69,468 research outputs found

    Data exploration systems for databases

    Get PDF
    Data exploration systems apply machine learning techniques, multivariate statistical methods, information theory, and database theory to databases to identify significant relationships among the data and summarize information. The result of applying data exploration systems should be a better understanding of the structure of the data and a perspective of the data enabling an analyst to form hypotheses for interpreting the data. This paper argues that data exploration systems need a minimum amount of domain knowledge to guide both the statistical strategy and the interpretation of the resulting patterns discovered by these systems

    Robot control based on qualitative representation of human trajectories

    Get PDF
    A major challenge for future social robots is the high-level interpretation of human motion, and the consequent generation of appropriate robot actions. This paper describes some fundamental steps towards the real-time implementation of a system that allows a mobile robot to transform quantitative information about human trajectories (i.e. coordinates and speed) into qualitative concepts, and from these to generate appropriate control commands. The problem is formulated using a simple version of qualitative trajectory calculus, then solved using an inference engine based on fuzzy temporal logic and situation graph trees. Preliminary results are discussed and future directions of the current research are drawn

    Laser Ultrasound Inspection Based on Wavelet Transform and Data Clustering for Defect Estimation in Metallic Samples

    Get PDF
    Laser-generated ultrasound is a modern non-destructive testing technique. It has been investigated over recent years as an alternative to classical ultrasonic methods, mainly in industrial maintenance and quality control procedures. In this study, the detection and reconstruction of internal defects in a metallic sample is performed by means of a time-frequency analysis of ultrasonic waves generated by a laser-induced thermal mechanism. In the proposed methodology, we used wavelet transform due to its multi-resolution time frequency characteristics. In order to isolate and estimate the corresponding time of flight of eventual ultrasonic echoes related to internal defects, a density-based spatial clustering was applied to the resulting time frequency maps. Using the laser scan beam’s position, the ultrasonic transducer’s location and the echoes’ arrival times were determined, the estimation of the defect’s position was carried out afterwards. Finally, clustering algorithms were applied to the resulting geometric solutions from the set of the laser scan points which was proposed to obtain a two-dimensional projection of the defect outline over the scan plane. The study demonstrates that the proposed method of wavelet transform ultrasonic imaging can be effectively applied to detect and size internal defects without any reference information, which represents a valuable outcome for various applications in the industry. View Full-TextPeer ReviewedPostprint (published version

    Identifying the time profile of everyday activities in the home using smart meter data

    Get PDF
    Activities are a descriptive term for the common ways households spend their time. Examples include cooking, doing laundry, or socialising. Smart meter data can be used to generate time profiles of activities that are meaningful to households’ own lived experience. Activities are therefore a lens through which energy feedback to households can be made salient and understandable. This paper demonstrates a multi-step methodology for inferring hourly time profiles of ten household activities using smart meter data, supplemented by individual appliance plug monitors and environmental sensors. First, household interviews, video ethnography, and technology surveys are used to identify appliances and devices in the home, and their roles in specific activities. Second, ‘ontologies’ are developed to map out the relationships between activities and technologies in the home. One or more technologies may indicate the occurrence of certain activities. Third, data from smart meters, plug monitors and sensor data are collected. Smart meter data measuring aggregate electricity use are disaggregated and processed together with the plug monitor and sensor data to identify when and for how long different activities are occurring. Sensor data are particularly useful for activities that are not always associated with an energy-using device. Fourth, the ontologies are applied to the disaggregated data to make inferences on hourly time profiles of ten everyday activities. These include washing, doing laundry, watching TV (reliably inferred), and cleaning, socialising, working (inferred with uncertainties). Fifth, activity time diaries and structured interviews are used to validate both the ontologies and the inferred activity time profiles. Two case study homes are used to illustrate the methodology using data collected as part of a UK trial of smart home technologies. The methodology is demonstrated to produce reliable time profiles of a range of domestic activities that are meaningful to households. The methodology also emphasises the value of integrating coded interview and video ethnography data into both the development of the activity inference process
    • 

    corecore