1,594 research outputs found

    QoS-driven proactive adaptation of service composition

    Get PDF
    Proactive adaptation of service composition has been recognized as a major research challenge for service-based systems. In this paper we describe an approach for proactive adaptation of service composition due to changes in service operation response time; or unavailability of operations, services, and providers. The approach is based on exponentially weighted moving average (EWMA) for modelling service operation response time. The prediction of problems and the need for adaptation consider a group of services in a composition flow, instead of isolated services. The decision of the service operations to be used to replace existing operations in a composition takes into account response time and cost values. A prototype tool has been implemented to illustrate and evaluate the approach. The paper also describes the results of a set of experiments that we have conducted to evaluate the work

    Evaluator services for optimised service placement in distributed heterogeneous cloud infrastructures

    Get PDF
    Optimal placement of demanding real-time interactive applications in a distributed heterogeneous cloud very quickly results in a complex tradeoff between the application constraints and resource capabilities. This requires very detailed information of the various requirements and capabilities of the applications and available resources. In this paper, we present a mathematical model for the service optimization problem and study the concept of evaluator services as a flexible and efficient solution for this complex problem. An evaluator service is a service probe that is deployed in particular runtime environments to assess the feasibility and cost-effectiveness of deploying a specific application in such environment. We discuss how this concept can be incorporated in a general framework such as the FUSION architecture and discuss the key benefits and tradeoffs for doing evaluator-based optimal service placement in widely distributed heterogeneous cloud environments

    Adaptive Composition in Dynamic Service Environments

    Get PDF
    Due to distribution, participant autonomy and lack of local control, service-based systems operate in highly dynamic and uncertain environments. In the face of such dynamism and volatility, the ability to manage service changes and exceptions during composite service execution is a vital requirement. Most current adaptive composition approaches, however, fail to address service changes without causing undesirable disruptions in execution or considerably degrading the quality of the composite application. In response, this paper presents a novel adaptive execution approach, which efficiently handles service changes occurring at execution time, for both repair and optimisation purposes. The adaptation is performed as soon as possible and in parallel with the execution process, thus reducing interruption time, increasing the chance of a successful recovery, and producing the most optimal solution according to the current environment state. The effectiveness of the proposed approach is demonstrated both analytically and empirically through a case study evaluation applied in the framework of learning object composition. In particular, the results show that, even with frequent changes (e.g. 20 changes per service execution), or in the cases where interference with execution is non-preventable (e.g., when an executed service delivers unanticipated quality values), our approach manages to recover from the situation with minimal interruption

    Management of service composition based on self-controlled components

    Get PDF
    International audienceCloud computing and Future Internet promise a new ecosystem where everything is "as a service", reachable and connectable anywhere and anytime, everyone succeeding to get a service composition that meets his needs. But do we have the structure and the appropriate properties to design the service components and do we have the means to manage, at run-time, the personalised compositions corresponding to Service Level Agreement? In this article we introduce an entity of service composition called Self-Controlled Component (SCC), including, since the design step, functional and non-functional specifications. SCCs benefit both from the strong structure, explicit composition, and autonomic management of component-oriented programming, from the highly dynamic composition, and from the discovery capacities of service-oriented computing. Self-control mechanisms are then attached automatically to SCCs to enable autonomic application management during execution. The objective of this new concept is to provide strong Quality of Service (QoS) guarantees of composed applications. We illustrate the approach using an example called Springoo, to how in the context of a legacy application the contributions and benefits of our solution. For the management of the service composition we propose the concept of Virtual Private Service Network (VPSN) and Virtual Service Community (VSC) that allows us to model the personalised Service Level Agreement (SLA) where user requirements and provider offers converge on a QoS contract

    A survey on engineering approaches for self-adaptive systems (extended version)

    Full text link
    The complexity of information systems is increasing in recent years, leading to increased effort for maintenance and configuration. Self-adaptive systems (SASs) address this issue. Due to new computing trends, such as pervasive computing, miniaturization of IT leads to mobile devices with the emerging need for context adaptation. Therefore, it is beneficial that devices are able to adapt context. Hence, we propose to extend the definition of SASs and include context adaptation. This paper presents a taxonomy of self-adaptation and a survey on engineering SASs. Based on the taxonomy and the survey, we motivate a new perspective on SAS including context adaptation

    A constraint-based approach to quality assurance in service choreographies.

    Get PDF
    Knowledge about the quality characteristics (QoS) of service com- positions is crucial for determining their usability and economic value. Ser- vice quality is usually regulated using Service Level Agreements (SLA). While end-to-end SLAs are well suited for request-reply interactions, more complex, decentralized, multiparticipant compositions (service choreographies) typ- ically involve multiple message exchanges between stateful parties and the corresponding SLAs thus encompass several cooperating parties with interde- pendent QoS. The usual approaches to determining QoS ranges structurally (which are by construction easily composable) are not applicable in this sce- nario. Additionally, the intervening SLAs may depend on the exchanged data. We present an approach to data-aware QoS assurance in choreographies through the automatic derivation of composable QoS models from partici- pant descriptions. Such models are based on a message typing system with size constraints and are derived using abstract interpretation. The models ob- tained have multiple uses including run-time prediction, adaptive participant selection, or design-time compliance checking. We also present an experimen- tal evaluation and discuss the benefits of the proposed approach
    • …
    corecore