m 50m 100m 1m 10m 50m 100m 
Obsidian 
Dome 

1m/ pixel 
LiDAR 

-4.9 
to 
2.8 

-6.0 
to 8.6 

-12 to 
17 

-19.6 
to 
24.6 

-2.0 
to 
2.5 

-2.28 
to 1.5 

-12.5 
to 
17.7 

-19.6 
to 
24.6 
 

Amboy - 
WS 

1m/ pixel  
LiDAR 

-0.8 
to 
0.9 

-1.8 
to 2.1 

    -
1.2 
to 
0.88 

-1.48 
to 0.9 

  

Amboy - 
OS 

1m/ pixel 
LiDAR 

-1.5 
to 
0.9 

-1.5 
to 1.2 

  -
1.59 
to 
0.91 
 

-1.53 
to 
1.25 

  

Tharsis, 
Mars 

2m/pixel 
HiRISE 
DEMs 

-0.4 
to 
0.4 

-1.48 
to 
1.48 

  -
0.74 
to 
0.74 

-1.8 
to 1.6 

-2.5 
to 6.0 

-3.25 
to 
6.68 

  TPI Scale  RD Scale  
 0.14

cm 
1.4 
cm 

14 
cm 

 0.14
cm 

1.4 
cm 

14 
cm 

 

Mauna 
Ulu 

0.14 
cm/pixel 
SfM 

-
0.14 
to 
0.15 

-0.11 
to 
0.14 

-0.06 
to 
0.07 

   -53 
to 
20 

 -3.9 
to 2.7 

-0.18 
to 
0.16 
 

 

  TPI Scale  RD Scale  
 6 

mm 
6 cm   6 

mm 
6 cm   

Amboy 0.65mm/ 
pixel SfM 

-
0.39 
to 
0.37 

-0.39 
to 
0.40 

  -
0.20 
to 
34  

-0.10 
to 43 
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4.4 Principal Component Analysis of  
Roughness Measurements 

 
A Principal Component Analysis (PCA) was performed to condense the data 

while highlighting the underlying structure. The sub-meter resolution SfM datasets were 

analyzed separately from, as well as alongside, the LiDAR datasets to investigate any 

trends in roughness unique to fine-scale features. The graph shows that Obsidian Dome is 

characterized by far higher values of slope and RD than the other locations, consistent 

with other roughness studies of lava surfaces (Plaut et al., 2002; Plaut et al., 1994), 

whereas the Amboy data have a higher range of TPI roughness values. Tharsis data are 

the most tightly clustered of the locations and set apart by their higher minimum and 

mean RD values. Each location appears to be differentiated along PC1, whereas 

roughness scales are separated along PC2. Tharsis sites plot higher along PC2 than 

Amboy but have the lowest PC1 values of all locations.  

 

  

Figure 31: PCA plot showing the roughness variables most closely linked to Principal 
Component 1 (x-axis) and Principal Component 2 (y-axis) 
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Figure 32: PCA plot showing points colour-coded by location and 
relabeled by scale. Variables were removed to declutter the display. 

Figure 33: PCA plot showing points grouped by scale. Variables were 
removed to declutter the display. 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

Roughness values from TPI and RD methods, along with their statistical 

moments, were assessed according to the science questions posed in the introduction. The 

main goals of this research project were to determine if roughness can be tied to 

emplacement conditions, and whether martian lava flows fit within the range of 

roughness observations at both analogue sites on Earth. Additional objectives were to 

describe the effect of mantling on roughness of lava flow features and determine if the 

methods presented here can positively identify mantled martian lavas. Finally, I aimed to 

confirm if roughness patterns produce valuable maps of terrestrial and extraterrestrial 

volcanic environments. These questions are addressed in the order that they were 

presented here.  

5.1 Description of Lava Flow Features Using  
Roughness Patterns 

 
My first research goal was to use roughness values and patterns to describe any 

visible lava flow features, and relate these features to emplacement conditions in an effort 

to further current understanding of martian geologic history. Table 4 summarizes the lava 

surface features inferred from roughness patterns at increasing scales. TPI results for the 

Amboy SfM focus site #4 best outlined fractures and cracks in the lava. TPI patterns 

based on the 1 meter per pixel airborne LiDAR dataset at Amboy displayed many 

volcanic features such as flow margins, lobate pahoehoe toes, and inflated platform 

flows. 
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Table 4: Lava surface features inferred from roughness values and patterns 

 

TPI maps at the 1-meter scale were the least diagnostic, but variations from 

extremely high to extremely low values over short distances seem to indicate sand 

deposits. These sandy areas surround the edges of the lava flows which are represented 

by higher, consistent roughness values at the 1-meter scale (Figures 16a-19a). Lobate 

features displayed as arcuate TPI patterns were interpreted as flow margins greater than 

5-meters high – the minimum average height of flow edges at Amboy according to 

Greeley and Bunch (1976). TPI radii larger than 25 meters showed channelized patterns 

of TPI values radiating from the Amboy Crater cinder cone and winding between some 

lava flow edges suggesting fluvial erosion. RD values acquired for the airborne LiDAR 

dataset at Amboy showed the margins of exposed lava flows at the 10-meter scale 

(Figures 16b-19b).  

The 1-meter RD maps show sharp changes between low to moderate roughness 

values occurring in spaces that appear smooth on hillshade maps (Figures 25a – 28a). 

These are also interpreted as pockets of sand with meter to sub-meter aeolian features. 

Sub-meter RD values for Amboy highlight similar features as the TPI maps at the same 

 Small scale Medium scale Large scale 

 
Millimeter to 
Centimeter  

Centimeter to 
meter  

Meter  
Decameter and 
Larger  

Dataset and 
resolution  

SfM (sub-
meter)  

SfM (sub 
meter)  

LiDAR (1m) LiDAR (1m) 

 
TPI  

-0.40 to 0.40 -0.14 to 0.15 -0.90 to 1.15 -1.84 to 2.13 

 
RD  

-20.90 to 34.41 -3.91 to 2.77 -1.59 to 0.91 -2.44 to 1.25 

Inferred 
features 

Small cracks   
and folds 

Toe margins, 
ropey folds 
and blocks 

Flow margins, 
aeolian 
deposits and 
bed forms  

Full flow 
fields, sheeted 
flows and 
levees 
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scales but do so more sharply (Figures 15 and 24). Additionally, though TPI and RD 

maps of Mauna Ulu SfM section #22 (Figures 14 and 23) show the same features, the 

details are better represented by RD maps. In the same way, ropey and ridged features on 

the surface of pahoehoe toes, as well as the scalloped pattern of overlapping toe margins, 

are illustrated in a more distinct way by RD.    

TPI values of clipped regions near the Tharsis volcanoes are similar those of the 

Amboy SfM focus site. Both locations also display similar linear trends of low RD values 

surrounded by increasingly higher ones (Figures 29 and 30). This is attributed to sand 

dunes oriented by the dominant wind direction. Additionally, TPI maps of Tharsis 

(Figures 20 and 21) illustrate similar patterns to those observed at the Amboy lava field 

in the 1 meter per pixel LiDAR dataset. Linear trends of lobate features are clearly visible 

at scales equal to and greater than 10-meters. Separate, scalloped TPI patterns also 

outline the remnants of martian lava flows as they do at Amboy. Again, one-meter TPI 

maps are pixelated but show undulating patterns on the surface of the flows interpreted as 

dune forms similar to those at Amboy. Since Tharsis roughness values and patterns 

resemble those of Amboy more closely than Hawaii, I can infer that the lava flows in the 

selected martian sites share a similar emplacement and/or erosional history with Amboy. 

This is supported by literature describing the effusive basaltic volcanism of the Tharsis 

volcanic province (Greeley and Bunch, 1976; Wise et al., 1979; Finnerty et al., 1988; 

Watters, 1991; Mege and Masson, 1996; McEwen et al., 1999; Christensen et al., 2000; 

Fink and Anderson, 2000; Halliday et al., 2001; McSween et al., 2003; Finnegan et al, 

2004; Bleacher et al., 2007; Lang et al., 2009; Hauber et al., 2011; Brož et al., 2017; 

Huges et al., 2019). 
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5.2 Comparison of Martian and Terrestrial  
Lava Flows 

 
Recall that, whereas RD considers only cells within a 1-3 pixel wide annulus at a 

specified radius away, the TPI averages all points within the area of the circle resulting in 

slightly different roughness signals.  This project compares both methods, at varying 

scales, for multiple volcanic environments. I calculated the mean, variance, skewness and 

kurtosis for both roughness methods, as well as surface slope to gain a better 

understanding of statistical trends at the locations. The result was a bulky dataset with 

many variables. I used Principal Component Analysis (PCA) to effectively visualize and 

draw patterns from the multivariable data. The results of the PCA showed several 

principal components, one for each variable put into the analysis, with PC1 accounting 

for 39.28% and PC2 explaining 21.06% of the total variation in the dataset. The majority 

of the information in the dataset (60.34%) is therefore represented by the first PCA plot 

(Figure 31). The graph shows that Obsidian Dome is characterized by far higher values of 

slope and RD than the other locations, while Amboy data have a higher range of TPI 

mean roughness values. Tharsis data are the most tightly clustered of the locations, and 

set apart by their higher minimum and mean RD values. The key takeaway therefore is 

that points do not overlap. When grouped by scale and location (Figures 32 and 33) it is 

clear that PC1 separates each location while PC2 creates a divide based on scale. PCA 

plots also showed that, at the 1 meter and 10 meter scales, roughness characteristics of 

lava flows on Tharsis are similar to lava flows surrounding Amboy crater. 

5.3 Effect of Mantling on Roughness 

Due to aeolian processes currently active on Mars, I was interested in observing 

the effect of sand mantling on lava surface roughness. I expected RD values to be higher 
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on more heavily mantled surfaces based on the RD raster equation. As sand settles 

preferentially in the lowest regions, the elevation range as well as the final RD value were 

expected to increase. This is true for both comparison sites at Amboy, at both the 1-meter 

and 10-meter scales (Figures 16-19, and 25-28). My results show that both on Earth and 

on Mars, mantling dampens the roughness signature of small features. Larger features 

such as deep pressure ridges and inflated flows are best preserved along their edges. As a 

result the range of elevation values increase as the observation radius widens.  

Though there are similarities between martian and terrestrial lava flows, many 

differences also exist. A major distinction is the extent of aeolian deposition. Dust 

mantling at Amboy is rather light, covering up to a meter of the surface in several areas 

(Greeley and Bunch, 1976; Kienenberger and Greeley 2012). However, mantling on Mars 

is a significant global phenomenon that has been occurring for billions of years. As a 

result, this process has almost entirely obscured the original landforms in certain parts of 

the planet (Ward, 1979; Tanaka, 2000; Newsom et al., 2007; Keszthelyi et al., 2008; 

Hauber et al., 2011; Schon et al., 2012; Kienenberger and Greeley, 2012). Additionally, 

many volcanic features on Mars are orders of magnitudes larger than those on Earth 

(Solomon and Head, 1982; Mege and Masson, 1996; McEwen et al., 1999; Fink and 

Anderson, 2000; Carr and Head, 2010). Significant differences in the size of features 

being compared could account for Tharsis roughness characteristics not aligning closely 

with terrestrial results. 

Another process that degrades lava flows on Mars is impact gardening. Surface 

impact events crumble the shallow material near the site, and unearth buried strata as part 

of ejecta blankets (Melosh, 1989; Hartmann et al., 2001). The depth of excavation 
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depends on the size of the bolide, but even micrometeorite impacts are significant 

contributors to this process (Maurette, 2006). Impact gardening is the main method of 

regolith development in planetary environments that lack a thick atmosphere (Neukum et 

al., 2001; Speyerer et al., 2016) and is active on present-day Mars (Malin et al., 2007).  

For these reasons lava surface roughness in the Tharsis region may still show 

significant differences from the Mauna Ulu and Amboy terrestrial analogue sites. These 

differences hinder identification based roughness values as the small scale signatures are 

significantly affected by dust cover, while the large scale features dwarf volcanic 

landscapes on Earth. However, roughness patterns formed by these values could prove to 

be useful identification tools.  

5.4 Mapping Volcanic Environments using Roughness 
 
Finally, I sought to determine the effectiveness of both the values and patterns 

produced by TPI and RD methods as means of mapping volcanic features and 

environments. Based on the results of both methods I conclude that TPI is the better 

suited for locations with significant regional slope that may impact the roughness results 

as TPI detrends elevations automatically but the RD method does not. Additionally, TPI 

successfully identifies large or extensive lava flow features such as flow margins, tumuli 

several meters in diameter, and lava channels (Figures 16-21). The 10-meter TPI maps of 

Amboy Crater (Figures 16-19) showed additional, smaller patterns of roughness 

surrounding the main linear outlines displayed in RD maps of the same scale (Figures 25-

28). However, RD efficiently illustrates roughness characteristics at small (less than 10m) 

scales. Lava features present in the SfM DEMs were more clearly represented by RD 

results (Figure 23 and 24) than TPI (Figure 14 and 15). Furthermore, RD maps better 
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display distinctions between lava morphology identified at Obsidian Dome by Anderson 

et al. (1998) (Figure 22) that are not as clear as with TPI (Figure 13). TPI and RD are 

appropriate for different scales. Therefore, both methods should be applied to construct 

the most accurate representation of the volcanic environment. 

5.5 Conclusions 

This project confirms that suspected basaltic lava flows on Mars fall within the 

range of roughness values and statistical distributions calculated for basaltic flows at 

Amboy, California and Mauna Ulu, Hawaii. Additionally, this work also supports the 

relationship between roughness of small (<10m) lava flow features and emplacement 

conditions of the flow. I was able to use roughness of lava flows within and outside of the 

main wind shadow at Amboy to describe the effect of mantling on the lava topography. 

Though a roughness trend was observed, it is not robust enough to be used as the only 

method to detect mantled lava flows on Mars. Finally, both the RD and TPI methods can 

be useful when mapping volcanic environments but both should be applied selectively as 

each one is most efficient at certain scales.   

5.5.1 Further Applications and 
Recommendations  

 
There is significant research on the links between field measured morphology of 

lava flow surfaces and emplacement conditions in order to describe past activity, predict 

the most likely future scenarios, and apply these explanations to planetary environments 

(Byrnes et al., 2001; Byrnes et al., 2004; Crown and Baloga, 1999; Fink, 1980; Moore et 

al., 1975; Mallonee et al., 2017). While the trends in RD values presented here are 

consistent with mantling processes at the Amboy location, this trend is not robust. 

Therefore, it not reliable enough to conclusively identify mantled surfaces on Mars. 
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Future work related to this thesis can build on this to develop a tool that decisively 

detects mantled and uncovered martian lava flows. 

Additionally, this technique could potentially be applied to submarine 

environments on Earth. For example, the Chapopote asphalt volcano in the Gulf of 

Mexico is a hydrocarbon seep on the ocean floor with notable variation in morphology 

(Marcon et al., 2018). This marine volcano is not fully understood due to poor resolution 

of the vent and surrounding asphalt flow fields because of its location on the ocean floor. 

It is possible to generate high resolution topographic maps from recently collected side-

scan sonar data to determine patterns of roughness on the flow surfaces. This could give 

insight into the processes responsible for forming these flows and provide a better 

understanding of how this unique volcano works. This project presents an innovative and 

cost-effective method for understanding the mechanisms of volcanic emplacement that 

we cannot directly observe. 

5.5.2 Improvements to Future  
Methodology 

 
Any future work that builds on this project should be precise with photo surveys 

in the field. The method of testing accuracy used by Verma and Bourke (2018) should be 

practiced in a controlled environment before attempting to image the location, and then 

repeated briefly in the field to confirm quality. Although the SfM method used in this 

project is meant to be an affordable, accessible, and high resolution alternative to LiDAR, 

it could be helpful to have airborne coverage of the selected site to check the precision 

and accuracy of the SfM DEM.  

If Amboy lava flows are revisited, researchers should travel with equipment to 

measure sand depth at Amboy to complement the estimates of mantling difference at 
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locations within and outside of the primary wind streak. This would provide a way to 

quantify the transition between heavily mantled and relatively unmantled areas. To 

further expand on the comparisons presented in this project, future investigations should 

include other volcanic compositions, environments and features. Since the Mono-Inyo 

Craters are briefly compared in this paper, this site would be a logical addition. However, 

this would result in an even larger dataset of maps and related roughness statistics than 

the one produced here. Comparing trends and statistical distributions from each 

additional location and scale will easily overwhelm the human eye, and would likely 

contribute to interpretation errors if significantly more sites and roughness scales were 

added. Therefore, it would be highly valuable to consider the method of machine learning 

and self-organizing maps utilized by Burzynski et al. (2018) to compare thermal patterns 

of the lava lake at Kilauea volcano to eruption conditions using thermal photographs of 

the lake taken over a span of years.   
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Example of how to run the PCA: 
Import dataset to R. Data must be in .txt format.  
    

> setwd("E:/thesis files") 
> mantling <- read.table("Mantling.txt", header=TRUE) 
> View(mantling) 
> mantling.pca <- prcomp(mantling, center = TRUE, scale = TRUE) 
> summary(mantling.pca) 
Importance of components: 
                          PC1    PC2    PC3     PC4     PC5    PC6     

PC7     PC8    PC9 
Standard deviation     2.6589 1.9471 1.6864 1.30980 0.95038 0.8970 

0.68822 0.52680 0.2546 
Proportion of Variance 0.3928 0.2106 0.1580 0.09531 0.05018 0.0447 

0.02631 0.01542 0.0036 
Cumulative Proportion  0.3928 0.6034 0.7614 0.85671 0.90689 0.9516 

0.97790 0.99332 0.9969 
                          PC10    PC11    PC12    PC13     PC14     

PC15      PC16 
Standard deviation     0.21354 0.08817 0.03423 0.02846 0.009132 

0.001605 9.993e-17 
Proportion of Variance 0.00253 0.00043 0.00007 0.00004 0.000000 

0.000000 0.000e+00 
Cumulative Proportion  0.99945 0.99989 0.99995 1.00000 1.000000 

1.000000 1.000e+00 

 

#Proportion of variance is the percentage of variety in the dataset that this PC explains.  

 

Example of graphing PCA results: 

library(remotes) 
library(ggbiplot) 
ggbiplot(mantling.pca) 
ggbiplot(mantling.pca, labels=rownames(mantling)) 

#The line of code below labels points on the biplot. The numbers are the number of rows 

in the table, starting from the top. This labels the points by location and groups 

them with ellipses. 

mantling.sites <- c(rep("Amboy", 8), rep("Mars",4), rep("Mauna Ulu",2), 
rep("Inyo", 2)) 

 
ggbiplot(mantling.pca, ellipse=TRUE,  labels=rownames(mantling), 

groups=mantling.sites) 
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#This labels the points by scale of observation. 

mantling.scales <- c(rep("1m",1), rep("10m",1), rep("1m",1), 
rep("10m",1), rep("1m",1),rep("10m",1), rep("1m",1), 
rep("10m",1), rep("1m",1), rep("10m",1), 
rep("1m",1),rep("10m",1), rep("1m",1), rep("10m",1), 
rep("1m",1),rep("10m",1)) 

ggbiplot(mantling.pca, ellipse=TRUE,  labels=rownames(mantling), 
groups=mantling.scales) 

 

A more detailed guide can be found on  

https://www.datacamp.com/community/tutorials/pca-analysis-r 
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