338,621 research outputs found

    Systematic evaluation of software product line architectures

    Get PDF
    The architecture of a software product line is one of its most important artifacts as it represents an abstraction of the products that can be generated. It is crucial to evaluate the quality attributes of a product line architecture in order to: increase the productivity of the product line process and the quality of the products; provide a means to understand the potential behavior of the products and, consequently, decrease their time to market; and, improve the handling of the product line variability. The evaluation of product line architecture can serve as a basis to analyze the managerial and economical values of a product line for software managers and architects. Most of the current research on the evaluation of product line architecture does not take into account metrics directly obtained from UML models and their variabilities; the metrics used instead are difficult to be applied in general and to be used for quantitative analysis. This paper presents a Systematic Evaluation Method for UML-based Software Product Line Architecture, the SystEM-PLA. SystEM-PLA differs from current research as it provides stakeholders with a means to: (i) estimate and analyze potential products; (ii) use predefined basic UML-based metrics to compose quality attribute metrics; (iii) perform feasibility and trade-off analysis of a product line architecture with respect to its quality attributes; and, (iv) make the evaluation of product line architecture more flexible. An example using the SEI’s Arcade Game Maker (AGM) product line is presented as a proof of concept, illustrating SystEM-PLA activities. Metrics for complexity and extensibility quality attributes are defined and used to perform a trade-off analysis

    Using grounded theory to understand software process improvement: A study of Irish software product companies

    Get PDF
    Software Process Improvement (SPI) aims to understand the software process as it is used within an organisation and thus drive the implementation of changes to that process to achieve specific goals such as increasing development speed, achieving higher product quality or reducing costs. Accordingly, SPI researchers must be equipped with the methodologies and tools to enable them to look within organisations and understand the state of practice with respect to software process and process improvement initiatives, in addition to investigating the relevant literature. Having examined a number of potentially suitable research methodologies, we have chosen Grounded Theory as a suitable approach to determine what was happening in actual practice in relation to software process and SPI, using the indigenous Irish software product industry as a test-bed. The outcome of this study is a theory, grounded in the field data, that explains when and why SPI is undertaken by the software industry. The objective of this paper is to describe both the selection and usage of grounded theory in this study and evaluate its effectiveness as a research methodology for software process researchers. Accordingly, this paper will focus on the selection and usage of grounded theory, rather than results of the SPI study itself

    Software development: A paradigm for the future

    Get PDF
    A new paradigm for software development that treats software development as an experimental activity is presented. It provides built-in mechanisms for learning how to develop software better and reusing previous experience in the forms of knowledge, processes, and products. It uses models and measures to aid in the tasks of characterization, evaluation and motivation. An organization scheme is proposed for separating the project-specific focus from the organization's learning and reuse focuses of software development. The implications of this approach for corporations, research and education are discussed and some research activities currently underway at the University of Maryland that support this approach are presented

    An Empirical Study on Decision making for Quality Requirements

    Full text link
    [Context] Quality requirements are important for product success yet often handled poorly. The problems with scope decision lead to delayed handling and an unbalanced scope. [Objective] This study characterizes the scope decision process to understand influencing factors and properties affecting the scope decision of quality requirements. [Method] We studied one company's scope decision process over a period of five years. We analyzed the decisions artifacts and interviewed experienced engineers involved in the scope decision process. [Results] Features addressing quality aspects explicitly are a minor part (4.41%) of all features handled. The phase of the product line seems to influence the prevalence and acceptance rate of quality features. Lastly, relying on external stakeholders and upfront analysis seems to lead to long lead-times and an insufficient quality requirements scope. [Conclusions] There is a need to make quality mode explicit in the scope decision process. We propose a scope decision process at a strategic level and a tactical level. The former to address long-term planning and the latter to cater for a speedy process. Furthermore, we believe it is key to balance the stakeholder input with feedback from usage and market in a more direct way than through a long plan-driven process

    Integrating automated support for a software management cycle into the TAME system

    Get PDF
    Software managers are interested in the quantitative management of software quality, cost and progress. An integrated software management methodology, which can be applied throughout the software life cycle for any number purposes, is required. The TAME (Tailoring A Measurement Environment) methodology is based on the improvement paradigm and the goal/question/metric (GQM) paradigm. This methodology helps generate a software engineering process and measurement environment based on the project characteristics. The SQMAR (software quality measurement and assurance technology) is a software quality metric system and methodology applied to the development processes. It is based on the feed forward control principle. Quality target setting is carried out before the plan-do-check-action activities are performed. These methodologies are integrated to realize goal oriented measurement, process control and visual management. A metric setting procedure based on the GQM paradigm, a management system called the software management cycle (SMC), and its application to a case study based on NASA/SEL data are discussed. The expected effects of SMC are quality improvement, managerial cost reduction, accumulation and reuse of experience, and a highly visual management reporting system
    • 

    corecore