104 research outputs found

    Framework to facilitate smooth handovers between mobile IPv6 networks

    Get PDF
    Fourth generation (4G) mobile communication networks are characterised by heterogeneous access networks and IP based transport technologies. Different access technologies give users choices to select services such as levels of Quality of Service (QoS) support, business models and service providers. Flexibility of heterogeneous access is compounded by the overhead of scanning to discover accessible services, which added to the handoff latency. This thesis has developed mechanisms for service discovery and service selection, along with a novel proposal for mobility management architectures that reduced handoff latency. The service discovery framework included a service advertisement data repository and a single frequency band access mechanism, which enabled users to explore services offered by various operators with a reduced scanning overhead. The novel hierarchical layout of the repository enabled it to categorise information into various layers and facilitate location based information retrieval. The information made available by the repository included cost, bandwidth, Packet Loss (PL), latency, jitter, Bit Error Rate (BER), location and service connectivity information. The single frequency band access mechanism further enabled users to explore service advertisements in the absence of their main service providers. The single frequency access mechanism broadcasted service advertisements information piggybacked onto a router advertisement packet on a reserved frequency band for advertisements. Results indicated that scanning 13 channels on 802.11 b interface takes 189ms whereas executing a query with maximum permissible search parameters on the service advertisement data repository takes 67ms. A service selection algorithm was developed to make handoff decisions utilising the service advertisements acquired from the service discovery framework; based on a user's preference. The selection algorithm reduced the calculation overhead by eliminating unsuitable networks; based on interface compatibility, service provider location, unacceptable QoS (Quality of service) and unacceptable cost; from the selection process. The selection algorithm utilised cost, bandwidth, PL, latency, jitter, BER and terminal power for computing the most suitable network. Results indicated that the elimination based approach has improved the performance of the algorithm by 35% over non- elimination oriented selection procedures, even after utilising more selection parameters. The service discovery framework and the service selection algorithm are flexible enough to be employed in most mobility management architectures. The thesis recommends Seamless Mobile Internet Protocol (SMIP) as a mobility management scheme based on the simulation results. The SMIP protocol, a combination of Hierarchical Mobile Internet Protocol (HMIP) and Fast Mobile Internet Protocol (FMIP), suffered hand off latency increases when undergoing a global handoff due to HMIP. The proposed modification to the HMIP included the introduction of a coverage area overlap, to reduce the global handoff latency. The introduction of a Home Address (HA) in Wireless Local Area Networks (WLAN) binding table enabled seamless handoffs from WLANs by having a redirection mechanism for the user's packets after handoff. The thesis delivered a new mobility management architecture with mechanisms for service discovery and service selection. The proposed framework enabled user oriented, application centric and terminal based approach for selecting IPv6 networks

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    Performance modelling of network management schemes for mobile wireless networks

    Get PDF

    Handover management in mobile WiMAX using adaptive cross-layer technique

    Get PDF
    The protocol type and the base station (BS) technology are the main communication media between the Vehicle to Infrastructure (V2I) communication in vehicular networks. During high speed vehicle movement, the best communication would be with a seamless handover (HO) delay in terms of lower packet loss and throughput. Many studies have focused on how to reduce the HO delay during lower speeds of the vehicle with data link (L2) and network (L3) layers protocol. However, this research studied the Transport Layer (L4) protocol mobile Stream Control Transmission Protocol (mSCTP) used as an optimal protocol in collaboration with the Location Manager (LM) and Domain Name Server (DNS). In addition, the BS technology that performs smooth HO employing an adaptive algorithm in L2 to perform the HO according to current vehicle speed was also included in the research. The methods derived from the combination of L4 and the BS technology methods produced an Adaptive Cross-Layer (ACL) design which is a mobility oriented handover management scheme that adapts the HO procedure among the protocol layers. The optimization has a better performance during HO as it is reduces scanning delay and diversity level as well as support transparent mobility among layers in terms of low packet loss and higher throughput. All of these metrics are capable of offering maximum flexibility and efficiency while allowing applications to refine the behaviour of the HO procedure. Besides that, evaluations were performed in various scenarios including different vehicle speeds and background traffic. The performance evaluation of the proposed ACL had approximately 30% improvement making it better than the other handover solutions

    A QoS-aware architecture for mobile internet

    Get PDF
    Tese de doutoramento InformáticaHoje em dia, as pessoas pretendem ter simultaneamente mobilidade, qualidade de serviço e estar sempre connectados à Internet. No intuito, de satisfazer estes clientes muito exigentes, os mercados das telecomunicações estão a impor novos e dificeis desafios às redes móveis, através da demanda, de heterogeneidade em termos de tecnologias de acesso rádio, novos serviços, niveis de qualidade de serviço adequados aos requisitos das aplicações de tempo real, elevada taxa de utilização do recursos disponiveis e melhor capacidade de desempenho. A Internet foi concebida para fornecer serviços sem qualquer tipo de garantias de qualidade às aplicações, apenas se comprometendo em oferecer o melhor serviço possível. No entanto, nos útlimos anos diversos esforços foram levados a cabo no sentido de dotar a Internet com o suporte à qualidade de serviço. Dos esforços desenvolvidos resultaram dois paradigmas para o suporte da qualidade de serviço: o modelo de Serviços Integrados (Integrated Services - IntServ) e o modelo de Serviços Diferenciados (Differentiated Services - DiffServ). Todavia, estes modelos de qualidade de serviço (QoS) foram concebido antes da existência da Internet móvel, portanto o desenvolvimento destes modelos não teve em consideração a questão da mobilidade. Por outro lado, o protocolo padrão actual para a Internet móvel, o MIPv6, revela algumas limitações nos cenários onde os utilizadores estão constantemente a moverem-se para outros pontos de acesso. Neste tipo de cenários, o MIPv6 introduz tempos de latência que não são sustentáveis para aplicações com requisitos de QoS mais restritos. Os factos revelados, demonstram que existe uma emergente necessidade de adaptar o actual protocolo de mobilidade, e também de adaptar os modelos de QoS, ou então criar modelos alternativos de QoS, para satisfazer às exigências do utilizador de hoje de redes móveis. Para alcançar este objectivo o presente trabalho propõe melhorias no sistema de gestão da mobilidade do protocolo MIPv6 e na gestão de recursos do modelo DiffServ. O MIPv6 foi melhorado para os cenários de micro-mobilidade com a abordagem para micro-mobilidade do F-HMIPv6. Enquanto que, o modelo DiffServ foi melhorado para os ambientes móveis com funcionalidades dinâmicas e adaptativas através da utilização de sinalização de QoS e da gestão distribuida dos recursos. A gestão da mobilidade e dos recursos foi também acoplada na solução proposta com o propósito de optimizar a utilização dos recursos num meio onde os recursos são tipicamente escassos. O modelo proposto é simples, é de fácil implementação, tem em consideração os requisitos da Internet móvel, e provou ser eficiente e capaz de fornecer serviços com QoS de elevada fiabilidade às aplicações.Over the last few years, several network communication challenges have arisen as a result of the growing number of users demanding Quality of Service (QoS) and mobility simultaneously. In order to satisfy these very demanding customers, the markets are imposing new challenges to wireless networks by demanding heterogeneity in terms of wireless access technologies, new services, suited QoS levels to real-time applications, high usability and improved performance. However, the Internet has been designed for providing application services without quality guarantees. That explains why, in the last years several efforts have been made to endow Internet with QoS support. From the developed efforts have resulted two QoS paradigms: Integrated Services (IntServ) which offers the guaranteed service model and the Differentiated Services (DiffServ) which offers the predictive service model. Although these QoS models have been designed before the existence of mobile Internet, so they do not consider the mobility issue. For instance, the guaranteed service model requires that whenever a Mobile Node (MN) wants to move to a new location, the allocated resources in the old path must be released and a new resource reservation in a new path must be made, resulting in extra signaling overhead, heavy processing and state load. Therefore, if handovers are frequent, large mobility and QoS signaling messages will be created in the access networks. Consequently, significant scalability problems may arise with this type of service model. The predicted service model, on the other hand, requires an additional features such as dynamic and adaptive resource management in order to be efficient in a very dynamic network such as a mobile network. A QoS solution for mobile environments must provide the capacity to adapt its resource utilization to a changeable nature of wireless networks because they have a more dynamic behavior due to incoming or outgoing handovers. For this reason, a QoS signalization for dynamic resource provisioning is necessary in order to supply adequate QoS levels to mobile users. On the other hand, the current standard protocol for mobile Internet, Mobile IPv6 (MIPv6), reveals limitations in scenarios where users are constantly moving to another point of attachment. In these situations, MIPv6 introduces latency times that are not sustainable for applications with strict QoS requirements. All things considered, reveal the emerging need to adapt the current standard mobility protocol and QoS models to satisfy today’s mobile user’s requirements. To accomplish this goal, the present work proposes enhancements in terms of the MIPv6 protocol mobility management scheme as well as in DiffServ QoS model resource management. The former was enhanced for micro-mobility scenarios with a specific combination of FMIPv6 (Fast Mobile IPv6) and HMIPv6 (Hierarchical Mobile IPv6) protocols. Whereas, the latter was enhanced for mobile environments with dynamic and adaptive features by using QoS signalization as well as distributed resource management. The mobility and resource management has also been coupled in the proposed solution with the objective of optimizing the resource utilization in a environment where resources are typically scarce. In order to assess model performance as well as its parametrization, a simulation model has been designed and implemented in the Network Simulator version two (NS-2). The model´s performance evaluation has been conducted based on the respective data acquired from statistical analysis in order to validate and consolidate the conclusions. Simulation results indicate that the solution avoids network congestion and starvation of less priority DiffServ classes. Moreover, the results also indicate that bandwidth utilization for priority classes increases and the QoS offered to MN’s applications, in each DiffServ class, remains unchangeable with MN mobility. The proposed model is simple and easy to implement. It considers mobile Internet requirements and has proven to be effective and capable of providing services with highly reliable QoS to mobile applications.Fundação para a Ciência e a Tecnologia (FCT) - Bolsa SFRH/BD/35245/200

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Architectural and mobility management designs in internet-based infrastructure wireless mesh networks

    Get PDF
    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous ap- plications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility management techniques for mobile users to achieve seamless roam- ing. Mobility management includes handoff management and location management. The objective of this research is to design new handoff and location management techniques for Internet-based infrastructure WMNs. Handoff management enables a wireless network to maintain active connections as mobile users move into new service areas. Previous solutions on handoff manage- ment in infrastructure WMNs mainly focus on intra-gateway mobility. New handoff issues involved in inter-gateway mobility in WMNs have not been properly addressed. Hence, a new architectural design is proposed to facilitate inter-gateway handoff man- agement in infrastructure WMNs. The proposed architecture is designed to specifi- cally address the special handoff design challenges in Internet-based WMNs. It can facilitate parallel executions of handoffs from multiple layers, in conjunction with a data caching mechanism which guarantees minimum packet loss during handoffs. Based on the proposed architecture, a Quality of Service (QoS) handoff mechanism is also proposed to achieve QoS requirements for both handoff and existing traffic before and after handoffs in the inter-gateway WMN environment. Location management in wireless networks serves the purpose of tracking mobile users and locating them prior to establishing new communications. Existing location management solutions proposed for single-hop wireless networks cannot be directly applied to Internet-based WMNs. Hence, a dynamic location management framework in Internet-based WMNs is proposed that can guarantee the location management performance and also minimize the protocol overhead. In addition, a novel resilient location area design in Internet-based WMNs is also proposed. The formation of the location areas can adapt to the changes of both paging load and service load so that the tradeoff between paging overhead and mobile device power consumption can be balanced, and at the same time, the required QoS performance of existing traffic is maintained. Therefore, together with the proposed handoff management design, efficient mobility management can be realized in Internet-based infrastructure WMNs

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool
    corecore