88 research outputs found

    Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modeling

    Get PDF
    Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size and temperature) were used as inputs to the multi-layer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical SSA to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%

    Observations of snowpack properties to evaluate ground-based microwave remote sensing

    Get PDF
    Active microwave radar has been shown to have great potential for estimating snow water equivalent (SWE) globally from space. To help evaluate optimal active microwave sensor configurations to observe SWE, we evaluated ground-based Frequency Modulated Continuous Wave (FMCW) radar (12–18 GHz, cross-polarisation) using very high resolution in-situ observations of snowpack layering, dielectric permittivity and density over a 10 m snow trench on Toolik Lake, Alaska. Results showed that the thicknesses of layers within the 10 m trench were highly variable over short distances (< 1 m), even where total snow depth changed very little. Layer boundaries observed using NIR photography identified all bands of high radar backscatter. Although additional observations of density and dielectric permittivity helped to explain the causes of backscatter, not all snowpack properties which cause backscatter were coincident with strong vertical changes in density or permittivity. Further observations of high surface roughness in layer boundaries explained some areas of weak backscatter, nonetheless it was shown that a suite of coincident observations, rather than a single technique in isolation, were required to adequately explain the variability of backscatter and the influence of snowpack properties upon it

    Snow Properties Retrieval Using Passive Microwave Observations

    Get PDF
    Seasonal snow cover, the second-largest component of the cryosphere, is crucial in controlling the climate system, through its important role in modifying Earth’s albedo. The temporal variability of snow extent and its physical properties in the seasonal cycle also make up a significant element to the cryospheric energy balance. Thus, seasonal snowcover should be monitored not only for its climatological impacts but also for its rolein the surface-water supply, ground-water recharge, and its insolation properties at local scales. Snowpack physical properties strongly influence the emissions from the substratum, making feasible snow property retrieval by means of the surface brightness temperature observed by passive microwave sensors. Depending on the observing spatial resolution, the time series records of daily snow coverage and a snowpacks most-critical properties such as the snow depth and snow water equivalent (SWE) could be helpful in applications ranging from modeling snow variations in a small catchment to global climatologic studies. However, the challenge of including spaceborne snow water equivalent (SWE) products in operational hydrological and hydroclimate modeling applications is very demanding with limited uptake by these systems. Various causes have been attributed to this lack of up-take but most stem from insufficient SWE accuracy. The root causes of this challenge includes the coarse spatial resolution of passive microwave (PM) observations that observe highly aggregated snowpack properties at the spaceborne scale, and inadequacies during the retrieval process that are caused by uncertainties with the forward emission modeling of snow and challenges to find robust parameterizations of the models. While the spatial resolution problem is largely in the realm of engineering design and constrained by physical restrictions, a better understanding of the whole range of retrieval methodologies can provide the clarity needed to move the thinking forward in this important field. Following a review on snow depth and SWE retrieval methods using passive microwave remote sensing observations, this research employs a forward emission model to simulate snowpacks emission and compare the results to the PM airborne observations. Airborne radiometer observations coordinated with ground-based in-situ snow measurements were acquired in the Canadian high Arctic near Eureka, NT, in April 2011. The observed brightness temperatures (Tb) at 37 GHz from typical moderate density dry snow in mid-latitudes decreases with increasing snow water equivalent (SWE) due to the volume scattering of the ground emissions by the overlying snow. At a certain point, however, as SWE increases, the emission from the snowpack offsets the scattering of the sub-nivean emission. In tundra snow, the Tb slope reversal occurs at shallower snow thicknesses. While it has been postulated that the inflection point in the seasonal time series of observed Tb V 37 GHz of tundra snow is controlled by the formation of a thick wind slab layer, the simulation of this effect has yet to be confirmed. Therefore, the Dense Media Radiative Transfer Theory forMulti Layered (DMRT-ML) snowpack is used to predict the passive microwave response from airborne observations over shallow, dense, slab-layered tundra snow. The DMRT-ML was parameterized with the in-situ snow measurements using a two-layer snowpack and run in two configurations: a depth hoar and a wind slab dominated pack. Snow depth retrieval from passive microwave observations without a-priori information is a highly underdetermined system. An accurate estimate of snow depth necessitates a-priori information of snowpack properties, such as grain size, density, physical temperature and stratigraphy, and, very importantly, a minimization of this a prior information requirement. In previous studies, a Bayesian Algorithm for Snow Water Equivalent (SWE) Estimation (BASE) have been developed, which uses the Monte Carlo Markov Chain (MCMC) method to estimate SWE for taiga and alpine snow from 4-frequency ground-based radiometer Tb. In our study, BASE is used in tundra snow for datasets of 464 footprints inthe Eureka region coupled with airborne passive microwave observations—the same fieldstudy that forward modelling was evaluated. The algorithm searches optimum posterior probability distribution of snow properties using a cost function between physically based emission simulations and Tb observations. A two-layer snowpack based on local snow cover knowledge is assumed to simulate emission using the Dense Media Radiative Transfer-Multi Layered (DMRT-ML) model. Overall, the results of this thesis reinforce the applicability of a physics-based emission model in SWE retrievals. This research highlights the necessity to consider the two-part emission characteristics of a slab-dominated tundra snowpack and suggests performing inversion in a Bayesian framework

    Analyse de la modélisation de l'émission multi-fréquences micro-onde des sols et de la neige, incluant les croutes de glace à l'aide du modÚle Microwave Emission Model of Layered Snowpacks (MEMLS).

    Get PDF
    RĂ©sumĂ© : L'Ă©tude du couvert nival est essentielle afin de mieux comprendre les processus climatiques et hydrologiques. De plus, avec les changements climatiques observĂ©s dans l'hĂ©misphĂšre nord, des Ă©vĂ©nements de dĂ©gel-regel ou de pluie hivernale sont de plus en plus courants et produisent des croutes de glace dans le couvert nival affectant les moeurs des communautĂ©s arctiques en plus de menacer la survie de la faune arctique. La tĂ©lĂ©dĂ©tection micro-ondes passives (MOP) dĂ©montre un grand potentiel de caractĂ©risation du couvert nival. Toutefois, a fin de bien comprendre les mesures satellitaires, une modĂ©lisation adĂ©quate du signal est nĂ©cessaire. L'objectif principal de cette thĂšse est d'analyser le transfert radiatif (TR) MOP des sols, de la neige et de la glace a fin de mieux caractĂ©riser les propriĂ©tĂ©s gĂ©ophysiques du couvert nival par tĂ©lĂ©dĂ©tection. De plus, un indice de dĂ©tection des croutes de glace par tĂ©lĂ©dĂ©tection MOP a Ă©tĂ© dĂ©veloppĂ©. Pour ce faire, le modĂšle Microwave Emission Model of Layered Snowpacks (MEMLS) a Ă©tĂ© Ă©tudiĂ© et calibrĂ© afin de minimiser les erreurs des tempĂ©ratures de brillance simulĂ©es en prĂ©sences de croutes de glace. La premiĂšre amĂ©lioration faite Ă  la modĂ©lisation du TR MOP de la neige a Ă©tĂ© la caractĂ©risation de la taille des grains de neige. Deux nouveaux instruments, utilisant la rĂ©flectance dans le proche infrarouge, ont Ă©tĂ© dĂ©veloppĂ©s afin de mesurer la surface spĂ©cifique de la neige (SSA). Il a Ă©tĂ© dĂ©montrĂ© que la SSA est un paramĂštre plus prĂ©cis et plus objectif pour caractĂ©riser la taille des grains de neige. Les deux instruments ont dĂ©montrĂ© une incertitude de 10% sur la mesure de la SSA. De plus, la SSA a Ă©tĂ© calibrĂ© pour la modĂ©lisation MOP a n de minimiser l'erreur sur la modĂ©lisation de la tempĂ©rature de brillance. Il a Ă©tĂ© dĂ©montrĂ© qu'un facteur multiplicatif [phi] = 1.3 appliquĂ© au paramĂštre de taille des grains de neige dans MEMLS, paramĂštre dĂ©rivĂ© de la SSA, est nĂ©cessaire afin de minimiser l'erreur des simulations. La deuxiĂšme amĂ©lioration apportĂ©e Ă  la modĂ©lisation du TR MOP a Ă©tĂ© l'estimation de l'Ă©mission du sol. Des mesures radiomĂ©triques MOP in-situ ainsi que des profils de tempĂ©ratures de sols organiques arctiques gelĂ©s ont Ă©tĂ© acquis et caractĂ©risĂ©s a fin de simuler l'Ă©mission MOP de ces sols. Des constantes diĂ©lectriques effectives Ă  10.7, 19 et 37 GHz ainsi qu'une rugositĂ© de surface effective des sols ont Ă©tĂ© dĂ©terminĂ©s pour simuler l'Ă©mission des sols. Une erreur quadratique moyenne (RMSE) de 4.65 K entre les simulations et les mesures MOP a Ă©tĂ© obtenue. Suite Ă  la calibration du TR MOP du sol et de la neige, un module de TR de la glace a Ă©tĂ© implĂ©mentĂ© dans MEMLS. Avec ce nouveau module, il a Ă©tĂ© possible de dĂ©montrĂ© que l'approximation de Born amĂ©liorĂ©e, dĂ©jĂ  implĂ©mentĂ© dans MEMLS, pouvait ĂȘtre utilisĂ© pour simuler des croutes de glace pure Ă  condition que la couche de glace soit caractĂ©risĂ©e par une densitĂ© de 917 kg m[indice supĂ©rieur _3] et une taille des grains de neige de 0 mm. Il a aussi Ă©tĂ© dĂ©montrĂ© que, pour des sites caractĂ©risĂ©s par des croutes de glace, les tempĂ©ratures de brillances simulĂ©es des couverts de neige avec des croutes de glace ayant les propriĂ©tĂ©s mesurĂ©es in-situ (RMSE=11.3 K), avaient une erreur similaire aux tempĂ©ratures de brillances simulĂ©es des couverts de neige pour des sites n'ayant pas de croutes de glace (RMSE=11.5 K). Avec le modĂšle MEMLS validĂ© pour la simulation du TR MOP du sol, de la neige et de la glace, un indice de dĂ©tection des croutes de glace par tĂ©lĂ©dĂ©tection MOP a Ă©tĂ© dĂ©veloppĂ©. Il a Ă©tĂ© dĂ©montrĂ© que le ratio de polarisation (PR) Ă©tait trĂšs affectĂ© par la prĂ©sence de croutes de glace dans le couvert de neige. Avec des simulations des PR Ă  10.7, 19 et 37 GHz sur des sites mesurĂ©s Ă  Churchill (Manitoba, Canada), il a Ă©tĂ© possible de dĂ©terminer des seuils entre la moyenne hivernale des PR et les valeurs des PR mesurĂ©s indiquant la prĂ©sence de croutes de glace. Ces seuils ont Ă©tĂ© appliquĂ©s sur une sĂ©rie temporelle de PR de 33 hivers d'un pixel du Nunavik (QuĂ©bec, Canada) oĂč les conditions de sols Ă©taient similaires Ă  ceux observĂ©s Ă  Churchill. Plusieurs croutes de glace ont Ă©tĂ© dĂ©tectĂ©es depuis 1995 et les mĂȘmes Ă©vĂ©nements entre 2002 et 2009 que (Roy, 2014) ont Ă©tĂ© dĂ©tectĂ©s. Avec une validation in-situ, il serait possible de confirmer ces Ă©vĂ©nements de croutes de glace mais (Roy, 2014) a dĂ©montrĂ© que ces Ă©vĂ©nements ne pouvaient ĂȘtre expliquĂ©s que par la prĂ©sence de croutes de glace dans le couvert de neige. Ces mĂȘmes seuils sur les PR ont Ă©tĂ© appliquĂ©s sur un pixel de l'Île Banks (Territoires du Nord-Ouest, Canada). L'Ă©vĂ©nement rĂ©pertoriĂ© par (Grenfell et Putkonen, 2008) a Ă©tĂ© dĂ©tectĂ©. Plusieurs autres Ă©vĂ©nements de croutes de glace ont Ă©tĂ© dĂ©tectĂ©s dans les annĂ©es 1990 et 2000 avec ces seuils. Tous ces Ă©vĂ©nements ont suivi une pĂ©riode oĂč les tempĂ©ratures de l'air Ă©taient prĂšs ou supĂ©rieures au point de congĂ©lation et sont rapidement retombĂ©es sous le point de congĂ©lation. Les tempĂ©ratures de l'air peuvent ĂȘtre utilisĂ©es pour confirmer la possibilitĂ© de prĂ©sence de croutes de glace mais seul la validation in-situ peut dĂ©finitivement confirmer la prĂ©sence de ces croutes.Abstract : Snow cover studies are essential to better understand climatic and hydrologic processes. With recent climate change observed in the northern hemisphere, more frequent rain-on-snow and meltrefreeze events have been reported, which affect the habits of the northern comunities and the survival of arctique wildlife. Passive microwave remote sensing has proven to be a great tool to characterize the state of snow cover. Nonetheless, proper modeling of the microwave signal is needed in order to understand how the parameters of the snowpack affect the measured signal. The main objective of this study is to analyze the soil, snow and ice radiative transfer in order to better characterize snow cover properties and develop an ice lens detection index with satellite passive microwave brightness temperatures. To do so, the passive microwave radiative transfer modeling of the Microwave Emission Model of Layered Snowpacks (MEMLS) was improved in order to minimize the errors on the brightness temperature simulations in the presence of ice lenses. The first improvement to passive microwave radiative transfer modeling of snow made was the snow grain size parameterization. Two new instruments, based on short wave infrared reflectance to measure the snow specific surface area (SSA) were developed. This parameter was shown to be a more accurate and objective to characterize snow grain size. The instruments showed an uncertainty of 10% to measure the SSA of snow. Also, the SSA of snow was calibrated for passive microwave modeling in order to reduce the errors on the simulated brightness temperatures. It was showed that a correction factor of φ = 1.3 needed to be applied to the grain size parameter of MEMLS, obtain through the SSA measurements, to minimize the simulation error. The second improvement to passive microwave radiative transfer modeling was the estimation of passive microwave soil emission. In-situ microwave measurements and physical temperature profiles of frozen organic arctic soils were acquired and characterized to improve the modeling of the soil emission. Effective permittivities at 10.7, 19 and 37 GHz and effective surface roughness were determined for this type of soil and the soil brightness temperature simulations were obtain with a minimal root mean square error (RMSE) of 4.65K. With the snow grain size and soil contributions to the emitted brightness temperature optimized, it was then possible to implement a passive microwave radiative transfer module of ice into MEMLS. With this module, it was possible to demonstrate that the improved Born approximation already implemented in MEMLS was equivalent to simulating a pure ice lens when the density of the layer was set to 917 kg m−3 and the grain size to 0 mm. This study also showed that by simulating ice lenses within the snow with there measured properties, the RMSE of the simulations (RMSE= 11.3 K) was similar to the RMSE for simulations of snowpacks where no ice lenses were measured (only snow, RMSE= 11.5 K). With the validated MEMLS model for snowpacks with ice lenses, an ice index was created. It is shown here that the polarization ratio (PR) was strongly affected by the presence of ice lenses within the snowpack. With simulations of the PR at 10.7, 19 and 37 GHz from measured snowpack properties in Chucrhill (Manitoba, Canada), thresholds between the measured PR and the mean winter PR were determined to detect the presence of ice within the snowpack. These thresholds were applied to a timeseries of nearly 34 years for a pixel in Nunavik (Quebec, Canada) where the soil surface is similar to that of the Churchill site. Many ice lenses are detected since 1995 with these thresholds and the same events as Roy (2014) were detected. With in-situ validation, it would be possible to confirm the precision of these thresholds but Roy (2014) showed that these events can not be explained by anything else than the presence of an ice layer within the snowpack. The same thresholds were applied to a pixel on Banks island (North-West Territories, Canada). The 2003 event that was reported by Grenfell et Putkonen (2008) was detected by the thresholds. Other events in the years 1990 and 2000’s were detected with these thresholds. These events all follow periods where the air temperature were warm and were followed by a quick drop in air temperature which could be used to validate the presence of ice layer within the snowpack. Nonetheless, without in-situ validation, these events can not be confirmed

    PASSIVE MICROWAVE SATELLITE SNOW OBSERVATIONS FOR HYDROLOGIC APPLICATIONS

    Get PDF
    Melting snow provides an essential source of water in many regions of the world and can also contribute to devastating, wide-scale flooding. The objective of this research was to investigate the potential for passive microwave remotely sensed data to characterize snow water equivalent (SWE) and snowmelt across diverse regions and snow regimes to improve snowmelt runoff estimation. The first step was to evaluate the current, empirically-based passive microwave SWE products compared to NOAA’s operational SWE estimates from SNODAS across 2100 watersheds over eight years. The best agreement was found within basins in which maximum annual SWE is less than 200 mm, and forest fraction is less than 20%. Next, a sensitivity analysis was conducted to evaluate the microwave signal response to spatially distributed wet snow using a loosely-coupled snow-emission model. The results over an area approximately the size of a microwave pixel found a near-linear relationship between the microwave signal response and the percent area with wet snow present. These results were confirmed by evaluating actual wet snow events over a nine year period, and suggest that the microwave response provides the potential basis for disaggregating melting snow within a microwave pixel. Finally, a similar sensitivity analysis conducted in six watersheds with diverse landscapes and snow conditions confirmed the relationship holds at a basin scale. The magnitude of the microwave response to wet snow was compared to the magnitude of subsequent discharge events to determine if an empirical relation exists. While positive increases in brightness temperature (TB) correspond to positive increases in discharge, the magnitude of those changes is poorly correlated in most basins. The exception is in basins where snowmelt runoff typically occurs in one event each spring. In similar basins, the microwave response may provide information on the magnitude of spring runoff. Methods to use these findings to improve current snow and snow melt estimation as well as future research direction are discussed

    New Shortwave Infrared Albedo Measurements for Snow Specific Surface Area Retrieval

    Get PDF
    Snow grain-size characterization, its vertical and temporal evolution is a key parameter for the improvement and validation of snow and radiative transfer models (optical and microwave) as well as for remote-sensing retrieval methods. We describe two optical methods, one active and one passive shortwave infrared, for field determination of the specific surface area (SSA) of snow grains. We present a new shortwave infrared (SWIR) camera approach. This new method is compared with a SWIR laser- based system measuring snow albedo with an integrating sphere (InfraRed Integrating Sphere (IRIS)). Good accuracy (10%) and reproducibility in SSA measurements are obtained using the IRIS system on snow samples having densities greater than 200 kg m-3, validated against X-ray microtomography measurements. The SWIRcam approach shows improved sensitivity to snow SSA when compared to a near-infrared camera, giving a better contrast of the snow stratigraphy in a snow pit

    The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study

    Get PDF
    Satellite observations of microwave brightness temperatures between 19 GHz and 85 GHz are the main data sources for operational sea-ice monitoring and retrieval of ice concentrations. However, microwave brightness temperatures depend on the emissivity of snow and ice, which is subject to pronounced seasonal variations and shows significant hemispheric contrasts. These mainly arise from differences in the rate and strength of snow metamorphism and melt. We here use the thermodynamic snow model SNTHERM forced by European Re-Analysis (ERA) interim data and the Microwave Emission Model of Layered Snowpacks (MEMLS), to calculate the sea-ice surface emissivity and to identify the contribution of regional patterns in atmospheric conditions to its variability in the Arctic and Antarctic. The computed emissivities reveal a pronounced seasonal cycle with large regional variability. The emissivity variability increases from winter to early summer and is more pronounced in the Antarctic. In the pre-melt period (January–May, July–November) the standard deviations in surface microwave emissivity due to diurnal, regional and inter-annual variability of atmospheric forcing reach up to ΔΔ = 0.034, 0.043, and 0.097 for 19 GHz, 37 GHz and 85 GHz channels, respectively. Between 2000 and 2009, small but significant positive emissivity trends were observed in the Weddell Sea during November and December as well as in Fram Strait during February, potentially related to earlier melt onset in these regions. The obtained results contribute to a better understanding of the uncertainty and variability of sea-ice concentration and snow-depth retrievals in regions of high sea-ice concentrations
    • 

    corecore