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Abstract 
One of the key problems in informing clients through multimedia streaming applications over the 
Internet is to customize the stream of information according to the client’s requests. This is 
achievable only if client and server can interact along the application lifetime, which is possible 
only if the communication system supports the rigid timing constraints imposed by these interac-
tive applications on their traffic. In the Internet scenario, these applications are very difficult to 
support, as the Internet provides a best-effort service to the traffic it carries, which means that the 
Internet does not make any promises about the end-to-end delay for an individual packet and 
about the variation of packet delay (network jitter) within a packet stream. These problems are 
confirmed by several experiments we performed over the Internet, which highlight that interac-
tive applications achieve a quality that is frustrating. The contribution of this paper is the proposal 
of a novel mechanism to support interactive multimedia streaming applications over the Internet. 
Our mechanism adapts the multimedia stream transmission to the network conditions, by inten-
tionally and slightly acting on the video QoS. Our mechanism has been validated through several 
experiments performed over the Internet. Results confirm that the supported interactive applica-
tions achieve a satisfactory quality and the user perceives a video quality only slightly affected by 
the QoS modification introduced by our mechanism.  

Keywords: Multimedia communication, Interactive application, Quality of Service, Video 
Streaming, Consistent Information.  

Introduction 
Multimedia has long played an important role in the process of informing activities by changing 
the way we learn, think, work and live (Zeng & Yu, 1999). Not surprisingly, the use of multime-
dia information is growing at an exponential rate, imposing a great challenge on the way informa-

tion are controlled and organized. In 
future years, this trend is expected to 
continue, thanks to the development in 
processor speed and to the advances in 
network technologies. Nowadays, 
learning, studying, researching, and 
communicating are examples of ac-
tivities that users can do by means of 
multimedia streams. 
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The reason of this success is that multimedia information is far more rich, educational and enter-
taining than traditional text-based information and nowadays users may access to broadband 
and/or wireless technologies (DSL, Fiber optics, Wi-Fi, Hedge/GPRS, CDMA, to name a few) to 
reach multimedia contents whenever and wherever they want.  

Many multimedia applications are available (on-demand multimedia services, video-
conferencing, distance learning, on-line games and pay-per-view, just to name a few), but the 
emerging multimedia applications are those that enable natural interaction among end-users: for 
instance, user can interact along the application lifetime with the contents provider in order to get 
a customized stream of multimedia information. A large interest is given to these interactive ap-
plications, which are becoming more and more attractive and popular over the Internet. On-line 
games, interactive-webtv, on-demand multimedia services are some examples of such interactive 
applications.  

Unfortunately, despite their popularity over the Internet, these applications achieve a QoS that is 
far from what desired. The reason is that multimedia interactive applications impose rigid timing 
constraints on the traffic they produce and the respect of these timing constraints is difficult in the 
Internet scenario, as the Internet provides a best-effort service to the traffic it carries. In other 
words, the Internet makes its best effort to move the traffic from sender to receiver as quickly as 
possible. However, the best-effort service does not make any promises about the end-to-end delay 
for an individual packet and about the variation of packet delay (network jitter) within a packet 
stream. This causes the end-to-end delay to be unknown a priori and very variable along the ap-
plication lifetime and poses serious problems to the supporting of interactive multimedia applica-
tions, which are subject to a very critical timing constraint: the overall end-to-end delay, experi-
enced by the application traffic, should be not noticeable to the end-users. The critical role played 
by this end-to-end delay is described in several studies (for instance, Kurita, Iai & Kitawaki, 
1995), which highlight how human perception is strongly affected by this delay. Briefly, these 
studies point out that the overall end-to-end delay is not noticeable by the human perception if it 
stays within a threshold, but if the delay goes above this threshold, it becomes noticeable to end-
users. This threshold, called NIT (Natural Interaction Threshold) in this paper, represents the limit 
below which the interactions are well supported. Hence, an interactive multimedia application is 
well supported if its traffic has an overall end-to-end delay smaller than this NIT threshold along 
the application lifetime. The value of this NIT threshold depends on the characteristics of the ap-
plication and on the level of interactivity requested by the end-users (i.e., the more interactive 
operations are involved, the lower the threshold value should be) (Kurita, Iai & Kitawaki, 1995). 
For instance, if we consider an interactive application where audio is involved, the delay from 
when a user speaks until the sound is manifested at the receiving hosts should be less than a few 
hundred milliseconds. In particular, delays smaller than 150 milliseconds are not perceived by a 
human listener, delays between 150 and 400 milliseconds can be acceptable, and delays exceed-
ing 400 milliseconds result in frustrating, if not completely unintelligible, voice conversations 
(Sitaram & Dan, 2000). In summary, interactive multimedia applications impose rigid timing 
constraints on packet delay and packet jitter, but the network does not provide any timing guaran-
tees. This causes QoS problems to users, who might perceive a quality that is far from what de-
sired.  

To investigate the reason of these QoS problems, we focus our attention on the communication 
sub-system: It is mainly composed of a server (for instance a video server), a client, a network 
and a mechanism that transports the information from the server to the client and vice versa. Usu-
ally, the multimedia stream is remotely available and the network is used to connect client and 
server. As we previously mentioned, this scenario arises QoS problems, which are due to the type 
of service provided by the Internet. Although QoS also depends on the quality of the line, the 
buffering technique and on the distance between client and server, but we can assume that these 
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dependencies could be simpli-
fied. In fact, our proposal is an 
end-to-end QoS mechanism 
and hence, as done in other 
end-to-end QoS approaches, it 
is possible to simplify some 
factors. At this level of abstrac-
tion, if client and server are 
directly connected (the network 
is not involved), no QoS prob-
lems happen, as the network 
does not introduce any delay. For simplicity, we can refer to this latter scenario as the ideal sce-
nario for supporting interactive multimedia applications, while the real scenario sees the network 
(as well as the network delays) involved (Figure 1). Using this terminology, we can say that an 
interactive multimedia application is well supported if the time difference between the real play 
out and the ideal play out is negligible. 

The contribution of this paper is the proposal of a novel mechanism, called VISP (VIdeo Stream-
ing Protocol), which supports video streaming interactive applications over the Internet. Our goal 
is to support the video play out in the real scenario, while attempting to simulate the video play 
out in the ideal scenario. To this aim, we introduce a new metric, called Video Time Difference 
(VTD), which represents the time difference between the video play out in the real scenario and 
the video play out in the ideal scenario. In this way, we can know whether the real video play out 
is close to the ideal video play out and hence, we can know whether an interactive application is 
well supported or not (note that an application is well supported if the overall end-to-end delay is 
smaller than the NIT threshold). In particular, during the video play out, our mechanism periodi-
cally computes the VTD and compares it with the NIT value: if the VTD is within the NIT value, 
it means that the network is introducing a delay that is not noticeable to the users; Conversely, if 
the VTD value is greater than the NIT value the network is introducing a delay that is noticeable 
by the user. Hence, by periodically checking the VTD we can have a measure of the quality 
achieved by the application.  

If the application is not well supported (the VTD goes above the NIT), our mechanism is in 
charge of reporting the VTD within the NIT. Simply put, the client computes the time difference 
between the VTD and the NIT and requires the sender to drop a number of video frames that cor-
responds to this time difference. As we show, this dropping mechanism reports the VTD within 
the NIT value and hence reports the real video play out close to the ideal video play out. In es-
sence, our mechanism intentionally modifies the video QoS in order to better support interactions. 
This has been done because applications with VTD above the NIT may be frustrating or even use-
less, while if the video QoS modification is very light, the user perceives a video quality that is 
still good and the application is well supported. To slightly affect the video QoS, we use the 
dropping frame algorithms proposed by (Furini & Towsley, 2001), which take into account the 
perceived quality at the user side when selecting the video frames to drop.  

The evaluation of our mechanism has been done transmitting several MPEG and Motion JPEG 
video streams (encoded with different bandwidth requirements) over the Internet. The evaluation 
measures both the percentage of frame with VTD above the NIT and the perceived video play out 
quality at the user side. Results show that our mechanism can well support interactive multimedia 
applications over the Internet, and hence it provides benefits in informing clients through multi-
media communications as it allows users to interact with the server in order to obtain a custom-
ized stream of multimedia information. On-line games and video-on-demand are examples of in-
teractive multimedia applications that will benefit from using our mechanism.  
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Figure 1: Network Scenario 
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Background 
In literature there are several studies related to multimedia communications. In the following we 
briefly review some approaches introduced to measure the QoS perception and two possible solu-
tions that aim at improving the QoS perceived by the client: buffering techniques and overlay 
networks. 

QoS Perception 
In multimedia communications, the perceived play out quality is perhaps the most important met-
ric in evaluating the effectiveness of a mechanism. The perceived QoS is mainly affected by two 
characteristics of the multimedia stream: high-bandwidth requirement and a real time delivery 
constraint. To provide a good QoS, all the packets of the media stream have to be presented at the 
client with the same temporal relationship as they had at the server side. 

This means that each packet has to meet a real time constraint. This contrasts with another char-
acteristic of a media stream: the high bandwidth requirement, which may cause congestion in 
some network nodes and hence, it may introduce a random delay in the delivery of each packet.  

The network jitter (the network delay variation of two consecutive packets) is very critical as it 
may cause underflow or overflow problems at the client buffer. In fact, each packet is delivered to 
the client buffer and the media player retrieves packets from it. If a packet cannot arrive at the 
client before the scheduled time the media player has no data to retrieve (underflow); if the client 
buffer is full when a packet arrives, it is discarded (overflow). In both cases, the media play out is 
affected. In literature there are techniques developed to handle the network jitter, as we better 
show in the following.  

The perceived QoS may also be affected by the synchronization of different media streams (e.g., 
audio and video) that can compose a multimedia presentation. In this paper, without loss of gen-
erality, we suppose that audio, video and other data are multiplexed (i.e., physically combined in 
one data unit) at the server and de-multiplexed at the client. In this way, the synchronization be-
tween different media streams has not to take place. Instead, it is important to focus on the lost, 
late, corrupted or dropped frames in a video sequence. As suggested by Steinmetz (1996) we can 
distinguish three kinds of recovery mechanisms: the most sophisticated case tries to compensate 
the missing frame by presenting them for a longer time. This is certainly the best way as the 
viewer will not notice the discontinuity if frames are presented for a fraction longer than the regu-
lar frame. However, this method is not of practical value with the current video technology, frame 
rates are fixed and we cannot just adjust frames at will. Another technique is that one frame can 
be replicated, but the most common method is just to drop the corrupted frame and to continue 
with the next frame. Despite, this solution seems inadequate due to the possible jerkiness of the 
video, for a small number of frames there is no significant difference from the doubling tech-
nique. 

Buffering Techniques 
As we previously mentioned, the network jitter plays a critical role in the supporting of multime-
dia applications. Buffering or smoothing techniques (Ramjee, Kurose, Towsley & Schulzrinne, 
1994) have been proposed to mask the network jitter. In essence, they mask the network jitter by 
introducing a start-up delay (during which the arrival stream is inserted in the client memory 
buffer) at the destination.   

The client buffer is used to mask the network jitter to the end-users: when the receiver receives 
the first video frame, the video play out does not immediately start, but the video frame is stored 
in the local buffer, as well as all the successive arriving frames.  
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The memory buffer operates using a FIFO discipline and the start up delay is determined by the 
worst-case jitter and the bit rate of the information stream. The receiver starts the video play out 
only after the start-up delay (usually few seconds). In this way the receiver should play out con-
tinuously the arriving video stream.  

Although these techniques are very effective in reducing the network jitter, they cannot be used to 
support interactive QoS applications, as the introduced start-up delay increases the overall end-to-
end delay, a critical measure of interactive QoS applications. In fact, the introduced start-up delay 
is around few seconds, but, when handling interactive applications, the overall end-to-end delay 
has to stay within 500ms. This is why in multimedia transmissions it is preferable to reduce the 
jitter than handling it. For this reason, our approach does not consider buffering techniques, but 
the video play out immediately starts upon the reception of the first video frame. The network 
jitter is masked through a different approach, as we show when presenting the characteristics of 
our mechanism. 

Overlay Networks 
An overlay network is a network built using an existing network as substrate. It provides fault 
tolerance and faster recovery as compared to conventional routing techniques (Resilient Overlay 
Networks) and infrastructure for provisioning QoS within Virtual Private Networks (Virtual Net-
work Service). A particular type of overlay network is a content delivery network (CDN) that is 
motivated by the congestion that may affect several network nodes. In fact, network congestion 
usually means delay between the server and the client. Hence, a CDN aims at reducing the num-
ber of nodes between the server and the client so that the probability of congestion decreases. 
Hence, a large group of servers is deployed.  By using replicating servers, the content delivery is 
done from replica-server. 

CDNs are used by content providers to improve the QoS provided to end-users as they reduce the 
load of each server and reduce the user's perceived latency.  Their goal is to route around con-
gested networks by using routing techniques that use a set of metrics to direct users to “best” rep-
lica. 

Although the provisioning of QoS is a common goal for our mechanism and for overlay net-
works, the two approaches are very different. In fact, overlay networks may facilitate provision-
ing of QoS by introducing mechanisms (replica servers and/or routing techniques) that try to 
avoid congestion and hence try to minimize network latency creating a virtual network. On the 
other hand, our approach only involves the application layer and uses the underlying network as 
is. Hence, our proposal may take advantage of a network built as a virtual network as our mecha-
nism lies at the very top of the application layer and provides client-server interactivity to the un-
derlying network. If a virtual network is established between our mechanism and the real net-
work, our mechanism may increase its benefits. 

Proposed Mechanism 
In this section we present the characteristics of VISP (VIdeo Streaming Protocol), a mechanism 
we propose to support interactive multimedia applications over the Internet. The support of these 
applications is not trivial in the Internet scenario, as these applications impose rigid timing con-
straints on packet delay and packet jitter, but the Internet provides a service that doesn’t make any 
promises about the end-to-end delay for an individual packet and about the variation of packet 
delay within a packet stream. For this reason, these interactive applications, although very popu-
lar over the Internet, achieve a QoS that is far from what desired.  

Several studies investigated the effects of the overall end-to-end delay on these interactive appli-
cations and it has been highlighted that interactive applications achieve a QoS that can be consid-
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ered either good or poor depending on the value assumed by the overall end-to-end delay: if, 
while supporting the application, this delay stays within a particular threshold, the achieved QoS 
can be considered good, otherwise it is considered poor. The value of the threshold, called NIT 
(Natural Interaction Threshold) in this paper, is not fixed but depends on the media considered in 
the application: for instance, if audio is involved, a good threshold is around 150 ms and an ac-
ceptable threshold is around 400 ms. Hence, if the overall end-to-end delay stays within 150 ms, 
the application is well supported, if the delay goes above 450 ms, the application may be frustrat-
ing or even useless.  

To measure the achieved QoS, it is important to know, for each video frame that is played out, 
whether the overall end-to-end delay stays within the NIT or not. To this aim, we identified two 
possible scenarios when playing out a video: a) the network is not involved, as the video is locally 
available (in this case the client and the server are directly connected) and b) the network is in-
volved, as the video is remotely available (client and server are connected through the Internet). 
In this paper we refer to the play out in the former scenario as the ideal play out, while the play 
out in the latter scenario is referred to as the real play out. Hence, the overall end-to-end delay 
corresponds to the time difference between the real and the ideal play out. This means that, to 
measure the achieved QoS, it is important to know, for each video frame that is played out, 
whether this time difference, called VTD (Video Time Difference), stays within the NIT or not. 

For example, let us consider a common situation when delivering a video stream to a client. The 
video stream is usually encoded with a certain number of frames per second (fps), say δ. This 
means that the sender transmits video frames with a time difference of α=1/δ time units from 
each other. If the first video frame is marked with timestamp t, then the j-th frame is marked with 
timestamp t+(j-1)α. On the other side, the client, upon the reception of the first video frame, 
starts playing out the video stream, displaying the video frames with a time difference of α=1/δ 
time units from each other. It is to note that the video play out immediately starts because the ap-
plication poses rigid timing constraints on the overall end-to-end delay and hence, it is not possi-
ble to use buffering techniques that mask the network delay by delaying the initial start-up of the 
video play out (this increases the overall end-to-end delay). 

In Figure 2 we show the difference between a QoS network (i.e., a network that provides some 
guarantees, such as sufficient bandwidth, low packet-loss and end-to-end delay) and the Internet. 
In QoS networks (Figure 2a), the VTD is kept constant along the application lifetime. Unfortu-
nately, in networks that provide a best-effort service (Figure 2b), like the Internet, timing-
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Figure 2: The effect of the network delay in video streaming applications:  
(a) QoS Network; (b) The Internet; (c) The VTD is affected 
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guarantees are not provided and video frames are subject to the variability of the network delay: 
while delivering the video stream, the traffic may be delayed, causing the VTD to increase. If this 
value goes above the NIT value, the overall delay is noticeable to the end-user.  

For instance, if frame 1 is played out at time t’, then frame 2 should be played out at time t'+α, 
frame 3 at time t'+2α, and, generally speaking, frame j should be played out at time t'+(j-1)α. If 
frame 2 is delivered later than expected (for instance it is delivered between t'+2α and t'+3α), the 
receiver has no frame to play out at time t'+α and at time t'+2α. This means that the video play 
out will freeze up to time t'+3α, when it is resumed playing out frame 2. In this case the network 
jitter compromised the continuity of the video play out and, further, the delay experienced by 
frame 2 affects the play out time of all the successive frames. In fact, even though all the succes-
sive frames are delivered "in time", their play out is delayed by the network problems experi-
enced while transmitting frame 2. This delay increases the time difference between the real play 
out and the ideal play out. The effects of this situation are presented in Figure2c, where the VTD 
is computed for each frame that is played out. A hypothetical NIT value is also depicted in order 
to better highlight frames with a VTD below or above the acceptable limit. Since the first video 
frame is played out at time t’ and its timestamp is t, it follows that VTD(1)=t'-t. In QoS networks, 
the VTD remains constant along the application lifetime, but in best-effort networks, the VTD 
changes from time to time. In our example, since frame 2 arrived later than expected and it was 
played out at time t'+3α, its VTD is equal to: VTD(2)=t'-t+3α. Note that, even though all the 
successive frames are delivered without any problem, the VTD of the successive frames is af-
fected by the network problem experienced while transmitting frame 2. If this value goes above 
the NIT (i.e. VTD(2)>NIT) then the VTD of all the successive frames is affected too (VTD(j) ≥ 
NIT, for each j ≥ 2). Needless to say, serious problems arise if the supported application has in-
teractive features, as all the frames, but the first, have a VTD above the acceptable NIT. In gen-
eral, if, among all the frames that compose the video stream, the percentage of frame with a VTD 
above the NIT is negligible, the quality achieved by the application is acceptable, but if this per-
centage is considerable (for instance, more than 5%) the quality may be frustrating.  

For this reason, our mechanism reports the VTD within the NIT, by acting on the video QoS. In 
fact, by intentionally acting on the video QoS and by selecting the video frames to drop in a smart 
way (for instance using the dropping frames algorithms proposed in (Furini & Towsley, 2001)), 
the interactive application is well supported as the VTD is kept within the NIT and the user per-
ceives a video play out quality only slightly affected. Hence, it is preferable to intentionally act on 
the video QoS and to report the VTD within the NIT, than having the VTD above the NIT for 
most of the application lifetime.  

VISP Architecture 
Our mechanism is composed of two parts: one is located at the receiver side and periodically 
measures the VTD for the video frames that are played out; the other is located at the server side 
and is in charge of marking each video frame with its ideal play out time and of reporting the 
VTD within the NIT value upon client request. Prior the transmission, a client-server clock syn-
chronization mechanism is activated to synchronize the client and server clocks (in this paper we 
do not focus on this point, as several mechanisms and/or technologies can be used to this aim). 
Once the clocks are synchronized, the server can stream the video to the client and our mecha-
nism measures the VTD through a timestamp mechanism. If the VTD is above the NIT, the client 
sends a message to the server, informing it about the time quantity (expressed in number of video 
frames) that the VTD exceeded the NIT value. When the server receives this message, it reports 
the VTD within the NIT, by dropping the necessary number of video frames.  
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Table 1: Video Transmission Algorithm 
1. The timestamp of the first video frame repre-

sents the time at which the video frame is 
transmitted. If we denote this time with t, it fol-
lows that the first video frame is marked with 
TS(1)=t. 

2. A frame i (i > 1) is marked with TS(i)= TS (i-1)+ 
α, where α=1δ. Hence, a frame i (i > 1) is 
marked with TS (i)=t+(i-1) α 

In the following we provide a detailed description of our mechanism, but first we introduce three 
definitions that will be used throughout the paper. 

Definition. The clock at the sender side is denoted with TS, and TS(i) represents the ideal play out 
time of the frame i.  

Definition. The clock at the receiver side is denoted with TR, and TR(i) represents the (real) play 
out time of the frame i at the receiver side. 

Definition. Let us consider a video frame i. The Video Time Difference of a frame i, denoted 
with VTD(i), is defined as the difference (in time) between the real play out  of the considered 
frame, TR(i), and its ideal play out time, TS(i). Hence, the VTD of a frame i is equal to VTD(i) = 
TR(i) - TS(i). 

Video Stream Transmission 
The mechanism at the server side is in charge of marking each video frame with a timestamp. In 
this way all the video frames are provided with a temporal order, so that the receiver can find out 
whether video frames arrive in the wrong order. Further, this timestamp is used by the client to 
compute the VTD of each video frame that is played out.  

The timestamp, associated to each video 
frame, represents the ideal play out time of 
such frame. The ideal play out time is easily 
computed. In fact, the video stream is com-
posed of a sequence of video frames that 
must be displayed within a fixed time from 
each other (see Table 1). For instance, the 
video may be encoded with 12 or 24 frames 
per second (fps). Hence, each video frame 
must be displayed 1/12 or 1/24 of a second 
within of each other, respectively. If the 
number of fps is denoted with δ and if the first video frame is marked with time t, then the second 
video frame is marked with time t+α, where α=1/δ and, generally speaking, a frame i (i > 1) is 
marked with TS(i)=t+(i-1) α. 

Note that the time spent for creating, as well as the time spent for reading a video frame, is not 
considered in the above analysis, as, due to the hardware technology, this time is negligible. 

Video Play Out 
The mechanism at the 
receiver side is in charge 
of displaying the video 
frames and of computing 
the VTD for each dis-
played frame. In essence, 
the receiver retrieves 
video frames from the 
network, orders and plays 
out them according to 
their timestamp. The al-
gorithm is presented in 
Table 2. Since no buffer-

Table 2. Video Play out Algorithm 
1. Video play out starts when the first video frame arrives at the re-

ceiver side, say at time t' and the frame is immediately played out; 
2. The receiver plays out the frames at fixed period (i.e., one frame 

every α= 1/δ time units; 
3. Among the frames present in the local buffer, say k frames, it is 

selected (for play out) the frame with the lowest timestamp (i.e. a 
frame i is selected if TS(i)= min(TS (j) for each frame j in the 
buffer); 

4. Once selected, a frame i is removed from the buffer and is played 
out at time TR (i)= TR (i-1)+ zα (z≥1) only if: a) TR (i) ≥ TS (i) 
and b) TS (i) > TS (prev(i)), where prev(i) is the last frame that has 
been played out.  
If conditions a) and b) are not met, then frame i is discarded and a 
new frame selection must be done (by applying rule 3); 
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ing delay is introduced, upon the reception of the first video frame (suppose at time t’), the video 
play out is started at time TR(1)=t’ . The receiver should play out the arriving frames within a 
fixed period from each other (i.e., one frame every α=1/δ time units); the video frame at the head 
position in the local buffer (i.e., the frame with the lowest timestamp) is candidate for the play 
out. The candidate frame, suppose frame i, is played out only if it has a timestamp lower than the 
timestamp of the frame that has been played out most recently (i.e., TS(i)>TS(prev(i)), where 
prev(i) is the last played out frame). This is done in order to avoid the play out of a frame i older 
than the frame that has been already played out (i.e., frame prev(i)). If TS(i)<TS(prev(i)) the frame 
i is discarded and another frame is picked up from the local buffer. If TS(i)>TS(prev(i)) the candi-
date video frame i is played out at time TR(i) only if TR(i) ≥TS(i), with TR(i)=TR(i-1)+zα (z≥1); 
note that in the ideal scenario, z=1 along the application lifetime, as the video frames are always 
played on-time. Conversely, in the real scenario, the network may deliver video frames later than 
expected and hence it may happen that a video frame is not available when needed. If its play out 
is delayed, z is greater than one (z>1).  

In addition to the video play out, the mechanism located at the receiver side measures the VTD 
for each video frame that is played out. If the VTD is above the NIT, the mechanism computes 
the time difference between the VTD and the NIT and translates this time difference into a num-
ber of frames. Then it asks the sender to drop the computed number of video frames. For instance, 
if the video is encoded with 24 fps, a frame lasts on the user’s screen 41 ms); if the time differ-
ence between the VTD and the NIT is equal to 100 milliseconds then the number of frames to 
drop is equal to 3. When this message reaches the server, the dropping frames mechanism is acti-
vated. 

Dropping Frame Mechanism 
The goal of the dropping frame mechanism is to report the VTD within the NIT value. This 
mechanism is located at the server side and is activated upon client request. It is based on a Theo-
rem proved in (Furini & Roccetti, 2002), which states that the VTD can be reduced of λ time 
units, by dropping a number of frames, say k, that corresponds to λ time units (i.e. kα = λ), where 
α=1/δ and δ denotes the number of frames that must be played every second. In essence, since α 
is known by both the client and the server, λ is measured by the client and transformed into k, it is 
sufficient, for the client, to send the k value to the sender. On the other side, the sender can drop k 
frames to report the VTD within the NIT.  
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Figure 3: Video play out by using our mechanism. (a) if the VTD goes above the NIT, the 
server is asked to drop frame in order to report the VTD within the NIT. (b) The effect 

of our mechanism of the VTD. 
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By reporting the VTD within the NIT, we avoid the application from being frustrating. In fact, if 
the VTD goes above the NIT, the client-server interactions are seriously compromised. Hence, it 
is preferable to affect the video Qos (and to keep the VTD within the NIT value), than having the 
VTD above the NIT value. Further, it is worth noting that a good selection of the frames to dis-
card (Furini & Towsley (2001), only slightly affects the quality of the perceived video.  

In Figure 3 we show the effects of our mechanism: the scenario is the same of Figure 2b, but in 
this case, when the client finds out that the VTD goes above the acceptable value (for instance 
when playing out frame 2), it computes the number of frames (k) that has to be discarded in order 
to report the VTD within the NIT. Let us suppose (Figure 3a) that it is necessary to drop 2 frames, 
the sender discards (i.e., it does not transmit), frame 5 and frame 6. This means that, just after 
frame 4, the sender transmits frame 7, frame 8 and so on. 

In Figure 3b we show the effects of our mechanism on the VTD. The benefits introduced by our 
mechanism starts when playing out frame 7. In fact, if our mechanism is not used (Figure 2c), 
frame 7 is played out with VTD(7) greater than NIT, but if our mechanism is used (Figure 3b), 
VTD(7) is within the NIT. Moreover, using our mechanism, all the frames transmitted after frame 
7 are within the NIT value.  

This means that our mechanism may introduce considerable benefits in supporting interactive 
video streaming applications allowing user to interact with the server in order to obtain a custom-
ized stream of multimedia contents.  

In the next section, we evaluate our mechanism in the Internet scenario by transmitting several 
video streams between a server and a client. 

Experimental Scenario 
In this section we evaluate our proposed 
mechanism using the experimental scenario 
depicted in Figure 4: a client is connected to 
a server using the Internet. Two different 
Internet paths are used: one is 8-hops long 
and has an average round trip time of 80-90 
ms; the other is 9-hops long and has an av-
erage round trip time of 300-400 ms.  

The traffic sent from the server to the client 
is a video stream. This type of traffic has 
been selected as it is subject to two critical requirements for the Internet scenario: high bandwidth 
requirements and stringent timing requirements. Other types of traffic (for instance the one pro-
duced by on-line games) do not require high bandwidth. Hence, by using video streams, we set up 
a very critical scenario for evaluating our mechanism. Several video streams with different char-
acteristics (cartoons, music videos, news, movies) are used. The bandwidth requirements of these 
video streams vary from 274 kbps to 1.5Mbps. These videos have been streamed during different 
network conditions (peak hours, office hours, evening). 

In such a scenario, the server streams a video to the client and, for each video trace, we compute 
a) the percentage of video frames with VTD above the NIT with and without using our mecha-
nism and b) the perceived quality of the video play out.  

The first investigation is done to check whether the overall network delay is noticeable by the 
end-user or not. This investigation is important to perform as the network delay affects the QoS 
perceived by the client. To minimize the effects on the perceived QoS the VTD experienced by 
each video frame should stay within the NIT threshold. For this reason, we measure the VTD for 
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Figure 4: Experimental Scenario. 
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each frame that is played out and we compute the percentage of video frames with VTD above 
the NIT. Since this percentage depends on the NIT value and since the NIT value is not fixed but 
it is application dependent, for each video stream we perform several tests using different values 
of the NIT. In particular, the NIT value ranges between 150 ms (good interactivity) and 600 ms 
(very poor interactivity). To investigate the benefits introduced by our mechanism we compare 
results obtained from transmitting a video stream when our mechanism is used and when it is not.  

The second investigation is related to the video play out quality perceived by the user and it is 
done to evaluate the dropping approach of our mechanism. In fact, to keep the above percentage 
very small, our mechanism drops video frames and hence it affects the quality of the video play 
out. Several studies highlight how difficult is to well define the perceived video quality as this 
depends on the characteristics of the human vision system. For this reason, different approaches 
may be used to this aim. An easy way is to count the number of dropped video frames, but this 
number is not much related with the perceived quality at the client side. A common way is to use 
a cost function, as this approach gives a better measure than the simple number of dropped video 
frames. However, this approach depends on how well the cost function is defined. In this paper 
we use this approach to accounting for the perceived video play out quality and we use the cost 
function proposed in (Zhi, Nelakuditi, Aggarwa & Tsang, 2000), which penalizes frame dropping 
mechanisms that drop neighboring frames (Figure 5). Briefly, this cost function takes two aspects 
into consideration: the length of a sequence of consecutive discarded frames and the distance be-
tween two adjacent, but non-consecutive, discarded frames. It assigns a cost cj to each discarded 
frame j, depending on whether it belongs to a sequence of consecutive discarded frames or not. If 
frame j belongs to a sequence of consecutive discarded frames, the cost is lj if the frame j is the lj -
th consecutively discarded frame in the sequence. Otherwise the cost is given by 1+1/√dj, where 
dj represents the distance from the previous discarded frame.  

 

Before presenting the obtained results, it is worth describing the video streams used in this 
evaluation. Two sets of video traces are used: one set is encoded with an intra-frame technique 
(Motion JPEG) and the other set is encoded with an inter-frames technique (MPEG). The type of 
encoding is important because, with inter-frames encoded videos, a domino effect may happen 
while discarding a single video frame (i.e., a discard of a frame may lead to the impossibility of 
decoding other video frames). Hence, when the server discards video frames it has to take into 
account all the dependency rules among the video frames. Conversely, if the video streams are 
encoded with an intra-frame technique, it is possible to discard frames without causing the dom-
ino effect. Hence, the selection of the video frames that have to be discarded is very important as 
the dropped video frames affect the perceived video play out quality. In this paper we don’t pro-
pose any dropping algorithm, but we use the frame dropping algorithms proposed in (Furini & 
Towsley, 2001).  
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Figure 5. Cost function used to compute the perceived QoS. 
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In Figure 6 we present results obtained from transmitting a set of Motion JPEG video traces 
(Sleepless in Seattle, Total Recall and Jurassic Park) encoded with 12 frames per second. In Fig-
ure 6a we show the percentage of video frames with VTD above the NIT when the video stream 
is transmitted without using our mechanism. It is possible to note that the percentage is consider-
able for all the NIT values and it decreases as the NIT increases. The percentage assumes reason-
able values for NIT values greater than 550 ms, but with this NIT value the interactions are al-
ready compromised and the application is frustrating (the real video play out is not close to the 
ideal video play out and hence the overall end-to-end delay is noticeable to the end-user). In Fig-
ure 6b, we present results obtained from transmitting the same video traces, but while using our 
mechanism. Also in this case the percentage of video frames with VTD above the NIT is pre-
sented. It is possible to note that the percentage is much smaller than when our mechanism is not 
used. The maximum value (1.6%) is obtained for Totall Recall with an NIT of 150 ms. Hence, 
our mechanism masks the network problems to the end-user, who does not notice the overall end-
to-end delay and hence the application is well supported for all the NIT values. The evaluation of 
our mechanism is completed with the investigation about the perceived video play out quality. In 
Figure 7 we present results obtained from applying the previously described cost function to the 
video play performed at the client side. Results are expressed as a percentage of additional cost 
for each video stream that is played out. The additional cost is presented because when the video 
is streamed to the client it is subject to 
two types of dropping: one is intention-
ally done by our mechanism, and the 
other is done by the network (i.e., packet 
loss). By presenting the percentage of 
additional cost, we exactly know the cost 
introduced by our dropping mechanism. 
Needless to say, the smaller the addi-
tional cost is, the lower the perceived 
video quality is affected. Figure 7 shows 
that the percentage of additional cost is 
very small, with the exception of a 12% 
value introduced for the Jurassic Park 
video for 150 ms NIT. This cost is neces-
sary to obtain a percentage of frames with 
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Figure 6: Motion JPEG video streams. The percentage of video frames with VTD above the NIT. 
(a) without using our mechanism. (b) using our mechanism. 
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VTD above the NIT of 0.8%. If our mechanism is not used, the percentage is more than 50%. 
Hence, we think it is better to have a slightly worse video play out quality with very good client-
server interactions, than having a very good video play out quality with very bad client-server 
interactions. 

In Figure 8 we present results obtained from transmitting a set of MPEG video traces (News, Mtv 
and The Simpsons) encoded with 12 frames per second. In Figure 8a we show the percentage of 
video frames with a VTD above the NIT when the video streams are transmitted without using 
our mechanism. It is possible to note that the percentage is considerable for all the NIT values and 
it assumes reasonable values for NIT values greater than 550 ms. This means that the interactions 
are not well supported, as the overall end-to-end delay is noticeable to the end-user. In Figure 8b, 
we present results obtained from transmitting the same video traces but while using our mecha-
nism. Also in this case the percentage of video frames with VTD above the NIT is presented. It is 
to note that for each NIT value we present an average percentage of all the dropping algorithms 
used by the server (namely, the dropping algorithms proposed in (Furini & Towsley, 2001)). Also 
for the MPEG video traces, the percentage of video frames with VTD above the NIT is much 
smaller when our mechanism is used: the maximum value (1.6%) is obtained for the News with 
an NIT of 150 ms. Hence, our mechanism is effective in supporting interactive applications as it 
mask the overall end-to-end delay to the end-user. It is interesting to note that by using our 
mechanism, it may happen that the percentage of video frames with VTD above the NIT does not 
decrease if the NIT increases (see for ex-
ample The Simpsons Figure 8b). This be-
havior is due to the type of video encoding 
(inter-frames) and to the dropping frame 
policies used (the presented values are an 
average value obtained from all the values 
produced by the different dropping frames 
policies used). In fact, the dropping 
mechanism may wait for a particular type 
of frame, instead of immediately drops the 
frame upon the client request. This is the 
reason why, sometimes, it may happen that 
the percentage of video frames with VTD 
above the NIT does not decrease is the NIT 
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Figure 8: The percentage of video frames with VTD above the NIT. (a) results obtained without 
using our mechanism. (b) results obtained using our mechanism. 

0
2
4
6
8

10
12
14

150 200 250 300 350 400 450 500 550 600
NIT

%
 o

f a
dd

iti
on

al
 c

os
t

NEWS

MTV

SIM

Figure 9: Percentage of additional cost  
introduced by our mechanism. 



Informing Clients through Multimedia Communications 

52 

increases. Once again, to complete the evaluation of our mechanism, in Figure 9 we present the 
percentage of additional cost introduced by our mechanism. In this case, for each NIT, we present 
an average value of the discarding policies used. Also for the computed additional cost, it is inter-
esting to note that sometimes (see for example, the news and the mtv video traces, Figure 9) the 
percentage of additional cost does not decrease if the NIT increases. Once again, this is due to the 
type of video encoding and to the dropping frames policies, which may be forced to drop a video 
frame that causes a domino effect on several other video frames. This behavior confirms how dif-
ficult is to select video frames to drop if the video is inter-frames encoded. However, despite 
these problems, our mechanism keeps the percentage of video frames with VTD above the NIT 
very small and introduces an acceptable QoS cost in the video play out quality. 

Conclusion 
In this paper we proposed a new approach for supporting interactive multimedia streaming appli-
cations over the Internet. We showed that the support of these applications is critical in the Inter-
net, as this network provides a best-effort service to the traffic it carries, while interactive applica-
tions requires the network to support stringent timing requirements.  

We highlighted that, to be well supported, interactive applications need the overall end-to-end 
delay to be not noticeable to end users and that a time threshold (NIT, Natural Interactive Thresh-
old) denotes the limit below which the overall end-to-end delay is not noticeable (and hence the 
interactive application is well supported) and above which the overall end-to-end delay is notice-
able (and hence the interactive application is not well supported). It is worth noting that this over-
all end-to-end delay is not merely the end-to-end network delay, but it can be seen as the time 
difference between the real video play out (client and server connected through the Internet) and 
the ideal video play out (client and server directly connected and network delays not involved). 
For this reason, we introduced a new metric, called VTD (Video Time Difference), which pro-
vides an easy way to know whether an interactive application is well supported or not: in fact, if 
the VTD stays within the NIT value, the overall end-to-end delay is not noticeable to end user and 
hence the interactive application is well supported; if the VTD goes above the NIT the application 
is not well supported as the overall end-to-end delay is noticeable to the end user.  

Our mechanism aims to keep the VTD within the NIT and this is achieved by using dropping 
frame algorithms that report the VTD within the NIT value when the VTD exceeds the NIT: Our 
mechanism intentionally modifies the video QoS to better support interactions between the user 
and the server. We showed that the QoS modification is very light (we used dropping frames al-
gorithm designed to this aim) and hence it is preferable to have a video play out with the QoS 
slightly modified than to have a frustrating or useless interactive application where interactions 
are not possible due to the high overall end-to-end delay. 

Our mechanism has been evaluated in the Internet scenario and results showed the introduced 
benefits. In particular, we showed that in the Internet the percentage of video frames with VTD 
above the NIT is very high, causing the applications to be frustrating or even useless. Conversely, 
by using our mechanism this percentage is kept very small and the video play out quality in only 
slightly modified (to this aim we investigated the perceived quality of the video play out at the 
user side).  

Hence, if our mechanism is used, the user can interact without any problem with the multimedia 
provider, which can provide a customized stream of multimedia contents. Several entertainment 
or edutainment applications may benefits from using our approach (for instance video on-demand 
and on-line games) as they can provide users with a customized multimedia stream of informa-
tion.  
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We are currently investigating different algorithms regarding the VTD handling. To this aim we 
are investigating the relationship between the NIT and the video contents, in order to dynamically 
set the NIT along the application lifetime (for instance by investigating the motion of the video it 
is possible to select video frames to drop) and we are also studying how to reduce the QoS modi-
fication introduced by the dropping frame algorithms (for instance algorithms may individuate 
portions of the video stream less important than other and may drop video frames in these por-
tions). 
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