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Abstract. Proactive adaptation of service composition has been recognized as a 
major research challenge for service-based systems. In this paper we describe 
an approach for proactive adaptation of service composition due to changes in 
service operation response time; or unavailability of operations, services, and 
providers. The approach is based on exponentially weighted moving average 
(EWMA) for modelling service operation response time. The prediction of 
problems and the need for adaptation consider a group of services in a 
composition flow, instead of isolated services. The decision of the service 
operations to be used to replace existing operations in a composition takes into 
account response time and cost values. A prototype tool has been implemented 
to illustrate and evaluate the approach. The paper also describes the results of a 
set of experiments that we have conducted to evaluate the work. 

Keywords: Proactive adaptation, response time, cost, spatial correlation. 

1   Introduction 

A major research challenge for service-based systems is the support for service 
compositions that need to adapt autonomously and automatically to new situations 
[9][10][24][28]. Some approaches for adaptation of service compositions have been 
proposed in [1][2][16][29]. However, these approaches support adaptation of service 
compositions in a reactive way, which is time-consuming and may lead to several 
unwanted consequences (e.g. user and business dissatisfaction, loss of money, loss of 
market opportunities). Therefore, it is important to provide approaches that consider 
adaptation of service composition in a proactive way, predicting problems in a 
composition before they occur. Some initial works for proactive adaptation of service 
composition have been proposed in [8][15][20][30]. Overall, these few approaches 
are fragmented, limited, and in their initial stages.  

We define proactive adaptation of service composition as the detection of the need 
for changes and implementation of changes in a composition, before reaching an 
execution point in the composition where a problem may occur. For example, the 
identification that the response time of a service operation in a composition may cause 
the violation of the service level agreement (SLA) for the whole composition, 
requiring other operations in the composition to be replaced in order to maintain the 



 

 

SLA; or the identification that a service provider P is unavailable requiring other 
services in the composition from provider P to be replaced, before reaching the 
execution part in the composition where services from P are invoked. 

Proactive adaptation of service composition includes four main steps, namely (i) 
prediction of problems, (ii) analysis of the problems triggered by prediction, (iii) 
decision of actions to be taken due to the problems, and (iv) execution of the actions. 
As defined in [26], the prediction of problems is concerned with the identification of 
the occurrence of a problem in the near future based on an assessment of the current 
state of the system. More specifically, in the scope of service-based systems, problem 
prediction is concerned with the assessment of what is the impact of a service 
misbehaviour, or of a group of services, in other parts of the service composition.  

In this paper we describe ProAdapt, a framework for proactive adaptation of 
service composition due to changes in service operation response time; or 
unavailability of operations, services, or providers. ProAdapt provides adaptation of a 
composition during its execution time and for future executions of the composition. 
The framework is based on function approximation and failure spatial correlation 
techniques [26]. The approach uses exponentially weighted moving average (EWMA) 
[23] for modelling expected service operation response time, and monitors operation 
requests and responses to identify the availability of services and their providers. 

In ProAdapt, the need for adaptation considers a group of operations in a 
composition flow, instead of isolated operations, in order to avoid replacing an 
operation in a composition when there is a problem, and this problem can be 
compensated by other operations in the composition flow. The framework also 
identifies other operations that may be affected in a composition flow due to problems 
caused by a specific one. For example, when the observed response time of an 
operation is greater than its expected response time, the approach verifies the 
implication of this response time discrepancy in the service composition, instead of 
triggering immediate replacement of the operation. This verification considers service 
level agreements (SLAs) specified for the whole composition and (variable) observed 
values of quality aspects of the operations in the composition. When it is necessary to 
replace an operation, or a group of operations, the candidate operations to be used in 
the composition are selected based on both response time and cost constraints. This is 
because, in practice, there is a strong correlation between the response time and the 
cost for an operation. 

The remainder of this paper is structured as follows. In Section 2 we present 
ProAdapt framework. In Section 3 we describe the proactive adaptation process for 
predicting and analysing problems in service composition, and for deciding and 
executing the adaptation actions. In Section 4 we discuss implementation and 
evaluation aspects of our work. In Section 5 we give an account of related work. 
Finally, in Section 6 we discuss concluding remarks and future work. 

2  Proactive Adaptation Framework 

Fig. 1 shows the overall architecture of ProAdapt framework with its main 
components (represented as rectangles), namely: execution engine, specification 



 

 

translator, service discovery, monitor, and adaptor. It also shows the different types 
of data used as input or generated as output by the main components (represented as 
documents). We describe below each of these main components. 

The execution engine receives and executes service composition specifications. We 
assume service composition specifications represented as BPEL4WS [5] due to its 
wide use and acceptance. The service composition specifications provide the flow of 
the application and do not have information of the exact services that need to be 
invoked in a composition. Instead, it contains abstract partner links information. The 
exact services will be instantiated by the adaptor component. 

The specification translator is responsible to parse a service composition 
specification in BPEL4WS and the service level agreement (SLA) for the composition 
and to create a composition model template that will be used to generate execution 
models of the composition. An example of an execution model is described below. 

The service discovery component identifies possible candidate service operations 
to be used in the composition, or to be used as replacement operations in case of 
problems. We assume the use of the service discovery approach [27][31] that has 
been developed by one of the authors of this paper to assist with the identification of 
candidate operations. This approach advocates a proactive selection of service 
operations that match functional, behavioural, quality, and contextual aspects. Details 
of this approach are out of the scope of this paper. The identified operations are used 
to create and adapt execution models by the adaptor component.  

 
Fig. 1. ProAdapt architecture overview 

The monitor verifies the QoS aspects of the operations used in the instantiated 
execution models and the replacement candidate operations, and provides historical 
data of these QoS aspects. The adaptor uses the historical data to predict and analyse 
the need for adaptation. The current implementation of the framework uses a simple 
monitor that we have developed that intercepts calls to the services, calculates the 
response time that it takes from the invocation of an operation and the receipt of its 
results, and accumulates the calculated response times as historical data.  

The adaptor is the main component of our framework. It (a) receives calls from the 
execution engine to invoke operations in the composition and provides the results to 
the execution engine; (b) instantiates composition model templates and generates the 
execution models with real endpoint service operations to be invoked in the 
composition and other information; (c) predicts and analysis problems that may exist 
in a composition; and (d) decides on and executes actions to be taken. 
 



 

 

Execution Model. We advocate the use of an execution model for each execution of a 
service composition. This is necessary to provide information to support prediction 
and analysis for adaptation, given the lack of such information in BPEL4WS [5] 
specifications. An execution model is a graph representation of the service 
composition specification with information about the (i) execution flow, (ii) deployed 
endpoint service operations, (iii) state of a service operation in a composition (e.g., 
completed, to be executed, and executing), (iv) observed QoS values of a service 
operation after its execution, (v) expected QoS values of a service operation, and (vii) 
SLA parameter values for the service operations and the composition as a whole. 

Fig. 2. Example of composition execution model 

Fig. 2 shows an example of an execution model for a RoutePlanner service 
composition scenario to assist users to request information from a PDA about optimal 
routes to be taken when driving. As shown in the figure, the composition offers 
services to support the identification of a driver’s current location, identification of an 
optional route for a certain location, display of maps of the area and route to be taken, 
provision of traffic information throughout the route to be taken, computation of new 
routes at regular intervals due to changes in traffic, and provision of information 
about near gas stations.  In Fig. 2, for each service operation, we show its deployed 
endpoint, status, SLA cost values, and expected and observed response time (RT) 
values. We also show these values for the whole composition.  

3   Proactive Adaptation Process 

In ProAdapt, the adaptation process may be triggered due to (i) changes in the 
response times values of operations in a service composition that affects SLA values 
of a composition, (ii) unavailability of operations in a composition, (iii) unavailability 
of services, or (iv) unavailability of providers. When one of cases (i) to (iv) occurs, 
the adaptor verifies if the composition needs to be changed and modifies the 
composition during its execution time, if necessary. More specifically, the changes 
are performed in the execution models by trying to identify operations that can 
replace existing operations participating in the remaining parts of the execution model 
such that the aggregation of the response time and cost values of these replacement 
operations, together with the response time and cost values of the operations that have 
already been executed in the composition and the ones that are still to be executed, 
comply with the SLA values of response time and cost for the composition. 



 

 

Response Time Modeling. In order to guarantee compliance of the SLA response 
time and cost values in an execution model (EM), it is necessary to consider the 
aggregation of the response time values of the participating operations; and the time 
for the adaptor to identify and analyse problems and perform changes in the execution 
model when necessary, as specified in the function below.  

T(EM) = Aggreg(RT(Set(O))) + T(Adapt),     where: (1) 

• T(EM) is the time to complete the execution model EM; 
• RT(Set(O)) is the response time of the operations in EM; 
• Aggreg() is a function that returns the aggregated values of the response time of the 

operations depending on the execution logic of the model; 
• T(Adapt) is the time required by the adaptor.  

The aggregation of the response time values of the service operations in the 
execution model considers different execution logics in a model such as sequence, 
parallel, conditional selection, and repeat logics. In the example in Fig. 2, sequence 
execution logics are composed of operations (a) GetLocation and FindRoute, and (b) 
GetMap and IdentifyGasStation; while a parallel execution logic is found in 
operations GetMap and IdentifyGasStation with operation GetTraffic. In the case of 
sequence execution logic, the aggregated response time is calculated as the sum of the 
response times of the operations in the sequence; in the case of parallel execution 
logic, the aggregated response time is calculated as the maximum of the response time 
values for the operations in the parallel execution logic. 

The aggregated response times of the operations in an execution model and 
candidate replacement operations is calculated based on expected response time 
values of the operations not yet executed and the observed response time values of the 
operations already executed. As outlined in [8], the response time for an operation 
request combines the time for executing the operation and the network time for 
sending the operation request and receiving its response. We observed that there are 
also other times that should be considered such as the time of 
marshaling/unmarshaling a request, and the time that a request may need to stay in a 
queue in both client and server sides. We define the response time of an operation as:  

RT(O) = PT(O) + DT(O),    where: (2) 

• PT(0) is the processing time for an operation O, which is given by service providers. 
• DT(0) is the variable delay time associated with an operation O, including the 

network, queue, and marshaling/unmarshaling times. 
As shown above, the response time is considered a variable parameter that can be 

affected due to changes in the network and system resources. Therefore, in order to 
identify expected response time values, it is necessary to use techniques that predict 
the behaviour of random parameters. ProAdapt uses exponentially weighted moving 
average (EWMA) [23] technique for this prediction due to its simplicity.  

The expected response time value of an operation changes with time. At time t0, an 
operation expected response time value is its processing time. At time ti (i>0), the 
expected response time is given by the EWMA function [23] below: 

Ev(O(ti)) = Obv(O(ti-x))(1- !) + Ev(O(ti-x))* ! + "*SD,   where (3) 



 

 

• Ev(O(ti)) is the expected response time value of operation O at time ti of execution; 
• Obv(O(ti-x)) is the last observed response time value of O at time ti-x of execution 

(0<x<i; and ti-x<ti); 
• Ev(O(ti-x)) is the expected response time value of O at time ti-x of execution 

(0<x<i; and ti-x<ti); 
• ! is a weight given for the past expected response time value; 
• "*SD is a threshold calculated based on the standard deviation (SD) of previous 

observed response time values of O and " is as a constant parameter. 
For each operation in an execution model, a set of candidate replacement 

operations is identified by the service discovery tool (see Fig. 1), based on functional 
and behavioural matching. The identified candidate operations are ordered by the 
weighted sum of the normalised response time and cost values of an operation, as per 
the function below. The weights are used to specify priorities in QoS values. 

V(O) = wRT * Norm(Ev(O)) + wC * Norm(C(O)),   where: (4) 

• O is a candidate service operation; 
• Norm(Ev(O)) is the normalised value for the expected response time of O; 
• Norm(C(O)) is the normalised value for the cost of operation O;  
• wRt and wC are weights used for response time and cost, with wRt+wC = 1. 

Execution of Adaptation Process. For each user Ui of a service composition, an 
execution model EMUi is created. The initial endpoint operations used in an execution 
model is identified by the adaptor based on available operations, current expected 
response times for these operations, and SLA values of the composition.  

During the execution of EMUi, the model is updated in several ways by: (a) 
changing the status of its operations (e.g., from “to be executed” to “executing” and 
“executed”), (b) calculating the observed and expected response time values of the 
operations as per the functions defined above, and (c) changing operations in not yet 
executed paths in the model, if necessary. For any of cases (i) to (iv) that may trigger 
the need for adaptation, the process tries to identify other parts in the execution model 
that may be affected by a problem. The process is based on spatial correlations of 
operations, services, and providers (dependencies that may exist between these 
elements). For example, when a service S becomes unavailable, the process considers 
all other operations of S in the model since these operations may not be able to be 
executed. Similarly, when a provider P is unavailable, the process considers all 
services and operations in the model from P; and when an operation O becomes 
unavailable, the process considers future invocations of O in the model.  

We describe below the process for each case (i) to (iv). Suppose O an operation in 
the model being invoked by the adaptor (status “executing”); S the service associated 
with O; P the provider of S; Obv(O) the observed response time for O; and Ev(O) the 
last expected response time for O calculated using function (3). 
Case (i): Changes in the response time of O 
In this case, if the Obv(O)<=Ev(O), there is no need for adaptation and the model 
continues its execution. Otherwise, (Obv(O)>Ev(O)), the process verifies if the 
model’s SLA response time is affected. This analysis is done by using function (1) 
above. If the SLA value is maintained, the process continues its execution. If not, the 
process considers operations in the model that have not yet been executed and tries to 



 

 

find possible combinations of replacement operations that provide the functionality of 
those operations, and maintain the SLA response time and cost values. The operations 
in the model are considered inside the smaller possible execution logic. If a 
combination cannot be found, the process identifies the best possible combination. 
Case (ii): O is unavailable 
In this case, S has been changed and the adaptor receives a message from S about the 
unavailability of O. The process tries to identify another operation O’ in the set of 
candidate replacement operations with the same functionality of O and acceptable 
expected response time and cost values. If O’ exists, O is replaced by O’. The process 
also identifies other parts in the model not yet executed that use O and possible 
replacement operations for O in these parts. If these replacements operations are 
identified, they are use to replace O in those parts. The replacement operations are 
identified as in case(i) above. O is also removed from the set of candidate replacement 
operations. 
Case (iii): S is unavailable 
In this case, P informs the adaptor that S is not available. The process detects all other 
operations in the model associated with S that have not yet been executed, if any; 
identifies replacement operations for them from the set of candidate replacement 
operations; changes the execution model by replacing the operations; and removes the 
operations of S from the set of candidate replacement operations.  
Case (iv):  P is unavailable 
In this case, the component receives a “connection exception” message indicating that 
the provider is unavailable.  Similar to case (iii), the process detects all operations in 
the execution model associated with P that have not yet been executed; identifies 
replacement operations from the set of candidate replacement operations; changes the 
execution model by replacing the operations; and removes the operations of P from 
the set of candidate replacement operations.  

For cases (ii) to (iv) above, if the identified replacement operations match the 
functionality of the operations to be replaced, but do not maintain the SLA values of 
the composition, the process identifies the best possible combination of replacement 
operations to be used. When there are no replacement operations that match the 
functionality, the execution model cannot be adapted and the process terminates. 

In order to illustrate consider case (i) above. Suppose the observed value of 
FindRoute operation in Fig. 2 as 68ms. In this case, the response time of the execution 
model will be 451ms (see function 1), which is higher than the composition’s SLA 
time value (450ms). The process tries to identify replacement operations in the 
following parallel execution logic (GetTraffic and GetMap, and IdentifyGasStation 
operations) that can guarantee the SLA value. If no solution is available for the 
operations in the parallel execution logic, the process includes operation DisplayInfo 
and considers the combined execution logics for analysis. Suppose that a replacement 
operation for GetMap is identified with expected response time value of 90 ms, which 
is used to compensate for the high response time of FindRoute. 



 

 

4   Implementation Aspects and Evaluation 

A prototype tool of the framework has been implemented in Java (J2SE). The 
execution engine and the adaptor components were implemented as a single 
component for simplicity. The tool assumes service compositions in BPEL4WS[5] 
exposed as Web Services using SOAP protocol, and participating operations and user 
requests emulated using soapUI[11]. The service discovery tool was also 
implemented in Java and is exposed as a web service using Apache Axis2. The 
external service registry uses eXist database [12]. In order to evaluate ProAdapt we 
focused on three cases described below. 
Case (1): Demonstration that the framework provides time reduction when compared 
to non-proactive approaches; 
Case (2): Demonstration that the framework manages to adapt compositions ensuring 
the SLA values of the composition, and considering prioritization of QoS values; 
Case (3): Analysis of the performance of the framework. 

The evaluation was executed in a service composition with 12 operations and 
different types of execution logics, as shown in Fig. 3. We assumed the same 
syntactic and semantic characteristics for the 12 operations, with each operation 
having two input parameters and producing one output result. The size of each 
message representing an operation request (or an operation response) was around 60 
bytes. Each operation has different associated costs and processing time values, as 
summarised in Table 1. We assumed SLA values for cost as 2800 pence and response 
time as 3.5 seconds for the whole composition; and the weights for the cost and 
response times as 0.9 and 0.1, respectively.  

 
Fig. 3. Experiment service composition 

We used an environment with five different machines, namely: (a) client machine 
responsible to create simultaneous requests to the service composition, simulating 
several concurrent users; (b) adaptor engine machine connected to three service 
providers; and (c) one machine for each service provider P1, P2, P3. Table 1 presents 
a summary of the specification of each machine and the speed of the network links 
between the machines. We used different speeds for the network links to emulate 
bottleneck situations that may occur when using an Internet environment. Each 
service provider contains four different services, with each service implementing 
three different operations in the composition in Fig. 3. The operations in the four 
services in provider P1 are similar in terms of their functionalities to the ones in 
providers P2 and P3, in order to simulate possible candidate replacement operations. 
We assumed different costs and processing time values for the operations in the 
various providers as summarised in Table 1.  



 

 

We appreciate that in a real scenario the operations used in a composition may be 
from different providers. In the experiment, for the initial execution model we 
assumed all operations from the same provider (P1) to enforce a more realistic 
bottleneck situation. This does not invalidate our experiments since it is important to 
consider the network capacity between the adaptor and providers.  

For the EWMA function (see Section 3), we used a threshold of 1.5 and the weight 
for past expected response time values of 0.6. These values were identified after 
executing the operations in the composition in Fig. 3 several times, and verifying that 
with these values the expected response times of the operations were below their 
observed times for 95% of the cases. We describe below how we conducted the 
experiments and their results for each of cases (1) to (3) above. 

Table 1. Configuration of experiment environment 
Machine Configuration Services/ 

Operations 
Cost 
(pence) 

Processing 
Time (ms) 

Network Links 
(Mb/s) 

Client (C) Turion 1GHz 2GB 
RAM 

   

Adaptor (A) Core 2.33 GHz 
3GB RAM 

   

 
C-A  = 3.0 

Provider P1 Pentium 4.3 GHz 
1GB RAM 

S0:O00, O04, O08 
S1:O01, O05, O09  
S2:O02, O06, O010 
S3:O03, O07, O011 

100 150  
A-P1 = 1.0 

Provider P2 Core 1.86 GHz 
2GB RAM 

S0’:O00, O04, O08 
S1’:O01, O05, O09  
S2’:O02, O06, O010 
S3’:O03, O07, O011 

150 100  
A-P2 = 1.5 

Provider P3 Pentium 3.0 GHz 
3GB RAM 

S0”:O00, O04, O08 
S1”:O01, O05, O09  
S2”:O02,O06, O010 
S3”:O03,O07, O011 

300 50  
A-P3 = 3.0 

Case (1): In this case, we compared the execution times of the composition in Fig. 3 
when there is no need for adaptation with the execution times when there are 
problems and adaptation is required. More specifically, we analysed the times for the 
situations in which the need to execute adaptation is triggered by problems with (a) 
operations, (b) services, and (c) providers, as described in Section 3. In all these 
situations, we assumed the processing times of the operations in providers P2 and P3 
as the same as P1. This is necessary to create a homogeneous environment and avoid 
using a replacement operation with faster processing time and, therefore, diminishing 
the impact of the time wasted when trying to invoke an unavailable operation. 

 
Fig. 4. Impact of spatial correlation on composition response times 



 

 

For problems at the operation level (case (a)), we assumed no spatial correlation 
and analysed the time to execute the composition when replacement operations need 
to be identified for all the 12 operations in the composition. For problems at the 
service level (case (b)), we considered the spatial correlation between operations from 
the same service, and analysed the time to execute the composition when each of the 
four services have a problem and adaptation is required. For problems at the provider 
level (case (c)), we considered spatial correlation between services, and analysed the 
time to execute the composition when a new provider needs to be identified. 

Fig. 4 presents the results of this experiment. As shown in the figure, for case (a) 
the time to execute the composition and change all operations without considering 
any spatial correlation is two times more than the time to execute the composition 
without any need for adaptation (normal execution). The results also show that for 
case (b), the time to execute the composition is improved by 36% when compared to 
case (a), and that for case (c) this time is improved even further by 43% when 
compared to case (a). We verify an improvement of using our proactive adaptation 
approach when compared to the situation in which a non-proactive approach is used.  
Case (2): In this case, we simulated the client machine to support an increase in the 
number of users invoking the composition in an incremental way. More specifically, 
we analysed the framework in 30 intervals of ten seconds each (total of 300 seconds) 
with a rate of one user per second in the first interval of ten seconds, two users per 
second in the second interval, and an increment of one extra user every ten seconds 
reaching 30 users per second in the last interval. It is worth noting that for each user 
request performed by our client machine, 12 operations are executed and, therefore, 
the number of simultaneous operation executions in the experiment is greater than the 
number of user requests in the various intervals. Moreover, at a certain time t in the 
experiment, the number of users invoking the composition and consuming resources 
is greater than the number of new users at t, since the time to execute the composition 
without any problem is more than 1 second (see Fig. 4).  

The above simulation was used in order to provide an environment that could on 
its own create problems to the composition in terms of response time and cost values 
due to the number of users and network resources being consumed and, therefore, 
allow the verification of the behaviour of ProAdapt in cases of problems.  

 
Fig. 5. Number of simultaneous users consuming resources during the experiment  

Fig. 5 shows the number of concurrent users consuming resources during the 
different times of the experiment. As expected, the accumulated number of users is 
greater than the rate of new users invoking the composition. The graph in Fig. 5 
shows a larger number of accumulated users towards the end of the experiment since 



 

 

during this time there are a larger number of invocations for the operations in the 
compositions causing degradation in the response times of the operations and, 
therefore, delaying the execution of the compositions. 

Fig. 6 shows the time to execute each execution of the composition (represented as 
squares) during the whole experiment, and the compositions that were able to adapt 
themselves and finish within the SLA response time values (dotted line in the graph). 
As shown, the majority of the executions managed to adapt themselves and finish 
within the SLA response time value. The graph also shows a stable response time for 
the executions in the beginning of the experiment and oscillations in the response 
times starting at 200 seconds of the experiment. This is because between 20 and 25 
service composition requests per second provider P1 reaches its full capacity, causing 
degradation in the operations response times, and eventually, the need to adapt the 
composition executions so that the SLA values are maintained. 

 
Fig. 6. Variation of composition response times during the experiment 

  
(a)  (b) 

Fig. 7. Cumulative frequency distribution of (a) response times and (b) costs 

The cases in which the executions did not finish before the SLA value (cases above 
dotted line in Fig. 6), were due to bottlenecks in the providers and lack of available 
operations that could be executed faster and with the cost values specified in the 
experiment. In order to verify the impact of these cases, we present the cumulative 
frequency distribution for the response times of the executions in Fig. 7(a). As shown, 
the response times of the executions where below 1.5 seconds for 80.65% of the 
cases, and in 99.69% of the cases the executions respected the SLA response time 



 

 

value. Therefore, from a total of 4650 user requests performed during 300 seconds of 
experiments, only 14 user requests could not be executed for the given SLA value.  

Similarly, Fig. 7(b) presents the cumulative frequency distribution for the costs of 
the executions. As shown, the cheapest executions (1200 pennies) occurred in 85% of 
the cases. The graph also shows that the SLA cost value was respected in all 4650 
requests, which was expected since the framework identifies only operations that 
respect the cost values when adapting the composition. 

 

 
(a) (b) 

Fig. 8. (a) Adaptation time and (b) cumulative adaptation time over the experiment 

Case (3): In this case, we analysed the time spent by ProAdapt to adapt the 
compositions. Fig. 8(a) shows the times of the adaptor component in milliseconds for 
all executions in our experiment, while Fig. 8(b) shows the cumulative frequency 
distribution. As shown, in the majority of the cases the overall adaptation time is very 
small and does not cause a significant increase on the overall response time of the 
composition execution. The experiment shows that only in few cases the time for the 
adaption process was 3 milliseconds at most, which is very low when compared with 
the time to execute the composition when there is no need for adaptation. This is due 
to the way the process is implemented in which compositions are analysed based on 
execution logics and without looking for the optimal combination of operations, but 
for combinations that meet given SLA values. 

Overall, the results of our experiments are very positive and demonstrate that the 
framework can support proactive adaptation of service composition during execution 
time, due to different QoS characteristics. The experiments also show that the 
performance of the adaptation process is good and that the process does not cause 
penalties when changes in the composition are necessary.  

5   Related Work 

Some approaches have focussed on dynamic service composition, in which services 
are identified and aggregated during runtime in support of certain functional and 
quality characteristics of the desired systems [1][3][6][7][13][19][25]. 

Approaches for reactive adaptation of service composition were proposed in  
[1][2][16][18][29]. These approaches propose changes in service composition based 



 

 

on pre-defined policies [2], self-healing of compositions based on detection of 
exceptions and repair using handlers [29], context-based adaptation of compositions 
using negotiation and repair actions [1]; and key performance indicator (KPI) analysis 
and the use of adaptation strategies related to the KPI fulfilment [16].  

Exceptions to the reactive approaches are found in the works in 
[8][14][15][17][20][22][28]. As in the case of ProAdapt, the work in [8] is based on 
prediction of performance failures to support self-healing of compositions. The work 
uses semi-Markov models for performance predictions, service reliability model, and 
minimization in the number of service re-selection in case of changes. The decision to 
adapt is based on the performance of a single service, while our framework considers 
a group of related service operations in a composition, avoiding unnecessary changes 
to the composition. Moreover, the work in [8] does not support unavailability and 
malfunctioning of operations, services, and providers, as well as spatial correlations 
between these elements in a composition.   

In [17] the PREvent approach is described to support prediction and prevention of 
SLA violations in service compositions based on event monitoring and machine 
learning techniques. The prediction of violations is calculated only at defined 
checkpoints in a composition based on regression classifiers prediction models.  

The works in [14][20][28] advocate the use of testing to anticipate problems in 
service compositions and trigger adaptation requests. The approach in [28] supports 
identification of nine types of mismatches between services to be used in a 
composition and their requests based on pre-defined test cases. In [14][20] test cases 
are created during the deployment of service compositions and used to identify 
violations after a service is invoked for the first time. However, the creation of test 
cases is not an easy task and the work does not specify how to generate new test cases 
for a modified composition.  

In [15] the authors describe a two-stage adaptation approach due to dependability 
requirements of service-oriented systems. The work combines proactive adaptation to 
support self-protection of the system and reactive adaptation to support self-healing of 
the system. The paper does not describe the advantages of combining both approaches 
and lacks details of the proactive approach.  

Similar to our framework, some works have been proposed to support prediction of 
response time on the web [22][30]. In [22] the authors describe a probability function 
for web-access response time that uses file-size cumulative function and delay 
probability density function. The work in [30] presents a framework for performance 
evaluation of web services based on queuing networks and fork-and-join. As in the 
case of our framework, this work considers the execution of a service and, therefore 
its response time, from the moment a service request leaves a client machine to the 
moment service results return to the client. Our framework complements the above 
works and applies prediction of operation response time.  

Similar to our approach, in [4] the authors advocate that the management of service 
compositions during runtime needs to consider the structure of a composition and the 
dependencies between the participating services, and propose an approach that 
determines the impact of each service in a composition on its overall performance. 
The reactive region-based reconfiguration approach presented in [18] also has 
similarities with our work since it considers services that are in certain regions in a 



 

 

composition. However, in [18] the reconfiguration approach is used only for future 
executions of the composition, instead of current executions as in our work. 

Our framework complements existing works for service composition adaptation 
and contributes to the challenge of supporting adaptation in a proactive way during 
execution time, taking into consideration SLA values for the whole composition.  

6   Conclusion and Final Remarks 

In this paper we presented ProAdapt, a framework for proactive adaptation of service 
composition due to changes in service operation response times; or unavailability of 
operations, services and providers. The framework uses function approximation and 
failure spatial correlation of operations, services, and providers to predict problems. It 
also uses exponentially weighted moving average (EWMA) to model response times 
of operations. The adaptation process is performed during the execution of a 
composition and considers a group of operations in a composition to verify if a 
problem can be compensated by other operations in a composition flow. Replacement 
operations are selected based on their response times and cost values. A prototype 
implementation of the framework has been developed and used to evaluate the 
framework with positive results 

Currently, we are extending the framework to support proactive adaptation due to 
other types of QoS aspects and other circumstances. Examples of these circumstances 
are availability of new (better) service operations than the ones used in a composition, 
and changes in requirements or emergence of new requirements for the system.  We 
are also investigating other ways of adapting compositions including changes in the 
structure of the composition’s workflow (e.g., replacement of one service by a group 
of services, or vice-versa). We are expanding our prototype tool to support analysis of 
the impact of a problem in conditional and repetition execution logics in service 
compositions, and integrating the adaptor component with our proactive service 
discovery framework for identification of candidate replacement operations. 
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