
Informing Science Journal Volume 8, 2005

Editor: Nalin Sharda

Informing Clients through Multimedia
Communications: An Approach to Provide

Interactivity

Marco Furini
University of Piemonte

Orientale, Alessandria, Italy

Marco Roccetti
University of Bologna

Bologna, Italy

marco.furini@mfn.unipmn.it roccetti@cs.unibo.it

Abstract
One of the key problems in informing clients through multimedia streaming applications over the
Internet is to customize the stream of information according to the client’s requests. This is
achievable only if client and server can interact along the application lifetime, which is possible
only if the communication system supports the rigid timing constraints imposed by these interac-
tive applications on their traffic. In the Internet scenario, these applications are very difficult to
support, as the Internet provides a best-effort service to the traffic it carries, which means that the
Internet does not make any promises about the end-to-end delay for an individual packet and
about the variation of packet delay (network jitter) within a packet stream. These problems are
confirmed by several experiments we performed over the Internet, which highlight that interac-
tive applications achieve a quality that is frustrating. The contribution of this paper is the proposal
of a novel mechanism to support interactive multimedia streaming applications over the Internet.
Our mechanism adapts the multimedia stream transmission to the network conditions, by inten-
tionally and slightly acting on the video QoS. Our mechanism has been validated through several
experiments performed over the Internet. Results confirm that the supported interactive applica-
tions achieve a satisfactory quality and the user perceives a video quality only slightly affected by
the QoS modification introduced by our mechanism.

Keywords: Multimedia communication, Interactive application, Quality of Service, Video
Streaming, Consistent Information.

Introduction
Multimedia has long played an important role in the process of informing activities by changing
the way we learn, think, work and live (Zeng & Yu, 1999). Not surprisingly, the use of multime-
dia information is growing at an exponential rate, imposing a great challenge on the way informa-

tion are controlled and organized. In
future years, this trend is expected to
continue, thanks to the development in
processor speed and to the advances in
network technologies. Nowadays,
learning, studying, researching, and
communicating are examples of ac-
tivities that users can do by means of
multimedia streams.

Material published as part of this journal, either online or in print,
is copyrighted by the publisher of Informing Science. Permission
to make digital or paper copy of part or all of these works for
personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial ad-
vantage AND that copies 1) bear this notice in full and 2) give
the full citation on the first page. It is permissible to abstract
these works so long as credit is given. To copy in all other cases
or to republish or to post on a server or to redistribute to lists
requires specific permission and payment of a fee. Contact
Editor@inform.nu to request redistribution permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/53974709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Editor@inform.nu
mailto:marco.furini@mfn.unipmn.it
mailto:roccetti@cs.unibo.it

Informing Clients through Multimedia Communications

40

The reason of this success is that multimedia information is far more rich, educational and enter-
taining than traditional text-based information and nowadays users may access to broadband
and/or wireless technologies (DSL, Fiber optics, Wi-Fi, Hedge/GPRS, CDMA, to name a few) to
reach multimedia contents whenever and wherever they want.

Many multimedia applications are available (on-demand multimedia services, video-
conferencing, distance learning, on-line games and pay-per-view, just to name a few), but the
emerging multimedia applications are those that enable natural interaction among end-users: for
instance, user can interact along the application lifetime with the contents provider in order to get
a customized stream of multimedia information. A large interest is given to these interactive ap-
plications, which are becoming more and more attractive and popular over the Internet. On-line
games, interactive-webtv, on-demand multimedia services are some examples of such interactive
applications.

Unfortunately, despite their popularity over the Internet, these applications achieve a QoS that is
far from what desired. The reason is that multimedia interactive applications impose rigid timing
constraints on the traffic they produce and the respect of these timing constraints is difficult in the
Internet scenario, as the Internet provides a best-effort service to the traffic it carries. In other
words, the Internet makes its best effort to move the traffic from sender to receiver as quickly as
possible. However, the best-effort service does not make any promises about the end-to-end delay
for an individual packet and about the variation of packet delay (network jitter) within a packet
stream. This causes the end-to-end delay to be unknown a priori and very variable along the ap-
plication lifetime and poses serious problems to the supporting of interactive multimedia applica-
tions, which are subject to a very critical timing constraint: the overall end-to-end delay, experi-
enced by the application traffic, should be not noticeable to the end-users. The critical role played
by this end-to-end delay is described in several studies (for instance, Kurita, Iai & Kitawaki,
1995), which highlight how human perception is strongly affected by this delay. Briefly, these
studies point out that the overall end-to-end delay is not noticeable by the human perception if it
stays within a threshold, but if the delay goes above this threshold, it becomes noticeable to end-
users. This threshold, called NIT (Natural Interaction Threshold) in this paper, represents the limit
below which the interactions are well supported. Hence, an interactive multimedia application is
well supported if its traffic has an overall end-to-end delay smaller than this NIT threshold along
the application lifetime. The value of this NIT threshold depends on the characteristics of the ap-
plication and on the level of interactivity requested by the end-users (i.e., the more interactive
operations are involved, the lower the threshold value should be) (Kurita, Iai & Kitawaki, 1995).
For instance, if we consider an interactive application where audio is involved, the delay from
when a user speaks until the sound is manifested at the receiving hosts should be less than a few
hundred milliseconds. In particular, delays smaller than 150 milliseconds are not perceived by a
human listener, delays between 150 and 400 milliseconds can be acceptable, and delays exceed-
ing 400 milliseconds result in frustrating, if not completely unintelligible, voice conversations
(Sitaram & Dan, 2000). In summary, interactive multimedia applications impose rigid timing
constraints on packet delay and packet jitter, but the network does not provide any timing guaran-
tees. This causes QoS problems to users, who might perceive a quality that is far from what de-
sired.

To investigate the reason of these QoS problems, we focus our attention on the communication
sub-system: It is mainly composed of a server (for instance a video server), a client, a network
and a mechanism that transports the information from the server to the client and vice versa. Usu-
ally, the multimedia stream is remotely available and the network is used to connect client and
server. As we previously mentioned, this scenario arises QoS problems, which are due to the type
of service provided by the Internet. Although QoS also depends on the quality of the line, the
buffering technique and on the distance between client and server, but we can assume that these

 Furini & Roccetti

 41

dependencies could be simpli-
fied. In fact, our proposal is an
end-to-end QoS mechanism
and hence, as done in other
end-to-end QoS approaches, it
is possible to simplify some
factors. At this level of abstrac-
tion, if client and server are
directly connected (the network
is not involved), no QoS prob-
lems happen, as the network
does not introduce any delay. For simplicity, we can refer to this latter scenario as the ideal sce-
nario for supporting interactive multimedia applications, while the real scenario sees the network
(as well as the network delays) involved (Figure 1). Using this terminology, we can say that an
interactive multimedia application is well supported if the time difference between the real play
out and the ideal play out is negligible.

The contribution of this paper is the proposal of a novel mechanism, called VISP (VIdeo Stream-
ing Protocol), which supports video streaming interactive applications over the Internet. Our goal
is to support the video play out in the real scenario, while attempting to simulate the video play
out in the ideal scenario. To this aim, we introduce a new metric, called Video Time Difference
(VTD), which represents the time difference between the video play out in the real scenario and
the video play out in the ideal scenario. In this way, we can know whether the real video play out
is close to the ideal video play out and hence, we can know whether an interactive application is
well supported or not (note that an application is well supported if the overall end-to-end delay is
smaller than the NIT threshold). In particular, during the video play out, our mechanism periodi-
cally computes the VTD and compares it with the NIT value: if the VTD is within the NIT value,
it means that the network is introducing a delay that is not noticeable to the users; Conversely, if
the VTD value is greater than the NIT value the network is introducing a delay that is noticeable
by the user. Hence, by periodically checking the VTD we can have a measure of the quality
achieved by the application.

If the application is not well supported (the VTD goes above the NIT), our mechanism is in
charge of reporting the VTD within the NIT. Simply put, the client computes the time difference
between the VTD and the NIT and requires the sender to drop a number of video frames that cor-
responds to this time difference. As we show, this dropping mechanism reports the VTD within
the NIT value and hence reports the real video play out close to the ideal video play out. In es-
sence, our mechanism intentionally modifies the video QoS in order to better support interactions.
This has been done because applications with VTD above the NIT may be frustrating or even use-
less, while if the video QoS modification is very light, the user perceives a video quality that is
still good and the application is well supported. To slightly affect the video QoS, we use the
dropping frame algorithms proposed by (Furini & Towsley, 2001), which take into account the
perceived quality at the user side when selecting the video frames to drop.

The evaluation of our mechanism has been done transmitting several MPEG and Motion JPEG
video streams (encoded with different bandwidth requirements) over the Internet. The evaluation
measures both the percentage of frame with VTD above the NIT and the perceived video play out
quality at the user side. Results show that our mechanism can well support interactive multimedia
applications over the Internet, and hence it provides benefits in informing clients through multi-
media communications as it allows users to interact with the server in order to obtain a custom-
ized stream of multimedia information. On-line games and video-on-demand are examples of in-
teractive multimedia applications that will benefit from using our mechanism.

VIDEO SERVER
NETWORK

RECEIVER

ACTUAL PLAY OUT

IDEAL PLAY OUT

VIDEO SERVER
NETWORK

RECEIVER

ACTUAL PLAY OUT

IDEAL PLAY OUT

NETWORK

RECEIVER

ACTUAL PLAY OUTACTUAL PLAY OUT

IDEAL PLAY OUTIDEAL PLAY OUT

Figure 1: Network Scenario

Informing Clients through Multimedia Communications

42

Background
In literature there are several studies related to multimedia communications. In the following we
briefly review some approaches introduced to measure the QoS perception and two possible solu-
tions that aim at improving the QoS perceived by the client: buffering techniques and overlay
networks.

QoS Perception
In multimedia communications, the perceived play out quality is perhaps the most important met-
ric in evaluating the effectiveness of a mechanism. The perceived QoS is mainly affected by two
characteristics of the multimedia stream: high-bandwidth requirement and a real time delivery
constraint. To provide a good QoS, all the packets of the media stream have to be presented at the
client with the same temporal relationship as they had at the server side.

This means that each packet has to meet a real time constraint. This contrasts with another char-
acteristic of a media stream: the high bandwidth requirement, which may cause congestion in
some network nodes and hence, it may introduce a random delay in the delivery of each packet.

The network jitter (the network delay variation of two consecutive packets) is very critical as it
may cause underflow or overflow problems at the client buffer. In fact, each packet is delivered to
the client buffer and the media player retrieves packets from it. If a packet cannot arrive at the
client before the scheduled time the media player has no data to retrieve (underflow); if the client
buffer is full when a packet arrives, it is discarded (overflow). In both cases, the media play out is
affected. In literature there are techniques developed to handle the network jitter, as we better
show in the following.

The perceived QoS may also be affected by the synchronization of different media streams (e.g.,
audio and video) that can compose a multimedia presentation. In this paper, without loss of gen-
erality, we suppose that audio, video and other data are multiplexed (i.e., physically combined in
one data unit) at the server and de-multiplexed at the client. In this way, the synchronization be-
tween different media streams has not to take place. Instead, it is important to focus on the lost,
late, corrupted or dropped frames in a video sequence. As suggested by Steinmetz (1996) we can
distinguish three kinds of recovery mechanisms: the most sophisticated case tries to compensate
the missing frame by presenting them for a longer time. This is certainly the best way as the
viewer will not notice the discontinuity if frames are presented for a fraction longer than the regu-
lar frame. However, this method is not of practical value with the current video technology, frame
rates are fixed and we cannot just adjust frames at will. Another technique is that one frame can
be replicated, but the most common method is just to drop the corrupted frame and to continue
with the next frame. Despite, this solution seems inadequate due to the possible jerkiness of the
video, for a small number of frames there is no significant difference from the doubling tech-
nique.

Buffering Techniques
As we previously mentioned, the network jitter plays a critical role in the supporting of multime-
dia applications. Buffering or smoothing techniques (Ramjee, Kurose, Towsley & Schulzrinne,
1994) have been proposed to mask the network jitter. In essence, they mask the network jitter by
introducing a start-up delay (during which the arrival stream is inserted in the client memory
buffer) at the destination.

The client buffer is used to mask the network jitter to the end-users: when the receiver receives
the first video frame, the video play out does not immediately start, but the video frame is stored
in the local buffer, as well as all the successive arriving frames.

 Furini & Roccetti

 43

The memory buffer operates using a FIFO discipline and the start up delay is determined by the
worst-case jitter and the bit rate of the information stream. The receiver starts the video play out
only after the start-up delay (usually few seconds). In this way the receiver should play out con-
tinuously the arriving video stream.

Although these techniques are very effective in reducing the network jitter, they cannot be used to
support interactive QoS applications, as the introduced start-up delay increases the overall end-to-
end delay, a critical measure of interactive QoS applications. In fact, the introduced start-up delay
is around few seconds, but, when handling interactive applications, the overall end-to-end delay
has to stay within 500ms. This is why in multimedia transmissions it is preferable to reduce the
jitter than handling it. For this reason, our approach does not consider buffering techniques, but
the video play out immediately starts upon the reception of the first video frame. The network
jitter is masked through a different approach, as we show when presenting the characteristics of
our mechanism.

Overlay Networks
An overlay network is a network built using an existing network as substrate. It provides fault
tolerance and faster recovery as compared to conventional routing techniques (Resilient Overlay
Networks) and infrastructure for provisioning QoS within Virtual Private Networks (Virtual Net-
work Service). A particular type of overlay network is a content delivery network (CDN) that is
motivated by the congestion that may affect several network nodes. In fact, network congestion
usually means delay between the server and the client. Hence, a CDN aims at reducing the num-
ber of nodes between the server and the client so that the probability of congestion decreases.
Hence, a large group of servers is deployed. By using replicating servers, the content delivery is
done from replica-server.

CDNs are used by content providers to improve the QoS provided to end-users as they reduce the
load of each server and reduce the user's perceived latency. Their goal is to route around con-
gested networks by using routing techniques that use a set of metrics to direct users to “best” rep-
lica.

Although the provisioning of QoS is a common goal for our mechanism and for overlay net-
works, the two approaches are very different. In fact, overlay networks may facilitate provision-
ing of QoS by introducing mechanisms (replica servers and/or routing techniques) that try to
avoid congestion and hence try to minimize network latency creating a virtual network. On the
other hand, our approach only involves the application layer and uses the underlying network as
is. Hence, our proposal may take advantage of a network built as a virtual network as our mecha-
nism lies at the very top of the application layer and provides client-server interactivity to the un-
derlying network. If a virtual network is established between our mechanism and the real net-
work, our mechanism may increase its benefits.

Proposed Mechanism
In this section we present the characteristics of VISP (VIdeo Streaming Protocol), a mechanism
we propose to support interactive multimedia applications over the Internet. The support of these
applications is not trivial in the Internet scenario, as these applications impose rigid timing con-
straints on packet delay and packet jitter, but the Internet provides a service that doesn’t make any
promises about the end-to-end delay for an individual packet and about the variation of packet
delay within a packet stream. For this reason, these interactive applications, although very popu-
lar over the Internet, achieve a QoS that is far from what desired.

Several studies investigated the effects of the overall end-to-end delay on these interactive appli-
cations and it has been highlighted that interactive applications achieve a QoS that can be consid-

Informing Clients through Multimedia Communications

44

ered either good or poor depending on the value assumed by the overall end-to-end delay: if,
while supporting the application, this delay stays within a particular threshold, the achieved QoS
can be considered good, otherwise it is considered poor. The value of the threshold, called NIT
(Natural Interaction Threshold) in this paper, is not fixed but depends on the media considered in
the application: for instance, if audio is involved, a good threshold is around 150 ms and an ac-
ceptable threshold is around 400 ms. Hence, if the overall end-to-end delay stays within 150 ms,
the application is well supported, if the delay goes above 450 ms, the application may be frustrat-
ing or even useless.

To measure the achieved QoS, it is important to know, for each video frame that is played out,
whether the overall end-to-end delay stays within the NIT or not. To this aim, we identified two
possible scenarios when playing out a video: a) the network is not involved, as the video is locally
available (in this case the client and the server are directly connected) and b) the network is in-
volved, as the video is remotely available (client and server are connected through the Internet).
In this paper we refer to the play out in the former scenario as the ideal play out, while the play
out in the latter scenario is referred to as the real play out. Hence, the overall end-to-end delay
corresponds to the time difference between the real and the ideal play out. This means that, to
measure the achieved QoS, it is important to know, for each video frame that is played out,
whether this time difference, called VTD (Video Time Difference), stays within the NIT or not.

For example, let us consider a common situation when delivering a video stream to a client. The
video stream is usually encoded with a certain number of frames per second (fps), say δ. This
means that the sender transmits video frames with a time difference of α=1/δ time units from
each other. If the first video frame is marked with timestamp t, then the j-th frame is marked with
timestamp t+(j-1)α. On the other side, the client, upon the reception of the first video frame,
starts playing out the video stream, displaying the video frames with a time difference of α=1/δ
time units from each other. It is to note that the video play out immediately starts because the ap-
plication poses rigid timing constraints on the overall end-to-end delay and hence, it is not possi-
ble to use buffering techniques that mask the network delay by delaying the initial start-up of the
video play out (this increases the overall end-to-end delay).

In Figure 2 we show the difference between a QoS network (i.e., a network that provides some
guarantees, such as sufficient bandwidth, low packet-loss and end-to-end delay) and the Internet.
In QoS networks (Figure 2a), the VTD is kept constant along the application lifetime. Unfortu-
nately, in networks that provide a best-effort service (Figure 2b), like the Internet, timing-

QoS Network Internet

1

2
3
4
5

6

7

1

2
3
4
5

6

7

1

2
3
4
5

6

7

1

2
3
4
5

VTD

t’-t

1 2 3 4 5 6 7 8 9 10

NIT

VTD

Acceptable VTD

QoS Network

The Internet

QoS Network Internet

1

2
3
4
5

6

7

1

2
3
4
5

6

7

1

2
3
4
5

6

7

1

2
3
4
5

VTDVTD

t’-t

1 2 3 4 5 6 7 8 9 10

NIT

VTD

Acceptable VTD

QoS Network

The Internet

 (a) (b) (c)

Figure 2: The effect of the network delay in video streaming applications:
(a) QoS Network; (b) The Internet; (c) The VTD is affected

 Furini & Roccetti

 45

guarantees are not provided and video frames are subject to the variability of the network delay:
while delivering the video stream, the traffic may be delayed, causing the VTD to increase. If this
value goes above the NIT value, the overall delay is noticeable to the end-user.

For instance, if frame 1 is played out at time t’, then frame 2 should be played out at time t'+α,
frame 3 at time t'+2α, and, generally speaking, frame j should be played out at time t'+(j-1)α. If
frame 2 is delivered later than expected (for instance it is delivered between t'+2α and t'+3α), the
receiver has no frame to play out at time t'+α and at time t'+2α. This means that the video play
out will freeze up to time t'+3α, when it is resumed playing out frame 2. In this case the network
jitter compromised the continuity of the video play out and, further, the delay experienced by
frame 2 affects the play out time of all the successive frames. In fact, even though all the succes-
sive frames are delivered "in time", their play out is delayed by the network problems experi-
enced while transmitting frame 2. This delay increases the time difference between the real play
out and the ideal play out. The effects of this situation are presented in Figure2c, where the VTD
is computed for each frame that is played out. A hypothetical NIT value is also depicted in order
to better highlight frames with a VTD below or above the acceptable limit. Since the first video
frame is played out at time t’ and its timestamp is t, it follows that VTD(1)=t'-t. In QoS networks,
the VTD remains constant along the application lifetime, but in best-effort networks, the VTD
changes from time to time. In our example, since frame 2 arrived later than expected and it was
played out at time t'+3α, its VTD is equal to: VTD(2)=t'-t+3α. Note that, even though all the
successive frames are delivered without any problem, the VTD of the successive frames is af-
fected by the network problem experienced while transmitting frame 2. If this value goes above
the NIT (i.e. VTD(2)>NIT) then the VTD of all the successive frames is affected too (VTD(j) ≥
NIT, for each j ≥ 2). Needless to say, serious problems arise if the supported application has in-
teractive features, as all the frames, but the first, have a VTD above the acceptable NIT. In gen-
eral, if, among all the frames that compose the video stream, the percentage of frame with a VTD
above the NIT is negligible, the quality achieved by the application is acceptable, but if this per-
centage is considerable (for instance, more than 5%) the quality may be frustrating.

For this reason, our mechanism reports the VTD within the NIT, by acting on the video QoS. In
fact, by intentionally acting on the video QoS and by selecting the video frames to drop in a smart
way (for instance using the dropping frames algorithms proposed in (Furini & Towsley, 2001)),
the interactive application is well supported as the VTD is kept within the NIT and the user per-
ceives a video play out quality only slightly affected. Hence, it is preferable to intentionally act on
the video QoS and to report the VTD within the NIT, than having the VTD above the NIT for
most of the application lifetime.

VISP Architecture
Our mechanism is composed of two parts: one is located at the receiver side and periodically
measures the VTD for the video frames that are played out; the other is located at the server side
and is in charge of marking each video frame with its ideal play out time and of reporting the
VTD within the NIT value upon client request. Prior the transmission, a client-server clock syn-
chronization mechanism is activated to synchronize the client and server clocks (in this paper we
do not focus on this point, as several mechanisms and/or technologies can be used to this aim).
Once the clocks are synchronized, the server can stream the video to the client and our mecha-
nism measures the VTD through a timestamp mechanism. If the VTD is above the NIT, the client
sends a message to the server, informing it about the time quantity (expressed in number of video
frames) that the VTD exceeded the NIT value. When the server receives this message, it reports
the VTD within the NIT, by dropping the necessary number of video frames.

Informing Clients through Multimedia Communications

46

Table 1: Video Transmission Algorithm
1. The timestamp of the first video frame repre-

sents the time at which the video frame is
transmitted. If we denote this time with t, it fol-
lows that the first video frame is marked with
TS(1)=t.

2. A frame i (i > 1) is marked with TS(i)= TS (i-1)+
α, where α=1δ. Hence, a frame i (i > 1) is
marked with TS (i)=t+(i-1) α

In the following we provide a detailed description of our mechanism, but first we introduce three
definitions that will be used throughout the paper.

Definition. The clock at the sender side is denoted with TS, and TS(i) represents the ideal play out
time of the frame i.

Definition. The clock at the receiver side is denoted with TR, and TR(i) represents the (real) play
out time of the frame i at the receiver side.

Definition. Let us consider a video frame i. The Video Time Difference of a frame i, denoted
with VTD(i), is defined as the difference (in time) between the real play out of the considered
frame, TR(i), and its ideal play out time, TS(i). Hence, the VTD of a frame i is equal to VTD(i) =
TR(i) - TS(i).

Video Stream Transmission
The mechanism at the server side is in charge of marking each video frame with a timestamp. In
this way all the video frames are provided with a temporal order, so that the receiver can find out
whether video frames arrive in the wrong order. Further, this timestamp is used by the client to
compute the VTD of each video frame that is played out.

The timestamp, associated to each video
frame, represents the ideal play out time of
such frame. The ideal play out time is easily
computed. In fact, the video stream is com-
posed of a sequence of video frames that
must be displayed within a fixed time from
each other (see Table 1). For instance, the
video may be encoded with 12 or 24 frames
per second (fps). Hence, each video frame
must be displayed 1/12 or 1/24 of a second
within of each other, respectively. If the
number of fps is denoted with δ and if the first video frame is marked with time t, then the second
video frame is marked with time t+α, where α=1/δ and, generally speaking, a frame i (i > 1) is
marked with TS(i)=t+(i-1) α.

Note that the time spent for creating, as well as the time spent for reading a video frame, is not
considered in the above analysis, as, due to the hardware technology, this time is negligible.

Video Play Out
The mechanism at the
receiver side is in charge
of displaying the video
frames and of computing
the VTD for each dis-
played frame. In essence,
the receiver retrieves
video frames from the
network, orders and plays
out them according to
their timestamp. The al-
gorithm is presented in
Table 2. Since no buffer-

Table 2. Video Play out Algorithm
1. Video play out starts when the first video frame arrives at the re-

ceiver side, say at time t' and the frame is immediately played out;
2. The receiver plays out the frames at fixed period (i.e., one frame

every α= 1/δ time units;
3. Among the frames present in the local buffer, say k frames, it is

selected (for play out) the frame with the lowest timestamp (i.e. a
frame i is selected if TS(i)= min(TS (j) for each frame j in the
buffer);

4. Once selected, a frame i is removed from the buffer and is played
out at time TR (i)= TR (i-1)+ zα (z≥1) only if: a) TR (i) ≥ TS (i)
and b) TS (i) > TS (prev(i)), where prev(i) is the last frame that has
been played out.
If conditions a) and b) are not met, then frame i is discarded and a
new frame selection must be done (by applying rule 3);

 Furini & Roccetti

 47

ing delay is introduced, upon the reception of the first video frame (suppose at time t’), the video
play out is started at time TR(1)=t’ . The receiver should play out the arriving frames within a
fixed period from each other (i.e., one frame every α=1/δ time units); the video frame at the head
position in the local buffer (i.e., the frame with the lowest timestamp) is candidate for the play
out. The candidate frame, suppose frame i, is played out only if it has a timestamp lower than the
timestamp of the frame that has been played out most recently (i.e., TS(i)>TS(prev(i)), where
prev(i) is the last played out frame). This is done in order to avoid the play out of a frame i older
than the frame that has been already played out (i.e., frame prev(i)). If TS(i)<TS(prev(i)) the frame
i is discarded and another frame is picked up from the local buffer. If TS(i)>TS(prev(i)) the candi-
date video frame i is played out at time TR(i) only if TR(i) ≥TS(i), with TR(i)=TR(i-1)+zα (z≥1);
note that in the ideal scenario, z=1 along the application lifetime, as the video frames are always
played on-time. Conversely, in the real scenario, the network may deliver video frames later than
expected and hence it may happen that a video frame is not available when needed. If its play out
is delayed, z is greater than one (z>1).

In addition to the video play out, the mechanism located at the receiver side measures the VTD
for each video frame that is played out. If the VTD is above the NIT, the mechanism computes
the time difference between the VTD and the NIT and translates this time difference into a num-
ber of frames. Then it asks the sender to drop the computed number of video frames. For instance,
if the video is encoded with 24 fps, a frame lasts on the user’s screen 41 ms); if the time differ-
ence between the VTD and the NIT is equal to 100 milliseconds then the number of frames to
drop is equal to 3. When this message reaches the server, the dropping frames mechanism is acti-
vated.

Dropping Frame Mechanism
The goal of the dropping frame mechanism is to report the VTD within the NIT value. This
mechanism is located at the server side and is activated upon client request. It is based on a Theo-
rem proved in (Furini & Roccetti, 2002), which states that the VTD can be reduced of λ time
units, by dropping a number of frames, say k, that corresponds to λ time units (i.e. kα = λ), where
α=1/δ and δ denotes the number of frames that must be played every second. In essence, since α
is known by both the client and the server, λ is measured by the client and transformed into k, it is
sufficient, for the client, to send the k value to the sender. On the other side, the sender can drop k
frames to report the VTD within the NIT.

Play out

DROP

Dropped
frames

1
2
3
45

6 7

8

9

1

2
3
4
7
8

t’-t

1 2 3 4 7 8 9 10

NIT

Acceptable VTD
VTD

Play out

DROP

Dropped
frames

1
2
3
45

6 7

8

9

1

2
3
4
7
8

Play out

DROP

Dropped
frames

1
2
3
45

6 7

8

9

1

2
3
4
7
8

t’-t

1 2 3 4 7 8 9 10

NIT

Acceptable VTD
VTD

(a) (b)

Figure 3: Video play out by using our mechanism. (a) if the VTD goes above the NIT, the
server is asked to drop frame in order to report the VTD within the NIT. (b) The effect

of our mechanism of the VTD.

Informing Clients through Multimedia Communications

48

By reporting the VTD within the NIT, we avoid the application from being frustrating. In fact, if
the VTD goes above the NIT, the client-server interactions are seriously compromised. Hence, it
is preferable to affect the video Qos (and to keep the VTD within the NIT value), than having the
VTD above the NIT value. Further, it is worth noting that a good selection of the frames to dis-
card (Furini & Towsley (2001), only slightly affects the quality of the perceived video.

In Figure 3 we show the effects of our mechanism: the scenario is the same of Figure 2b, but in
this case, when the client finds out that the VTD goes above the acceptable value (for instance
when playing out frame 2), it computes the number of frames (k) that has to be discarded in order
to report the VTD within the NIT. Let us suppose (Figure 3a) that it is necessary to drop 2 frames,
the sender discards (i.e., it does not transmit), frame 5 and frame 6. This means that, just after
frame 4, the sender transmits frame 7, frame 8 and so on.

In Figure 3b we show the effects of our mechanism on the VTD. The benefits introduced by our
mechanism starts when playing out frame 7. In fact, if our mechanism is not used (Figure 2c),
frame 7 is played out with VTD(7) greater than NIT, but if our mechanism is used (Figure 3b),
VTD(7) is within the NIT. Moreover, using our mechanism, all the frames transmitted after frame
7 are within the NIT value.

This means that our mechanism may introduce considerable benefits in supporting interactive
video streaming applications allowing user to interact with the server in order to obtain a custom-
ized stream of multimedia contents.

In the next section, we evaluate our mechanism in the Internet scenario by transmitting several
video streams between a server and a client.

Experimental Scenario
In this section we evaluate our proposed
mechanism using the experimental scenario
depicted in Figure 4: a client is connected to
a server using the Internet. Two different
Internet paths are used: one is 8-hops long
and has an average round trip time of 80-90
ms; the other is 9-hops long and has an av-
erage round trip time of 300-400 ms.

The traffic sent from the server to the client
is a video stream. This type of traffic has
been selected as it is subject to two critical requirements for the Internet scenario: high bandwidth
requirements and stringent timing requirements. Other types of traffic (for instance the one pro-
duced by on-line games) do not require high bandwidth. Hence, by using video streams, we set up
a very critical scenario for evaluating our mechanism. Several video streams with different char-
acteristics (cartoons, music videos, news, movies) are used. The bandwidth requirements of these
video streams vary from 274 kbps to 1.5Mbps. These videos have been streamed during different
network conditions (peak hours, office hours, evening).

In such a scenario, the server streams a video to the client and, for each video trace, we compute
a) the percentage of video frames with VTD above the NIT with and without using our mecha-
nism and b) the perceived quality of the video play out.

The first investigation is done to check whether the overall network delay is noticeable by the
end-user or not. This investigation is important to perform as the network delay affects the QoS
perceived by the client. To minimize the effects on the perceived QoS the VTD experienced by
each video frame should stay within the NIT threshold. For this reason, we measure the VTD for

SERVER CLIENT

THE INTERNET

9 HOPS PATH

8 HOPS PATH

SERVER CLIENT

THE INTERNET

9 HOPS PATH

8 HOPS PATH

Figure 4: Experimental Scenario.

 Furini & Roccetti

 49

each frame that is played out and we compute the percentage of video frames with VTD above
the NIT. Since this percentage depends on the NIT value and since the NIT value is not fixed but
it is application dependent, for each video stream we perform several tests using different values
of the NIT. In particular, the NIT value ranges between 150 ms (good interactivity) and 600 ms
(very poor interactivity). To investigate the benefits introduced by our mechanism we compare
results obtained from transmitting a video stream when our mechanism is used and when it is not.

The second investigation is related to the video play out quality perceived by the user and it is
done to evaluate the dropping approach of our mechanism. In fact, to keep the above percentage
very small, our mechanism drops video frames and hence it affects the quality of the video play
out. Several studies highlight how difficult is to well define the perceived video quality as this
depends on the characteristics of the human vision system. For this reason, different approaches
may be used to this aim. An easy way is to count the number of dropped video frames, but this
number is not much related with the perceived quality at the client side. A common way is to use
a cost function, as this approach gives a better measure than the simple number of dropped video
frames. However, this approach depends on how well the cost function is defined. In this paper
we use this approach to accounting for the perceived video play out quality and we use the cost
function proposed in (Zhi, Nelakuditi, Aggarwa & Tsang, 2000), which penalizes frame dropping
mechanisms that drop neighboring frames (Figure 5). Briefly, this cost function takes two aspects
into consideration: the length of a sequence of consecutive discarded frames and the distance be-
tween two adjacent, but non-consecutive, discarded frames. It assigns a cost cj to each discarded
frame j, depending on whether it belongs to a sequence of consecutive discarded frames or not. If
frame j belongs to a sequence of consecutive discarded frames, the cost is lj if the frame j is the lj -
th consecutively discarded frame in the sequence. Otherwise the cost is given by 1+1/√dj, where
dj represents the distance from the previous discarded frame.

Before presenting the obtained results, it is worth describing the video streams used in this
evaluation. Two sets of video traces are used: one set is encoded with an intra-frame technique
(Motion JPEG) and the other set is encoded with an inter-frames technique (MPEG). The type of
encoding is important because, with inter-frames encoded videos, a domino effect may happen
while discarding a single video frame (i.e., a discard of a frame may lead to the impossibility of
decoding other video frames). Hence, when the server discards video frames it has to take into
account all the dependency rules among the video frames. Conversely, if the video streams are
encoded with an intra-frame technique, it is possible to discard frames without causing the dom-
ino effect. Hence, the selection of the video frames that have to be discarded is very important as
the dropped video frames affect the perceived video play out quality. In this paper we don’t pro-
pose any dropping algorithm, but we use the frame dropping algorithms proposed in (Furini &
Towsley, 2001).

⎪
⎩

⎪
⎨

⎧

+= frame discarded previous thefrom distance therepresents where,11

 sequence ain frame discardedely consecutev theis j if

j
j

jj

j d
d

thll
C

Figure 5. Cost function used to compute the perceived QoS.

Informing Clients through Multimedia Communications

50

In Figure 6 we present results obtained from transmitting a set of Motion JPEG video traces
(Sleepless in Seattle, Total Recall and Jurassic Park) encoded with 12 frames per second. In Fig-
ure 6a we show the percentage of video frames with VTD above the NIT when the video stream
is transmitted without using our mechanism. It is possible to note that the percentage is consider-
able for all the NIT values and it decreases as the NIT increases. The percentage assumes reason-
able values for NIT values greater than 550 ms, but with this NIT value the interactions are al-
ready compromised and the application is frustrating (the real video play out is not close to the
ideal video play out and hence the overall end-to-end delay is noticeable to the end-user). In Fig-
ure 6b, we present results obtained from transmitting the same video traces, but while using our
mechanism. Also in this case the percentage of video frames with VTD above the NIT is pre-
sented. It is possible to note that the percentage is much smaller than when our mechanism is not
used. The maximum value (1.6%) is obtained for Totall Recall with an NIT of 150 ms. Hence,
our mechanism masks the network problems to the end-user, who does not notice the overall end-
to-end delay and hence the application is well supported for all the NIT values. The evaluation of
our mechanism is completed with the investigation about the perceived video play out quality. In
Figure 7 we present results obtained from applying the previously described cost function to the
video play performed at the client side. Results are expressed as a percentage of additional cost
for each video stream that is played out. The additional cost is presented because when the video
is streamed to the client it is subject to
two types of dropping: one is intention-
ally done by our mechanism, and the
other is done by the network (i.e., packet
loss). By presenting the percentage of
additional cost, we exactly know the cost
introduced by our dropping mechanism.
Needless to say, the smaller the addi-
tional cost is, the lower the perceived
video quality is affected. Figure 7 shows
that the percentage of additional cost is
very small, with the exception of a 12%
value introduced for the Jurassic Park
video for 150 ms NIT. This cost is neces-
sary to obtain a percentage of frames with

0

20

40

60

80

100
15

0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

NIT

%
 o

f f
ra

m
es

 a
bo

ve
 N

IT SIS

TR

JP

0

0,5

1

1,5

2

150 200 250 300 350 400 450 500 550 600

NIT

%
 o

f f
ra

m
es

 a
bo

ve
 N

IT

SIS
TR

JP

(a) (b)

Figure 6: Motion JPEG video streams. The percentage of video frames with VTD above the NIT.
(a) without using our mechanism. (b) using our mechanism.

0
2
4
6
8

10
12
14

150 200 250 300 350 400 450 500 550 600NIT

%
 o

f a
dd

iti
on

al
 c

os
t SIS

TR
JP

Figure 7: Percentage of additional cost

introduced by our mechanism.

 Furini & Roccetti

 51

VTD above the NIT of 0.8%. If our mechanism is not used, the percentage is more than 50%.
Hence, we think it is better to have a slightly worse video play out quality with very good client-
server interactions, than having a very good video play out quality with very bad client-server
interactions.

In Figure 8 we present results obtained from transmitting a set of MPEG video traces (News, Mtv
and The Simpsons) encoded with 12 frames per second. In Figure 8a we show the percentage of
video frames with a VTD above the NIT when the video streams are transmitted without using
our mechanism. It is possible to note that the percentage is considerable for all the NIT values and
it assumes reasonable values for NIT values greater than 550 ms. This means that the interactions
are not well supported, as the overall end-to-end delay is noticeable to the end-user. In Figure 8b,
we present results obtained from transmitting the same video traces but while using our mecha-
nism. Also in this case the percentage of video frames with VTD above the NIT is presented. It is
to note that for each NIT value we present an average percentage of all the dropping algorithms
used by the server (namely, the dropping algorithms proposed in (Furini & Towsley, 2001)). Also
for the MPEG video traces, the percentage of video frames with VTD above the NIT is much
smaller when our mechanism is used: the maximum value (1.6%) is obtained for the News with
an NIT of 150 ms. Hence, our mechanism is effective in supporting interactive applications as it
mask the overall end-to-end delay to the end-user. It is interesting to note that by using our
mechanism, it may happen that the percentage of video frames with VTD above the NIT does not
decrease if the NIT increases (see for ex-
ample The Simpsons Figure 8b). This be-
havior is due to the type of video encoding
(inter-frames) and to the dropping frame
policies used (the presented values are an
average value obtained from all the values
produced by the different dropping frames
policies used). In fact, the dropping
mechanism may wait for a particular type
of frame, instead of immediately drops the
frame upon the client request. This is the
reason why, sometimes, it may happen that
the percentage of video frames with VTD
above the NIT does not decrease is the NIT

0

20

40

60

80

100

150 200 250 300 350 400 450 500 550 600
NIT

%
 o

f f
ra

m
es

 a
bo

ve
 N

IT NEWS

MTV

SIM

0

0,5

1

1,5

2

150 200 250 300 350 400 450 500 550 600
NIT

%
 o

f f
ra

m
es

 a
bo

ve
 N

IT NEWS

MTV

SIM

(a) (b)

Figure 8: The percentage of video frames with VTD above the NIT. (a) results obtained without
using our mechanism. (b) results obtained using our mechanism.

0
2
4
6
8

10
12
14

150 200 250 300 350 400 450 500 550 600
NIT

%
 o

f a
dd

iti
on

al
 c

os
t

NEWS

MTV

SIM

Figure 9: Percentage of additional cost
introduced by our mechanism.

Informing Clients through Multimedia Communications

52

increases. Once again, to complete the evaluation of our mechanism, in Figure 9 we present the
percentage of additional cost introduced by our mechanism. In this case, for each NIT, we present
an average value of the discarding policies used. Also for the computed additional cost, it is inter-
esting to note that sometimes (see for example, the news and the mtv video traces, Figure 9) the
percentage of additional cost does not decrease if the NIT increases. Once again, this is due to the
type of video encoding and to the dropping frames policies, which may be forced to drop a video
frame that causes a domino effect on several other video frames. This behavior confirms how dif-
ficult is to select video frames to drop if the video is inter-frames encoded. However, despite
these problems, our mechanism keeps the percentage of video frames with VTD above the NIT
very small and introduces an acceptable QoS cost in the video play out quality.

Conclusion
In this paper we proposed a new approach for supporting interactive multimedia streaming appli-
cations over the Internet. We showed that the support of these applications is critical in the Inter-
net, as this network provides a best-effort service to the traffic it carries, while interactive applica-
tions requires the network to support stringent timing requirements.

We highlighted that, to be well supported, interactive applications need the overall end-to-end
delay to be not noticeable to end users and that a time threshold (NIT, Natural Interactive Thresh-
old) denotes the limit below which the overall end-to-end delay is not noticeable (and hence the
interactive application is well supported) and above which the overall end-to-end delay is notice-
able (and hence the interactive application is not well supported). It is worth noting that this over-
all end-to-end delay is not merely the end-to-end network delay, but it can be seen as the time
difference between the real video play out (client and server connected through the Internet) and
the ideal video play out (client and server directly connected and network delays not involved).
For this reason, we introduced a new metric, called VTD (Video Time Difference), which pro-
vides an easy way to know whether an interactive application is well supported or not: in fact, if
the VTD stays within the NIT value, the overall end-to-end delay is not noticeable to end user and
hence the interactive application is well supported; if the VTD goes above the NIT the application
is not well supported as the overall end-to-end delay is noticeable to the end user.

Our mechanism aims to keep the VTD within the NIT and this is achieved by using dropping
frame algorithms that report the VTD within the NIT value when the VTD exceeds the NIT: Our
mechanism intentionally modifies the video QoS to better support interactions between the user
and the server. We showed that the QoS modification is very light (we used dropping frames al-
gorithm designed to this aim) and hence it is preferable to have a video play out with the QoS
slightly modified than to have a frustrating or useless interactive application where interactions
are not possible due to the high overall end-to-end delay.

Our mechanism has been evaluated in the Internet scenario and results showed the introduced
benefits. In particular, we showed that in the Internet the percentage of video frames with VTD
above the NIT is very high, causing the applications to be frustrating or even useless. Conversely,
by using our mechanism this percentage is kept very small and the video play out quality in only
slightly modified (to this aim we investigated the perceived quality of the video play out at the
user side).

Hence, if our mechanism is used, the user can interact without any problem with the multimedia
provider, which can provide a customized stream of multimedia contents. Several entertainment
or edutainment applications may benefits from using our approach (for instance video on-demand
and on-line games) as they can provide users with a customized multimedia stream of informa-
tion.

 Furini & Roccetti

 53

We are currently investigating different algorithms regarding the VTD handling. To this aim we
are investigating the relationship between the NIT and the video contents, in order to dynamically
set the NIT along the application lifetime (for instance by investigating the motion of the video it
is possible to select video frames to drop) and we are also studying how to reduce the QoS modi-
fication introduced by the dropping frame algorithms (for instance algorithms may individuate
portions of the video stream less important than other and may drop video frames in these por-
tions).

References
Furini, M., & Roccetti, M., (2002) Design and Analysis of a Mechanism for supporting Interactive Video

Streaming Applications over the Internet, Proceedings of the 6th Internet and Multimedia Systems and
Applications (IMSA2002), Kauai HI-USA, pp. 324-329.

Furini, M., & Towsley, D. (2001) Real-Time traffic transmission over the Internet, IEEE Transaction on
Multimedia, vol. 3, No. 1, 33-40.

Kurita, T., Iai, S., & Kitawaki, N. (1995) Effects of transmission delay in audiovisual communication,
Electronics and Communications in Japan, 77(3):63—74.

Ramjee, R, Kurose, J., Towsley, D., & Schulzrinne, H. (1994) Adaptive Playout Mechanisms for pack-
etized audio applications in wide-area networks, IEEE Computer and Communications Societies on
Networking for Global Communications, pp. 680-688.

Sitaram, S., Dan, A. (2000) Multimedia Servers: Application, Environments, and Design, Morgan Kauf-
mann Publishers, San Francisco.

Steinmetz, R. (1996) Human Perception of Jitter and Media Synchronization, IEEE Journal on Selected
Areas in Communications, Vol. 14, pp. 61-72.

Zeng, W., & Yu, H. (1999). Informing Client through Networked Multimedia Information Systems: Intro-
duction to the Special Issues, Special issue on Multimedia Informing Technology, Vol.2, No. 4.

Zhi-Li Zhang, Srihari Nelakuditi, Rahul Aggarwa, Rose P. Tsang (2000). Efficient Server Selective Frame
Discard Algorithms for Stored Video Delivery over Resource Constrained Networks, Journal of Real-Time
Imaging.

Biographies
Marco Furini received the degree and the Ph.D. degree in computer
science from the University of Bologna, Italy, in 1995 and 2001, re-
spectively. He is currently a faculty member of the Computer Science
Department at the Piemonte Orientale University.

From August 1998 to May 1999, he visited the Department of Com-
puter Science, University of Massachusetts, Amherst. His scientific
interests include multimedia communication systems, QoS issues over
IP-Networks and architectures for e-music distribution.

Informing Clients through Multimedia Communications

54

Marco Roccetti is a professor with the Department of Computer Sci-
ence of the University of Bologna. For the past 15 years he has held
different research and management positions at the University of Bolo-
gna. He is a member of a number of international conferences program
committees and is serving as Editor-in-Chief for the E-Letter publica-
tion of the Multimedia Technical Committee of the IEEE Communica-
tions Society. His research interests include digital audio and video for
multimedia communications, wireless multimedia and network-centric
computer-based entertainment.

