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Abstract

The widespread use of multimedia services on the World Wide Web and the advances
in end-user portable devices have recently increased the user demands for better quality.
Moreover, providing these services seamlessly and ubiquitously on wireless networks and
with user mobility poses hard challenges. To meet these challenges and fulfill the end-user
requirements, suitable strategies need to be adopted at both application level and network
level. At the application level rate and quality have to be adapted to time-varying bandwidth
limitations, whereas on the network side a mechanism for efficient use of the network
resources has to be implemented, to provide a better end-user Quality of Experience (QoE)
through better Quality of Service (QoS). The work in this thesis addresses these issues by
first investigating multi-stream rate adaptation techniques for Scalable Video Coding (SVC)
applications aimed at a fair provision of QoE to end-users. Rate Distortion (R-D) models
for real-time and non real-time video streaming have been proposed and a rate adaptation
technique is also developed to minimize with fairness the distortion of multiple videos
with difference complexities. To provide resiliency against errors, the effect of Unequal
Error protection (UXP) based on Reed Solomon (RS) encoding with erasure correction has
been also included in the proposed R-D modelling. Moreover, to improve the support of
QOoE at the network level for multimedia applications sensitive to delays, jitters and packet
drops, a technique to prioritise different traffic flows using specific QoS classes within an
intermediate DiffServ network integrated with a WiMAX access system is investigated.

Simulations were performed to test the network under different congestion scenarios.

11






Acknowledgements

First and above all, I praise God, the almighty for providing me this opportunity and grant-
ing me the capability to proceed successfully. This thesis appears in its current form due to
the assistance and guidance and prayers of several people. I would therefore like to offer
my sincere thanks to all of them.

I am thankful to my adviser Velio Tralli for his support, guidance and ideas that he gave
during my Ph.D which made this thesis possible. I appreciate all his contributions of time
and ideas to make my Ph.D experience productive and stimulating. The joy and enthusiasm
he has for his research was contagious and motivational for me, even during tough times
in the Ph.D pursuit. I am grateful to Gianluca Mazzini and Andrea Conti for their active
support whenever I needed.

I am also thankful to Maria Martini for her supervision, guidance and funding me in
Royal Society Project for the months that I spent for my research in Kingston University,
London.

I cannot forget the forever and everlasting support of my parents and siblings. I am
thankful to my elder brother Asif for his financial support before starting my Ph.D and my
parents and siblings for theirs prayers. In short I cannot express my gratitude to them in
words.

I am thankful to my colleagues in TLC lab. They were always helpful and cooperative to
me in academic and non academic acttivites, to name few in particular are Danilo, Honorine

and Sergio.



My time in Ferrara is the best [ had so far and it was made enjoyable in large part due
to the many friends and groups that became a part of my life. In particular I am thankful to
all my friends of residential college “Cenacolo” where I found myself as to be in my home.

I will also extend my gratitude to Lena Fabbri as she helped me a lot, for official work
both in and out of university and during my stay in Ferrara.

Last but not the least I am thankful to University of Ferrara for giving me the opportu-
nity and funding me during these three years of my Ph.D.

Abdul Haseeb

University of Ferrara, Italy

March 2012

vi



DEDICATION

To my Loving Parents

Ma and Pa

vil



Contents

Abstract

Acknowledgements

Contents

List of Tables

List of Figures

1 Introduction

1.1

Scopeof the Thesis . . . . . . .. ... .. .. ... ..
1.2 Outlineof Thesis . . . . . . . . . . . . .. it

2 Overview of Scalable Video Coding

2.1
2.2
2.3

Introduction . . . . . . . ...

Concept of H.264/AVC Extension to H.264/SVC . . . . ... ... .. ..

Types of Scalabilities . . . . . . . ... ... ... .. .
2.3.1 Spatial scalability . . . .. ... ... ... ... .. ...,
2.3.2 Temporal scalability . . .. ... ... ... ............

233

SNR scalability/Quality scalability . . . . . ... ... ... ....
2.3.3.1 Coarse Grain Scalability (CGS) . . .. ... ... ....

viii

iii

viii

xi



2.3.3.2 Medium Grain Scalability MGS) . . . ... .. .. ...
2.3.3.3  Fine Grain Scalability (FGS) . . . . .. .. ... .. ...
2.4 Backward Compatibility . . .. ... .. ... ... ... .. ... ...,

Rate Adaptation Using MGS for SVC

3.1 Introduction . . . . . . . . . . ..

3.2 General Problem Formulation for Multi-Stream Rate Adaptation . . . . . .

3.3 Rate Distortion Model for MGS with Quality Layer . . . . ... ... ...

3.4 GOP-Based Multi-Stream Rate Adaptation Framework . . . . ... .. ..
34.1 Problem Solution . . . . ... ... ... L

3.5 Numerical Results . . . . . . ... ... o

3.6 Conclusions . . . . . . . . .

Rate Adaptation for Error Prone Channels in SVC
4.1 Introduction . . . . . . .. ... e
4.1.1 RelatedWorks. . . . . ... ... .. oo
4.2 Unequal Erasure Protection . . . . . . .. ... ... ... .........
4.2.1 Frame error probability and expected distortion . . . . . . .. . ..
422 Proposed UXPprofiler . ... ... ... ... .. .........
4.2.2.1 A case study for the designof EEP . . . ... ... ...
4.3 Rate-distortion modeling with Packet Losses . . . . . . . . ... ... ...
4.4 Packet-erasure channel . . . .. ... ... ... 0oL

4.5 Conclusions . . . . . .. e e e

Rate Distortion Modeling for Real-time MGS Coding
5.1 Introduction . . . . . . . . . ...

5.2 Overview of Rate Distortion modeling . . . . ... ... ... .......

5.3 ProposedModel . . . . . ... L

iX

17
17
20
23
27
28
32
37

39
39
41
44
46
47
49
49
52
54



5.3.1 Validation of the proposed models . . . . . . .. ... ... ....
5.4 Simulation and Model Verification . . . . . ... ... .. ... ... ...

5.5 Conclusions . . . . . . . o e e

QoS for VoIP Traffic in Heterogeneous Networks

6.1 Introduction . . . . . . . . .. ..

6.2 MechanismforIPQoS . ... ... .. .. ... ... ... . ... ...

6.3 QoS Mechanism in WIMAX Network . . . ... ... ... ........

6.4 Inter-Working Model and Simulation . . . . . . .. ... ... .......
6.4.1 Priority Queuing(PQ) . . . .. ... . ... ... ..
6.4.2 SimulationResults . . .. ... .. ... 0oL

6.5 Conclusions . . . . . . . . .

Bibliography

List of Tables

3.1

Comparison between the two semi-analytical model in (3.9) and (3.10) with
respect to the minimum and maximum RMSE and the coefficient of determina-
tion R2 evaluated for each GOP (GOP size equal to 16) of five video sequence
with CIF resolution and frame rate of 30 fps. The video are encoded with one
base layer (QP equal to 38) and two enhancement layers (QP equal to 32 and
26), both with 5 MGS layers and a weights vector equalto [32425]. . .. ..

26



3.2

33

4.1

4.2

5.1

5.2

6.1

Average MSE of each video sequence with equal-rate (ER) assignment and
rate adaptation with the proposed algorithm (OPT). Total bandwidth is equal to
3000 Kbps. . . . . e e
Average modified MSE difference A,,, average MSE difference 6,, and MSE
variance in each GOP interval. Comparison between the proposed algorithm

(OPT) and equal-rate (ER) assignment with bandwidth equal to 3000 kbps.

Percentage of the overhead and expected distortion dgg ;455 in term of MSE
with respect to the full quality video streams (Q = 10 and G = 8), for different

values of RTP packet error probability and o parameter in the EEP profile. . . .

*
rec,av’

*

Average received distortion,D s

expected distortion, D} . and encoding dis-

: *
tortion, Dy, 4.,

in term of the MSE for different video sequences, GOP size G,
and packet-erasure rate values P, ,;, resulting from the proposed rate-adaptation

algorithm. Available bandwidth is R, =7000 kbps. . . . . . . . .. ... .. ..

Average MSE over 26 GOPs obtained with the model (5.1) and proposed model
in the transmission of the training setof 6 videos. . . . . . . . ... ... ...
Average MSE over 26 GOPs obtained with the model (5.1) and proposed model

in the transmission of 4 videos not included in the training set. . . . . . . . ..

WiMAX and DiffServ traffic class mapping . . . . . ... ... ... .....

List of Figures

2.1

Principle of encoding. . . . . . . . . . ... oo

X1

36

51



22
2.3

24
2.5

3.1

32

33

3.4

4.1

Principle of decoding. . . . . . . . . .. .o
Multi-layer structure with additional inter-layer prediction for enabling spatial

scalablecoding. . . . . . . . ..

Enhancement temporal (a) and quality (b) layer prediction for a GOP of 8 frames. 10

Fine granular scalability. . . . ... .. ... ... ... .. .. 0 0L

R-D Model (straight line), according to eq. (3.10) fitting the empirical R-D
relationship for the GOP with the worst RMSE with reference to Table 3.1.
Rate assigned by our adaptation algorithm in each GOP, with bandwidth equal
to 3000 kbps. . . ..
Variance of the MSE averaged over 15 GOPs, with different bandwidth val-
ues. Comparison between the proposed algorithm (OPT) and equal-rate (ER)
ASSIGNMENt. . . . . . . v o e e e e e e e e
Average number of iterations required by our adaptation algorithm (OPT) and

golden search algorithm (GSA) to converge. . . . . . . . ... ... ... ...

System architecture. Each sequence is encoded to fully support temporal and
quality scalability and a priority level is assigned to the NALUs. The UXP pro-
filer evaluates the overhead required according to a certain protection policy
and RTP packet failure rate, and provides R-D information to the Adaptation
module. The Adaptation module extracts sub-streams according to the esti-
mated bandwidth and sends the data bytes to the RS encoder. The resulting
codewords are then encapsulated in a transmission block, interleaved in RTP
packets and forwarded to the lower layers. The receiver performs the inverse
operations (RS decoding and deinterleaving) in order to extract the NALUSs

which are sent to the SVCdecoder. . . . . . . . . . . . . .. . ... ... ...

xii

13

26



4.2

4.3

4.4

5.1
5.2
5.3
54
5.5

5.6

5.7

Transmission Sub-Block (TSB) structure. Following the priority level, the NALUs

of one GOP are placed into one TSB according to a given UXP profile (protec-

tion class) from upper left to lower right. The columns of one ore more TSB

are then encapsulated into RTPpackets . . . . . . ... ... ... ....... 45
Resulting logarithmic FEP for the first I frame of Football (byte size equal to
11519) mapped to RS codewords (128,m) at different RTP packet error proba-

bility. . . . . 48
R-D Model (straight line), according to eq. (3.10) fitting the empirical R-D
relationship for one GOP (size G equal to 8) of the Football test-sequence

with different error probabilities and o=30. The lower curve refers to the R-D

relationship of theencoder. . . . . . . . . ... ... ... .. ... ... . 50
Proposed model for o with R?=0.987 and RMSE = 1598 . . . . ... ... .. 61
Proposed model for B with R?=0.973 and RMSE =21.2 . . .. ... ..... 62
Proposed model for (BL) with R*= 0.979 and RMSE =22.98 . . . .. .. ... 62
Proposed model for (EL) with R?=0.985and RMSE =79.36 . . . . .. .... 63

R-D comparison among model in eq (5.1), proposed model and actual values
fortwosample GOPs. . . . . . . . . ... .. 64
BL and EL rates over 26 GOPs for two sequences in the training set (Football
and City) and two sequences outside the training set (Mobile and Foreman).
The marker points refer to the original BL and EL rates, whereas the solid lines
refer to rates estimated from (5.4) and (5.5), respectively. . . . . . ... .. .. 65
Averaged MSE for each GOP of two sample videos in the transmission over
bandwidth constrained channel with rate adaptation. Figures Football and City
refer to the transmission of the 6 videos of the training set (R, = 3500 kbps),
wheres figures Mobile and Foreman refer to the transmission of 4 videos not

included in the training set (R, =3000kbps). . . . . . . ... ... ... ... 68

Xiil



6.1 DiffServ Code Pointfield. . . . . . . .. ... ... ... L L. 74
6.2 IEEE 802.16 QoS Architecture . . . . . . .. .. ... .. ... .. ...... 76
6.3 WiMAX and DiffServ Network Simulation Scenario . . . . .. ... ... .. 77
6.4 Priority Queuing Implemented in Edge Router . . . . . . . ... ... ..... 79
6.5 Packets dropped without DiffServ support. . . . . . ... ... 80
6.6 Delay without DiffServ support and with 100% load. . . . . . . ... ... .. 81
6.7 Delay with DiffServ support and 100% load. . . . . . . . .. ... ... .... 81
6.9 Delay with DiffServ support and 112.5% load . . . . . . .. ... ... .... 82
6.8 Delay without DiffServ support and 112.5% load. . . . . . . . ... ... ... 82
6.10 Delay without DiffServ support and 125% load . . . . . . .. ... ... ... 83
6.11 Delay with DiffServ support and 125% load . . . . . . ... ... ... .... 83
6.12 VoIP service jitters in networks with and without DiffServ. . . . . . . . .. .. 84

Xiv



Chapter 1

Introduction

The popularity of multimedia applications is rapidly increasing. Multimedia applications
include video on demand, IP-TV, sport broadcasting, VoIP as well as real-time streaming.
They have become reality now thanks to the achievements in the compression and storage
technologies and the advances in transmission systems. The penetration of end user devices
such as 3G mobile devices, portable multimedia players (PMP), HDTV flat-panel displays,
and the availability of wired and wireless broadband internet access provides different ways
to deliver these multimedia services. Nevertheless, in such environment providing contents
everywhere while achieving efficiency is a challenge. Scalable Video Coding (SVC) which
is the extension of Advance Video Coding standard H.264/AVC provides an attractive solu-
tion to support video transmission in modern communication systems. In SVC some parts
of the encoded video can be removed so that the video stream can be adapted to the network
conditions. Moreover, SVC can fulfill the requirements of the users with different termi-
nal capabilities and varying network conditions by providing spatial, temporal and quality
scalabilities. Multimedia contents like voice and video can tolerate only to some extent jit-
ters, delays and packet drops but they need sufficiently wide bandwidth. WiMAX, which
is considered an alternative to DSL, can provide wireless broadband connectivity with its

rich set of QoS classes for different types of multimedia applications which can be further
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translated to the intermediate wired networks like DiffServ.

1.1 Scope of the Thesis

The aim of this thesis was to study the issues related to the provision of better Quality
of Experience (QoE) for multimedia applications like video and voice and in this context
particular emphasis was given to Scalable Video Coding (SVC). This thesis proposes new
continuous Rate-Distortion (R-D) models both for real-time and non real-time videos. New
rate adaptation techniques based on fairness for multi-stream video communication are also
developed and applied to both the real and non real-time R-D models. Moreover, to further
enhance the model an Unequal Error Protection (UXP) mechanism is introduced to cope
with errors during transmission. The non real-time R-D model takes advantage of the SVC
encoder to get the original R-D points from the video sequence and find the best possible
R-D couple by curve fitting technique. To develop R-D models for real-time video transmis-
sion, raw video sequences are exploited to get Spatial Indexes (SI) and Temporal Indexes
(TT), which are also referred as spatial and temporal complexities, to be used to predict the
parameters of the R-D model, as well as the rate prior to the encoding process of the videos.
The multimedia information may flow through several networks before reaching to the final
destination. This can be the cause of quality degradation for the application in use because
of the bandwidth limitation of heterogeneous networks, the absence of prioritizing policies
for delay sensitive traffic in intermediate networks, and network congestion, just to name
few of them. To address this issue in limited context a solution for WiMAX and DiffServ
interworking is provided in which VoIP traffic from WiMAX network entering DiffServ
network is prioritized to get a preferential treatment in DiffServ networks and minimize

delays, jitters and packets drops.
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1.2 Outline of Thesis

This thesis is organized as follows: In Chapter 2 the basic concepts of SVC are explained.
In Chapter 3 a semi-analytical R-D model is proposed for non real-time SVC and, also a
multi-stream rate adaptation technique based on fairness among videos is developed. The
rate adaptation technique is then applied to the proposed R-D model and compared the
results with the Equal Rate (ER) scheme. In Chapter 4, the proposed R-D model and rate
adaptation technique of Chapter 3 is investigated for error prone channels using Unequal
Error Protection (UXP). The UXP is based on Reed-Solomon (RS) encoding with erasure
correction. In Chapter 5 a R-D model for SVC real-time video streams is proposed. The
proposed model exploits SI and TI values GOP by GOP from the raw videos. The SI and
TI values are then used to predict the rate of the video before encoding. The Proposed
model is then used for multi-stream video delivery using the rate adaptation technique
adopted in Chapter 3. The results of the proposed R-D model are compared with those
obtained with R-D model in Chapter 3 by applying the rate adaptation technique. In Chapter
6 the interworking of the WiMAX and DiffServ heterogeneous network is described. In
this proposed research work the Unsolicited Grant Service (UGS) from WiMAX network
is mapped to the Expedited Forwarding (EF) service of DiffServ network. Priority Queuing
(PQ) is applied inside the EF to deliver the delay sensitive traffic i.e. VoIP. The network is
then tested on several congested scenario to test its efficiency to delays, jitters and packets
drops with and without DiffServ network.

A part of work included in this thesis is published in [30] [46] [47] and [48] during my
PhD.






Chapter 2

Overview of Scalable Video Coding

2.1 Introduction

Advances in video coding techniques and standardization along with the rapid development
and improvements of network infrastructures, storage capacity and computing powers are
enabling an increasing number of video applications. Applications area, today, range from
MMS, video telephony and video conferencing over mobile TV etc. For these applications,
a variety of video transmission and storage systems may be employed.

Due to the rapidly growing number of portable and non-portable devices, there is a
strong need of a video standard that can be scaled according to the user and network needs.
Because of all theses consideration, scalability and flexibility are key points for the near
future of video services, whether these are new services or evolution of existing services.
Such scalability is need not only on the architecture and infrastructure levels, but also at
the content level [1].

Scalable Video Coding provides the appropriate tools to efficiently implement content
scalability and portability. It is the latest scalable video-coding solution, and has been stan-
dardized recently as an amendment to the now well-known and widespread H.264/AVC

standard [2] by the Joint Video Team (JVT).
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In general, a video bit stream is called scalable when parts of the stream can be re-
moved in a way that the resulting substream forms another valid bit stream for some target
decoder, and the substream represents the source content with a reconstruction quality that
is less than that of the complete original bit stream but is high when considering the lower
quantity of remaining data. Bit streams that do not provide this property are referred to as
single-layer bit streams [1]. Another benefit of SVC is that a scalable bit stream usually
contains parts with different importance in terms of decoded video quality. This property in
conjunction with unequal error protection is especially useful in any transmission scenario
with unpredictable throughput variations and/or relatively high packet loss rates. By us-
ing a stronger protection of the more important information, error resilience with graceful

degradation can be achieved up to a certain degree of transmission errors.

2.2 Concept of H.264/AVC Extension to H.264/SVC

In SVC encoding is performed once while it can be decoded multiple times to get the re-
quired bit stream as shown in figure 2.1. It states that the encoder has to encode once the
bit stream which has details about spatial temporal and quality scalabilities. This scalable
stream is then sent to the user and the user decode the stream according to its own require-
ment.

The principle of decoding is show in figure 2.2. As in Advance Video Coding, the en-
coding of the input video is performed at the Macro block basis. As the codec is based on
the layer approach to enable spatial scalability, the encoder provides a down sampling filter
stages that generates the lower resolution signal for each spatial layer. Encoder algorithm
(not mention here in this thesis) may select between inter and intra coding for block shaped
regions of each picture. 12 The video sequence is temporally decomposed into texture and
motion information. Motion information from the lower layer may be used for prediction

of the higher layer. The application of this prediction is switchable on a macro block or
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Figure 2.2: Principle of decoding.

block basis. In case of intra coding, a prediction from surrounding macro blocks or from
co-located macro blocks of other layers is possible. These prediction techniques do not
employ motion information and hence, are referred to as intra prediction techniques. Fur-
thermore, residual data from lower layers can be employed for an efficient coding of the
current layer. The redundancy between different layers is exploited by additional inter-layer
prediction concepts that include prediction mechanisms for motion parameters as well as
for texture data (intra and residual data).The residual signal resulting from intra or mo-
tion compensated inter prediction is transform coded using AVC features. Three kinds of

prediction applied here are —Inter layer motion prediction, inter layer residual prediction
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and Inter layer intra prediction. An important feature of the SVC design is that scalability
is provided at a bit-stream level. Bit-streams for a reduced spatial and/or temporal resolu-
tion are simply obtained by discarding NAL units (or network packets) from a global SVC
bit-stream that are not required for decoding the target resolution. NAL units of PR slices
can additionally be truncated in order to further reduce the bit-rate and the associated re-
construction quality. Thus, one of the main design goals was that SVC should represent a
straightforward extension of H.264/AVC. As much as possible, components of H.264/AVC
are re-used, and new tools are only be added for efficiently supporting the required types
of scalability. As for any other video coding standard, coding efficiency has always to be

seen in connection with complexity in the design process.

2.3 Types of Scalabilities

Three scalability methods are possible in SVC, named temporal, spatial and SNR scalabil-
ity, that allow to extract a sub-stream in order to meet a particular frame rate, resolution and
quality, respectively. Each picture of a video sequence is coded and encapsulated into sev-
eral Network Abstraction Layer Units (NALUs), which are packets with an integer number
of bytes. Three key ID values, i.e. dependency id, temporal id, and quality id, are embed-
ded in the header by means of the high level syntax elements, in order to identify spatial,

temporal and quality layers.

2.3.1 Spatial scalability

For supporting spatial scalable coding, SVC follows the conventional approach of multiple-
layer coding, which is also used in MPEG-2 Video / H.262, H.263, and MPEG-4 Visual.
Each layer corresponds to a supported spatial resolution and is identified by a layer or de-

pendency identifier D. The layer identifier D for the spatial base layer is equal to O, and it is
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Figure 2.3: Multi-layer structure with additional inter-layer prediction for enabling spatial
scalable coding.

increased by 1 from one spatial layer to the next. In each layer, motion-compensated pre-
diction and intra coding are employed as for single-layer coding. But in order to improve
the coding efficiency in comparison to simulating different spatial resolutions, additional
inter-layer prediction mechanisms are incorporated.. Although the basic concept for sup-
porting spatial scalable coding is similar to that in prior video standards, SVC contains new
tools that simultaneously improve the coding efficiency and reduced the decoder complex-
ity overhead in relation to single-layer coding. In order to limit the memory requirements
and decoder complexity, SVC requires that the coding order in base and enhancement layer
is identical. All representations with different spatial resolutions for a time instant form an
access unit and have to be transmitted successively in increasing order of their layer iden-
tifiers D. But lower layer pictures do not need to be present in all access units, which make

it possible to combine temporal and spatial scalability as illustrated in Figure 2.6.

2.3.2 Temporal scalability

Temporal scalability can be achieved by means of the concept of hierarchical predic-
tion. Each picture in one GOP is identified by a hierarchical temporal index or level 7 €
{0,1,...,T}. The encoding/decoding process starts from the frame with the temporal in-
dex ¢t = O that identifies a key-picture which must be intra-coded (I frame), in order to

allow a GOP-based decoding. The remaining frames of one GOP are typically coded as
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0 1 2 3 4 5 6 7 f
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I j[ i

Quality index

2 3 4 5 6 7 f
0 3 2 4 1 6 5 7 DON
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(b)
Figure 2.4: Enhancement temporal (a) and quality (b) layer prediction for a GOP of 8
frames.

P/B-pictures and predicted according to the hierarchical temporal index, thereby allowing
to extract a particular frame rate. An implicit encoding/Decoding Order Number (DON)
can be set up according to the temporal index and frame number of each frame.

In Figure 2.4(a) we show an example of the hierarchical prediction structure for a GOP

with 8 pictures. The DON is obtained by ordering the pictures according to the temporal
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index. If more than one frame have the same temporal level, the DON is assigned according
to the picture index. Let us note that the last frame is encoded as P-frame in order to allow

a GOP-based decoding, as mentioned before.

2.3.3 SNR scalability/Quality scalability

The SNR scalability allows to increase the quality of the video stream by introducing re-
finement layers. Two different possibilities are now available in SVC standard and imple-
mented in the reference software [3], namely Coarse Grain Scalability (CGS) and Medium
Grain Scalability (MGS). CGS can be achieved by coding quality refinements of a layer
using a spatial ratio equal to 1 and inter-layer prediction. However, CGS scalability can
only provide a small discrete set of extractable points equal to the number of coded layers.
Here the focus is on MGS scalability which provides finer granularity with respect to CGS
coding by dividing a quality enhancement layer into up to 16 MGS layers. MGS coding
distributes the transform coefficients obtained from a macro-block by dividing them into
multiple sets. The R-D relationship and its granularity depends on the number of MGS
layers and the coefficient distribution, [4]. In [4] the authors analyzed the impact on perfor-
mance of different numbers of MGS layers with different configurations used to distribute
the transform coefficients. We also verified their results, by noting that more than five MGS
layers reduce the R-D performance without giving a substantial increase in granularity. This
is mainly due to the fragmentation overhead that increases with the number of MGS layers.

While extracting an MGS stream two possibilities are available in the reference soft-
ware: a flat-quality extraction scheme, and a priority-based extraction scheme. The second
scheme requires a post-encoding process, executed by an entity denoted as Priority Level
Assigner, that computes a priority level for each NALU. It achieves higher granularity, as
well as better R-D-performance [5]. The priority level ranges from 0 to 63, where 63 is in-

tended for the base-layer, and is assigned to each NALU according to quality dependencies
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and R-D improvement. Nevertheless, in order to exploit the temporal scalability at the de-
coder side, we re-assign different priority levels to the base-layer frames (those with g = 0),
according to their temporal indexes, as specified afterwards. This feature is only exploited
by the UXP profiler in subsection 4.2.2 and therefore does not change the 6-bit header of the
packet which is necessary to perform the quality-based extraction. The R-D performance
of the quality layers can be improved by using quality frames for motion compensation
and introducing the concept of key-picture, which allows for a trade-off between drifting
and coding efficiency. Nevertheless, this tool should not be applied in a rate-adaptation
framework where all quality layers are often discarded by the rate adaptation module as

exemplified in Figure 2.3(b).

2.3.3.1 Coarse Grain Scalability (CGS)

Coarse grain scalability (CGS) can be viewed as a special case of spatial scalability in
H.264 SVC, in that similar encoding mechanisms are employed but the spatial resolution
is kept constant. More specifically, similar to spatial scalability, CGS employs inter-layer
prediction mechanisms, such as prediction of macroblock modes and associated motion
parameters and prediction of the residue signal [1]. CGS differs from spatial scalability in
that the up-sampling operations are not performed. In CGS, the residual texture signal in
the enhancement layer is re-quantized with a quantization step size that is smaller than the
quantization step size of the preceding CGS layer. SVC supports up to eight CGS layers,
corresponding to eight quality extraction points [6], i.e., one base layer and up to seven

enhancement layers.

2.3.3.2 Medium Grain Scalability (MGS)

While CGS provides quality scalability by dropping complete enhancement layers, MGS

provides a finer granularity level of quality scalability by partitioning a given enhancement
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layer into several MGS layers [1]. Individual MGS layers can then be dropped for quality
(and bit rate) adaptation.

a) Splitting Transform Coefficients into MGS Layers: Medium grain scalability (MGS)
splits a given enhancement layer of a given video frame into up to 16 MGS layers (also
referred to as quality layers). In particular, MGS divides the transform coefficients, ob-
tained through transform coding of a given macroblock, into multiple groups. Each group
is assigned to a prescribed MGS layer.

b) Bit Rate Extraction: With MGS encoding, the video bit rate is adjusted by dropping
enhancement layer NALUs, one at a time, until the target bit rate is achieved. No NALUSs

are dropped from the base layer.

2.3.3.3 Fine Grain Scalability (FGS)

In order to support fine-granular SNR scalability, so-called progressive refinement (PR)
slices have been introduced. Each PR slice represents a refinement of the residual signal that
corresponds to a bisection of the quantization step size (QP increase of 6). These signals
are represented in a way that only a single inverse transform has to be performed for each
transform block at the decoder side. The ordering of transform coefficient levels in PR
slices allows the corresponding PR NAL units to be truncated at any arbitrary byte-aligned
point, so that the quality of the SNR base layer can be refined in a fine-granular way. Figure

2.5 shows general concepts of Fine Granular Scalability in terms of layers.

FGS enhancement layer

SMNR base layer

key picture key picture

Figure 2.5: Fine granular scalability.
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The main reason for the low performance of the FGS in MPEG-4 is that the motion
compensated prediction (MCP) is always done in the SNR base layer. In the SVC design,
the highest quality reference available is employed for the MCP of non-key pictures as
depicted in Figure 2.5. Note that this difference significantly improves the coding efficiency
without increasing the complexity when hierarchical prediction structures are used. The
MCP for key pictures is done by only using the base layer representation of the reference
pictures. Thus, the key pictures serve as resynchronization points, and the drift between
encoder and decoder reconstruction is efficiently limited. In order to improve the FGS
coding efficiency, especially for low-delay IPPP coding, leaky prediction concepts for the
motion-compensated prediction of key pictures have been additionally incorporated in the

SVC design.

2.4 Backward Compatibility

It is desirable in SVC scheme that a so called base layer be compatible with non Scalable
video coding standards like AVC. It is also desired that additional scalable layers should
be carried out in such a way that non-scalable video decoders, which have no knowledge
of scalability, will ignore all scalable layers and only decode the base layer [7]. For these
coded data that follow H.264/AVC and to ensure compatibility with existing H.264/AVC
decoder, another new type of NAL (type 20) is used. This NAL carry the header informa-
tion [8]. The base layer by design is compatible to H.264/AVC. During transmission, the
associated prefix NAL units, which are introduced by SVC and when present are ignored by
H.264/AVC decoders, may be encapsulated within the same RTP packet as the H.264/AVC
VCL NAL units, or in a different RTP packet stream(when Multi session transmission mode
is used) [9].

When using Multi session transmission mode-When a H.264/AVC compatible subset

of the SVC base layer is transmitted in its own session in multi session transmission mode,
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the packetization of RFC 3984 must be used, such that RFC 3984 of receivers can be
part of multi transmission mode and receive only this session [10]. When using Single
session transmission mode-When an H.264/AVC compatible subset of SVC base layer is
transmitted using single session transmission, the packetization of RFC 3984 must be used,

thus ensuring compatibility with RFC 3984 receivers [8].






Chapter 3

Rate Adaptation Using MGS for SVC

3.1 Introduction

H.264 Advanced Video coding (AVC) standard with scalable extension, also called Scal-
able Video Coding (SVC) [1], provides flexibility in rate adaptation by coding an origi-
nal video sequence into a scalable stream. Three scalability methods are possible in SVC,
named temporal, spatial and SNR scalability, that allow to extract a sub-stream in order to
meet a particular frame rate, resolution and quality, respectively. Due to the dierent com-
plexities of the scenes composing a video sequence, the relationships between the rate and
the quality of a set of videos can be really different among them. If individual video streams
are transmitted to different users in a broadcast dedicated channel, as for instance in the case
of on-demand IP-TV services [11], an equal rate allocation can lead to unacceptable distor-
tion of high-complexity videos with respect to low-complexity ones. Adaptive transmission
strategies must be investigated to dynamically optimize the quality of experience (QoE) of
each end-user.

In this chapter, we focus on rate adaptation, also called in literature statistical multi-

plexing, of SNR-scalable video streams, with a fixed temporal and spatial resolution. Many

17
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contributions exist in the literature that provide rate adaptation exploiting the Fine Gran-
ularity Scalability (FGS) tool, e.g. [12],[13] and [14]. FGS coding allows to extract an
arbitrary rate-distortion (R-D) point while maintaining the monotonic non-decreasing be-
havior of the R-D curves. Nevertheless FGS mode has been removed from SVC, due to its
complexity.

Two different possibilities for the SNR scalability tool are now available in SVC stan-
dard and implemented in the reference software [3], namely Coarse Grain Scalability (CGS)
and Medium Grain Scalability (MGS). CGS can be achieved by coding quality refinements
of a layer using a spatial ratio equal to 1 and inter-layer prediction. However, CGS scalabil-
ity can only provide a small discrete set of extractable points equal to the number of coded
layers. MGS provides a ner granularity of quality scalability by dividing a CGS layer into
up to 16 MGS layers. The granularity can be also improved if a post-processing quality
layer (QL) insertion and a consequent quality-based extraction is performed with the aim
to optimize the R-D performance [5]. With this tool MGS can be seen as alternative to the
FGS coding.

The rest aim of this work is to analyze the performance of the MGS with QL and to
provide a general R-D model. Other contributions exist in literature that estimate the R-D
model for SNR-based scalable stream, with CGS and MGS, e.g. [15], [16], either analytical
and semi-analytical. The analytical models are dependent on the probability distribution
of discrete cosine transform (DCT) coefficients and often incur in a loss of accuracy. To
achieve higher accuracy, semi-analytical R-D models are preferable. The semi-analytical
models are based on parametrized functions that follow the shape of analytically derived
functions, but are evaluated through curve-fitting from a subset of the rate-distortion em-
pirical data points. In [16], the authors proposed an accurate semi-analytical square-root
model for MGS coding and compared it with linear and semi-linear model. They concluded

that the best performance is obtained by changing the model according to a parameter that
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estimates the temporal complexity, evaluated before encoding the entire sequence. How-
ever, a general model, that is able to estimate the R-D relationship of a large range of video
sequences, is necessary to perform analytical optimization of the rate-adaptation problem.
Besides, they did not consider the post-processing QL insertion that produces a variation
of the R-D performance.

In [17] the authors proposed a general semi-analytical rate-distortion model for video
compression, also verified in [18] for SVC FGS layer, where the rate and the distortion have
an inverse relationship. Three sequence-dependent parameters must be estimated through
the knowledge of six empirical R-D points. We have also verified this model with reference
to SNR scalability with MGS and QL. The high accuracy of the results led us to investi-
gate a simplified model with lower complexity, where the number of R-D points can be
reduced by eliminating one of the parameters to estimate. Thus, we propose and compare
a simplified two-parameters semi-analytical rate-distortion model. This simplification has
two main advantages: (i) only four empirical points are needed by the curve fitting algo-
rithm to achieve good performance, (ii) it allows the derivation of a low-complexity optimal
procedure to solve the multi-stream rate-adaptation problem, with a maximum number of
iterations equal to the number of streams involved in the optimization.

This Chapter has the following main contributions: in section 3.2, a general optimiza-
tion problem is formulated with the aim to provide the maximum quality to each video
while minimizing their distortion difference, and by fulfilling the available bandwidth. In
section 3.3 we analyze and verify two similar semi-analytical models for MGS with QL
by comparing them with respect to complexity and the normally used goodness parame-
ters: the root mean square error (RMSE) and the coefficient of determination R2 [19]. An
optimum and computationally efficient procedure to solve the relaxed general problem is
derived in section 3.4, with a discussion about complexity and optimality. Finally the nu-
merical results, discussed in section 3.5, show (1) the goodness of our framework by looking

at the error between the relaxed and discrete solutions, (ii) the performance improvement
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with respect to a blind adaptation, and (iii) the complexity of the proposed algorithm with

respect to a sub-optimal golden search algorithm proposed in literature.

3.2 General Problem Formulation for Multi-Stream Rate
Adaptation

In general, the aim of multi-stream rate adaptation is to optimize a certain number of utility
functions U; with respect to a quality metric and according to rate constraints [20]. Before
or after the encoding process the original high quality video must be adapted, to meet a
particular QoE metric depending on spatial, temporal and SNR resolutions.

In this section we provide a general problem formulation for multi-stream rate adap-
tation. Let K be the number of streams involved in the optimization. Given a set of lossy
compression techniques 1,..., Ny, we can define in general 7y =d g,....dyx, k=1,...,K
as the set of distortion values for the k-th stream. Let us note that its cardinality | Z;| = N
is generally not equal for each video source, as in the case of high- flexibility SNR-based
compression techniques.

The rate-distortion theory evaluates the minimum bit-rate R; required to transmit the
k-th stream with a given distortion d,, ¢, by defining a function.%; that maps the distortion

to the rate, i.e.

F: dn,k —R*

dnx — Ri= Fi(dny) (3.1

One of the desirable properties of .7 is the strictly decreasing monotony, i.e.
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Fildig) > Fi(djg), dip,djx:dig <djy (3.2)

When multiple streams have to be transmitted in a shared channel the rate adaptation
algorithm must choose at each time slot and according to one optimization strategy, the best
vector D* = [Dy,...,Dx] € P = P x ... x Dx.Z contains all the possible combinations of
the elements of 7, k = 1,...,K and has cardinality N = HkK:lNk.

The main purpose of multi-stream rate adaptation is to provide the minimum distor-
tion, or equivalently the maximum rate according to assumption (2), to each video under
a total bit-rate constraints R.. However, the solution of such problem can generally lead to
large distortion variations among different streams, due to the different complexity of video
sources. Quality fairness is an important issue that must be addressed when multiple videos
from different sources are transmitted in a shared channel. In [13] the authors have shown
that, given a continuous decreasing exponential R-D relationship with a constant exponent
equal for each source, the solution to the problem of minimizing the distortion variations
is also the solution to the problem of minimizing the total average distortion. However,
an exponential R-D relationship is not an accurate model for all the different video com-
pression techniques, particularly for the SVC SNR scalable stream [13]. Thus, a general
multi-objective problem has to be formulated and a continuous relaxation of the problem
leads to some particular simplification under certain assumptions. The general objective of
our proposed framework is to minimize the differences among the distortions provided to
each video stream while maximizing the sum of the rates until a maximum bit-rate is met.
As mentioned above, these two objectives alone can generally lead to different solutions.

Thus, we formulate the general problem as a multi-objective problem:

minZZA(Di,Dj) (33)

De7 0T
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K
F.(D 34
;)nea_é]; «(Dx) (3.4)
K
sit. Y Fk(Dr) <R (3.5)
k=1
where
0 if(ij) € Xp V(1) € Xy
A(D;,D;) = (3.6)
|D; —Dj| otherwise
with
Xg = {(l,]) € 72 : (Di = Dmm’iADj > Dl') V (Di = Dmimi /\Dj < D,‘)} (3.7

and D,; = min, dy ;, Dyax; = max,d, ;. The operators A and V are the logic "AND”
and "OR”, respectively.

Ideal fairness among the distortion values assigned to the multiple video streams, i.e.
D;=D;, Vi# j,ishardtobe achieved. This factis due to (i) the discretization of the R-D
relationship and (ii) the presence of the minimum and the maximum distortion values for
each source that are related to the complexity of each video and which can be very differ-
ent. The definition of the fairness metric takes this fact into account. In fact, the difference
among video distortions A(D;,D;) is slightly modified to take into account the minimum
and the maximum constraints. It is worth noting that, under the assumption (3.2), this prob-
lem admits a feasible solution only if at least the sum of the minimum rates of the video

sequences is supported by the transmission bandwidth R, i.e

K
Z cgak(Dmax,k) <R (38)
k=1
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otherwise a certain number of videos are not admitted in the transmission until this
constraint is not satisfied. The solution of the problem in (3.3)-(3.5) requires in general an
exhaustive search in the space Z of all possible vectors. If N becomes large the required
complexity can be not suitable for real-time adaptation. On the other hand if N is small,
1.e there are few video sources as well as few related R-D points, the problem solution can
lead to a waste of the available bandwidth and a large distortion differences among multiple
videos.

In the next section we will propose a semi-analytical R-D model with reference to
the SNR scalability tool of SVC with MGS and QL layers [5]. This continuous model
will allow us to apply a continuous relaxation to the optimization problem leading to a

simplification in a single-objective problem formulation.

3.3 Rate Distortion Model for MGS with Quality Layer

We consider here SNR scalability obtained through the MGS coding and QL post-processing
insertion, with a fixed temporal and spatial resolution. In this case the components of &, are
the distortion values of the extractable sub-streams from the high quality original encoded
stream.

MGS coding allows to distribute the transform coefficients obtained from a macro-
block by dividing them into multiple sets. The number of sets identifies the number of
weights, often named MGS layers, in the MGS vector. Thus, the elements of the MGS
vector correspond to the cardinality of each set.

The R-D relationship and its granularity depend on the number of MGS layers and the
coefficient distribution [21], [4]. In [4] the authors analyzed the impact on performance
of different numbers of MGS layers with different configurations used to distribute the
transform coefficients. We also verified their results, by noting that more than five MGS

layers reduce the R-D performance without giving a substantial increase in granularity.
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This is mainly due to the fragmentation overhead that increases with the number of MGS
layers.

While extracting an MGS stream two possibilities are available in the reference soft-
ware: a flat-quality extraction scheme, and a QL-based extraction scheme. The second
scheme requires a post-encoding process that computes a priority index for each NAL unit,
but achieves higher granularity, as well as better R-D-performance [5]. However, differ-
ently to flat-quality extraction scheme, the quality-based extraction process does not give
substantial variations in granularity and R-D performance when varying the distribution of
the coefficients, as also shown in [15]. In our extensive simulation campaign the best results
in terms of granularity and R-D performance are obtained with a MGS vector equal to [3 2
423].

When the SVC video has to be adaptively transmitted it is common practice to analyze
the R-D model with respect to a xed set of frames identified by one group of pictures (GOP).
In this way, the adaptation module can follow the complexity variations of the different
scenes. Therefore, throughout this paper we assume that the reference time interval used to
analyze the R-D relationship as well as to optimize the distortion of multiple streams is the
GOP interval.

In [17] the authors propose a general continuous semi-analytical R-D model for video

compression, also verified in [18] for SVC FGS layers, with the following relationship :

D+ 6,

(D) + (3.9)

The distortion D is evaluated as the average mean square error (MSE) of the decoded
video. The drawback of this approach is the need to estimate the three sequence/encoder
dependents parameters, Mg, O and @, by using curve-fitting from a subset of the rate-
distortion data points. The curve-fitting algorithm requires a relevant number of iterations
and function evaluations and six empirical R-D points. To reduce the complexity, we can

simplify this parametrized model by eliminating one parameter, i.e.
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(D) = %‘i‘ﬁk (3.10)

In this case, only four R-D points need to be evaluated to estimate the two sequence-
dependent parameters oy and P, and as a result the number of iterations and function eval-
uations decreases. Beside the complexity reduction, this model allows a simple derivation
of the solution of the problem (3.3)-(3.5), as we will show later.

Table 3.1 compares the goodness of the two models with respect the coefficient of
determination R%, the RMSE, the number of iterations and function evaluations required
by a non-linear Least Square Trust-Region (LSTR) algorithm to converge. It can be noted
how the number of function evaluations as well as the number of iterations decrease while
a minimum loss occurs in the goodness parameter. In Figure 3.1, we plot the empirical
R-D relationship for the five sequences, used to obtain numerical results, as well as their
related R-D curves based on model (3.10). All of them are referred to the GOP with the
worst RMSE value (the minimum in Table 3.1). We can also appreciate in this figure the
achievable granularity of the quality-based extraction.

In the next section we will apply a continuous relaxation to the problem (3.3)-(3.5) by
exploiting the model (3.10) and we will provide a low-complexity optimal procedure to

solve it.
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Video Model R2[min,max] RMSE [min,max] Av. No. Av. No.
iteration Function
Evaluation

Coastguard | Model(10) [0.9842 ,0.9934] [37.895,79.992] 30.23 89.6
Model (9) [0.9956 , 0.9982] [22.261 , 36.724] 34.7 155.9
Crew Model(10) [0.9752,0.9944] [23.038, 89.130] 30.9 94.2
Model (9) [0.9914,0.9972] [20.019, 52.489] 35.6 159.9
Football Model(10) [0.9662 , 0.9891] [53.403 ,205.572] 29.0 89.5
Model (9) [0.9809 , 0.9993] [12.940, 99.810] 38.0 169.3
Foreman Model(10) [0.9669 , 0.9955] [19.710, 53.371] 25.7 73.2
Model (9) [0.9906 , 0.9980] [13.516, 33.745] 34.1 1543
Harbour Model(10) [0.9854 , 0.9907] [51.860, 73.344] 375 129.8
Model (9) [0.9952,0.9991] [18.883 ,44.822] 453 164.3

Table 3.1: Comparison between the two semi-analytical model in (3.9) and (3.10) with
respect to the minimum and maximum RMSE and the coefficient of determination R2
evaluated for each GOP (GOP size equal to 16) of five video sequence with CIF resolution
and frame rate of 30 fps. The video are encoded with one base layer (QP equal to 38) and
two enhancement layers (QP equal to 32 and 26), both with 5 MGS layers and a weights
vector equal to [324 2 5].
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Figure 3.1: R-D Model (straight line), according to eq. (3.10) fitting the empirical R-D

relationship for the GOP with the worst RMSE with reference to Table 3.1.
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3.4 GOP-Based Multi-Stream Rate Adaptation
Framework

Without loosing generality we assume that each video is coded with the same GOP size
and the rate allocation is performed at the GOP boundaries. Thus, from now on we focus
on one GOP interval. Considering all the discussions in the previous sections, we apply a
continuous relaxation to the optimization problem based on the model (10). Therefore we
assume that the discrete variable D; becomes continuous (denoted by Dy), but limited by

the minimum and maximum distortion, i.e.

Dk S [Dmin7k7Dmax7k] (311)

With reference to the SNR scalability, the points {Daxk, #k(Dimax)} and
{Dmin i, Fx(Dimin) } are the base layer and the highest enhancement layer points, respec-
tively. Those values are two of the four R-D points required by the curve-fitting algorithm.

It is worth noting that a trivial solution can be derived if the sum of the full quality
encoded stream rates is less then or equal to the available bandwidth, that corresponds to
transmit the entire encoded streams without adaptation. Thus, we analyze the non-trivial

case where the following constraint holds :

M=

ﬁk(kain) > R, (3.12)

k=1

According to the continuous relaxation (3.11) and the assumptions (3.8) and (3.12),
a feasible solution is obtained when the constraint on the overall channel bandwidth is
active with equality. A single-objective problem, where the second objective, i.e (3.4) in
the problem formulation, is eliminated and replaced by an equality constraints can be then
formulated. Nevertheless, as a result of the relaxation of the problem, the two constraints

referred to the maximum and minimum available rates of each stream must be added. They
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imply that each video sequence has to obtain at least the base layer and not more than the
maximum available bit-rate must be allocated to each video source to save bandwidth.

Thus, the relaxed problem can be formulated as

min A(D;,D; 3.13
DGRK;; ( J) ( )
K ~
sit. Y Zi(Dy) =Re (3.14)
k=1
iy (Di) > Fi(Dimar) Yk (3.15)
iy (Dy) < Fi(Dimin) Yk (3.16)

Note that the model %, (Dy) replaces the actual R-D relationship .#;(Dy). In the next
subsection we will derive an optimal procedure to solve this relaxed problem using methods

that are computationally efficient and without the use of heuristics or brute-force search.

3.4.1 Problem Solution

A solution to the relaxed problem (3.13)-(3.16) can be derived by using sub-optimal proce-
dures as the golden search algorithm proposed in [12] for a piecewise linear model. Nev-
ertheless, the continuous formulation of model (3.10) allows us to derive a low-complexity
optimal procedure, by noting that the solutions to the problem without the constraints (3.15)

and (3.16) can be easily derived as follows:

K
N* — D = M
=Dy = v ,
c Zk:l Bk

Since those constraints imply that a minimum (maximum) or a maximum (minimum)

Vk (3.17)

rate (distortion) has to be allocated to each video stream, these solutions can be improved

successively through a simple iterative procedure.



3.4. GOP-BASED MULTI-STREAM RATE ADAPTATION FRAMEWORK 29

Let x;,yx € {0,1},k=1,...,K, be binary variables that indicate whether or not the two
constraints are active for the video stream k and will be updated during the procedure. We

can then define:

K
Ary =Y XkVi0% (3.18)
k=1
K
Bry =Y xyiBr (3.19)
k=1
K K
Rijjy =R — Z (1 _xk)yk Dk max Z 1 _yk cQ.k Dk mm) (3.20)
k=1 k=

where R}y is the available rate for the videos which have not active constraints. The
iterative procedure works as follows:
1.Initialize : x; =land y, =1 Vk=1,...,K
2.For each k : x;. -y, = 1 Compute :
Dy = fns
= % (Dj) based on model (3.10)
condition =0
2a. If RZ > Fi(Dk min) then
R; = Z(Dimin)
D} = Dy in
k=0
condition = 1
2b. elseif Ry, < Z1 (D max)
R = % (D max)
D = Dy nax
x,=0

condition = 1
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3. If condition = 1

Go to step 2
4. else break
The final relaxed solutions, given x; and y;, k = 1,..., K, are then given by:

(

B ifxew=1
k
Ri=1 ZuDimar)s ifxe=0 (3.21)

\ yk(Dk,min)a ifyk =0

with

Axy . _
K&, —Bey if Xk Vi = 1

D=1 Dima, ifxz=0 (3.22)

{ Dk,mina ify,=0

The algorithm requires in the worst case, a maximum of K iterations with (K —1)/2 rate
and distortion evaluations. At the first iteration, due to the initialization, DZ is computed as
in (\ref{primal-solution}). At each iteration the algorithm checks if the related rate solu-
tions violate one of the constraints (3.15), (3.16). If it happens for one video, the algorithm
assigns the relative minimum or maximum rate to this particular video and re-evaluates the
distortion for the other video streams.

The optimality of the solutions (3.21) and (3.22) can be easily proved, by noting that the
sum of the difference functions in (3.13) is always kept to zero, i.e. } ;). j<,-A(l~)?‘,l~)j-) =0
and the sum of the rates is always equal to the available bandwidth. In fact, if at the n-th
iteration a maximum rate constraint (condition of step 2a) is violated for the i-th video, the

distortion of the other videos at the next iteration, D,t [n+ 1], will decrease, i.e.
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Di[n+1] < Di[n] < Dimin, Vk#i:x[n+1]-yfn+1]=1,yin] =0 (3.23)

Vice versa, when the second constraint (condition of step 2b) is violated for the j-th

video the distortion Dj[n + 1] of the other video will increase, i.e.

Din+1]>D{[n] > Djmar, Yk# j:xi[n+1]-y[n+1]=1,xj[n] =0 (3.24)

For all other videos with x; - y; = 1 the solutions are left untouched, as shown in (3.22).
The inequalities (3.23) and (3.24) follow from the monotony property of the R-D function.
Let us finally note that the conditions of steps 2a and 2b are auto-exclusive for each

video source if

Dy max > Dpmin, Vs#p, s,p=1,....K (3.25)

When two or more video streams have a very different scene complexity in the same
GOP, the inequality (3.25) may not be verified and the evaluated distortion D; may fall
inside the interval [Dy jmax, Dp min]. In this particular case, to assure the best fairness, the
algorithm would require some temporary additional steps to evaluate which constraints has
to be applied first, which leads to a small increase in the complexity. In order to keep the
complexity low we propose for this case to prioritize the distortion minimization. Thus,
we first apply the constraints on the maximum rate (step 2a) by assigning the minimum
distortion D), iy, to the p-th video. At the next iteration, the distortion will decrease, due to
the convexity of the R-D functions. If the distortion decreases in such way that the evaluated
rate of thes-th video do not violate its maximum distortion constraint, the algorithm will be
able to assign a lower distortion to it. Let us note that this choice does not compromise the

optimality of the solution of the problem according to eq. (3.6).
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From a mathematical perspective the optimal discrete solution D*, starting from the
relaxed one D", should be derived by applying optimization techniques, e.g. branch &
bound search. Nevertheless, such techniques require the knowledge of all the empirical
discrete R-D points or a subset of R-D points close to the relaxed optimum solutions, with
an increase in complexity. To keep the complexity low, it is common practice to extract the
higher discrete bit-rate under the optimal relaxed solution, by paying a minimum waste of

bandwidth due to the granularity of the empirical R-D relationship.

3.5 Numerical Results

In this section we evaluate the performance of the proposed rate adaptation framework by
using the JSVM reference software [3]. We encode five video sequences with different
scene complexity, i.e. coastguard, crew, football, foreman, harbour in CIF resolution with
a frame rate of 30 fps. The SNR-scalability is obtained through 2 enhancement layers, each
one split in 5 MGS layers with vector distribution [3 2 4 2 5]. The quantization parame-
ter (QP) of the base and enhancement layers are equally spaced and set to 38, 32 and 26,
respectively. Each sequence is coded GOP-by-GOP with a GOP size equal to 16, and the
post-processing quality-based process is then applied, as mentioned throughout the paper.
We first provide the performance metrics for a particular case of bandwidth, i.e. R. = 3000
kbps, then we study the impact of different R. values. The fairness is evaluated through
two metrics: the average MSE difference 6,y = (1/S)¥; X< [Dj — D}|, where the aver-
age is computed with respect to the number S = K(K — 1)/2 of terms in the sum, and the
most used MSE variance for each GOP. We first compare the solution of our algorithm
(OPT) with an equal-rate (ER) scheme where no adaptation is performed, i.e. the same
proportion of the available bandwidth is assigned to each video. To have a fair compar-
ison we apply to ER scheme the constraints (3.15) and (3.16) in order to guarantee the

base-layer to each video and to fulfill the available bandwidth. Therefore, after sorting the
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streams in two vectors into decreasing order according to base-layer bit-rate and into in-
creasing order according to highest layer bit-rate, respectively, we iteratively check if the
bit-rate Ry = R./K required by each ordered stream violates one of those constraints. If
it happens, we assign the corresponding bit-rate and equally re-distribute the remaining
bandwidth to the other streams. Table 3.2 shows the average MSE resulting from the rate
assigned to each video sequences for the first 15 GOPs. As expected, the ER scheme is
able to provide less distortion to the low-complexity video, i.e. crew, foreman, by compro-
mising the distortion of the video sequences with more complexity. Our algorithm, while
providing fairness, is able to improve the performance of the complex videos, by allocating
more bits to video with more complex scenes. This is more clear in figure 3.2 where we
plot the rate assigned to each video sequence GOP-by-GOP. More bit-rate is assigned to
coastguard, football and harbour video sequences, allowing them to achieve more quality.
In Table 3.3, we show the improvements of our proposed schemes with respect to ER. The
average MSE difference is significantly reduced and equivalently the variance is decreased
up to ten times. However, in this particular case of bandwidth, the MSE difference (vari-
ance) is still quite high, due to the minimum rate constraints. The average modified MSE
difference Agy = (1/5) X; ¥ j<; A(D}, D7) according to definition in (3.6), is also evaluated
in Table 3.3 . Let us note that this metric also give us the information of the error generated
when the discrete solution replaces the continuous solution of the relaxed problem, whose
Agy 18 zero. This error includes two contributions: the estimation error of the model and the
integrality gap. As expected the average error is not small due to mainly the low granularity
of the low-rate points.

In figure 3.3, the MSE variance averaged over 15 GOPs is evaluated for different band-
widths. In the bandwidth interval considered, the assumptions (3.8) and (3.12) hold for each
GOP. When the bandwidth is very low the two schemes provide approximately the same
MSE because the optimization range is limited by the minimum rate constraints. When the

bandwidth increases, our procedure improves the fairness leading the variance close to 0.
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GOP Index Coastguard Crew Football Foreman Harbour

ER OPT ER OPT ER OPT ER OPT ER OPT
A 1 53.71 53.71 18.59 | 34.64 | 80.86 | 55.87 18.40 | 31.66 74.28 55.52
- 2 57.35 | 5457 19.79 | 37.85 | 74.65 | 59.56 18.24 | 29.96 81.23 56.98
W 3 69.45 | 54.63 2352 | 38.67 | 64.02 | 54.06 | 24.63 29.99 94.54 58.27
H 4 81.35 | 59.02 | 39.87 | 39.87 63.69 | 56.29 17.75 33.34 75.92 57.75
MTA.. 5 53.71 4736 | 24.89 | 41.67 | 49.53 | 43.55 17.73 | 31.58 71.93 50.97
< 6 55.16 | 41.70 | 28.22 | 38.26 16.85 | 24.55 19.51 34.00 73.82 46.48
ADn 7 49.11 4222 | 39.87 | 4431 20.23 | 31.36 12.40 | 27.35 82.14 49.31
m 8 4938 | 42.64 | 33.87 | 38.57 | 3149 | 39.12 14.21 28.35 73.47 48.10
mnn 9 4579 | 44.11 3747 | 41.71 43.89 | 44.20 19.20 | 36.12 73.51 50.37
e 10 42.02 | 46.06 4285 | 43.02 | 47.94 | 45.19 19.51 32.24 69.64 52.51
a4 11 4449 | 49.17 | 3440 | 45.68 59.81 | 48.88 17.77 31.33 67.82 53.78
m 12 42.07 | 40.36 | 25.56 | 39.42 | 4144 | 41.17 18.73 30.32 71.87 46.47
M 13 40.17 | 43.18 | 27.09 | 41.48 | 50.24 | 43.84 16.55 27.87 72.23 50.91
ﬂU.w 14 42.11 56.76 | 23.86 | 35.08 | 82.50 | 56.45 | 25.39 | 45.48 68.08 57.95
15 3829 | 60.28 | 24.81 38.76 | 84.63 | 56.84 | 2592 | 57.12 | 69.482 | 558

7 Av. 7 50.95 7 49.05 7 29.64 7 39.93 7 54.12 7 46.73 7 19.06 7 33.78 7 74.66 7 52.74 7

Table 3.2: Average MSE of each video sequence with equal-rate (ER) assignment and rate adaptation with the proposed
algorithm (OPT). Total bandwidth is equal to 3000 kbps.

34
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A slight variance increase occurs at large bandwidths when the maximum rate constraints
limit the achievable distortion. On the other hand the ER scheme generally increases the
MSE variance until the base-layer constraints are active for most of the streams. This be-
havior can be partially reduced by controlling the base-layer bit-rate [22] to each video
according to their complexity as performed for instance in [12].

To further assess our proposed scheme, we compared it to the golden search algorithm
(GSA) proposed in [12], to solve the problem (3.13)-(3.16). This algorithm can be seen
as a suboptimal version of our procedure. The initial solution is computed as function
of the golden-section value and the difference between the lower and higher bounds, i.e.
a = ming Dy i, and b = maxy Dy .4y, identified by the minimum and the maximum distor-
tion among the videos. At each iteration the solution is updated by applying the per-video
constraints and by compressing the search interval consequently. The GSA terminates when
the difference between the sum of the assigned rates and the available bandwidth is less of
a chosen value €. Nevertheless, an additional termination condition must be introduced to
assure the convergence of the algorithm, that is usually indicated by the tolerance 7, i.e.
la — b| < 7. In order to provide a fair comparison we set € = 0.0002R., and 7 = 0.01,
leading to a sub-optimality error under 0.5% over all the investigated cases. In figure 3.4
the plot shows average number of iterations required by the two algorithms for different
bandwidths. The number of iterations of our algorithm is limited by the number of video
sequences, as mentioned in sub-section 3.4.1, and decreases away from the minimum and
the maximum bandwidths obtained as the sum of minimum and maximum rates of each
video. The GSA algorithm requires generally more iterations due to the sub-optimal choice
of the starting-point. This result does not change by increasing the number of videos in-

volved in the optimization, as we also verified.
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Figure 3.2: Rate assigned by our adaptation algorithm in each GOP, with bandwidth equal
to 3000 kbps.

GOP Index | Agy \ Suv | Variance |
ER OPT | ER OPT ER OPT
1 36.12 | 0.43 | 36.12 | 13.86 | 884.40 | 145.41
2 35.51 | 1.00 | 36.17 | 15.67 | 889.50 | 171.43
3 33.78 | 0.84 | 37.37 | 14.50 | 941.76 | 148.35
4 19.53 | 0.55 | 32.65 | 13.85 | 705.43 | 139.62
5 24779 | 148 | 27.44 | 8.89 | 489.84 | 53.75
6 2992 | 1.64 | 2992 | 10.31 | 614.97 | 69.38
7 33.67 | 1.42 | 33.67 | 11.37 | 752.18 | 84.72
8 2728 | 2.21 | 27.28 | 8.72 | 49550 | 52.27
9 23.39 | 2.01 | 23.39 | 6.20 | 38293 | 26.39
10 21.24 |1 193 | 21.24 | 8.72 | 319.33 | 54.28
11 2430 | 1.46 | 25.10 | 9.68 | 398.50 | 73.46
12 2456 | 1.22 | 2456 | 6.81 | 420.64 | 34.09
13 2690 | 1.54 | 2690 | 9.69 | 463.11 | 70.69
14 32.00 | 0.30 | 32.00 | 11.40 | 680.44 | 98.23
15 32.64 | 1.05 | 32.64 | 8.87 | 730.21 | 73.16
Av. 2837 | 1.21 | 29.76 | 10.57 | 611.25 | 86.35

Table 3.3: Average modified MSE difference A,,, average MSE difference &,, and MSE
variance in each GOP interval. Comparison between the proposed algorithm (OPT) and
equal-rate (ER) assignment with bandwidth equal to 3000 kbps.
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Figure 3.3: Variance of the MSE averaged over 15 GOPs, with different bandwidth values.
Comparison between the proposed algorithm (OPT) and equal-rate (ER) assignment.
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Figure 3.4: Average number of iterations required by our adaptation algorithm (OPT) and
golden search algorithm (GSA) to converge.

3.6 Conclusions

In this work we proposed a multi-stream rate adaptation framework with reference to SNR-
scalability of SVC with MGS and QL. We formulated a general discrete problem with the
aim to minimize the average distortion while providing fairness to different video sources.
Two similar semi-analytical model that estimate the R-D relationship of each video source
GOP-by-GOP are evaluated and compared with respect to goodness parameters and com-
plexity.

The general discrete problem was then relaxed and an optimal procedure was derived
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based on a low-complexity model. In the numerical results we showed the feasibility of
our framework by analyzing the gap between the relaxed and discrete solution according
to fairness metrics, the improvements with respect to an equal-rate scheme and the lower

complexity of the proposed procedure with respect to an existing algorithm in the literature.



Chapter 4

Rate Adaptation for Error Prone

Channels in SVC

4.1 Introduction

The high data-rate resulting from the actual and the next generation systems is enabling
the providers to support several video services, as, for instance, video-on demand, IP-TV
and real-time streaming. A high degree of flexibility and adaptivity is required from the
video delivery system to meet different levels of quality requirements depending on the
different characteristics of end-user devices and access networks. This is made possible by
encoding video sequences with encoders that support multiple layers or bit-streams that can
be sequentially dropped providing a graceful degradation. H.264 Advanced Video coding
(AVC) standard with scalable extension, also called Scalable Video Coding (SVC) [1],
allows flexibility in rate adaptation by encoding an original video sequence into a scalable
stream.

Due to the different complexities of the scenes composing a video sequence, the rela-

tionships between the rate and the quality can be really different within a set of videos. If

39
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individual video streams are transmitted to different users in a broadcast dedicated chan-
nel, an equal rate allocation could lead to unacceptable distortion of high-complexity videos
with respect to low-complexity ones. Adaptive transmission strategies have to be investi-
gated to dynamically optimize the quality of experience (QoE) of each end-user.

Beside the distortion due to lossy encoding process, the quality of each video can be
heavily reduced due to the transmission errors and the consequent loss of part of the video
stream. The automatic repeat-request (ARQ) schemes have the main drawback to increase
the delay and can not be suitable for many application where the playback time is a stringent
constraint. Within the framework of video delivery schemes based on SVC, Forward Error
Correction (FEC) has been proposed to recover channel errors and many contributions in
the literature have proved its effectiveness[23], [24], [25].

In this chapter we analyze a scenario that can cover different video applications. The
unique assumption is that the multimedia provider is able to perform o-line some computation-
expensive processes, such as encoding and quality-computation for each video. In this
framework, applications like video on-demand [26], IP-TV [11], sport broadcasting, where
an initial transmission delay in the order of seconds can be tolerated by the end-users, as
well as real-time streaming [27], are well suited to the low-complexity transmission scheme
proposed. Each one of these applications requires a multimedia provider that has to serve
several end-users which request different video sources. Thus, we suppose that the lower-
layers dedicate a shared constant bandwidth to a particular set of users, and inform the
application layer about channel conditions, in terms of packet losses. In this scenario qual-
ity fairness is an important issue that must be addressed. In fact, the end-user expectation is
to receive the best feasible quality independently of the particular video complexity. In this
light, the adaptation module of the media provider is required to extract from the original
video sequences a set of scaled streams with a fair assignment of expected end-user quality,
even in presence of packet losses.

In this work, we focus on rate adaptation of temporal and quality scalable video streams
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transmitted with a fixed spatial resolution over an error-prone channel. Nevertheless, the
entire framework can be extended to spatially scalable streams. In Figure 4.1 shows the
architecture of the video delivery system. Each video sequence is encoded by the SVC
encoder to fully support temporal and quality scalability. The resulting streams are encap-
sulated into Network Abstraction layer Units (NALUs), which are packets of an integer
number of bytes, and stored in a media server. The NALUs have different importance ac-
cording to a certain coding paradigm. To support the features of both Adaptation module
and Unequal Erasure Protection (UXP) profiler, the video streams are also processed with
the aim of extracting the information on the quality of each stream. After the encoder, the
priority level assigner evaluates a priority index for each NALU, by considering the Rate-
Distortion (R-D) relationship and the dependency on the other NALUSs. Such information
is encapsulated in the NALU header and then exploited by both the UXP profiler and the
Adaptation module. These two processes are executed off-line.

The UXP profiler aims at determining for each NALU the level of protection against
transmission losses, which is obtained by adding parity bytes according to a specified UXP
strategy. We assume, in the case investigated here, that the UXP is based on the use of
Reed-Solomon (RS) encoding with erasure correction. This task is executed by taking into
account the estimated packet-loss rate of the lower layers which can be supplied at regular
intervals. The protection profile is then sent to the Adaptation module which first estimates
the expected R-D relationship, then extracts a suitable bit-stream from each video stream
to meet fairness and bandwidth constraints. Each outcoming bit-stream is then encoded by
the RS encoder. Finally, the resulting codewords are encapsulated in a transmission block

and interleaved over RTP packets which are forwarded to the lower layers.

4.1.1 Related Works

One of the aims of this paper is to analyze the performance of the SVC encoder and to

provide a general R-D model. Other contributions exist in literature that estimate the R-D
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Figure 4.1: System architecture. Each sequence is encoded to fully support temporal and
quality scalability and a priority level is assigned to the NALUs. The UXP profiler evalu-
ates the overhead required according to a certain protection policy and RTP packet failure
rate, and provides R-D information to the Adaptation module. The Adaptation module ex-
tracts sub-streams according to the estimated bandwidth and sends the data bytes to the
RS encoder. The resulting codewords are then encapsulated in a transmission block, inter-
leaved in RTP packets and forwarded to the lower layers. The receiver performs the inverse
operations (RS decoding and deinterleaving) in order to extract the NALUs which are sent
to the SVC decoder.

model for SNR based scalable stream, e.g. [15], [16], either analytical or semi-analytical.
The analytical models are dependent on the probability distribution of discrete cosine trans-
form (DCT) coefficients and often incur in a loss of accuracy. To achieve higher accu-
racy, semi-analytical R-D models are preferable. The semi-analytical models are based
on parametrized functions that follow the shape of analytically derived functions, but are
evaluated through curve-fitting from a subset of the RD empirical data points. In [16], the
authors proposed an accurate semi-analytical square-root model for MGS coding and com-
pared it with linear and semi-linear models. They concluded that the best performance is
obtained by changing the model according to a parameter that estimates the temporal com-

plexity, evaluated before encoding the entire sequence. However, a general model for the
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estimation of the R-D relationship for a large set of video sequences, is necessary to derive
analytical solutions for the rate-adaptation problem. In [17] the authors proposed a general
semi-analytical R-D model for video compression, also verified in [24] for SVC FGS layer,
where the relationship between rate and distortion depends on three sequence-dependent
parameters which must be estimated through the evaluation of six empirical R-D points.
We have verified this model with reference to SNR scalability with MGS and the high ac-
curacy of the results led us to investigate a simplified two-parameters model with lower
complexity, where the number of R-D points needed to estimate the parameters is reduced.
Many contributions exist in the literature that consider fairness-oriented rate adaptation, but
they exploit the Fine Granularity Scalability (FGS) tool, e.g. [12], [13], [14]. Nevertheless,
FGS mode has been removed from SVC, due to its complexity, and these works do not take
into account the effects of transmission losses.

Cross-layer optimization of video streaming over packet-erasure channel is also highly
investigated, within the framework of SVC [24], [25], [28]. In [24] and in earlier works the
authors proposed a complete framework to analyze and model the video streaming system
over packet erasure channel, also in presence of play-out deadline. They derived an analyt-
ical model to estimate the the R-D in case of base-layer packet losses, while using a semi
analytical model for the quality layers. An UXP profiler, based on the same priority level
assigner used in our work, solves a rate-minimizing cost functions. However, the rate adap-
tation aims at minimizing the distortion of each video without taking into account fairness
issues. Maani et al. [25] proposed a model to solve the problem of joint bit extraction and
channel rate allocation over packet erasure channels.

This Chapter is organized as follows. Section 4.2 we discuss the transmission of SVC
streams over erasure-packet channel. In Section 4.3 we analyze semi-analytical R-D model
for erasure-packet channel cases. Performance assessment in the case of transmission over
packet erasure channel is illustrated in Section 4.4. Finally we present our conclusions in

Section 4.5.
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4.2 Unequal Erasure Protection

Due to the different importance and the temporal/quality dependency of the different frames,
Unequal Erasure Protection (UXP) schemes can generally overcome schemes based on
equal protection. In our work, we follow the guidelines presented and discussed in [23] for
SVC transmission over packet-erasure channel, by focusing our attention on a GOP-based
transmission. Each GOP is mapped into one Transmission Sub-Block (TSB) that carries
either data and parity bytes, as exemplified in Figure 4.2. Each row of the TSB identifies a
RS (n,m) codeword where m is number of data bytes and n is the total bytes of the code-
word. If a packet-erasure detection is available at the lower-layers, the RS codes are able
to correct up to n — m bytes, equal to the number of parity bytes. The aim of the UXP pro-
filer is to assign a different protection to each frame according to its dependencies and R-D
improvements.

A first step is to order the NALUs according to their protection class. As mentioned
before, a priority-index greater than 62 is re-assigned to the different temporal base layer
frames (¢ = 0), to have lower priority indexes for high temporal indexes. Thus, all the

frames are sorted according to the priority level p and sequentially inserted into one TSB,

*

fa:p
assigned to frame with frame index f, quality index ¢ and priority level p.

*

}, where m}

according a given UXP profile M* = {m identify the protection class

Finally, one or more TSB are placed into a transmission block (TB) whose columns
become the payload of RTP packets. In this way the RS codewords are interleaved over
the different RTP packets. Therefore, RTP packet errors (or erasures) can be assumed as
uniformly distributed inside the codewords. In order to reduce the overhead due to the need
of padding for compensating the different NALU lengths, the part of the codeword left
unused by a given NALU is filled with the data from the subsequent NALU. For simplicity

of presentation and without loosing generality, we assume that the size Sy, , of each NALU

is always greater than or equal to the total size n of the RS code:
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Figure 4.2: Transmission Sub-Block (TSB) structure. Following the priority level, the
NALUSs of one GOP are placed into one TSB according to a given UXP profile (protec-
tion class) from upper left to lower right. The columns of one ore more TSB are then
encapsulated into RTP packets

Stap =1 (4.1)

This assumption ensure that each TSB row contains no more than two different frames.
Let us finally note that a Multi Time Aggregation Packet (MTAP) header must be inserted
before each priority level NALU in order to deliver the decoding order number (DON) and

timing information assignment.
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4.2.1 Frame error probability and expected distortion

Let assume that the RTP packet error rate information, P, ,;p, is periodically collected
from the lower-layers, as shown in Figure 4.1. According to the proposed UXP scheme a
closed formulation of the expected error probability can be derived by using the failure
probability of a single (n,m) RS codeword:

L n . .

P(n,m) = Z ( ‘>Pe’7rtp(1 —Poyip)"! 4.2)

i=m—n+1 \!
The individual frame error probability now depends on the number of TB rows asso-
ciated to each frame ry, , = ﬁ%—‘ , and on whether or not some bytes of the frame are

»4;P

inserted in the row using the protection class of the preceding priority level. Let z € {0,1}
be a boolean variable that indicates whether or not this last event occurs. The frame error

probability FEP is then computed as one minus the probability that all codewords of the

TB, associated to the frame, can be correctly decoded by the RS decoder:

FEP;,=1— [( 1—P(m}, n)> Fran < Pt n))Z] w3

According to the derived FEP, a closed formula for the expected distortion can be now
computed. Let YDy, = |dy , — df 41| be the quality improvement resulting from the
correct decoding of the f-th frame with quality id g, which is computed by the priority
level assigner. In order to compute the quality improvement YDy o due to the enhancement
(temporal) frames of the base layer we assume an error concealment (EC) method based
on the picture copy (PC). Therefore the distortion increment due to the loss of an
enhancement picture is computed by considering the difference between the enhancement
frame and the copy of the previous one. The expected distortion due to the loss of frames

with quality index g < Q can be computed as:

q

q Jj—1
dpgios = Y. XDy, |FEPrqur 1+ Y FEP; ] (1 _ FEPﬁs)] (4.4)
r=0 Jj=1 s
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where u, is the Heaviside function. The first term of the sum takes into account the
distortion due to the loss of a temporal enhancement layer. Since a loss of the I-frame
will results in a infinite distortion we assume here that the associated NALUs will receive
enough protection to have FEPF,  close to zero.

The second sum, on the other hand, takes into account the cumulative probability that
the j — 1 quality layers have been successfully received but the j-th quality frame is lost,
where j < g. Finally, the total expected distortion of the entire GOP is the sum of the

individual frame loss distortions:

G-1
ds,loss = Z df,q,loss (45)
f=0

Let us note that the number of quality layers of each frame in one GOP can be different
after the rate adaptation. Thus, the index s maps the vector whose elements are the resulting
number of the quality-layer of each frame f: its range is from 0 to GQ. The values of the
expected distortion can be finally used, together with the required rate, to reshape the R-D

relationship according to the values of the FEP.

4.2.2 Proposed UXP profiler

The derivation of an optimal UXP profile is hard to achieve. It should be computed accord-
ing to the solutions of an optimization problem aimed at balancing the trade-off between
protection and overhead. This it is a discrete problem since the FEP, as well as the over-
head resulting from the RS encoding, strictly depends on the discrete variable m, as shown
in Figure 4.3. In order to guarantee a rate distortion relationship strictly decreasing, the FEP
of each frame should increase as the quality and the temporal indexes increase. However,
due to the granularity of the available values of m, sometimes this condition is not met.

This problem could be partially solved by a joint optimization of the encoding process and
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Figure 4.3: Resulting logarithmic FEP for the first I frame of Football (byte size equal to
11519) mapped to RS codewords (128,m) at different RTP packet error probability.

the UXP profiler. In this research work the UXP profiler simply drops this cases by slightly
compromising the R-D granularity.

We propose a simple strategies by fixing an error probability profile (EPP) &, ,, for
each frame f with quality id g and priority level p. Based on this approach, the UXP profile

is derived by finding the minimum my , , € [5 + 1,n] such that

FEPfq < Tfq,p (4.6)

Differently to other solutions in literature, this approach has the main advantage that the
expected distortion becomes quasi-independent from the RTP packet failure rate whereas a
change of the F, ;;, will only results in a rate increment or decrement. This feature will be
exploited while modeling the expected R-D curves, as we will see later.

As a case of study to provide numerical results and illustrate how rate adaptation works
when UXP is implemented, we consider here the following choice for the EPP, by differ-

entiating the base and the enhancement layer protections.
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4.2.2.1 A case study for the design of EEP

Since the priority level of the quality layers carries both the information of the R-D im-
provements and the dependency of each frame, the values of the EPP for the quality frames,
1.e. ¢ > 0, can be derived according to the following formula
_p . o
Tfap = ()10 P2 mi 4.7)
1+ (£ —1In(10))2  otherwise
where « allows for a trade-off between protection and overhead.

The priority levels for the base layer frames are normally set equal to 63 by the quality
processing tool. If the UXP profile used eq. (4.7), it would assign similar protection to the
base layer and the first enhancement layers. A smaller frame error rate is ensured for the
I-frame, since its loss will produce the drop of all the frames in the GOP. To avoid this we
set then My, = 107®  Var. Moreover, in order to exploit the temporal scalability at the
decoder we propose to re-assign to frames of the enhancement temporal layer, with g = 0,
an higher priority level and to use again the eq. (4.7) to derive the relative EEP values. The
choice of the priority level for the enhancement temporal layer depends on the particular

frame rate that must be ensured to each user.

4.3 Rate-distortion modeling with Packet Losses

The model in (3.10) for the R-D relationship is still applicable in case of frame losses due
to the transmission error in the channel. In this case the empirical points of the encoder are

replaced by new points taking into account the effects of packet erasures and UXP. These

G—1 """,

new points are the result of the rate increase due to UXP , i.e. ), =0
4P

rfq,p» and the
novel expected distortion d ;s evaluated as in (4.5). In Figure 4.4 we plot the empirical R-
D function resulting from the encoder, as the reference curve, and the related R-D functions

outcoming from the UXP profiler at different packet error probabilities P, ,;, > O for the
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Figure 4.4: R-D Model (straight line), according to eq. (3.10) fitting the empirical R-D
relationship for one GOP (size G equal to 8) of the Football test-sequence with different
error probabilities and o=30. The lower curve refers to the R-D relationship of the encoder.

first GOP of the test-sequence Football. We can see that the distortion is almost unchanged
for the lower points of the curve with respect to the reference case, since high protection
is provided to the high priority levels which are the first to be extracted. At larger bit rates
the gap with respect to the reference case increases due to insertion of quality frames with
lower protection.

Generally a dynamic adaptation of the UXP to different P, grp would require the peri-
odical application of the curve-fitting algorithm to derive the two parameters of the model,
thereby increasing the complexity. This problem can be overcome when the UXP profiler
adaptively tracks the FEP profile by changing the protection class assigned to the different
NALUSs. In this way only rate has significant changes while expected distortion practi-

cally does not change. While comparing the empirical points resulting from different error
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Video p o=15 o =30
&P ["Overhead \ dGo.10ssIMSE] | Overhead \ dGo.10ssIMSE]
0.01 8.4 % 1.82 53 % 4.54
Foreman | 0.05 17.7 % 2.13 13.7 % 5.15
0.1 28.0 % 2.17 23.1 % 5.31
0.01 7.8 % 8.95 51 % 19.87
Harbour | 0.05 17.1 % 9.86 13.3 % 20.32
0.1 27.6 % 10.13 23.4 % 20.89

Table 4.1: Percentage of the overhead and expected distortion dgg /o5 in term of MSE with
respect to the full quality video streams (Q = 10 and G = 8), for different values of RTP
packet error probability and o parameter in the EEP profile.

probabilities (P, ,;, > 0), we can note in the figure how the proposed UXP profile leads
to similar distortion at different P, grp values. Therefore the adaptation module adapts the
sequence-dependent parameters by simply adding a constant dependent on the value of
P, r1p. According to extensive simulations the rate shifting is independent of the encoded
sequence and can be determined by empirical evaluations.

This result can also be appreciated in Table 4.1 where the average expected distor-
tion due to different P, ,;, and the resulting average overhead is evaluated for two video
sequences with full quality.

The selection of a small value of & for the EEP results in a small FEP for the quality
layers, thereby increasing the overhead. On the other hand, a loss in the expected quality is
experienced by doubling o with a consequent rate gain in the order of 5%. As mentioned
before, the overhead is approximately constant even for video sequences with high spatial
and temporal complexity difference, such as Foreman and Harbour. On the other hand,
the loss in the expected quality strictly depends on the range of the distortion values as
normally increase with the complexity of the video raises if the same encoding paradigm

is used for each sequence.
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4.4 Packet-erasure channel

In this section we asses the performance in the case of transmission over packet-erasure
channel, by evaluating only the proposed algorithm with two different GOP sizes. The
number of bytes per RS codeword is set equal to n = 128 (as a shortened version of the
code with natural length 255) by allowing the insertion of more than one GOP into a TB
and then filling the payload of each RTP packet with a reasonable number of bytes. In
order to limit the overhead to about 20% for the worst case considered, i.e. P, = 0.1, the
parameter « is set equal to 30 (see Table 4.1). According to extensive simulations we define
the range of the EPP values for the enhancement temporal layers between 1075, which is
intended to the I-frame, and 10~(©~7). We also consider a value of bandwidth sufficiently
high, i.e. R.= 7000 kbps, to allow the insertion of the higher quality layers which have less

protection.

Table 4.2 shows the average distortion resulting at different P, ,;, for the different video
sequences. The average is obtained by looping the first 240 frames of each sequences for

1000 times. Here, D*

rec.av 18 the average received MSE; Dy, is the average expected dis-

*

enc.av 18 1ts related

tortion which is the discrete solution of the adaptation algorithm, and D
encoding distortion. We can note that the expected distortions as well as the received dis-
tortions at the same RTP packet failure rate P, ,;, are approximately equal, showing the
goodness of the framework even in presence of packet erasures. The distortion values de-
crease for most of the video sequences, while the packet error rate increases, due to the
effect of bandwidth constraint. At large values of F, ;;,, the outcoming overhead from the
UXP profiler increases and the Adaptation module reacts by reshaping the rate of each se-

quence, thereby increasing the distortion to provide fairness. This behavior is less marked

in the case of GOP size equal to 8 for the Foreman sequence whose distortion does not
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G=38 G=16
Diec,av DZV D:nc ay Dtec ay DZV Dznc,av
0.01 339 | 374 ] 29.6 273 1294 | 19.8
Coastguard | 0.05 | 37.5 |40.1 | 33.6 312 | 320 224
0.1 40.8 | 423 | 37.8 36.1 | 377 ] 27.0
0.01 36.5 | 36.6 | 36.2 284 | 284 | 282
Crew 005 | 393 |394 | 39.1 324 | 325 323
0.1 414 | 415 413 36.6 | 37.0 | 36.0
0.01 352 | 356 ] 34.0 279 | 284 | 264
Football 005 | 384 |389 ]| 37.1 30.8 | 31.6 | 29.2
0.1 41.8 | 41.8 | 40.5 359 | 373 ] 343
0.01 357 | 35.6| 34.2 28.1 | 287 | 27.9
Foreman 0.05 359 | 36.0| 354 0.4 30.8 | 30.1
0.1 36.2 | 37.1| 36.1 33.8 | 349 | 332
0.01 353 | 38.8 | 23.7 29.8 | 30.3 | 18.2
Harbour 005 | 406 | 422 | 265 320 323 | 203
0.1 428 442 | 310 344 | 37.8| 229

Video P yip

Table 4.2: Average received distortion,Dy,, ,,, expected distortion, Dy, and encoding dis-

tortion, D% in term of the MSE for different video sequences, GOP size G, and packet-

enc,av’
erasure rate values P, ,;p, resulting from the proposed rate-adaptation algorithm. Available

bandwidth is R, =7000 kbps.

change significantly, since it receives in most cases only the base-layer with the highest
protection. The slight increase of distortion with respect to the encoding MSE is due to the
loss of certain enhancement temporal layers.

As expected, an higher GOP size decreases the distortion thanks to the higher coding
efficiency, that allows to improve the R-D performance of the base layer. Nevertheless, such
gain is reduced with respect to the case of error-free channel, since more quality layers with
low protection are transmitted. This behavior can be improved with a more careful design
of the EPP aimed at balancing overhead and degree of protection according to the available

bandwidth.
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4.5 Conclusions

In this work a multi-stream rate adaptation framework has been proposed with reference
to temporal/SNR-scalability of SVC with MGS and by considering transmission over a
packet-erasure channel. A simple UXP scheme has also been included with the aim to
maintain high expected quality even in presence of high packet error rate. This framework
is suitable for video applications such as video on-demand, IP-TV services and real-time
streaming. A general discrete problem aimed at maximizing the average distortion while
providing fairness to different video sources has been proposed. Then, a semi-analytical
model that estimate the R-D relationship of each video source GOP-by-GOP has been
developed and successively tested with respect to goodness parameters and complexity. The
general discrete problem has then been relaxed and an optimal procedure has been derived
based on the low-complexity R-D model. The numerical results have shown the feasibility
of our framework through the investigation of the achieved fairness, the gap between the
relaxed and the related discrete solution according to the fairness metrics adopted, and the

improvements with respect to an equal-rate assignment scheme.



Chapter 5

Rate Distortion Modeling for Real-time

MGS Coding

5.1 Introduction

Video streaming is one of the most popular applications of today’s Internet. As the Internet
is a best effort network, it poses several challenges specially for high quality video streams.
The Advanced Video Coding (H.264/AVC) scalable extension, also called Scalable Video
Coding (SVC), provides an attractive solution for the difficulties encountered when video
source is transmitted over wireless transmission systems. Such challenges include error
prone channels, heterogeneous networks and capacity limitations and fluctuations [1]. Scal-
able video coding provides three types of scalabilities, namely spatial, temporal and SNR
scalability. These types of scalability allow a sub stream of a particular resolution, frame
rate and quality to be extracted in order to be adapted to various network conditions and
terminal capabilities.

Rate-Distortion (R-D) models are used to predict rate and distortion of video sequences
prior to the encoding process. The rate of a video sequence is expressed in bytes/s, while

the distortion is defined in terms of Mean Square Error (MSE). The Peak Signal to Noise

55
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Ratio (PSNR) is more often used to express the quality of a video sequence.

Within SVC, each sequence is encoded with one base layer and several enhancement
layers which can be sequentially dropped by providing a graceful degradation. SNR scala-
bility is achieved by using Coarse Grained Scalability (CGS) or Medium Grained Scalabil-
ity (MGS) [14]. In CGS a limited number of discrete points can be extracted which is equal
to the number of coded layers, while MGS provides finer granularity of quality scalability
by dividing each CGS layer into 16 MGS layers.

Different video sequences have different complexities, hence the relationship between
rate and quality differs from one video sequence to another. Assuming the same physical
resources are shared among different video sequences, an equal rate allocation scheme
would divide the available rate equally among the sequences, which may lead to a high or
even unacceptable level of distortion for more complex videos which require higher rates.
To optimize transmission strategy based on the QoE of the end user, the rate should be
allocated among the videos based on fairness criterion.

In the literature several R-D models have been proposed to predict rate and distortion
prior to the completion of the encoding process. Enhanced R-D models for H.264/AVC
were proposed for coded video sequences in [19]. However the parameter extraction is per-
formed after transformation and quantization in the encoding process. The late extraction
of the parameters can significantly affect real time applications such as video over wireless
networks. An improved real time rate distortion model for medium grain scalable video
coding is proposed in [15] which reduces significantly the dependency on the encoding
process. In this model the delay is reduced by extracting the parameters before transforma-
tion.

In this chapter we propose a new rate-distortion model for real time MGS video streams.
Our model only uses two parameters which are calculated taking into account the charac-
teristics of the video sequences through a spatial and a temporal index extracted from the

original raw video streams. Moreover we also use these complexity indexes to calculate
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base layer and enhancement layer rates of the given video stream.

This Chapter is organized as follows: Section 5.2 reports a brief overview of rate-
distortion modeling. Our proposed rate distortion model is illustrated in Section 5.3. Sec-
tion 5.4 describes simulation and model verification of our algorithm, while conclusion is

drawn in Section 5.5.

5.2 Overview of Rate Distortion modeling

In this section we give a brief overview of R-D models. R-D models describe the relation-
ship between the bit rate and the expected distortion and vice versa in the reconstructed
video stream. The trade-off between the goal of reducing the bit rate and the goal of keep-
ing the distortion at acceptable levels can be afforded dynamically, in order to perform
adaptation to different conditions. A R-D model enables to predict the minimum bit rate
required to achieve a target quality. The performance of the streaming system is directly
affected by the accuracy of the rate distortion model [29].

The time required to model the R-D curve for a given sequence may drive the decision
on the methodology/algorithm to be adopted for the model.

For real time video streaming systems the computation of the model should be fast
enough to deal with the timing constraints of the video stream. Many rate distortion models
have been proposed in the literature for real time and non-real time video streaming. They
are often categorized in analytic, semi analytic and empirical models. Empirical models
require the computation of all the set the R-D points resulting in a high complexity. Semi-
analytical models aim at reducing such complexity by deriving parametrized functions that
follow the shape of analytically derived functions, but are evaluated through curve fitting
from a subset of the rate-distortion empirical data points. In this preliminary work we inves-
tigate techniques to further reduces the complexity of semi-analytical models. This is made

possible by introducing new functions dependent only on the uncoded video sequences.
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The coefficients of this new functions can be estimated off-line through a prior knowledge
of the parameters of a set of video sequence samples, and then used for any future video

sequence.

5.3 Proposed Model

In this section we propose a parametric R-D model for MGS SVC which is simple enough
to be used by rate-adaptation techniques in real-time video streaming. The models depends
on the Spatial Indexes (SI) and the Temporal Indexes (TI) of the original raw video se-
quence.

After encoding, the GOP of the k-th generic video results in a finite discrete set of codes
with rate r; and distortion dj. The rate-distortion function which represents this set of point
is often modeled as a continuous function, because it can be more easily used to obtain
simple rate adaptation algorithms. We consider as a reference R-D model % (D) the one

introduced in [30] which is based on two parameters:

%y (D) > Ry prL (.1

The parameters o and f3; are sequence dependent parameters of the k-th GOP while
D is the distortion evaluated as a Mean Square Error (MSE). % p; and %y gy are the
Base Layer and highest Enhancement Layer rates obtained from the encoded video. The
drawback of this model is the fact that its parameters can only be evaluated by looking for
the best fitting of at least 4 R-D points after the encoding process of the video, making it of

difficult use for real time applications.
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The model proposed here replaces the parameters o and f; with the spatial index SIj
and the temporal index T'I, also called spatial and temporal complexities, in the following

way:

0 = p1+ paSh + p3T1y (5.2)

B = q1 + @25k + ¢3T Iy (5.3)

The same approach is used to replace base layer and enhancement layer rates, by mod-

eling them as:

RkygL:r1+rzSIk+r3TIk 5.4)

Rk,EL =81+ 58I + 53T (5.5

The sets {p1, p2, p3}, {q1, 92, g3}, {r1, r2, r3} and {s1, 52, s3} are the coefficients
that are calculated using linear least square fitting method [31] with Least Absolute Resid-
uals (LAR) [32] for robustness in a sufficiently large set of GOPs from different video
sequences. As mentioned above, this process is executed offline only once, assuming the
availability of a reasonable set of video sequences.

The spatial and temporal complexities are evaluated on the luminance component [33]
of the video by means of Spatial Information and Temporal Information [34] of the k-th

GOP respectively as follows:
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ST, = max,, stds{Sobel|[F,(o)|}
Tl = max, stds{M, (o)}
where
M,(o) =F,(0)—F,—1(0)

M, (o) is the motion difference and F, (o) is the luminance component with n and ©
temporal and spatial coordinates, respectively, of the frame sequence used to encode GOP
k.

To summarize, the R-D model is obtained by substituting in (5.1) the parameters o,

and B3, from (5.2) and (5.3), and % p;, and % g1, from (5.4) and (5.5), respectively:

(

%’k(D) = P1+P253+P3T1k +q1 + 2SI+ g3 T,
R (D) > r1 +1rShL+ 3T, (5.6)

Ky (D) < s1+ 528 + 53T,

The proposed R-D model is verified by considering video sequences generated by the
JSVM software [3] We encoded 6 video sequences i.e Crew, Football, Coastguard, Soccer,
City, and Mother and Daughter (MD) having different scene complexities, in CIF resolu-
tion with the frame rate of 30 fps. We denote this set of 6 videos as the training set. Two
enhancement layers are used to obtain SNR scalability where each layer is split into 5 MGS
layers with vector distribution of [3 2 4 2 5]. All the videos are coded GOP by GOP with a
GOP size of 8 to obtain sequences comprising 26 GOPs. The Quantization Parameter (QP)
is set to 38, 32 and 26 to obtain the base layer and the two enhancement layers.

Figure 5.1, 5.2, 5.3 and 5.4 shows «, 3, base layer (BL) and enhancement layer (EL)

models as in (5.2), (5.3), (5.4) and (5.5), respectively, using spatial and temporal indexes.
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Figure 5.1: Proposed model for a with R?= 0.987 and RMSE = 1598

In figures 5.1 and 5.2 the markers are referred to the values of oy and B derived according
to model (5.1) and plotted for each GOP versus the corresponding value of SI; and T1.
In figures 5.3 and 5.4 the markers are referred to the BL and EL layer rates derived by
encoding the sequences with JSVM [3].

It can be observed that the values of the parameters for all the models closely follow a
linear behaviour. The metrics used to evaluate the goodness of the model in fitting the set
of points are the coefficient of determination (R?) and Root Mean Square Error (RMSE).

The sets of coefficients p, g, r, and s, appearing in (5.2), (5.3), (5.4) and (5.5) of the

proposed model, result to be, for the training set, as follows:

p = {-2.4x10% 3975, 540.5}
q = {-246.1,24.13, 3.328}
r=1{41.27,17.09,9.12}

s = {-237, 145.6, 34.02}
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Figure 5.2: Proposed model for B with R*= 0.973 and RMSE =21.2
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Figure 5.3: Proposed model for (BL) with R?= 0.979 and RMSE = 22.98
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Enhancement Layer Model (EL)

sl

Figure 5.4: Proposed model for (EL) with R?= 0.985 and RMSE = 79.36

In Figure 5.5 the different R-D models are shown and compared for two sample GOPs
of three video sequences. The accuracy changes GOP by GOP: figure 5.5(a) shows the
result for a sample GOP with good matching between proposed model in (5.6) and model
in (5.1), whereas the figure 5.5(b) shows a result with poor matching. As it will be shown
in Section 5.4, the GOPs with less accurate model do not have significant impact on the
behavior of rate adaptation strategies in real time multivideo transmission.

To evaluate the goodness of BL and EL rate estimation, we compare in Figure 5.6 the
rates estimated with the model in (5.4) and (5.5) to the original rates obtained from the
encoded sequences.

We consider not only the video sequences in the training set but also the sequences
outside the training set. More emphasis is given to base layer rate as it is the minimum rate
requirement of each video sequence when transmitted in bandwidth constrained channels.

It can be observed from Figure 5.6 that our model predicts the BL rate quite accurately,
not only within the training set but also for the sequences outside this set, as shown for

Mobile and Foreman in Figure 5.6. Moreover it can also be seen from Figure 5.6 that the
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Figure 5.6: BL and EL rates over 26 GOPs for two sequences in the training set (Football
and City) and two sequences outside the training set (Mobile and Foreman). The marker
points refer to the original BL and EL rates, whereas the solid lines refer to rates estimated
from (5.4) and (5.5), respectively.
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estimation is good also for EL rate.

5.3.1 Validation of the proposed models

The proposed models are useful to build up rate-adaptation algorithms that adaptively set
encoding parameters or scale the video to suitably optimize the transmission in a bandwidth-
constrained, time-variant channel shared by multiple videos. The rate adaptation algorithm

used to validate the proposed R-D model is explained in section 3.2 and 3.4 of Chapter 3.

5.4 Simulation and Model Verification

In this section we verify the proposed R-D model in the transmission of multiple videos
over a bandwidth constrained channel by using the rate adaptation algorithms outlined in
Section IV and described in detail in [30]. We propose results for both the videos in the
training set and videos outside it. In the first case a bandwidth limited to R, = 3500 kbps is
considered. In the second case a set of 4 sequences, i.e Foreman, Harbour, Container and
Mobile, and a bandwith limited to R, = 3000 kbps is considered.

Tables 5.1 and 5.2 show the average MSE taken over the first 26 GOPs for the model
(5.1) and our proposed model. It can be seen that ER algorithm assigns less distortion to the
low complexity videos like M D, City in the training set and Foreman and Container outside
the training set, thus compromising the quality of more complex videos like Football,
Coastguard or Harbour and Mobile. This behavior is mitigated by the OPT algorithm, as
expected. Moreover, it can also be observed from both tables that the average MSE values
for the proposed model closely follow to the model (5.1) except for Harbour and Container
in Table 5.2 with OPT algorithm. For the ER algorithm in both table 5.1 and 5.2, the results
for model (5.1) and our proposed model show only slight differences mainly due to the
fact that our estimated maximum and minimum rates which are the BL and EL rates are

different from the original BL and EL rates.
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Model (1) Proposed Model
ER \ OPT | ER \ OPT
Crew 36.99 | 38.00 || 36.24 | 44.09
Football | 53.11 | 44.00 || 53.11 | 46.69
Coastguard | 70.78 | 45.72 || 69.09 | 46.82
Soccer 3993 | 42.15 || 38.21 | 34.72
City 37.61 | 51.05 || 35.41 | 49.10
MD 9.00 | 20.65 || 8.69 20.59

Table 5.1: Average MSE over 26 GOPs obtained with the model (5.1) and proposed model
in the transmission of the training set of 6 videos.

Sequence

Model (1) Proposed Model
ER \ OPT ER \ OPT
Foreman | 19.02 | 3490 || 18.29 | 31.60
Harbour | 79.78 | 57.86 || 79.18 | 81.11
Container | 15.88 | 3539 || 1545 | 18.14
Mobile | 103.84 | 65.44 || 103.84 | 72.76

Table 5.2: Average MSE over 26 GOPs obtained with the model (5.1) and proposed model
in the transmission of 4 videos not included in the training set.

Sequence

A more detailed observation can be done through Figure 5.7 which compares the MSE
obtained after rate adaptation for the sequences Football, City, Mobile and Foreman, with
our proposed model and the model (5.1). It can be observed that, with the exception of
some large deviations experienced in few GOPs of City and Mobile, our model closely
follow model (5.1). The exceptions suggest, in practical applications, that video servers
determine off-line different models as in (5.6) for a limited number of video classes having

homogeneous characteristics.
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Figure 5.7: Averaged MSE for each GOP of two sample videos in the transmission over
bandwidth constrained channel with rate adaptation. Figures Football and City refer to the
transmission of the 6 videos of the training set (R, = 3500 kbps), wheres figures Mobile and
Foreman refer to the transmission of 4 videos not included in the training set (R, = 3000

kbps).
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5.5 Conclusions

In this work we proposed a new rate-distortion model using spatial and temporal indexes
for MGS scalable video coded streams with reference to SNR scalability. The model has
been developed with particular aim to real time video streaming over wireless channels, as
it only needs spatial and temporal indexes from the original unencoded video to build the
R-D relationship and to estimate base layer and enhancement layer rates. The model has
been compared to the state of the art non real time model in applications where multiple
video are transmitted over a bandwidth constrained channel with rate adaptation showing

that the proposed model works well.






Chapter 6

QoS for VoIP Traffic in Heterogeneous

Networks

6.1 Introduction

The popularity of wireless networks is widely recognized because of its strong support
and ease of use in the end systems. Heterogeneous wireless networks are becoming of
widespread use with Internet’s real-time multimedia applications. Short range WLAN sys-
tems, as well as different cellular systems and WiMAX, provide some level of QoS and
are needed to realize ubiquitous Internet services. But real time multimedia applications, in
particular interactive and live streaming applications, set strict requirements for the QoS.
Some applications need relatively wide bandwidth; the bandwidth should be available in
both directions constantly. Applications like voice and video need short transmission delay
and jitter but they still have ability to tolerate some packet loss [35]. WiMAX is capable of
reaching remote areas with high data rate transfer, mobility support and a native Quality of
Service management (even if just limited to the wireless IEEE802.16 links) [36]. By look-
ing at the literature, a remapping mechanism is proposed in [37] to dynamically adjust the

mapping rules for nrtPS and rtPS (for VBR traffic sources) classes of WiMAX to DiffServ.
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An architecture for signaling and WiMAX resources management is proposed in [38] con-
sidering an end-to-end QoS enabled scenario. In this approach interoperability is provided
between WiMAX and other networks which have different QoS schemes, like DiffServ.
WiMAX and WLAN Integration design is proposed in [39] for link layer QoS. Here, a
mapping scheme of DiffServ to the link layer services for both WiMAX and WLAN is
shown. The end-to-end QoS mechanisms were developed to serve the users with the wired
terminals. More research work on DiffServ approach applied to the wireless systems and
mobile users in heterogeneous environment is needed in order to understand the benefits
of the DiffServ networks. Current research is open regarding the mapping of QoS classes
and the design of complete interworking models between WiMAX and DiffServ networks.
In our work, a WiMAX DiffServ QoS test-bed scenario is implemented to test the inter-
operability and the different functionalities between domains with different QoS models.
The aim of our research is to map and analyse the QoS class for CBR traffic types (VoIP
without silence suppression, as an example) which need constant bandwidth in both wired
and wireless networks.

To provide better Quality of Experience (QoE) to customers in efficient manner i.e
with respect to cost as well as with QoS. From this point we understood that QoS & QoE
are mutually dependent and to achieve QoE, QoS is the basic building block [40]. The
requirement of QoE and QoS along with the QoS parameters with priority order can be
helpful for both the operators and users to maximize the network performances and user
satisfaction level with the limited resources. During the limited resource condition, QoS
requirement can be optimized according to the service type, price, user requirement and
priority of QoS parameters [41].

This chapter is organized as follows. Section 6.2 explains the mechanism for IP QoS.
Section 6.3 depicts the QoS mechanism in WiMAX network. Section 6.4 illustrates our

simulation scenario and results, whereas conclusion are drawn in section 6.5.
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6.2 Mechanism for IP QoS

There are two main IP based QoS mechanisms, IntServ and DiffServ. IntServ provides
end-to-end QoS in flow-based manner and uses the Resource Reservation Protocol (RSVP)
for signalling, which follows the data path, performs the reservation and maintains per
flow state in each router. DiffServ has more suitable mechanisms for providing end-to-
end QoS by working with aggregate traffic classes [42]. Packets of a particular service
class are marked with a QoS class and receive a specific Per Hop Behaviour (PHB) for
forwarding. The PHB is an externally observable forwarding behaviour which is applied to
a DiffServ compliant node, or it refers to queuing scheduling, shaping or policing behaviour
of a node on any packet. There are several available standard PHBs, which include default
PHB, Assured Forwarding (AF) PHB and Expedited Forwarding (EF) PHB. The packets
scheduled by default PHB receive the traditional Best Effort (BE) service which has the
lowest priority. The AF class is further categorized into four classes, namely AF1, AF2,
AF3 and AF4, and each class has three drop precedences: Low, Medium and High. The
purpose of the AF PHB is to allow the DiffSev network to provide different levels of QoS
assurances. Generally AF class is used for the traffic which can tolerate more delay and
packet loss, but requires better QoS than Best effort (BE) class. The main purpose of the
EF PHB is to provide assured bandwidth equivalent to ‘virtual leased line’. Asynchronous
Transfer Mode (ATM) has also attempted the same assured service in its Constant Bit Rate
(CBR) traffic mode. The characteristic of this type of service is to provide low delay and
small packet loss ratio.

DiffServ uses IP header field (Type Of Service (TOS) in IPv4 and traffic class in IPv6) to
denote the QoS class of a packet as shown in figure 6.1. Using DiffServ Code Point (DSCP)
each router in the network can mark, shape or drop the incoming traffic. The DSCP field is
made of eight bits out of which only six bits are currently in use while the last two bits are

for future use. The first three bits of the class selector code points are used to specify the
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Figure 6.1: DiftfServ Code Point field.

different classes with different priorities. The next three bits of the DSCP field are used to

handle drop precedence of each of these classes.

6.3 QoS Mechanism in WiMAX Network

IEEE 802.16, referred to as WiMAX, provides specifications for air interface of Metropoli-
tan Area Network. The standard specifies connection-oriented QoS support [43]. There are
different types of services for different types of classes, which include: Unsolicited Grant
Service (UGS) for real-time uplink Service Flows (SFs) of fixed packet size on periodic
basis, Real-time Polling Service (rtPS) for real-time SFs having variable-size packets on
periodic basis, Non real-time Polling Service (nrtPS) which supports delay tolerant data
having variable-size packets for which minimum data rate is needed, and Best Effort (BE)
for the data streams for which no minimum service is required. Service Flows are cre-
ated and modified between MS and BS through MAC message exchange. The exchange of

Dynamic Service Deletion (DSD), Dynamic Service Change (DSC) and Dynamic Service
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Addition (DSA) messages are initiated by either BS or MS.

The distinguishing feature of WiMAX over its other competitors (i.e. 802.11 and 3G) is
its QoS provisioning based on the association of each packet with a service flow. WIMAX
is connection-oriented and each connection has a unique Connection ID (CID) and Service
Flow ID (SFID) which is associated to that particular class. The data is mapped by the upper
part of the MAC to QoS service classes. The external application can also request desired
QoS parameters using the named service class. The traffic shaping engine is included in
the MAC which is ultimately responsible for the transmission and reception of the 802.16
packets according to the applied QoS parameters. These parameters are different from one
service flow to another.

WiMAX allocates traffic to a service flow and then maps it to a MAC connection using
CID as shown in figure 6.2. In this way, IP and UDP protocols which are connectionless are
transformed into connection-oriented service flows. An application or group of applications

can be represented with a connection with same CID.
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Figure 6.2: IEEE 802.16 QoS Architecture

The MAC layer of WiMAX is divided into two sub-layers: the common part sub-layer
and the convergence sub-layer. The transport layer specific traffic is mapped by the conver-
gence sub-layer to the core MAC common part sub-layer. The common part sub-layer is
responsible for fragmentation and segmentation and is independent of the transport mech-
anism.

The incoming traffic type (e.g. web surfing, voice ATM CBR etc.) is classified by the
convergence sub-layer and a 32- bit SFID is assigned to it. When a service flow is active
or admitted, it is mapped to a 16 bit unique CID which handles its QoS requirements.
Each service flow is defined by a QoS parameter set which describes its jitter, latency and
throughput assurances.

After the service flow is assigned with a unique CID, it is then forwarded to the appro-

priate queue. Base Station (BS) performs the uplink packet scheduling by signaling to the
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Subscriber Station (SS) [43]. The packet scheduler in the SS will extract the packets from
the queues and transmits them to the network with an appropriate time slots sent by the BS

in the Uplink MAP (UL-MAP) message.

6.4 Inter-Working Model and Simulation

We consider here the scenario of Figure 6.3, where the traffic from the WiMAX domain
enters the DiffServ core network. In the core network the traffic will be mapped to the
equivalent class of WiMAX according to Table 6.1 [35]. In this scenario the two nodes,

Nodel and Node2, are used to generate traffic that competes with WiMAX traffic.

»

channelcontrol flatNetworkConfigurator

Edge Router

Server

i " d
Mobile_Station 3 = 3 = Core/DiffServ Network

" " Nodel Node2
WiMax Domain

Figure 6.3: WiMAX and DiffServ Network Simulation Scenario

In our test network we have considered a VoIP application with Unsolicited Grant ser-
vice (UGS) and mapped it to the Expedited Forwarding (EF) class of the DiffServ network.
The aim of the simulation is to examine different QoS parameters when WiMAX traffic
enters the DiffServ network and when DiffServ domain is not used for CBR traffic.

In the test-bed the UGS type of traffic coming from WiMAX is mapped to a high prior-

ity queue in the edge router of the DiffServ core network which provides the service of EF
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’ WiMAX Scheduling Class \ DiftfServ PHB \ Service Example ‘

UGS EF VoIP without VAD
rtPS AF4 Audio/Video streaming

nrtPS AF3 Transactional Services
BE BE E-mail download

Table 6.1: WIMAX and DiffServ traffic class mapping

class. This queue has high scheduling priority compared to the other queues and the data in

this queue will be scheduled first.

6.4.1 Priority Queuing (PQ)

In our simulation scenario we have implemented Priority Queuing in the edge router of
the DiffServ core network. PQ realizes a simple way of class distinction. As shown in
Figure 6.4, if N queues are created, then the priority goes from 1 to N. The scheduler
will schedule higher priority queue first and when that queue is empty it will schedule the
packets from the next high priority queue. The j-th queue packets are processed only if
the higher priority queues, i.e. queue 1 to j-1, are empty. If the scheduler is at queue j a
packet arrives in a higher priority queue, say j-3, the scheduler will go to the queue j-3. PQ
is particularly suitable for high priority traffic and provides premium service to the traffic

which is extremely critical and needs to be processed as soon as possible.
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Figure 6.4: Priority Queuing Implemented in Edge Router

We selected priority queuing because it provides dedicated queues for real time traffic,

e.g. video and voice over IP.

6.4.2 Simulation Results

The scenario is simulated in OMNeT++ 4.0 with INET framework [44]. The simulation is
performed according to the parameters shown in table 6.2. The simulation is run under the
traffic load of 100%, 112.5% and 125% with and without DiffServ enabled core network.
Node 1 and Node 2 generate exponentially distributed traffic with different arrival rates
mentioned in table 6.2. The packets from both the nodes are not marked with DiffServ
code point so they will be treated as best effort traffic upon their arrival on the edge router
of the DiffServ core network.

Figure 6.5 shows the number of dropped packets without DiffServ core network en-
abled with different loads. Packets are dropped when the bandwidth required to transmit
them exceeds the allocated capacity. We found no dropped packets from VoIP stream with

DiffServ enabled core network because of the preferential treatment over the other traffic
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Figure 6.5: Packets dropped without DiffServ support.

types. When the core network is not DiffServ enabled, it cannot provide preferential treat-
ment to the VoIP packets coming from WiMAX domain. All the VoIP packets are treated
as best effort on the edge router along with the traffic from Node 1 and Node 2.

As our interest lies in VoIP traffic from the mobile station, in figure 6.5 we have not
considered the dropped packets coming from the other nodes.

In Figures 6.6, 6.7 and 6.8 some simulation traces for packet delay in the network are
shown under different network loads, with and without DiffServ enabled network. H1 and
H?2 represent Nodel and Node 2 while MS1 represents the Mobile Station in the simulation
scenario of Figure 6.3.

Figure 6.6 shows the packet delay along the simulation time in the scenario without
DiffServ core network and with 100% of network load. As can be seen from the figure,
the packets from the mobile station are mixed with those from node 1 and node 2 and
routed without QoS provision. The VoIP packets are experiencing different delays over
the simulation time, though these packets need a fixed and constant bandwidth and are

generated with fixed size on periodic intervals. These delays affect the time sensitive data.
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Figure 6.6: Delay without DiffServ support and with 100% load.

In Figure 6.7 the delay of the VoIP data from the mobile station varies between 37
milliseconds and 58 milliseconds in different intervals of simulation time. On the other
hand, figure 6.7 refers to the VoIP stream passing through a DiffServ enabled network
which shows a smooth data flow along the simulation time. It can be seen that almost all
the packets experience the same fixed delay which is about 35 milliseconds and there is an
average gain of 10 to 15 milliseconds achieved with DiffServ enabled network.
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Figure 6.7: Delay with DiffServ support and 100% load.

Figure 6.8 shows the packet delays in a scenario with 112.5% traffic load condition,

without DiffServ enabled network. The VoIP stream of the mobile station experiences
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Figure 6.9: Delay with DiffServ support and 112.5% load

higher delays and most of the packets experience a delay between 46 milliseconds and

56 milliseconds. In Figure 6.9, referred to DiffServ enable network, the delay is stable at

nearly 35 milliseconds.
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Figure 6.8: Delay without DiffServ support and 112.5% load.

Figures 6.10 and 6.11 show packet delays for VoIP traffic in scenarios with and without
DiffServ and with 125% traffic load. Without DiffServ enabled network the majority of

the packets have delays above 50 milliseconds whereas the delays in the DiffServ enabled

network for VoIP is still constant around 35 milliseconds.
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It is important to note from all the figures that the delays of the VoIP packets are constant
for all the traffic loads when DiffServ is enabled, because, as mentioned before, PQ is used

which provides premium service to the higher priority queue and all the packets will be
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Wimax 1 Server udp

0.30 036 0.40 0.45 0.50 056 0.60 0.66 0.70 0.78 0.80 0.85 0.80

* Delay H1
& Delay H2

]

e A

036 0.40 045 0.50

Simulation Time (s}

086
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scheduled first before providing the service to lower priority queue.

On the other hand, in the scenario with with DiffServ enabled network the traffic from
node 1 and node 2 experiences delay larger than the one in non DiffServ network. Though
in both the cases we have not marked the packets of nodes 1 and 2, so their traffic is treated

as Best Effort. The increase of the delay is the cost of the preferential treatment provided

to the VoIP packets.
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Jitter and delays affect the QoS of the VoIP stream. From the point of view of perceived
QoS, jitters and delays of few milliseconds are acceptable. According to ITU-T specifica-
tion [45] one way delay should not be more than 150 ms while there is no precise limit for
jitters. Figure 6.12 shows the values of jitters for different loads with and without DiffServ
enabled network. It can be seen that as the network load increases, the jitter of the packets
decreases: this is because when the network approaches saturation point the fluctuations of

packet delays decrease.

O ithout DifServ MW ith DiffServ

125 % Load

1
1125 % Load -
1

100 % Load |
| | | | | |

0 0001 0.002 0003 0.04 0.005 0.006 0.007

Standard Deviation of Delay (s)

Figure 6.12: VoIP service jitters in networks with and without DiffServ.

6.5 Conclusions

The measurements in the test-bed network show that DiffServ network clearly provides
better QoS for multimedia services. Though the effect of DiffServ in normal traffic condi-

tions is not significant, it clearly performs better in congested network. Internet by default
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is a Best Effort network and DiffServ improves the performance of the core network by
providing the minimum required QoS level. Time sensitivity may not have a big impact on
applications like FTP but it is a great limitation for real-time traffic. PQ should be used only
when the amount of delay-sensitive traffic is small compared to overall traffic and needs
to be processed as soon as possible, as in our test-bed where we were sending 64 Kbps of

voice traffic while the total bandwidth of the core was around 5 Mbps.






Conclusions

In this PhD thesis several methodologies are proposed to provide better QoE to the end
user for multimedia applications like video and voice. More emphasis was given to video
for which R-D models and adaptation algorithms were developed for real-time and non
real-time video applications, while error protection technique was also proposed for the
non real-time R-D model to cope with the errors during transmission. For VoIP applica-
tion, though WiMAX provide a dedicated class of service to prioritize the voice packets
but it may lose significance if the intermediate networks cannot offer an equivalent pref-
erential treatment. The R-D model proposed for non real-time video streams in Chapter
3 not only reduces the complexity by reducing a sequence dependent parameter but also
the number of iterations and functions evaluations, thereby allowing minimum loss in the
goodness parameters. A framework for the rate adaptation is also proposed which provides
minimum rate required for each video in the transmission while providing fairness among
the videos based on distortion. To cope with errors during transmission an unequal error
protection scheme based on Reed-Solomon encoding with erasure correction is introduced
in Chapter 4 with the aim to maintain high expected quality even in the presence of high
packet error rate. This error protection framework is suitable for video application such as
video on demand, IP-TV services and real-time streaming. A new R-D model for real time
video streams is proposed in Chapter 5. This real-time R-D model is based on the R-D
model proposed in Chapter 3, as it estimates the sequence dependent parameters through

spatial and temporal indexes. These indexes are obtained from raw video sequences. Also
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these index values are used to estimate the base layer and the highest enhancement layer
rates. As the index values are obtained from raw videos the R-D model and the base layer
and the enhancement layer rates are estimated before encoding the video stream thereby
making it more suitable for real-time video streams. Chapter 6 discusses some network
level issues related to prioritization of delay and time sensitive incoming VoIP traffic from
WiMAX network. The measurement from the test bed network shows that by implement-
ing DiffServ Network clearly provides better QoS. Prioritization is more beneficial when
the bandwidth is limited and time critical data has to be transmitted within the minimum

required standards.
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