
A Constraint-Based Approach to Quality Assurance
in Service Choreographies?

Dragan Ivanović,1 Manuel Carro,1,2 and Manuel Hermenegildo 1,2

1 School of Computer Science, T. University of Madrid (UPM), Spain
(idragan@clip.dia.fi.upm.es, {mcarro, herme}@fi.upm.es)

2 IMDEA Software Institute, Spain

Abstract. Knowledge about the quality characteristics (QoS) of service com-
positions is crucial for determining their usability and economic value. Ser-
vice quality is usually regulated using Service Level Agreements (SLA). While
end-to-end SLAs are well suited for request-reply interactions, more complex,
decentralized, multi-participant compositions (service choreographies) typ-
ically involve multiple message exchanges between stateful parties and the
corresponding SLAs thus encompass several cooperating parties with interde-
pendent QoS. The usual approaches to determining QoS ranges structurally
(which are by construction easily composable) are not applicable in this sce-
nario. Additionally, the intervening SLAs may depend on the exchanged data.
We present an approach to data-aware QoS assurance in choreographies
through the automatic derivation of composable QoS models from partici-
pant descriptions. Such models are based on a message typing system with
size constraints and are derived using abstract interpretation. The models ob-
tained have multiple uses including run-time prediction, adaptive participant
selection, or design-time compliance checking. We also present an experimen-
tal evaluation and discuss the benefits of the proposed approach.

Keywords: Service Compositions, Quality of Service, Quality Assurance, Con-
straints, Abstract Interpretation.

1 Introduction

Service-Oriented Computing (SOC) is a widely-accepted paradigm for the develop-
ment of highly dynamic, flexible, and distributed Service-Based Applications (SBAs).
Service compositions allow putting together several specialized, loosely coupled, and
platform-independent service components in order to perform complex and/or inter-
organizational tasks [10]. In such scenarios, many of those components may be pro-
vided and controlled by third parties [22].

The Quality of Service (QoS) properties of service components and compositions
are critical for their usability. Service Level Agreements (SLAs) are a means for defin-
ing permissible values for QoS attributes that are relevant in some scenario or for a
particular purpose (such as execution time, monetary cost, or availability) and that a
service (composition) provider is expected to deliver to a client. SLAs are commonly
specified under the assumption that each interaction between the client and the
service is viewed as a single session, and, accordingly, such end-to-end SLAs cor-
respond to a request-reply message exchange pattern between the two parties. How-
ever, many business processes involve more complex message exchange patterns

? The authors were partially supported by Spanish MINECO project 2008-05624/TIN DOVES
and Community of Madrid project P2009/TIC/1465 PROMETIDOS-CM.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148665629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�

a0

+
a1

Get bu-
dget line

a2

Send spec.
list

a3
+

a4

	

Receive
alternatives

a5

×
a6

¬forced

forced

Choose
best

a7

Choose
cheapest

a8 × Send
choice

a9

Receive
P.O.

a10

Start
purchase

a11

a12 Get spec.
list
a13

a14

	

Generate
alterna-

tives

a15

×
a16

count>1

count=1

Send al-
ternatives

a17

Receive
choice

a18

Automatic
choice

a19
× Put choice

into P.O.

a20

Send
P.O.
a21

Pa
rt

ic
ip

an
tA

Pa
rt

ic
ip

an
tB

Fig. 1. An example choreography for purchase ordering.

between two or more stateful participants, where several interactions may belong
to the same session and build upon each other, and where the data that is exchanged
may significantly affect the behavior of the participants in terms of QoS, including
the number of messages exchanged.

For such complex, multi-participant choreographies, a coherent support for QoS
assurance which includes negotiation, prediction, and QoS-driven adaptation [16]
is relevant both theoretically and practically. While several types of run-time adap-
tation aimed at avoiding or mitigating SLA violations have been proposed [10, 12,
21], these are often only applicable to the request-response message exchange pat-
tern and/or to acyclic control structures. Several prediction and run-time adaptation
approaches, more suited for orchestrations with centralized control flow, were pro-
posed based on machine learning [15], online testing [19], and model checking [20].

In this paper, we propose a constraint-based approach for supporting QoS as-
surance for service choreographies that involve multiple, stateful participants and
complex message exchanges. The proposed approach can be applied both at design
time and at run time to support QoS negotiation, prediction, and QoS-driven adap-
tation. This work is an extension of [14] (on run-time prediction of SLA violations) for
the case of service orchestrations with interconnected constraint models of stateful,
interacting choreography participants, combining the derivation of QoS constraints
with static analysis techniques.

We first present a motivational example (Section 2), then describe our approach
(Section 3), review several examples of its application (Section 4), and finish with
some conclusions (Section 5).

2 Motivation

Figure 1 shows a simplified example of a choreography for purchasing goods or ser-
vices in a large organization where the procurement function is centralized. It uses
the BPMN notation [17] with swim lanes delimiting participants, and dashed lines
showing the flow of messages between them.

2

User A B

request

list of specs

alternatives

choice

foreach specforeach spec >1 alternative

purchase order

response

A

req

response
(1)

request
(1)

agent

purchase
order (1)

list of
specs (1)

check

alternatives (N)

choice (N)

B

client
purchase
order (1)

list of
specs (1)

approval
choice (M)

alternatives (M)

M = N

Fig. 2. Message exchange sequence and a component model for a choreography session.

Participant A is the procurement process, which starts by receiving a procure-
ment request (a0), and continues by sending the list of specifications to the agent
(a3) and retrieving budget line information for this purchase (a2), in parallel. Par-
ticipant B is the agent which receives the list of specifications (a13) and performs a
loop (a14) for each item from the specification list. For each item, B looks into the
supplier catalogs (a15) to find out alternative purchasing options; since that can de-
pend on the choice of earlier items, specifications are processed sequentially. If only
one alternative is found, it is automatically chosen (a19), but if two or more alter-
natives exist, B asks A to chose among them (a17) and waits for the answer (a18).
The choice is added to the purchase order (a20). After processing all specifications,
agent B returns the final purchase order document to A (a21). Whenever A is asked
to choose between alternatives (a5), it acts based on the budget line restrictions: if
forced, it uses the cheapest option; otherwise it tries to chose the best solution. After
answering all choice queries, A receives the purchase order from B (a10) and starts
the purchase (a11), which provides the return notification to the requester, to whom
the purchased goods and services will be delivered directly.

Figure 2 abstracts away the logic of the participants from Figure 1, and concen-
trates only on the exchange of messages. The left-hand side of the figure shows a se-
quence diagram for message exchanges in a session involving the initiating user and
the participants A and B. The right-hand side of the figure shows A and B as compo-
nents with connector links (req, agent, and check for A, client and approval for
B), with messages sent and received over these links. The number of message of each
kind within a single session is shown in parentheses. Wiring between the connectors
is shown with thick dotted lines. For each wire, both the kind and the cardinality of
messages in both directions must match.

The end-to-end QoS characteristics of A (such as, e.g., its execution time) depend
on several factors. Firstly, if the number of specification items n is > 0, there can be
between 0 and n callbacks from B to A in the foreach loop. Secondly, the behavior of
A for each callback from B depends on whether it is forced to choose the cheapest al-
ternative, which is known at the exit of a2. Some of these factors are controlled by the
user (n), some by third parties (a2 which sets the forced flag for a6, a15 which gen-

3

erates alternatives), and some on the implementation of A (the logic and complexity
of determining the best choice in a7). With respect to the quality assurance issues
illustrated by this example, we are interested in tackling the following problems:

– Automatically deriving a QoS model of the choreography for a given input request
or a class of input requests. Such a model can be used as an input for determining
SLA offerings from the service provider to the users.

– Using the QoS model of the choreography to predict SLA violations at run-time, at
different points in execution. E.g., greater accuracy of prediction can be obtained
when the forced flag becomes known after a2.

– SLA compliance checking of choreography participants at design-time for a given
class of input requests. This is the basis for adaptive dynamic selection (binding)
of service components.

3 Constraint-Based QoS Modeling for Choreographies

The proposed constraint-based approach to modeling QoS for service choreogra-
phies is implemented in two principal phases. The first one focuses on the creation
of the QoS models for the choreography participants as Constraint Satisfaction Prob-
lems [7, 1] (CSP). We will show how to generate a model of the QoS metrics under
consideration (Section 3.1), capture the view of each participant regarding the effec-
tive QoS at every moment in the execution (Section 3.2), and how to automatically
derive these models (Section 3.3). The model is enriched with information about the
shape and size of messages, inferred using static analysis techniques, in order to in-
crement its accuracy and the precision of the prediction (Section 3.4).

[0] [1] The second phase of the approach consists of connecting the models forn.0: MH: This paragraph is
difficult to understand?
n.1: DI, MCL: better now?

the different participants and solving them as a whole (Section 3.5). Note that when
deriving QoS models for choreographies, joining the different sub-models is done
following the structure of the composition. In the present case, the overall struc-
ture may not lend itself to structural analysis and participants take a prominent role.
Therefore determining the overall QoS characteristics is done by joining per-partner
models (Section 3.5) mimicking the topology of the choreography.

3.1 Modeling Cumulative QoS Metrics

Execution time, availability, reputation, bandwidth consumed, and cost are some of
the most common QoS attributes. In this work we focus on attributes that can be nu-
merically quantified using some measurement scale, or QoS metric: e.g., execution
time can be measured using time units. QoS metrics do not need to have a fixed ori-
gin (a “true zero” value), but one unit of distance needs to express the same variation
in the attribute everywhere on the scale. This requirement excludes, for instance, or-
dinal voting-based reputation ranking between services, where the unit difference in
ranking does not carry information about the difference in votes received.

We additionally require QoS metrics to be cumulative and non-negative: QoS val-
ues of activities in a sequence add up to give the QoS value for the sequence, and this
value should never decrease by adding more activities. Some QoS metrics, such as

4

availability (expressed in terms of probabilities), that do not use addition to calcu-
late aggregation in a sequence, can be converted into additive metrics using a suit-
able transformation. For instance, the availability p of n sequential activities with
availabilities pi is p = Πn

i=1pi and can be converted into λ = Σn
i=1λi with the trans-

formation λ=− log p.
Cumulative QoS metrics allow us to represent the QoS of a service composi-

tion at any point in execution as a sum of two components: the previously accumu-
lated QoS up to that point, and the pending QoS for the remainder of the execution.
Non-negativity guarantees that the pending QoS can only decrease as the execution
proceeds. While the accumulated QoS can be estimated empirically (by measuring
elapsed time, network traffic, or accumulated monetary cost), the pending QoS for
the remainder of the execution is in our approach modeled as a CSP over variables
that represent QoS values for composition activities and control constructs. Solving
this CSP gives a prediction of the pending QoS.

3.2 QoS Models of Participants and Continuations

Service choreographies provide a “global view” of a multi-participant, stateful mes-
sage exchange within some logical unit of work. There are several possibilities to pro-
vide both abstract and executable descriptions of choreographies. On the more ab-
stract side BPMN (as in Figure 1) or WS-CDL [24], which is a high-level specialized
choreography language, can be used. On the more executable side, we can use chore-
ography extensions of standard process (orchestration) languages, such as
BPEL4Chor [8]. In our approach, we assume that the implementation details of the
participants are essentially private and that the participants can be viewed as com-
municating components that conform to the protocol (as in Figure 2). Conformance,
compatibility, and realizability of choreographies has been studied using formal meth-
ods such as Petri Nets [23], session types [9], and state machines [3].

As mentioned before, we proceed by developing a separate QoS model for each
participant in the choreography. Each participant is seen as a component with a
number of connector links (or channels, in WS-CDL terminology). Each link c is
bi-directional, and each direction (in/out) is characterized by a triplet of the form
〈Nin/out(c), q̄in/out(c),∆q̄in/out(c)〉, where N is multiplicity of in/out messages, q̄ are
QoS values corresponding to the first in/out message, and ∆q̄ are increments of QoS
values for the successive messages (for N>1). For example, for the case of execution
time, Tin(c) is the time when the first message was received over link c and ∆Tin(c)
is the time interval between the successive messages. N , q̄ and ∆q̄ , as well as other
variables in the constraint QoS models developed in this section, are not numeric
constants, but represent intervals of possible numeric values for all legal execution
cases, whose upper and lower bounds are inferred from the constraint model.

We build the QoS model of a participant by looking at its current point in exe-
cution. To stay close to the executable specifications, we follow the same approach
as in our previous work on run-time prediction for orchestrations [14]. We use the
notion of a continuation which describes the current state of the participant and the
remainder of the computation until its end [18]. At the beginning, the continuation is
the entire process and it is gradually reduced by eliminating the completed activities

5

S := send(c, E) | recv(c, v) | invoke(c, E , v) (send/receive messages)

| let v = E (variable assignment)

| [S, S, ..., S] (sequence of n ≥ 0 activities)

| (if(E) → S ; S) (if-then-else)

| S and S (parallel "and" split/join)

| foreach(v : E) do S (iterate over list elements)

| foreach(recv(c, v)) do S (iteratively receive multiple messages)

| stream(c) do S (send multiple messages)

| relax (do nothing)

c, v := 〈identifier〉
E := 〈expression〉

Fig. 3. Abstract syntax of the participant continuation language.

as the execution proceeds. The continuation information is always implicitly present
in the state of the engine which executes the participant, and, in principle, it can be
obtained either by inspecting its internal state or by observing the process events
from the outside. The latter is less robust since missed events or run-time service
modifications can invalidate the information inferred through external observation.

We represent continuations using an abstract language for the participant pro-
cesses (Figure 3). It is based on a prototypical process language implementation
that provides the continuation information explicitly at each execution step [14].
The participant state is kept in variables whose types are described in Section 3.4.
Variable values are assigned using the let construct or received over some link with
recv. The standard sequential operator, if-then-elses, and AND-parallel splits/joins
are supported. For simplicity, we present only two foreach looping constructs: one
over elements of a list and another one over messages received over some channel.
The send and recv messaging constructs can be combined into an invoke; note that
request-reply patterns are not enforced (this is left to the protocol). Participants use
the stream construct to send a series of messages within the same session which can
be received with a recv-based foreach.

3.3 Automatic Derivation of the QoS Constraint Model for a Participant

The constraint QoS model for a participant is derived automatically from the con-
tinuation and the previously accumulated QoS, using the structural approach [14],
where QoS values for complex constructs are constructed from their structural com-
ponents. A separate constraint QoS model is derived for each QoS metric of interest.
Due to space constraints, we will present here only on the derivation of execution
time. The reader is kindly referred to our previous publication [14] for more detailed
explanations and treatment of other metrics, such as availability.

Figure 4 shows the automatically derived QoS constraint model for the execution
time for participant A, at its start, i.e., when the continuation consists of the entire
participant process. The code for the participant A is shown on the left-hand side in
the abstract syntax, and the generated constraints appear on the corresponding lines

6

1 recv(req,request), T−
1 = max(TA , Tin(request)), T+

4 = T−
1 , Nin(req) = 1;

2 (invoke(budget, T+
4 ≤ T+

2 ≤ T−
4 , Tout(budget) = T+

2 + tsend,

request,line) T−
2 = Tin(budget), Nin/out(budget) = 1

3 and send(agent, T+
4 ≤ T+

3 ≤ T−
4 ,

request/specs) T−
3 = Tout(agent) = T+

3 + tsend, Nout(agent) = 1

4), max(T−
2 −T+

2 , T−
3 −T+

3) ≤ T−
4 −T+

4 ≤ (T−
2 −T+

2)+ (T−
3 −T+

3)

5 foreach(recv(check,alts)) do T+
5 = max(T−

4 , Tin(check),) k5 = Nin(check) ≥ 0

6 [(if(not(line/forced)) T+
6 = T+

7 = T+
8 , c6 ∈ {0, 1}, L5 = max(T−

10 −T+
6 ,∆Tin(check))

7 -> invoke(best,alts,choice) T−
7 = T+

7 +∆Tbest

8 ; let choice=first(alts) T−
8 = T+

8 + texpr

9), (c6 = 1∧T−
6 = T−

7)∨ (c6 = 0∧T−
6 = T−

7)

10 send(check,choice) Nout(check) = k5, Tout(check) = T+
10 = T−

6 , ∆Tout(check) = L5

11], T−
5 = T+

5 +k5 ×L5

12 recv(agent,po), T−
12 = max(T−

5 ,Tin(agent)), Nin(agent) = 1

13 send(req,po) T+
13 = T−

12, Nout(req) = 1, T−
13 = Tout(req) = T+

13 + tsend

Fig. 4. Structurally derived QoS constraint model for participant A.

to the right. For an activity on line i , we mark its starting time with T +
i and its end

time with T −
i ,T −

i ≥ T +
i . TA represents the execution time at the current execution

point (here at the start), and is an input to the model.3 The code communicates over
channels req, agent, and check from Figure 2, plus an additional channel budget
which is used to invoke the budget line information service a2 from Figure 1.

The execution of participant A is a sequence of commands, and the metric for
the execution time is cumulative, for a sequence S = [S1, S2, ..., Sn] we have T + = T +

1 ,
T − = T −

n , and for adjacent activities Si and Si+1 we have T −
i = T +

i+1. For clarity of
presentation, here we ignore the internal time used by the process engine between
steps, which needs to be taken into account in real applications (see [14]).

The reception of a single message with recv(c, v) (lines 1 and 12) finishes at time
T −

i = max(T −
j , Tin(c)), where T −

j is the finish time of the previous activity, and Tin(c)

is the time at which the message arrives on the channel c. Since in our case messages
are received over the same channel at a single place in code, the recv construct also
sets Nin(c) = 1. The command send(c,E) (lines 3, 10, 13) delivers a message to the
mailbox on the other side of the channel, for which it takes some time marked with
tsend, which is also a constrained variable and considered an input to the model.
Tout(c) is equated with the finish time T −

i of the send construct. Outside a loop (lines
3 and 12), Nout(c) is set to 1, and ∆Tout(c) is not constrained, because it is not appli-
cable. The invoke construct in line 2 is treated as a send-recv sequence.

The timing for the AND-parallel flow (ending in line 4) depends on the particular
process engine implementation, and can vary between real parallelism and sequen-
tial execution of the two activities. Without a more detailed knowledge of the imple-
mentation details, the duration of the parallel flow T −

4 −T +
4 may vary between the

maximum and the sum of durations of the two “parallel” activities.
The recv-based loop (line 5) starts when both the preceding activity has finished

(T −
4) and the first message on the check channel has become available (Tin(check)).

3 Remember (Section 3.2) that these variables actually contain admissible ranges.

7

τ := any | none (some unspecified value and no value)

| bool(a..b) (Boolean between a and b, a,b ∈ {0,1}, a ≤ b)

| number(a..b) (number between a ∈R∪ {−∞} and b ∈R∪ {+∞}, a ≤ b)

| string(a..b) (string with finite size between a ∈N and b ∈N∪ {+∞}, a ≤ b)

| list(a..b, τ) (list with finite size between a ∈N and b ∈N∪ {+∞}, a ≤ b)

| { x1 : τ, x2 : τ, ..., xn : τ } (record with named fields x1, ..., xn , n ≥ 0)

Abbrev.: bool≡ bool(0..1), number≡ number(−∞..+∞), string≡ string(0..+∞),
list(τ) ≡ list(0..+∞,τ)

Fig. 5. A simple typing system for messages with size constraints

The number of iterations of the loop k5 equals the number of messages arriving
through the channel, Nin(check). Since every loop iteration can start only upon mes-
sage reception, the effective length of a loop iteration L5 is the maximum between
the actual duration of the loop iteration (T −

10 −T +
6) and the interval between incom-

ing messages ∆Tin(check). Sending a message in each iteration of the loop (line 10)
equates the multiplicity of outgoing messages Nout(check) to the number of loop
iterations k5, and the interval between messages ∆Tout(check) to the effective itera-
tion length L5.The if-then-else construct (line 6) introduces a binary constraint vari-
able c6 which captures the truth value of the condition, and a disjunctive constraint
(line 9) which covers the then and the else cases. Finally, the internal operations, such
as the expression evaluation (line 8) and a call to an internal procedure best (line 7),
simply add the corresponding time intervals (resp. ∆texpr and ∆tbest).

3.4 Analysis of Message Types With Size Constraints

The constraint QoS models whose derivation we described above include a number
of internal structural parameters, such as the number of loop iterations and condi-
tion truth values (k5 and c6 in Figure 4) that depend on data that is received by these
services. There are several ways in which the information about shape of the data
can be organized and used to further constrain the values of these structural param-
eters and, therefore, make the constraint models more precise. One possibility would
be to apply computational cost analysis techniques to an appropriate abstraction of
the participant processes in order to obtain an analytic functional relationship be-
tween the size of input data (number magnitudes, list lengths, etc.) and the upper
and lower bounds of possible values for the structural parameters [13]. Another pos-
sibility, which we discuss in this subsection, is to use a simple form of type analysis
which is directly applicable to the abstract representations of continuations used in
our approach.

Figure 5 shows a simple type system with size constraints, which includes Boole-
ans, numbers, strings, lists, and records with named fields. Each type τ in this system
has its denotation [[τ]] which is the set of all values that belong to it. For instance,
[[number(0..1)]] = { x ∈ R | 0 ≤ x ≤ 1}. By definition, we take [[none]] = ;. We write
τ1 v τ2 as a synonym for set inclusion [[τ1]] ⊆ [[τ2]]. The set of all types with size
constraints together with the relation v forms a complete lattice [6] with any as the
top element, and none as the bottom element, i.e., nonev τv any for arbitrary τ. We

8

1 recv(client,specs), τin(client) = list(a..b, τspec), 1 ≤ a ≤ b

2 let po = [], po : list(0..0,none)

3 stream(approval) do

4 foreach(spec:specs) do [a ≤ k4 ≤ b

5 invoke(gen,spec,alts), τout(gen) = τspec, τin(gen) = list(1..+∞,τalt)

6 (if(count(alts)>1)
7 -> invoke(approval, τout(approval) = list(1..+∞,τalt),

alts,choice) 0 ≤ Nout(approval) ≤ max(a,b)
8 ; let choice=first(alts)
9), choice : τalt
10 let po = po + [choice] pobefore : list(n..m,τ) ⇒

⇒ poafter : list(n +1..m +1, τtτalt)

11], po : list(a..b, τalt)

12 send(client,po) τout(client) = list(a..b, τalt)

Fig. 6. Analysis of types with size constraints for participant B.

E
ve

n
tb

u
s

Engine
A

continuation

monitoring events

Engine
B

continuation

monitoring events

...
continuation

monitoring events

Type and size analysis

QoS model derivation

Constraint solving

continuations & mon. events

chor. QoS metrics ranges

Event bus

Engine
A

Engine
B

· · ·
continuations & monitoring events

Modeler &
Solver A

Modeler &
Solver B

· · ·
participant QoS
metrics ranges

Fig. 7. Centralized (left) and distributed (right) processing of choreography QoS constraints.

introduce the least upper bound operation t on types, where τ1tτ2 = τmeans that τ
is the smallest type (w.r.t. v) such that τ1 v τ and τ2 v τ. For example, number(0..10)t
number(8..100) = number(0..100), list(1..5,number)tlist(9..9,bool) = list(1..9,any),
and nonetτ= τtnone= τ.

The lattice structure of types from Figure 5 provides a domain for the application
of abstract interpretation-based analysis techniques [4] to obtain a combination of
type and size analysis for data in the participant processes before constructing the
QoS model. This kind of analysis is well suited for our case in which looping is done
by iterating over list elements and streams of messages, where the size range of the
list type directly translates into the range of loop iterations. We enrich the link (chan-
nel) descriptions by adding input and output message types, τin(c) and τout(c).

For instance, in Figure 4, we start with τin(req) = {specs : list(a..b, τspec), userId :
number} where a ≥ 1 and we derive thatτout(budget) = number and τin(budget) v
{forced : bool}. Also, in participant B,τout(agent) = list(a..b,τspec) = τin(client).
The result of the analysis for B is shown in Figure 6. From it, we infer that A.Nin(check) =
B.Nout(approval) is between 0 and max(a, b).

3.5 Centralized and Distributed Processing of QoS Constraints

Solving a constraint model involves finding the sets of values for the constrained
variables that satisfy the set of constraints, or signaling that the set of constraints is

9

inconsistent, and therefore unsatisfiable. Constraint solvers sometimes need to give
an approximation of the actual solutions. These approximations are always complete
(no solution is discarded), but maybe not correct (they may contain values that are
not part of any solution [7]). Some constraint solvers are better suited for some con-
straint domains and classes of constraints than others. E.g., if the generated con-
straints are linear, a linear constraint solver is likely to detect inconsistencies and to
narrow down the value sets closer to the actual answers, compared to a more general
one. The constraint models generated using our approach in general involve non-
linear integer and real arithmetic constraints, as well as disjunctive constraints.

The constraint QoS models for each participant can be, in principle, derived and
analyzed for the different message types separately, and the models obtained in that
way can be composed together by connecting the appropriate input/output links
and solving the resulting integrated model centrally. This architecture is shown on
the left-hand side of Figure 7. Different participants may, in general, execute on dif-
ferent nodes (process execution engines) in a Service-Oriented System (SOC). They
publish participant continuations and the related monitoring events (which can be
used for establishing the previously accumulated QoS) to an event bus. An aggre-
gated feed of continuations is read from the event bus and processed by a single
component that performs the analysis, modeling, and constraint solving of the inte-
grated participant models, and publishes the (updated) QoS metrics ranges for the
entire choreography. An advantage of the centralized approach is that it offers inte-
grated information about the behavior of the participants and QoS for the choreog-
raphy. However, it may not scale well, since it requires global streaming of contin-
uations, monitoring events and results to and from a single processing component.
Besides, it can be undesirable in some settings since data regarding execution char-
acteristics may need to be sent out of their respective administrative domains to a
central point.

A decentralized approach aimed at alleviating somehow these issues is shown
on the right-hand side of Figure 7. Here, continuations and monitoring events pub-
lished by process engines are processed by modules which can be close in the net-
work topology to the engines, and inside their administrative boundaries. These mod-
ules perform a per-participant QoS analysis that updates the ranges for 〈τout, Nout,
q̄out,∆q̄out〉 for each outgoing channel using the corresponding ranges for 〈τin, Nin,
q̄in,∆q̄in〉 that are produced by the modelers/solvers for participants at the other
end. The updates are communicated to the connected participant models and the
process is repeated until a stable solution is reached. This can be achieved using
distributed constraint solving algorithms [11], which ensure termination, complete-
ness, and correctness.

4 Examples of Application
In this section, we illustrate how the proposed constraint-based approach can be
of benefit in providing answers to the questions posed at the end of Section 2, us-
ing the motivating example. The idea of the approach is to be fully automated and
supported by tools. Our current prototype executes processes written in the continu-
ation language (Section 3.2), transmits continuations, and formulates and solves the
QoS constraint models.

10

Ranges for internal activity parameters
Parameter Confidence interval 99% Confidence interval 90% Confidence interval 80%

name parameter range [ms] parameter range [ms] parameter range [ms]
a3: tbudget 500 .. 1 500 642 .. 1 167 673 .. 1 094
a7: tbest 100 .. 700 195 .. 509 215 .. 468

a15: tgen 200 .. 500 247 .. 404 257 .. 384
tsend 25 .. 150

Case 1: Varying confidence intervals for participants A and B
Spec. list Confidence interval 99% Confidence interval 90% Confidence interval 80%

size Tout(req) range [ms] Tout(req) range [ms] Tout(req) range [ms]
1 .. 10 274 .. 17 100 322 .. 14 868 332 .. 14 376

11 .. 20 2 274 .. 32 100 2 797 .. 27 970 2 912 .. 27 057
21 .. 50 4 274 .. 77 100 5 272 .. 67 273 5 492 .. 65 103
50 .. 100 10 074 .. 152 100 12 450 .. 132 780 12 972 .. 128 512

101 .. 200 20 274 .. 302 101 25 069 .. 263 793 26 128 .. 255 330

Case 2: Varying confidence intervals for A and B with force=true
Spec. list Confidence interval 99% Confidence interval 90% Confidence interval 80%

size Tout(req) range [ms] Tout(req) range [ms] Tout(req) range [ms]
1 .. 10 274 .. 10 100 322 .. 8817 332 .. 8 535

11 .. 20 2 274 .. 18 100 2 797 .. 15 867 2 912 .. 15 376
21 .. 50 4 274 .. 42 100 5 272 .. 37 017 5 492 .. 35 900
50 .. 100 10 074 .. 82 100 12 450 .. 72 268 12 972 .. 70 106

101 .. 200 20 274 .. 162 100 25 069 .. 142 768 26 128 .. 138 518
Table 1. Experimental inputs and outputs of the execution time model.

4.1 Supporting SLA Negotiation For Classes of Input Data

A constraint-based QoS model can be used at design time to help the providers of
the participating processes in a choreography develop realistic SLA offers that can
be used to negotiate with their users. In such a case, participant providers (e.g., the
provider for participant A from Figure 1) can use the derived models, along with as-
sumptions and empirical assessments of the behavior of the environment (network
latency, component behavior, etc.) to develop reasonable SLA offers to the end users.

We illustrate this application with an experiment on an SLA addressing execu-
tion time. Assuming that participant A receives the request of some user at time
Tin(req) = 0, we are interested in which guarantees can be offered to the user with
respect to Tout(req) for a given class of input data. Besides the data, the participant
QoS models for A and B depend on several internal activity parameters. tsend is the
time needed by a participant to deliver the message to a participant mailbox. tbudget

is the time needed to retrieve budget line information in activity a3. tbest is the time
required by activity a7 to find the best choice among the alternatives offered.

The ranges of values for these parameters are normally empirically established by
monitoring. Such empirical data is effectively a sample (or a collection of samples) of
the “true population” set from which the QoS metric values are drawn and whose ex-
act bounds are generally unknown. We can use well-known techniques of descriptive
statistics on these samples to estimate the parameters of central tendency (mean,
median) and dispersion (standard deviation) for the whole population of values. In

11

that way, we can define intervals whose bounds include the QoS values with some
level of confidence. This level will be < 100%, since, in general, total confidence is
not attainable. Note that the choice of the confidence level is generally a matter of
heuristics. A 99% confidence interval, for instance, is wider (and thus safer) than a
90% one, but, depending on the distribution of values, it may lead to overly conser-
vative predictions and SLA offers to the clients that are safer, but too pessimistic,
unattractive, and uncompetitive. The top part of Table 1 lists the ranges of the men-
tioned component execution time across three experimental confidence levels: 99%,
90% and 80%, with a common range for tsend.

The central part of Table 1 shows the ranges for Tout(req) obtained by solving the
model for each confidence interval in the experiment. In general, for each class of
input data sizes, the range of Tout(req) contracts, and its maximum, which can be
offered as an element of the SLA, decreases when using smaller confidence intervals.
To further refine the SLA offer, the provider for participant A can look at the branch
condition in a6, and offer more attractive “fast-track” conditions (with circa 40% re-
duction in the upper execution time bound) when it becomes known that the force
flag will be set to true, as shown in the lower part of Table 1.

We used the ECLiPS e constraint logic programming system [2] which has native
support for the integer and real non-linear arithmetic constraints (including disjunc-
tive constraints) that are used in the derivation of the model. Deriving the constraint
models with our pilot implementation and solving them with a centralized solver
took on average around 260 ms on an i86_64 laptop computer with 4GB of RAM run-
ning Mac OS X 10.7.3.

4.2 Predicting SLA Violations at Run Time

execution time

14 376 ms

27 057 ms

63 103 ms
Tmax

9 10 17 20 41 50input data size

Fig. 8. An example of SLA failure prediction zones.

The constraint-based QoS model
can be used for predicting SLA
violations at runtime. Since the
participant SLA is always related
to some event that happens in
one of the participants (such
as sending the reply in activ-
ity a11 of our sample choreog-
raphy), we can apply a variation
of the constraint-based predic-
tion method for orchestrations [14]. In that method, we make predictions at each
point in execution of the participant processes for which we have the continuation
and the monitoring data describing the previously accumulated QoS metrics. In the
case of execution time, the imminent failure condition for participant A is predicted
when the constraint Tout(req) ≤ Tmax is proven unsatisfiable in the constraint QoS
model, i.e., when SLA compliance cannot possibly be achieved.

Using the experimental settings from the previous subsection, we predict SLA vi-
olations for a running choreography with fixed input data size (known at run time),
by taking Tmax to be the upper bound of Tout(req) for the 80% confidence interval
in each input data class from Table 1. The thick black line in Figure 8 shows Tmax

12

for input data sizes in the range 1..50. The dashed lines show the upper and lower
bound of Tout(req) for a 99% confidence interval. SLA violations are possible in the
gray zones that correspond to data size intervals 9..10, 17..20, and 41..50. In those in-
tervals, imminent SLA violation can be predicted between 175 ms and 325 ms ahead
of Tmax. For other input data sizes (in ranges 1..8, 11..16, and 21..40), the predictor is
able to predict SLA conformance at the very start. In both cases, the percentage of
correctly predicted cases is typically very high, between 94% and 99% [5].

4.3 SLA Compliance Checking, Dynamic Binding and Adaptation

We now turn to a situation where there exist several implementations for a partic-
ipant role in a choreography, that are known to be compatible with the communi-
cation protocol, message data types, and message cardinalities. We now want to see
how the knowledge about participant QoS models can help us rule out some combi-
nations of participant implementations (or promote others) at design time.

For instance, let us take participant A from Figure 1, and assume that there are
two implementations that can take the role of B and which differ only in the method
for generating alternatives in activity a15: while B1 can generate one or more alterna-
tives, B2 always generates at least two. Although the ranges for all participant model
variables of B2 are subsets of the corresponding ranges for B1, the combination of A
with B2 is illegal for some SLAs and input data sizes for which A with B1 may work.
E.g., for Tmax = 18000ms, the constraint model predicts that the combination of A
and B2 is guaranteed to fail for input data sizes of 50 and above when forced=false
in A. Since A does not control forced, for such data sizes it should rule out B2, and
choose B1 which has a chance to meet the SLA.

16 17 18 19

13

14

15

16

kA

kB

T =25 508 ms

T =25 608 ms

T =25 708 ms

T =25 808 ms

Fig. 9. Adaptation need detection in B.

This kind of analysis can be performed by
checking that every internal structural param-
eter of A in the constraint QoS model for the
choreography (such as the condition in a6 and
the number of iterations of a4) augmented with
condition Tout(req) > Tmax has at least one
value for which the condition Tout(req) ≤ Tmax

is satisfiable for the given range of input data
sizes. Alternatively, the same check can be used
for dynamic binding at run-time to select an implementation for the role of B for the
known size of the particular input request. Such dynamic binding provides a finer-
grained per-request selection, at the cost of additional run-time analysis.

However, selecting B1 does not guarantee Tout(req) ≤ Tmax: if at run time each
invocation of a15 happens to return more than one alternative (thus behaving in the
same way as B2), the SLA will be violated for some input data sizes. Participant B
can use its QoS model to detect such a situation and to adapt by forcing a15 to start
returning single items. At the beginning of each iteration in loop a14 from Figure 1, B
can test whether the execution of a15, if it generates multiple alternatives, can lead to
an SLA violation. If so, it can coerce a15 to produce a single item and so enforce the
SLA. The earliest points in time when that can happen for input data size in range
17..20 and Tmax = 27057 ms (the central gray zone in Figure 8), are shown in Figure 9.

13

kB stands for the previous number of iterations of a14, and kA stands for the previous
number of times when more than one alternative was generated in a15.

5 Conclusions

The constraint-based approach to QoS assurance for service choreographies pre-
sented is based on the automatic derivation of QoS constraint models from abstract
descriptions of multiple participating processes that can engage in complex, state-
ful conversations. The QoS attributes that can be modeled include execution time,
availability, monetary cost, the quantity of data transferred, and any others that can
be mapped onto cumulative, non-negative numerical metrics. For greater precision,
the model derivation is augmented with an analysis of message types with size con-
straints, and the resulting models are data sensitive. The participant models can be
derived, integrated, and solved centrally, or in a distributed fashion. The approach
can be used at design-time, for classes of input data, and also at run time, with the
actual data, whenever the information about the current point in execution is pro-
vided for the participants. The resulting models can be used to support SLA nego-
tiation, SLA violation prediction, design-time SLA conformance for classes of input
data, dynamic binding of participants, and SLA-driven run-time adaptation.

Based on our prototype implementation, our future work will aim at the develop-
ment of the supporting tools and systems, and interfacing them with the service in-
frastructure components, such as the execution engines and service buses, and with
choreography design tools. We will also aim at evaluating the quality of QoS predic-
tion offered by the constraint-based models in distributed settings and when used
with incomplete or inaccurate information about the QoS properties of the service
environment and components.

References

1. K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
2. Krzysztof R. Apt and Mark G. Wallace. Constraint Logic Programming Using ECLIPSE.

Cambridge University Press, 2007.
3. Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography realizability.

In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’12, pages 191–202, New York, NY, USA, 2012. ACM.

4. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static Analy-
sis of Programs by Construction or Approximation of Fixpoints. In Proc. of POPL’77, pages
238–252. ACM Press, 1977.

5. Ivanović D, M. Carro, and M. Hermenegildo. Exploring the impact of inaccuracy and im-
precision of qos assumptions on proactive constraint-based QoS prediction for service
orchestrations. In Proceedings of the 4th International Workshop on Principles of Engi-
neering Service-Oriented Systems, PESOS 2012, pages 931–937. IEEE Press, June 2012.

6. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2nd ed. edition, 2002.

7. Rina Dechter. Constraint Processing. Morgan Kauffman Publishers, 2003.
8. Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. BPEL4Chor: Extending

BPEL for Modeling Choreographies. In ICWS, pages 296–303, 2007.

14

9. Mariangiola Dezani-Ciancaglini and Ugo De’Liguoro. Sessions and session types: an
overview. In Proceedings of the 6th international conference on Web services and formal
methods, WS-FM’09, pages 1–28, Berlin, Heidelberg, 2010. Springer-Verlag.

10. Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus Pohl. A
journey to highly dynamic, self-adaptive service-based applications. Automated Software
Engineering, 15:313–341, 2008. 10.1007/s10515-008-0032-x.

11. Boi Faltings and Makoto Yokoo, editors. Artificial Intelligence Journal: Special Issue on
Distributed Constraint Satisfaction, volume 161. Elsevier Science Publishers Ltd., Essex,
UK, January 2005.

12. J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore. A framework for proactive self-
adaptation of service-based applications based on online testing. In P. Mähönen, K. Pohl,
and T. Priol, editors, Towards a Service-Based Internet, volume 5377 of Lecture Notes in
Computer Science, pages 122–133. Springer, 2008.

13. D. Ivanović, M. Carro, and M. Hermenegildo. Towards Data-Aware QoS-Driven Adaptation
for Service Orchestrations. In Proceedings of the 2010 IEEE International Conference on
Web Services (ICWS 2010), Miami, FL, USA, 5-10 July 2010, pages 107–114. IEEE, 2010.

14. D. Ivanović, M. Carro, and M. Hermenegildo. Constraint-Based Runtime Prediction of
SLA Violations in Service Orchestrations. In Gerti Kappel, Hamid Motahari, and Zakaria
Maamar, editors, Service-Oriented Computing – ICSOC 2011, number 7084 in LNCS, pages
62–76. Springer Verlag, December 2011. Best paper award.

15. Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar. Monitor-
ing, prediction and prevention of sla violations in composite services. In ICWS, pages
369–376. IEEE Computer Society, 2010.

16. A. Metzger, S. Benbernou, M. Carro, M. Driss, G. Kecskemeti, R. Kazhamiakin, K. Krytikos,
A. Mocci, E. Di Nitto, and et al. B. Wetzstein. Analytical quality assurance. In Service
Research Challenges and Solutions for the Future Internet, volume 6500 of LNCS, pages
209–270. Springer Verlag, 2010.

17. Object Management Group. Business Process Modeling Notation (BPMN), Version 1.2, Jan-
uary 2009.

18. John C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation
Journal, 6:233–247, 1993.

19. O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl. Usage-based online
testing for proactive adaptation of service-based applications. In COMPSAC 2011 – The
Computed World: Software Beyond the Digital Society. IEEE Computer Society, 2011.

20. E. Schmieders and A. Metzger. Preventing performance violations of service composi-
tions using assumption-based run-time verification. In A. Zisman, I. Llorente, Surridge
M., Abramowicz W., and Vayssière J., editors, ServiceWave 2011, LNCS. Springer, 2011.

21. Sebastian Stein, Terry R. Payne, and Nicholas R. Jennings. Robust execution of service
workflows using redundancy and advance reservations. IEEE T. Services Computing,
4(2):125–139, 2011.

22. G. Tselentis, J. Dominigue, A. Galis, A. Gavras, and D. Hausheer. Towards the Future Inter-
net: A European Research Perspective. IOS Press, Amsterdam, The Netherlands, 2009.

23. Wil M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H. M. W. Verbeek. Choreog-
raphy Conformance Checking: An Approach based on BPEL and Petri Nets. In The Role of
Business Processes in Service Oriented Architectures, Dagstuhl Seminar Proceedings, 2006.

24. World Wide Web Consortium. Web Services Choreography Description Language Version
1.0, November 2005.

15

