
Robot Control Based on Qualitative
Representation of Human Trajectories

Nicola Bellotto
School of Computer Science

University of Lincoln
LN6 7TS, United Kingdom

Abstract
A major challenge for future social robots is the high-
level interpretation of human motion, and the conse-
quent generation of appropriate robot actions. This pa-
per describes some fundamental steps towards the real-
time implementation of a system that allows a mobile
robot to transform quantitative information about hu-
man trajectories (i.e. coordinates and speed) into qual-
itative concepts, and from these to generate appropri-
ate control commands. The problem is formulated us-
ing a simple version of qualitative trajectory calculus,
then solved using an inference engine based on fuzzy
temporal logic and situation graph trees. Preliminary re-
sults are discussed and future directions of the current
research are drawn.

Machine perception and interpretation of human behaviours
are perhaps some of the most challenging tasks that research
communities in computer vision and robotics have to face
with. Solutions in this area are necessary for a number of im-
portant applications, from automated video surveillance to
assistive robotics for domestic environments (Bellotto et al.
2009; Galindo et al. 2011). A restricted class of human be-
haviours is concerned with the (usually goal-oriented) mo-
tion of an agent, which can be associated with the actions of
walking towards something or someone, standing still, etc..
The automatic interpretation of such motion, being through
vision or other sensing modalities, is important in particular
for mobile robots designed to provide services for humans.
For example, a drink-serving robot should be able to detect
and track the motion of a potential customer, and infer from
his/her behaviour whether he/she is interested in having a
drink or not.

There is a vast amount of recent literature proposing so-
lutions for tracking people with mobile robots, either us-
ing vision, laser or multi-sensor approaches (Bellotto and
Hu 2010; Luber, Tipaldi, and Arras 2011). However, if
ever considered, the robot actions that follow human track-
ing are usually associated with a numerical or topologi-
cal representation of the current target position, rather than
with a semantic interpretation of his/her motion activity.
For example, Nakauchi and Simmons (2002) developed a
social robot that observes the position and orientation of
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people queueing in front of a counter, and then enters the
queue at the rear. Bennewitz et al. (2005), instead, pro-
posed a solution to learn typical motion patterns of people
in an office environment, using this information to predict
the location of a person even when the robot is in a dif-
ferent room. Recent works have also considered the mo-
tion activity of people in relation to their spatial location,
so that a social robot can predict the position of potential
users and proactively approach them (Kanda et al. 2009;
Chung and Huang 2010). These solutions, however, use nu-
merical rather than qualitative data to reason about motion
activity. Moreover, the proposed models do not incorporate
the effect introduced by the robot’s actions. To do this, the
behaviour of the robot has to be included in the activity
model as well.

The approach suggested in this paper adopts a compact
and effective method for qualitative representation of hu-
man/robot trajectories. Although demonstrated in a simple
scenario, a major contribution of this work lies on the scala-
bility of the proposed approach, which makes it feasible for
representing long term interactions between multiple agents,
and can eventually facilitate robot programming for com-
plex social navigation tasks. Another main contribution is
the framework used for the integration of several tools, from
the field of AI, computer vision and robotics, to implement a
cognitive system for mobile robots interacting with humans.
The proposed solution is inspired by previous cognitive vi-
sion systems (Nagel 2004) and extends some recent work
in automatic video surveillance (Bellotto et al. 2012) to the
robotics research field.

Representation of Human Trajectories
In order for a robot to understand human motion and act ac-
cordingly, it is necessary to interpret semantically the data
collected by its sensors. In other terms, quantitative infor-
mation about human trajectories have to be converted into
qualitative concepts, so that numerical coordinates, speed,
direction, etc., of an agent can be represented with actions
like “moving towards” or “moving away from”. Qualitative
spatial representation and reasoning is an active research
area that deals, among the others, with the formalization of
spatial relations between physical entities (Cohn and Renz
2008). One such formalization, called Qualitative Trajectory
Calculus (QTC), considers in particular the relative motion
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between two points in 1- or 2-dimensional spaces (Van de
Weghe et al. 2006).

QTC can be used to represent and reason about the rela-
tive motion of two agents, the first being a person (identified
here as k) and the second a robot (identified as l). Adopting
the same notation used in Van de Weghe et al. (2006) for
the 1-dimensional case, where only the straight line passing
by k and l is considered, the following movements can be
identified:

1. movement of k with respect to l at time t

• − : k is moving towards l
• + : k is moving away from l

• 0 : k is stable with respect to l

2. movement of l with respect to k at time t

• same as above, but with k and l swapped
3. relative speed of k with respect to l at time t

• − : k is slower than l

• + : k is faster than l

• 0 : k has the same speed of l

The situation, for example, where “a person k approaches
the robot l, which is not moving” can be simply represented
in QTC1 as (−0+). Besides its clarity and compact repre-
sentation, the adoption of such a formalism will prove par-
ticularly useful in future extension of the system, where
2-dimensional relations and their combination in concep-
tual neighbourhood diagrams and composition tables (De-
lafontaine et al. 2011) can be used to generate much more
complicated motion patterns. The current implementation
is limited to the 1-dimensional case. This allows for basic
human-robot interactions with very few rules, enough for the
purpose of showing the feasibility of the proposed approach.
The speed component has also been ignored, so only the rel-
ative movements described at the previous points 1 and 2
are actually considered. The example above would therefore
simplify to the relation (−0).

QTC is generally applicable to continuous spaces, but
since in the actual system sensor data is available at constant
intervals (i.e. discrete time), the original conditions reduce
to the following basic rules:

1. movement of k with respect to l at time t

• − : d(kt−1, lt) > d(kt, lt) ∧ d(kt, lt) > d(kt+1, lt)

• + : d(kt−1, lt) < d(kt, lt) ∧ d(kt, lt) < d(kt+1, lt)

• 0 : all the other cases
2. movement of l with respect to k at time t

• same as above, but with k and l swapped
where d(kt, lt) corresponds to the Euclidean distance be-
tween k and l at time step t, while t − 1 and t + 1 are an
instant before and an instant later respectively.

These rules can be implemented using the constructs
of temporal logic. The current system uses in particular

1This particular case, where relative 1-dimensional motion and
speed are considered, is actually termed QTCB2. If the speed rela-
tion is ignored, it is called QTCB1 (Delafontaine et al. 2011).
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Figure 1: Membership functions (degree of validity) of the
three different motion cases.

F-Limette, an inference engine based on Fuzzy Metric-
Temporal Horn Logic (FMTHL), which is freely available
online2 (Gerber and Nagel 2008). Using this language, it
is possible to assign a degree of validity, which is effec-
tively the application of a trapezoidal membership function,
to each one of the three motion cases: movingTowards (−),
stableWrt (0) and movingAwayFrom (+). The distance dif-
ference ∆d = d(kt+1, lt)− d(kt−1, lt) is the input space on
the abscissa (see Figure 1). The F-Limette code implement-
ing these rules is listed in the appendix.

High-Level Reasoning and Robot Control
While there are situations in which models of human mo-
tion can be derived from real observations, in many other
cases it is preferable to provide an a-priori representation
based on expert knowledge. For the problem at hand, knowl-
edge about particular motion behaviours, expressed in terms
of QTC rules, can be encoded within F-Limette using a
schematic representation called Situation Graph Tree (SGT)
(Nagel 2004). In an SGT (see for example Figure 2), a sin-
gle situation corresponds to a particular agent state, at a spe-
cific time instant, that satisfies one or more logic predicates.
There can also be associated actions that the agent is ex-
pected to carry while in that state. A situation can be tempo-
rally connected to another one with a prediction edge, which
effectively describes “what should happen next”. Situations
and prediction edges form a situation graph. When orga-
nized in a tree structure, situation graphs at the bottom-layer
represent more detailed specializations of the situations at
the top. During the inference process, the SGT is traversed
in a depth-first fashion to find instantiable situations.

In the current implementation, the system includes a sim-
ple SGT with two layers, shown in Figure 2, that describes
the case of a human moving towards or away from the robot.
More interesting and complex behaviours could be mod-
elled using larger multi-layer SGTs – see for example Nagel
(2004) and Bellotto et al. (2012). A typical scenario would
be the following: “A person k moves towards the robot l,
then stops for a moment. In the meanwhile, the robot starts
to approach the person. The latter, however, turns back and
leaves, so the robot stops”. Using QTC, this could be repre-
sented as follows:

(−0) (−−) (0−) (+−) (+0) (1)

The five situations are encoded at the bottom of the SGT,
with arrows (i.e. prediction edges) indicating their temporal

2
http://cogvisys.iaks.uni-karlsruhe.de/Vid-Text/



Figure 2: Situation Graph Tree of the human motion behaviour and relative robot actions.

sequence. Whenever new evidence about the current posi-
tion and speed of a nearby person is available, an inference
process is started on F-Limette with an SGT traversal. The
traversal at time t+ 1 starts from the previous successful in-
stantiation of a situation at time t (which is the root if the
last traversal had failed).

An important difference of this system compared to pre-
vious SGT-based solutions is the integration of high-level
commands for controlling the motion of the robot. Every sit-
uation in the SGT has one or more actions note associated
with it, which F-Limette converts in string messages to print
and/or send to other sub-systems. In particular, two kind of
messages are implemented: a STATUS message to describe
the current situation, and a COMMAND message to control
the robot. While STATUS-like strings were already used
in Nagel (2004) to generate natural language, COMMAND
strings were only partially exploited in Bellotto et al. (2012)
to control a set of pan-tilt cameras and gather more visual
information. However, because a camera was never con-
sidered as an agent itself, the influence of such high-level
commands on the next inference iteration was not fully ex-
plored. This is an important novelty of the current system.
It is clear from the SGT in Figure 2, indeed, that the action-
commands follow(Agent) and stop, both executed by
the robot, have a direct effect on the potential instantiation
of the next situation. In particular, follow(Agent) will
enable the transition (−0)  (−−) in Equation 1, while
stop will cause (+−)  (+0). Although here demon-
strated for a relatively simple task, it is argued that the rig-
orous approach adopted so far could be easily extended to
deal with much more complicated scenarios and robot con-
trol policies.

Implementation and Results
The solution has been fully implemented, but a systematic
experimentation has not been completed as yet, so only
anecdotal results are available at this point. Several tests
have been performed in a simulated environment3 where
moving agents, resembling people, wander around a large
indoor environment avoiding obstacles. A mobile robot
tracks them using laser-based leg detection and Bayesian
filtering (Bellotto and Hu 2010). The smooth nearness-

3Player/Stage – http://playerstage.sourceforge.net/

Figure 3: Simulated environment with robot and people.

diagram algorithm is used for navigation and obstacle avoid-
ance (Durham and Bullo 2008). A snapshot of the simulation
is shown in Figure 3.

The system architecture is inspired by a previous work
(Bellotto et al. 2009), which uses SQL tables as virtual com-
munications channels between three independent compo-
nents: a laser-based people tracking; a high-level reasoner
based on F-Limette; and a control module that converts high-
level commands to low-level instructions for the robot4. The
use of an SQL database is motivated by the possibility to
store and retrieve large amounts of information collected
during extended periods of time. It simplifies future im-
provements of the reasoning part to consider long intervals
(e.g. hours or days) and makes possible the integration of
other systems (e.g. surveillance cameras, robots, etc.) shar-
ing the same information.

In a typical simulation round, the tracking module would
provide x-y position and speed of the current agents (i.e.
robot and persons) in form of message strings to the
SQL server, e.g. hasStatus(Agent, Xpos, Xvel,
Ypos, Yvel). These are retrieved by the reasoner and in-
cluded as new evidence, upon which a new inference pro-
cess is run. The results of the latter, being either status or
command strings, are sent back to the SQL server. Possible
commands are finally received by the control module that
activate the robot platform accordingly5.

4This part also makes use of the Player/Stage middleware.
5Note that in case of a follow(Agent) command, the con-

trol module will automatically retrieve the current location of the
agent to be approached by the robot, without any further interven-
tion by the reasoner, until a stop command is received.



Figure 4: Distributed system architecture.

The solution works in real-time on a quad-core proces-
sor with 4GB of RAM, running all the modules of the ar-
chitecture (including the simulator) except the SQL server.
The latter resides on a separate Pentium 4 machine con-
nected via 10/100Mbps LAN. Neither the processing units
nor the network have any negative effect on the system per-
formance, the computational requirements of which remain
usually very low. Further tests need to be done however with
larger sets of FMTHL rules and more complex SGTs.

In general, the systems behaves as expected: human
movements are correctly interpreted, and the robot com-
mands are properly generated and executed. When a person
gets closer, the robot moves in his/her direction as well. If
the person turns back though, the robot stops. Nothing hap-
pens if the person starts to be tracked while already moving
away. In case of several people, the robot acts only accord-
ing to the movements of the first detected person, at least
until the latter is not tracked any more. The simplicity of the
1-dimensional QTC representation shows however its limi-
tations when a person is considered to be approaching the
robot only because the distance between the two decreases,
even if the person does not point towards the robot at all. As
explained in the next section, reasoning with 2-dimensional
QTC is a necessary improvement for the implementation of
more advanced robot behaviours.

Conclusions and Future Work
The work here presented constitutes the first attempt to im-
plement a complex system for the semantic interpretation
of human motion and simultaneous generation of high-level
robot commands. The solution is based on a robust and well-
tested integration of concepts developed in AI, computer vi-
sion and robotics, the aim of which is to contribute in the de-
sign of a cognitive robot for assisting humans in daily tasks.

Despite encouraging results, it is clear that a number of
proper experiments are necessary to validate the current ap-
proach. Simulation tests are of little value when the entities
involved are real humans, the behaviour of whom is gener-
ally unpredictable. The system will have to be fully evalu-
ated in a real-world environment, and experiments carried
out with a range of different people.

There a number of aspects in which the current system

could be improved and extended. During initial testing, it be-
came clear that a 2-dimensional QTC is the minimal require-
ment to better represent the variety of human movements.
This would consider the direction of an agent with respect
to the other one. Also, the potential of QTC still needs to
be fully exploited considering speed and using composition
tables and other tools to combine motion relations between
more than two agents (i.e. robot and several people).

Finally, it would be interesting in the future to analyse
the interactions between different agents, in particular the
correlation between robot actions and human motion, and to
generate high-level commands that guide the robot towards
optimal observation and interaction points.
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Appendix – F-Limette Implementation of QTC

always (isPresent(Agent) :-
  Agent <> robot,
  prev hasStatus(Agent,_,_,_,_),
  hasStatus(Agent,_,_,_,_),
  next hasStatus(Agent,_,_,_,_)
).

always ( dist([Xa, Ya], [Xb, Yb], D) :-
  D is ((Xb-Xa) * (Xb-Xa) + (Yb-Ya) * (Yb-Ya)) ^ 0.5
).

always ( distance(K, L, D) :-
  K <> L,
  hasStatus(K, Xk, _, Yk, _),
  hasStatus(L, Xl, _, Yl, _),
  dist([Xk, Yk], [Xl, Yl], D)
).

always ( prevDistance(K, L, D) :-
  K <> L,
  prev hasStatus(K, Xk, _, Yk, _),
  hasStatus(L, Xl, _, Yl, _),
  dist([Xk, Yk], [Xl, Yl], D)
).

always ( nextDistance(K, L, D) :-
  K <> L,
  next hasStatus(K, Xk, _, Yk, _),
  hasStatus(L, Xl, _, Yl, _),
  dist([Xk, Yk], [Xl, Yl], D)
).

always( movingTowards(K, L) :-
  prevDistance(K, L, Dprev),
  distance (K, L, D),
  nextDistance(K, L, Dnext),
  Dprev > D,
  D > Dnext,
  degreeOfValidity(Dnext-Dprev, -10000, -9999, -0.3, -0.1)
).

always( movingAwayFrom(K, L) :-
  prevDistance(K, L, Dprev),
  distance (K, L, D),
  nextDistance(K, L, Dnext),
  Dprev < D,
  D < Dnext,
  degreeOfValidity(Dnext-Dprev, 0.1, 0.3, 9999, 10000)
).

always( stableWrt(K, L) :-
  prevDistance(K, L, Dprev),
  distance (K, L, D),
  nextDistance(K, L, Dnext),
  not (Dprev > D, D > Dnext; Dprev < D, D < Dnext),
  degreeOfValidity(Dnext-Dprev, -0.3, -0.1, 0.1, 0.3)
).




