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ABSTRACT

Data exploration systems apply machine learning techniques, multivariate statistical methods,
information theory, and database theory to databases to identify significant relationships among the
data and summarize information. The result of applying data exploration systems should be a
better understanding of the structure of the data and a perspective of the data enabling an analyst to
form hypotheses for interpreting the data. This paper argues that data exploration systems need a
minimum amount of domain knowledge to guide both the statistical strategy and the interpretation

of the resulting patterns discovered by these systems.

1. INTRODUCTION

Data exploration systems apply machine learning techniques, multivariate statistical methods,
information theory, and database theory to databases to identify significant relationships among the
data and summarize information. The result of applying data exploration systems should be a

better understanding of the structure of the data and a perspective of the data enabling an analyst to
form hypotheses for interpreting the data. In a sense, data exploration systems are a tool of the
"scientific method": raw data is collected, laws describing the principal features of the data are

hypothesized and tested, and theories explaining the laws are hypothesized and tested by using the
theory to predict new information.

The benefits of data exploration systems can be significant. An analyst deluged with data can
greatly reduce the time needed to understand the meaning of the data, and the accuracy of data
analysis can be greatly increased. One might think of a data exploration system as a tool for
examining large and complex data for meaning that might normally go unnoticed.

The purpose of data exploration systems is to reveal structure (or equivalently "pattern") in data.
The basic operations of a data exploration system consist of describing, detecting, and searching
for structures. Ideally, the detected structure did not arise by chance and can be described in the
terms of the subject matter that produced the original data. The statements above naturally imply
issues regarding the role of domain specific (i.e., subject matter) knowledge in data exploration.

Collecting data is often much easier than transforming the data into useful knowledge. The result
is a lag between the time the data becomes available for analysis and the time knowledge can
emerge from an analysis of the data. This problem is aggravated in areas where data is collected
about phenomena to discover what factors affect performance and the relationships among the
factors. The goals of analysis are not only to improve future performance but also to use the data to
understand the underlying principles governing the observed behavior. The time and effort
required to analyze a large amount of data representing a variety of qualitative and quantitative
attributes is often quite prohibitive. It is from within this context that data exploration systems

have emerged.

A previous NASA application of data exploration in 1983 used the AUTOCLASS system for the
analysis of the Infrared Astronomical Satellite (IRAS) Data. For one year, the system sampled 94
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spectral intensities and 2 celestial coordinates. In all, there were 5,425 records of data. Human data
analysts spent two years analyzing and classifying the data into a known, but inadequate,
taxonomy. In 1987 the AUTOCLASS program, a domain independent program based on
Bayesian statistics, was applied to the IRAS data [Denning]. The program ran for 36 hours and
created a new classification scheme and detected statistical patterns in the data that humans
interpreted as "discoveries". The overall response to the AUTOCLASS system, however, has
been reserved.

This paper presents our research into data exploration systems. The research is oriented toward
analyzing databases of historical performance data for patterns indicative of success and failure.
The findings presented here are applicable to any data exploration system. The first area discussed
is capabilities: which patterns are sought in the data, which techniques identify the patterns, and
how the data patterns are presented to a human investigator. Next, a methodology is discussed for
effectively applying a data exploration system (i.e., how do the system's characteristics affect how
it is applied ). The research is a timely contribution to data exploration, as it identifies weak and
missing capabilities of these data discovery systems, and, in some cases, the recommendations
have been implemented and investigated.

This paper will show that induction and generalization over a database cannot be completely free of
domain knowledge. At a minimum, the data exploration system must account for the semantics of
numeric data. Next, classical statistical methods must be employed with great care because both
the statistical hypothesis and the method of data collection strongly affect the validity of induction
and the interpretation of the resulting generalization. Finally, the architecture of a data exploration
system reflects the state of knowledge about the problem domain : when little is known about the
domain being explored, the system is a loosely coupled set of tools supported by metadata. The
more known about the domain, the less exploration there is and the more predictable the analysis
becomes.

2. EXAMPLE of DATA EXPLORATION

Consider the following hypothetical database containing data regarding the past performance of a
pre-launch rocket fuel monitoring subsystem:

Table 1. Sample Database

Manufacturer Sensor Tvoe Launch Time Number of Sensors Sensor Indication
ABC Corp. pressure morning 6 anomalies
XYZ Inc. temperature afternoon 12 clear
ABC Corp. density night 6 clear
XYZ Inc. volume morning 6 anomalies
XYZ Inc. volume morning 12 clear
XYZ Inc. pressure afternoon 6 anomalies
ABC Corp. density night 12 clear
XYZ Inc. volume afternoon 6 clear
ABC Corp. temperature morning 6 clear
XYZ Inc. pressure night 6 anomalies
ABe Corp. temperature morning 12 clear

For simplicity's sake, there are only eleven launch descriptions. Sensors are manufactured by
either ABC Corp. or XYZ Inc. The sensors measure one of four possible fuel-related factors: the
temperature, pressure, density, or volume. Launch times are categorized as either morning,
afternoon or night (after-dark) launches. Sensors are installed in batteries of six, with a maximum

of two batteries or twelve sensors. Finally, each data record is "classified" by its reading
indication. The sensor indication exhibits two possible readings : clear (i.e., a "successful"
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reading) or anomalies (i.e., inconsistent sensor reports). This gives a possibility of (2*4*3*2) 48
different attributes to describe the environment of a sensor reading. The structure of the data is
shown in the decision tree in Figure 1. The attributes are shown as nodes and the edges are labeled
with the attribute values. The basis for classification is the indications "clear" and "anomalies",

shown as plus and minus signs. The ID3 induction algorithm was used to create the tree.

One hypothesis from this analysis is that the sensor type was the most important factor in
successful sensor readings, followed by the number of sensors, the manufacturer of the sensors,
and finally the external temperature. This observation implies that some launches had only this one
factor in common and that this one factor might have contributed significantly to the success or
failure of the sensor readings. In this example, the induction algorithm is identifying factors that
seem to be responsible for sensor success or failure. Specifically, pressure sensors tended to
account for anomalous readings while sensors monitoring the fuel temperature and density tended
to read successfully. This observation remains constant regardless of the values of the other
attributes. Likewise, sensors monitoring fuel volume with twelve sensors were likely to detect fuel
status correctly. However, when monitoring fuel status with six of XYZ Corp's fuel volume
sensors, the external temperature became a decisive factor. Morning launches were likely to
exhibit anomalous sensor readings while afternoon launches did not. Once the factors are
identified, we now must seek verification of the patterns found by generating an explanatory
hypothesis (i.e. a hypothesis that explains why the observed pattern is true and thus how to
encourage or avoid the pattern in similar situations -- a "lesson learned"). Hypothesis generation
is discussed later.

pressure temperature density volume

Q Q Q

XYZ Inc.

I

morning afternoon

6 6
Figure 1. Decision Tree Induced from Table 1.



The structure of the decision tree above can be automatically generated and may serve as a basis for
hypothesis generation. For example, why were pressure sensors such a determining factor? One
hypothesis is that the fuel pressure varies within the shuttle's rocket boosters between the sensors
located at the top of the booster and those at the bottom. This hypothesis could provoke a deeper
investigation. It may describe a significant pattern of sensor failure: launches with sensors from
different manufacturers, performed at various times of the day, using a different number of
sensors, all exhibited anomalous fuel status readings when using fuel pressure sensors. The type
of sensor was their only common factor. Likewise, why were morning launches subject to invalid
sensor readings? One factor might be the number of sensors. When the number was twelve,
readings in similar launches were successful. Thus, a possible explanation of the detected pattern
can serve as a hypothesis and lead to important yet subtle new lessons learned which the data
supports and yet, perhaps, goes unnoticed or unmentioned by any human analysts. One reason
patterns may be hard to detect is the sheer volume of data coupled with the large range of attribute
values. Without some form of statistical summary, how can an analyst extract as much
information as possible from such high volume data? The automatic inductive analysis described
above applies such analyses to the data and creates a discrimination tree as depicted graphically in
Figure 1. In the discrimination tree, an analyst can rank the attributes with respect to their ability to
classify sensor indications in order to determine which play significant roles in correlating the data
as success or failure. In short, the induction algorithm above answers the questions "which
attributes were the most significant" and "how are the data related?"

One can see the value of the analysis presented above. Given larger data sets with more attributes
and greater attribute ranges, the analysis task would become insurmountable without a tool such as
the induction algorithm. It is important to note that the induction algorithm will identify any pattern
supported by the data set. However, the pattern may be only coincidental or trivial. If the data
have cause/effect, correlations, or other useful information, then the induction algorithm will find it

and make the relationships explicit for use in hypothesis generation [Parsaye, Hoaglin].

3. CAPABILITIES of DATA EXPLORATION SYSTEMS

The main issue of data exploration systems is the type of regularities the system can detect. Each
system's approach can detect some regularities but is ignorant of other types of regularities. In
short, data exploration systems detect regularities that their designers deem important. The
domains of applications however, may exhibit certain types of regularity. To what degree can data
exploration systems remain domain independent and "generalized"? How should a "regularity" be
defined and how can we ensure that the assumptions for its detection are satisfied by the data in
question? And, once a pattern has been detected, how should the pattern be interpreted by the
user? Hamming's motto for those applying numerical methods also suits those applying data

exploration systems : the purpose of computing is insight, not numbers. The choice of computing
technique affects how we understand the results [Hamming].

As stated, each system's approach can detect some regularities but is unable to detect others. For
example, consider a data exploration system determining the relationship between two variables by
applying the chi-square test on a five-by-five contingency table of data values. For the sake of
example, assume there are only two real-valued attributes X and Y, and the technique is applied to
discover if these two attributes are related and, if possible, describe the relationship. Let the graph
of the actual values be the sawtooth wave shown in Figure 2.
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X

Figure 2. Chi-square test for attribute relationship.

The null hypothesis is that the variables are unrelated; i.e., each bin (or square) is uniformly
distributed with data points. To reject the null hypothesis, the observed values must be different
from the expected values appropriate to the desired significance level. Yet, as Figure 2 shows, the
points are uniformly distributed, as the bins contains approximately the same number of data
points. The chi-square test as described would not allow us to reject the null hypothesis. In other
words, the attributes are judged to be unrelated because, in this case, the data exploration system
fails to detect periodic behavior. If the amplitude or frequency of the wave is varied, the dynamic
behavior of the data exploration system reaches critical points where the system can detect a
regularity using the chi-square test, but as the amplitude or frequency of the wave crosses critical
thresholds such as the one depicted in Figure 2, no relationship is detectable even though the
essence of the regularity remains the same. It appears as though the phenomena under examination
experience moments of chaos when, in fact, the chaotic behavior is inherent in the detection
technique.

As this example suggests, the capabilities of the data exploration system should match the features
of the explored context or the user risks "discovering" artifacts of the discovery mechanisms
themselves and, thus, inducing invalid generalizations. Yet, matching a technique to problem
context can be paradoxical: isn't one of the purposes of data exploration to discover precisely

these descriptive features?

Nevertheless, several capabilities can be enumerated. First, the data exploration system should
offer a variety of techniques to detect potential regularities and constrain their application
appropriately. Without this capability, one cannot be sure that the regularities detectable are the
only ones in the data. Multivariate statistical methods offer such a variety and, in addition,
constrain when a method applies. Data exploration tools often incorporate many of these
sophisticated methods but fail to detect when the techniques do not apply. Thus, the results of
applying these techniques can be invalid yet appear as authoritative. The problem of invalidity is
discussed in Sections 5 and 6.

Second, the data exploration system should support a flexible and appropriate strategy for data
exploration. A statistical strategy is a formal justification for the selection, ordering, and
application of techniques made during the course of data exploration. The data exploration system
should in some sense act as an intelligent practitioner of data analysis [Hand]. Some systems
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simply provide a "grab bag" of exploratory techniques that the user selects and applies ad hoc and
without a sensible strategy. The worth of hypotheses resulting from such methodology should be
suspect. The next section addresses this topic in more detail.

Next, the data exploration system should permit exploration sessions to be "frozen" and resumed.
Without this capability, analysis must be conducted in a single sitting. However, an exploration
strategy may induce a potentially complex series of probes into the structure of the data and it may
not be practical to perform these operations in a single sitting. Furthermore, the system should
record the lines of exploration and provide a "replay" capability of the last n operations.

Fourth, the data exploration system should provide a facility for semantic data modeling, as the
semantics of the data do affect data analysis. Without this capability, two situations can arise: the

relationships and generalizations discovered may be invalid or the system may fail to pursue a
semantically rich relationship because two semantically related pieces of data are treated as
unrelated by the system. A potentially rich semantic link will be lost. For example, the system can
formulate relationships between two numerical variables if these numbers are related in the
modeled domain; e.g., pressure and temperature. The importance of data modeling cannot be
overemphasized in data exploration and is discussed in more detail in section 6.

Finally, there is the issue of missing or noisy data. How should this data be incorporated into the
exploration process? Should there exist a three-valued logic for data values: unknown, not
detected, or present? Similarly, some data may not be noisy at all, and other data must be
smoothed before analysis. Clearly, a theory of data exploration should address these issues.

4. CONTEXT of DATA EXPLORATION

Next, how does a data exploration system support the analysis process? Some systems such as
BACON use empirical numerical data directly to induce a law supplemented with theoretic
variables that both simplify the representation of the law and serve as a conceptual aid [Langley].
For example, BACON induced Black's heat law and the concept of "specific heat". Other systems
such as IXL operate more interactively by placing a human in-the-loop [Parsaye]. In this case, the
data exploration system is more an integrated set of loosely-coupled tools. BACON gives the user
an end result while IXL gives the user a set of intermediate results. The style of investigation
imposed by the data exploration system should be appropriate to the problem under investigation.

At best, the exploration tool should guide the user in selecting an exploration strategy and then
ensure that the data satisfies the assumptions underlying the selected mathematical techniques.
Given that the data represents some aspect of reality, the strategy for seeking out implicit or hard-
to-perceive relationships should make sense within the specific context of exploration.

The data exploration environment can be categorized as either "supervised" or "unsupervised". In
a supervised learning environment, a human analyst supplies the exploration tool with metadata, or
information that describes the various data attributes that are found in the data records. This gives

the exploration tool knowledge of the environment the data is supposed to describe. With this
data, an exploration tool can determine the appropriate set of tools that it can validly apply to the
data. An unsupervised learning environment exists when no metadata is supplied. In this case the
exploration tool must examine the data using the widest variety of tools, though the validity of the
application of these tools to the database is up to a human analyst to determine. This mode of
learning is valuable when minimal knowledge concerning the nature of the data is available.

Consider, for example, a database containing numerical data attributes. If nothing is known about
this data, a numerical induction system such as BACON would apply its analysis heuristics in an

attempt to determine wheher the terms are numerically related. This will very often provide an
analyst with valuable information regarding the relations between terms. As stated earlier,
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BACON has discovered and "rediscovered" many valuable numeric laws. However, if the data
represents attributes such as a zip code, a year-of-birth, a social security number, or a yearly
income, any numerical relationships discovered that relate these terms has no meaning in the real
world. The purpose of data exploration systems is just the opposite: to discover trends that can be
used to make generalizations or predictions about the real world. Even when the numerical data
found in a database does lend itself to numerical analysis, the nature of these "measurements" must
be known in order to perform valid analyses. This is discussed in more detail in Section 6.

Data collection issues are key to data exploration as well. In many instances, large volumes of
historic data exist that can be readily applied to data exploration. However, many situations exist
in which data is constantly being collected. Consider the amount of data that is constantly being
transmitted regarding the status of the many subsystems aboard the space shuttle. If a data
exploration system is to be used to detect patterns and correlations for one-time-only analysis, then
this is not an important consideration. Other applications however, will require the constant
digestion of data streams that describe a real-time environment. A data exploration tool should be
able to analyze a fixed sample or to accept incoming data and continuously modify the detected
patterns to reflect the current information (i.e., sequential analysis strategy). Without this ability,
an accurate determination of the significance of the various attributes being collected cannot be
made.

5. INTERPRETING the RESULTS of DATA EXPLORATION SYSTEMS

Data exploration systems can serve as a powerful instrument enabling an analyst to perceive
structure in a seemingly dense forest of data. Ideally, the derived perception of the data reflects
relationships and generalizations actually present and not due to chance. The data exploration
system merely enhances the analyst's perception much the same way as a telescope enhances an
astronomers perception. This section outlines the technical difficulties in achieving this goal. The
crux of the matter is validity. Under what conditions might a data exploration system offer invalid
results? The thesis is stated simply: the interpretation of results can be complex because a statistical
strategy and the semantics of numerical data can strongly influence the interpretation of the results.

For the sake of illustration, consider a simple hypothetical database adapted from [Berger]
containing data regarding two identical subsystems serviced by different maintenance teams (i.e.,
paired observations). It will be shown that the statistical strategy can be subjective and can
strongly influence the discovered structure. Thus, a data analyst cannot interpret the results without
knowing precisely the details of the statistical strategy used to discover the patterns. The
conclusion is that the consumer of the data should control the strategy of analysis, not the data
exploration tool. Assume that before a launch, each subsystem is assigned a maintenance team at
random and after the flight the performance of the subsystem is evaluated. Next to the paired
observation is the outcome stating which subsystem performed best (for the sake of clarity, assume
ties are not allowed). Let attribute labels 1 and 2 represent the subsystems, and let their values
represent which of the maintenance teams, A or B, serviced the respective subsystem. Attribute 3
represents the post-mission evaluation of which subsystem/maintenance team performed best. The
database appears in Table 2. Attributes 4 and 5 are discussed shortly.

Table 2. Sample Database

1 2 3 4 5

A B A 42 30
B A B 39 41
A B A 39 23
B A A 43 33
A B A 40 25
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A B A 46 40
A B A 44 35
B A B 37 39
A B A 54 60
B A A 52 54
A B B 42 40
A B A 52 54
B A A 50 50
A B A 45 38
A B A 47 44
B A A 52 54
A B B 38 39

The first issue regarding the interpretation of the results is very complex: what are the assumptions
of the statistical strategy, and given that these assumptions hold for the data, how do these
assumptions influence the interpretation? To illustrate the effect of exploration technique on
interpretation, two separate statistical viewpoints are assumed and their implications examined.
First, consider the view of classical statistics. Classical statistics assumes a model responsible for

the data prior to examination, and that any deviation from the assumed model is caused by chance.
Given the sample database, consider the following strategies:

• Strategy 1 assumes that the data is generated by a binomial distribution with no
difference between the maintenance teams. The probability of the outcome of 13
favorable outcomes for Team A is 0.182 and the P-value is 0.049. One is

tempted to assume that there is no difference in maintenance teams and that the
pattern of 13 favorable outcomes for team A is due to chance.

• Strategy 2 assumes that the data is generated by a negative binomial using a
sequential sampling plan: (i.e., data was collected until both Team A and Team B
both had 4 favorable outcomes). It so happened that the last favorable outcome
for Team B occured on trial 17. In this scenario the probability of the pattern of
13 favorable outcomes for Team A is 0.0085 and the P-value is 0.021. The

conservative judgement is that the pattern in favor of Team A is not due to chance.
The "discovery" is that Team B needs training.

What is the cause of this ambiguity? The ambiguity is caused by assuming a statistical hypothesis

that in turn results in P-values for values that are unobserved yet theoretically possible.

Which of these interpretations is true and how can an analyst communicate the sampling plan and
assumptions to the data exploration tool? More importantly, does the data discovery tool
accommodate such metadata prior to exploration? From the above example, one can conclude that
the sampling plan and assumed distribution strongly influence the interpretation of results. These
assumptions are inherent in the classical statistical approach. The two distributions are sketched in
Figure 3 for comparison. The leftmost distribution results when a coin is flipped 17 times and the
probability of the number of heads is calculated. The rightmost distribution results when a coin is
flipped until four tails appear, the last tail occurring on toss 17. The P-values are also indicated in
the shaded areas; these indicate the "confidence level" of the null hypothesis.
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Figure 3. Two Statistical Models for Sample Database

The role of P-values is fundamental in the classical approach to data analysis, yet it is often
misunderstood. P-values consist of both observed data and hypothesized (unobserved) data; these

represent the probability that the null hypothesis is falsely rejected assuming that the null
hypothesis is true. P-values represent the probability of obtaining data that casts at least as much
doubt on the hypothesis as on the observed data itself. However, the P-values do not indicate the
truth of the null hypothesis in the face of the data. P-values essentially give indirect evidence
against the null hypothesis.

An alternative way of exploring the data is a Bayesian approach. On the surface, the Bayesian
approach seems more appropriate to data exploration. First, the Bayesian approach allows the
formal integration of prior knowledge into the hypothesis generation process. Next, the Bayesian
approach permits sequential sampling and the accumulation of evidence. The ability to accumulate
evidence and make decisions when the evidence becomes strong enough is appropriate to many

experimental engineering analysis problems. The classical approach requires sample sizes to be
specified in advance and the sampling conditions to remain uniform for the duration of the
sampling. Then the data is analyzed. However, this type of sampling and decision regimen may
not be suitable for the analysis of real-world, mission-critical operations. More appropriate for
hypothesis generation is the integration of the best engineering judgement into the analysis of the
arriving data and making the best decisions possible given the data at hand. Ideally, the set of
hypotheses can be scored and the most probable hypothesis selected based on direct evidence p.lus
prior knowledge. Classical data exploration techniques are of limited value in this situauon.
Bayesian techniques on the other hand, directly estimate the truth of a hypothesis given the data. In
short, the Bayesian approach addresses itself directly to the issue of how degrees of belief are to be
altered by the observed data. Contrast this approach with the concept of P-values, which account
for unobserved data. Bayesian techniques are unaffected by unobserved data and thus permit a

sequential sampling plan; in addition Bayesian techniques are not invalidated by nonuniform
sampling conditions or affected by experimental design. Data exploration in mission-critical
contexts can benefit from a Bayesian approach, yet few data exploration systems fully
accommodate this approach.
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6. HOW the SEMANTICS of NUMBERS AFFECTS INDUCTION and
GENERALIZATION

As discussed earlier, a key issue in data exploration is the amount of domain specific knowledge

necessary to apply mathematical pattern detectors. This again touches on the nature of supervised
learning. A tentative answer is that data exploration does require at least a "modest" amount of
semantic metadata. To see this, consider the two integers 20 and 45. If their mean value is to be

used for statistical purposes, one might use the arithmetic mean to obtain an average of 32.5.
However, if these integers represent a "rate" such as kilometers per hour, then the mean value
should actually be 27.77 (assuming an equal weighting). When determining the mean of rates
involving unit ratios (miles/hour, ohms/meter, etc.), the harmonic mean must be used to determine
the true mean. For example, if a vehicle goes one kilometer at 20 km/hr and the next kilometer at
45 km/hr, the average velocity is 27.77 krn/hr, not the 32.5 k/hr that the arithmetic mean would
indicate. Now, if this mean is to be used to calculate other values, such as times of arrival given
certain time intervals, this difference in velocity will quickly cascade through further calculations,

most likely unnoticed. Though simple, this example demonstrates that all numeric data cannot be
handled uniformly. A data exploration system must have some metadata describing what the

numbers represent.

One important shortcoming of most data exploration systems is that numerical values are treated
uniformly. Numbers represent some aspect of reality and the results of numerical operations are
assumed to make true statements about this reality. However, our research indicates that, in

general, numbers cannot be treated uniformly and mathematical operations cannot be ap.plied
without empirical justification. Specifically, if a user cannot communicate the semanucs of
numerical values to the data exploration system, the corresponding results may be suspect.
"Measurement theory" offers important design guidelines detailing the qualities of measurements
that can be used to avoid the above problems.

Consider attributes 4 and 5 in the sample database in Table 1. If numerical values are treated
simply as "numbers", then the pattern "when attribute 3 = 'A', then the value of attribute 4 =
2/5(attribute 4) + 30" might be detected. Is this valid? At first glance it seems that, indeed, this

generalization is true. Yet further examination demonstrates that the validity of this generalization
depends on the semantics of the numbers themselves. First, assume that the numbers represent the
payroll numbers of the two supervisors of Team A and Team B. The generalization in this case is
probably senseless. However, if the two attributes represent outside temperature and the
temperature of a subsystem, the generalization is valid only within the scale on which the
temperatures were measured. In other words, the generalization is invalid if, in the future,
temperature is measured in Fahrenheit instead of Centigrade or vice versa. The co-ordinate system
itself induced the generality. If we change the co-ordinate system, the generalization disappears.
However, if the attributes represent the weight of two related subsystems, then the generalization is
valid regardless of the co-ordinate system in which the original measurements were made. The
reasons for these assertions are grounded in measurement theory.

Briefly, measurement theory is a branch of mathematics that formalizes the practice of associating
numbers with objects and empirical phenomena and the interpretation of those numerical values.
Numbers can take four different meanings, and these meanings constrain the types of operations

that result in valid application. First, a number can be "nominal". This means the number
represents a qualitative symbol such as a name. In the example above, employee number is
nominal. Next, a number can be "ordinal". This means the number represents a location in a

ranking but not magnitude (e.g., the object ranked fourth does not necessarily have twice the
ranked property as the item placed second even though (2)*2 = 4). Third, a number can be a
"ratio" measurement. This means that the number represents a measurement with an arbitrary scale

and origin. In the example above, temperature is such a measurement. Note that if temperature X
is twice temperature Y in Fahrenheit, this is not necessarily true if the numbers are converted to



Centigrade.Finally, a numbercan representan "interval" measurement. This means that the
property measured has a "natural" absolute origin. In the example above, weight is such a
measurement because at zero G, the object measured has no weight regardless of the specific
measuring scale. A table of allowable transformations is given below.

Table 3. Valid Operations Based on Measurement Type

Type of Measurement Admissible Transformation

nominal(symbolic) any 1-1 transform numbers used as labels
ordinal x >= y iff fix) >= fly) ixeference rankings
interval f(x) = ax + b temperature in C or F
ratio f(x) = ax, a > 0 weight

Table 3 indicates that the generalization "X is cY where c is constant" is an invalid operation on
interval measurements such as temperature because generalizations induced in one temperature
scale do not necessarily hold in another scale. The admissible transformations for a measurement
type are the "litmus test" for the validity of an inductive generalization. See the Appendix for proof
of this assertion.

The interested reader is referred to [Roberts] for details, implications, and formal proofs about the
validity of numerical inferences. The importance of measurement theory to data exploration cannot
be overstated. This theory shows that numerical values cannot be treated uniformly, because the
results can be invalid. On the positive side, measurement theory also indicates that data exploration
systems need not possess a great deal of domain specific knowledge. All that needs to be insured
is that the appropriate transformation is applied to a numerical value. If the dictums of
measurement theory are obeyed, then the opportunities for invalid generalization are reduced.

7. INTEGRATION of SYMBOLIC and NUMERIC DATA

A related issue is the integration of symbolic and numeric data. Most systems use one type of data
exclusively and fail to exploit the information carried by both types. Yet, many databases contain
both types. A single coherent computational framework is needed for using both qualitative and
quantitative data in searching for potentially meaningful patterns. One framework for integrating
both symbolic and numeric information is to cluster the numeric information, assign symbolic
cluster names, and use the cluster names in an algorithm such as ID3, which discovers low entropy

attributes with respect to a given taxonomy. This technique was tried on our prototype system
using a simple Euclidean distance measure and the maximin-distance clustering algorithm. The key
issue in this approach is to make an informed guess about the numeric data and select a suitable
distance measure. Once again, a modest amount of domain-specific knowledge must be applied. If
one knows nothing at all about the data as shown in this section, the results of any exploration
approach must be suspect.

Cluster analysis organizes data by uncovering underlying structure in data either as a grouping or a
hierarchy of groupings. The analyst can use the grouping as confirmatory evidence of suspected
structure or as fertile ground for further experimentation to explain the discovered taxonomy
[Everitt]. The AUTOCLASS program mentioned in the introduction is based on cluster analysis.
An important theoretical consideration for employing cluster analysis is that it is free of the
ambiguities induced by P-values and other statistical assumptions previously discussed. Thus,
cluster analysis can serve as both a remedy for the problems of classical or Bayesian statistical
methods or as an additional validation technique to supplement these methods. The database of
Table 2, when clustered, appears in Figure 4:
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Figure 4. Clustering

One hypothesis from the clusters might be that Team A actively trains, while Team B is shamed
into training also. When Team A does not wain, Team B relaxes and then wins on talent alone.

There are several issues involved with cluster analysis. First, how are clusters defined? Exactly
what shapes and distances define a cluster are domain dependent parameters and are often
unknown before analysis. Next, research suggests that clustering without some domain knowledge
is still a weak technique. The reason is that clusters are defined by distance measures that
themselves have meaning within a domain. The Euclidean distance is just one example of a
potential distance measure useful in clustering. Finally, which attributes should serve as the
clustering attributes? These all depend on the goals of the analysis. Consider the different ways of
clustering a deck of cards: one may form clusters based on numeric value, suit, color, etc. The
data exploration system should provide a mechanism for defining distance measures and allowing
the user to search for structure based on different grouping criteria.

Our experiments use clustering and distance measures not only as stand alone techniques (as in the
example) but in data reduction as well. Clusters of numeric data are tagged with names, and the
names serve as an additional attribute that represents and classifies a group of the numeric values.
Then a symbolic induction technique such as ID3 finds those factors correlated with the cluster. A
similar technique is used for curve fitting. When a set of numeric data is fitted with a curve, the
coefficients of the curve are compared with the curves fitted to related data. Using the Chi-Square
Test, a distance measure is defined, and a determination regarding the two sets of numeric data is
made. If the data are close, they are grouped within the same cluster. The same maximin
algorithm can be applied with a different distance measure.

8. CONCLUSIONS AND RECOMMENDATIONS

Our research suggests several conclusions. First, data exploration is based on the detection of
regularities in data. Therefore, the data exploration tool should provide a variety of detection
techniques for the types of regularity likely to occur in the data. Without this, the system is blind to
potentially important and characteristic patterns. Next, symbolic data patterns can be detected
using a variety of statistical techniques. Various entropy measures have been shown to be useful
in this endeavor. Decision trees constructed from the output of algorithms such as ID3 based on
entropy measures offer a visual representation for the structure of the data. Third, data exploration
on numeric values is very complex due to the semantics of numbers. Care must be taken to avoid
transforming the data in meaningless ways and deriving invalid patterns on the data. Finally, more
research is needed into integrating symbolic and numeric data into a coherent framework for data
exploration.

Several recommendations are made for future directions for research. Some enhanced data

exploration techniques have already been implemented and are undergoing experimentation.

242



Experiments are underway to integrate symbolic and various types of numeric data into an overall
methodology for data exploration. Promising techniques include the incremental integration of
domain-specific knowledge into cluster analysis and curve-fit analysis.

The role of conjecture in the discovery process is well-recognized [Polya]. As stated previously,
data exploration tools can support the formulation of a conjecture by examining the data and
elucidating the "structure" of the data. Structure in the sense used here means "regularity" or
generalization exemplified by the data. Regularities are described and hence detected
mathematically. The user must verify that the assumptions underlying the application of the
mathematical technique are satisfied, and if so, then the data exploration tool can perform a great
deal of statistical analysis and uncover the structure of the data. Certainly, powerful tools such as
multivariate statistics and information theory can provide the data exploration tool with a sturdy
vehicle for exploration.

However, a paradox arises. On one hand, an analyst applies a data exploration tool because so
little is known about the data. But, on the other hand, the very exploration techniques require a
certain amount of knowledge about the data before the results can be validated. In other words, if
a data exploration tool presents us with a host of conjectures, what can be said about the potential
validity of the conjectures, all else being equal? Ideally, one does not need a tool to manufacture
blind alleys, smokescreens, and distractions for the analyst.

What is needed is an incremental approach to integrating domain knowledge as it is acquired into
the exploration process. This paper has shown that induction and generalization over a database
cannot be completely free of domain knowledge. At a minimum, the data exploration system must
account for the semantics of numeric data. Next, classical statistical methods must be employed
with great care because both the statistical hypothesis and the method of data collection strongly
affect the validity of induction and the interpretation of the resulting generalization. Finally, data
exploration systems can be structured in two ways: when little is known about the domain being
explored, the system should be a loosely coupled set of tools supported by metadata. The more
known about the domain, the less exploration is needed, the more predictable the analysis
becomes, and the more domain specific knowledge should be infused into the analysis process.
The tool supporting the analysis should be flexible enough to accommodate a variety of data and
analysis strategies.

APPENDIX

Proof that the generalization of f(a) = cf(b) is invalid for interval measurements (e.g., mass,
temperature on F or C, etc.) where c > 0.

Proof: Assume f(a) = cf(b) for some a,b,c where f(x) is a quantity assigned to x on an interval
scale. The generalization is valid iff it is invariant under all admissible transformations. Since f(x)
is assumed to be an interval measurement, let g(x) = kx + b where k,b > 0, the general admissible
transformation for interval scales. If f(a) = cf(b), then (g*f)(a) = c[g*fl(b) --> g(f(a)) = c[g(f(a)l.
But, k f(a) + b <> c[kf(x) + b]. Hence f(a) = cf(b) is an invalid generalization in an interval scale.
Note, however, that if b = 0 (i.e., the measurement type is ratio such as weight), then the

generalization is valid.
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