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ABSTRACT 

 

EVALUATION OF PASSIVE MICROWAVE SATELLITE DATA FOR HYDROLOGIC 
APPLICATIONS  

 
 

By 
 
 

Carrie M. Vuyovich 

University of New Hampshire, December 2016 

 

Melting snow provides an essential source of water in many regions of the world and can also 
contribute to devastating, wide-scale flooding.  The objective of this research was to investigate 
the potential for passive microwave remotely sensed data to characterize snow water equivalent 
(SWE) and snowmelt across diverse regions and snow regimes to improve snowmelt runoff 
estimation.  The first step was to evaluate the current, empirically-based passive microwave 
SWE products compared to NOAA’s operational SWE estimates from SNODAS across 2100 
watersheds over eight years.  The best agreement was found within basins in which maximum 
annual SWE is less than 200 mm, and forest fraction is less than 20%.  Next, a sensitivity 
analysis was conducted to evaluate the microwave signal response to spatially distributed wet 
snow using a loosely-coupled snow-emission model.  The results over an area approximately the 
size of a microwave pixel found a near-linear relationship between the microwave signal 
response and the percent area with wet snow present.  These results were confirmed by 
evaluating actual wet snow events over a nine year period, and suggest that the microwave 
response provides the potential basis for disaggregating melting snow within a microwave pixel.   
Finally, a similar sensitivity analysis conducted in six watersheds with diverse landscapes and 
snow conditions confirmed the relationship holds at a basin scale. The magnitude of the 
microwave response to wet snow was compared to the magnitude of subsequent discharge events 
to determine if an empirical relation exists.  While positive increases in brightness temperature 
(TB) correspond to positive increases in discharge, the magnitude of those changes is poorly 
correlated in most basins.  The exception is in basins where snowmelt runoff typically occurs in 
one event each spring. In similar basins, the microwave response may provide information on the 
magnitude of spring runoff.  Methods to use these findings to improve current snow and snow 
melt estimation as well as future research direction are discussed.  
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CHAPTER 1  

1.1 INTRODUCTION 
The need for accurate, global snow information is long recognized as critical to addressing 

hydrologic questions (Pope, 2014).  Melting snow provides an essential source of water in many 

regions of the world and can also contribute to devastating, wide-scale flooding.  Snow water 

equivalent (SWE), or the volume of water contained in the snowpack, and snow melt are 

important hydrologic variables for estimating storage availability and the magnitude and timing 

of runoff.  Water management requires accurate, timely estimates for resource allocation and 

flood forecasting.  Currently, real-time estimates of SWE and snow melt are available from 

ground observations, numerical modeling and remotely sensed data.  While none of these 

methods individually provides snow data with the necessary accuracy and resolution to meet 

those requirements globally, a combined, multi-sensor modeling approach may be a viable 

solution. Remote sensing in particular is well suited to addressing the difficult problem of 

estimating spatially distributed snow characteristics, but requires extensive investigation and 

validation.  The objective of this research is to investigate the potential for passive microwave 

remotely sensed data to characterize snow and snow melt and inform snow-emission models, 

with a specific emphasis on the utility to water resource applications.   

All snow estimation methods are subject to uncertainty, and validation of snow distribution and 

evolution can be challenging given the heterogeneous and dynamic nature of snow, and the 

varying resolutions of measurements.  Ground observations, essential for validation, are accurate 

at a point scale, but cannot capture the spatial variability of snow processes over a landscape or 

watershed scale.  Ground observations can also be costly and expansion of ground observing 

networks is unlikely given constrained budgets. Numerical modeling has often been used to 
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successfully simulate spatial variability in regions with sufficient input data (e.g. Clark et al. 

2011; Girotto et al. 2014), but suffers in data sparse regions.   

Snow melt evolution is particularly difficult to characterize because most measurement 

techniques result in the destruction of the snowpack (Mitterer et al 2011).  That said, recent 

research has improved our understanding regarding the spatial distribution of the melt process 

across a landscape (Egli et al., 2012; Ide and Oguma, 2013; Grunewald et al. 2010).  For 

hydrological purposes, an accurate distribution of melt is essential for estimating the correct 

runoff response (Lundquist and Dettinger 2005).  In addition, a better understanding of the 

spatial distribution of snowmelt will provide insight into important ecological and 

biogeochemical processes (Bales et al., 2006).  

Remotely sensed passive microwave data offers a potentially viable way of detecting SWE and 

snow melt processes across a distributed landscape (Schmugge et al. 2002).  Global datasets of 

recorded passive microwave emissions, providing non-destructive, daily information on snow 

processes, have been available since the late 1970s.  Data are available at a high temporal rate 

(twice daily) and relatively coarse spatial resolution (~ 25 x 25 km pixel size). However, they are 

not without challenges largely due to significant uncertainty caused by some land surface and 

snow characteristics (Byun & Choi 2013; Clifford 2010). Considerable research has been done to 

evaluate these data for accuracy and utility in sensing snow.  This work aims to contribute to that 

body of research by evaluating the passive microwave potential to estimate SWE and snow melt 

across diverse regions and conditions, focusing on hydrologic validation metrics. 

1.2 BACKGROUND 
Snow acts as a natural storage of water during the winter months and can have a large impact on 

the annual water budget, contributing to drought in low snow years and floods during periods of 
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rapid snowmelt (USACE 1956).  Discharge from snowmelt can affect hydrologic patterns in 

high-latitude regions, resulting in a large percentage of annual runoff occurring during the spring 

melt period.  Before solid snow can to turn to liquid water, energy first goes into warming the 

snowpack to an isothermal state at the melting point of ice.  Liquid water in the snowpack must 

exceed the maximum storage capacity of snow, estimated between 5-10% (Albert & Krajeski 

1998), before it is released to infiltrate the ground or contribute to overland flow. Typically solar 

radiation initially melts surface snow which percolates downward through the snowpack during 

the day and refreezes at night, resulting in a diurnal signal in the streamflow.  As temperatures 

warm, continuous daytime and nighttime melt produces the bulk of spring snowmelt runoff, 

which can last for weeks or months depending on the region and the snow mass.  Rain can add 

energy to a ripe snowpack resulting in widespread melting and additional runoff.   

Space-borne microwave sensors have been used to estimate snow depth, SWE and snow wetting 

due to the sensitivity of the emission signal to snow, primarily at 37 GHz (Schmugge 2002).  The 

measurement unit of the microwave emissions is the brightness temperature (TB) in Kelvins, 

which in the microwave spectrum is equal to the surface temperature times the emissivity at a 

particular frequency.  Snow crystals cause upwelling radiation to scatter in dry snow as a 

function of snow depth and other snow properties such as grain size and density (Chang et al 

1982). The microwave signal is also highly responsive to snow wetness due to the sensitivity of 

the radiance to changes in the dielectric constant (Ulaby et al., 1986).  Estimation of SWE from 

TB data can be made using empirical relationships or microwave emission models. Empirical 

methods typically rely on statistical relationships between experimental observations of SWE, 

snow melt and microwave emissions. In contrast, microwave emission models use a physics-

based approach to relate snowpack characteristics to microwave radiation.  Emission models 
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require detailed snowpack information that currently makes them difficult to apply globally, 

though are useful for evaluating the local, subpixel characteristics.  

1.2.1 EMPIRICAL MODELS 

SWE retrieval algorithms typically rely on empirical relationships between SWE and the 

difference between two microwave frequencies (Chang et al., 1987). The 37 GHz frequency is 

sensitive to the presence of snow, but also impacted by the underlying soil conditions, such as 

frozen ground and soil moisture (Chang 1982). Therefore a lower frequency that is nominally 

affected by the snow (approximately 19 GHz) is used to remove the effects of soil state from the 

37 GHz signal, such that  

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑐𝑐(𝑇𝑇𝐵𝐵,19 − 𝑇𝑇𝐵𝐵,37) (1) 

where SWE is in mm; TB is the brightness temperature at different frequencies (K); and c is an 

empirical conversion coefficient, given as 4.8mm/K. More recently, algorithms have taken into 

account forest fraction and density variations in their SWE estimations (Kelly et al., 2009; 

Tedesco & Narvekar 2010).  Because naturally emitted microwaves are affected by snowpack 

properties other than SWE, such as grain size, density, depth, temperature and liquid water 

content (Chang et al., 1987), the accuracy of satellite SWE algorithms vary regionally (Mote et 

al., 2003; Derksen et al., 2003).  Despite the limitations, empirically-based passive microwave 

products provide a unique spatially and temporally consistent global SWE product. 

1.2.2 MICROWAVE EMISSION MODELS 

An alternative to the empirically-based satellite SWE products is to assimilate satellite radiance 

data directly into a coupled snow-microwave emission model.  This approach has been 

investigated to improve simulated snow estimates using meteorological forcing data alone 
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(Durand et al 2009).  A microwave emission model coupled with a physically-based snow model 

numerically simulates the emission and scattering effects of snow on the microwave emission 

signatures at various frequencies.  These models rely on accurate information about the 

snowpack including density, temperature, liquid water content and snow grain size, which can be 

obtained from direct observations or through simulation.   

At a point scale, emission models have successfully characterized the scattering of microwave 

radiance through snow (Weissman & Matzler 1999; Vachon et al 2010), though additional 

research is needed to reduce uncertainty over a large, heterogeneous region.  Several studies 

indicate the necessity of a multi-layer physically-based model to resolve the snow information 

from radiance data (Durand et al. 2008; Andreadis and Lettenmaier 2012). However, increased 

model complexity can also introduce error if validation is not possible.  Kang and Barros (2012a, 

b) investigated the potential use of a coupled model to simulate SWE in data sparse regions and 

found that SWE estimates improved even with a single layer snow model.   

1.2.3 EFFECT OF WET SNOW ON MICROWAVE EMISSIONS 

The presence of water within a snowpack increases the emissivity measured at higher 

frequencies due to an increase in the dielectric constant (Walker and Goodison 1993, Matzler 

1987, Davis et al. 1987).  This effect eliminates the difference in TB used to estimate SWE in 

empirical methods (Figure 1).  The strong signal response to water content has the potential to 

identify periods of snowmelt (Stiles and Ulaby 1980, Kunzi et al. 1982, Drobot and Anderson 

2001). During wet snow periods, the signal response provides a clear indication of increased 

liquid water content, which overwhelms other snowpack properties impact on the microwave 

signal (Wang et al. 2001).  
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Figure 1. Microwave emissivity for various snow conditions and other surfaces (from Grody, 1988). 

Several studies have investigated using this response to determine the melt onset date (Drobot 

and Anderson 2001; Ramage et al 2006), or identifying rain-on-snow (ROS) events (Grenfell and 

Putkonen 2009).  Others have linked the microwave response at a coarse resolution to basin 

runoff and shown potential for hydrologic applications (Yan et al 2009; Vuyovich & Jacobs 

2011; Ramage & Semmens 2012).  A key challenge to using the microwave melt signal is that its 

spatial resolution is quite coarse and the ability to explicitly characterize subgrid scale variations 

needed for most water resource applications has not been demonstrated. 

1.2.4 LINKING THE PASSIVE MICROWAVE DETECTION OF WET SNOW TO DISCHARGE  

While methods have been successful in detecting the onset of snowmelt or melt events caused by 

rain-on-snow using microwave data, they relate only qualitatively to the hydrologic response.  

No previous research has investigated the relationship between the spatial extent of snowmelt as 

observed by passive microwave and discharge.  Additionally, it may be possible to resolve the 

sub-pixel variation in snow state represented in the microwave data.  This is important because 

the spatial distribution of snowmelt influences the hydrologic response of the basin, resulting in 

different peak flows and timing depending on the contributing area and the characteristics of the 
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snow.  Travel time for water to reach the basin outlet includes time through the snowpack, time 

for overland or subsurface flow to reach the channel and travel time along the channel itself 

(Lundquist and Dettinger 2005).  Linking the liquid water content (LWC) of the snowpack to 

discharge requires an understanding of the snowpack characteristics as well as the spatial 

variability of snow properties on the basin scale (Grayson et al., 2002). 

1.3 OBJECTIVE 
The objective of this research was to improve snowmelt runoff estimates using passive 

microwave data.  This research was conducted in three parts.  The first step, described in Chapter 

2, is a broad assessment of the current passive microwave SWE products across diverse regions 

and conditions in comparison to modeled estimates.  The second step, described in Chapter 3, is 

a sensitivity analysis to determine how heterogeneous distributions of wet snow impact 

microwave emissions at a pixel scale.  Finally, in Chapter 4 the results of the sensitivity analysis 

are evaluated on a basin scale.  The relationship between the microwave response to wet snow 

and discharge under varied conditions is assessed. Chapter 5 summarizes the main findings of 

this work and describes future direction. 
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CHAPTER 2 COMPARISON OF PASSIVE MICROWAVE AND 

MODELED ESTIMATES OF TOTAL WATERSHED SWE IN THE 

CONTINENTAL UNITED STATES1 

2.1 INTRODUCTION 
Snow is an important source of water in many temperate regions of the world.  In the 

mountainous, western United States, snowmelt accounts for up to 75% of the annual streamflow 

[Doesken and Judson 1996, Daly et al., 2001]. Other regions of the US, for example the Great 

Plains, do not rely as heavily on snow for water supply, but can still experience significant 

flooding as a result of snowmelt [Todhunter 2001, USACE 2012].  Water management in these 

regions requires accurate, timely estimates of snow water equivalent (SWE) for resource 

allocation and flood forecasting.  However, validation of SWE estimates can be challenging 

given the heterogeneous and dynamic nature of snow, and the varying resolutions of 

measurements. 

Satellite-based passive microwave sensors could provide spatially-distributed snowpack 

information, particularly in remote, data-sparse regions because they have a twice-daily temporal 

resolution and the ability to see through clouds and at night.  However, known sources of error 

prohibit the operational use of this data set in many regions.  In regions where heavy vegetation 

and significant snowpack depths do not impact the data, studies have shown promising results in 

the passive microwave estimates of SWE [Dong et al. 2005].  In the Great Plains of the United 

States and the Canadian Plains where the algorithms were developed, SSM/I SWE compares 

                                                             
1 Vuyovich, C.M., Jacobs, J.M., & Daly, S.F. (2014). Comparison of passive microwave and modeled estimates of 

total watershed SWE in the continental United States. Water Resources Research, 50, 9088-9102 
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well to ground observations [Derksen et al. 2003, Mote et al. 2003, Chang et al. 2005]. Tait 

[1998] compared passive microwave SWE estimates to ground observations in the United States 

and Russia, categorized by land-cover, and found good agreement in non-forested, flat regions 

when wet snow or depth hoar was not affecting the microwave signal.  Vuyovich and Jacobs 

[2011] found that passive microwave data provided reasonable estimates of SWE in the Upper 

Helmand Watershed in central Afghanistan.  Modeled snowmelt runoff estimates from this basin 

improved when initialized with passive microwave SWE estimates as compared to using 

available observational and satellite-based meteorological data alone.   

Passive microwave SWE retrieval algorithms have typically relied on empirical relationships 

between either snow depth or SWE and frequency dependent signal scattering through the 

snowpack at different channels [Chang et al. 1987].  An estimate of the SWE is obtained by 

taking the difference between the return signals at two different passive microwave frequencies: 

a low frequency, typically 18-19 GHz, where scattering by snow is less than at a high frequency, 

typically around 37 GHz, and applying a coefficient derived from radiative transfer theory. 

Several sources of error in microwave SWE retrievals stem from the dynamic nature of snow and 

the static assumptions made in the empirical formulations concerning snow properties.  Studies 

have shown emission signatures to be affected by snow depth [Dong et al. 2005, Foster et al. 

2005].  It is estimated that the signal “saturates” at 1 m depth (or approximately 250 mm SWE), 

above which soil emissions through the snowpack at the higher frequency microwave signal are 

no longer detectable [Clifford 2010].  Liquid water in the snowpack is significantly more 

absorptive than ice at the microwave frequencies [Mätzler 1987] and eliminates the brightness 

temperature (TB) gradient used to estimate SWE [Hallikainen et al. 1986, Walker and Goodison 

1993]. Therefore, many studies avoid evaluating passive microwave data during the spring, when 
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snow melt and rainfall can introduce error in the data.  Other snowpack characteristics such as 

density and crystal size also affect the passive microwave signal by increasing the spectral 

gradient with increases in grain growth [Foster et al. 1999, Hall et al. 1986, Josberger and 

Mognard 2002, Durand et al. 2011]. 

Mätzler and Standley [2000] suggested that topography of the ground has a significant impact on 

microwave retrievals.  However, other studies found little or no evidence of error due to 

elevation gradients over large regions [Dong et al. 2005, Vuyovich and Jacobs 2011].  It is 

possible that errors due to terrain are averaged out over large pixel areas or that in high elevation 

regions more significant error is caused by the saturation of the signal in deep snow.  Several 

studies have shown a significant impact of vegetation on the passive microwave signal because 

the liquid water in the tree branches and leaves emits microwave radiation [Chang et al. 1996, 

Foster et al. 2005, Derksen et al., 2005].  Vander Jagt et al. [2013] found that in pixels with 

significant vegetation, the error in the passive microwave estimate was on the same order of 

magnitude as the actual snow depth, making the data virtually unusable. Ongoing research, 

which has attempted to account for these errors and to improve results regionally and seasonally, 

has had varied success [Farmer et al. 2010, Tedesco and Narvekar 2010, Mizukami and Perica 

2012].   

The NWS National Operational Hydrologic Remote Sensing Center (NOHRSC) offers a near 

real-time 1 km2 spatially distributed estimate of SWE and other snow properties across the 

continental United States (CONUS) through its SNOw Data Assimilation System (SNODAS). 

SNODAS integrates a combination of downscaled forcing data, an energy balance snow model 

and assimilated observations in their daily gridded SWE product to arrive at their best estimate 

of the snow characteristics over the United States and to minimize error associated with any 
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individual method [Carroll et al. 2006]. Though these data are also subject to errors, this product 

provides the only real-time spatially distributed estimate of snowpack conditions throughout the 

U.S. and is used operationally at several locations [e.g. Lea and Reid 2006, Schneiderman et al. 

2013].  The snow model within SNODAS has been evaluated and generally shown to provide 

good results at a point scale [Rutter et al. 2008, Frankenstein et al. 2008], though over a larger 

scale, particularly where ground observations are sparse or biased, additional error is introduced 

[Molotch and Bales, 2005; Meromy et al., 2013].  In the Sierra Nevada, Rittger et al. [2011] and 

Dozier [2011] showed that SNODAS estimates of SWE are less than reconstructed SWE values 

and spring runoff volumes, while Guan et al. [2013] found that a blended estimate of 

reconstruction and ground observations provided the best results.  Clow et al. [2012] used field 

surveys and water balance analysis to evaluate SNODAS SWE in headwater basins in Colorado.  

They found good agreement in forested areas, but poor agreement in areas impacted by wind 

redistribution of the snowpack.  

A few previous efforts to evaluate the passive microwave estimates of SWE have used the 

SNODAS product for comparison. Azar et al. [2008] evaluated the SSM/I SWE products in the 

Great Lakes region using the SNODAS data and found poor results using the original passive 

microwave algorithm. Tedesco and Narvekar [2010] compared monthly estimates of AMSR-E 

SWE to SNODAS (resampled at 25km) over the 2004-05 winter season, and found poor 

correlation when evaluating the entire U.S.  They also classified the pixels by forest cover 

fraction and found better correlations in areas of higher forest fraction and density, which they 

attributed to shallow snow in the open areas.     

This study aims to provide a comprehensive examination of the regional characteristics 

associated with satellite observations of SWE at a scale useful for water resource applications in 
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the United States.  We hypothesize that existing microwave retrieval algorithms will compare 

favorably to the SNODAS SWE estimates in basins which have minimal vegetation or 

topography and where the snow depth does not exceed a saturation threshold.  To test this 

hypothesis, we analyzed the SWE estimates derived from two satellite sensors, AMSR-E and 

SSM/I, and the SNODAS daily gridded SWE by watersheds across the U.S. to evaluate the value 

of these snow data in hydrologic processes. Comparison at the basin-scale also provides future 

opportunity to evaluate the SWE in conjunction with watershed runoff. There are several 

questions this research aims to answer:  

1. In which U.S. basins do passive microwave estimates of SWE compare well to the 

SNODAS product as evaluated by correlation and rank-order of the peak SWE and 

seasonal snowpack evolution?   

2. Is the level of agreement a function of forest cover, elevation or maximum SWE?   

3. In basins where passive microwave SWE does not match the magnitude of SNODAS 

data, is there a common pattern of snow accumulation and melt, year-to-year variability, 

or relative magnitude? 

2.2 STUDY AREA AND DATA 
For this study, the SWE products were compared by major hydrologic regions of the continental 

U.S.  The USGS fourth level basins, designated by an eight digit Hydrologic Unit Code (HUC), 

were selected for comparison.  There are 2,100 HUC-8 basins, with an average area of 3,700 

km2.  The elevation range within each of the HUC-8 basins was determined using the USGS 1 

arc-second (approx. 30 m) national elevation dataset (NED) (data available from the USGS).  

The Vegetation Continuous Field from the University of Maryland [Hansen et al. 2006] was used 

to estimate the percentage of forest cover by HUC. In addition, regional comparisons were made 
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using the 18 USGS first level basins, designated by a two digit HUC, which have an average area 

of 434,000 km2 (Figure 1). 

 
Figure 1. Overview map of the study region with HUC2 watersheds outlined and percentage forest 

cover shown. Example watersheds are shown in black and labeled. 

2.2.1 PASSIVE MICROWAVE 

Daily passive microwave SWE data were available from two sources during the period of 

comparison; the Special Sensor Microwave/Imager (SSM/I) and the Advanced Microwave 

Scanning Radiometer – Earth Observing System (AMSR-E). The SSM/I sensor was launched in 

1987 on board the Defense Meteorological Satellite Program (DMSP) satellites.  These data are 

available near real-time and have the advantage of a long historical record. SWE estimates are 

derived from the SSM/I brightness temperatures measured at wavelengths 19 and 37 GHz, and 
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have a spatial resolution of 69x43km (19.4 GHz) and 37x29km [Armstrong et al. 1995]. SSM/I 

data were processed using the Chang algorithm:  

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑐𝑐(𝑇𝑇𝐵𝐵,19 − 𝑇𝑇𝐵𝐵,37) (1) 

where SWE is in mm; TB is the temperature brightness at different channels (K); and c is 

typically given as 4.8mm/K and acquired from the National Snow and Ice Data Center (Mary Jo 

Brodzik, NSIDC, personal communication, 2012).  

AMSR-E was launched on NASA’s Aqua satellite in 2002 and calculates SWE based on 

brightness temperatures measured at wavelengths 19.7 and 36.5 GHz, with a spatial resolution of 

28x16km (19.7 GHz) and 14x8km (36.5 GHz)  [Kelly 2009].  For this study, AMSR-E data were 

acquired from NSIDC (http://nsidc.org/data/AE_DySno), which was processed using the Kelly 

[2009] algorithm. That process uses additional bands at 10 and 89 GHz to aid in the detection of 

deep and shallow snow, respectively, and the algorithm accounts for the forest fraction of the 

underlying ground,  

𝑆𝑆𝑆𝑆 = 𝑓𝑓𝑓𝑓 �𝑝𝑝1
�𝑇𝑇𝐵𝐵,𝑉𝑉18 − 𝑇𝑇𝐵𝐵,𝑉𝑉36�

(1 − 𝑏𝑏 ∗ 𝑓𝑓𝑓𝑓) � + (1 − 𝑓𝑓𝑓𝑓)�𝑝𝑝1�𝑇𝑇𝐵𝐵,𝑉𝑉10 − 𝑇𝑇𝐵𝐵,𝑉𝑉36� + 𝑝𝑝2�𝑇𝑇𝐵𝐵,𝑉𝑉10 − 𝑇𝑇𝐵𝐵,𝑉𝑉18�� (2) 

where SD is snow depth (cm), ff is forest fraction, fd is forest density, b is an optimized 

coefficient found to be 0.6, and p1 and p2 are dynamic coefficients calculated as the difference in 

polarization at channels 36 and 18, respectively. Snow depths are then converted to SWE using 

seasonal density estimates for different snow classes based on Sturm et al [1995]. 

SSM/I and AMSR-E global SWE products are produced using these algorithms and available 

twice daily; ascending passes which occur in the afternoon and descending passes which occur in 

the early morning. For this study, only descending SWE data were used to reduce the potential 

http://nsidc.org/data/AE_DySno
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wet snow impacts in the afternoon.  A gap in the satellite swath coverage can occur every 3 to 4 

days, depending on the latitude of the region.  This study uses the products’ EASE-grid 

projection at a 625 km2 (25 km x 25 km) resolution.   

2.2.2 SNODAS 

The NOAA’s SNODAS combines data from various sources – ground observations, airborne and 

satellite estimates – with model results, to arrive at a 1-km2 spatially distributed estimate of snow 

cover and SWE [Carroll et al., 2006].  Their procedure follows three main steps; ingest and 

downscale model weather data, simulate snow cover using a physically based energy balance 

model, and assimilate snow observations to adjust model results. Forcing data come from the 

Rapid Update Cycle 2 (RUC2) Numerical Weather Prediction (NWP) model output and is 

downscaled from 13 km to 1 km resolution using a digital elevation model.  The snow model is 

an energy- and mass-balance, multi-layer model based on SNTHERM.89 [Jordan 1990]. 

Assimilated observations are acquired from state and federal automated ground observations, 

snow surveys, and gamma flights as well as satellite-based snow extent information. SNODAS 

data are available through NSIDC from 01 October 2003 through the present 

(http://nsidc.org/data/G02158).  

2.3 METHODS 
Gridded daily SWE data from the two passive microwave sensors and SNODAS were obtained 

for eight water years, 2004 – 2011, when all three datasets were available.  For each of the 

AMSR-E, SSM/I and the SNODAS SWE datasets, the gridded data were aggregated by HUC-8 

to produce a daily time series of average-basin SWE.  To avoid large gaps along the watershed 

boundaries, the passive microwave data were re-sampled to 1 km2 grid cells using the nearest 

neighbor method which assigns the same value to the pixel as the data layer in that location 

http://nsidc.org/data/G02158
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without any interpolation.  AMSR-E pixels near large water bodies are flagged within the SWE 

product and no SWE value is given; therefore only watersheds with no missing data were used in 

the comparison.  Weekly SWE time series were developed for each HUC-8 using the maximum 

weekly values in order to accommodate the satellite overpass cycle which results in some days 

without satellite observations.  Annual maximum SWE values by HUC were extracted from the 

weekly time series for each of the eight water years. The results are summarized regionally by 

aggregating results to the 18 two digit HUCs. 

The average, maximum, minimum and standard deviation of the daily SWE was determined for 

each HUC over the periods of interest.  The differences in average annual maximum SWE were 

calculated between the SNODAS and passive microwave datasets to determine the difference in 

relative magnitude of the estimates.  The correlation coefficients between microwave SWE and 

SNODAS estimates for the annual and weekly time series were also calculated. Differences 

between SNODAS and the microwave values of annual maximum SWE values were identified 

using the Spearman’s rank-order test. Spearman’s rank-order test determines whether two 

independent groups are from the same population [Helsel and Hirsch, 2002].  To evaluate spatial 

variability within the HUC-8s, the SNODAS data were aggregated to the 25 km by 25 km pixel 

scale using a pixel average.  The standard deviation of SNODAS SWE with each HUC-8 was 

then calculated similarly to the passive microwave data in order to compare the data at the same 

coarse resolution. 

Weekly SWE results were compared using the Nash-Sutcliffe model efficiency index [Nash and 

Sutcliffe, 1970], which measures the fit between predicted and observed values as  
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where N is the number of weeks during the simulation period, SWEobs,i is the SNODAS i-th 

weekly SWE, SWEsat,i is the i-th weekly SWE value estimated from the AMSR-E or SSM/I 

dataset, and ,obs iSWE  is the mean weekly SNODAS SWE value for the simulation period. This 

metric characterizes the joint evolution of passive microwave and modeled SWE over the entire 

winter rather than just the peak SWE. While the SNODAS data were used as the observational 

dataset in this measure, it is important to note that the model itself has errors and is not 

considered ground truth.  The efficiency will approach unity if each SNODAS weekly SWE 

value matches the remotely sensed weekly SWE value. 

The effects of saturation depth, elevation range and forest cover on SWE estimates were 

evaluated by calculating correlations between SNODAS and passive microwave average 

maximum SWE for each HUC-8 by category.  The saturation depth was assessed by comparing 

passive microwave to SNODAS at increasing amounts of average maximum annual SWE. The 

elevation range was evaluated to address the impact of topography on SWE estimates, and was 

calculated for each HUC-8 as the difference in maximum and minimum elevation in each basin.  

Correlations between the passive microwave and SNODAS SWE were determined for 8 

elevation range categories.  Correlations were also determined for SWE estimates by 10% 

increments in total basin forest fraction. 

2.4 RESULTS AND DISCUSSION 

2.4.1 OVERALL PERFORMANCE 
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The agreement between average annual maximum SWE for the SNODAS product and the 

AMSR-E and SSM/I passive microwave data varies widely across regions of the United States 

(Figure 2).  As anticipated, the passive microwave data underestimate the SWE for those regions 

that experience significant annual snowpacks including the Rocky Mountains, the Pacific 

Mountain Range and Northern New England.  The saturation effect appears to be evident when 

SWE from SNODAS exceeds 150 to 200 mm.  For the western ranges, the snowpacks’ SWE 

frequently exceeds 500 mm based on the SNODAS product. AMSR-E is able to identify the 

location of those ranges as having relatively deeper snow, but greatly underestimates the SWE 

magnitude. SSM/I entirely misses many of these deep snow features. This result broadens 

Andreadis and Lettenmaier’s [2006] finding that passive microwave data are problematic when 

snowpacks were deeper than 240 mm for Snake River basin in the western U.S.  A new finding 

is that this disagreement is also broadly evident for those regions in the Northeast in which SWE 

exceeds 240 mm. In the Northeast region, the AMSR-E data shows better agreement to the 

SNODAS product than SSM/I which reports little to no snow.  This result extends the modest 

agreement found previously in the Northeast region, which only analyzed a single, historic storm 

in the Middle Atlantic [Foster et al. 2010].  

Interestingly, the passive microwave data are not consistently less than the SNODAS product. In 

the Plains regions and the southeastern portions of the U.S., microwave SWE products indicated 

greater maximum annual SWE values than SNODAS (Figure 3).  This is a region with relatively 

few observational data available to correct the SNODAS model. Because both microwave 

products have deeper snowpacks in the northern Plains region, the actual SWE may be 

underestimated by SNODAS.  This theory is supported by previous work by Josberger et al. 

[1998] who suggest that the northern Great Plains region is well suited for estimation of SWE  
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 a 

b  

c  
Figure 2. Average maximum annual SWE by HUC8 for (a) SNODAS, (b) AMSR-E and (c) SSM/I. 
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from microwave observations. In this same region, Chang et al. [2005] showed that the 

midwinter microwave estimates of snow depth had a calculated error of 88 mm, but also pointed 

to the strong heterogeneity of snow depth across the region which made validation quite difficult.  

  
Figure 3. Difference in average maximum annual SWE by HUC8 for (a) SNODAS – AMSR-E, and (b) 

SNODAS - SSM/I. 
  

a 

b 
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In the southern Plains, the SNODAS SWE values are consistent with the SSM/I SWE values but 

overestimated by the AMSR-E observations. The AMSR-E data appear to be biased high in 

shallow snow regions, particularly in the southern Plains.  A nominal 50 mm snow depth is 

applied when the AMSR-E algorithm detects shallow snow [Kelly, 2009].  Armstrong and 

Brodzik [2002] found that inclusion of the shallow snow detection algorithm led to 

overestimation of SWE in some regions.  Daly et al. [2012], similarly found early-season SWE 

detection by AMSR-E in Afghanistan was not supported by multispectral imagery of snow 

extent.  

In regions with significant SWE biases, the relative SWE magnitude across years may still be 

robust and able to provide insight for water resource management. Parametric and nonparametric 

methods were used to characterize the correlation of the annual maximum time series between 

the SNODAS data and each of the passive microwave datasets (Table 1).  The strongest and 

significant correlations between SNODAS and the AMSR-E and SSM/I products occur in the 

northern Plains region (Upper Mississippi and Missouri) and in the southern Rocky Mountains 

(Lower Colorado).  SNODAS and the AMSR-E SWE estimates also show good agreement along 

the Great Lakes region (Ohio), while the SSM/I data are well correlated with SNODAS in the 
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 HUC-2 Data and Average annual maximum SWE Statistics (N = 8). Bold indicates statistically significant values where critical 

values are R2 equal 0.46 and Spearman’s ranked correlation coefficient equal 0.738. 

HUC2 Region 

Area 
(x 

103 
km2) 

Forest 
Fractio

n 

Elev. 
Range 

(m) 

NOAA 
Avg 

Annual 
Max SWE 

(mm) 

AMSR-E 
Avg 

Annual 
Max SWE 

(mm) 

SSM/I 
Avg 

Annual 
Max SWE 

(mm) 

NOAA 
and 

AMSR-E 
R2 

NOAA 
and 

SSM/I 
R2 

NOAA 
and 

AMSR-E  
Sp. Rho 

NOAA 
and 

SSM/I  
Sp. Rho 

1 New England Region 158 0.81 1856 118.3 30.1 10.4 0.26 0.15 0.40 0.24 
2 Mid Atlantic Region 288 0.73 1511 45.9 23.8 11.9 0.35 0.79 0.86 0.95 

3 
South Atlantic-Gulf 
Region 698 0.55 1765 4.3 2.7 5.9 0.08 0.14 0.26 -0.02 

4 Great Lakes Region 303 0.42 1200 70.8 32.6 25.4 0.62 0.24 0.83 0.24 
5 Ohio Region 422 0.67 1591 28.2 21.2 13.0 0.37 0.63 0.48 0.69 
6 Tennessee Region 106 0.90 1849 11.4 10.6 13.8 0.01 0.02 0.67 0.48 

7 
Upper Mississippi 
Region 492 0.10 593 46.9 42.0 43.0 0.63 0.75 0.76 0.83 

8 
Lower Mississippi 
Region 262 0.45 822 6.8 8.7 8.4 0.47 0.22 0.60 0.38 

9 
Souris-Red-Rainy 
Region 154 0.14 521 76.6 95.4 93.1 0.24 0.53 0.48 0.52 

10 Missouri Region 1324 0.12 4106 39.0 42.6 39.5 0.66 0.65 0.62 0.57 

11 
Arkansas-White-Red 
Region 642 0.25 4233 16.2 21.4 13.4 0.10 0.67 0.43 0.76 

12 Texas-Gulf Region 464 0.12 1449 4.2 8.2 5.6 0.11 0.13 0.19 0.60 
13 Rio Grande Region 344 0.09 4096 16.4 15.1 7.8 0.13 0.64 0.17 0.74 

14 
Upper Colorado 
Region 293 0.27 3204 81.4 62.7 53.1 0.41 0.14 0.57 0.38 

15 
Lower Colorado 
Region 363 0.11 3687 14.5 13.3 7.2 0.65 0.97 0.76 0.90 

16 Great Basin Region 368 0.09 3536 53.0 47.0 36.3 0.09 0.03 0.45 -0.02 

17 
Pacific Northwest 
Region 710 0.49 4403 141.4 43.4 30.5 0.54 0.30 0.62 0.57 

18 California Region 417 0.31 4350 64.7 13.2 7.6 0.09 0.01 0.60 0.26 
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Pennsylvania region (Mid Atlantic).  For many of the regions, there is not a significant 

correlation suggesting that either passive microwave or SNODAS SWE estimates are not 

accurate in that region or that the two methods provide different information.  

Based on the Spearman’s rank-order statistic, AMSR-E and SSM/I are not able to capture the 

relative magnitude of the annual peak SWE for the Upper Colorado, New England, and the 

Pacific Northwest; the three HUC-2 regions having SWE values higher than 80 mm.  The 

passive microwave data do not seem to capture the relative magnitude of the annual peak SWE 

when it underestimates the total SWE. Limited agreement is also evident for the four HUCs, 

Texas-Gulf, South Atlantic-Gulf, Lower Mississippi and Tennessee, having the lowest peak 

snow values, which could be due to limited observations available impacting the SNODAS 

results or SWE values below a threshold level for detection by passive microwave.  

The standard deviation of estimated SWE within each HUC-8 watershed was calculated daily 

over the period of record to assess the spatial variability of estimates within each basin.  

SNODAS data were aggregated to the microwave EASE-GRID pixel size in order to match the 

microwave scale. Figure 4 shows an example of the results on 01 February 2011.  There is 

greater variability within the deep snow regions along the Pacific mountains and the Rocky 

Mountains for SNODAS. The AMSR-E data have greater variability than the SSM/I data, 

particularly in the New England region where the SSM/I data shows none.  In the Plains basins, 

the three data sources compare favorably in most years with the exception of the southern Plains 

region (e.g. Texas/Oklahoma).  In this region, the relatively high variability of the passive 

microwave data, particularly AMSR-E, result from positive SWE values in pixels where none is 

likely to exist. 
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Figure 4. Standard deviation of SWE by HUC8 on 01Feb 2011for (a) SNODAS, (b) AMSR-E, and (c) 

SSM/I. 

b 

a 
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The weekly SWE from the microwave products was compared to the SNODAS product using 

the Nash-Sutcliffe efficiency statistic (Table 2).  Strong weekly results are evident for the regions 

that performed well for interannual variability, e.g. the northern Plains and southern Rockies. 

Other regions showed promise, such as the Upper Colorado basin, despite having maximum 

SWE values that might exceed the passive microwave threshold for detection.  The passive 

microwave observations appear to be able to capture the timing of snow accumulation and melt. 

A region that stands out for the disagreement between SNODAS and passive microwave in the 

weekly SWE analysis is the central Plains.  This region does not have significant vegetation or 

snow depths that would be expected to impact the microwave signal.  It is possible that the 

SNODAS SWE estimates suffer from lack of observations, though additional work is required to 

understand the differences seen in this area. 

 HUC-2 Weekly Statistics for winter months: October – April (N = 242) 

HUC2 Region 

NOAA 
Avg 

Weekly 
SWE 
(mm) 

AMSR-E 
Avg 

Weekly 
SWE 
(mm) 

SSM/I 
Avg 

Weekly 
SWE 
(mm) 

NOAA 
and 

AMSR-E 
Weekly 
SWE R2 

NOAA 
and 

SSM/I 
Weekly 
SWE R2 

NOAA 
and 

AMSR-E 
Weekly 
Nash-

Sutcliffe 

NOAA 
and 

SSM/I 
Weekly 
Nash-

Sutcliffe 
1 New England Region 47.8 11.3 2.4 0.61 0.33 -0.28 -0.85 
2 Mid Atlantic Region 13.0 7.0 2.0 0.69 0.43 0.43 -0.30 
3 South Atlantic-Gulf Region 0.4 0.3 0.7 0.11 0.00 0.08 -1.44 
4 Great Lakes Region 26.8 10.4 5.4 0.71 0.65 0.10 -0.36 
5 Ohio Region 5.5 4.0 1.9 0.74 0.50 0.68 0.22 
6 Tennessee Region 1.6 1.3 1.0 0.14 0.01 0.01 -0.38 
7 Upper Mississippi Region 15.6 14.9 10.9 0.78 0.74 0.77 0.67 
8 Lower Mississippi Region 0.6 0.9 0.6 0.04 0.00 -0.34 -0.59 
9 Souris-Red-Rainy Region 31.1 32.5 30.7 0.66 0.75 0.62 0.69 

10 Missouri Region 17.5 16.9 13.7 0.73 0.76 0.70 0.67 
11 Arkansas-White-Red Region 3.2 4.0 2.2 0.48 0.62 0.30 0.58 
12 Texas-Gulf Region 0.4 0.7 0.3 0.23 0.07 -0.48 -0.21 
13 Rio Grande Region 7.2 4.5 2.2 0.44 0.64 0.27 -0.10 
14 Upper Colorado Region 42.4 27.2 20.9 0.67 0.59 0.43 0.14 
15 Lower Colorado Region 4.0 3.6 1.2 0.63 0.80 0.62 0.37 
16 Great Basin Region 24.3 19.8 12.0 0.60 0.57 0.55 0.20 
17 Pacific Northwest Region 73.1 19.6 13.5 0.55 0.55 -0.51 -0.78 
18 California Region 27.3 5.3 2.9 0.38 0.45 -0.58 -0.79 

 



26 
 

Overall, passive microwave derived SWE estimates appear to perform the best when the typical 

HUC-2 annual maximum SWE values are between 15 and 50 mm. Within this range, there is 

good correlation for year to year differences and value in the weekly observations. The AMSR-E 

observations provide SWE estimates that have limited bias as compared to the SNODAS data. At 

modestly higher SWE values, between 50 and 80 mm, there is a mixture of results with the 

passive microwave having greater success at matching the snowpack’s temporal evolution as 

compared to the magnitude of the annual maximums. 

2.4.2 EFFECT OF PHYSICAL CHARACTERISTICS 

The SWE data were analyzed by forest cover, saturation depth and elevation range to determine 

what impact these factors had on the results.  For forest cover, the strongest correlations occur in 

HUCs with 20% forest coverage or less, with generally poorer correlations occurring with more 

vegetation (Figure5).  The exceptions are along the East coast, where AMSR-E shows good 

correlations (> 0.5) with SNODAS data in watersheds along the eastern side of the Appalachians, 

North Carolina up through Virginia, and SSM/I doing well in central Pennsylvania and New 

York.  In the heavily forested regions of New England and around the Great Lakes, both AMSR-

E and SSM/I underestimate the maximum SWE values, though AMSR-E performs better than 

SSM/I.  It is expected that these regional differences between the two microwave datasets’ 

results are a function of the retrieval algorithms used.  While AMSR-E, unlike SSM/I, accounts 

for forest fraction in the current algorithm, vegetation type is not included. Azar et al. [2008] 

were able to improve the SSM/I results in the Great Lakes region by developing an algorithm 

that uses a Normalized Difference Vegetation Index (NDVI) to classify the mixed use forest in 

the region. 
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Figure 5. R2 of average annual maximum SWE in HUC8s by forest fraction 

 
Passive microwave estimates of SWE are best correlated with SNODAS data in regions where 

the maximum annual SWE values are relatively low and agreement decreases as the SWE 

increases (Figure 6).  In watersheds with an annual maximum SWE less than 100 mm, the SSM/I 

SWE product is better correlated with SNODAS than AMSR-E.   Above 100 mm, AMSR-E has 

consistently better agreement with SNODAS than SSM/I, though both correlations decrease with 

increasing snow depth.   

 
Figure 6. R2 of average annual maximum SWE in HUC8s for increasing categories of SNODAS SWE 
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More than half of the eight digit HUCs, or 56% of the total area in the conterminous U.S., have 

less than 20% forest coverage.  For the regions with less than 200 mm annual maximum 

SNODAS SWE and less than 20% forest cover, the R2 values between SNODAS and AMSR-E, 

and SNODAS and SSM/I average annual maximum SWE are 0.48 and 0.66, respectively.  

Figure 7 shows the R2 values between SNODAS and the passive microwave weekly SWE for 

each HUC-8 during the winter months (Oct – Apr).  Basins with the best agreement tend to fall 

outside the areas with greater than 20% forest coverage and greater than 200 mm annual 

maximum SNODAS SWE, though several basins with weekly correlations greater than 0.5 do 

reside in those areas. 

The analysis of SWE estimates with terrain does not show a consistent relationship between 

elevation range and correlation of the data.  Once basins with greater than 20% forest coverage 

and a greater than 200 mm average maximum SNODAS SWE were removed, good correlations 

occur between SNODAS and the passive microwave data despite large changes in topography.  

Dong et al. [2005] investigated the impacts of topographic roughness on SWE estimates at over 

3000 observing stations in Canada, and found no significant impact compared to the effects of 

deep snow and nearby water bodies.  Tong et al. [2010] found that while algorithms performed 

better in complex terrain when only SWE values less than 250 – 400 mm were considered, the 

accuracy was still insufficient at a point comparison.  At a large watershed scale, the effects of 

topography are expected to average out, having a minimal effect on error compared to vegetation 

and snow depth. 
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a.

b.  
Figure 7. R2 of weekly winter SWE, Oct – Apr, by HUC8 for (a) SNODAS and AMSR-E (b) SNODAS 

and SSM/I; hatched area shows HUCs with greater than 20% forest coverage or an average max 
annual SNODAS SWE greater than 200 mm. 

 
Times series of SWE data in basins from six different regions demonstrate typical regional 

differences in the weekly comparison (Figure 8). Characteristics of each of the basins and 

statistical results of the comparison of passive microwave SWE with SNODAS data are given in 

Table 3.  The Sheyenne Basin (A) is in the northern Plains region where all three datasets 

compare very well. In this region, the evolution and magnitude are typically similar with 
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correlations between SNODAS and passive microwave of 0.55 and 0.68 for AMSR-E and 

SSM/I, respectively, and Nash-Sutcliffe efficiencies between SNODAS and passive microwave 

data of 0.48 and 0.52 for AMSR-E and SSM/I, respectively.  The Upper Powder Basin (B) is in 

the Central Plains region where the agreement is not as strong. The basin has a modest snowpack 

that is tracked by all datasets, but the strongly negative Nash-Sutcliffe efficiencies show the lack 

of agreement between the time series. The Upper Salmon Basin (C) in the Pacific Northwest 

region has considerable vegetation and deep annual snowpacks.  The passive microwave follows 

a similar accumulation and ablation trend, and has a correlation of 0.6 to the SNODAS data. 

However, the microwave SWE is much lower than the SNODAS SWE, even for relatively 

shallow snowpacks. The Duschene Basin (D) in the Upper Colorado region also receives deep 

snowpack but has a forest fraction of less than 20%.  In lighter snow years, the passive 

microwave is similar in magnitude to the SNODAS SWE, but in heavier snow years the 

microwave data is much less, resulting in an overall negative efficiency measure.  The Upper 

Wisconsin Basin (E) near the Great Lakes region does not experience deep snow, but is 

significantly forest covered.  As compared to the other four watersheds, a difference between 

AMSR-E and SSM/I SWE estimates is evident with AMSR-E having a Nash-Sutcliffe efficiency 

of 0.59 in comparison with SNODAS, while SSM/I has an efficiency in -0.04.  The Lower Lake 

Powell Basin (F) is in the Southern Rockies region with a large elevation range, minimal 

vegetation, and a modest annual snowpack.  Strong agreement between SNODAS and the 

passive microwave SWE are shown by correlations of 0.88 and 0.87 and Nash-Sutcliffe 

efficiencies of 0.86 and 0.74 for AMSR-E and SSM/I, respectively. 
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Figure 8. Example time series of average basin SWE in different regions (shown on Figure 1), with 

high and low forest fractions (ff), elevation ranges (ER), and average maximum annual SWE 
(based on SNODAS). 

 

 



32 
 

 Weekly Statistics for example HUC8 time series  

HUC8 Basin 

Forest 
Cover  

% 

Elev 
range 

(m)  

Max 
SWE 
(mm) 

NOAA 
and  

AMSR-E 
R2 

NOAA 
and  

SSM/I 
R2 

NOAA 
and  

AMSR-E 
Nash-

Sutcliffe 

NOAA 
and  

SSM/I 
Nash-

Sutcliffe 

9020202 UPPER SHEYENNE, ND  
(Northern Plains) 8% 208 79.5 0.55 0.68 0.48 0.52 

10090202 UPPER POWDER, WY  
(Central Plains) 0% 770 26.0 0.19 0.21 -3.12 -2.22 

17060201 UPPER SALMON, ID  
(Northern Rockies) 30% 1973 311.5 0.64 0.62 -0.38 -0.71 

14060003 DUCHESNE, UT  
(Central Rockies) 16% 2573 174.8 0.43 0.26 -0.03 -0.33 

7070001 UPPER WISCONSIN, WI  
(Great Lakes) 77% 143 111.4 0.70 0.61 0.59 -0.04 

14070006 LOWER LAKE POWELL, AZ, UT 
(Southern Rockies) 0% 2169 14.3 0.88 0.87 0.86 0.74 

 

Overall, this study supports many of the findings from the earlier studies [Dong et al., 2005; 

Vander Jagt et al., 2013].  The SNODAS and microwave data agree in relatively flat, non-

forested areas where previous studies showed promising microwave results [Derksen et al. 2003, 

Mote et al. 2003, Chang et al. 2005] and also in mountainous, non-forested regions [Tait, 1998; 

Vuyovich and Jacobs, 2011]. Unlike Mätzler and Standley [2000], this study did not find that 

large elevation gradients have significant impact on the passive microwave SWE estimate as 

compared to SNODAS SWE.  Tedesco and Narvakar [2010] reported the highest correlations 

between SNODAS and AMSR-E SWE occurred in pixels with 0.3-0.4 forest fraction, whereas 

we found the best agreement in basins with a forest fraction of 0.2 or less.  This clearly limits the 

regions for which microwave observations have value. Thus, inclusion of vegetation information 

beyond forest fraction in the retrieval algorithm (e.g., NDVI Azar et al. [2008]) may expand the 

region for which microwave observations provide value.  The thresholds are also evident for 

microwave SWE when snow is too deep – here we found an upper maximum of 200 mm, which 

is intermediate between Clifford’s [2010] 250 mm and Tedesco and Narvakar’s [2010] 90 mm.  
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Furthermore, while there are limited studies on shallow snowpacks, our finding that the 

algorithm differences between AMSR-E and SSM/I challenge the quantification of watershed 

scale SWE estimates in southern regions is supported by Daly et al.’s [2012] findings from their 

work in Afghanistan.  

2.5 CONCLUSION 
In this study, we compared SWE estimates from AMSR-E and SSM/I passive microwave 

satellite sensors to the SNODAS gridded SWE product for 2100 watersheds in the U.S.  No 

previous research has evaluated the microwave products over time at this hydrologic scale, and 

this provided several interesting insights.  Regional differences between the AMSR-E and SSM/I 

point to the need to better understand the algorithms’ detection of SWE in both heavily forested 

basins and basins with shallow annual snow.  Current use of forest fraction to characterize the 

land in the AMSR-E algorithm seems to improve results.  A more robust algorithm which 

includes various vegetation types may improve results further.   

A comparison of the standard deviation of SWE within each HUC-8 basin showed that in areas 

where the passive microwave signal is impacted by deep snow and vegetation, the spatial 

variation also suffers.  This suggests that methods to improve the microwave estimates will 

likely require ancillary data to determine the spatial distribution of SWE. Further research in this 

topic will enhance our understanding of how spatial variability within a microwave pixel is 

established.  For instance, additional analysis of the southern plains is needed to determine if the 

shallow snow algorithm or some other physical process is causing AMSR-E data to overestimate 

SWE in this region.   

Results show large areas where the passive microwave retrievals perform well compared to the 

SNODAS data, particularly in the northern Great Plains and southern Rocky Mountain regions.  



34 
 

The best correlations are associated with basins in which maximum annual SWE is less than 200 

mm, and forest fraction is less than 20%.  While this excludes many regions of the country where 

snow is a significant source of water, it increases confidence in results for characteristically 

similar regions around the world.  In the central Plains region, disagreement between SNODAS 

and passive microwave SWE will be the focus of future research to better understand the factors 

impacting the results. 

In watersheds with maximum annual SWE values greater than 200 mm, poor correlations 

between the passive microwave data and SNODAS indicated that the relative magnitude of 

maximum SWE from year-to-year was not captured.   However, the overall temporal pattern of 

accumulation and ablation did show good agreement in many of these regions, which may 

provide useful hydrologic information as to the snow season length and melt timing.  This 

analysis provides a foundation for future research assessing the SWE estimates in relation to 

runoff from these basins.  
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CHAPTER 3 THE EFFECT OF SPATIAL VARIABILITY OF WET SNOW 

ON PASSIVE MICROWAVE SATELLITE OBSERVATIONS2 

3.1 INTRODUCTION 
Melting snow provides a reliable water supply in many regions of the world and can also 

produce wide-scale flooding, particularly when combined with rainfall.  Efficient water resource 

management requires accurate, timely estimates of both snow water equivalent (SWE) and snow 

melt onset.  However, snow characteristics can be highly variable across a landscape, and 

techniques for accurately characterizing the spatial distribution of snow properties still remain 

elusive (Elder et al. 1998; Dozier et al. 2016).  The presence of liquid water in an existing 

snowpack, which can be an indicator of snowmelt, is particularly difficult to measure or detect 

over large areas (Kang et al. 2014).  For hydrological purposes, an accurate distribution of melt 

is essential for estimating the correct runoff response (Lundquist and Dettinger 2005), and will 

also provide insight into important ecological and biogeochemical processes (Bales et al. 2006).   

Increasingly over the past 50 years, satellite remote sensing techniques have been investigated 

for estimating all components of the land surface water budget (Lettenmaier et al. 2015).  Snow 

measurement in particular has benefited from technology advances due to different responses 

across the electromagnetic spectrum from other land surface types (Frei et al. 2012). Currently, 

two methods are available for global monitoring of snow; visible/infrared sensors provide high 

resolution estimates of snow extent, while passive microwave sensors have been used to derive 

information on snow mass.  Passive microwave observations have been available for over three 

decades providing non-destructive, daily information on snow depth, snow water equivalent 

                                                             
2 Vuyovich, C. and J. Jacobs (in press) Snowmelt runoff prediction through spatial characterization of melt-
based microwave response, submitted to Remote Sensing of Environment, October 2016. 
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(SWE) and snowpack state (Schmugge et al. 2002).  Passive microwave emissions also offer a 

potentially viable way to discern snow melt distribution across a landscape.   

Microwave emissions are measured in units of brightness temperature (TB), which in the 

microwave spectrum is equal to the thermometric temperature of the emitting material times the 

emissivity.  At certain frequencies, snow causes the measured TB to decrease due to signal 

extinction through the snowpack; this forms the basis for empirical formulations to estimate 

snow depth (Chang et al. 1982). The microwave signal is highly responsive to liquid water 

content (LWC), which is the volume of liquid water per unit volume of snow, due to the 

sensitivity of the radiance to changes in the dielectric constant (Stiles and Ulaby 1980).  The 

presence of water within a snowpack increases the emissivity resulting in a sharp TB increase 

(Davis et al. 1987; Mätzler 1987; Walker and Goodison 1993).  TB increases occur with as little 

as 1-2% liquid water content in the snowpack (Cagnati et al. 2004; Stiles and Ulaby 1980; 

Tedesco et al. 2006).   

Passive microwave emissions cannot be used to estimate SWE during wet snow periods because 

of the reduced signal scattering.  However, the signal response provides a clear indication of 

increased liquid water content, which overwhelms the impact of other snowpack properties on 

the microwave signal (Wang et al. 2001).  Several studies have investigated using this response 

to determine the melt onset date (Drobot and Anderson 2001; Ramage et al. 2006), or to identify 

rain-on-snow (ROS) events (Grenfell and Putkonen 2008).  Others have linked the microwave 

response at a coarse resolution to basin runoff and shown potential for hydrologic applications 

(Ramage and Semmens 2012; Vuyovich and Jacobs 2011; Yan et al. 2009).   
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Two approaches have been developed to detect the timing of snowmelt using microwave signal 

response to wet snow.  The Diurnal Amplitude Variation (DAV) approach identifies the onset of 

melt using the large differences in TB between the morning and afternoon overpasses at the 

37GHz frequency (Kopczynski et al. 2008; Ramage et al. 2006; Tedesco et al. 2009).  A DAV 

increase indicates the onset of the daytime melt/nighttime refreeze cycle and the beginning of 

spring snowmelt.  The high-DAV period that follows the onset of melt, referred to as the 

transition period, ends when the snowpack is continuously melting during day and night periods 

and the brightness temperature difference decreases.  Another method uses the gradient and 

polarization ratios (GR and PR, respectively) to isolate the bulk emissivity of the snowpack and 

identify significant rain-on-snow events. In the Canadian Arctic, Grenfell and Putkonen (2008) 

demonstrated that the GR and PR can be used to identify the occurrence as well as the intensity 

of rain-on-snow events.  Using a combination of these two approaches, Semmens et al. (2013) 

developed an algorithm for detecting early season melt events with AMSR-E passive microwave 

data, and were able to successfully identify melt events caused by both rain-on-snow and 

snowmelt alone.   

These methods have successfully demonstrated an ability to detect the timing of snowmelt, 

which has implications for runoff; however, they do not provide information on the volume of 

runoff.  The discharge magnitude during a snowmelt event is a function of the snowpack 

properties as well as the spatial extent over which snowmelt is occurring.  An improved 

understanding of the TB retrievals’ response to the spatial distribution of snowmelt is needed. 

Kang et al. (2014) and Pan et al. (2014) conducted the foundation work needed to characterize 

footprint scale emissions. They used the Microwave Emission Model for Layered Snowpacks 

(MEMLS) and the Helsinki University of Technology (HUT) snow microwave radiative transfer 
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models, respectively, to successfully capture the emission signatures in wet snowpacks and 

compare the results to point observations.  Both studies report a sharp increase in the TB response 

immediately after wetting (the signal response used in detecting the onset of melt) despite 

differences in snowpack characteristics and wetness profiles. 

The goal of this study is to understand the TB response to spatially distributed wet snow within a 

satellite pixel and to begin to evaluate the relationship between the aggregated TB response and 

river discharge. In this study, we investigate the sensitivity of TB to spatially distributed wet 

snow using loosely coupled, physically-based snow and emission models. A long-term 

ecological research area in the northeast U.S. was selected as the study location because of its 

long record of meteorological, hydrological and snow observations (described in Section 2).  The 

methods used to develop a relationship between the change in TB and the fractional area affected 

by wet snow are described in Section 3.  These include a sensitivity analysis to assess the 

impacts of artificially distributed LWC on the emission signal, and evaluation of the simulated 

and observed TB during wet snow events over an eight year period. Results of the analysis are 

provided in Section 4 and include a comparison of the TB response and increases in observed 

streamflow during wet snow events.  In Section 5 we discuss the implications of these results 

with potential future directions. 

3.2 STUDY AREA AND DATA 
The study domain is a 34 km by 34 km area in the White Mountains of New Hampshire, USA 

which includes the Hubbard Brook Experimental Forest (HBEF), a Long Term Ecological 

Research (LTER) watershed (Figure 1). The HBEF watershed has an area of 31.6 km2, which 

covers approximately 3% of the total study domain and is representative of the larger area.  

HBEF has more than 50 years of meteorological and hydrological observations, which have 
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enabled decades of ecologic and hydrologic research.  Approximately one-third of the annual 

precipitation falls as snow, with a mean annual maximum SWE for the period of record at HBEF 

of approximately 189 mm, and a snow cover that generally persists from mid-December to mid-

April (Campbell et al. 2007).  The study domain is a mountainous region, characteristic of the 

northeastern United States Appalachian Mountains with elevations ranging from 120 to 1470 m. 

Land cover is Eastern Deciduous Forest, with evergreen forest and tundra at the highest 

elevations. Agricultural and developed areas are primarily limited to the lowest elevations and 

along rivers.  Elevation data for the domain were developed from 30 m resolution National 

Elevation Data (NED) (USGS 2009). Land cover data were obtained from the National Land 

Cover Database (NLCD) (Homer et al. 2015).  Both the elevation and land cover data were 

clipped and resampled to a 50 m resolution. Stream channels in this region are generally steep 

with coarse-grained bed material.  Shallow underlying bedrock means minimal loss to deep 

groundwater and relatively quick runoff response (Campbell et al. 2011). Discharge records 

demonstrate a seasonal snowmelt signal with the highest runoff volumes occurring in March – 

May.   

Meteorological and snow course data from 1 October 2002 to 30 September 2011 at the Hubbard 

Brook LTER (Bailey et al. 2003) and National Weather Service stations were used in this study 

(Table 1). Daily temperature and precipitation observations were available from approximately 

10 locations each year. The Hubbard Brook LTER data provided precipitation measurements 

over a representative elevation range.  Relative humidity, wind speed and direction were 

available at three of the 10 observation stations.  Only two stations lacked complete data 

coverage for the entire period of interest. Snow water equivalent was measured at five Hubbard 

Brook snow course locations on a weekly basis.  HBEF also maintains an NRCS Soil Climate 
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Figure 1. Study region, located in the White Mountains of New Hampshire, US 
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Analysis Network (SCAN) site; an automated station with a snow pillow to measure SWE, as 

well as measurements of snow depth, soil moisture and numerous meteorological variables.  The 

station has been collecting hourly data since 2002.  

 List of Meteorological Stations and Snow Survey Sites Used 
Station Name (ID) Lat. Long. Elev. (m) Observations* Water Years Used 
Hubbard Brook HQ (100) 43.94 -71.70 255 T, RH, WS, WD, PCP, SWE 2003-2011 
Hubbard Brook 1A (101) 43.95 -71.73 490 T, PCP 2003-2011 
Hubbard Brook Station 2 (HB2) 43.95 -71.73 561 SWE 2003-2011 
Hubbard Brook Station 6 (106) 43.96 -71.74 740 T, PCP 2003-2011 
Hubbard Brook Station 9 (HB9) 43.96 -71.74 762 SWE 2003-2011 
Hubbard Brook Station 14 (114) 43.92 -71.77 740 T, PCP 2003-2011 
Hubbard Brook Station 17 (117) 43.92 -71.76 740 T, PCP, SWE 2003-2011 
Hubbard Brook Station 19 (HB19) 43.92 -71.76 792 SWE 2003-2011 
Hubbard Brook Station 23 (123) 43.93 -71.76 669 T, PCP 2003-2011 
Hubbard Brook Station 24 (124) 43.92 -71.75 796 T, PCP 2003-2011 
NRCS SCAN Site 43.93 -71.72 460 T, PCP, WS, WD, RH, SWE 2003-2011 
Plymouth Mun. Airport (200) 43.78 -71.75 157 T, RH, WS, WD, PCP 2006-2011 
Plymouth COOP Station (250) 43.78 -71.65 303 T, PCP 2003-2008 
Wentworth COOP Station (400) 43.95 -71.92 282 PCP 2003-2011 
Mt. Wash Regl. Airprt. (500)** 44.37 -71.54 327 T, RH, WS, WD, PCP 2003-2011 
*T = Temperature (°C); RH = Relative Humidity (%); WS = Wind Speed (m/s); WD = Wind Direction (degrees); PCP 
= Precipitation (mm/day); SWE = Snow Water Equivalent (mm) **Located outside of the domain. 

Within the HBEF research area, nine instrumented watersheds have recorded continuous 

discharge measurements since 1956 (Bailey et al. 2003).  Additionally, the Baker River 

watershed is an unregulated basin, with an area of approximately 370 km2, which is entirely 

contained within the study domain but outside of HBEF.   Streamflow data were obtained for the 

Baker River at Rumney, NH from the U.S. Geological Survey (USGS 2001).  

Passive microwave brightness temperature data from the Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E) were obtained from the National Snow and Ice 

Data Center (NSIDC) (Cavalieri et al. 2014). AMSR-E was launched on NASA’s Aqua satellite 

in 2002 and data are available through 2011 in Equal-Area Scalable Earth (EASE)-grid 

projection as 25-km grids.  Horizontally and vertically polarized TB measured at wavelengths 

18.7 and 36.5 GHz were used in this analysis. AMSR-E data are available twice daily: ascending 
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passes that occur in the afternoon and descending passes that occur in the early morning. A gap 

in the satellite swath coverage over the region of interest occurs every 3 to 4 days.  

For each descending overpass during the nine-year period of record, an area-weighted average 

TB was computed over the study domain, at both frequencies and polarizations.  This study used 

the descending passes only to limit the occurrence of diurnal melt affecting the signal and instead 

focus on large-scale, continuous melt events.  Values were only computed for images when no 

data were missing within the study domain.  Earlier work by Vuyovich et al. (2014) found that 

vegetation in this region of the U.S. impacts of accuracy of empirically-based passive microwave 

SWE estimates.  In this study no corrections were made to the satellite observations to adjust for 

vegetation, instead focusing on the signal response to wet snow. 

3.3 METHODS 
For this analysis, a physically-based snow model was loosely coupled with a microwave 

emission model to simulate the snowpack radiance over a 9-year period, 2003 – 2011. A single 

layer snow model was used to focus the analysis on the impacts of LWC. The models were run at 

a 50 m resolution over the study domain with a daily time step.   

3.3.1 SNOW AND MICROWAVE EMISSION MODELS 

SnowModel was used to simulate the snow evolution in the study domain and estimate spatially 

distributed snow characteristics including snow depth, temperature, density, SWE, albedo and 

snowmelt. SnowModel combines an energy balance snow model and wind redistribution model 

and was used to simulate a one-layer spatially distributed snow cover over the study domain 

(Liston and Elder 2006a). MicroMet, a high-resolution atmospheric model (Liston and Elder 

2006b) was used to distribute and downscale the daily meteorological forcing data obtained from 

observations stations. SnowAssim (Liston and Hiemstra 2008) was used to assimilate SWE field 
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observations. The HBEF snow course data were assimilated into the model at approximately bi-

weekly intervals over the simulation period to better match the snow observations. SWE 

measurements from the SCAN site were then used to validate model results.   

The Microwave Emission Model of Multilayered Snowpack (MEMLS) was used to estimate the 

microwave emissions over the study domain, with snow characteristics provided from 

SnowModel output.  MEMLS is a semi-empirical radiative transfer model that simulates the 

scattering effect of snow on microwave emissions at frequencies ranging from 5 – 100 GHz 

using multiple scattering radiative theory (Matzler and Wiesmann 1999; Wiesmann and Matzler 

1999).   MEMLS estimates internal scattering based on six-flux theory, which is simplified for 

upwelling and downwelling radiation.  Scattering coefficients are determined based on 

characteristics of the snow.   

MEMLS was used to estimate vertically and horizontally polarized TB through the snow at 18.7 

and 36.5 GHz to match the AMSR-E frequencies used to estimate SWE. The 36.5 GHz 

frequency is of particular interest and the focus of this paper because of its sensitivity to snow 

parameters (Tedesco and Kim 2006).  Snow characteristics including snow depth, density, 

temperature, liquid water content (LWC), and the exponential correlation length (pex) are 

required as input to MEMLS.   Snow temperature, depth and density were used directly from 

SnowModel output.  The pex is a metric for grain size used in MEMLS to estimate the scattering 

coefficient.  The original approach assumed pex values ranging from 0.05 – 0.3 mm (Wiesmann 

and Matzler 1999), which was later extended to handle coarse grains up to 0.6 mm (Matzler and 

Wiesmann 1999).  SnowModel does not simulate grain size.  Given that the focus of this 

investigation is on the effects of LWC, a constant pex was used for all grid cells. 
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3.3.2 SENSITIVITY ANALYSIS 

The first sensitivity analysis was conducted to develop a relationship between the TB response 

and the percent LWC in the snow, uniformly distributed across the study domain.  A single date 

was selected when the study domain was 100% snow covered and no LWC was present in the 

snow based on SnowModel results.  This provided a realistic spatial distribution of snow 

characteristics with which to test the effects of LWC.  In the first series of simulations, LWC was 

applied across the domain as a constant percentage of the SWE in each grid cell. The LWC was 

uniformly applied to each grid cell in 0.1% increments increasing from 0 to 5%.  In the next 

series of simulations, the same adjustment to LWC performed in the first test was repeated while 

individually adjusting the other snow characteristics.  The snow depth, density, temperature and 

exponential correlation length were varied between a selected maximum and minimum average 

value over the study domain.  To adjust the snow depth, density and temperature, the individual 

grid cell values were scaled by the ratio of the new domain average value to the original average.  

The exponential correlation length, pex, was uniformly adjusted across the domain to represent a 

range of expected grain sizes from fine to coarse.   

In the second sensitivity analysis, LWC was applied to increasing areas of the study domain 

using SnowModel results on the same date as in the previous analysis.  The area assigned LWC 

was increased from 0% to 100% by 10% increments. The goal of this analysis was to develop a 

relationship between the percent area impacted by wet snow and the change in TB over the entire 

domain. Two different spatial distributions were used to assign LWC to the grid cells: random 

and by elevation.  The random distribution assigned LWC to grid cells at random.  The elevation 

distribution assigned LWC to grid cells beginning with the lowest elevations first, and increasing 

the percent area within the domain as a function of elevation.  The elevation distribution was 
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used to replicate a more realistic melt pattern, which is often strongly correlated with elevation, 

though it is not the only factor (Lundquist et al. 2004).  Table 2 provides a matrix of the tests 

performed in the sensitivity analysis. 

 Sensitivity analysis test matrix, using SnowModel results on 11 March 2003 

LWC Analysis 

Snow Depth 
(cm) 

(average 
over 

domain) 

Snow 
Temperature 

(K) 
(average over 

domain) 

Snow 
Density 
(kg/m3) 
(average 

over domain) 

Exponential 
correlation 
length, pex 

Tests 1- 5: Uniform application of varying LWC across domain 
Test 1: 51 simulations increasing LWC from 0 – 

5% by 0.1% increments 49 cm  266.8 K  301.7 kg/m3  0.11 

Test 2: 51 simulations increasing LWC from 0 – 
5% by 0.1% increments, while adjusting snow 

depth 

2 Tests: 25 
cm and 80 

cm 
266.8 K  301.7 kg/m3  0.11 

Test 3: 51 simulations increasing LWC from 0 – 
5% by 0.1% increments, while adjusting snow 

temperature 
49 cm 3 Tests: 250, 

260 and 270 K 301.7 kg/m3  0.11 

Test 4: 51 simulations increasing LWC from 0 – 
5% by 0.1% increments, while adjusting snow 

density 
49 cm  266.8 K  

2 Tests: 200 
kg/m3 and 
400 kg/m3 

0.11 

Test 5: 51 simulations increasing LWC from 0 – 
5% by 0.1% increments, while adjusting pex 

49 cm  266.8 K  301.7 kg/m3  2 Tests:  0.3 
and 0.65 

Tests 6 - 7: Spatial distribution of constant LWC across domain 
Test 6: 11 simulations,  

LWC = 1%, assigned randomly to 0 – 10% of 
the area by 10% increments 

49 cm  266.8 K  301.7 kg/m3  0.11 

Test 7: 11 simulations,  
LWC = 1%, assigned to 0 – 10% of the area by 

10% increments based on pixel elevation 
49 cm  266.8 K  301.7 kg/m3  0.11 

3.3.3 WET SNOW EVENTS 

For the period 2003 – 2011, the snow emission model was run over each winter season and wet 

snow events were identified using a threshold change in TB greater than 5K from the previous 

day.  To ensure that the domain was mostly snow covered, the events were limited to the 

December to March time period when the average SWE over the domain was at least 10 mm. 

SnowModel output includes snowmelt but not LWC, a snow property required by MEMLS. In 

grid cells where SnowModel estimated snow melt runoff greater than zero, LWC was assumed to 

be present in the snowpack.   For each event identified, the change in the observed TB was 
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compared with the results of the sensitivity analysis.  For snow melt events to result in 

significant runoff the snowpack temperature must be close to the melt temperature.  For each wet 

snow event, the change in TB from one day, TB,1, to the next, TB,2, was normalized by the 

difference between the previous day’s brightness temperature and 273.15 K, which represents the 

largest change in TB that could occur.   

𝑇𝑇𝐵𝐵,𝑛𝑛 =
�𝑇𝑇𝐵𝐵,2 − 𝑇𝑇𝐵𝐵,1�

�273.15 𝐾𝐾 − 𝑇𝑇𝐵𝐵,1�
 (1) 

The AMSR-E 36.5 GHz TB was compared to the modeled TB over the period, 2003-2011, when 

the satellite data are available.  The normalized change in AMSR-E TB during the wet snow 

events was also compared to the results of the sensitivity analysis. 

For each wet snow event identified, subsequent discharge changes in the Baker River at Rumney, 

NH were evaluated. While not all wet snow packs will result in runoff, liquid water detected in 

the snowpack is a necessary precursor to winter discharge increase.  The absolute change in 

discharge following a wet snow event identified in the microwave signal was compared to the 

change in TB estimated from MEMLS and AMSR-E. 

3.4 RESULTS 

3.4.1 HIGH-RESOLUTION SIMULATION OF SNOW CHARACTERISTICS OVER STUDY DOMAIN 

SnowModel results were validated using observed SWE at an NRCS SCAN site located within 

the Hubbard Brook watershed which was not assimilated into the model.  Over the 9 years when 

both snow pillow observations and SnowModel results were available, the correlation (R2) 

between the daily SWE data was 0.82 and the Nash-Sutcliffe efficiency measure was 0.65, 

indicating a close match between the modeled and observed at that location. The study area is 
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usually completely snow covered during the winter months, beginning on 10 December and 

ending on 8 May on average.  The average peak SWE date occurs on 10 March, and the 

estimated average peak SWE over the study domain during the 9-year time period is 172 mm.  

The maximum peak SWE was 311 mm in 2008 and a minimum peak SWE of 78 mm was 

estimated in 2006.   Simulated snow depths showed variability with topography, which agrees 

with observed snow measurements.  SWE measured at HBEF are consistently deeper at high-

elevations than in the valley floors throughout the snow accumulation and ablation season. In 

addition, melt rates are greater at the lower elevations earlier in the season and at the higher 

elevations later in the season (Figure 2).  This supports the use of elevation as a realistic index 

for snowmelt patterns. 

 
Figure 2. Average daily melt rates at 5 Hubbard Brook snow survey sites (with elevation) during 

the spring season, based on HBEF data from 1993 – 2015. 

3.4.2 SIMULATION OF SNOW MICROWAVE EMISSIONS OVER STUDY DOMAIN 

The MEMLS model was run for each 50 x 50 m grid cell over the 9 year study period, using 

snow characteristics from SnowModel as input.  The results were averaged to provide a single TB 

for the whole study domain.  The vertically polarized 36.5 GHz TB from the AMSR-E satellite 

sensor were compared to the model results.  No atmospheric or vegetation corrections to the 
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AMSR-E data were made for this study because we are primarily interested in the relative 

change in TB rather than the absolute magnitude. Regardless, both measured and modeled data 

show a similar decrease in TB during the winter months when snow is impacting the signal 

(Figure 3).  TB estimates range from approximately 273 K during the snow-free periods to 220-

240 K at the peak snowpack.  There is considerable noise in the daily AMSR-E data, which 

could be due to the vegetation in this region.  Dissimilarities between the data could also be due 

to the differences in the regions being averaged. 

 
Figure 3. Daily average TB over study domain for water years 2003 – 2011, from model results and 

satellite retrievals. 

3.4.3 SENSITIVITY OF MICROWAVE EMISSIONS TO LWC IN SNOW 

The sensitivity analysis provided the foundation to examine the effect of LWC on microwave 

emissions over the study domain.  On the date selected for the sensitivity analysis, 11 March 

2003, SnowModel results estimated 100% snow cover over the domain and no LWC (Figure 4). 

The average snow depth on this date was 49.1 cm, ranging from a maximum of 145.2 cm to a 

minimum of 13.7 cm across the study domain.   The average snow density and temperature were 

301.7 kg/m3 and -6.32oC (266.8 K), respectively.  A constant pex of 0.11 was used for all grid 

cells based on observed values for a similar snowpack depth (Proksch et al. 2015; Wiesmann et 

al. 1998). The 36.5 GHz TB, estimated by MEMLS on this date, was 248.6 and 237.6 K for the 
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vertical and horizontal polarizations, respectively. The computed 18.7 GHz TB on this date was 

266.1 K for the vertical polarization and 253.3 K for the horizontal polarizations.  For 

comparison, the AMSR-E TB observed on this date were 229.7 and 226.4 K for the vertical and 

horizontal polarizations of the 36.5 GHz frequency, respectively.  The TB observations at 18.7 

GHz were 239.1 K in the vertical polarization and 232.0 K horizontal. 

 
Figure 4. SnowModel SWE on 11 Mar 2003 when domain was 100% snow covered with no LWC. 

HOMOGENOUS DISTRIBUTION OF LWC PERCENTAGE 

For the first sensitivity analysis, the same LWC was applied to each MEMLS grid cell as a 

percentage of the SWE in that cell, increasing by 0.1% increments from 0 to 5% LWC.  With the 

initial application of 0.1% LWC, the average TB across the domain increased by approximately 

14.5 and 12.7 K for the vertical and horizontal polarizations, respectively (Figure 5). The 
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vertically polarized 36.5 GHz brightness temperatures continued to rise with increasing LWC 

until leveling off around 1% LWC. In contrast, the horizontally polarized 36.5 GHz channel 

decreased after the initial rise even with increasing amounts of liquid water in the snow.  This is 

caused by further increases in the surface reflectivity (Kang et al. 2014).  The vertically polarized 

18.7 GHz TB changed to a smaller degree initially than the 36.5 GHz channel and then closely 

followed the 36.5 GHz data as additional LWC was introduced to the snow pack.  The 

horizontally polarized 18.7 GHz TB similarly saw minimal initial changes, but then decreased at 

a greater rate than the 36.5 GHz horizontally polarized TB.  This suggests that the difference 

between the 18.7 and 36.5 GHz horizontally polarized TB may provide some information on the 

magnitude of LWC, though investigation of this signal is left to future work. The remainder of 

this study focuses on the vertically polarized 36.5 GHz signal that has a strong response to liquid 

water and then remains constant.   

 
Figure 5. Vertically and horizontally polarized 36.5 GHz TB for increasing percent LWC, averaged 

over the study domain 
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IMPACT OF SNOW PROPERTIES  

The LWC sensitivity analysis, using a homogenous LWC percentage across the domain, was 

repeated while adjusting the other snow characteristics to assess the impact on the 36.5 GHz 

vertical signal.  The average snowpack depth over the domain was scaled from 25 to 80 cm by 

multiplying each pixel by the ratio of the new depth to the original depth.  For dry conditions, the 

TB values differ by 15.3 K with the lowest TB estimated for the 80 cm snowpack (Figure 6a). The 

initial application of 0.1% liquid water equalizes the TB to the average snowpack temperature 

(266.8 K). Next, the domain average snow density was varied between 200 – 400 kg/m3 by 

similarly scaling the individual model cells.  The initial TB ranged between 237.4 and 258.4 K 

for the low- and high-density tests, respectively (Figure 6b).  Similar to snow depth, the TB 

equalizes to the snowpack temperature with the addition of 0.1% LWC.   

Adjusting the correlation lengths had a larger effect on the initial TB with values for dry snow 

ranging from 91 to 250 K for pex values of 0.65 and 0.11 mm, respectively (Figure 6c).  These 

values were selected based on observed correlation lengths of fine and coarse snow grains 

(Matzler and Wiesmann 1999).  With additional amounts of LWC, the TB values converge on the 

snowpack temperature, though more LWC is required for TB to reach the maximum temperature 

with larger snow grains.  Finally, the grid cell snowpack temperatures were scaled to obtain 

domain-average temperatures of 250 and 270 K.  Changing the snow temperature had less of an 

impact on the initial TB, which with dry snow ranged from 243 to 251 K, than for some of the 

other snow characteristics (Figure 6d).  However the snow temperature determines the maximum 

TB value of the wet snowpack. In almost all cases, with the exception of the largest correlation 

length, the TB reached a maximum TB at approximately 1% LWC. 
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Figure 6. Vertically polarized 36.5 GHz TB for increasing percent LWC, averaged over the domain as 

a function of a. snow depth, b. snow density, c. correlation length, and d. snowpack temperature. 

EFFECTS OF SPATIALLY DISTRIBUTED LWC TO AGGREGATED TB SIGNAL 

The next analysis considered the microwave response for a region in which part of the snowpack 

was wet and part was dry.  A 1% LWC was assigned to a portion of the grid cells in the domain, 

increasing in area by 10% for each simulation, from 0 – 100%. TB was modeled using MEMLS 

for each grid cell, then a single, average TB value was calculated for the domain. The 1% LWC 

value was selected based on the results of the previous analysis when the maximum TB value was 

typically reached despite variations in snow properties.  The 1% LWC was first assigned 

randomly to grid cells and then by grid cell elevation starting with the lowest elevations. Figure 7 

shows examples of the resulting TB distribution when 1% LWC is assigned randomly (top row) 

and from low to high elevation (bottom row) over 20, 50 and 80% of the total area.  In the 

randomly distributed examples, the spatial variation in TB clearly decreases as a greater 
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percentage of the area is wet, while the low TB values at higher elevations persist when LWC is 

distributed by elevation. The relationship between the portion of area with 1% LWC randomly 

distributed and the average change in TB over the domain follows a linear trend (Figure 8).  

When the LWC was distributed by elevation, the results nearly match the linear relationship of 

the randomly distributed LWC though results are slightly depressed in the middle.  The greatest 

difference in TB when LWC is distributed randomly and by elevation is 1 K when 50% of the 

domain is affected.  This reduced TB when approximately half of the area is impacted is likely 

due to the deeper dry snow remaining at the higher elevations lowering the average microwave 

emission.   

 
Figure 7. TB, 36.5 V resulting from 1% LWC distributed randomly (top row) and by elevation (bottom 

row) over 20% (a, d), 50% (b, e) and 80% (c, f) of the area. 
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Figure 8. Change in average TB over domain as a function of percent area with 1% LWC, for a 

randomly assigned distribution and a distribution based on elevation. 

3.4.4 WET SNOW EVENTS  

COMPARISON OF MODELED WET SNOW EVENTS TO SENSITIVITY RESULTS 

Over the 9-year period, 44 wet snow events were detected using a threshold change in TB greater 

than 5K from the previous day and limiting the analysis to the December to March time period 

when the average SWE over the domain was at least 10 mm. Figure 9 shows the wet snow events 

plotted along with the sensitivity analysis results when the LWC was distributed by elevation.  

There is good agreement between the modeled wet snow events and the sensitivity analysis 

results, indicating that despite variability in snow properties there is a clear response to wet snow 

events.   
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Figure 9. Normalized change in 36.5 GHz TB (equation 3) for wet snow events and results of the 

sensitivity analysis when LWC was distributed by elevation 

COMPARISON OF MODELED EMISSION RESULTS TO SATELLITE RETRIEVALS 

For each of the 44 wet snow events identified in the modeled emission results, the AMSR-E 

vertically polarized 36.5 GHz TB was obtained for the study domain. For each wet snow event, 

an increase in the AMSR-E TB signal was observed. There is a positive linear relationship (R2 = 

0.13) between the satellite observations and model TB changes during each of the events; there is 

also considerable scatter (Figure 10).  Despite the heavy mixed-forest tree canopy, the magnitude 

of the AMSR-E TB changes are as large as those modeled changes.  

 
Figure 10. Change in TB corresponding to wet snow events from MEMLS and AMSR-E, with 1:1 line. 
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EVALUATION OF DISCHARGE RESPONSE 

Wet snow events indicate snowmelt and, in some cases, will be followed by streamflow 

increases. For the 370 km2 Baker River watershed, the change in discharge, ΔQ, from the date of 

the TB response to the peak flow, up to four days following the wet snow event, was evaluated.  

Figure 11 shows the relationship between the increasing discharge and the increasing TB from 

the model results and AMSR-E observations.  While there is not a strong relationship between 

the magnitude of the TB increase and discharge (correlation less than 0.1 for MEMLS and 0.22 

for AMSR-E), in all cases, an increase in discharge followed the increase in TB.  In 

approximately 20% of the events the increase in discharge was small (less than 10% of the 

average peak annual flow, 29 cms), though the change in TB could be large.  Many of these 

events represent early-season warming periods that did not result in significant increases in 

discharge. The comparison improves if the events are evaluated by month, though there is still a 

significant amount of scatter in the microwave response. 

  
Figure 11. Modeled and observed temperature brightness changes versus discharge increase at the 

Baker River gage following wet snow events. 
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3.5 DISCUSSION  
The response of TB to the presence of liquid water in the snow dominates the emission signal.  

This signal has been identified in previous research as a potential indicator of melt onset.  The 

results of this study agree with earlier research, which showed a sharp increase in the measured 

36.5 GHz TB value with relatively low LWC values. Similarly, we found constant values for the 

vertically polarized TB and decreases in horizontally polarized TB with additional LWC above 

1% (Kang et al. 2014).  Snow depth, density and grain size have a strong impact on the measured 

TB for dry snow, but the change in TB with wet snow is clearly evident over a range of initial 

snow characteristics.  In contrast to Kang et al. (2014), this study found that different grain sizes 

can yield a significant difference in the initial TB response, though the resulting TB once LWC is 

present is similar despite differences in snow properties.  

Based on the sensitivity analysis performed in this study, there is a near linear relationship 

between the percent area where wetting has occurred and the change in the aggregated TB signal 

over that area.  There is only a small difference in the relationship when the LWC is distributed 

randomly versus by elevation in this region.  An accurate distribution is important to correctly 

estimate the discharge response; therefore additional information can be used to spatially 

distribute the disaggregated wet snow signal. During the ablation period, snowmelt is driven by 

energy fluxes that are influenced by topography, vegetation and solar radiation (Melloh et al. 

2008).  Several studies have observed repeated patterns in spatial distribution of melt using 

various techniques, such as digital imagery, terrestrial laser scans and remote sensing (Egli et al. 

2012; Ide and Oguma 2013), which could be used to describe the melt distribution.   

The results of the sensitivity analysis were compared to actual wet snow events as detected by 

the combined snow-emission model over a 9-year period.  There is strong agreement between the 
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percent area affected by wet snow and the change in TB across a range of snow conditions and 

time periods.  The comparison of modeled results to the AMSR-E TB response during wet snow 

events yielded a moderate positive linear relationship.  While all of the detected melt events saw 

a corresponding positive increase in AMSR-E TB measured at 36.5 GHz, the correlation between 

the magnitudes of TB changes was weak. This may be due to regional effects of vegetation on the 

satellite signal, timing differences between the satellite observations and model simulations, or 

the area over which the area-weighted average was computed.  Previous research has shown 

regional differences in the satellite sensor performance in estimating SWE as compared to 

modeled data (Vuyovich et al. 2014).  Thus, it is promising that the satellite observations detect 

wet snow events in this vegetated region, and the signal response should be investigated in 

different regions and domains. 

The comparison of the wet snow signal response and the discharge at a station within the domain 

showed a positive relationship between increased TB and increased discharge.  It is encouraging 

to see agreement at such a small scale, particularly given the daily temporal resolution of the 

model.  Yan et al. (2009) used the melt signal from DAV and a conceptually-based hydrologic 

model to predict spring snowmelt over a large Alaskan basin.  While their hydrograph timing 

results were accurate in most years, they acknowledge limitations of running at such a coarse 

resolution (to match EASE-grid pixel size), and the need for better snowpack characterization.  

This study provides the potential basis for disaggregating melting snow within the microwave 

pixel based on the TB response. 

3.6 CONCLUSION 
Satellite-based, passive microwave data have been investigated over multiple decades for their 

ability to provide global snow information. More recently, the signal response to liquid water in 
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the snowpack has been examined for its potential to predict snowmelt onset timing.  This study 

expanded earlier work by Kang et al. (2014) and Pan et al. (2014), investigating the sensitivity of 

microwave emission at a point, by evaluating the emission response to spatially distributed 

LWC.  A sensitivity analysis was conducted using synthetic distributions of LWC over a 

realistically distributed snowpack.  An increasing, near-linear relationship between the TB signal 

response and the percent area with LWC present was found, suggesting that the microwave 

response provides the potential basis for disaggregating melting snow within a microwave pixel.   

The results were confirmed by evaluating actual wet snow events over a 9-year period.  These 

results have important implications on the potential use of microwave data to inform not only the 

melt timing but also the magnitude of runoff.  Operational snow hydrology models can 

assimilate estimates of snowpack characteristics to improve accuracy of melt timing and 

magnitude, compared to using meteorological forcing data alone.  Future work should evaluate 

the utility of microwave data to initialize model snow state based on the wet snow response. 

Wet snow events identified in the microwave signal were compared to discharge data for a basin 

within the domain.  An increase in TB was followed by a subsequent increase in discharge in all 

cases; however the magnitude of the change did not correspond.  Next steps should include 

evaluating the spatial distribution of wet snow in larger basins to understand the hydrological 

impact of large-scale snowmelt events as detected by passive microwave data. The microwave 

signal should be evaluated across different regions where the satellite-based wet snow signal 

may perform better.  Future work should also investigate whether the relationship holds in other 

snow regimes, such as a homogenous plains snowpack or deep mountain snowpack with high 

spatial variability.   
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CHAPTER 4 MICROWAVE EMISSION AND DISCHARGE RESPONSE 

TO WATERSHED-SCALE SNOWMELT EVENTS 

4.1 INTRODUCTION 
Each year snowmelt contributes to water supply and flooding in watersheds across the United 

States and around the world. Early detection of melt events could have quantifiable benefits to 

communities by enabling water managers to capture the runoff and mitigate damages due to high 

flows. Snowmelt evolution is particularly difficult to characterize given the heterogeneous and 

dynamic nature of snow and because most ground-based measurement techniques result in 

destruction of the snowpack (Mitterer et al. 2011). Improvements to current global estimation 

capabilities are limited by our understanding of the physical processes and the need for 

innovative remote sensing and data assimilation techniques (McCabe et al 2007).  The goal of 

this paper is to evaluate the potential for remotely sensed passive microwave data, which are 

highly sensitive to liquid water in the snowpack, to provide information on the spatial 

distribution of melting snow and rain-on-snow phenomena to inform hydrological applications. 

In the United States, operational agencies (e.g. NWS, USACE) use hydrologic forecast models to 

predict the volume of water flowing through rivers. These models estimate the amount of runoff 

a precipitation or snowmelt event generates, compute how the water will move downstream, and 

predict the flow of water at a given location throughout the forecast period. To forecast the 

results of precipitation or snowmelt events, these models require both observed and forecast 

meteorological data and often assimilate state variables (e.g., SWE, snow covered area, soil 

moisture, etc.) to improve model results.  Lack of data to initialize the model state can result in 

poor model performance and in some instances expensive consequences (Parrett & Hunrichs 

2006; NOAA 2012).  Ground-based snow observations are accurate at a point, but can be both 
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temporally and spatially scarce and therefore miss the spatial variability of snow processes over a 

landscape.  

Currently, available sources of real-time, spatially distributed snow data in the United States 

include operational models and remote sensing.  The NWS National Operational Hydrologic 

Remote Sensing Center (NOHRSC) produces a near real-time 1 km2 gridded estimate of snow 

water equivalent (SWE) and other snow properties through its SNOw Data Assimilation System 

(SNODAS).  SNODAS integrates a combination of downscaled forcing data, an energy balance 

snow model and assimilated observations in their daily gridded SWE product to arrive at their 

estimate of the snow characteristics over the United States (Carroll et al. 2006). 

Satellite-based passive microwave sensors are another source of spatially-distributed snowpack 

information, with a coarse spatial resolution but relatively high temporal resolution (twice-daily 

overpasses) and the ability to sense through clouds and at night. Microwave emissions, measured 

in brightness temperature (TB), at 37 GHz frequency are sensitive to the presence of snow on the 

Earth’s surface because of the extinction of the signal from the ground by snow.  These data have 

the potential to be a viable source of snow information, particularly in remote, data-sparse 

regions where no ground observations or operational models exist.  Unfortunately, the passive 

microwave SWE estimation capability suffers under certain conditions, including heavy 

vegetation (Derksen et al., 2003; 2005), deep snow (Clifford, 2010), coarse snow texture (Foster 

et al., 1999; Hall et al., 1986; Josberger and Mognard, 2002), and wetness (Hallikainen et al., 

1986; Walker and Goodison, 1993).  Vuyovich et al. (2014) compared passive microwave SWE 

products to SNODAS SWE in 2100 watersheds across the U.S. and found the best comparison 

occurred in basin with an average forest cover less than 20% and average maximum annual SWE 

less than 200 mm.   
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During the winter months snow acts as a natural storage of water and can have a large impact on 

the annual water budget, contributing to drought in low snow years and floods during periods of 

rapid snowmelt.  Discharge from snowmelt can affect hydrologic regimes in high-latitude 

regions, resulting in a large percentage of annual runoff occurring during the spring melt period.  

Before solid snow can to turn to liquid water, energy first goes into warming the snowpack to an 

isothermal state at the melting point.  Liquid water in the snowpack must exceed the maximum 

storage capacity of snow, estimated between 5-10% (Albert & Krajeski 1998), before it is 

released to infiltrate the ground or contribute to overland flow. Typically solar radiation initially 

melts surface snow which then percolates downward through the snowpack during the day and 

refreezes or cools at night, resulting in a diurnal signal in the streamflow.  As temperatures 

warm, continuous daytime and nighttime melt produces the bulk of spring snowmelt runoff, 

which can last for weeks or months depending on the region and the snow mass.  Rain can add 

energy to a ripe snowpack resulting in widespread melting and additional runoff.   

The spatial distribution of snowmelt influences the hydrologic response of the basin, resulting in 

different peak flows and timing depending on the contributing area and the characteristics of the 

snowpack (Lundquist and Dettinger 2005).  Previous research has demonstrated the use of 

remote sensing techniques to relate the aerial extent of snowpack warming to runoff magnitude.  

In the Taylor Valley of Antarctica, Dana et al (2002) used an index of surface temperature data 

derived from AVHRR at a basin scale to successfully predict the magnitude of seasonal runoff 

across different landscapes.  While snowmelt due to solar radiation is the dominant runoff signal 

in Polar Regions, numerous additional contributing factors challenge the ability to forecast 

spring runoff magnitude in mid-latitude watersheds, including liquid precipitation, 

evapotranspiration and antecedent soil moisture. 
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Recent work by Vuyovich et al. (in press) found a near-linear relationship between the spatial 

distribution of wet snow and the microwave signal response. This paper investigated the 

hypothesis that the magnitude of the melt response as detected by microwave sensors on a 

watershed scale was predictive of the watershed runoff response.  An additional goal of this 

research was to determine if satellite-based passive microwave data have the potential to inform 

operational snow models of melt events in diverse regions and snow conditions.  The accuracy of 

satellite-based SWE estimates has been shown to vary regionally with vegetation and snow depth 

(Vuyovich et al. 2014), however the wet snow signal response may still provide predictive 

information even in regions where the SWE products perform poorly.  In particular, this paper 

seeks to address the following questions: 

1. Does the relationship between spatial extent of wet snow and 36.5 GHz TB response 

found in Vuyovich et al. (in press) hold at the basin scale, across diverse regions and 

snow regimes? 

2. Does the 36.5 GHz TB response to wet snow correspond to the magnitude of the 

discharge response during individual and seasonal runoff events? 

3. Does the satellite 36.5 GHz TB response show potential skill for forecasting snowmelt 

volume to inform hydrological applications?  

For this study, several diverse watersheds across the U.S. were selected to evaluate the 

microwave signal.  This study focused on the 36.5 GHz vertically polarized emission signal 

(denoted as TB37 throughout the rest of this paper) based on previous research demonstrating the 

sensitivity of this frequency to snow parameters (Tedesco and Kim 2006) and the constancy of 

the vertically polarized signal once affected by wet snow (Kang et al 2014; Vuyovich et al, in 

press).  A sensitivity analysis was conducted to evaluate the basin-average TB37 signal to 
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increasing areas with LWC.  TB37 was modeled using a loosely-coupled snow emission model at 

a 1 km2 resolution using a one-layer snow model to evaluate the effects of wet snow.  The model 

was then used to simulate TB over eight winter seasons on a daily time step and compared to 

satellite observed TB37.  The modeled and observed TB37 values were then evaluated during 

snowmelt runoff events to assess skill in predicting both individual event discharge and seasonal 

discharge.   

4.2 STUDY AREA AND DATA 
Six basins across the United States were selected for this analysis (Figure 1).  The basins range in 

size, vegetation cover, elevation gradient, and mean annual snow depth (Table 1).  Five of the 

basins were selected from the Geospatial Attributes of Gages for Evaluating Streamflow, version 

II (GAGES II) dataset, which identifies reference basins with near-natural flow conditions 

(Falcone 2011): the White River Basin in Vermont; the Sheyenne River Basin in North Dakota; 

the White River Basin in South Dakota, the Clearwater River Basin in Idaho; and the Tuolumne 

River Basin in California.  The Uncompahgre Basin in Colorado is not classified as a reference 

basin due to regulation at the Ridgeway Reservoir and possibly irrigation withdrawals.  It was 

selected to represent the Southern Rockies region of the U.S. where few reference basins of 

adequate size exist.  The discharge gage upstream of the Ridgeway Reservoir was used in the 

analysis.  Basin boundaries were obtained from the GAGES II dataset for five of the basins.  The 

Uncompahgre basin boundary came from the Watershed Boundary Dataset (WBD) 8-digit 

hydrologic unit code (huc) delineation (USGS & NRCS 2013). 

Percent tree cover information was obtained from the University of Maryland Vegetation 

Continuous Fields (VCF) product (DiMiceli et al. 2011).  The product uses NASA MODIS 

satellite imagery to estimate percent tree cover at 250 m resolution.  For this study the VCF 
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product was used to calculate the percent tree cover of each of the basins.  The elevation range 

within each of the basins was determined using the USGS 1 arc sec (approximately 30 m) 

national elevation data set (NED) (data available from the USGS). 

 Characteristics of watersheds used in study 

Map 
ID State Basin 

Area 
(km2) 

Elevation 
Range (m) 

VCF Forest 
Fraction 

Average Max 
Annual SNODAS 

SWE (mm) 
A ID Clearwater 14,270 317 – 2640 0.49 320.3 
B CA Tuolumne 776 1348 – 3817 0.16 452.2 
C CO Uncompahgre 2,900 1507 – 3964 0.13 107.1 
D SD White River 25,790 425 – 1491 0.03 34.2 
E ND Sheyenne  7,582 392 – 639 0.05 80.8 
F VT White  1,790 144 – 1113 0.59 172.3 

 

 
Figure 1. Map of CONUS, showing basins used in study: A. Clearwater River, ID, B. Tuolumne River, 

CA, C. Uncompahgre River, CO, D. White River, SD, E. Sheyenne River, ND, F. White River, VT 

4.2.1 DISCHARGE DATA 

Streamflow data were obtained for the USGS gage located at the basins’ outlets, with the 

exception of the Uncompahgre River, which uses a gage upstream of the reservoir (Table 2).  

Time series of discharge data during the spring runoff period were extracted for each basin. 
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Individual events were identified and peak annual flow and seasonal volume discharge was 

calculated. Data were collected for the analysis period (2003 – 2011) in all basins except for the 

Tuolumne.  Tuolumne observations at the USGS gage began in 2006. A time series of 

unimpaired inflow to the Hetch Hetchy Reservoir, just downstream of the Tuolumne gage, that 

calculated based on a mass balance of the reservoir inflows and outflows (personal 

communication, B. McGurk, Hydrologist) were used only in the seasonal analyses.  All of the 

basins show a clear seasonal spring runoff signal (Figure 2) with the largest outflow occurring 

during the snowmelt period and a relatively low flow for the remainder of the year.   

 USGS stream gages used in study 

State Basin 
USGS Gage 

Number USGS Stream Gage Name 

Spring 
Runoff 
Period 

Average Annual 
Peak Discharge 

(cms) 
ID Clearwater 13340000 Clearwater River at Orofino ID Mar – Jul 1,456.1 
CA Tuolumne 11274790 Tuolumne R at Grand Canyon of 

Tuolumne above Hetch Hetchy 
Mar – Aug 65.6 

CO Uncompahgre 9146200 Uncompahgre River at Ridgeway, CO Mar – Aug 26.1 
SD White River 6452000 White River near Oacoma SD Feb – Jun 280.2 
ND Sheyenne 5057000 Sheyenne River near Cooperstown, ND Mar - May 51.0 
VT White 1144000 White River at West Hartford Mar – May 393.4 

 

 
Figure 2. Average daily flow for each basin based on period of record, normalized by maximum 

daily average flow 
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4.2.2 SNOW DATA 

SNODAS combines data from various sources—ground, airborne and satellite observations—

with model results, to arrive at a 1 km2 spatially distributed estimate of snow cover and SWE 

[Carroll et al., 2006]. Their procedure follows three main steps; ingest and downscale model 

weather data, simulate snow cover using a physically based energy balance model, and 

assimilate snow observations to adjust model results. Forcing data come from the Rapid Update 

Cycle 2 (RUC2) Numerical Weather Prediction (NWP) model output and is downscaled from 13 

to 1 km resolution using a digital elevation model. The snow model is an energy and mass-

balance, multilayer model based on SNTHERM.89 [Jordan, 1990]. Assimilated observations are 

acquired from state and federal automated ground observations, snow surveys, and gamma 

flights as well as satellite-based snow extent information. Daily SNODAS data are available 

through NSIDC from 1 October 2003 to the present (http://nsidc.org/data/G02158). 

4.2.3 PASSIVE MICROWAVE DATA 

Daily passive microwave brightness temperatures data from the Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E) were obtained from the National Snow and Ice 

Data Center (NSIDC) (Knowles et al 2006).  AMSR-E was launched on NASA’s Aqua satellite 

in June 2002 and is available through September 2011. Brightness temperatures measured at 

wavelengths 6.9, 10.7, 18.7, 23.8 and 36.5 GHz are provided in EASE-Grid projection at 25 km 

resolution.   AMSR-E global TB37 data are available twice daily; ascending passes which occur in 

the afternoon and descending passes which occur in the early morning. The focus of this study 

was on large-scale melt events resulting in a significant discharge response, therefore only 

descending passes were used to reduce the potential detection of diurnal surface melt observed in 

the ascending overpasses. A gap in the satellite swath coverage can occur every three to four 

http://nsidc.org/data/G02158
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days, depending on the latitude of the basin. A basin average TB37 was only computed on days 

when data for at least 75% of the basin was available.  

The effects of vegetation, snow depth and atmosphere can impact the microwave signal.  

Algorithms to account for these effects have been developed to reduce the error in snow depth 

and SWE estimation (Kelly et al., 2009; Tedesco & Narvekar 2010).  In this analysis, since the 

relative change in TB37 due to wet snow was of interest rather than SWE, no corrections to the 

signal were made. 

4.3 METHODS 

4.3.1 SNOW AND MICROWAVE EMISSION MODEL 

For this study, the Microwave Emission Model of Multilayered Snowpack (MEMLS) was used 

to estimate the microwave emissions over the study basins.  The model was run on a daily time 

step over eight years, 2004-2011, at a 1 km2 resolution.  MEMLS is a semi-empirical radiative 

transfer model that simulates the scattering effect of snow on microwave emissions at 

frequencies ranging from 5 – 100 GHz using multiple scattering radiative theory (Matzler and 

Wiesmann 1999; Wiesmann and Matzler 1999).   MEMLS estimates internal scattering based on 

six-flux theory, which is simplified for upwelling and downwelling radiation.  Scattering 

coefficients are determined based on characteristics of the snow.   

MEMLS requires snow information, including snow depth, density, temperature, liquid water 

content (LWC), and the exponential correlation length (pex).  Most of these data were obtained 

from NOAA’s SNODAS operational snow model output (described in Section 4.2.2). Snow 

depth and temperature were used directly from SNODAS output.  Density was calculated from 

SNODAS SWE and snow depth. The snow depth and SWE estimates from SNODAS have been 
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evaluated and generally shown to provide good results at a point scale (Rutter et al., 2008; 

Frankenstein et al., 2008), though over a larger scale, particularly where ground observations are 

sparse or biased, additional error is introduced (Molotch and Bales, 2005; Meromy et al., 2013). 

The snow temperature and melt estimated by SNODAS have not been evaluated to date. 

The pex is a metric for grain size used in MEMLS to estimate the scattering coefficient.  

SNODAS does not provide any estimation of snow grain size, therefore for this study a constant 

value of 0.11 was assumed to focus the analysis on the change in TB37 caused by LWC.  

SNODAS output includes snowmelt, but not LWC, therefore it was assumed that when melt 

occurred there was liquid water present in the snow. The LWC was set to 1% when model-

estimated melt was greater than zero, based on previous research showing the TB37 response 

reaches a near maximum value at 1% LWC (Cagnati et al. 2004; Stiles and Ulaby 1980; Tedesco 

et al. 2006).   

4.3.2 SENSITIVITY ANALYSIS 

A sensitivity analysis was conducted in each basin to test whether the increasing, near-linear 

relationship between the change in TB37 and the percent area with wet snow found by Vuyovich 

et al. (in press) holds true for larger basins with diverse landscape characteristics and snow 

regimes.  For each basin, a date was selected when the snow model data estimated complete or 

near-complete snow coverage and zero melt.  This provided realistically distributed baseline 

snow conditions.  Snow model output on that date was used in MEMLS to estimate TB37. A 

sensitivity analysis was then conducted by systematically increasing the percentage of the total 

basin area containing wet snow (non-zero LWC) from 0% to 100% in 10% increments. Two 

different spatial distributions were used to assign LWC to the grid cells: random and by 

elevation.  The random distribution assigned either zero or a constant percentage LWC to grid 
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cells at random.  The elevation distribution assigned LWC to grid cells beginning with the lowest 

elevations first, and increasing the percent area within the domain as a function of elevation.  The 

elevation distribution was used to replicate a more realistic melt pattern, which is often strongly 

correlated with elevation, though it is not the only factor (Lundquist et al. 2004), and which in 

relatively flat areas may not be a significant factor. A LWC value of 1% was used to represent 

wet snow based on previous research showing the TB37 response reaches a near maximum value 

at 1% LWC (Vuyovich et al. in press, Cagnati et al. 2004; Stiles and Ulaby 1980; Tedesco et al. 

2006).   

4.3.3 BASIN-AVERAGE TB37 COMPARISON 

Daily TB37, estimated over the period of analysis, 2003 – 2011 using the snow-emission model, 

were compared to satellite observed TB37 using several statistical metrics.  Aggregated basin-

average TB37 values were used to represent the contributing area to the discharge signal and to 

avoid introducing error associated with rescaling. To compute the basin-average TB37 from both 

the model results and satellite data, an area-weighted average of the pixel values within the basin 

boundary was computed.  These data were qualitatively compared and not evaluated to assess the 

absolute accuracy of either estimate. Differences in magnitude and scattering could be due to 

vegetation or deep snow impacts affecting the satellite signal that were not accounted for; they 

could also be due to errors in the model data and assumptions affecting the simulated TB37.  

Following Wilmott (1982), two difference measures were computed to evaluate the average 

difference: root mean square error (RMSE), and mean absolute error (MAE), calculated as, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑁𝑁
�(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖

𝑁𝑁

𝑖𝑖=1

)2�

1
2

 (1) 
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𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�|𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 (2) 

where N is the number of data points being compared; M is the snow-emission model predicted 

value, and O is the satellite observation.  Differences in measured and simulated TB37 relate to 

the magnitude of SWE potentially estimated by either data.  Bias was evaluated using the mean 

bias error (MBE) measure to evaluate systematic differences in the estimated and observed TB37, 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁
�(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (3) 

Time series of the data were also visually inspected to evaluate how the data tracked over each 

season. The data were compared during the winter period only when snow was likely to be on 

the ground.   

4.3.4 BASIN-AVERAGE TB37 DIFFERENCE INDEX 

A brightness temperature difference index (TBDI) was derived from the TB37 data for comparison 

to discharge data in each of the basins.  TBDI represents the total area within the basin affected 

by wet snow, assuming a linear relationship with the change in TB37, based on Vuyovich et al. (in 

press).  TBDI was computed over each basin as, 

T𝐵𝐵DI =  �
∑ (𝑇𝑇𝐵𝐵37(𝑗𝑗,𝑖𝑖) − 𝑇𝑇𝐵𝐵37(𝑗𝑗,𝑖𝑖−1))𝑛𝑛
𝑗𝑗=1 ∗ 𝐴𝐴𝑗𝑗

𝑛𝑛
,                             𝑇𝑇𝐵𝐵37(𝑗𝑗,𝑖𝑖) ≥ 𝑇𝑇𝑅𝑅

0,                                                                                       𝑇𝑇𝐵𝐵37(𝑗𝑗,𝑖𝑖) < 𝑇𝑇𝑅𝑅
 (4) 

where i is the current date, n is the number of pixels in the basin, and A is the fraction of the 

pixel, j, within the basin.  A threshold minimum TB37 value, TR, was used to filter out increases 

that occurred while the TB37 was still well below the melting point, when the snow melt was not 
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likely to contribute to runoff.  A separate minimum TBDI threshold of 5 K was used to filter out 

small scatter in the signal that occurs throughout the year. 

During the snow period, the peak flow and maximum change in flow during individual runoff 

events was compared to the maximum daily TBDI that occurred in the week prior to the event.  

This 7-day window allows for melt water travel time which is likely to result in a lag between the 

snow melt observed in the TB37 signal and that melt water driven discharge response at the basin 

outlet. Seasonal discharge signals were also evaluated in comparison to the maximum annual 

TBDI.  The total discharge volume, computed over the spring runoff period for each basin, and 

the peak discharge that occurred during that same period were compared to the peak winter TBDI 

value.   

Discharge metrics for individual runoff events and seasonal discharge signals were compared to 

the observed and modeled TBDI using regression analyses.  An error matrix analysis (Congalton, 

1991) was performed to determine the accuracy of TBDI in predicting changes in discharge. 

Again, a 5 K minimum TBDI threshold was used to identify large TB37 changes.  Large runoff 

events were considered discharge increases greater than 10% of the average annual peak flow.  

Events where both the TB37 change and the discharge change were above (below) the threshold 

were considered correctly predicted (rejected).  Events where the TBDI threshold was exceeded 

but the discharge threshold was not are considered “false alarms”.  Events where the TBDI was 

not exceeded but the discharge threshold was exceeded are considered “misses”.   The overall 

accuracy, A, is the percentage of pixels that were correctly classified by the model as, 

𝐴𝐴 = (𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶)/𝑁𝑁 (5) 
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where CP is the number of correctly predicted events; CR is the number of correctly rejected 

events; and N is the total number of events.  Figure 3 illustrates the concept. 

 
Figure 3. Error matrix used to evaluate TBDI performance 

4.4 RESULTS 

4.4.1 BASIN AVERAGE TB37 COMPARISON 

The TB37 observed by AMSR-E and estimated by SNODAS-MEMLS were compared for each of 

the basins over nine snow seasons (Table 3, Figure 4).  Both datasets showed a decrease in 

magnitude of the TB37 in all basins during winter months when snow was expected to impact the 

signal.  The difference between TB37 during the winter periods and snow-free periods was related 

to the snow depth.  Large, rapid TB37 signal increases during the winter period, most likely 

indicated a snow melt event was occurring.  The SNODAS/MEMLS and AMSR-E signals often 

showed large increases at the same time.  In all basins except the White River (VT), the model 

TB37 was biased higher than AMSR-E.  This was particularly evident in the Sheyenne Basin 

(ND) where cold winter temperatures and frozen soil could be affecting snow texture and other 

properties controlling dynamics of the satellite signal.  Additional information about snow grain 

size would help understand what factors were influencing the signal differences in this region.  In 

the Tuolumne and Clearwater basins, where the snow is deepest, the model TB37 consistently 

decreased sharply at the start of the season and then generally increased throughout the rest of 

the season.  These effects seem to be related to the SNODAS simulated snow temperature based 
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on an evaluation of the model output.  The modeled snow temperature data in these two basins 

followed a similar pattern of sharp decreases early in the season, likely due to thin snow and cold 

temperatures, while deeper snow likely had an insulating effect from cold air temperature later in 

the season.  Using multiple layers in the snow model rather than one average snow temperature 

may reduce the impact this seems to have on the TB37 results.  Interestingly, the TB37 results show 

the poorest comparison in the Sheyenne Basin, a region of the country where a comparison of 

SNODAS SWE and the AMSR-E SWE product had the best results (Vuyovich et al. 2014).  

 Statistical measures of modelled and observed TB37 comparison during analysis period, 
2003-2011 

Basin 
Snow 

Period N 
AMSR-E 
𝑂𝑂�  (K) 

SNODAS/
MEMLS 
𝑀𝑀�  (K) 

σO 
(K) 

σM 
(K) R2 

RMSE 
(K) 

MAE 
(K) 

MBE 
(K) 

Clearwater Dec - May 926 259.0 260.6 7.6 10.8 0.47 8.0 6.3 1.6 
Tuolumne Dec - May 1010 242.5 250.6 8.6 15.7 0.01 19.0 16.1 8.1 

Uncompahgre Dec - May 1014 247.2 257.3 9.0 9.1 0.48 12.3 10.7 10.1 
White SD Jan - Mar 247 251.6 262.8 8.7 8.9 0.41 13.4 11.9 11.2 
Sheyenne Jan - Mar 531 234.6 251.9 14.9 13.7 0.06 24.6 21.0 17.3 
White VT Jan - Mar 539 251.9 249.3 8.5 14.8 0.13 14.4 11.5 -2.5 

 
 



75 
 

 
Figure 4. TB 36.5 observed by AMSR-E and estimated from SNODAS-MEMLS at each basin 
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4.4.2 SENSITIVITY ANALYSIS 

A sensitivity analysis was conducted to evaluate how the spatial distribution of snowmelt 

influences the microwave response in the basin.  The relationship between the change in TB37 and 

the percent of the basin area with liquid water in the snow showed an increasing response in all 

the basins (Figure 5).  The response demonstrates that change in TB37 is a function of the percent 

of the basin area that is affected by wet snow.  When the LWC was distributed randomly, there 

was a linear relationship in all basins.  When the LWC was distributed by elevation, the 

relationship was near linear in most basins.  In reality, numerous factors affect melt distribution 

and further analysis of the important factors in each basin should provide insight to the actual 

relationship.  In this study, random and elevation distributions were used for demonstration 

purposes and to be consistent with previous work (Vuyovich et al., in press). 

 
Figure 5. Sensitivity analysis of change in basin average 36.5 GHz TB when 1% LWC is assigned 

randomly and by elevation to SNODAS-MEMLS computation 

In two basins, the spatial distribution of snow had a noticeable impact on the relationship 

between aerial extent of distributed LWC and change in TB37.  In the Uncompahgre, deep snow 
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was limited to the highest elevations while approximately 50% of the basin at lower elevations 

had a shallow snowpack (Figure 6a).  This caused the change in TB37 to be modest when only the 

lower elevations were affected and increase sharply as the deeper snow got wet.  The White 

Basin (SD) is relatively flat and most likely melts homogenously or as a function of latitude 

rather than elevation (Figure 6b).  The deepest snow in the White Basin, based on SNODAS 

estimates, occurs in the northeast of the basin near the basin outlet.  At the highest elevations, in 

the southwest of the basin, the snow is typically not as deep.  This causes the change in TB37 to 

appear to increase more quickly at the smaller percent areas when LWC is assigned by elevation. 

The TB37 difference between a LWC that is distributed randomly versus that distributed based on 

elevation can be quite large. For example, when 40% of the Uncompahgre had LWC, a random 

distribution had a 40% increase in TB37 while the elevation based distribution had only a 15% 

change. Thus, detection of wetting would be delayed in the Uncompahgre and accelerated in the 

White (SD) if a linear model were used to relate TB37 changes to percent wet area. While basin 

differences in snowpack and melt distributions were organized by elevation in this study, any 

basin with a correlation (positive or negative) between melt patterns and snowpack distribution 

(e.g., latitude) would likely result in a nonlinear TB37 response.  
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Figure 6. Spatial distribution of snow impacts the sensitivity analysis results in a) the Uncompahgre 

Basin and b) the White Basin (SD) 

4.4.3 BASIN AVERAGE TB37 DIFFERENCE INDEX 

The aerial extent of wet snow represented by TBDI computed for SNODAS-MEMLS and 

AMSR-E were compared to individual runoff events over the nine winter seasons (Table 4).  Of 

the six basins, the AMSR-E TBDI had a statistically significant correlation to the peak discharge 

during runoff events in the Sheyenne and Clearwater Basins.  The AMSR-E TBDI in the 

Sheyenne Basin was also significantly correlated to the change in runoff during these events.  

There was typically only one major snowmelt runoff event each year in these basins and not 
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many mid-winter melt periods, which may explain these results.  In the other basins, there was 

generally a positive relationship between increases in AMSR-E TB37 and increases in discharge, 

but the magnitude of the changes were not well correlated. Based on the error matrix analysis, 

the AMSR-E TBDI had a computed accuracy between 49 – 69% for all the basins, meaning both 

the both the change in TB37 and the change in discharge were of similar magnitude during 

approximately half or over half of the events.  However, there are several instances of large 

changes in AMSR-E TB37 that do not correspond to large changes in discharge, as shown by the 

high number of false alarms.  These events typically occur early to mid-winter when even wide-

spread melting does not lead to significant runoff.   

The TBDI calculated using the results of the SNODAS/MEMLS simulations were typically 

poorly correlated to the discharge metrics during the individual runoff events. There was often a 

negative correlation between TBDI and the change in discharge during individual runoff events. 

This seems to be related to the estimated snow temperature and melt from SNODAS, though 

further research is necessary to confirm.  Many large TBDI signals occur early in the season 

when SNODAS estimates low snow temperatures.  Later in the season, the snow temperature 

from SNODAS was typically close to 273 K and melt was frequently estimated which results in 

small TBDI at the time when the largest changes in discharge are occurring.  Figure 7 illustrates 

the results for two basins during the 2011 melt period. The error matrix shows that 

SNODAS/MEMLS has a very high accuracy for the White River (VT). This is likely the 

combination of numerous midwinter melt events that are well captured by changes in snow 

temperature during these brief warming events. In contrast, the Sheyenne basin has warming 

events, but they are not adequate in timing or magnitude as needed to generate runoff. 
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 AMSR-E  and SNODAS/MEMLS TBDI performance during individual runoff events 

Basin 
TR 

(K) 

AMSR-E SNODAS/MEMLS 
Peak 
Q R2 

ΔQ 
R2 Accuracy 

False 
Alarms Miss 

Peak 
Q R2 

ΔQ 
R2 Accuracy 

False 
Alarms Miss 

Clearwater 266 0.42a 0.32 49% 28% 23% 0.30* 0.18* 28% 7% 65% 
Tuolumne 250 0.16 0.26 59% 24% 17% 0.15* 0.06* 28% 10% 62% 

Uncompahgre 259 0.01* 0.03* 61% 12% 27% 0.02* 0.00 33% 24% 43% 
White SD 260 0.05 0.03 53% 40% 7% 0.00  0.00 50% 40% 10% 

Sheyenne 257 0.77a 0.80 a 69% 25% 6% 0.38 0.34 50% 38% 12% 
White VT 263 0.00 0.00 62% 21% 17% 0.01* 0.05* 75% 13% 12% 

a Significant at the 95% confidence level; *Negative slope 
 

 
Figure 7. TBDI results in two basins: White (VT) and Sheyenne in 2011. 

 
The maximum TBDI that occurred each winter season was compared to the peak runoff and the 

seasonal volume runoff during the spring melt period (Table 5).  The maximum TBDI generally 

occurs mid-winter, when the SWE is near the maximum, and a widespread wetting event results 

in a large impact on TBDI.  This metric was evaluated to assess the magnitude of the TBDI when 

the snowpack was ripening, just prior to melt onset. There was a statistically significant 

relationship between both the AMSR-E and SNODAS/MEMLS TBDI in the Sheyenne basin.  
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The AMSR-E TBDI also had good relationships in the Tuolumne, Clearwater and White (SD) 

basins, while the SNODAS/MEMLS TBDI was poorly or negatively correlated to the seasonal 

discharge metrics for all other basins.  The White Basin (VT) basin is heavily vegetated with a 

temperate climate that experiences numerous warming and rain-on-snow events each winter.  

This likely affected the relationship between the TBDI and the seasonal discharge signals. The 

Uncompahgre Basin did poorly for all metrics for both the AMSR-E and SNODAS/MEMLS 

TBDI.  This is a region that was expected to do well considering the small annual maximum 

SWE and low vegetation and in the basin.  Since this is the only basin that is not considered a 

reference basin in GAGES II dataset, there may be discharge withdrawals impacting the results. 

 AMSR-E and SNODAS/MEMLS TBDI performance during seasonal runoff events 

Basin 

AMSR-E SNODAS/MEMLS 
Peak Spring 

Q R2 
Seasonal 

Volume Q R2 
Peak Spring 

Q R2 
Seasonal 

Volume Q R2 
Clearwater 0.19 0.42  0.13* 0.30* 
Tuolumne 0.52 0.47 0.33* 0.15* 

Uncompahgre 0.04 0.00 0.07 0.03 
White SD 0.27 0.24 0.01 0.05 
Sheyenne 0.89a 0.78a 0.94a 0.82a 
White VT 0.01* 0.14 0.07 0.21 

 
The results of the seasonal comparison of discharge to AMSR-E TBDI in the Sheyenne Basin are 

not surprising because the passive microwave SWE estimation has performed well there in 

previous studies (Chang et al. 2005, Josberger et al. 1998).  The reasonable comparison of 

seasonal data in basins with deep snow was unexpected, though the data still appear to suffer in 

heavily vegetated regions.  These results suggest that passive microwave data may provide better 

information in regions with deep snow than previously thought since the maximum annual TBDI 

is potentially representative of the peak basin SWE prior to melt.    
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Signal saturation in regions with deep snow generally limits the accuracy of empirical SWE 

algorithms which use the 18.7 and 36.5 GHz difference to estimate SWE.  To test the 

performance of the 36.5 GHz signal only, a daily TB difference, TB,D was calculated between the 

melting temperature, Tf (273.15 K), and the 36.5 GHz AMSR-E TB.   

𝑇𝑇𝐵𝐵,𝐷𝐷 = 𝑇𝑇𝑓𝑓 − 𝑇𝑇𝐵𝐵,36.5 𝐺𝐺𝐺𝐺𝐺𝐺 (6) 

The maximum winter difference was then compared to the seasonal volume discharge and the 

maximum annual SWE from SNODAS (Table 6).  The SWE results show that some basins that 

performed poorly in an earlier comparison study between SNODAS and AMSR-E SWE products 

have a better relationship when using 36.5 GHz alone.  Particularly encouraging are the results in 

the Tuolumne Basin where deep snow was thought to saturate out the microwave signal after 1 m 

depth.  The Tuolumne, Sheyenne and White (SD) Basins are all significantly correlated to 

seasonal volume discharge and peak flows (Figure 8). 

 Comparison of maximum annual 36.5 GHz difference to seasonal discharge metrics and 
SWE from SNODAS, 2004 – 2011  

Basin 

Peak Spring 
Flow/AMSR-E 
Max Ann TB,D 

R2 

Seasonal Volume 
Flow vs. AMSR-E 

Max Ann TB,D 
R2 

SNODAS Max 
Ann. 

SWE/AMSR-E 
Max. Ann. TB,D 

R2 

SNODAS Max 
Ann. 

SWE/AMSR-E 
SWE Productb 

R2 
Clearwater 0.08 0.28 0.18 0.34 
Tuolumne 0.50a 0.56a 0.47 0.20 

Uncompahgre 0.02* 0.07* 0.11 0.04 
White SD 0.73a 0.56a 0.34 0.17 
Sheyenne 0.88a 0.67a 0.44 0.73 
White VT 0.12* 0.06* 0.03 0.19 

a Significant at the 95% confidence level; b results from Vuyovich et al. 2014; *Negative slope 
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Figure 8. Seasonal volume discharge and the maximum Tf – TB37 difference in each basin 

4.5 DISCUSSION 
In recent years, satellite-based SWE estimation has moved away from empirical approaches in 

favor of radiance-based assimilation of satellite TB37 to inform snow model estimates (Pulliainen 

2006; Kelly et al. 2003).  To be successful, the snow model must accurately simulate the snow 

characteristics required by the emission model.   A comparison between TB37 observed by 

AMSR-E and estimated by SNODAS/MEMLS showed that in all cases the 36.5 GHz signal 

decreased during the winter when snow is expected to affect the signal.  The seasonal average 

magnitude of the decrease was similar between the data in many cases, but there were some large 

differences in the daily results.  The AMSR-E observations were not corrected for vegetation 

impacts in this study, which almost certainly influenced results.  Snow grain growth may also be 

affecting the satellite signal.  While the SNODAS SWE data is updated with observations 

throughout the season, the other snow model variables are not adjusted, which could be 
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impacting the emission model results.  Additional model output, including multiple layer 

characteristics and grain size information may improve emission estimates.  A thorough 

evaluation of the factors impacting these estimates is left for future research.  Based on these 

results, the SNODAS output appears limited in its ability to inform a microwave emission model 

or assimilate satellite TB37. 

Relationships between the snow extent and volume of water remaining in the snowpack are 

routinely used to make hydrologic predictions under the assumption that seasonal snow 

accumulation and ablation patterns are persistent year after year (USACE, 1956; Anderson, 

1973; Martinec et al., 2008), and as a function of topography and vegetation (Melloh et al, 2008).  

The SNODAS/MEMLS model provided an opportunity to conduct sensitivity tests on how the 

spatial extent of wet snow impacts the average TB37 in each of the basins.  This was done using 

realistically distributed snow characteristics from SNODAS as input to MEMLS on days when 

no LWC was present, and adjusting the distribution of LWC.  At the basin scale, the increasing 

near-linear relationship between the change in TB37 and the change in percent area affected by 

wet snow agrees with earlier work (Vuyovich et al, in press).  This suggests that passive 

microwave data has potential for informing on the spatial extent of snow state at a sub-

microwave pixel resolution if the factors that influence melt patterns in the basin are known. 

As seen in previous studies, a change in TB37 indicated a wetting event and almost always 

resulted in a subsequent increase in discharge (Ramage and Isaacs, 2002; Grenfell and Putkonen, 

2008; Semmens et al., 2013).  In basins where there is typically only one annual snowmelt runoff 

event, such as the Sheyenne, the TBDI may provide some predictive skill for estimating the 

discharge response.  In basins with a more temperate climate or multiple winter runoff events, 

too many factors affect the TBDI signal for it to provide information on discharge magnitude.   
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For example, a large change in TB37 early in the season when the snow is deep, may only cause a 

small increase in discharge because most of the melt water refroze or drained into the soil.  A 

smaller TBDI may be observed later in the season when the snow is shallower or when portions 

of the basins have already started melting (therefore no change in TB37), yet the change in 

discharge is large because saturated soil conditions result in more surface flow. 

The promising results of the AMSR-E TBDI to seasonal volume discharge comparison suggest 

the 36.5 GHz channel may provide a better estimate of SWE in deep snow conditions than 

indicated by previous evaluations of empirical algorithms.  Originally, the 18 GHz frequency 

was used to eliminate the effects of underlying soil conditions from the 36 GHz signal (Kunzi et 

al 1982).  A relationship between the microwave frequency difference and SWE was developed 

using observations from the Canadian and Russian plains regions.  It was noted that similar 

relationships would need to be developed regionally for the data to be useful (Chang et al 1987).  

The global SWE products developed from that original algorithm have been found, not 

surprisingly, to work best in the plains regions and have limited accuracy elsewhere.  Future 

research should investigate regional differences in the satellite algorithms to provide more 

information for water resources. 

4.6 CONCLUSION 
This study investigated the potential use of the microwave signal response to wet snow to 

improve hydrological forecasts of snowmelt timing and magnitude.  Several basins were selected 

in diverse regions of the U.S. to test the ability of the TB37 response to detect melt under different 

vegetation, topographic and seasonal snow conditions.  The NOAA SNODAS spatially 

distributed snow model was loosely coupled with MEMLS to estimate microwave emissions in 

the selected basins given distributed snow characteristics.  A positive relationship between the 
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subpixel distribution of wet snow and the change in microwave TB37 was found in each basin 

using a sensitivity analysis.   

The basin-average changes in TB37 were compared to changes in discharge during individual 

events.  While positive increases in TB37 correspond to positive increases in discharge, the 

magnitude of those changes is poorly correlated in most basins.  The exception is in the 

Sheyenne basin in the northern plains of the U.S. where snowmelt runoff typically occurs in one 

event each spring and where the microwave TB37 response may provide information on the 

magnitude of spring runoff.  A seasonal comparison between the 36.5 GHz TB and discharge 

showed promising results even in basins with deep annual snowpacks.  This suggests further 

investigation of the SWE algorithms in these regions may lead to better results.  
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CHAPTER 5   
 

5.1 SUMMARY  
The objective of this research was to investigate the potential for passive microwave remotely 

sensed data to characterize snow and snow melt to improve runoff estimates on a watershed 

scale.  Spatially distributed SWE and snow melt information are critical to land surface 

characterization and hydrologic applications.  Given the temporal and spatial coverage of 

satellite-based sensors, it is expected that research to expand and improve earth observing 

techniques will continue to grow (Lettenmaier et al. 2015). The future of snow estimation will 

likely combine multiple observation sources with physically based numerical models to arrive at 

the best estimate perhaps using a Land Information System (LIS) (Kumar et al. 2008).  Passive 

microwave, with its long historical record and recognized sensitivity to snow, will almost 

certainly be an important component in such as system.  While numerous factors can affect the 

microwave signal, there is still potential value for water resources, particularly in regions with 

little or no snow data available.  This research aimed to increase our understanding of the utility 

and limitations associated with these observations. 

The first step was to evaluate the current, empirically-based passive microwave SWE products 

across multiple regions and snow seasons.  This analysis was done by comparison of the 

satellite-based SWE products to NOAA’s SNODAS operational SWE estimates across 2100 

watersheds over eight years to determine when and where the products provided a high degree of 

confidence for water resource applications.  Regional influences, including topography, 

vegetation and snow regime were evaluated in the analysis for impacts on the SWE estimates. 
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The next step was to investigate microwave observations of snow melt.  Microwave emissions 

are highly sensitive to liquid water in the snow.  Numerous studies have investigated this signal 

response for its ability to detect the timing of snowmelt onset.  The presence of liquid water in 

snow has important hydrologic implications as an indicator of positive net energy going to melt 

snow and produce water output.  In this research, the signal response was analyzed over a 

spatially distributed area approximately the size of a microwave pixel to assess whether a 

relationship exists between the aerial extent of wet snow and the magnitude of the TB response. 

A sensitivity analysis was performed using a high-resolution, physically based snow-emission 

model to simulate microwave emissions.  The signal response to wet snow was evaluated given a 

range of spatially distributed snowpack conditions.  

Finally, the potential use of the microwave data to improve hydrological forecasts of snowmelt 

timing and magnitude was investigated on a watershed scale.  The hydrologic response of a basin 

to snow melt is a function of melt volume and the spatially distributed area over which melt is 

occurring.  Several basins were selected in diverse regions of the U.S. to test the ability of the 

36.5 GHz TB response to detect melt under different vegetation, topographic and seasonal snow 

conditions.  The goal was to determine if passive microwave data can provide snowmelt timing 

and magnitude information even in regions where the satellite-based SWE products performed 

poorly. The NOAA SNODAS data was used as input to the microwave emission model to test if 

the results of the sensitivity analysis were valid on a watershed scale.   

5.2 MAIN FINDINGS 
Results of the SWE comparison study show large areas where the passive microwave 

empirically-based SWE products perform well compared to the SNODAS data, particularly in 

the northern Great Plains and southern Rocky Mountain regions.  The best correlations are 
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associated with basins in which maximum annual SWE is less than 200 mm, and forest fraction 

is less than 20%.  In watersheds with maximum annual SWE values greater than 200 mm, this 

study found that the relative magnitude of maximum SWE from year-to-year was not captured 

by the microwave data.  This limits the usefulness of the satellite SWE products in regions where 

seasonal runoff estimates are based on the maximum annual SWE magnitude. Additionally, this 

study found that where the passive microwave signal is impacted by deep snow and vegetation, 

the spatial variation also suffers in the SWE products.  This is most likely due to saturation 

effects in areas with SWE greater than 200 mm limiting the algorithm estimates in portions of 

the basin with deep snow. Finally, regional differences seen between the AMSR-E and SSM/I 

products in watersheds with shallow snow and vegetation point to differences in the products 

algorithms’ that warrant further exploration. 

Earlier research has shown that liquid water in the snow dominates the microwave emission 

signal over the effects of other snow characteristics. This work confirmed those results and found 

a near-linear relationship between the TB signal response over a spatially heterogeneous 

snowpack and the percent area with LWC present. The results were confirmed by evaluating 

actual wet snow events over a 9-year period.  These findings suggest that the microwave 

response provides the potential basis for disaggregating melting snow within a microwave pixel.   

Downscaled estimates of LWC and snow state from passive microwave data could provide 

valuable snow information required to initialize snow hydrology models beginning in mid-

winter. 

The results of the sensitivity analysis were confirmed in several basins with diverse vegetation, 

topographic and seasonal snow conditions.  The spatial distribution of snowmelt was found to 

have an impact on the relationship, which points to the importance of understanding the 
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topographic drivers of melt, including elevation, aspect and latitude.  A comparison of a basin-

average TB difference index and discharge found that while positive increases in 36.5 GHz TB 

correspond to positive increases in discharge, the magnitude of those changes is poorly 

correlated in most basins.  The exception is in basins where snowmelt runoff typically occurs in 

one event each spring and where the TB response may provide information on the magnitude of 

spring runoff events.  An additional finding of this study was that the passive microwave TB may 

be able to detect deeper snow than previously thought without signal saturation.  A statistically 

significant correlation was found between the maximum annual 36.5 GHz TB difference from 

AMSR-E and both maximum annual SNODAS SWE and seasonal volume runoff in a basin with 

an average annual peak SWE of more than 450 mm. 

5.3 FUTURE DIRECTION 
There is room for improvement in empirically-based SWE algorithms based on the results of this 

research.  Differences between SWE estimates based on a simple linear regression (SSM/I) and 

an algorithm that uses forest fraction estimates to account for vegetation effects (AMSR-E) 

demonstrate that it is possible to improve results.  Accounting for various vegetation types, 

instead of just forest fraction may improve results further.  Another region where algorithm 

differences seem to be impacting results is in the Central Plains region of the U.S. where AMSR-

E overestimates SWE, using the 89 GHz channel to detect shallow snow.  The potential for 

passive microwave data to detect deeper snow than previously thought is a major finding with 

significant implications for regions that rely heavily on the seasonal snowpack for water supply. 

In the development of the original relationship, a multivariate analysis was used to determine 

which channels provided the best SWE estimate compared to ground observations (Kunzi et al. 

1982).  In the Canadian and Russian Plains the 18 GHz TB showed the best results in removing 
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the effects of ground state from the signature, however, the 10 GHz channel has also been 

suggested (Chang et al. 1982), as well as 6.8 GHz (Cagnati et al. 2004).  Regional differences in 

the global SWE product performance may be reduced by evaluating various signal combinations 

across multiple regions and conditions, as suggested by Chang et al. (1987).  Since that early 

work, significant progress has been made by the soil moisture remote sensing community, 

including methods for freeze/thaw detection.  Investigations that leverage those findings and 

promote cross-community collaboration could lead to breakthroughs in both soil and snow 

characterization. 

The sub-pixel distributions of snow and vegetation have an impact on the coarse microwave 

signal which is essentially an average value over those conditions. This study found that the 

relationship between the aerial extent of wet snow and the average microwave response holds 

across multiple scales.  Additionally, this work suggests that it may be possible to disaggregate 

wet snow within a satellite footprint if the driving controls or persistent patterns of snowmelt are 

further understood.  Methods to improve the SWE estimates will likely require a deeper 

understanding of how spatial variability within a microwave pixel impacts the signal, as well as 

ancillary data to describe the underlying conditions. Fortunately, high resolution datasets, such as 

vegetation, snow cover and topography already exists and are continuously improving which can 

help inform on spatial distribution.  Field campaigns and methods to integrate multiple data 

sources efficiently, accounting for uncertainty, will advance the science further. 

Passive microwave data have demonstrated potential in informing snow hydrology models.  In 

this research, the magnitude of the TB change at a basin scale was not able to empirically predict 

the discharge response magnitude.  Basin discharge is a function of numerous factors, including 

slope and soil characteristics, in addition to the aerial extent of snowmelt.  Combining additional 
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information about the physical hydrology with insight gained from the subpixel distribution of 

wet snow from microwave data may provide better runoff estimates.  Future work should 

evaluate the utility of microwave data to initialize operational forecast models on snowpack 

ripeness and LWC to improve estimates of melt timing and magnitude.   

In recent years, coupled snow-emission models have been investigated to estimate SWE using 

radiance-based assimilation of satellite TB (Pulliainen 2006; Kelly et al. 2003).  Promising results 

have been demonstrated by the GlobSnow product in non-mountainous regions 

(http://www.globsnow.info/).  SNODAS, or other operational snow hydrology models, may 

benefit from similar use of the microwave emission signal into their already robust assimilation 

system.  Simulated snow physics in these models could be evaluated to improve performance 

with snow emission models.  Such enhancements to operational snow and snow melt estimation 

are expected to demonstrate improvements to water resource management and flood forecasting. 

http://www.globsnow.info/
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