research

Systematic evaluation of software product line architectures

Abstract

The architecture of a software product line is one of its most important artifacts as it represents an abstraction of the products that can be generated. It is crucial to evaluate the quality attributes of a product line architecture in order to: increase the productivity of the product line process and the quality of the products; provide a means to understand the potential behavior of the products and, consequently, decrease their time to market; and, improve the handling of the product line variability. The evaluation of product line architecture can serve as a basis to analyze the managerial and economical values of a product line for software managers and architects. Most of the current research on the evaluation of product line architecture does not take into account metrics directly obtained from UML models and their variabilities; the metrics used instead are difficult to be applied in general and to be used for quantitative analysis. This paper presents a Systematic Evaluation Method for UML-based Software Product Line Architecture, the SystEM-PLA. SystEM-PLA differs from current research as it provides stakeholders with a means to: (i) estimate and analyze potential products; (ii) use predefined basic UML-based metrics to compose quality attribute metrics; (iii) perform feasibility and trade-off analysis of a product line architecture with respect to its quality attributes; and, (iv) make the evaluation of product line architecture more flexible. An example using the SEI’s Arcade Game Maker (AGM) product line is presented as a proof of concept, illustrating SystEM-PLA activities. Metrics for complexity and extensibility quality attributes are defined and used to perform a trade-off analysis

    Similar works