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Snow cover modulates the Earth’s surface energy and water fluxes, and snowmelt 

runoff is the principal source of water for humans and ecosystems in many of the middle 

to high latitudes in the Northern Hemisphere. Understanding spatial and temporal 

variation in snowpack is crucial for climate studies and water resource management and 

thus the climate and hydrological research communities have invested in improving 

large-scale snow estimates. This dissertation aims to develop an advanced snow radiance 

assimilation (RA) system to improve continental-scale snow water storage estimates. The 

RA system is comprised of the Community Land Model version 4 (CLM4) (for snow 

energy and mass balance modeling), radiative transfer models (RTMs) (for brightness 

temperature estimates), and the Data Assimilation Research Testbed (DART) (for 

ensemble-based data assimilation). Two snowpack RTMs, the Microwave Emission 

Model for Layered Snowpacks (MEMLS) and the Dense Media Radiative Transfer–Multi 

Layers model (DMRT-ML), are used to simulate TB of a multi-layered snowpack. 

Through an error characterization study, this dissertation presents that the 

correlations between snow water equivalent (SWE) error and brightness temperature (TB) 
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error and subsequent RA performance in estimating snow are significantly affected by all 

physical properties of soil and snow involved in estimating TB. Based on the error 

characterization results, it is hypothesized that the continental-scale RA performance in 

estimating snow water storage can be improved by simultaneously updating all model 

physical states and parameters determining TB based on a rule, in which prior estimates 

are updated depending on their correlations with a prior TB. The results of a series of RA 

experiments show that the improved continental-scale snow estimates are obtained by 

applying the hypothesis. This dissertation also shows that further improvement of the 

performance of the RA system can be achieved, especially for vegetated areas, by 

assimilating the best-performing frequency channels (i.e., 18.7 and 23.8 GHz) and by 

considering the vegetation single scattering albedo to represent the vegetation effect on 

TB at the top of the atmosphere.  
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CHAPTER 1: Introduction 

 

Snow cover modulates the Earth’s surface energy and water fluxes, especially at 

northern mid and high latitudes, because of its optical (high albedo), thermal (low 

thermal conductivity), and hydrologic (water holding capacity) characteristics. Snow 

cover affects not only regional atmospheric conditions [Chapin et al., 2005] but also 

large-scale circulation patterns, leading to long-range teleconnections [Cohen and 

Entekhabi, 1999]. One reason suggested for the recent acceleration of the Arctic sea ice 

loss is wind-driven sea ice circulation intensified by the Arctic Oscillation (AO) or the 

Northern Annular Mode/Northern Hemisphere Annular Mode (NAM) [Nghiem et al., 

2007; Stroeve et al., 2007], which may be affected by the Siberian snow cover anomalies 

[Gong et al., 2003]. Furthermore, because natural snowpacks form one of the world’s 

most important freshwater reservoirs [Lemke et al., 2007], an understanding of its spatial 

and temporal variations is crucial for climate studies and water management. 

Methods for quantifying snowpack characteristics include ground based in situ 

measurement, remote sensing observations, and model simulations. Ground based in situ 

measurements provide the most accurate snow cover information but are limited in their 

ability to describe spatial and temporal variability of snowpack properties over large 

areas. Although remote sensing observations are expected to yield large-scale snowpack 

variations, they involve errors resulting from sensor and retrieval algorithms. 

Furthermore, they do not provide fine temporal resolution. Current state-of-the-art land 

surface models (LSMs) are capable of producing spatially and temporally continuous 

snow fields, but their results can have large uncertainties due to imperfect 

parameterizations (including unknown parameters) and inaccurate meteorological forcing 

(especially precipitation). 
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Data assimilation (DA) has emerged as a means to overcome the above-

mentioned limitations because it merges observations with model estimates for the 

complementary use of both approaches. Snow DA using satellite products such as snow 

cover fraction (SCF) [e.g., Rodell and Houser, 2004; Andreadis and Lettenmaier, 2006; 

Clark et al., 2006; Su et al., 2008, 2010; Zaitchik and Rodell, 2009; De Lannoy et al., 

2012] and snow water equivalent (SWE) [e.g., Sun et al., 2005; Andreadis and 

Lettenmaier, 2006; Dong et al., 2007; De Lannoy et al., 2012] has been studied 

extensively but several limitations render them suboptimal for continental-scale snow 

state estimation. When the ground is fully covered with snow (i.e., SCF is equal to 100% 

or is saturated), satellite SCF data cannot detect additional snow mass variations, which 

makes SCF assimilation appropriate only for ephemeral snowpack [Rodell and Houser, 

2004; Clark et al., 2006; Su et al., 2010; De Lannoy et al., 2012]. Andreadis and 

Lettenmaier [2006] have shown that SCF assimilation has almost no effect during snow 

accumulation when SCF is usually 100%, whereas the improvement is evident for 

snowmelt periods when snow coverage is partial. Furthermore, the proper assimilation 

increment (quantity of SWE to be added during a SCF update) cannot be known from the 

SCF observation alone, a deficiency that Zaitchik and Rodell [2009] attempted to address 

using the model’s forcing data. 

It has been demonstrated that the Advanced Microwave Scanning Radiometer–

Earth Observing System (AMSR-E) SWE product is degraded by microwave signal 

saturation over moderately deep snowpack (i.e., SWE exceeding the 100-mm threshold) 

[Dong et al., 2007]. In general, SWE is retrieved using empirical equations based on the 

difference in scattering properties of brightness temperatures (TB) at 18 and 37 GHz 

horizontal polarization channels [e.g., Chang et al., 1987; Foster et al., 2005]. The 

emitted radiation is more readily scattered by the snow at higher frequencies (i.e., 36–37 
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GHz) than at lower frequencies (i.e., 18–19 GHz) [Chang et al., 1987]. Due to the fact 

that the microwave signal at 36–37 GHz saturates at depths greater than approximately 1 

m [Foster et al., 2005], several studies [e.g., Andreadis and Lettenmaier, 2006; De 

Lannoy et al., 2012; Dong et al., 2007] have shown that assimilating SWE retrievals can 

provide improvements only for shallow snowpacks. For the same reason, the assimilation 

of passive microwave retrieved SWE cannot reproduce the interannual variability of 

SWE for deep snowpack regions [De Lannoy et al., 2012]. 

Several previous studies have suggested that radiance assimilation (RA), which 

incorporates microwave brightness temperature (TB) observations directly into LSMs, 

shows promise for improving SWE estimates compared to the assimilation of TB-based 

SWE retrievals at the point scale [e.g., Durand et al., 2009; Toure et al., 2011], 

mesoscale [e.g., Durand and Margulis, 2007], and basin scale [e.g., Dechant and 

Moradkhani, 2011]. Durand and Margulis [2006] conducted a point-scale synthetic test, 

in which they demonstrated that RA can recover the true SWE and addressed the relative 

contributions of microwave frequency channels to correcting the SWE estimates in the 

RA scheme. In their follow-on study [i.e., Durand and Margulis, 2007], they also 

performed the mesoscale synthetic RA experiments and showed that RA can be an 

alternative to existing retrieval algorithms [e.g., Foster et al., 2005], which have 

limitations with respect to the characterization of SWE exceeding the 100-mm threshold 

[Dong et al., 2007]. Durand et al., [2009], a point-scale snow RA study, assimilated 

(ground-based) real microwave radiance observations and demonstrated that SWE 

estimated by the RA scheme is more accurate than that estimated by an empirical 

retrieval algorithm. Using the same data set, Toure et al. [2011] showed that the 

additional use of horizontally polarized TB with a more elaborated representation of 

snowpack stratigraphy further enhances the snow RA performance. Dechant and 
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Moradkhani [2011] successfully applied the RA method to the basin-scale SWE 

estimates and subsequent operational streamflow forecasts. However, continental-scale 

applications of RA require a substantial amount of further research because of various 

snow and vegetation cover conditions in the continental domain.  

The primary objective of this dissertation is to develop an advanced RA system to 

improve snow water storage estimates at the continental scale. This dissertation addresses 

the following research questions: 

(a) Is the RA method applicable to continental-scale snow water storage 

estimations? 

(b) Which error characteristics of estimated snow physical properties and 

brightness temperature (TB) impede continental-scale applications of the RA method?  

(c) Can the effect of these error sources be mitigated in the RA system? 

(d) How to improve the performance of the RA system in characterizing snow 

under the vegetation canopy? 

In Chapter 2, an analysis of error characteristics of coupled land surface–radiative 

transfer models is conducted for a successful RA study. The chapter focuses on the 

Community Land Model version 4 (CLM4) [Oleson et al., 2010; Lawrence et al., 2011] 

as the land surface model, and the Microwave Emission Model for Layered Snowpacks 

(MEMLS) [Wiesmann and Mätzler, 1999] and the Dense Media Radiative Transfer–

Multi Layers model (DMRT-ML) [Picard et al., 2013] as radiative transfer models 

(RTMs). The analysis is conducted at point scale (without considering the vegetation 

effect) and mesoscale (considering the vegetation effect) using in situ measurements. The 

synthetic experiments are additionally carried out for shallow and deep snowpack 

conditions. 
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Chapter 3 addresses continental-scale applications of the RA method to estimate 

snow water storage. Two hypotheses are established based the results in Chapter 2: 1) the 

simultaneous update of model states and parameters can improve snow estimation by 

minimizing the effects of their errors on the TB error; and 2) updating states and 

parameters based on a rule, the degradation of RA performance, which is attributed to 

incorrect relationships between the prior SWE (or snow depth) and TB, can be managed. 

A series of experiments are conducted to demonstrate the feasibility of RA to improve 

snow estimates at the continental scale. 

Chapter 4 presents an improvement of the RA system in estimating snow across 

snow classes and land cover types in North America by addressing three research 

questions related to microwave frequency channels, snowpack RTMs, and vegetation 

single scattering albedo. The enhanced continental-scale snow estimates are achieved for 

vegetated areas, especially for densely forested areas, by assimilating the best-performing 

frequency channels and by better representing the contribution of the vegetation canopy 

to brightness temperature at the top of the atmosphere.  

Chapter 5 summarizes the key findings obtained in this dissertation and suggests 

further works that need to be addressed in future studies.  
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CHAPTER 2: Error characterization of coupled land surface–radiative 

transfer models for snow microwave radiance assimilation1 

 

2.1 ABSTRACT 

Snow microwave radiance assimilation (RA) or brightness temperature data 

assimilation has shown promise for improving snow water equivalent (SWE) estimation. 

A successful RA study requires, however, an analysis of error characteristics of coupled 

land surface–radiative transfer models. This study focuses on the Community Land 

Model version 4 (CLM4) as the land surface model, and the Microwave Emission Model 

for Layered Snowpacks (MEMLS) and the Dense Media Radiative Transfer–Multi 

Layers model (DMRT-ML) as radiative transfer models (RTMs). Using the NASA Cold 

Land Processes Field Experiment (CLPX) datasets and through synthetic experiments, 

the errors of the coupled CLM4/DMRT-ML and CLM4/MEMLS are characterized by: a) 

evaluating the CLM4 snowpack state simulations, b) assessing the RTMs performance in 

simulating brightness temperature (TB), and c) analyzing the correlations between SWE 

error (ɛ_SWE) and TB error (ɛ_TB) from the RA perspective. The results using the CLPX 

datasets show that given a large error of snow grain radius (ɛ_re) under dry snowpack 

conditions (along with a small error of snow temperature (ɛ_Tsnow)), the correlations 

between ɛ_SWE and ɛ_TB are mainly determined by the relationship between ɛ_re and 

snow depth error (ɛ_dsnow) or snow density error (ɛ_ρsnow). The synthetic experiments 

were carried out for the CLPX region (shallow snowpack conditions) and Rocky 

Mountains (deep snowpack conditions) using the atmospheric ensemble reanalysis 

                                                 
1This chapter was previously published in Kwon, Y., A. M. Toure, Z.-L. Yang, M. Rodell, and G. Picard 

(2015), Error characterization of coupled land surface‒radiative transfer models for snow microwave 

radiance assimilation, IEEE Trans. Geosci. Remote Sens., 53, 5247‒5268, 

doi:10.1109/TGRS.2015.2419977. Y. Kwon designed and performed research, and wrote the paper; A. M. 

Toure prepared part of the data and contributed to analyzing the data; Z.-L. Yang contributed to research 

design, discussions, and revisions; and M. Rodell and G. Picard contributed to discussions and revisions. 
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produced by the coupled Data Assimilation Research Testbed (DART)/Community 

Atmospheric Model (CAM4). The synthetic experiments support the results from the 

CLPX datasets and additionally show that errors of soil (water content and temperature), 

snow wetness, and snow temperature mostly result in positive correlations between 

ɛ_SWE and ɛ_TB. CLM4/DMRT-ML and CLM4/MEMLS tend to produce different RA 

performances, with more positive and negative correlations between ɛ_SWE and ɛ_TB, 

respectively. These results suggest the necessity of using multiple snowpack RTMs in 

RA to improve the SWE estimation at the continental scale. The results in this study also 

show that the magnitude of ɛ_re and its relationship to ɛ_SWE are important for RA 

performance. Most of the SWE estimations in RA are improved when ɛ_SWE and ɛ_re 

show a high positive correlation (greater than 0.5). 

 

2.2 INTRODUCTION 

For RA, the RTM should be incorporated into a DA system as an observational 

operator predicting TB. Therefore, the quality of the assimilation results will be impacted 

by the uncertainty of the RTM [Tedesco and Kim, 2006; Durand et al., 2008] as well as 

the LSM. Several published RTMs for snowpack have been developed by different 

groups and used in RA schemes. However, due to their differing sensitivities to snow 

properties that determine TB of snowpack, the models show a large variability in 

simulated TB for various snow conditions, as demonstrated in [Tedesco and Kim, 2006]. 

Using only one snowpack RTM, previous RA studies were able to achieve 

promising improvements in estimating SWE or snow depth at the point or local scales; 

however, the use of only a single RTM may have limitations for continental-scale RA. 

Snowpack physical properties, such as snow texture, stratigraphy, and crystal 

morphology, are closely related to local climate conditions [Sturm et al., 1995]; therefore, 
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various snow conditions can be found in the continental domain. However, no particular 

existing snowpack RTM can accurately reproduce the observed TB for all snow 

conditions [Tedesco and Kim, 2006]. Consequently, the use of multiple snowpack RTMs 

(i.e., multi-RTM ensemble RA) that are based on different theories may reduce errors 

related to RTM uncertainties for continental-scale SWE estimations. 

An understanding of errors in the coupled LSM/RTMs is essential for a successful 

RA study. Therefore, as a preliminary study for multi-RTM ensemble RA, our goal is to 

analyze the error characteristics of two coupled LSM/RTMs. Here we used the 

Community Land Model version 4 (CLM4) [Oleson et al., 2010] and two snowpack 

RTMs, the Microwave Emission Model for Layered Snowpacks (MEMLS) [Wiesmann 

and Mätzler, 1999] and the Dense Media Radiative Transfer–Multi Layers model 

(DMRT-ML) [Picard et al., 2013] that simulate TB of a multi-layered snowpack.  

Our error characterizations involved: a) evaluating the CLM4 snowpack state 

simulations, b) assessing the RTMs performance in simulating TB, and c) analyzing the 

relationships between SWE error (ɛ_SWE) and TB error (ɛ_TB). The importance of the 

performance of LSMs (or snow models) in RA has been emphasized in previous studies 

[e.g., Durand et al., 2008]. In this study, we focused more on addressing the differences 

between the snowpack RTMs given the errors of the simulated snowpack states in the 

LSM. Using in situ snowpit, TB, and meteorological data collected during the NASA 

Cold Land Processes Field Experiment (CLPX), we characterized the errors over a small 

clearing within the Local Scale Observation Site (LSOS) (point-scale analysis without 

considering the vegetation effect) and the Meso-cell Study Areas (MSAs) (mesoscale 

analysis considering the vegetation effect). Continental-scale (or larger) error 

characterizations were not conducted in this study because snowpit observations (e.g., 

snow depth, density, temperature, wetness (liquid water content within the snowpack), 
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and grain size) required for the analyses were unavailable. To support the results from the 

CLPX datasets, we additionally carried out synthetic experiments in which the 

correlations between ɛ_SWE and ɛ_TB were analyzed for shallow and deep snowpack 

conditions from the RA perspective. 

For the same study areas, Andreadis et al. [2008] analyzed the error 

characteristics of their coupled model, the Variable Infiltration Capacity (VIC) [Liang et 

al., 1994] model and DMRT, based on a single snow layer representation. Brucker et al. 

[2011] simulated hourly snowpack TB in southern Quebec, Canada using the snow 

evolution model Crocus [Brun et al., 1992] and MEMLS and interpreted their results at 

the local scale. Unlike these previous studies that focused on one snowpack RTM, we 

used two coupled models, CLM4/DMRT-ML and CLM4/MEMLS, and performed 

different analyses as the first step toward multi-RTM ensemble RA for improved 

continental-scale SWE estimation. 

In the following section, we describe the datasets (snowpit, TB, and 

meteorological data) and models (LSM and RTMs) used in this research. In section 2.4, 

we analyze the performance of the coupled models in simulating snowpack states and TB 

and we discuss the relationships between ɛ_SWE and ɛ_TB. Conclusions are provided in 

section 2.5. 

  

2.3 METHODS 

2.3.1 CLPX data 

For point-scale and mesoscale experiments, we used in situ snowpit, TB, and 

meteorological data collected during CLPX (see http://nsidc.org/data/clpx). The Small 

Regional Study Area (SRSA) of CLPX had three MSAs: the North Park, Rabbit Ears, and 
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Fraser MSA (Figure 2.1). The Fraser MSA included the LSOS and each MSA involved 

three Intensive Study Areas (ISAs): 1) the St. Louis Creek, Fool Creek, and Alpine ISAs 

within the Fraser MSA; 2) the Spring Creek, Buffalo Pass, and Walton Creek ISAs within 

the Rabbit Ears MSA; and 3) the Illinois River, Potter Creek, and Michigan River ISAs 

within the North Park MSA. Measurements were made in mid-winter (February) and 

early spring (March) to coincide with dry and wet periods, respectively. Four Intensive 

Observation Periods (IOPs) were conducted in 2002 (IOP1 and IOP2) and 2003 (IOP3 

and IOP4). 

 

 

Figure 2.1. Maps of the NASA CLPX Small Regional Study Area (SRSA), the Rabbit 

Ears and Fraser Meso-cell study areas (MSAs), and the Local Scale 

Observation Site (LSOS). Figures from the National Snow and Ice Data 

Center (NSIDC) website (http://nsidc.org/data/clpx/clpx_pits.html and 

http://nsidc.org/data/docs/daac/nsidc0169_clpx_lsos_snow/). Red and blue 

stars indicate the locations of the CLPX region and Rocky Mountains, 

respectively, where the synthetic experiments were conducted. 
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In situ snowpit data include snowpack stratigraphy, density, temperature, grain 

size, and wetness. These data were collected from 16 snowpits in each ISA [Cline et al., 

2002] and six snowpits in the LSOS [Cline et al., 2003]. The snow grain size measured in 

CLPX snowpits was the maximum extent of the intermediate grain size, which can be 

converted to the exponential correlation length (defined by Mätzler [2002]) on the basis 

of an empirical relationship suggested by Durand et al. [2008], as follows: 
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where Dmax is the maximum extent of the intermediate grain size (mm), pex is the 

exponential correlation length (mm), a0, a1 and p0 are 0.18, 0.09 and 0.05 mm [Durand et 

al., 2008], respectively, and fv is the volume fraction (snow density divided by ice 

density). 

Microwave measurements at 18.7, 23.8, 36.5, and 89 GHz vertical (V) and 

horizontal (H) polarization channels were made using the University of Tokyo’s Ground-

Based Microwave Radiometer (GBMR-7) installed in a small clearing within the LSOS 

[Graf et al., 2003]. Airborne multi-band polarimetric TB observations were carried out 

over MSAs during IOP1, IOP3, and IOP4 using a Polarimetric Scanning Radiometer 

(PSR/A) [Stankov and Gasiewski, 2004]. Meteorological data including air temperature, 

relative humidity, wind speed, precipitation, and downward short-wave radiation were 

observed at 11 sites throughout the SRSA. Among them, nine meteorological towers 

were located near the center of each ISA [Elder and Goodbody, 2004] and the other two 

were located close to the LSOS [Elder and Goodbody, 2004] and in the GBMR-7 

location [Graf et al., 2003], respectively. 
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For the point-scale analysis without considering the vegetation effect, LSOS in 

situ snowpit and GBMR-7 TB data collected during IOP3 (19–25 February 2003), the 

same datasets used in Durand et al. [2008, 2009] and Toure et al. [2011], were used. To 

exclude the effect of vegetation, snow data from only two snowpits (snowpit #1 and #2) 

located in a small clearing within the LSOS were used. Meteorological data collected 

near the GBMR-7 location were used to force CLM4. 

For the mesoscale analysis considering the vegetation effect, ISA in situ snowpit 

and the Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) 

TB observations were used. For these datasets to be usable, snowpit and TB data should be 

available for the same dates. However, only one day (21 February 2002) of both ISA 

snowpit and PSR/A data was available over the North Park MSA, while datasets for four 

days (23 February 2002, 24–25 February and 30 March 2003) were available for the 

Rabbit Ears MSA. Meanwhile, no ISA snowpit and PSR/A TB data were collected during 

the same period for the Fraser MSA. Therefore, we used AMSR-E TB data, which 

covered the period from 1 February to 31 May 2003 [Elder and Goodbody, 2004], instead 

of PSR/A data to have more data points for the analysis, although AMSR-E data have a 

coarser spatial resolution. The original AMSR-E TB data (25 km × 25 km resolution) 

were resampled to the spatial resolution (1 km × 1 km resolution) of ISAs. Snow data 

from 16 snowpits within each ISA were averaged. The North Park MSA was excluded 

from the analysis because the quality of snow data is not good. ISA meteorological tower 

data were used to force CLM4 for each ISA, except for precipitation; due to the lack of 

precipitation data for ISAs, GBMR-7 precipitation data were used. 
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2.3.2 Land surface model 

In this study, we used CLM4 [Oleson et al., 2010] to simulate snow dynamics. 

CLM4 is forced by air temperature, humidity, atmospheric pressure, wind speed, 

precipitation, and downward short-wave radiation. In CLM4, the snow/soil column is 

composed of 15 soil layers, up to five snow layers (depending on snowpack depth), and 

one vegetation layer. CLM4 calculates soil temperature for all soil layers but only the top 

10 layers are subject to hydrologic calculations.  

CLM4 is advantageous for snow RA because it represents a snowpack with 

multiple layers and is capable of simulating snow thermodynamics such as melt-refreeze 

cycles and densification processes. All these stratigraphic details about snow are needed 

as input for the RTMs. 

In CLM4, the effective snow grain radius is defined as follows: 
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                              (2.2) 

 

where re is the effective grain radius (m), ρice is the ice density (=917 kg m
-3

), and SSA is 

the specific surface area (m
2
 kg

-1
). Evolution of re is represented as follows [Oleson et al., 

2010]: 
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where dre,dry and dre,wet are re changes by dry snow and liquid water-induced 

metamorphism, which are calculated based on Flanner and Zender [2006] and Brun 

[1989], respectively; re,0 and re,rfz are the effective radius of freshly-fallen snow (=54.5 

µm) and refrozen liquid water (=1000 µm), respectively; fold, fnew, and frfz are the fractions 
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of snow from the previous time step t‒1, freshly-fallen snow, and refrozen liquid water, 

respectively. When snow layers are combined or subdivided depending on the layer 

thickness, re is recalculated by the mass-weighted average of the two layers. 

 

2.3.3 Radiative transfer model 

Microwave TB measured by satellite at the top of the atmosphere (TOA) is a 

mixture of microwave signals from snowpack, soil, vegetation, atmosphere, and space. TB 

at the TOA can be estimated as follows [Durand and Margulis, 2007]: 

 

       aBacccsnBccTOAB TtTtVTVtT ,,,  111                (2.4) 

 

where TB,TOA is the brightness temperature at the TOA (K); tc and ta are the 

transmissivities of the vegetation canopy and atmosphere, respectively; Vc is the 

vegetation fraction covering the grid cells; TB,sn is the snowpack brightness temperature 

(K) (it includes TB emitted from the underlying soil), which is simulated by DMRT-ML 

or MEMLS; Tc is the physical temperature of the vegetation (K); and TB,a is the 

atmospheric brightness temperature (K).  

To predict the upwelling brightness temperature from the snowpack (TB,sn), 

DMRT-ML and MEMLS require the boundary condition brightness temperature (TB,BC), 

which is the combination of downwelling radiative fluxes emitted from space, 

atmosphere, and vegetation. TB,BC is calculated according to the method suggested by 

Durand and Margulis [Durand and Margulis, 2007]: 

 

    cccaBaspBccBCB TtVTtTVtT )1(11 ,,,                (2.5) 
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where TB,sp is the space brightness temperature (=2.7 K). In equations (2.4) and (2.5), 

multiple reflections between vegetation canopy and snowpack are neglected. 

DMRT-ML [Picard et al., 2013] estimates TB of a layered snowpack based on the 

Dense Media Radiative Transfer (DMRT) theory [Tsang and Kong, 2001]. In this model, 

snow grains are assumed to be ice spheres and each snow layer is represented by layer 

thickness, density, temperature, snow grain radius, and wetness. The microwave 

scattering and absorption coefficients of snowpack are modeled based on the DMRT 

theory. This model considers multiple scattering between the layers and employs the 

discrete ordinate radiative transfer (DISORT) method [Jin, 1994] to calculate the 

microwave emission and propagation for 32 streams (directions). DMRT-ML can be 

applied to a frequency range of 1 to 200 GHz. To consider the contribution of the 

underlying soil to the microwave emission, we used the rough bare soil reflectivity model 

suggested by Wegmüller and Mätzler [1999] in DMRT-ML. 

MEMLS [Wiesmann and Mätzler, 1999] also simulates TB of a multi-layered 

snowpack; however, it is based on radiative transfer theory. Like DMRT-ML, each snow 

layer in MEMLS is characterized by layer thickness, density, temperature, snow grain 

size, and wetness; however, the grain size is represented by an exponential correlation 

length that depends on grain size and snow density. Multiple volume scattering, 

absorption, and the consequent propagation through the snowpack are modeled based on 

the six-flux theory. As suggested in Mätzler and Wiesmann [1999], we used the improved 

Born approximation [Mätzler, 1998] to calculate the extinction coefficient (sum of the 

scattering and absorption coefficients). MEMLS can be applied to a frequency range of 5 

to 100 GHz and a correlation length range of 0.05 to 0.6 mm. For the reflectivity of the 

underlying soil, the same soil model [Wegmüller and Mätzler, 1999] and the same 

permittivity values in DMRT-ML were used for MEMLS. 
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DMRT-ML has a tunable stickiness parameter [Ding et al., 2001] that affects the 

extinction coefficient because it determines the degree of particle clustering and thus is 

related to the size of the scatterers. However, a realistic stickiness value is not easily 

obtained from snow microstructure images, field measurements, or model simulations 

[Picard et al., 2013]. The sensitivity analysis by Picard et al. [2013] shows that the 

scattering coefficient increases as the stickiness value decreases. Lower stickiness 

parameter values lead to stronger attractions between snow grains (i.e., greater clustering 

effect); in addition, snow density at which the maximum scattering coefficient appears is 

influenced by stickiness values. Tsang et al. [2008] suggest using 0.1 for the stickiness 

parameter while Mätzler [1998] suggests using 0.2; Andreadis and Lettenmaier [2012] 

use a stickiness value of 0.1 for the CLPX LSOS but a stickiness value of 0.2 for the 

Arctic regions. In this study, we optimized the stickiness parameter using in situ snowpit 

and GBMR-7 TB data collected in the LSOS. 

MEMLS does not have tunable parameters except that it uses an exponential 

correlation length to represent the grain size, whereas DMRT-ML and CLM4 use an 

effective grain radius. According to Debye et al. [1957] and Mätzler [2002], the 

exponential correlation length is given by 
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where pex is the exponential correlation length (m) and pc is the correlation length (m). 

From equations (2.2) and (2.6), the relationship between pex and re is obtained as follows: 
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where ρ is the snow density (kg m
-3

). 

In this study, the atmosphere is assumed to be clear-sky and is modeled using the 

atmospheric RTM suggested by Ulaby et al. [1981] as used in Durand and Margulis 

[2007]. Vegetation transmissivity is estimated from the vegetation optical depth (τc) 

[Schmugge and Jackson, 1992], which is calculated using an empirical equation by 

Jackson and Schmugge [1992]:  

 

)exp( cct                                (2.8) 

 

 cos/' c

x

c wb                            (2.9) 

 

where λ is the wavelength (cm), wc is the vegetation water content (kg m
-2

), θ is the 

incident angle, and b' and x are empirical parameters depending on the vegetation canopy 

structure. Vegetation water content can be estimated from the leaf area index (LAI) 

[Paloscia and Pampaloni, 1988]: 

 

1)3.3/exp(  LAIwc
.                       (2.10) 

 

2.3.4 Model parameter optimization 

Each analysis was preceded by model parameter optimization (snow stickiness in 

DMRT-ML and empirical parameters in vegetation RTM) using observed datasets. To 

optimize the stickiness parameter, DMRT-ML was forced by the LSOS in situ snowpit 

measurements and the simulated TB was compared to the GBMR-7 TB observations. For 

DMRT-ML grain size information, the measured Dmax values were converted to the 

effective grain radius (re) using equations (2.1) and (2.7). Stickiness optimization was 
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conducted for four frequency channels (i.e., 18.7 and 36.5 GHz V and H polarizations) by 

minimizing the root mean square error (RMSE). 

To estimate the contribution of the underlying soil, DMRT-ML needs soil 

information such as sand and clay fractions, soil temperature, volumetric soil water 

content, and roughness length. We used 0.39 and 0.22 for sand and clay fractions, 

respectively, which were obtained from the surface input dataset provided in CLM4. As 

in Durand et al. [2008], soil temperature was assumed to be the same as snow bottom 

layer temperature. Since volumetric soil water content simulated by CLM4 for this area 

was about 0.1 throughout the simulation period, we set it to a constant value of 0.1, 

whereas Durand et al. [2008] used 0.12. For the surface roughness length, we used 0.01 

m. 

Vegetation RTM used in this study has two empirical parameters (b' and x in 

equation (2.9)), which depend on the vegetation canopy structure. It has been reported 

that the Rabbit Ears MSA consists of dense coniferous forest, moderate-density 

deciduous forest, and meadow while the Fraser MSA is composed of moderate-density 

coniferous forest and alpine tundra (see http://www.nohrsc.nws.gov/~cline/clp/Field_exp/ 

clpx_plan/tables/CLPX_plan_table9.html). However, because we do not have exact 

information about vegetation canopy properties for these MSAs, vegetation variables 

required for estimating the vegetation effect on TB were provided by CLM4 simulation 

(LAI and physical temperature of the vegetation) and surface input dataset (vegetated 

area fraction in grid cells). Therefore, we optimized b' and x to minimize the error caused 

by inaccurate vegetation information. For optimization, we used in situ snowpit and 

AMSR-E TB datasets collected over ISAs within the Fraser and Rabbit Ears MSAs. The 

optimization was conducted on a MSA basis for 18.7 and 36.5 GHz channels by 
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minimizing the RMSE; the same parameter values were used for all ISAs within the same 

MSA. 

 

2.3.5 Synthetic experiments 

An 80-member ensemble atmospheric reanalysis [Raeder et al., 2012], which has 

a physical consistency between forcing fields, has been produced by the coupled Data 

Assimilation Research Testbed (DART) [Anderson et al., 2009]/Community 

Atmospheric Model (CAM4) [Gent, et al., 2011]. As used in [Zhang et al., 2014], among 

80 forcing members, 40 randomly chosen ensemble members were used for the synthetic 

experiments to consider a compromise between the performance and computational 

efficiency of the DA scheme.  

The experiments were conducted for the CLPX region and Rocky Mountains 

(marked with red and blue stars, respectively, in Figure 2.1) during 2003. CLM4 

simulations using the DART/CAM4 atmospheric ensemble reanalysis showed that the 

snowpack is shallow over the CLPX region and relatively deep over the Rocky 

Mountains (the maximum ensemble mean snow depth was 0.098 m and 0.581 m, 

respectively). For the synthetic experiments, the first member of the 40 ensemble 

members was assumed to be a synthetic truth and the remaining 39 ensemble members 

were used for ensemble model simulations. Four microwave frequency channels (18.7 

and 36.5 GHz V and H polarizations) were used in the analysis. To analyze the 

relationship between the correlations (between ɛ_SWE and ɛ_TB) and RA performance, 

we did a simple RA test in which the ensemble Kalman filter (EnKF) method [Evensen, 

1994] was used and the synthetic truth of TB was assumed to be perfect (i.e., no 

observation error). 
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2.4 RESULTS AND DISCUSSION 

In this section, we present the error characterization results of two coupled 

models: CLM4/DMRT-ML and CLM4/MEMLS. As previously mentioned, the analyses 

were carried out at point scale and mesoscale; the vegetation effect was considered for 

the mesoscale error characterization but not at the point scale. The results of the synthetic 

experiments were analyzed with respect to the effects of errors of snow grain radius 

(ɛ_re), snow wetness (ɛ_Wsnow), snow temperature (ɛ_Tsnow), and soil (water content and 

temperature) (ɛ_WTsoil) on the relationships between ɛ_SWE and ɛ_TB, and subsequent 

RA performance. 

 

2.4.1 Point-scale error characterization: CLPX LSOS (non-vegetated case) 

1) Optimization of the DMRT-ML Stickiness Parameter: From optimization, the 

stickiness parameter was determined to be 0.17. RMSE and the mean bias error (MBE) 

for each of the frequency channels are summarized in Table 2.1. The simulated TB using 

the stickiness parameter of 0.17 agrees well with the observations; RMSE ranges from 

2.3 to 10.6 K and MBE ranges from −0.1 to 6.5 (Table 2.1). Although each snowpack 

layer can have a different stickiness value, we assumed in this study that all layers have 

the same stickiness parameter values due to the difficulty of optimization for all 

snowpack layers.  

Table 2.1. DMRT-ML stickiness parameter optimization results using in situ snowpit and 

ground-based TB data collected within the LSOS (RMSE: Root Mean 

Square Error, MBE: Mean Bias Error). The optimal stickiness parameter 

value was determined to be 0.17. 

  18.7 GHz 36.5 GHz 

  TBV TBH TBV TBH 

RMSE (K) 2.3  7.3  9.5  10.6  

MBE (K) -0.1  6.5  2.8  5.7  
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Brucker et al. [2011] and Roy et al. [2013] demonstrated that the snow grain 

radius in equation (2.2) is not the effective grain radius in DMRT-ML and thus 

introduced a tunable scaling factor (ϕ) to minimize the difference between the simulated 

and observed TB: 

 


 SSA

r
ice

e

3
                           (2.11) 

 

From calibrations, they obtained scaling factor values much greater than unity (2.85 in 

Brucker et al. [2011] and 3.3 in Roy et al. [2013]) without considering the stickiness. 

Brucker et al. [2011] suggest that their large scaling factor could be attributed to three 

possible reasons: stickiness (cohesion between snow grains), snow grain size distribution 

(heterogeneity of snow grain size), and grain shape. Roy et al. [2013] provides detailed 

discussions of the effect of the stickiness and grain size distribution on the scaling factor. 

However, a physically robust basis for the scaling factor and its reasonable range have 

not yet been established, although Roy et al. [2013] have made a qualitative analysis of 

the scaling factor. Therefore, in this study, we optimized the stickiness parameter without 

the use of the scaling factor. Roy et al. [2013] showed that when both the scaling factor 

and stickiness parameter were optimized, they achieved the minimum RMSE using a 

scaling factor of 2.6 and a stickiness of 0.44. This stickiness value is somewhat greater 

than the 0.17 obtained here. This implies that other significant factors, including grain 

shape and the size distribution of sticky spheres as Brucker et al. [2011] and Roy et al. 

[2013] emphasized, must be explicitly addressed in DMRT-ML for more accurate TB 

predictions. However, since this topic is outside the scope of this paper and the stickiness 

value of 0.17 is within the range of values (from 0.1 to 0.2) suggested by previous studies 
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[e.g., Mätzler, 1998; Tsang et al., 2008; Andreadis and Lettenmaier, 2012], we concluded 

that the stickiness of 0.17 could be reasonably used in this study. 

2) SWE and TB Simulations by the Coupled Models: SWE and TB for a small 

clearing within the LSOS were simulated by the coupled CLM4/DMRT-ML and 

CLM4/MEMLS for seven days (19–25 February 2003) when snowpit and GBMR-7 TB 

data were available. CLM4 was forced by GBMR-7 meteorological data and the 

simulated SWE was compared to the LSOS in situ snowpit measurements (Figure 2.2a). 

The simulated SWE showed fairly good agreement with the observations (RMSE = 16 

mm; MBE = ‒2.5 mm). 

However, CLM4 simulations for snowpack characteristics such as snow depth, 

density, grain radius, and temperature, all of which determine TB of snowpack, showed 

some errors as indicated by normalized errors (=(simulation – observation)/observation) 

in Figure 2.2b. To calculate the normalized errors, snow layer thickness was summed and 

snow density, grain radius, and temperature were averaged (weighted by snow layer 

thickness) over all snow layers. Because both simulations and observations showed dry 

snowpack conditions during the simulation period, the results of snow wetness were not 

indicated in the figure. Figure 2.2b shows that grain radius was greatly overestimated 

while snow depth and density were slightly underestimated and overestimated, 

respectively; snow temperature bias was very small. Since in CLM4 snow density is 

estimated by dividing SWE (kg m
-2

) by snow depth (m), we see that the overestimation of 

snow density was caused primarily by the underestimation of snow depth. 
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Figure 2.2. CLM4 simulation results for the LSOS: (a) SWE and (b) normalized errors 

(=(simulation – observation)/observation) of snow depth, density, grain 

radius, and temperature. 

Brightness temperatures at 18.7 and 36.5 GHz V and H polarization channels 

were predicted by DMRT-ML and MEMLS using simulated snowpack physical 

properties and were compared with the GBMR-7 TB observations (Figure 2.3 and Table 

2.2). Two snowpack RTMs showed similar performance; DMRT-ML showed slightly 

better performance, except for 18.7 GHz H polarization channel (18.7-H). Simulation 

errors of both models were the smallest for 18.7 GHz V polarization channel (18.7-V), 

whereas they were relatively large for 36.5 GHz channels (Table 2.2), which may be 

attributed to the large error of snow grain radius because microwave emission at a higher 

frequency is more affected by snow grain size than at a lower frequency.  
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Table 2.2. Errors of TB simulations by the coupled CLM4/DMRT-ML and 

CLM4/MEMLS for the LSOS. 

 CLM4/DMRT-ML CLM4/MEMLS 

 18.7 GHz 36.5 GHz 18.7 GHz 36.5 GHz 

 TBV TBH TBV TBH TBV TBH TBV TBH 

RMSE (K) 1.9 14.9 29.0 19.3 9.9 10.2 39.8 20.5 

MBE (K) -0.6 14.5 -28.9 -19.1 -9.8 9.7 -39.7 -20.4 

 

3) The Relationship Between ɛ_SWE and ɛ_TB: In RA using the EnKF, update of a 

prior (e.g., SWE simulated by a LSM) is based on the assumption that ɛ_SWE is 

correlated to ɛ_TB. Therefore, to address the feasibility of the coupled models to properly 

update SWE in the RA scheme, it is necessary to analyze the relationship between ɛ_SWE 

and ɛ_TB.  

Figure 2.4 shows the relationship between ɛ_SWE and ɛ_TB for the LSOS. For this 

study area, we did not observe any significant correlation between ɛ_SWE and ɛ_TB; this 

may be attributed to the effect of ɛ_re. Snow depth error (ɛ_dsnow) and ɛ_SWE determined 

snow density error (ɛ_ρsnow) while ɛ_TB was mainly determined by snow density, depth, 

and grain size for this area; therefore, we analyzed the results by focusing on errors of 

these three snow physical properties (i.e., snow density, depth, and grain radius). Based 

on a sensitivity test (not shown here), TB is positively sensitive to snow density and 

negatively sensitive to snow depth and grain radius. Because ɛ_SWE was more correlated 

to ɛ_dsnow (R = 0.76) (even though they were calculated separately in the model) than 

ɛ_ρsnow (R = 0.28) (Figure 2.5a), we may expect from the LSOS results that ɛ_SWE would 

be negatively correlated with ɛ_TB. However, TB is affected by snow grain radius as well 

as density and depth. Snow grain radius was greatly overestimated (Figure 2.2b) and its 

error was negatively and positively correlated to ɛ_dsnow (R = ‒0.66) and ɛ_ρsnow (R = 

0.70), respectively (Figure 2.5b). Therefore, we can infer that the effect of ɛ_re on TB was 
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opposite to those of ɛ_dsnow and ɛ_ρsnow during the simulation period. As a result, for the 

LSOS, there was no significant correlation between ɛ_SWE and ɛ_TB. 

 

 

Figure 2.3. Results of TB simulation by the coupled CLM4/DMRT-ML and 

CLM4/MEMLS for the LSOS. 



 26 

 

Figure 2.4. Relationships between errors (= simulation – observation) of SWE (ɛ_SWE) 

and TB (ɛ_TB) for the LSOS. 

 

 

Figure 2.5. Relationships between errors (=simulation – observation) of snow depth 

(ɛ_dsnow) and density (ɛ_ρsnow) and errors of (a) SWE (ɛ_SWE) and (b) snow 

grain radius (ɛ_re), respectively, for the LSOS. 



 27 

2.4.2 Mesoscale error characterization: CLPX MSA (vegetated case) 

1) Optimization of the Vegetation RTM Parameters: The optimized parameters for 

each MSA are indicated in Table 2.3; two parameters (b' and x) in vegetation RTM were 

determined to be 0.40 and ‒1.48, respectively, for the Fraser MSA and 0.10 and ‒1.38, 

respectively, for the Rabbit Ears MSA. The results of TB predictions using these 

parameter values are shown in Figure 2.6.  

Table 2.3. Optimization results of vegetation RTM parameters using in situ snowpit and 

AMSR-E TB data collected over the Fraser and Rabbi Ears MSAs. 

 
Fraser MSA Rabbit Ears MSA 

b' 0.40 0.10 

x -1.48 -1.38 

 

 

Figure 2.6. Observed AMSR-E TB versus simulated TB by DMRT-ML and MEMLS, 

which are coupled with the vegetation and atmospheric RTMs, using the 

optimized parameters (in Table 2.3) and in situ snowpit measurements 

collected from ISAs within the Fraser and Rabbit Ears MSAs. 

2) SWE and TB Simulations by the Coupled Models: Due to the lack of 2002 

meteorological tower data, SWE and TB for ISAs within the Fraser and Rabbit Ears 

MSAs were simulated by the coupled models only for 2003. Figure 2.7 shows the SWE 
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simulation results over both MSAs; overall, SWE was slightly overestimated for the 

Fraser MSA (MBE = 2.3 mm) and greatly underestimated for the Rabbit Ears MSA 

(MBE = ‒360.4 mm) (Figure 2.7). Because GBMR-7 precipitation data (collected over 

the LSOS within the Fraser MSA) were used for SWE simulations due to the lack of 

precipitation data for ISAs, CLM4 could not reproduce a deep snowpack in the Rabbit 

Ears MSA (RMSE = 385.8 mm) while it showed good performance for the Fraser MSA 

(RMSE = 54.2 mm). 

Figure 2.8 shows the normalized errors of snow depth, density, grain radius, and 

temperature for both MSAs. Snow temperature simulations showed fairly good 

agreement with the observations, whereas for both MSAs, the largest error was that of 

snow grain size. Over the Fraser MSA, snow depth was overestimated for the St. Louis 

Creek and Alpine ISAs while it was underestimated for the Fool Creek ISA (Figure 2.8a). 

Snow depth was largely underestimated for all ISAs within the Rabbit Ears MSA (Figure 

2.8b). ɛ_ρsnow was relatively small compared to ɛ_dsnow and ɛ_re for both MSAs. Because 

observations showed dry snowpack conditions for all ISAs during the simulation period, 

the normalized error of wetness was not indicated. 

Brightness temperatures at 18.7 and 36.5 GHz channels predicted by the coupled 

models were compared with the AMSR-E TB observations (Figure 2.9 and Table 2.4). As 

shown in Table 2.4, two coupled models show comparable performance; they exhibit 

fairly good performance for 18.7 GHz channels, whereas their TB simulation errors are 

relatively large for 36.5 GHz channels, which are primarily consequences of the large 

ɛ_re. For the Rabbit Ears MSA, the simulation errors of TB at 18.7 GHz channels are 

small (Figure 2.9b), even though SWE was greatly underestimated (Figure 2.7) mainly 

due to snow depth underestimations (Figure 2.8b). This is attributed to that highly 
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overestimated snow grain radius offsets the effect of the underestimated snow depth on 

ɛ_TB.  

 

Table 2.4. Errors of TB simulations by the coupled CLM4/DMRT-ML and 

CLM4/MEMLS for the Fraser and Rabbit Ears MSAs. 

  CLM4/DMRT-ML CLM4/MEMLS 

  18.7 GHz 36.5 GHz 18.7 GHz 36.5 GHz 

  TBV TBH TBV TBH TBV TBH TBV TBH 

Fraser MSA RMSE (K) 3.1 3.4 15.5 17.7 4.4 2.8 22.6 19.4 

MBE (K) 2.0 2.2 -14.2 -16.6 -3.0 0.1 -21.9 -18.7 

Rabbit Ears 

MSA 

RMSE (K) 4.2 3.9 29.4 34.4 2.3 3.6 39.9 37.2 

MBE (K) 2.9 1.1 -28.7 -33.8 1.1 2.6 -39.4 -36.7 

 

 

Figure 2.7. Results of SWE simulation by CLM4 for each ISA within the Fraser and 

Rabbit Ears MSAs. RMSE and MBE were calculated for MSAs. 
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Figure 2.8. Normalized errors (= (simulation – observation) / observation) of snow 

depth, density, grain radius, and temperature for each ISA within the Fraser 

and Rabbit Ears MSAs. Since both observations and simulations showed dry 

snowpack conditions, normalized error of wetness is not shown. 
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Figure 2.9. Observed versus simulated TB by the coupled CLM4/DMRT-ML and 

CLM4/MEMLS for the Fraser and Rabbit Ears MSAs. 

 

3) The Relationship Between ɛ_SWE and ɛ_TB: Similar to the LSOS case, ɛ_SWE 

and ɛ_TB did not show distinct correlations for both MSAs (Figure 2.10a and Figure 

2.11a). For MSAs, ɛ_dsnow was much greater than ɛ_ρsnow (Figure 2.8) and was more 

correlated to ɛ_SWE (Figure 2.12); therefore, ɛ_SWE was mainly caused by ɛ_dsnow for 

both MSAs. However, because snow grain radius was greatly overestimated (Figure 2.8), 

most ɛ_TB was resulted from ɛ_re. In this case, as for the LSOS, the relationship between 

ɛ_re and ɛ_dsnow determines the correlation between ɛ_SWE and ɛ_TB. During the 

simulation period, ɛ_dsnow was not significantly correlated to ɛ_re for both MSAs (R = ‒

0.32 for the Fraser MSA and R = ‒0.37 for the Rabbit Ears MSA) (Figure 2.13a and 

Figure 2.13c). Consequently, we did not see any significant correlation between ɛ_SWE 

and ɛ_TB for MSAs. 

By excluding the St. Louis Creek ISA (from the Fraser MSA) and the Buffalo 

Pass ISA (from the Rabbit Ears ISA), we obtained higher positive correlations between 

ɛ_SWE and ɛ_TB (Figure 2.10b and Figure 2.11b). These are mainly consequences of 

increased negative relationships between ɛ_dsnow and ɛ_re (Figure 2.13b and Figure 2.13d) 
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because in this case, even though snow depth decreases, increased snow grain radius 

results in decreased TB. Meanwhile, like the LSOS, ɛ_ρsnow was more (positively) 

correlated with ɛ_re than ɛ_dsnow (Figure 2.13b and Figure 2.13d). However, for both 

MSAs, ɛ_ρsnow did not significantly affect the relationships between ɛ_SWE and ɛ_TB, 

because ɛ_ρsnow was relatively small for these areas (Figure 2.8). 

 

 

Figure 2.10. Relationships between errors (= simulation – observation) of SWE (ɛ_SWE) 

and TB (ɛ_TB) for the Fraser MSA: (a) all ISAs are included and (b) the St. 

Louis Creek ISA is excluded. 
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Figure 2.11. Relationships between errors (= simulation – observation) of SWE (ɛ_SWE) 

and TB (ɛ_TB) for the Rabbit Ears MSA: (a) all ISAs are included and (b) the 

Buffalo Pass ISA is excluded. 
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Figure 2.12. Relationships between SWE error (= simulation – observation) (ɛ_SWE) and 

errors of snow depth (ɛ_dsnow) and density (ɛ_ρsnow), respectively, for the 

Fraser MSA ((a) all ISAs are included and (b) the St. Louis Creek ISA is 

excluded) and the Rabbit Ears MSA ((c) all ISAs are included and (d) the 

Buffalo Pass ISA is excluded). 

The analyses using the CLPX datasets for the LSOS and MSAs show that given 

the large ɛ_re, the relationship between ɛ_re and ɛ_dsnow or ɛ_ρsnow, and the relative 

magnitude of ɛ_dsnow and ɛ_ρsnow mainly determine the direction of correlations between 

ɛ_SWE and ɛ_TB. However, the CLPX datasets used in these analyses involve the spatial 

and temporal variability, while RA updates SWE at a given time and location. In 

addition, mainly due to the small number of observations, the correlation results are not 

significant (p-values are greater than 0.05 in Figure 2.10 to Figure 2.13, except for some 
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results). Therefore, in the following section, we carried out synthetic experiments to 

overcome the limitations of using the CLPX datasets and to support the above discussion. 

 

 

Figure 2.13. Relationships between snow grain radius error (= simulation – observation) 

(ɛ_re) and errors of snow depth (ɛ_dsnow) and density (ɛ_ρsnow), respectively, 

for the Fraser MSA ((a) all ISAs are included and (b) the St. Louis Creek 

ISA is excluded) and the Rabbit Ears MSA ((c) all ISAs are included and (d) 

the Buffalo Pass ISA is excluded). 

 

2.4.3 Synthetic experiments 

In the synthetic experiments, we used the 40 randomly chosen ensemble members 

of the DART/CAM4 atmospheric ensemble reanalysis. Figure 2.14 shows the synthetic 
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truth and ensemble mean (from the open-loop run) of SWE for the CLPX region (shallow 

snowpack conditions) and Rocky Mountains (deep snowpack conditions) during 2003. 

The simulated SWE was about 10 times greater over the Rocky Mountains than over the 

CLPX region. During the simulation period, ɛ_SWE (ensemble simulations ‒ synthetic 

truth) was mostly a result of ɛ_dsnow for both regions (Figure 2.15).  

 

 

Figure 2.14. Synthetic truth and ensemble mean of SWE and RMSE of ensemble SWE 

simulations over the (a) CLPX region (shallow snowpack conditions) and 

(b) Rocky Mountains (deep snowpack conditions) during 2003. 

 

Figure 2.16 and Figure 2.17 show the correlations between ɛ_SWE and ɛ_TB and 

the SWE RMSE difference between the RA and open-loop cases (= RMSERA ‒ 

RMSEOpen-loop) for the CLPX region and Rocky Mountains, respectively. Negative (or 

positive) values of the RMSE difference indicate that RA improves (or degrades) the 

estimation of SWE in comparison with the open-loop case. As shown in the figures, RA 



 37 

improved the SWE estimation for most of the simulation period; however, it also 

degraded the SWE estimation for some periods. Overall, greater (positive or negative) 

correlations between ɛ_SWE and ɛ_TB led to more improvement of SWE in RA. The 

degradation of SWE estimates in RA was mainly caused by some ensemble members that 

did not obey the correlation between ɛ_SWE and ɛ_TB. When the correlation was 

insignificant, the SWE update in RA was marginal and thus the degree of degradation of 

SWE was small. Meanwhile, when the correlation coefficient approaches 1 or ‒1, RA 

improved the SWE estimation for most cases. Therefore, most of the degradation of SWE 

estimates in RA was observed around the correlation coefficient of 0.5 or ‒0.5. 

 

 

Figure 2.15. Relationships between SWE error (= ensemble simulations – synthetic 

truth) (ɛ_SWE) and errors of snow depth (ɛ_dsnow) and density (ɛ_ρsnow), 

respectively, over the (a) CLPX region (shallow snowpack conditions) and 

(b) Rocky Mountains (deep snowpack conditions) during 2003. 
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Figure 2.16. Scatter plots of correlation coefficients between ɛ_SWE and ɛ_TB versus 

SWE RMSE difference (= RMSERA ‒ RMSEOpen-loop) for each model and 

each frequency channel over the CLPX region during 2003: (a) original 

result, (b) no soil (water content and temperature) effect on ɛ_TB, (c) no soil 

(water content and temperature) and snow wetness effects on ɛ_TB, and (d) 

no soil (water content and temperature), snow wetness, and snow 

temperature effects on ɛ_TB. Each point is corresponding to each day. 

 

For shallow snowpack conditions over the CLPX region, more positive and 

negative correlations between ɛ_SWE and ɛ_TB were produced by CLM4/DMRT-ML and 

CLM4/MEMLS, respectively (Figure 2.16a). In order to analyze the effects of ɛ_WTsoil, 

ɛ_Wsnow, and ɛ_Tsnow, some of these physical properties were assumed to be perfect so that 

no ɛ_TB was introduced by errors of these properties: 1) soil water content and 

temperature (Figure 2.16b); 2) soil water content, soil temperature, and snow wetness 

(Figure 2.16c); and 3) soil water content, soil temperature, snow wetness, and snow 
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temperature (Figure 2.16d). Comparing Figure 2.16b with Figure 2.16a, we can see that 

for this shallow snowpack condition, the effect of soil on TB resulted in positive 

correlations between ɛ_SWE and ɛ_TB, especially in DMRT-ML. The additional 

exclusion of the snow wetness effect on ɛ_TB from Figure 2.16b did not make much 

difference in the correlations but led to more degradation of SWE estimates in RA 

(Figure 2.16c). For the CLPX region, ɛ_Tsnow was also one of the significant factors 

causing a positive correlation between ɛ_SWE and ɛ_TB, particularly in DMRT-ML 

(compare Figure 2.16d to Figure 2.16c). 

 

 

Figure 2.17. Same as Figure 2.16 but for the Rocky Mountains. 



 40 

Unlike the CLPX region (Figure 2.16a), for deep snowpack conditions over the 

Rocky Mountains, more negative correlations between ɛ_SWE and ɛ_TB were produced 

by the coupled models but CLM4/DMRT-ML tends to yield more (and higher) positive 

correlations than CLM4/MELMS (Figure 2.17a). The effect of ɛ_WTsoil on the positive 

correlation between ɛ_SWE and ɛ_TB (compare Figure 2.17b with Figure 2.17a) is 

reduced compared to that for the CLPX region, mainly due to the increased snow depth. 

In contrast to the CLPX region (Figure 2.16c and Figure 2.16d), the SWE estimation in 

RA was improved by additionally excluding the effects of snow wetness and snow 

temperature on ɛ_TB (Figure 2.17c and Figure 2.17d). 

As previously mentioned, over the LSOS and MSAs, both simulations and 

observations showed dry snowpack conditions (no effect of snow wetness on ɛ_TB) and 

ɛ_Tsnow was very small (the effect of snow temperature on ɛ_TB was negligible). 

Therefore, we further analyzed the results shown in Figure 2.16d and Figure 2.17d 

because they were considered appropriate to support the results from the CLPX datasets. 

From the results in Figure 2.16d and Figure 2.17d, the classification of 13 cases 

was made based on the correlation coefficients between ɛ_re and ɛ_dsnow or ɛ_ρsnow 

(Figure 2.18). Figure 2.19 and Figure 2.20 show the effects of the magnitude of ɛ_re and 

its relationship to ɛ_dsnow and ɛ_ρsnow (see the 13 cases in Figure 2.18) on the correlations 

between ɛ_SWE and ɛ_TB for the CLPX region and Rocky Mountains, respectively. 

Most of the positive or insignificant correlations between ɛ_SWE and ɛ_TB 

occurred when ɛ_re was small, especially for cases 1 to 8 where ɛ_re was positively 

correlated to ɛ_ρsnow (Figure 2.19 and Figure 2.20). Based on a sensitivity test, the effects 

of snow density and grain radius on TB are opposite in direction, whereas both snow 

depth and grain radius are negatively correlated with TB. In contrast to the results from 

the CLPX datasets (Figure 2.12), ɛ_ρsnow was also highly correlated with ɛ_SWE in the 
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synthetic experiments (Figure 2.15). Therefore, in cases 1 to 8, the effects of ɛ_dsnow and 

ɛ_re on the relationships between ɛ_SWE and ɛ_TB were canceled out by ɛ_ρsnow. 

However, in these cases, the correlation between ɛ_SWE and ɛ_TB negatively increased as 

ɛ_re increased (Figure 2.19 and Figure 2.20).  

 

 

Figure 2.18. The classification of 13 cases based on the correlation coefficients between 

ɛ_re and ɛ_dsnow (x-axis) and ɛ_ρsnow (y-axis), respectively: (a) CLPX region 

(shallow snowpack conditions) and (b) Rocky Mountains (deep snowpack 

conditions). 

Cases 9 (only for the Rocky Mountains) and 11, where ɛ_re was negatively 

correlated to both ɛ_dsnow and ɛ_ρsnow, exhibited relatively high negative correlations 

between ɛ_SWE and ɛ_TB (Figure 2.19 and Figure 2.20). Because in these cases, ɛ_re was 

small and the magnitude of ɛ_dsnow and its relationship with ɛ_SWE were much greater 

than those of ɛ_ρsnow, the negative correlations between ɛ_SWE and ɛ_TB were mainly 

determined by ɛ_dsnow. 

In cases 9 (only for the CLPX region), 10, 12, and 13, we may expect negative 

correlations between ɛ_SWE and ɛ_TB when ɛ_re is large. However, some points in these 

cases showed insignificant or positive correlations (Figure 2.19 and Figure 2.20), which 
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was also mostly attributed to the much larger ɛ_ρsnow and its higher correlation with 

ɛ_SWE than those of ɛ_dsnow.  

 

 

Figure 2.19. Scatter plots of correlation coefficients between ɛ_SWE and ɛ_TB versus the 

normalized ɛ_re for each model and each frequency channel over the CLPX 

region during 2003. Each point is corresponding to each day. The 13 cases 

are based on Figure 2.18a. 
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Figure 2.20. Same as Figure 2.19 but for the Rocky Mountains. The 13 cases are based 

on Figure 2.18b. 
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Figure 2.21 and Figure 2.22 show the relationships between the normalized ɛ_re 

and SWE RMSE difference (= RMSERA ‒ RMSEOpen-loop) for the CLPX region and 

Rocky Mountains, respectively. Each symbol in the figures represents the range of 

correlation coefficients between ɛ_SWE and ɛ_re. When ɛ_re was small, most of the 

degradation of SWE estimates in RA was resulted from the relative magnitude of ɛ_dsnow 

and ɛ_ρsnow and their relationships to ɛ_SWE. Although large ɛ_re led to high negative 

correlations between ɛ_SWE and ɛ_TB (Figure 2.19 and Figure 2.20), it did not result in 

an improvement of SWE in RA (Figure 2.21 and Figure 2.22) because much of the signal 

of ɛ_TB was due to ɛ_re. However, when the correlation coefficient between ɛ_SWE and 

ɛ_re was greater than 0.5, most of the SWE estimations in RA were improved, even 

though ɛ_re was large. 

 

2.5 CONCLUSIONS 

SWE and TB at 18.7 and 36.5 GHz V and H polarization channels were simulated 

by the coupled CLM4/DMRT-ML and CLM4/MEMLS for non-vegetated (LSOS) and 

vegetated areas (Fraser and Rabbit Ears MSAs). To minimize errors caused by 

uncertainties of snow stickiness (in DMRT-ML only) and vegetation parameters (in 

vegetation RTM), optimizations were conducted using snowpit and TB observations. 

Based on optimization, the stickiness parameter was set to 0.17, which is lower than that 

obtained in Roy et al. [2013]; the lower value results from the effects of grain shape and 

size distribution of sticky spheres, which were not considered in DMRT-ML. The lower 

value (0.17) is, however, within the range (from 0.1 to 0.2) suggested by previous studies. 

Two empirical vegetation parameters (b' and x) were determined to be 0.40 and −1.48, 

respectively, for the Fraser MSA and 0.10 and −1.38, respectively, for the Rabbit Ears 

MSA.  
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Figure 2.21. Scatter plots of the normalized ɛ_re versus SWE RMSE difference (= 

RMSERA ‒ RMSEOpen-loop) over the CLPX region during 2003 (R: 

correlation coefficient between ɛ_SWE and ɛ_re). Each point is 

corresponding to each day. 
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Figure 2.22. Same as Figure 2.21 but for the Rocky Mountains. 
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We characterized the errors of the coupled models by evaluating the CLM4 

snowpack state simulations, by assessing the RTMs performance in simulating TB, and by 

analyzing the correlations between ɛ_SWE and ɛ_TB. SWE simulations by CLM4 showed 

fairly good agreement with the observations for the LSOS and Fraser MSA while SWE 

was underestimated for the Rabbit Ears MSA. Among the snowpack physical properties 

required to run the snowpack RTMs, the highest normalized error in all study areas was 

that of snow grain radius. Both coupled models showed comparable performance in 

predicting TB; they show fairly good performance for 18.7 GHz channels but their 

simulation errors of TB were relatively great for 36.5 GHz channels due to the large ɛ_re. 

The results using the CLPX datasets show that given the large ɛ_re for dry snowpack 

conditions, the correlations between ɛ_SWE and ɛ_TB are determined by the relationship 

between ɛ_re and ɛ_dsnow or ɛ_ρsnow, and the relative magnitude of ɛ_dsnow and ɛ_ρsnow.  

The synthetic experiments conducted for the CLPX region (shallow snowpack 

conditions) and Rocky Mountains (deep snowpack conditions) support the results from 

the CLPX datasets. When no ɛ_TB was resulted from ɛ_WTsoil, ɛ_Wsnow, and ɛ_Tsnow, the 

relationships between ɛ_SWE and ɛ_TB were mainly determined by the magnitude of ɛ_re 

and its relationship to ɛ_dsnow and ɛ_ρsnow. Overall, large ɛ_re led to high negative 

correlations between ɛ_SWE and ɛ_TB, and most of the positive or insignificant 

correlations were consequence of larger ɛ_ρsnow and its higher correlation with ɛ_SWE 

than those of ɛ_dsnow. Errors of soil (water content and temperature), snow wetness, and 

snow temperature mostly resulted in positive correlations between ɛ_SWE and ɛ_TB. The 

effect of soil on the correlations was obvious for shallow snowpack conditions, especially 

in CLM4/DMRT-ML.  

The synthetic experiments show that greater (positive or negative) relationships 

between ɛ_SWE and ɛ_TB led to more improvement of SWE in RA while most of the 
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degradation was observed around the correlation coefficient of 0.5 or ‒0.5. When 

simulations of soil water content, soil temperature, snow wetness, and snow temperature 

are assumed to be perfect, the magnitude of ɛ_re and its relationship to ɛ_SWE are 

important for RA performance. Most of the SWE estimations in RA were improved when 

ɛ_SWE and ɛ_re show a high positive correlation (greater than 0.5).  

CLM4/DMRT-ML and CLM4/MEMLS tended to produce more positive and 

negative correlations between ɛ_SWE and ɛ_TB, respectively, and thus they showed 

different performances in RA. This emphasizes the necessity of using multiple snowpack 

RTMs to improve the SWE estimation at the continental scale. The results in this study 

also show that errors of all physical properties of soil and snow required to estimate TB 

have significant effects on the relationships between ɛ_SWE and ɛ_TB and subsequent RA 

performance. Therefore, as well as SWE (snow depth and density), all of these physical 

properties have to be properly updated in the RA scheme to reduce errors related to them. 

To minimize ɛ_TB resulted from ɛ_Wsnow, we may be able to use only nighttime 

observations.  

It should be noted that we used the conversion equations (e.g., equations (2.1), 

(2.6), and (2.7)) for three different snow grain size parameters, i.e., Dmax (observed grain 

size), re (in CLM4 and DMRT-ML), and pex (in MEMLS). This can lead to uncertainty in 

simulated TB by the coupled models and thus some results (e.g., parameter optimizations, 

and the magnitude of ɛ_TB and ɛ_re) might be affected. However, the overall discussions 

on the relationships between errors are unaffected by this incompatibility among the 

snow grain size parameters. 

Model error characterization in a DA system is the greatest challenge, especially 

for large-scale applications. Furthermore, because in snow RA, model error can be 

resulted from RTMs and parameterizations of various snow and soil variables in the 
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LSM, not just from SWE-related variables, model error characterization is much difficult. 

Although further studies are required, the results obtained in this study (e.g., relationships 

between errors of TB and snow and soil states, and their effects on RA performance) can 

contribute to characterization of model error in future real RA studies. In addition, they 

can also be used for a rule-based approach in updating SWE in the RA scheme to 

minimize the degradation of SWE estimates.  

The error characteristics of CLM4/DMRT-ML and CLM4/MEMLS were 

analyzed only at point and local scales. For continental-scale multi-RTM ensemble RA, 

optimizations of stickiness in DMRT-ML and empirical parameters in vegetation RTM 

would be a laborious task. For this, several approaches could be taken: 1) dual-pass 

approach (calibration + assimilation) [Yang et al., 2009], 2) simultaneous updates of 

states and parameters in the data assimilation system [Su et al., 2011], and 3) the use of 

published values by classifying snow cover and vegetation types. These issues will be 

addressed in future studies. 
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CHAPTER 3: Estimating snow water storage in North America using 

CLM4, DART, and snow radiance data assimilation2 

 

3.1 ABSTRACT 

This paper addresses continental-scale snow estimates in North America using a 

recently developed snow radiance assimilation (RA) system. The RA system is 

comprised of the Community Land Model version 4 (CLM4), the Dense Media Radiative 

Transfer–Multi Layers model (DMRT-ML), and the Data Assimilation Research Testbed 

(DART). A series of RA experiments with the ensemble adjustment Kalman filter are 

conducted by assimilating the Advanced Microwave Scanning Radiometer–Earth 

Observing System (AMSR-E) brightness temperature (TB) at 18.7 and 36.5 GHz vertical 

polarization channels. Results demonstrate that the coupled RA system has the potential 

to improve continental-scale snow estimates. The RA performance in estimating snow 

depth and snow cover fraction (SCF) is improved by simultaneously updating model 

states and parameters involved in predicting TB and by updating prior estimates based on 

their correlations with a prior TB (i.e., rule-based RA). Radiance data assimilation can 

complement SCF data assimilation for relatively deep snowpack regions where SCF 

approaches 100%. The rule-based RA is more effective in estimating snow depth than the 

default RA (without a rule). Significant improvement of the snow depth estimates in the 

rule-based RA is observed for tundra snow class and bare soil land cover type. However, 

even in the most improved RA case, snow estimates are degraded for some specific snow 

classes and land covers like taiga and forest. The current RA system needs to be further 

refined to enhance snow estimates for various snow types and forested regions.  

                                                 
2 This chapter was previously submitted to Journal of Hydrometeorology. 
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3.2 INTRODUCTION 

Estimates of snow depth and snow water equivalent (SWE) are critical for climate 

studies and water resource management. Data assimilation (DA) has been identified as a 

powerful method to generate improved estimates by merging observations and model 

forecasts based on their uncertainties. As a DA method, radiance assimilation (RA) 

incorporates microwave brightness temperature (TB) observations into a land-surface 

model (LSM) coupled with a microwave radiative transfer model (RTM). 

In this study, we address the feasibility of RA to improve snow estimates at the 

continental scale. This work builds on our previous research [Kwon et al., 2015] in which 

the Community Land Model version 4 (CLM4) [Oleson et al., 2010; Lawrence et al., 

2011] is coupled with the Dense Media Radiative Transfer–Multi Layers model (DMRT-

ML) [Picard et al., 2013] to predict TB from the snowpack. The observed TB from the 

Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) is then 

assimilated using the ensemble adjustment Kalman filter (EAKF) [Anderson, 2001], 

which is an option in the Data Assimilation Research Testbed (DART) [Anderson et al., 

2009] developed by the National Center for Atmospheric Research (NCAR). 

We hypothesize that the continental-scale RA performance in estimating snow 

depth and SWE can be improved through: 1) simultaneous updates of all model physical 

states and parameters involved in predicting TB and 2) a rule-based approach in which 

prior estimates are updated depending on their correlations with a prior TB. Kwon et al. 

[2015] emphasized that all physical states and parameters in the model used to estimate 

TB should be appropriately updated in RA to minimize errors related to them. Kwon et al. 

[2015] also showed that the TB signal can be dominated by snow and soil properties (in 

particular, snow grain size) instead of SWE (or snow depth). Such dominance in RA can 

degrade SWE (or snow depth) estimates because of incorrect relationships between the 
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prior SWE (or snow depth) and TB estimates. A rule-based RA could ameliorate this 

issue. 

The remainder of this chapter is organized as follows. Section 3.3 describes the 

coupled RA system, the data sets, and the experimental design. Results are analyzed and 

discussed in section 3.4. Conclusions are enumerated in section 3.5.  

 

3.3 COUPLED RADIANCE ASSIMILATION SYSTEM, DATA SETS, AND EXPERIMENTAL 

DESIGN 

3.3.1 Coupled radiance assimilation system 

The coupled CLM4, DART, and RTMs data assimilation system is hereafter 

referred to as the coupled RA system (see Figure 3.1 for a schematic diagram of the 

coupled RA system). CLM4 simulates snow and soil states (snow depth and layer 

thickness, snow temperature, soil temperature and moisture) and snow characteristics 

(density, grain radius, and wetness). Whenever AMSR-E TB observations are available, 

CLM4 creates restart files for each ensemble member. The forecasted states and 

characteristics in the restart files are then read by DART and fed to an observational 

operator (i.e., RTMs), which converts the model states and snow characteristics to TB. At 

the same time, DART reads AMSR-E TB observations and updates model states and snow 

characteristics by the assimilation process. These updated values in the restart files are 

used for subsequent model forecast. 

 

1) DART 

DART [Anderson et al., 2009] is a community facility for ensemble-based DA 

studies. Given its flexibility, DART has been coupled with various atmospheric and 

oceanic models [Anderson et al., 2009] and land surface models including CLM4 [Zhang 
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et al., 2014]. In this study, we additionally incorporated RTMs as an observational 

operator to predict TB. 

 

 

Figure 3.1. Schematic diagram of the coupled radiance assimilation system. 

 

DART involves a variety of ensemble-based assimilation algorithms. One of 

them, the EAKF [Anderson, 2001], is applied in this study. The EAKF is a deterministic 

ensemble square root filter [Tippett et al., 2003] whereas the traditional ensemble Kalman 

filter (EnKF) [Evensen, 1994; Burgers et al., 1998] calculates model forecast error 

statistics based on a Monte Carlo method. In the EAKF, an updated (posterior) ensemble 

is generated by shifting the forecasted (prior) ensemble so that it has the same mean and 
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standard deviation as those of the continuous posterior [Anderson et al., 2009]. Anderson 

[2001] suggests that, in particular for a small ensemble size, the EAKF significantly 

outperforms the traditional EnKF, which introduces a random perturbation to 

observation. More detailed descriptions of DART and the EAKF are available in 

Anderson et al. [2009] and Anderson [2001], respectively. 

 

2) CLM4 

CLM4 [Oleson et al., 2010; Lawrence et al., 2011] is the land component of the 

Community Earth System Model (CESM) [Gent et al., 2011]. CLM4 has 15 soil layers, 

up to five snow layers (depending on snow depth), and one canopy layer. In CLM4, soil 

temperature is calculated for all soil layers but hydrologic calculations are conducted only 

for the top 10 soil layers; frozen soil hydrology is represented based on the procedure 

described by Niu and Yang [2006].  

CLM4 is advantageous for this study because a) it is a community developed 

model and b) it represents the snowpack as multiple layers and simulates snow 

thermodynamics. As a community model, CLM has been extensively evaluated in a wide 

range of applications and it evolves continuously from worldwide contributions. 

Recently, Kwon et al. [2015] linked CLM4 with two snow radiative transfer models, 

DMRT-ML [Picard et al., 2013] and the Microwave Emission Model for Layered 

Snowpacks (MEMLS) [Wiesmann and Mätzler, 1999]. Kwon et al. [2015] also analyzed 

the error characteristics of these coupled models (CLM4/DMRT-ML and 

CLM4/MEMLS) from RA perspectives. 

Durand et al. [2008] demonstrated that the use of a five-layer snow scheme of 

CLM4 provides more accurate TB calculations than a three-layer snow scheme. 

Furthermore, CLM4 is capable of simulating snow melt-refreeze cycles (depending on 
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snow temperature and ice/liquid water content within each snow layer) and densification 

processes (e.g., destructive metamorphism, compaction resulting from snow load or 

overburden, and melting metamorphism), which are critical inputs for RTMs to predict 

TB. Therefore, CLM4 coupled with RTMs could potentially provide improved estimates 

of snow physical properties through RA.  

CLM4 computes snow depth, snow grain radius, and mass of liquid water and ice 

within the snowpack every time step. SWE is the sum of snow liquid water and snow ice. 

Snow density (kg m
−3

) is equal to SWE (kg m
−2

) divided by snow depth (m). Therefore, 

updating all these snow variables separately in RA would violate their physical 

relationships and cause excessive updating of snow mass. Zhang et al. [2014] updated 

SWE only through data assimilation. The updated SWE was redistributed to the mass of 

snow liquid water and ice, and snow depth was adjusted based on its physical relationship 

with SWE by using the prior snow density. This updating scheme was used in this study. 

 

3) Radiative transfer models 

In the RA system, the RTM is an observational operator predicting TB. Here, we 

used DMRT-ML [Picard et al., 2013] to estimate microwave TB from the snowpack. 

DMRT-ML is a multilayer microwave emission model that calculates the microwave 

scattering and absorption coefficients of snowpack based on the Dense Media Radiative 

Transfer (DMRT) theory [Tsang and Kong, 2001]. To solve the radiative transfer 

equation, the model employs the discrete ordinate radiative transfer (DISORT) method 

[Jin, 1994], which considers multiple scattering within and between the layers. The 

model is applicable to a frequency range of 1 to 200 GHz. DMRT-ML provides several 

combinations of reflectivity models and dielectric constant models for the snow-bottom 

interface (see Table 1 in Picard et al. [2013]). To estimate the effect of the underlying 
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soil on microwave emission, we used the rough bare soil reflectivity model by Wegmüller 

and Mätzler [1999] and calculated the soil dielectric constant based on Dobson et al. 

[1985]. Snow and soil inputs required by DMRT-ML include snow layer thickness, 

density, wetness, snow grain radius, snow and soil temperature, and soil water content, all 

of which are simulated by CLM4.  

DMRT-ML has a stickiness parameter [Ding et al., 2001] that affects the size of 

the scatterers. Stickiness depends on snow type and is difficult to obtain [Picard et al., 

2013]. It can be optimized using measurements as presented in Kwon et al. [2015]. In this 

study, however, due to the difficulty of the continental-scale optimization, it is updated in 

the DA system. 

TB at the top of the atmosphere (TOA) is modeled based on Durand and Margulis 

[2007]. To consider the effects of atmosphere and vegetation, we used the atmospheric 

RTM by Ulaby et al. [1981] as implemented in Durand and Margulis [2007], and 

vegetation transmissivity was calculated from the optical depth of vegetation (τc) 

[Jackson and Schmugge, 1991]: 

 

 cos/' c

x

c wb                          (3.1) 

 

where b' and x are empirical coefficients, λ is the wavelength (cm), wc is the vegetation 

water content (kg m
-2

), which is estimated from the leaf area index (LAI) following 

Paloscia and Pampaloni [1988], and θ is the incident angle (55˚ for AMSR-E). Empirical 

coefficients (b' and x) depend on vegetation type and are also subject to update through 

RA in this study. 
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3.3.2 Data sets 

1) AMSR-E brightness temperature observations 

In this study, AMSR-E/Aqua Daily Global Quarter–Degree Gridded Brightness 

Temperatures (NISDC-0302; http://nsidc.org/data/nsidc-0302) data [Knowles et al., 

2006] were assimilated into model simulations. AMSR-E is a microwave radiometer 

flown on NASA’s Earth Observing System (EOS) Aqua satellite. It observes TOA 

vertically (V-pol) and horizontally (H-pol) polarized microwave radiance at 6 

frequencies: 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. Durand and Margulis [2006] 

reported that the 36.5 GHz channel contains the most significant information with respect 

to snow RA. Theoretically, it has been shown that microwave radiance at 18.7 GHz 

channel is sensitive to snow depth [e.g., Tsang et al., 2000]. Therefore, two frequency 

channels (i.e., 18.7 and 36.5 GHz V-pol) were used in our RA experiments. Horizontally 

polarized brightness temperatures were not assimilated because they are sensitive to ice 

layer properties [Mätzler, 1987; Durand et al., 2008; Rees et al., 2010], which cannot be 

realistically represented by the five-layer snow model. 

In Durand and Margulis [2006], the 18.7 GHz channel does not significantly 

contribute to correcting the SWE estimates due to competing relationships, i.e., a 

negative relationship between snow depth and TB (based on sensitivity analysis) and a 

positive relationship between snow depth and TB (resulting from a negative relationship 

between snow depth and snow grain size). This issue is also emphasized in our previous 

error characterization study [i.e., Kwon et al., 2015]. As we hypothesized, however, the 

simultaneous update of states and parameters and the rule-based approach may be able to 

mitigate the problem. Although, the lower frequency channels (i.e., 6.925 and 10.65 

GHz) provide valuable information for deep snowpack [Durand and Margulis, 2006], 

they were not exploited in this paper due to the huge computational demand of the 
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continental-scale RA experiments. However, the use of these additional frequencies may 

further improve the snow RA performance. 

For computational efficiency, AMSR-E TB observations (0.25˚ spatial resolution) 

were scaled up to the CLM4 grid (0.9˚ × 1.25˚). The use of the upscaled TB reduced the 

computational demand to about 1/10 of the original demand. The observation error was 

roughly assumed to be 2 K. As recommended in Kwon et al. [2015], we used only 

nighttime TB observations to minimize the effect of the snowpack wetness error.  

 

2) Atmospheric ensemble forcing 

We constructed 40 ensemble members of CLM4 simulations at 0.9˚ × 1.25˚ 

spatial resolution using the coupled DART/Community Atmospheric Model (CAM4) 

reanalysis [Raeder et al., 2012] as atmospheric forcing. Compared to traditional 

approaches that perturb each atmospheric forcing field separately to produce the 

ensemble [e.g., Andreadis and Lettenmaier, 2006; Su et al., 2008], the use of the 

DART/CAM4 reanalysis offers the advantage of physical consistency between forcing 

fields (such as downward short-wave radiation, air temperature, precipitation, wind 

speed, humidity, and atmospheric pressure). 

All grid cells in CLM4 have the same UTC, whereas TB has been observed by 

AMSR-E at approximately the same local time (1:30 am LST for the descending pass) for 

each grid cell. Therefore, based on the method suggested in Zhao et al. [submitted], we 

temporally shifted the original time series of DART/CAM4 reanalysis for each grid cell 

so that the CLM4 simulation time matches the AMSR-E observation time.  

  



 60 

3) Independent snow data sources for validation 

RA results were compared with two independent snow data sources, i.e., the 

Canadian Meteorological Centre (CMC) daily snow depth analysis data and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) 

observations. The CMC product provides Northern Hemisphere daily snow depth 

[Brasnett, 1999; Brown and Brasnett, 2010] with approximately 24-km spatial resolution. 

The CMC analysis data are produced using snow depth data from surface synoptic 

observations and meteorological and special aviation reports acquired from the World 

Meteorological Organization (WMO) information system [Brown and Brasnett, 2010]. 

These daily snow depth data are considered the best available snow depth reference for 

model evaluations over the Northern Hemisphere [e.g., Su et al., 2010; Reichle et al., 

2011].  

The 0.05° MODIS/Terra level-3 daily global snow cover products (MOD10C1) 

[Hall et al., 2006] are used for additional validation of the RA results. MODIS retrieves 

snow cover information using 36 spectral bands. A tile of daily snow cover data product 

at 500 m spatial resolution (MOD10A1) is produced using a snow-mapping algorithm 

based on a normalized difference snow index (NDSI), a normalized difference vegetation 

index (NDVI), and several criteria tests classifying image pixels [see Riggs et al., 2006]. 

The MOD10C1 snow product is generated by merging MOD10A1 daily tiles and binning 

them to the 0.05° Climate Modeling Grid (CMG). For comparison purposes, we upscaled 

the original MOD10C1 data to the CLM4 grid (0.9˚ × 1.25˚) using the CMG confidence 

indices (CI) [see Riggs et al., 2006 for further information on CI]. A higher CI indicates 

less cloud cover within a pixel and thus better quality SCF estimates. Only CMG grid 

cells that have the CI greater than 20% and a non-zero daily percentage of snow cover 

were considered during upscaling. 
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3.3.3 Experimental design 

We hypothesized that continental-scale snow estimates in RA can be enhanced by 

simultaneously updating all model physical states of snow and soil and RTM parameters 

required for calculating TB and through rule-based prior innovations. To demonstrate our 

hypothesis that the rule-based update can improve the RA performance, we conducted 

three classes of experiments (see Table 3.1): 1) open-loop run without assimilation, 2) 

default update in RA, and 3) rule-based update in RA. Ten sub-experiments were set up 

to demonstrate the effect of the simultaneous update of snow and soil states and RTM 

parameters on the RA performance (see Table 3.1). In the RASWE and RASWE-R cases, 

only SWE related states including snow depth were updated. Additional updates of snow 

grain radius (RASR and RASR-R), snow temperature (RASRT and RASRT-R), soil water 

content and temperature (RASRTS and RASRTS-R), and RTM parameters (RASRTSP and 

RASRTSP-R) were considered in the other eight sub-experiments. In the RASRTSP and 

RASRTSP-R cases, initial values of three RTM parameters were randomly generated for 

each grid cell and each ensemble member within the given ranges (i.e., 0.1 ≤ snow 

stickiness ≤ 0.5, –1.656 ≤ x ≤ –0.804, and 0.496 ≤ b′ ≤ 0.744). For all other RA cases, we 

used constant values of 0.2 (for stickiness), –1.23 (for x), and 0.62 (for b′) for all grid 

cells and ensemble members during the simulation period. All 11 experiments were 

driven by the 40 randomly chosen ensemble members of the DART/CAM4 reanalysis 

over North America for December 2002 to February 2003. In the RA cases, AMSR-E TB 

observations at two frequency channels (i.e., 18.7-V and 36.5-V) were assimilated. Note 
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that the states and parameters in the current RA system are not updated when one or more 

of the ensemble members in a grid cell have no snow. 

Table 3.1. List of experiments and updated states and parameters in each experiment. 

 Updated states and parameters 

Cases SWE Snow 

depth 

Snow 

grain 

radius 

Snow 

temperature 

Soil water content 

and  

soil temperature 

RTM 

parameters 

Open-loop · · · · · · 

Default 

update 

in RA 

RASWE ○ ○ · · · · 

RASR ○ ○ ○ · · · 

RASRT ○ ○ ○ ○ · · 

RASRTS ○ ○ ○ ○ ○ · 

RASRTSP ○ ○ ○ ○ ○ ○ 

Rule-

based 

update 

in RA 

RASWE-R ○ ○ · · · · 

RASR-R ○ ○ ○ · · · 

RASRT-R ○ ○ ○ ○ · · 

RASRTS-R ○ ○ ○ ○ ○ · 

RASRTSP-R ○ ○ ○ ○ ○ ○ 

 

Rodell and Houser (2004) suggested a rule-based DA method to assimilate 

MODIS SCF observations because of a threshold (non-continuous) relationship between 

SCF and SWE. In their rule-based DA, a thin snow layer (i.e., 5 mm SWE) is added to 

model grid cells where MODIS SCF is greater than 0.4 but the model simulated no snow. 

When MODIS SCF is less than 0.1, the simulated SWE is set to zero. For grid cells 

where the observed SCF is between 0.1 and 0.4, no change is applied to the modeled 

SWE. However, our rule-based approach in RA is different in that the rule is determined 

based on a sensitivity analysis. Only when correlations between the prior estimates (of 

snow/soil states and RTM parameters) and the prior TB have the same signs as the 

sensitivity index, are the priors updated. 
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We analyzed the sensitivity of TB to snow/soil states and RTM parameters, i.e., 

SWE, snow grain radius, snow temperature, soil temperature, soil water content, snow 

stickiness (in DMRT-ML), and two empirical parameters (x and b' in the vegetation 

RTM), all of which are updated in the RA scheme. The sensitivity index was calculated 

using an equation suggested by Lenhart et al. [2002]: 
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                           (3.2) 

 

where I is the dimensionless sensitivity index, x0 is the initial value of states and 

parameters being tested, Δx is the variation, and y0, y1 and y2 are brightness temperatures 

estimated using x0, x1 (= x0 ‒ Δx), and x2 (= x0 + Δx), respectively. For the sensitivity 

analysis, a single-layer dry snowpack was assumed and ±10% perturbations were applied 

to default values of SWE (181.6 kg m
-2

), snow grain radius (251 µm), soil water content 

(0.1), snow stickiness (0.2), x (‒1.23), and b′ (0.62). In reality, snow temperature (270 K) 

and soil temperature (270 K) were perturbed by ±3 K. As mentioned previously, we 

assumed that the SWE update determines the snow depth update, whereas snow density is 

not changed during the assimilation. In addition, SWE is not an input to DMRT-ML but 

snow depth is used to estimate TB. Therefore, the sensitivity of TB to SWE was calculated 

by applying the variation (= 18.16 kg m
-2

) of SWE to the variation (= 0.08 m) of snow 

depth (the default was set to 0.8 m).  
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The use of small ensemble size for the computational efficiency of the DA system 

can cause a large sampling error and subsequently lead to spurious large correlations 

between two uncorrelated variables [Anderson, 2007]. DART has a localization distance 

parameter, which can be tuned for different observation types. The localization distance 

minimizes this negative effect by reducing the impact of observations on model states of 

neighboring grid cells [Anderson et al., 2009]. For the above-mentioned experiments, we 

used the localization distance of 0.03 radians according to Zhang et al. [2014]. Here, we 

conducted additional RA experiments (with localization distances of 0.01, 0.05, 0.07, 0.1, 

0.15, 0.2, and 0.3 radians) to find out the proper localization distance for the coupled RA 

system used in this study.  

We also tested the effect of inflation on the snow RA performance. In ensemble 

DA, the ensemble spread decreases as more information from observations is assimilated 

into the system. This may cause filter divergence [Anderson et al., 2009]. Inflation helps 

the DA system to maintain adequate variability by increasing the variance (uncertainty) 

of the ensemble estimate [Anderson, 2009]. The spatially and temporally varying 

adaptive inflation [Anderson, 2009] in DART was employed in this study. In the 

localization and inflation experiments, all model states and RTM parameters were 

simultaneously updated with and without the rule. 
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3.4 RESULTS AND DISCUSSION 

In this section, we present the assimilation results using the coupled RA system. 

The RA results are assessed using the CMC daily snow depth analysis and MODIS SCF 

observations.  

 

3.4.1 Simultaneous update of states and parameters 

1) Snow depth estimation 

Figure 3.2 shows the results of the open-loop case without assimilation. 

Compared to the CMC snow depth analysis data, CLM4 greatly overestimated snow 

depth for most of northern North America while the difference between the CMC and 

CLM4 snow depth is relatively small for the United States and southern Canada. 

By updating only SWE related snow states in RA (RASWE), we were not able to 

improve snow depth estimates (see Figure 3.3a). In Figure 3.3, which shows the snow 

depth root mean square error (RMSE) differences between the RA and open-loop cases, 

negative (or positive) values denote the improvement (or degradation) of the RA 

performance. Although compared to the open-loop run, the RASWE shows a minor 

improvement in snow depth estimates for some areas, the snow depth error is much 

greater for most of the study area, especially for northeastern North America. 

This degeneration of the RA performance is much ameliorated in the RASR case 

by additionally updating snow grain size (see Figures 3.3b and 3.3f). As emphasized in 

Kwon et al. [2015], when snow grain radius is greatly biased, the TB error (= simulation – 

observation) is contributed primarily by the snow grain radius error but not by the SWE 

error. In this case, we cannot expect a proper update of SWE in RA, even though SWE 

and TB show a high correlation. Accordingly, we might improve the RA performance by 

reducing the effect of the snow grain radius error on the TB error in the RASR case. 
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Figure 3.2. Simulation results of the open-loop case for (a) snow depth and (b) SCF. The 

root mean square error (RMSE) and mean bias error (MBE) were calculated 

by comparing the results with the CMC snow depth and MODIS SCF for 

December 2002 to February 2003. 
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Figure 3.3. RMSE differences for (a to i) snow depth and (j to r) SCF: (a and j) RASWE − 

Open-loop, (b and k) RASR − Open-loop, (c and l) RASRT − Open-loop, (d 

and m) RASRTS − Open-loop, (e and n) RASRTSP − Open-loop, (f and o) 

RASR − RASWE, (g and p) RASRT − RASR, (h and q) RASRTS − RASRT, and (i 

and r) RASRTSP − RASRTS. In the RA cases, the default update method was 

used. 

 

However, additional updates of snow temperature (RASRT) and soil temperature 

and water content (RASRTS) did not significantly improve the RA performance (see 

Figures 3.3c, 3.3d, 3.3g, and 3.3h). As shown in Kwon et al. [2015], CLM4 provides a 
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relatively accurate simulation of snow temperature. In addition, the ensemble spread of 

snow temperature was much smaller than that of other snow physical states, especially 

snow grain radius (not shown here). Therefore, the snow temperature uncertainty could 

not significantly contribute to the uncertainty of the simulated TB despite TB is highly and 

positively sensitive to snow temperature. As a result, the additional snow temperature 

update did not make a substantial difference in the RA performance between the RASRT 

and RASR cases. Meanwhile, the marginal improvement in the RASRTS case can be 

attributed to the fact that the effect of the underlying soil on microwave emission from 

the snowpack is insignificant over the region where snow depth is relatively deep and 

mostly overestimated by the model (see Figure 3.2a). 

In the RASRTSP case, we achieved noticeable improvement in the snow depth 

estimation in particular for the northeastern and western parts of Canada (see Figures 3.3e 

and 3.3i). This implies that the constant values of snow stickiness (0.2), x (‒1.23), and b′ 

(0.62) adopted in this study are not applicable to all continental grid cells and that the 

update of parameters in the DA system is a large-scale alternative where parameter 

optimization is difficult. Figure 3.4 shows the spatial distributions of the parameter 

ensemble mean updated in the coupled RA system. The figure shows that the parameter 

values were not significantly changed during the simulation period after they approached 

certain values for each grid cell.  
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Figure 3.4. Spatial distributions of the ensemble mean of the RTM parameters (i.e., snow 

stickiness in DMRT-ML and x and b' in the vegetation RTM) on 15 

December 2002, 1 and 15 January 2003, and 28 February 2003. 

 

2) SCF estimation 

In contrast to the snow depth estimation, the SCF bias of the open-loop run was 

very small for most of Canada while SCF was greatly overestimated or underestimated 

over the United States including Alaska (see Figure 3.2b). CLM4 estimates SCF from the 
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simulated snow depth and density using the snow cover parameterization developed by 

Niu and Yang [2007], which is based on monthly averaged snow depth and SCF and thus 

it may not be applicable to the simulation at a daily time scale [Swenson and Lawrence, 

2012]. Therefore, the large SCF bias in the United States may result from this snow cover 

parameterization because the snow depth bias was marginal for the same region (see 

Figure 3.2a). The SCF RMSE was almost zero for deep snowpack regions in northeastern 

North America (see Figure 3.2b), where snow depth was greatly overestimated (see 

Figure 3.2a) and SCF is saturated (i.e., 100% SCF). 

Overall, for many areas of the United States, the SCF estimation in RA was better 

than the open-loop run, although it was not as accurate for some regions including 

southwest Alaska (see Figures 3.3j to 3.3n). However, unlike the snow depth estimation, 

the improvement of the RA performance resulting from the simultaneous update was not 

that obvious (see Figures 3.3o to 3.3r). 

The results in Figure 3.3 show that RA is effective in improving the snow depth 

estimation for relatively deep snowpack regions and the SCF estimation for relatively 

shallow snowpack regions. Because SCF in the observation and model simulation was 

already saturated (i.e., SCF was almost 100%) for deep snowpack regions over Canada, 

the improvement of snow depth in RA did not affect the SCF estimation for these 

regions. As reported by previous DA studies using SCF observations [e.g., Rodell and 

Houser, 2004; Andreadis and Lettenmaier, 2006; Su et al., 2008; Zaitchik and Rodell, 

2009; De Lannoy et al., 2012; Zhang et al., 2014), SCF DA does not work for areas 

where SCF already approaches 100% because satellite SCF data cannot detect additional 

snow mass or snow depth variations when the ground is fully covered with snow. The 

results in this paper imply that RA can complement SCF DA as it provides more 

information about snow for deep snowpack regions.  
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3.4.2 Rule-based RA 

1) Snow depth estimation 

In the rule-based RA, as previously mentioned, we hypothesized that only when 

the sign of the correlation between the forecasted states/parameters and the predicted TB 

is the same as the sign of the sensitivity index, the TB difference will provide meaningful 

information for each of the priors. The sensitivity analysis results are shown in Figure 

3.5. TB is negatively sensitive to SWE, snow grain radius, and soil water content while it 

is positively sensitive to snow and soil temperature, snow stickiness, and b′ for both 18.7-

V and 36.5-V channels. The sensitivity of TB to x is positive for 18.7-V and negative for 

36.5-V. In the rule-based RA, the states and parameters were updated when the signs of 

their correlations with the prior TB coincided with those of the sensitivity indices. 

In the rule-based RA cases, the performance of the coupled RA system was also 

enhanced via the simultaneous update of states and parameters (see Figures 3.6a to 3.6i). 

The additional update of snow grain radius (RASR-R) greatly reduced the snow depth error 

in the central to southern parts of Canada (see Figure 3.6f). However, the effects of the 

updates of snow temperature (RASRT-R) and soil temperature and water content (RASRTS-

R) on the RA performance were insignificant (see Figures 3.6g and 3.6h). The snow depth 

RMSE largely diminished in the southern and western parts of Canada by additionally 

updating the RTM parameters (RASRTSP-R) (see Figure 3.6i).  

Compared to the default RA cases, snow depth estimates in the rule-based RA 

were more accurate in many areas of North America, especially northeastern Canada (see 

Figures 3.7a to 3.7e). However, the rule-based RA performed worse than the default RA 

in mid-latitudes of Canada, particularly in the RASWE-R case (see Figure 3.7a).  
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Figure 3.5. Sensitivity of brightness temperature to snow and soil physical properties 

(i.e., SWE, snow grain radius, snow temperature, soil temperature, and soil 

water content) and RTM parameters (i.e., snow stickiness in DMRT-ML and 

two empirical parameters (x and b′) in the vegetation RTM). Dimensionless 

sensitivity indices were calculated based on the method suggested by 

Lenhart et al. [2002]. 
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Figure 3.6. RMSE differences for (a to i) snow depth and (j to r) SCF: (a and j) RASWE-R 

− Open-loop, (b and k) RASR-R − Open-loop, (c and l) RASRT-R − Open-loop, 

(d and m) RASRTS-R − Open-loop, (e and n) RASRTSP-R − Open-loop, (f and o) 

RASR-R − RASWE-R, (g and p) RASRT-R − RASR-R, (h and q) RASRTS-R − 

RASRT-R, and (i and r) RASRTSP-R − RASRTS-R. In the RA cases, the rule-based 

update method was used. 
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Figure 3.7. The snow depth (a to e) and SCF (f to j) RMSE differences between the RA 

cases with a rule-based update and with default update. 
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The RA performance deteriorates in two possible cases: 1) the prior SWE (or 

snow depth) is positively correlated with the prior TB, and SWE (or snow depth) and TB 

are overestimated and underestimated, respectively, as described in Figure 3.8a, and 2) 

the prior SWE and TB show a negative correlation but both SWE (or snow depth) and TB 

are overestimated due to the effects of other factors, such as a greatly underestimated 

snow grain radius (see Figure 3.8b). Ideally the prior SWE (or snow depth) should have a 

negative correlation with the prior TB based on the sensitivity analysis results. However, a 

positive correlation between the prior SWE and TB can happen when the TB signal is 

dominated by snow density, when SWE (or snow depth) is negatively correlated with 

snow grain radius [Kwon et al., 2015], or when imprecise values of the RTM parameters 

are used. In the first possible case of degeneration (see Figure 3.8a), the RA system tries 

to raise TB and as a result SWE (or snow depth) is further overestimated as shown in 

Figure 3.3a because of the positive correlation between SWE and TB. This negative effect 

of RA can be moderated by two approaches, i.e., the simultaneous update of states and 

parameters (see Figures 3.3a to 3.3e) and the rule-based update (see Figure 3.7a). As we 

can see from Figure 3.7e, snow depth RMSE differences between the rule-based and 

default RA cases are reduced when all the model physical states of snow and soil and 

RTM parameters are simultaneously updated. 

In the second possible case of degradation (see Figure 3.8b), the RA system tries 

to lower TB and as a result SWE (or snow depth) is further overestimated. This may be 

the principal reason for the degraded performance of the rule-based RA in mid-latitudes 

of Canada as shown in Figure 3.6a. This problem was partly resolved by additionally 

updating snow grain radius (see Figure 3.6f) and parameters (see Figure 3.6i); however, 

RA still degraded the snow depth estimates compared to the open-loop run for the region 

(see Figure 3.6e).  



 76 

 

Figure 3.8. Degradation of the RA performance due to: (a) incorrect relationships 

between the prior SWE (or snow depth) and TB and (b) overestimation of 

both SWE (or snow depth) and TB with a negative correlation between them. 

 

2) SCF estimation 

Compared to the open-loop run, the rule-based RA improved the SCF estimates 

for many areas in the United States including Alaska (see Figure 3.6). Although the SCF 

estimation error of the RASWE-R case was larger than that of the open-loop run in the 
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coastal areas of northern Canada (see Figure 3.6j), the RA performance for those areas 

was reinforced by additionally updating snow grain size (see Figures 3.6k and 3.6o). 

However, like the default RA cases, the improvement of the SCF estimates by 

simultaneously updating states and parameters was not significant (see Figures 3.6o to 

3.6r). The rule-based RA outperformed the default RA over Alaska and western and 

eastern coastal areas of North America (see Figures 3.7f to 3.7j) but overall both the 

default and rule-based RA showed comparable performance in estimating SCF over the 

United States (see Figure 3.7j). 

 

3.4.3 Localization and adaptive inflation 

The results of the localization and inflation experiments are shown in Figure 3.9. 

The TB RMSE was calculated by comparing the results with AMSR-E TB observations. 

As shown in Figure 3.9, the rule-based RA was superior to the default RA with respect to 

TB estimations and the localization distance of 0.01 radians provided the smallest TB 

RMSE for both the default and rule-based RA. The localization distance (0.01 radians) 

obtained here is smaller than that from Zhang et al. [2014] (0.03 or 0.05 radians) using 

MODIS SCF observations. This can likely be explained by high spatial heterogeneity of 

various factors (i.e., snow depth, snow temperature, snow density, snow grain size, snow 

wetness, soil temperature, soil water content, and vegetation) influencing TB over snow-

covered regions. 

In the inflation experiments, the localization distance of 0.01 radians was used. 

Adaptive inflation further improved TB estimations for the default RA (see the solid red 

triangle in Figure 3.9) while the TB RMSE of the rule-based RA with inflation was almost 

the same as that without applying inflation (see the hollow red triangle in Figure 3.9).  
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Figure 3.9. The prior TB RMSE of the RA cases with localization distances of 0.01, 0.03, 

0.05, 0.07, 0.1, 0.15, 0.2, and 0.3 radians. The RMSE values were averaged 

over North America. The solid and hollow symbols represent the default and 

rule-based RA cases, respectively. The red triangle symbols denote the 

results of RA using the adaptive inflation and the localization distance of 

0.01 radians, which are plotted slightly displaced laterally from their 

original position for clearness. 

 

The RA performance in estimating snow depth was analyzed for snow classes and 

land covers (Tables 3.2 and 3.3). For all RA cases in Tables 3.2 and 3.3, the localization 

distance of 0.01 radians was used. In the RASRTSP/INF and RASRTSP-R/INF cases, adaptive 

inflation was additionally applied. Snow cover was classified into six classes (i.e., tundra, 

taiga, alpine, maritime, prairie, and ephemeral) as defined in Sturm et al. [1995] (see 

Figure 3.10a) and land cover was classified into five groups (i.e., bare soil, forest, shrub, 

grass, and crop) using CLM4 plant functional types (PFTs) (see Figure 3.10b). Tables 3.2 

and 3.3 exhibit that the rule-based RA outperforms the default RA in estimating snow 

depth and the rule-based RA without inflation (RASRTSP-R) provides the most improved 

snow depth estimates. Compared to the open-loop run, the default RA (RASRTSP) 
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degraded snow depth estimates for most snow classes and land covers, except for 

maritime snow class and crop land cover.  

 

 

Figure 3.10. Maps of (a) snow classes and (b) land cover types over North America. 

Snow cover was classified into six classes (1: tundra, 2: taiga, 3: maritime, 

4: ephemeral, 5: prairie, and 6: alpine) according to Sturm et al. [1995]. 

Land cover was classified into five groups (1: bare soil, 2: forest, 3: shrub, 

4: grass, and 5: crop) using CLM4 plant functional types (PFTs). 

Although the TB estimation in the default RA was enhanced by using adaptive 

inflation (see Figure 3.9), it did not ensure improved snow depth estimates (see the results 

of the RASRTSP/INF case in Tables 3.2 and 3.3). The use of inflation also degraded the 
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snow depth estimates in the rule-based RA (see the results of the RASRTSP-R/INF case in 

Tables 3.2 and 3.3). One possible reason is that the current inflation scheme in DART 

would not be able to consider the physical relationships between snow/soil states updated 

simultaneously in the RA system. As a result, inflation would result in the abnormal 

update of model states in this RA study. However, because adaptive inflation is a helpful 

method to improve the data assimilation performance, future RA studies need to address 

this issue for the proper use of the method. 

The rule-based RA without inflation (RASRTSP-R) was effective only for tundra and 

maritime but it degraded the snow depth estimates for other snow classes, in particular 

for taiga (see Table 3.2). The use of only one snowpack RTM may be one of possible 

reasons for the results because the existing snowpack RTMs show limited performance in 

estimating TB for different snow conditions [Tedesco and Kim, 2006]. Using multiple 

RTMs for snowpack TB, as suggested in Kwon et al. [2015], the coupled RA system 

would enhance the snow estimates for various snow types. The other plausible reason is 

the poor performance of our coupled RA system for forested areas (see Table 3.3). Table 

3.3 shows that compared to the open-loop run, the RASRTSP-R case enhanced the snow 

depth estimates for all land cover types, except for forest. As shown in Figure 3.10, most 

areas of the snow classes, where the RA system exhibited worse performance, overlap 

with forest areas. Significant improvement of the snow depth estimates in the rule-based 

RA (RASRTSP-R) was observed for bare soil (see Table 3.3 and Figure 3.11). Although the 

RASRTSP-R improved the snow depth estimates for shrub, grass, and crop land cover types, 

it was marginal as shown in Figure 3.11. We used a simple empirical equation to estimate 

the vegetation effect on TB at the TOA (see equation (1)). Although the empirical 

coefficients in the equation were updated in the RA system, it may not be enough to 

accurately represent the vegetation effect. The use of more sophisticated vegetation 
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RTMs, applicable to large scale, would further improve the RA performance for 

vegetated areas. 

 

Table 3.2. The snow depth RMSE of each case for snow classes as defined in Sturm et al. 

[1995]. The localization distance of 0.01 radians was used for all RA cases. 

Adaptive inflation was applied in the RASRTSP/INF and RASRTSP-R/INF 

cases. The percentage values in parentheses represent the relative 

improvement (negative values) or degradation (positive values) in the 

performance of the RA cases compared to the open-loop run. 

 RMSE (m) for snow classes 

Cases Tundra Taiga Maritime Ephemeral Prairie Alpine Total 

Open-loop 0.2383 0.1758 0.1521 0.0270 0.0448 0.1251 0.1708 

RASRTSP 0.2478 

(3.99%) 

0.1839 

(4.61%) 

0.1497    

(–1.58%) 

0.0402      

(48.89%) 

0.0466 

(4.02%) 

0.1288     

(2.96%) 

0.1769 

(3.57%) 

RASRTSP-R 0.2108     

(–11.54%) 

0.1883 

(7.11%) 

0.1493     

(–1.84%) 

0.0396     

(46.67%) 

0.0463 

(3.35%) 

0.1312 

(4.88%) 

01680   

(–1.64%) 

RASRTSP/INF 0.6372 

(167.39%) 

0.3635 

(106.77%) 

0.1719 

(13.02%) 

0.0403     

(49.26%) 

0.0538 

(20.09%) 

0.1730 

(38.29%) 

0.3795 

(122.19%) 

RASRTSP-

R/INF 

0.5499     

(130.76%) 

0.3861 

(119.62%) 

0.1669     

(9.73%) 

0.0394     

(45.93%) 

0.0518 

(15.63%) 

0.1918 

(53.32%) 

0.3651 

(113.76%) 

 

Table 3.3. Same as Table 3.2 but for land covers. 

 RMSE (m) for land covers 

Cases Bare soil Forest Shrub Grass Crop Total 

Open-loop 0.2100 0.1614 0.2211 0.1068 0.0474 0.1708 

RASRTSP 0.2142      

(2.00%) 

0.1692  

(4.83%) 

0.2294  

(3.75%) 

0.1092  

(2.25%) 

0.0470    

(–0.84%) 

0.1769 

(3.57%) 

RASRTSP-R 0.1817      

(–13.48%) 

0.1731  

(7.25%) 

0.2095      

(–5.25%) 

0.1050      

(–1.69%) 

0.0471    

(–0.63%) 

0.1680    

(–1.64%) 

RASRTSP/INF 0.5093  

(142.52%) 

0.3074  

(90.46%) 

0.5418  

(145.05%) 

0.2769 

(159.27%) 

0.0604  

(27.43%) 

0.3795 

(122.19%) 

RASRTSP-R/INF 0.4165      

(98.33%) 

0.3402  

(110.78%) 

0.4969      

(124.74%) 

0.2604      

(143.82%) 

0.0551  

(16.24%) 

0.3651 

(113.76%) 
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Figure 3.11. Time series of snow depth (in meters) for land covers: (a) bare soil, (b) 

forest, (c) shrub, (d) grass, and (e) crop. The localization distance of 0.01 

radians was used for the radiance assimilation (RA) cases. 

 

3.5 CONCLUSIONS 

In this study, we aimed to demonstrate the feasibility of the coupled RA system 

(i.e., coupled CLM4/DART/RTMs) to enhance snow estimation at the continental scale. 

To this end, two hypotheses were established: 1) the simultaneous update of model states 

and parameters can improve snow estimation by minimizing the effects of their errors on 
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the TB error; and 2) updating states and parameters based on a rule, the degradation of RA 

performance, which is attributed to incorrect relationships between the prior SWE (or 

snow depth) and TB, can be managed. AMSR-E TB at 18.7-V and 36.5-V were 

assimilated into the coupled RA system and the results were assessed using the CMC 

daily snow depth and MODIS SCF observations. In total, 11 experiments were conducted 

over North America for December 2002 to February 2003 and their performances were 

compared to each other. 

The results in this paper show that RA performance is improved by both the 

simultaneous update and rule-based update. The additional updates of snow grain radius 

and RTM parameters greatly improved the snow depth estimates over North America 

while the improvement by updating snow temperature, soil temperature, and soil water 

content was not significant. For both the default and rule-based RA cases, the additional 

updates of states and parameters could not obviously improve the SCF estimates.  

The rule-based RA was more effective in estimating snow depth than the default 

RA when only SWE related snow states were updated. Simultaneously updating all states 

and parameters, the degradation of the performance of both the default and rule-based RA 

was mitigated and eventually the default RA showed comparable performance to the rule-

based RA. This indicates that the updates of all states and parameters can reduce the TB 

errors related to them and consequently lead to considerable improvement of the 

relationship between SWE (or snow depth) and TB. The results also demonstrate that the 

parameter update in the DA system can be an alternative way of optimizing parameter 

values on a large scale. 

RA was effective in improving snow depth simulations for relatively deep 

snowpack regions, especially over northeastern Canada, where SCF observations could 

not provide additional information about snow mass or snow depth variations. This 
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implies that RA can complement SCF DA and thus a multi-sensor snow DA using TB and 

SCF could provide improved snow estimates at the continental (or larger) scale. This idea 

will be addressed in our future studies.  

The effects of the localization and inflation on the RA performance were 

additionally tested. The smallest TB RMSE was achieved using the localization distance 

of 0.01 radians for both the default and rule-based RA and the TB estimation of the 

default RA was further enhanced by applying adaptive inflation. The results show that the 

rule-based RA is superior to the default RA in estimating snow depth and the most 

improved performance is achieved by the rule-based RA without adaptive inflation. 

However, even in the best performance RA case, snow estimates were degenerated for 

some snow classes and land covers, particularly for taiga and forest, respectively. Our 

future studies will focus on addressing these issues by 1) using multiple RTMs for 

snowpack TB and 2) employing more refined vegetation RTMs.  
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CHAPTER 4: Improving the radiance assimilation performance in 

estimating snow water storage across snow and land cover types in 

North America3 

 

4.1 ABSTRACT 

Continental-scale snow radiance assimilation (RA) experiments are conducted in 

order to improve snow estimates across snow and land cover types in North America. In 

the experiments, the ensemble adjustment Kalman filter is applied and the Advanced 

Microwave Scanning Radiometer–Earth Observing System (AMSR-E) brightness 

temperature (TB) observations are assimilated into an RA system comprised of the 

Community Land Model version 4 (CLM4), radiative transfer models (RTMs), and the 

Data Assimilation Research Testbed (DART). The performance of two snowpack RTMs, 

the Dense Media Radiative Transfer–Multi Layers model (DMRT-ML) and the 

Microwave Emission Model for Layered Snowpacks (MEMLS), in improving snow 

depth estimates through RA is compared. The experimental results show that the 23.8 and 

18.7 GHz channels are the best and next-best performing frequency channels in the RA 

system. Continental-scale snow estimates are enhanced through RA by using these better-

performing frequency channels and by considering the vegetation single scattering albedo 

(ω). The contribution of TB of the vegetation canopy to TB at the top of the atmosphere is 

better represented by considering ω in the RA system, and improvements in the resulting 

snow depth are evident for the forest land cover type and the taiga and alpine snow 

classes, especially in MEMLS case. Compared to the open-loop run, the total snow water 

volume and snow cover area in North America are reduced in the RA cases. 

 

                                                 
3 This chapter was previously submitted to Journal of Hydrometeorology. 
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4.2 INTRODUCTION 

At the continental (or larger) scale, the physical properties of snow vary widely 

with local climate conditions (e.g., air temperature, precipitation, and wind speed). 

According to Sturm et al. [1995], seasonal snow cover can be classified into six classes 

(i.e., tundra, taiga, alpine, maritime, prairie, and ephemeral). While existing radiative 

transfer models (RTMs) do show different sensitivities to snowpack properties (such as 

snow depth, density, grain size, temperature, and wetness) and simulate significantly 

different TB, no single RTM has been shown to be able to accurately reproduce the 

observed TB for such a wide range of snow classes [Tedesco and Kim, 2006]. In an RA 

scheme, an RTM is an observational operator predicting TB; therefore, the quality of the 

assimilation results may strongly depend upon the RTM used [Tedesco and Kim, 2006; 

Durand et al., 2008] as well as the LSM. Through synthetic experiments, Kwon et al. 

[2015] showed that two snowpack RTMs, i.e., the Dense Media Radiative Transfer–Multi 

Layers model (DMRT-ML) [Picard et al. 2013] and the Microwave Emission Model for 

Layered Snowpacks (MEMLS) [Wiesmann and Mätzler, 1999] coupled with the 

Community Land Model version 4 (CLM4) [Oleson et al., 2010; Lawrence et al., 2011], 

have substantially different RA performance. 

Meanwhile, vegetation canopy masks the microwave emission from the 

underlying surface and adds its own emission [Foster et al., 1991; Chang et al., 1996; 

Pampaloni, 2004]. In this regard, snow estimates for vegetated areas using microwave 

radiance observations by both retrieval algorithms [e.g., Hall et al., 1982; Chang et al., 

1996] and radiance assimilation methods [e.g., Kwon et al., submitted] involve 

considerable uncertainties. In particular, the microwave TB exhibits a significantly lower 

sensitivity to snow in dense forest [Hallikainen and Jolma, 1992; Roy et al., 2012]. 

Therefore, precise estimates of the impact of the vegetation (i.e., vegetation emission and 
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transmission) on TB at the top of the atmosphere (TOA) are essential for applications of 

the RA method in vegetated areas. Without such estimates, the vegetation canopy could 

result in an inaccurate modeling of the relationship between TB and snow (i.e., snow 

water equivalent (SWE) or snow depth) and, in turn, snow estimates via RA would be 

degraded as presented in Kwon et al. [submitted]. 

Our objective in this study is to improve the performance of the snow RA system 

in estimating continental-scale snow water storage across snow and land cover types. To 

this end, we attempt to address the following research questions: (1) Which microwave 

frequency channels are most useful in improving snow estimates through RA? (2) Which 

of the two snowpack RTMs (i.e., DMRT-ML and MEMLS) performs better for different 

snow cover types at the continental scale? (3) Is vegetation single scattering albedo an 

important parameter for estimating the effect of vegetation on TB at the TOA and 

improving the RA performance in estimating snow? 

Section 4.3 describes the coupled radiance assimilation system used in this study. 

The design of the radiance assimilation experiments is explained in section 4.4. The 

results are presented and discussed in section 4.5 and conclusions are drawn in section 

4.6. 

 

4.3 COUPLED RADIANCE ASSIMILATION SYSTEM 

In the coupled RA system employed in this study, we use CLM4 as a land surface 

model (LSM) and RTMs as observational operators. DA is implemented by the Data 

Assimilation Research Testbed (DART) [Anderson et al., 2009], which is a community 

data assimilation system developed by the National Center for Atmospheric Research 

(NCAR) for ensemble-based DA. We employ this particular coupled RA system to 
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maintain continuity with our previous RA papers [i.e., Kwon et al., 2015; Kwon et al., 

submitted]. 

CLM4 [Oleson et al., 2010; Lawrence et al., 2011] simulates snow dynamics for 

up to five snow layers, depending on the total snow depth. CLM4 can simulate snow 

melt-refreeze cycles for each snow layer. It is also able to simulate snow densification by 

considering destructive and melting metamorphism and compaction by snow load. These 

make CLM4 suitable for this RA study. CLM4 estimates soil temperature for 15 soil 

layers, and it simulates hydrological processes over the top 10. 

Two snowpack RTMs, i.e., DMRT-ML and MEMLS are used in this study while 

Kwon et al. [submitted] used only DMRT-ML to calculate TB from the snowpack. 

DMRT-ML and MEMLS estimate TB of a layered snowpack based on different theories; 

DMRT-ML is based on the Dense Media Radiative Transfer (DMRT) theory [Tsang and 

Kong, 2001] while MEMLS is based on the six-flux model (see Wiesmann and Mätzler 

[1999] for more details). DMRT-ML involves a stickiness parameter which is related to 

the size of the scatterers and which must be optimized. However, continental-scale 

optimization of stickiness parameter is difficult and thus it is updated during assimilation 

as suggested by Kwon et al. [submitted]. The extinction coefficient in MEMLS is 

calculated based on the improved Born approximation [Mätzler, 1998]. Unlike DMRT-

ML and CLM4 which both use an effective grain radius for the grain size representation, 

MEMLS employs an exponential correlation length. Therefore, for MEMLS, simulated 

CLM4 snow grain radius is converted to the exponential correlation length using the 

conversion equation suggested in Kwon et al. [2015] and based on the work by Mätzler 

[2002] and Debye et al. [1957]:  
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where pex is the exponential correlation length (m), re is the effective grain radius (m), ρ 

is the snow density (kg m
-3

), and ρice is the ice density (=917 kg m
-3

). To calculate TB 

from the snowpack, both RTMs require snow inputs such as snow layer thickness, 

density, temperature, wetness, and grain radius, all of which are provided by CLM4 in the 

coupled RA system. The reflectivity of the underlying soil is calculated by the rough bare 

soil reflectivity model [Wegmüller and Mätzler, 1999] using the estimated soil 

temperature and soil water content from CLM4. 

TB at the TOA is calculated as implemented in Durand and Margulis [2007]. The 

effect of the atmosphere is estimated following Ulaby et al. [1981]. The vegetation 

optical depth (τ) and transmissivity (tc) are estimated using equation (4.2) [Jackson and 

Schmugge, 1991] and equation (4.3) [Schmugge and Jackson, 1992], respectively.  

 

 cos/' c

xwb                           (4.2) 

 

 )exp( ct                              (4.3) 

 

where λ is the wavelength (cm); b' and x are the empirical parameters, which depend 

upon the vegetation canopy type and are updated in the RA system; wc is the vegetation 

water content (kg m
-2

), calculated based on Paloscia and Pampaloni [1988] using the leaf 

area index (LAI); and θ is the incident angle. 

Among a variety of ensemble-based assimilation algorithms available in DART, 

we use the ensemble adjustment Kalman filter (EAKF) (see Anderson [2001] for more 
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detailed explanations of the EAKF), which is a deterministic ensemble square root filter 

[Tippett et al., 2003] and does not need randomly perturbed observations. Anderson 

[2001] reports that in the cases compared in the paper, the performance of the EAKF was 

much better than that of the traditional ensemble Kalman filter [EnKF; Evensen, 1994; 

Burgers et al., 1998], especially for a small ensemble size.  

 

4.4 EXPERIMENTAL DESIGN 

The experiments are designed to address our three research questions related to 

the microwave frequency channels, snowpack RTMs, and vegetation single scattering 

albedo. In all experimental cases (Table 4.1) including the open-loop run (without 

assimilation), CLM4 was run at 0.9˚ × 1.25˚ spatial resolution forced by the 40 randomly 

chosen ensemble members of the coupled DART/Community Atmospheric Model 

(CAM4) reanalysis [Raeder et al., 2012], which includes air temperature, atmospheric 

pressure, precipitation, humidity, wind speed, and downward short-wave radiation. The 

experiments were conducted for North America during December 2002 to February 2003. 

In all RA cases, the Advanced Microwave Scanning Radiometer–Earth Observing 

System (AMSR-E) TB observations were assimilated. 

The physical states and parameters updated during the assimilation include SWE, 

snow grain radius, snow temperature, soil temperature, soil water content, snow 

stickiness (in DMRT-ML), and two empirical parameters (x and b′ in equation (4.2)) of 

the vegetation RTM. The single scattering albedo was also updated in some experimental 

cases. As suggested in Zhang et al. [2014] and Kwon et al. [submitted], among the snow-

mass-related states in CLM4 (i.e., the mass of snow liquid water and ice (kg m
-2

), SWE 

(kg m
-2

), snow density (kg m
-3

), and snow depth (m)), only SWE was updated during the 

assimilation procedure to avoid excessive snow mass updating. Snow depth and the mass 



 91 

of snow liquid water and ice were adjusted according to their physical relationships with 

SWE. Snow density was not updated in the RA system because it is simply calculated 

from SWE and snow depth in CLM4. 

 

Table 4.1. Radiance assimilation (RA) experimental cases with respect to snowpack 

RTMs, frequency channels, and single scattering albedo. 

Experimental cases Snowpack RTM Frequency (GHz) Single scattering 

albedo (ω) 

D10 DMRT-ML 10.65 · 

D18 DMRT-ML 18.7 · 

D23 DMRT-ML 23.8 · 

D36 DMRT-ML 36.5 · 

D89 DMRT-ML 89.0 · 

M10 MEMLS 10.65 · 

M18 MEMLS 18.7 · 

M23 MEMLS 23.8 · 

M36 MEMLS 36.5 · 

M89 MEMLS 89.0 · 

D1823 DMRT-ML 18.7 and 23.8 · 

D1836 DMRT-ML 18.7 and 36.5 · 

M1823 MEMLS 18.7 and 23.8 · 

M1836 MEMLS 18.7 and 36.5 · 

D1823(ω) DMRT-ML 18.7 and 23.8 0.064 

D1836(ω) DMRT-ML 18.7 and 36.5 0.064 

M1823(ω) MEMLS 18.7 and 23.8 0.064 

M1836(ω) MEMLS 18.7 and 36.5 0.064 

D1823(ω_up) DMRT-ML 18.7 and 23.8 Updated 

D1836(ω_up) DMRT-ML 18.7 and 36.5 Updated 

M1823(ω_up) MEMLS 18.7 and 23.8 Updated 

M1836(ω_up) MEMLS 18.7 and 36.5 Updated 

 

Kwon et al. [submitted] demonstrated two approaches which are effective in 

improving the continental-scale snow estimates: (1) simultaneous updates of all model 

physical states and parameters involved in predicting TB; and (2) a rule-based approach in 

which the states and parameters are updated only when the signs of their correlations with 
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the prior TB coincide with those of the sensitivity indices. These approaches were 

simultaneously applied in the RA cases. It should be noted that the assimilation was not 

performed if any ensemble members within a grid cell predicted no snow. 

A localization distance parameter in DART restricts the effect of assimilated 

observations on model states of nearby grid cells [Anderson et al., 2009]. This mitigates 

the degradation of assimilation performance resulting from correlations between two 

uncorrelated variables due to sampling error [Anderson, 2007]. According to Kwon et al. 

[submitted], the localization distance of 0.01 radians was used in all RA experimental 

cases. 

The assimilation results were evaluated for each snow class and land cover type 

using the Canadian Meteorological Centre (CMC) daily snow depth data [Brasnett, 1999; 

Brown and Brasnett, 2010]. Based on Sturm et al. [1995], six snow classes (tundra, taiga, 

alpine, maritime, prairie, and ephemeral) were used (Figure 3.10a). Dominant land cover 

types (bare soil, forest, shrub, grass, and crop) in grid cells were determined using CLM4 

plant functional types (Figure 3.10b).  

 

4.4.1 Microwave frequency channels 

In this study, we assimilated the AMSR-E/Aqua Daily Global Quarter–Degree 

Gridded Brightness Temperatures data (NISDC-0302; http://nsidc.org/data/nsidc-0302) 

[Knowles et al., 2006] into the coupled RA system. Vertically (V) and horizontally (H) 

polarized TOA microwave radiances at 6 frequencies (i.e., 6.925, 10.65, 18.7, 23.8, 36.5, 

and 89.0 GHz) are observed by AMSR-E. In all RA cases, only vertically polarized TB 

observations were assimilated because horizontally polarized TB is significantly 

influenced by ice layers within the snowpack [Mätzler, 1987; Durand et al., 2008; Rees 

et al., 2010], which are not accurately represented in the five-layer snow model. 
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Previous snow RA studies mostly used passive microwave observations at 18.7 

and/or 36.5 GHz [e.g., Durand et al., 2009; Dechant and Moradkhani, 2011; Toure et al., 

2011; Bateni et al., 2015; Kwon et al., submitted]. However, through a synthetic test, 

Durand and Margulis [2006] suggested that all frequency channels provide valuable 

information for snowpack. In this paper, we compared the RA performance of the 

experimental cases (Table 4.1) using different AMSR-E frequency channels. Only 

nighttime observations were used, thereby avoiding error due to snow wetness. The 6.925 

GHz TB was excluded from the experiments due to the high potential for radio frequency 

interference over the United States [Njoku et al., 2005]. 

It has been reported that the total bias error of the AMSR-E sensor ranges from 

0.66 K at 100 K to 0.68 K at 250 K [Lobl, 2001]. However, the constructed AMSR-E TB 

data used in this study may have more error resulting from two sources (see 

http://nsidc.org/data/docs/daac/ae_l2a_tbs.gd.html#errorsource): (1) a mismatch between 

the construction and the ideal antenna pattern, and (2) random measurement error. In 

addition, the original AMSR-E TB data, which have 0.25˚ spatial resolution, were scaled 

up to the CLM4 grid (0.9˚ × 1.25˚) for computational efficiency; this may introduce 

additional error into the TB observations. Therefore, to consider these additional error 

sources, the observation error was set to 2 K, as assumed by Durand and Margulis 

[2007]. However, quantification of the AMSR-E TB observational error needs to be 

further investigated. 

 

4.4.2 Snowpack radiative transfer models 

We employed two snowpack RTMs (DMRT-ML and MEMLS) to estimate the 

snowpack TB. Due to the different TB sensitivities of DMRT-ML and MEMLS to the 

physical properties of snow and underlying soil, the correlations between the SWE error 
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(simulation minus observation) and TB error produced by coupled CLM4/DMRT-ML and 

CLM4/MEMLS also exhibit considerable differences [Kwon et al., 2015] as shown in 

Figure 4.1. More grid cells with higher positive correlations are observed in the 

CLM4/DMRT-ML results (Figure 4.1a) while those with higher negative correlations are 

found in the CLM4/MEMLS results (Figure 4.1b). This is consistent with the synthetic 

experimental results of Kwon et al. [2015], in which CLM4/DMRT-ML and 

CLM4/MEMLS were apt to yield more positive and negative correlations, respectively, 

for both shallow and deep snowpack conditions. Furthermore, the two coupled models 

estimate correlations of the opposite sign for some locations (Figures 4.1c and 4.1d).  

RA using ensemble Kalman-based data assimilation methods assumes that the 

SWE error is correlated with the TB error [Kwon et al., 2015]. Therefore, two coupled 

models (CLM4/DMRT-ML and CLM4/MEMLS) may show varying RA performance for 

different snow cover types. Kwon et al. [submitted] showed that the RA system using 

DMRT-ML significantly improves the snow depth estimates for the tundra and maritime 

snow classes. Here, we added MEMLS to the RA system and compared the RA 

performance using DMRT-ML and MEMLS for various snow and land cover types (see 

Table 4.1 for the experimental cases). 

 

4.4.3 Vegetation single scattering albedo 

The most commonly used vegetation RTM is the τ–ω model [Mo et al., 1982], 

which is a simplified approach to model the vegetation effect on TB. Two parameters, 

namely the vegetation optical depth (τ) and the single scattering albedo (ω), are involved 

in the model. The single scattering albedo parameterizes all processes within the 

vegetation canopy layer such as the absorption and scattering effects [Kurum et al., 

2012]. In many cases, ω is neglected [e.g., Kruopis et al., 1999; Langlois et al., 2011] 
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because previous studies have reported that it is generally less than 0.1 [Pampaloni and 

Paloscia, 1986; Grant et al., 2008; Roy et al., 2012]. 

 

  

Figure 4.1. Spatial distribution of the correlations between the SWE error and TB error in 

February 2003 (where error = simulation – observation). The SWE error is 

calculated using the SWE estimates obtained by Reichle et al. [2011] from 

the CMC snow depth and climatological snow densities suggested by Sturm 

et al. [2010]. The TB error is estimated using the AMSR-E TB observations 

at 18.7 and 36.5 GHz vertical (V) and horizontal (H) polarization channels. 

 

Our coupled RA system, which uses the approach of Durand and Margulis 

[2007], initially neglects ω in its estimate of TB at the TOA. However, this assumption of 

ω = 0 results in an overestimation of the microwave emission of the vegetation canopy 

[Ferrazzoli et al., 2002]. Therefore, the contribution of ω was additionally considered in 

representing TB as follows: 

 

      aBacccsnBccTOAB TtTtVTVtT ,,, )(  1111             (4.4) 
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where TB,TOA is the brightness temperature at the TOA (K); tc and ta are the vegetation and 

atmospheric transmissivity, respectively; Vc is the vegetation fraction within a grid cell; 

TB,sn is the brightness temperature from the snowpack (K), which is estimated by DMRT-

ML or MEMLS and includes the effect of the underlying soil; Tc is the vegetation 

physical temperature (K); TB,a is the atmospheric brightness temperature (K); TB,BC is the 

boundary condition TB for snowpack RTMs to model TB,sn; and TB,sp is the space 

brightness temperature (=2.7 K).  

Firstly, the improvement of the RA performance by considering ω was tested 

using a constant value of ω=0.064 as suggested in Roy et al. [2012] (see the D1823(ω), 

D1836(ω), M1823(ω), and M1836(ω) cases in Table 4.1). However, ω value depends on 

vegetation type, frequency, and polarization [Langlois et al., 2011]. Although Roy et al., 

[2012] suggested that ω is mostly frequency- and polarization-independent for coarse-

scale observations, it is still influenced by vegetation properties. Yet, no measurements of 

ω are available at the continental scale and thus an optimization procedure for ω is 

required. Several studies [e.g., Paloscia, 1995; Njoku and Li, 1999; Pellarin et al., 2006; 

Grant et al., 2008; Roy et al., 2012] have been published on the optimization of ω values 

for different vegetation types, but they are not in agreement. This is attributed to the fact 

that surface parameterizations (e.g., snow and/or soil), data sets, and assumptions can 

influence the optimization results [Roy et al., 2012; Pellarin et al., 2006]. Fortunately, 

however, most of the ω values suggested by these studies are within the range of 0.05 to 

0.1. Therefore, in the D1823(ω_up), D1836(ω_up), M1823(ω_up), and M1836(ω_up) 

cases (Table 4.1), ω was updated in the RA system using the range of 0.05 to 0.1. Based 

on the sensitivity analysis (not shown here), TB at the TOA is negatively sensitive to ω; 
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that is, an increase in ω leads to a decrease in TB at the TOA. Using the rule-based 

approach suggested by Kwon et al. [submitted], the update of ω was performed only if 

the correlation between the prior TB and ω was negative.  

 

4.5 RESULTS AND DISCUSSION 

4.5.1 Performance of the RA system using AMSR-E frequencies and snowpack RTMs 

The TB observation at each AMSR-E frequency channel (10.65, 18.7, 23.8, 36.5, 

and 89.0 GHz vertical polarization) was separately assimilated into the RA system and 

the resulting snow depth root mean square error (RMSE) of the RA experimental cases 

using DMRT-ML and MEMLS for North America are shown in Figure 4.2. Among the 

five frequency channels assimilated, only the 18.7 and 23.8 GHz channels led to an 

overall improvement in snow depth estimates in both DMRT-ML and MEMLS cases. 

The DMRT-ML cases (D18 and D23) slightly outperformed the MEMLS cases (M18 and 

M23). Compared to the open-loop run without assimilation (the horizontal dotted line in 

Figure 4.2), the performance of the RA system was marginally improved in the D36 case, 

whereas it was degraded in the M36 case. This is at least partly due to the different 

saturation depth of the 36.5 GHz signal in DMRT-ML and MEMLS. Figure 4.3 shows 

that the sensitivity of the 36.5 GHz TB to snow depth variation is higher in MEMLS than 

in DMRT-ML and, as a result, the 36.5 GHz signal is saturated for a shallower snowpack 

in MEMLS. It should also be noted in Figure 4.3 that for both DMRT-ML and MEMLS, 

the 10.65 GHz TB is largely insensitive to snow depth while the 89.0 GHz TB is saturated 

for a very shallow snow. This might explain the poor performance of the RA cases using 

the 10.65 or 89.0 GHz channels (Figure 4.2). 
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Figure 4.2. The snow depth RMSE (m) in the radiance assimilation (RA) experimental 

cases, using different snowpack RTMs (DMRT-ML and MEMLS) and 

assimilating different AMSR-E frequency channels, for North America. The 

horizontal dotted line represents the RMSE of the open-loop run (without 

assimilation). 

 

Meanwhile, the results obtained here contradict the synthetic experiment results 

of Durand and Margulis [2006] in which the 10.65 and 36.5 GHz channels contributed 

more than the 18.7 and 23.8 GHz channels in improving the snow estimates in their RA 

system. There are three potential reasons for our different results. First, RA methods 

applied in the real world might produce different results than when used in synthetic 

experiments. Second, different results could be due to differences among RA schemes in 

terms of LSM, RTM, updated states/parameters during the assimilation, or assimilation 

methods employed (e.g., EnKF and KAKF). Finally, a rule-based approach was applied 

in our RA experiments but was not used by Durand and Margulis [2006]. The use of 

rule-based approach can avoid improper updates of states and parameters resulting from 

their false correlations with the prior TB [Kwon et al., submitted]. This approach probably 

influenced the relative contribution of different frequency channels to the RA 

performance. 
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Figure 4.3. Brightness temperature (TB) at 10.65, 18.7, 23.8, 36.5, and 89 GHz vertical 

polarization channels estimated by (a) DMRT-ML and (b) MEMLS with 

varying snow depth (0.1 to 3 m). Other snow and soil physical properties 

were set as follows: snow grain radius=350 µm, snow temperature=270 K, 

snow density=300 kg m
-3

, snow wetness=0 m
3
 m

-3
, soil temperature=270 K, 

and soil water content=0.1 m
3
 m

-3
. The snow stickiness in DMRT-ML was 

set to 0.2 and the exponential correlation length (pex) for MEMLS was 

calculated using equation (1). 

We additionally analyzed the effect of assimilating two frequency channels 

simultaneously on the RA performance in estimating snow depth (Figure 4.2). Because 
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the 23.8 and 18.7 GHz channels were the best and next-best performing frequency 

channels, respectively, these two were assimilated in the D1823 and M1823 cases. For 

comparison purposes, TB observations at 18.7 and 36.5 GHz channels were also 

simultaneously assimilated in the D1836 and M1836 cases because these two channels 

have been frequently used in snow RA systems as well as in snow retrieval algorithms. 

As shown in Figure 4.2, except for the D1836 case, the assimilation of two 

frequency channels improved the overall performance of the RA system as compared to 

the separate use of each frequency channel. The D1836 case performed better than D36 

but worse than D18. It should be noted that compared to the D1836 and M1836 cases, 

greatly improved estimates of snow depth were obtained by assimilating the two best 

performing frequency channels, i.e., 18.7 and 23.8 GHz. The improvement of the snow 

estimates by the RA system using multiple frequency channels was more obvious in 

MEMLS cases. When two frequency channels were simultaneously assimilated, the 

performance of MEMLS cases (M1823 and M1836) was superior to that of DMRT-ML 

cases (D1823 ad D1836) even though MEMLS cases showed worse performance than 

DMRT-ML cases for a single frequency channel (Figure 4.2).  

In general, without considering the vegetation single scattering albedo (ω), 

DMRT-ML cases produced better estimates of snow than MEMLS cases for the taiga and 

alpine snow classes while MEMLS cases were more effective for tundra (Figure 4.4). For 

the maritime, ephemeral, and prairie snow classes, DMRT-ML and MEMLS cases 

showed comparable performance. Compared to the open-loop run, however, DMRT-ML 

and MEMLS cases only improved snow depth estimates for the tundra and maritime 

snow classes. While the snow depth RMSE of the open-loop run for the ephemeral and 

prairie snow classes was already very small and RA marginally increased the RMSE, the 

degradation of the snow depth estimates by RA was considerable for the taiga and alpine 
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snow classes. The poor performance of the RA system for the taiga and alpine snow 

classes could be due to the effect of vegetation (especially forest) on TB estimations. The 

difficulty of characterizing snowpack under the vegetation canopy using microwave 

radiance observations has been reported by many previous studies [e.g., Hallikainen and 

Jolma, 1992; Chang et al., 1996; Foster et al., 2005]. Figure 4.5 shows that regardless of 

the snowpack RTMs and microwave frequency channels, the RA system could not 

improve the snow depth estimates for forest land cover, the dominant land cover type for 

the taiga and alpine snow classes (Figure 3.10). This implies that the effect of the 

vegetation canopy on TB at the TOA was not accurately represented in our current RA 

system. Further improvement of the performance of the RA system for vegetated areas by 

introducing ω is discussed in the next section.  

 

4.5.2 The impact of the vegetation single scattering albedo (ω) on the RA performance 

To analyze the effect of ω on the estimation of TB emitted by vegetation and on 

the performance of the RA system, two approaches were compared: (1) the use of the 

constant ω value (=0.064) obtained in Roy et al. [2012] and (2) the use of an ω updated 

during the assimilation. The experimental results are presented in Figures 4.6, 4.7 and 

4.8. 
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Figure 4.4. Same as Figure 4.2 but for snow classes as defined in Sturm et al. (1995): (a) 

tundra, (b) taiga, (c) maritime, (d) ephemeral, (e) prairie, and (f) alpine. 
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Figure 4.5. Same as Figure 4.2 but for land cover types: (a) bare soil, (b) forest, (c) 

shrub, (d) grass, and (e) crop. 
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By considering the constant ω, the overall snow depth RMSE for North America 

was reduced (Figure 4.6) and improved snow depth estimates were observed for all 

vegetated areas except crop land cover (Figure 4.8). The most considerable improvement 

was achieved for forest land cover (Figure 4.8) and accordingly the snow estimates for 

the taiga and alpine snow classes were also enhanced compared to the RA cases 

neglecting ω (Figure 4.7). Improvements in performance resulting from the use of ω were 

more noticeable in MEMLS cases (M1823(ω) and M1836(ω)) than in DMRT-ML cases 

(D1823(ω) and D1836(ω)), especially for the forest land cover type and the taiga snow 

class (Figures 4.7 and 4.8). The overall performance of the DMRT-ML case (D1823(ω)) 

was worse than the MEMLS case (M1823(ω)) (Figure 4.6). However, the D1823(ω) case 

yielded better snow depth estimates than the open-loop run for all land cover types, 

whereas the M1823(ω) case degraded the estimates for crop land cover (Figure 4.8). The 

performance of the cases assimilating the 18.7 and 36.5 GHz channels was slightly better 

than that of the cases assimilating the 18.7 and 23.8 GHz channels for crop land cover 

(Figure 4.8e). This is due to the fact that the 36.5 GHz channel exhibited better 

performance in estimating snow depth than the 23.8 GHz channel for this land cover type 

(Figure 4.5e). Our RA experimental results show that substantial improvements to snow 

estimates made through RA are achieved by taking ω into account even when the ω value 

is less than 0.1. This suggests that ω should be considered in representing the effect of 

vegetation on TB at the TOA from the RA perspective. 

Figure 4.9 shows that the vegetation transmissivity estimated in the RA 

experimental cases which neglect ω (D1823 and M1823) ranges from 0.4 to 0.6 for 

forested areas. The saturation levels of the vegetation transmissivity obtained by Langlois 

et al. [2011] for the Canadian boreal forest are 0.51 and 0.55 for the 19 GHz-V and 19 

GHz-H channels, respectively, and 0.53 for both the 37 GHz-V and 37 GHz-H channels. 
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Roy et al. [2012] suggested that the vegetation transmissivities for dense boreal forests 

are 0.69, 0.62, 0.497, and 0.423 for 6.9, 10.7, 18.7, and 36.5 GHz channels, respectively. 

Based on the values suggested in previous studies, the range of vegetation transmissivity 

we obtained for forest land cover is reasonable.  

However, in the D1823 and M1823 cases, more than 70% of TB at the TOA 

(TB,TOA) was contributed by TB emission from the vegetation canopy (TB,v) in areas 

dominated by forest land cover (Figures 4.10a and 4.10b). Compared to the results by 

Roy et al. [2012] in which TB,v constituted about 46% and 50% of TB,TOA at 18.7 and 36.5 

GHz-V, respectively, the contribution of TB,v was overestimated in our experiments by 

neglecting ω. By considering ω in the D1823(ω) and M1823(ω) cases, more reasonable 

estimates of the vegetation contribution were obtained (Figures 4.10c and 4.10d). A 

better estimate of the TB,v contribution was observed in the MEMLS case than in the 

DMRT-ML case (Figure 4.10). This could explain why the reduction in the snow depth 

RMSE associated with ω was greater in MEMLS cases than in DMRT-ML cases for 

forest land cover (Figure 4.8b).  
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Figure 4.6. The snow depth RMSE (m) in the radiance assimilation (RA) experimental 

cases using different snowpack RTMs (DMRT-ML and MEMLS) and 

assimilating two frequency channels simultaneously (i.e., 18.7 and 23.8 

GHz or 18.7 and 36.5 GHz) for North America. The vegetation single 

scattering albedo (ω) was neglected (in the D1823, D1836, M1823 and 

M1836 cases), was set to 0.064 (in the D1823(ω), D1836(ω), M1823(ω), 

and M1836(ω) cases), or was updated during the assimilation (in the 

D1823(ω_up), D1836(ω_up), M1823(ω_up), and M1836(ω_up) cases). The 

horizontal dotted line represents the RMSE of the open-loop run (without 

assimilation). 

 

Updating ω during the assimilation in the RA system did not improve the RA 

performance beyond what was already achieved using a constant ω (Figures 4.6, 4.7 and 

4.8). Rather, the snow depth RMSE slightly increased in the D1823(ω_up) and 

M1823(ω_up) cases. Nonetheless, the performance of the RA cases using an updated ω 

was still superior to that of the cases neglecting ω.  
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Figure 4.7. Same as Figure 4.6 but for snow classes as defined in Sturm et al. (1995): (a) 

tundra, (b) taiga, (c) maritime, (d) ephemeral, (e) prairie, and (f) alpine. 
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Figure 4.8. Same as Figure 4.6 but for land cover types: (a) bare soil, (b) forest, (c) 

shrub, (d) grass, and (e) crop. 
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Figure 4.9. The estimated (ensemble mean) vegetation transmissivity in the (a) D1823 

and (b) M1823 cases. The values were averaged over two frequency 

channels (18.7 and 23.8 GHz vertical polarizations) during the assimilation 

period. 

 

 

Figure 4.10. The ratio of the estimated (ensemble mean) TB,v (TB emitted by the 

vegetation canopy) to the estimated (ensemble mean) TB,TOA (TB at the top 

of the atmosphere) in the cases neglecting ω ((a) D1823 and (b) M1823) and 

in the cases considering ω ((c) D1823(ω) and (d) M1823(ω)). The values 

were averaged over two frequency channels (18.7 and 23.8 GHz vertical 

polarizations) during the assimilation period. 
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4.5.3 Snow water volume and snow cover area in North America 

Snow water volume was calculated by multiplying the estimated (ensemble mean) 

SWE by grid area and summing the result over North America (Figure 4.11a). Compared 

to the open-loop run, the snow water volume was reduced in the RA cases throughout the 

assimilation period (i.e., the snow accumulation season). The difference in the snow 

water volume between the RA cases and open-loop run increased with time and 

approached 110 and 132 km
3
 for the D1823(ω) and M1823(ω) cases, respectively, by the 

end of the assimilation period. This represented 7.8 and 9.5% of the snow water volume 

from the open-loop run, respectively. 

In CLM4, snow cover fraction (SCF) is a diagnostic variable and is estimated 

from snow density and depth using the snow cover parameterization suggested by Niu 

and Yang [2007]. The ensemble mean snow cover area in North America was calculated 

from SCF estimated by CLM4 (Figure 4.11b). Compared to the open-loop run, the snow 

cover area also decreased in the RA cases but the magnitude of the decrease was very 

small. The maximum difference in the snow cover area between the RA cases and open-

loop run was 68,969 km
2
 for the D1823(ω) case and 122,998 km

2
 for the M1823(ω) case, 

corresponding to 0.5 and 0.8% of the snow cover area from the open-loop run, 

respectively. The insignificant changes in the snow cover area through RA may be 

attributed to the fact that RA was primarily effective in improving snow depth (and SWE) 

estimates for relatively deep snowpack regions where SCF was already saturated (i.e., 

100% SCF). 
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Figure 4.11. The estimated (ensemble mean) (a) snow water volume (10
3
 km

3
) and (b) 

snow cover area (10
6
 km

2
) in North America. 

 

4.6 CONCLUSIONS 

In this study, three research questions related to microwave frequency channels, 

snowpack RTMs, and vegetation single scattering albedo (ω) were addressed for the 

purpose of improving the snow RA performance across snow classes and land cover 

types in North America. Our coupled RA system employed CLM4 (for snow modeling), 

RTMs (for TB estimates), and DART (for ensemble-based data assimilation). Two 
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different snowpack RTMs (DMRT-ML and MEMLS) were compared in terms of their 

relative performance in improving snow depth estimates through RA. RA experiments 

were conducted during the snow accumulation season (December 2002 to February 2003) 

by assimilating AMSR-E TB observations using the EAKF. The experimental results were 

assessed for six snow classes (tundra, taiga, alpine, maritime, prairie, and ephemeral) and 

five land cover types (bare soil, forest, shrub, grass, and crop) using the CMC snow depth 

data. 

The results showed that the 23.8 and 18.7 GHz channels are the best and next-best 

performing frequency channels, respectively, in our RA system. Due to microwave signal 

saturation for relatively shallow snow depth, higher frequency channels (i.e., 36.5 and 

89.0 GHz) performed worse than the 18.7 and 23.8 GHz channels. The poor performance 

of the 10.65 GHz channel was attributed to its low sensitivity to snow depth in the 

snowpack RTMs used in this study. We obtained a significant improvement in snow 

depth estimates, especially in MEMLS cases, by assimilating the two best performing 

frequency channels (18.7 and 23.8 GHz). 

By introducing ω, the contribution of vegetation TB emission (TB,v) to TB at the 

TOA (TB,TOA) was more reasonably represented in the RA system. Consequently, 

substantial improvements in the RA performance were achieved for vegetated areas, in 

particular for the forest land cover type and the taiga and alpine snow classes. Although 

we could not further improve the RA performance by updating ω during the assimilation, 

the results suggested that from the RA perspective, ω is an essential factor in the RA 

system for characterizing snow under the vegetation canopy. By establishing the ω values 

for various land cover types (or vegetation types), the performance of snow RA will be 

further enhanced. 
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When ω was neglected, the DMRT-ML cases were superior to the MEMLS cases 

for the taiga and alpine snow classes while the MEMLS cases produced better snow 

estimates for the tundra snow class. When ω was considered, however, improvement of 

the RA performance was more noticeable in the MEMLS cases than in the DMRT-ML 

cases, and the MEMLS cases outperformed the DMRT-ML cases for the taiga snow class 

as well as for the tundra snow class. 

RA tended to decrease the total snow water volume and snow cover area in North 

America compared to the open-loop run. These changes in snow estimates will alter 

modeled energy fluxes and hydrological cycles through feedback mechanisms such as the 

snow albedo-temperature feedback and soil moisture-precipitation feedback, further 

affecting seasonal hydroclimatic predictions [e.g., Lin et al., 2015]. 

This study demonstrated that continental-scale snow estimates can be improved 

through RA by using the better-performing frequency channels (i.e., 18.7 and 23.8 GHz) 

and by considering ω. However, we focused on limited spatial (North America) and 

temporal scales (single snow accumulation season). Our RA system needs to be further 

evaluated at the global scale over multi-year snow seasons. This will be our aim in future 

studies. 
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CHAPTER 5: Conclusions and future perspective 

 

This dissertation aimed to develop an advanced RA system to improve snow 

water storage estimates at the continental scale. The developed RA system employs 

CLM4 as a land surface model, DMRT-ML and MEMLS as snowpack radiative transfer 

models (RTMs), and DART for ensemble-based data assimilation. Four research 

questions have been addressed in this dissertation.  

Is the RA method applicable to continental-scale snow water storage estimations? 

In order to answer this first question, the following three chapters were organized to 

address the other three questions. Chapter 2 tried to answer the second research question, 

i.e., Which error characteristics of estimated snow physical properties and TB impede 

continental-scale applications of the RA method? The errors of two coupled land surface–

radiative transfer models, i.e., CLM4/DMRT-ML and CLM4/MEMLS, were 

characterized by evaluating the CLM4 snowpack state simulations, by assessing the 

RTMs performance in simulating TB, and by analyzing the correlations between SWE 

error and TB error from the RA perspective. The error characterizations were carried out 

at point scale and mesoscale using in situ measurements and synthetic experiments were 

additionally conducted for shallow and deep snowpack conditions. The results showed 

that the magnitude of the snow grain radius error and its relationship to the SWE error 

significantly affect the correlations between the SWE error and the TB error. The results 

also exhibited that errors of all physical properties of soil and snow required to estimate 

TB have substantial impacts on the correlations between the SWE error and the TB error 

and subsequent RA performance. Chapter 2 suggests that (a) in addition to SWE (snow 

depth and density), all other related physical properties should be properly updated in the 

RA system to minimize errors related to them; and (b) a rule-based approach is required 
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to avoid the degradation of the RA performance due to incorrect relationships between 

the prior SWE (or snow depth) and TB. 

Based on the results and discussions in Chapter 2, Chapter 3 addressed the third 

research question “Can the effect of these error sources be mitigated in the RA system?” 

It was hypothesized that the continental-scale RA performance in estimating snow water 

storage can be improved by simultaneously updating all model physical states and 

parameters determining TB using a rule-based approach, in which prior estimates were 

updated depending on their correlations with a prior TB. This hypothesis has been tested 

through analysis of results from a series of RA experiments, which assimilated AMSR-E 

TB observations at 18.7 and 36.5 GHz vertical polarizations using the ensemble 

adjustment Kalman filter. The experimental results showed that the continental-scale 

snow estimates are improved by applying the hypothesis. However, the results also 

suggested that the RA system needs to be further refined to improve snow estimates for 

vegetated areas.  

By overcoming the limitations of the RA system discussed in Chapter 3, Chapter 

4 answered the fourth research question (i.e., How to improve the performance of the RA 

system in characterizing snow under the vegetation canopy?). The results showed that the 

23.8 and 18.7 GHz channels are the best and next-best performing frequency channels 

and a significant improvement in snow depth estimates was obtained by assimilating 

these two frequency channels into the RA system. The contribution of the vegetation 

canopy to TB at the TOA was better represented by considering the vegetation single 

scattering albedo (ω) and consequently the performance of the RA system was 

considerably improved for the forest land cover types and the taiga and alpine snow 

classes. 
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After having answered the second through fourth questions, the answer to the first 

research question becomes an obvious “yes”. Indeed, this dissertation demonstrated that 

the performance of the RA system in estimating snow depth over North America is 

enhanced by simultaneously updating model states and parameters involved in simulating 

TB based on the rule, by using the best-performing frequency channels (18.7 and 23.8 

GHz), and by considering ω (Figure 5.1a). Especially, the RA system performed much 

better than the open-loop run for areas without vegetation cover (Figure 5.1b). The snow 

depth estimates by RA were also enhanced for forested areas (Figure 5.1c) by better 

representing the vegetation contribution to TB at the TOA.  

 

 

Figure 5.1. The improvement of the RA performance in estimating snow depth for (a) 

North America, (b) bare soil land cover, and (c) forest land cover by 

simultaneously updating all model physical states and parameters 

determining TB based on a rule (RArule), by assimilating the best-performing 

frequency channels, i.e., 18.7 and 23.8 GHz (RA1823), and by considering 

the vegetation single scattering albedo (RA1823(ω)).  
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Throughout the dissertation, we have learned that the improvement of snow 

estimates is not guaranteed by just assimilating microwave radiance data into the RA 

system. As shown in Chapters 2, 3, and 4, we should identify limitations of the RA 

method and attempt to resolve them for continental-scale and/or global-scale snow 

estimates. Although this dissertation made significant progress in using microwave 

radiance data to characterize the continental-scale snow water storage, several remaining 

issues still need to be resolved.  

First, RTM parameters should be established for snow classes and vegetation 

types found in the continental domain. Although this dissertation demonstrated that the 

update of parameters in the RA system can be an alternative for continental-scale 

optimizations of parameters, this approach is suboptimal. If we can have established 

parameter values for each snow class and vegetation type, further improvement of the RA 

performance will be achieved. However, this work requires extensive data sets including 

in situ snowpit, TB, and vegetation measurements.  

Second, the CLM4 snow layering scheme may be an additional uncertainty source 

for degrading the performance of the current RA system. The importance of snowpack 

stratigraphy in TB predictions has been emphasized in many studies [e.g., Boyarskii and 

Tikhonov, 2000; Rosenfeld and Grody, 2000; Andreadis et al., 2008; Durand et al., 2008, 

2011; Andreadis and Lettenmaier, 2012]. Microwave emissions are strongly modulated 

by snow layer properties, especially when the snowpack has significantly different 

dielectric properties between neighboring layers [Colbeck, 1991; Rees et al., 2010]. 

Permittivity of a dielectric medium determines how much electric charge can be 

transmitted by the medium; therefore, the dielectric permittivity of snow is a main 

parameter affecting microwave radiation scattering and absorption by snowpack 

[Mätzler, 1996]. Permittivity differences between adjacent snow and ice layers increase 
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the reflectivity of the interface [Wiesmann and Mätzler, 1999]; thus, the presence of ice 

layers within a snowpack has a significant effect on TB [Durand et al., 2008]. In 

particular, as shown in Figure 5.2, horizontally polarized brightness temperatures are 

more sensitive to ice layer properties than vertical channels [Mätzler, 1987; Durand et 

al., 2008; Rees et al., 2010] and the uncertainty of ice-layer density is the most critical 

error source in TB predictions at horizontal polarization [Durand et al., 2008]. It has been 

demonstrated that at the point-scale, assimilating both vertical and horizontal channels 

provides significant improvement in estimating snowpack characteristics as compared to 

the use of only vertical channels [Toure et al., 2011]. Therefore, representing ice layers in 

LSM may improve large-scale RA as well.  

In CLM4 snow physics, ice layers are not explicitly created; however, the model 

implicitly represents ice layers by the refrozen liquid water content of each snow layer. In 

addition, because the snow layering scheme in the current CLM4 combines or subdivides 

snow layers according to the prescribed minimum and maximum layer thickness, the 

lower snow layers are always thicker than the upper layers. Furthermore, since the 

maximum number of snow layers is limited to five, the model cannot create thin ice 

layers within the snowpack. The effect of thin ice layers with higher density on 

microwave propagation within the snowpack may be different from that of thick layers 

with lower density resulting from layer-averaging. The improvement of the CLM4 snow 

layering scheme for ice layer representation will further improve the RA performance.  
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Figure 5.2. TB estimated by DMRT-ML for four- and five-layered snowpack with and 

without ice layer.  

 

Third, snow intercepted by the vegetation canopy may be an additional 

uncertainty source of the current RA system. Boreal forests, which cover approximately 

15% of the terrestrial land area [Pomeroy and Dion, 1996], are the largest terrestrial 

biome in North America [Girard et al., 2008]. These forests are primarily composed of 

evergreen coniferous tree species that intercept and retain snowfall during winter 

[Pomeroy and Dion, 1996; Lundberg et al., 2004]. Bunnell et al. [1985] reported that 

intercepted snow by the coniferous canopy approaches 30 mm SWE. According to 

Lundberg and Halldin [2001], snow accumulation in forests is reduced by up to 40% 

compared with open areas due to interception and sublimation, which are considerable 

parts of the winter water budget. Based on a three-year field experiment on mountain 

maritime climates, Storck et al. [2002] reported that approximately 60% (up to about 40 

mm SWE) of snowfall is intercepted by the coniferous canopy. 

Intercepted snow can be retained in the forest canopy by snow strength and 

cohesion. Snow crystals adhere to needles and branches by cohesion of snow resulting 
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from the rapid formation of micro-scale ice bonds [Hedstrom and Pomeroy, 1998]. Snow 

strength is determined by bonding between snow crystals [Hedstrom and Pomeroy, 

1998], which strengthens at cold temperature and weakens near the melting point 

[Langham, 1981]. Therefore, in cold boreal forests, canopy-intercepted snow may persist 

for several days to a month [Pomeroy and Schmidt, 1993; Zierl and Bugmann, 2005], 

while it quickly sublimates in temperate forests [Hedstrom and Pomeroy, 1998]. 

Canopy-intercepted snow is involved in scattering and absorption of microwave 

emission from the underlying snowpack [Derksen and MacKay, 2006; Clifford, 2010] 

and also emits its own microwave energy [Chang et al., 1996; Hall et al., 2002; Dong et 

al., 2005]. Melt-refreeze cycles result in the formation of liquid water or ice crystals 

within the intercepted snow; this condition may also contribute to the microwave signal. 

As a result, microwave emission from intercepted snow is a significant source of TB 

observed at the TOA; therefore, it may influence the quality of RA results for these 

forested areas. However, CLM4 does not separate liquid and solid phases of canopy 

water; therefore, the effect of canopy-intercepted snow on TB at the TOA was neglected 

in the current study. Further improvement of the RA performance could be achieved by 

considering it.  

Fourth, as mentioned in Chapter 4, this dissertation mainly focused on North 

America during a single snow accumulation season. To provide better understanding of 

snow and to improve hydroclimatic predictions, global-scale applications of the RA 

system over multi-year snow seasons should be explored. Regarding a longer-term RA 

study, the use of TB observations from the Advance Microwave Scanning Radiometer-2 

(AMSR2) can be considered. In this dissertation, AMSR-E TB observations were 

assimilated into the RA system. AMSR-E had observed global TB since 2002 but 

unfortunately it halted its scientific observation in October 2011 due to its antenna 



 122 

rotation problems [Imaoka et al., 2010]. AMSR2 was launched in May 2012 and has 

been providing TB observations since January 2013. Basic performance of AMSR2 is 

almost identical to that of AMSR-E, except for several important improvements [Imaoka 

et al., 2010]: 1) additional channels (7.3 GHz) in C-band receiver to mitigate radio 

frequency interference (RFI) issue, 2) larger main reflector (2.0 m diameter) to improve 

the spatial resolution, and 3) improved calibration system. Therefore, it is expected that 

assimilation of AMSR2 TB observations will provide better estimates of snow water 

storage.  

Finally, although the assimilation of microwave TB observations improved overall 

snow estimates, it still degraded the estimates for some regions including the ephemeral 

and alpine snow classes. In addition, microwave radiance data will add more 

uncertainties to snow estimates for snowmelt seasons due to the effect of liquid water 

within the snowpack. A multi-sensor snow data assimilation is required to overcome the 

limitations of microwave radiance data. Previous studies [Rodell and Houser, 2004; 

Andreadis and Lettenmaier, 2006; Clark et al., 2006; Su et al., 2010; De Lannoy et al., 

2012; Zhang et al., 2014] showed that the assimilation of MODIS SCF is effective for 

ephemeral snowpack during snowmelt periods. Previous members of our group Su et al., 

[2010] and Zhang [2015] demonstrated that when the Gravity Recovery and Climate 

Experiment (GRACE) terrestrial water storage (TWS) data are additionally assimilated, 

much improved snow estimates can be obtained. We can also consider the use of a 

recently emerging approach, i.e., lidar, when measuring snow depth. However, MODIS 

SCF, GRACE TWS, and lidar also have their own limitations. MODIS provides high 

resolution data, but it cannot distinguish between snow cover and cloud, and it cannot 

detect snow mass variations when the ground is full covered with snow. Although 

GRACE observes mass variations in terrestrial water storage, its spatial and temporal 
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resolutions are coarse. Lidar is not influenced by the snow wetness, which is one of 

significant factors degrading TB observations, and can provide accurate snow depth 

observations at about 1 m horizontal spatial resolutions; however, it cannot pass through 

clouds. The assimilation of these multi-sensor data (i.e., AMSR-E TB, MODIS SCF, 

GRACE TWS, and lidar snow depth) will complement each other’s limitations and 

provide much improved large-scale snow water storage estimates. 

These potential future researches can benefit from the SnowEX campaign 

(http://neptune.gsfc.nasa.gov/hsb/index.php?section=322), now being planned by NASA. 

SnowEX is a multi-year snow campaign to collect airborne observations using various 

remote-sensing instruments such as radar, lidar, multispectral imagers, passive 

microwave detector, and passive visible light/infrared detector. In addition, it will also 

collect ground truth data. The campaign sites will be in the forested areas ranging from 

no trees to dense forests. The data collection will start in February 2017 and continue to 

2019–2021.  

To make more efficient use of the collected data, the following aspects need to be 

considered during the SnowEX campaign. First, as the CLPX data sets, the SnowEX in 

situ snowpit measurements should include snow layer thickness, density, temperature, 

wetness, and snow grain size. Especially, the information about the presence of ice lens, 

and its thickness and location within the snowpack are required. Second, the snowpit and 

airborne observations must be available for the same dates (and time, if possible). We 

experienced from the use of CLPX data sets that many data sets could not be used 

because they were not available at the same dates. Third, microwave frequency channels 

provided by the airborne sensor need to match those by satellite. Fourth, vegetation data 

such as vegetation types, density, and LAI should be provided. Fifth, snow intercepted by 



 124 

the vegetation canopy should also be measured. Finally, the campaign should cover the 

full snow season so that we can have measurements for dry and wet snow conditions.  
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