32,510 research outputs found

    Supporting Multimedia Services in the Future Network with QoS-routing

    Get PDF
    The increasing demand for real-time multimedia applications for groups of users, together with the need for assuring high quality support for end-to-end content distribution is motivating the scientific community and industry to develop novel control, management and optimization mechanisms with Quality of Service (QoS) and Quality of Experience (QoE) support. In this context, this paper introduces Q-OSys (QoS-routing with Systematic Access), a distributed QoS-routing approach for enhancing future networks with autonomous mechanisms orchestrating admission control, per-class overprovisioning, IP Multicast and load-balancing to efficiently support multiuser multimedia sessions. Simulation experiments were carried to show the efficiency and impact of Q-OSys on network resources (bandwidth utilization and packet delay). Q-OSys is also evaluated from a user point-of-view, by measuring well-known objective and subjective QoE metrics, namely Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSM) Video Quality Metric (VQM) and Mean Opinion Score (MOS)

    Network support for multimedia applications using the Netlets architecture

    Get PDF
    Multi-party multimedia networking applications such as e-commerce, distributed data analysis, Internet TV and advanced collaborative environments feature stringent end-to-end Quality of Service (QoS) requirement and require globally distributed user groups to be interconnected. The variety of delivery requirements posed by such applications are best satisfied using highly customised networking protocols. Hence, a demand for networks to migrate from the current fixed service model to a more flexible architecture that accommodates a wide variety of networking services is emerging. New approaches are required in order to build such service oriented networks. Active networking is one such approach. Active networks treats the network as a programmable computation engine, which provides customised packet processing and forwarding operations for traffic flowing through network nodes. User applications can download new protocols into network elements at runtime, allowing rapid innovation of network services. This thesis makes the case for employing mobile agents to realise an active networking architecture, and describes such an architecture called the Netlets architecture. Netlets are autonomous, mobile components which persist and roam in the network independently, providing predefined network services. This thesis presents the design and implementation of the Netlet node and the service deployment m echanisms that are required to distribute Netlet services in the network. Using the Netlet toolkit, variety of network services were designed to provide network support for multimedia applications in the Internet. A service was implemented to enhance the working of the RSVP protocol in order to provide robust end-to-end QoS support even when the network is only partially QoS provisioned. A scalable and reliable multicast protocol was implemented using the unicast communication model that accommodate heterogeneous receiver terminals. Another service integrates client-side server selection support into web sessions established over the Internet. A service was also developed which provides QoS signalling support to legacy applications. It is shown that these Netlet services are of practical value using performance measurements to assess Netlet responsiveness. Netlet based solutions maybe deployed using existing technologies to provide support for a wide range of multimedia applications in the Internet. The Netlets architecture has thus been shown to allow value-added services to be added to existing networks. By optimising the Netlet architecture implementation, this may be extended to services operating on high-speed (1Gb/s and upwards) links. It thus shows promise as an architecture for building the next generation of active networking solutions

    Estimating commitment in a digital market place environment

    Get PDF
    The future generation of mobile communication shall be a convergence of mobile telephony and information systems which promises to change people's lives by enabling them to access information when, where and how they want. It presents opportunities to offer multimedia applications and services that meet end-toend service requirements. The Digital Marketplace framework will enable users to have separate contracts for different services on a per call basis. In order for such a framework to function appropriately, there has to be some means for the network operator to know in advance if its network will be able to support the user requirements. This paper discusses the methods by which the network operator will be able to determine if the system will be able to support another user of a certain service class and therefore negotiate parameters like commitment, QoS and the associated cost for providing the service, thus making the Digital Marketplace wor

    Quality of Experience and Adaptation Techniques for Multimedia Communications

    Get PDF
    The widespread use of multimedia services on the World Wide Web and the advances in end-user portable devices have recently increased the user demands for better quality. Moreover, providing these services seamlessly and ubiquitously on wireless networks and with user mobility poses hard challenges. To meet these challenges and fulfill the end-user requirements, suitable strategies need to be adopted at both application level and network level. At the application level rate and quality have to be adapted to time-varying bandwidth limitations, whereas on the network side a mechanism for efficient use of the network resources has to be implemented, to provide a better end-user Quality of Experience (QoE) through better Quality of Service (QoS). The work in this thesis addresses these issues by first investigating multi-stream rate adaptation techniques for Scalable Video Coding (SVC) applications aimed at a fair provision of QoE to end-users. Rate Distortion (R-D) models for real-time and non real-time video streaming have been proposed and a rate adaptation technique is also developed to minimize with fairness the distortion of multiple videos with difference complexities. To provide resiliency against errors, the effect of Unequal Error protection (UXP) based on Reed Solomon (RS) encoding with erasure correction has been also included in the proposed R-D modelling. Moreover, to improve the support of QoE at the network level for multimedia applications sensitive to delays, jitters and packet drops, a technique to prioritise different traffic flows using specific QoS classes within an intermediate DiffServ network integrated with a WiMAX access system is investigated. Simulations were performed to test the network under different congestion scenarios

    AROMA: An adapt-or-reroute strategy for multimedia applications over SDN-based wireless environments

    Get PDF
    To support new and advanced multimedia-rich applications and services while providing satisfactory user experience, the underlying network infrastructure needs to evolve and adapt. One of the key enabling technologies of the next generation (5G) networks is the integration of Software Defined Networking (SDN) within a heterogeneous wireless environment to enable interoperability and QoS provisioning. Leveraging on the features of the SDN paradigm, it is possible to introduce new solutions to handle the increasing mobile video transmission challenges with strict QoS requirements, such as: low delay, jitter, packet loss, and high bandwidth demands. However, degradation and instability perceived from video traffic makes it difficult to satisfy various end-users. In this context, this paper proposes AROMA, an Adapt-or-reROute strategy for Multimedia Applications over SDN-based wireless environments. AROMA enables QoS provisioning over multimedia-oriented SDN-based WLAN environments. The proposed solution is evaluated using a real experimental test-bed setup

    Data-driven dynamic resource scheduling for network slicing: A Deep reinforcement learning approach

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordNetwork slicing is designed to support a variety of emerging applications with diverse performance and flexibility requirements, by dividing the physical network into multiple logical networks. These applications along with a massive number of mobile phones produce large amounts of data, bringing tremendous challenges for network slicing performance. From another perspective, this huge amount of data also offers a new opportunity for the management of network slicing resources. Leveraging the knowledge and insights retrieved from the data, we develop a novel Machine Learning-based scheme for dynamic resource scheduling for networks slicing, aiming to achieve automatic and efficient resource optimisation and End-to-End (E2E) service reliability. However, it is difficult to obtain the user-related data, which is crucial to understand the user behaviour and requests, due to the privacy issue. Therefore, Deep Reinforcement Learning (DRL) is leveraged to extract knowledge from experience by interacting with the network and enable dynamic adjustment of the resources allocated to various slices in order to maximise the resource utilisation while guaranteeing the Quality-of-Service (QoS). The experiment results demonstrate that the proposed resource scheduling scheme can dynamically allocate resources for multiple slices and meet the corresponding QoS requirements.Huawe

    Tradable Service Level Agreements to Manage Network Resources for Streaming Internet Services

    Get PDF
    In recent years, supply and demand of streaming applications via the Internet (e.g., video-on-demand, live TV coverage, video conferencing) have increased. The idea behind streaming Internet services is to avoid a time-consuming download, and instead, make the user view streaming content in real-time without delay. However, today’s Internet traffic is routed on a best effort basis without any support for guaranteed service provisioning. Missing traffic prioritization mechanisms to guarantee Quality of Service (QoS) and, additionally, the fact that traffic passes several Internet Service Providers (ISP) during transmission is very disadvantageous for the performance of streaming Internet services. Therefore, a solution is presented to enhance existing protocols with QoS mechanisms. Service Level Agreements (SLA) and Operational Level Agreements (OLA) between service providers and service customers are proposed to enforce service guarantees on an economic base and they serve ISPs and Content Service Providers (CSP) to efficiently manage network resources. The concatenation of such contractual agreements between ISPs enables end-to-end-based service provisioning with QoS assurance. A contracting protocol is introduced to control the settlement of contracts and user demands. With the help of service brokers, SLAs could even be traded in a marketplace established for efficient use of limited resources

    Efficiency of PRI and WRR DiffServ scheduling mechanisms for real-time services on UMTS environment

    Get PDF
    The next generation of mobile phones will be probably all-IP based enabling users to access Internet services. In order to make this possible a satisfactory quality of service, at least equal to the fixed Internet, must be ensured. To achieve this goal an end-to-end QoS system must be constructed. Another fact is the dominance of IP over other technologies due, in large measure, to its characteristic of working with heterogeneous technologies. Consequently, being IP the common denominator on a heterogeneous environment, it is important to develop end-to-end IP QoS guarantees for the different applications over distinct access technologies. This is particularly important for cellular wireless networks due to the ever growing expansion of mobile phone users. One way to contribute to this goal is to apply DiffServ QoS mechanisms to UMTS technology in order to model an End-to-End QoS communication system. A mapping of DiffServ CodePoints into UMTS classes can be applied in order to get efficient PHB configurations. This paper proposes an architecture to support end-to-end quality of service to several application services running on mobile UMTS user agents and communicating with servers located in a wired internet. The proposed architecture is based on a DiffServ model, where QoS parameters are set either by the user agent or by the SGSN. In particular, RED queue management and PRI or WRR scheduling policies are enforced. Different UMTS traffic classes are mapped into different DiffServ parameters. The performance of this architecture has been evaluated by simulation using NS, assuming different network load scenarios. In particular, the delay and packet loss experienced by VoIP, Video, FTP and HTTP traffic are evaluated in the cases of PRI and WRR scheduling policies, and compared to those measured when DiffServ is not implemented. Finally, a revenue function to estimate the profits that an ISP could expect by using a DiffServ implementation on IP UMTS core routers is proposed.(undefined

    Informing Clients through Multimedia Communications: An approach to provide interactivity

    Get PDF
    One of the key problems in informing clients through multimedia streaming applications over the Internet is to customize the stream of information according to the client’s requests. This is achievable only if client and server can interact along the application lifetime, which is possible only if the communication system supports the rigid timing constraints imposed by these interactive applications on their traffic. In the Internet scenario, these applications are very difficult to support, as the Internet provides a best-effort service to the traffic it carries, which means that the Internet does not make any promises about the end-to-end delay for an individual packet and about the variation of packet delay (network jitter) within a packet stream. These problems are confirmed by several experiments we performed over the Internet, which highlight that interactive applications achieve a quality that is frustrating. The contribution of this paper is the proposal of a novel mechanism to support interactive multimedia streaming applications over the Internet. Our mechanism adapts the multimedia stream transmission to the network conditions, by intentionally and slightly acting on the video QoS. Our mechanism has been validated through severalexperiments performed over the Internet. Results confirm that the supported interactive applications achieve a satisfactory quality and the user perceives a video quality only slightly affected by the QoS modification introduced by our mechanism
    • 

    corecore