
Data-driven Dynamic Resource Scheduling for Network
Slicing: A Deep Reinforcement Learning Approach

Haozhe Wanga, Yulei Wua,∗, Geyong Mina,∗, Jie Xub, Pengcheng Tangb

aDepartment of Computer Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, UK

bNFV Research Department, Huawei Technologies, China

Abstract

Network slicing is designed to support a variety of emerging applications
with diverse performance and flexibility requirements, by dividing the physical
network into multiple logical networks. These applications along with a massive
number of mobile phones produce large amounts of data, bringing tremendous
challenges for network slicing performance. From another perspective, this huge
amount of data also offers a new opportunity for the management of network
slicing resources. Leveraging the knowledge and insights retrieved from the
data, we develop a novel Machine Learning-based scheme for dynamic resource
scheduling for networks slicing, aiming to achieve automatic and efficient re-
source optimisation and End-to-End (E2E) service reliability. However, it is
difficult to obtain the user-related data, which is crucial to understand the user
behaviour and requests, due to the privacy issue. Therefore, Deep Reinforce-
ment Learning (DRL) is leveraged to extract knowledge from experience by
interacting with the network and enable dynamic adjustment of the resources
allocated to various slices in order to maximise the resource utilisation while
guaranteeing the Quality-of-Service (QoS). The experiment results demonstrate
that the proposed resource scheduling scheme can dynamically allocate resources
for multiple slices and meet the corresponding QoS requirements.

Keywords: Data-driven, End-to-End, Deep Reinforcement Learning, Network
slicing

1. Introduction

With the exponential growth of mobile devices, proliferation of various emerg-
ing applications, together with ever-increasing requirements for high Quality-of-
Service (QoS), the fifth-generation (5G) communications system is envisioned

∗Corresponding authors
Email addresses: h.wang3@exeter.ac.uk (Haozhe Wang), y.l.wu@exeter.ac.uk (Yulei

Wu), g.min@exeter.ac.uk (Geyong Min), jay.xujie@huawei.com (Jie Xu),
pony.tang@huawei.com (Pengcheng Tang)

Preprint submitted to Information Sciences May 26, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/200766023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3+
<

P0
7&

85
//
&

H0
%%

Radio access Edge server Core network

Figure 1: An illustration of 5G network slicing running on a shared physical infrastructure.
Each slice is isolated E2E virtual network and serves a particular application.

to meet the unprecedented demands and support a variety of novel services and
vertical industries, such as Industry 4.0, automotive communication, Virtual
Reality (VR) and Augmented reality (AR), and remote healthcare [3]. The
tremendous number of devices, various applications and complex network in-
frastructure produce a huge amount of data every second. This brings immense
challenges for guaranteeing the performance of networks and satisfying the cus-
tomer experience. Therefore, the management of network resources becomes a
timely challenge in 5G networks.

From another perspective, the big data generated in the network offers a new
opportunity to understand the behaviour of users, performance of applications
and situation of networks [2, 12]. Valuable insights and context-rich knowledge
can be discovered from the big data, which in turn allows for intelligent and
dynamic resource management.

To efficiently accommodate a wide range of services in 5G and address the
diverse QoS requirements, the concept of network slicing [27] has been pro-
posed as a key enabler to realising the above vision and achieving flexibility
and scalability in the management of network resources. A network slice is an
isolated End-to-End (E2E) virtualised network across all the network domains
running on a shared physical infrastructure and can be controlled and managed
independently, as shown in Fig. 1. The realisation of network slices is through
the combination of the emerging technologies, i.e., Software Defined Network-
ing (SDN) and Network Function Virtualisation (NFV) [18]. Each slice is a
collection of network resources in the form of multiple Virtual Network Func-
tions (VNFs) that are network capabilities implemented as software instances
running on commodity servers. Network slicing facilitates efficient utilisation of
network resources to meet diverse service requirements by providing only the
necessary resources on demand.

Resource scheduling and allocation are the fundamental functions of net-
work slicing in 5G networks [1]. They are formulated as different NP-hard

2



problems [7, 34, 26, 36] and solved by various heuristic methods. Since most
resource allocation problems are not convex, the optimal solutions are very diffi-
cult to obtain. The heuristic methods also allocate resources in a static manner,
in which a fixed amount of resource is reserved for the slice. This would lead
to the resource under utilisation and face great challenges to meet the dynamic
QoS requirements of diverse mobile services. In our previous work [19], we de-
veloped an analytical model to evaluate the performance of NFV service chains.
The accuracy of the model relies on the factual assumption of user requests.
The user data is crucial to understand users’ behaviour and requests. However,
this kind of data always related to personal privacy and very difficult to collect.
In this work, we design the method to schedule the slicing resource in an asym-
metric information scenario, where the user-related data is not used, therefore,
the user privacy is preserved.

The machine learning methods, especially deep learning, have gained popu-
larity in a large variety of research areas [35]. The recent successful applications
of machine learning in some challenging decision-making domains [22, 37, 21,
17, 31, 38, 6, 10, 9, 11] imply that machine learning-based methods can be
used for solving the NP-hard resource scheduling problems. In particular, Rein-
forcement Learning (RL), a branch of machine learning has gained tremendous
attractions recently. In RL, an agent learns to select an optimal action directly
from experience gained from interacting with the environment. The agent be-
gins with knowing nothing about the task at hand and learns by reward signal
that evaluates how the chosen action is doing on the task. Combining the use of
deep learning with RL generates the concept of Deep Reinforcement Learning
(DRL) [4], which enables RL to scale to the decision-making problems that were
previously intractable, i.e., the settings with high-dimensional state and action
spaces. Inspired by the recent advances of DRL in video games[21], Go [31],
robotics [30] and cyber-security [16], we propose to design the 5G network slic-
ing scheduler that learns to manage and allocate resources directly from experi-
ence, providing a viable alternative to human-generated heuristics for resource
management and scheduling in 5G network slicing.

In this paper, a novel DRL-based scheduling scheme is designed to achieve
the dynamic resource management for 5G network slicing. Instead of allocating
a static amount of resource to a slice, the designed scheme learns to dynamically
manage the resources of a slice depending on the perceived demands. The main
contributions of this paper can be stated as follows:

• An E2E system model is designed to describe the service-specific per-
formance and requirements of each slice, therefore the slicing resource
scheduling treats all the slices in the network as a whole instead of chained
individual VNFs. With the ensemble of slices, the scheduling decisions can
achieve fairness and E2E performance at once.

• A novel model-free resource scheduling scheme is proposed for 5G network
slicing, in which the user-related privacy data is not used for the decision
making. Deep Convolutional Neural Network (CNN) is adopted to model

3



the complex 5G network environment and solve the optimisation challenge
caused by the lack of a precise model.

• The developed scheme adopts the DRL framework for automatically decision-
making to optimise the resource allocation to each slice. This is achieved
by constantly learning through the observed current resource usage of
network and new service requests.

• The features of substrate network are represented as a binary matrix to
facilitate the DRL agent to discover the implicit relations between multiple
slices; a practical action space is designed to solve the exponential order
of actions in slicing scheduling.

The remainder of the paper is organised as follows. Section 2 provides the
most relevant related work. Section 3 is devoted to the design of the system
model. Section 4 proposes the resource scheduling scheme for 5G network slic-
ing. The effectiveness of the proposed scheme is evaluated by the simulated
experiments in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

As a key technology for 5G, network slicing has been gaining tremendous
attention from both academia and industry [34, 5, 23, 24, 27, 32, 18, 13, 8].
Most of the existing studies focus on the resource allocation during the slicing
deployment phase, which is similar to a Virtual Network Embedding (VNE)
problem. The slicing placement has been formulated as an Integer Linear Pro-
gram (ILP) optimisation problem extended from VNE in [34]. A game-based
method was proposed in [5] to deal with the resource sharing among multiple
slices as a Fisher market problem. The virtual machine placement problem
was formulated as two ILP problems with two goals to minimise the cost and
maximise the quality of experience for Content Delivery Network slicing in [23].
The authors in [13] proposed a two-tier priority based admission control strat-
egy for multiple service slices and solved the problem using heuristics method.
However, in practice, 5G networks are inherently dynamic [27]. The utilisation
of services and network traffic flowing through slices fluctuate over time. As a
result, the network provider needs to continuously optimise the slice resource
allocation to meet the time-varying slicing requirements. There are a limited
number of studies dealing with the dynamic resource scheduling for slicing. A
dynamic resource algorithm has been proposed in [20], leveraging Q-learning to
optimise the resource allocation to an individual node in VNE. However, the
resource allocation in slicing is different from VNE. Dynamic resource schedul-
ing in 5G presents additional challenges as we have to deal with interdependent
VNFs with predefined orders and different resource requirements and isolated
slices with various QoS requirements. Therefore, it is critical to design a dy-
namic /resource scheduling scheme for the distinct QoS requirements of different
network slice services to effectively optimise service performance and resource
utilisation.

4



Table 1: Frequently used notations

Parameter Meaning

GP Substrate 5G network
NP Node set in the substrate network
N Number of substrate node is the network
LP Link set in the substrate network
Ns A substrate node providing computing resources
Ls A link path providing network resources
Resk(Nd) Capacity of resource k on node Ns
S Set of all running slices in the network
sm Service slice m
vm,d Requested resource of the VNF belonging to slice sm on

node Nd
ob(sm) Current observation of slice m state
Cm Percentage of resource allocation to slice m
Um Percentage of usage of slice m to the allocated resource
Im Weighted percentage of allocated resource of sm to the

node resource
Pm Percentage of available resources of substrate node
A Action space set
ac Action chosen by the agent to adjust resource by ac%
x The control granularity for resource scheduling
z Limit of resource adjustment in percentage
P (sm) Performance penalty of slice m
rt Reward returned at time t
vio(sm) Number of VNFs in sm not allocated enough resources
alm,d Allocated resources to slice m on Node Nd
um,d Resource usage of slice m at node Nd

3. The System Model

In this section, we present our system model and formulate the resource
scheduling problem for network slicing. The model consists of two main com-
ponents: substrate network and service slice. Table 1 summarises the notations
used in this paper.

3.1. Network model

The substrate network refers to a general 5G network infrastructure that
provides all kinds of resources. The substrate network is represented as an
undirected graph and denoted asGP = (NP , LP ), whereNP is the set of physical
nodes built on common servers and LP indicates the set of all substrate link
connections. Each substrate nodeNs ∈ NP is associated with k different types of
resources (e.g., CPU, memory, Storage, GPU). The resources on Ns is modelled
as a vector Res(Ns) = [Res1(Ns), Res2(Ns), . . . , Resk(Ns)]. In this paper, we

5



consider each node in NP has the same number of resource types, and thus
the length of Res(Ns) vector is fixed. Each link path in the substrate network
Ls(i, j) ∈ LP connecting the nodes Ns(i) and Ns(j) is equipped with an amount
of bandwidth. The total available bandwidth for link Ls(i, j) is denoted as
LBWs (i, j).

The network slices present diverse services, such as high-definition video
streaming, vehicular communication and Internet of Things (IoT), which require
different types of resources. The 5G networks will support the SDN and NFV
network techniques, in which each node Ns can create multiple Virtual Machines
(VMs) to install the according VNFs, and each link Ls is divided into multiple
virtual links. The created VMs and virtual links are chained to accommodate
different slices. As a result, the slicing resource scheduling problem involves
managing the resource allocated for the VMs and the links of slices to ensure
the guaranteed QoS and optimal utilisation of networks.

A centralised controller is in charge of scheduling and fulfilling the require-
ment of slices. The slices serve the time-varying requests from the users. By
monitoring the time-varying usage, the controller is able to dynamically allo-
cate the resources to the slices. However, the allocations should be elaborately
operated to meet the various requirements of slices. We indicate the set of slices
in the substrate network as a set, S = {s1, s2, . . . , sM}. Each slice consists of
multiple associated VNFs deployed on different physical nodes, and each VNF is
characterised by the demands for each type of resources. The d-th VNF belong-
ing to slice sm is represented as vm,d = [Res1(m, d), Res2(m, d), . . . , Resk(m, d)],
where Resk(m, d) denotes the requested resources of type k for slice sm at node
Nd. The controller handles a queue of requests, each requesting a number of
different resources for a time period (e.g. x units of Res1 and y units of Res2 for
t time steps). The controller manages the resources based on scheduling-frame.
At each discrete time step, new incoming slice service requests arrive at the
network, and the scheduler in the controller dynamically adjusts the allocated
resources.

3.2. End-to-end slicing model

An E2E slicing model is crucial for understanding the holistic network sit-
uation. In this work, we design the E2E slicing model to consider the slicing
network as a whole, instead of individual VNFs or VMs. Obtaining the whole
picture, we can then develop a resource scheduling scheme to achieve resource
optimisation for all slices at once, which attains both the fairness resource dis-
tribution among slices and improving E2E performance.

The E2E slicing model is denoted by a four-dimensional tensor, as shown
in Fig 2. The first dimension represents the resource requirements of a VNF
for each type of resources. The second dimension chains the multiple VNFs
that belong to the same slice, forming many resource matrices as Res(sm) =
[vm,1, vm,2, . . . , vm,N ].

The third dimension defines the key performance index of slicing resource
management. For each slice, we obtain four resource metrics, including the
resource allocation status of the VNFs of slice on the physical nodes, the current

6



resource usage of each VNFs, the scale of the slice and the resource utilisation
of the physical node. The obtained metrics of slice sm is represented as a
vector, ob(sm) = (Cm, Um, Im, Pm), where Cm is also a vector with each element
denoting the percentage of allocated resource of each VNF belonging to sm, Um
is a vector of the percentage of resource usage of each VNF of sm, Im is a
weighted sum of percentage of the resource taken by each VNF to the total
resource of substrate node, and Pm is a vector of the percentage of resource
utilisation of each physical node that the slice is running on. Since Pm is the
same for all the slices running on the same node, we will neglect the index
and use P for the simplicity. The purpose of using percentage instead of the
real value is to normalise different states and accelerate the training process; a
similar idea has been used in [20]. As a result, the E2E model for a single slice
sm is given by:

ob(sm) = (Cm, Um, Im, Pm) (1)

Cm = (
alm,1
vm,1

, . . . ,
alm,d
vm,d

)T (2)

Um = (
um,1
alm,1

, . . . ,
um,d
alm,d

)T (3)

Im = ωm(
alm,1

Res(N1)
, . . . ,

alm,d
Res(NN )

T

,
∑
sm∈S

ωm = 1 (4)

Pm = (
∑
m

∑
Res

alm,1
Res(N1)

, . . . ,
∑
m

∑
Res

alm,d
Res(Nd)

)T (5)

where alm,d denotes the current allocated resource for the VNF of slice sm at
node Nd, and um,d denotes the VNF resource utilisation rate of slice sm on node
Nd.

In the fourth dimension, we concatenate all the slice state vector to produce
the E2E model of the whole network as O where each element indicates one
slice:

O = [ob(s1), ob(s2), . . . , ob(sM )]T (6)

In practice, each physical node would have a different number of VNFs. How-
ever, it is appropriate to maintain a fixed state representation so that it can be
directly applied as input to the agent. Therefore, we set a maximum number
M of VNFs that can be running on one physical node, and a maximum number
of nodes that a slice can be distributed on as N = |Np|. If the current node has
fewer VNFs than the maximum number, or a slice does not deploy on certain
nodes, we set the corresponding position value to 0.

Each physical node that may contain many servers. In this paper we treat
it as a single collection of resources, ignoring the machine fragmentation ef-
fects. We use various colours to illustrate different slices. Slices are deployed on
different nodes, so the nodes are shared by different set of slices.

7



Res(1) Res(2) Res(k)

Slice 1

Node1 ,

, ,

Node 2

Node N

Allocated resources Resource demandingResource usage

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

, ,

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

, ,

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k)

Slice m

Node 1 ,

, ,

Node 2

Node N

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

, ,

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

, ,

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

,
 ,

,
 ,

,
 ,

Node utilisation

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

, ,

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

Res(1) Res(2) Res(k),

, ,

Figure 2: The E2E slice profiles in a 5G network, with N substrate nodes and m slices in the
network.

4. A Dynamic 5G Network Slicing Resource Scheduling Scheme

This section describes the design details of the proposed resource scheduling
scheme, which generates resource allocation decisions using DRL-based dynamic
resource scheduling policies. We start by describing the learning framework and
policy network, and then describe the design of the training algorithm.

4.1. Learning Algorithm

The learning-based slicing scheduling scheme adopts the DRL for dynami-
cally adjusting the resource allocation. The state representation, action space
and reward function are designed as follows.

4.1.1. State representation

The way to understanding and observing the slicing network system is crucial
for the DRL agent to establish a thorough knowledge of the network status and
generate efficient scheduling decisions. To this end, we firstly design the state
representation that serves as the input to the scheme. The states of the current
time step slicing system observed by the agent are represented as images based
on the E2E model developed in Section 3.2

The resource status reveals the current resource allocation and usage of each
resource that have been scheduled for the slices. However, the values of the
high-dimensional tensor generated from the E2E model are decimal percent-
ages. Directly feed these values to a deep neural network may result in a lousy
accuracy. To transfer the state tensor into an image that can be fed into the
deep neural network in the learning agent, we encode each percentage into a
binary string. To this end, we define the length of the binary string related to
the control precision. The control precision indicates the controlling granularity
which is the unit of resource that can be adjusted for a VNF in the slice. In

8



realistic slicing network, the control precision can be in the unit of CPU cores, a
certain amount of memory size or even a VM. For slices support different appli-
cations, the control precision can be different according to the service types and
specific requirements, which means the length of binary string may be different.

In the proposed scheme, we restrict the new resource requirements to be
ranged from 0 to 200% of the currently allocated resource. When the percentage
is more than 100% (i.e., alm,d < um,d), it indicates that the allocated resource
is less than the actual usage, and this is the only case that a percentage is larger
than 100%. If the required resource becomes 0, the VNF will be removed from
the slice; while if the new required resource is doubled, in order not to affect the
other VNFs on the same node, the VNF will be migrated to another substrate
node. For example, if the level of control precision is 10%, we will have 20
different states ranging of [0, 10%, . . . 200%], which require 5 bits to represent.
In this case, for one type of resource in a slice, the state matrix will be N rows
and 4 × 5 columns. Therefore, if there are k types of resources, the observed
state matrix of slice sm will have |ob(sm)| = 4 × 5 × k columns, and the state
image of the substrate network for each time step will be a [M × N, 20 × k]
binary matrix, where M is the number of slices.

4.1.2. Action space

The output actions generated from the agent and executed by the scheduler
indicate the adjustment of allocated resources of slices. At each point of time
step, the scheduler may decide to increase or decrease the resources of any VNF.
However, the adjustment amount of resources can be any integer value, and if
we change the allocated resources of multiple slices at the same time, this could
lead to a significant huge action space making the learning impossible. For
example, for a network of m slices with n VNFs, even if the number of possible
actions is only 10, the action space will be 10m∗n which increases exponentially
with the network size.

To make the action space practical, the action space in our scheme is designed
to have the same level of granularity as the state, and each action only affects
one VNF at a time. To restrict the behaviour of the agent, the limit of resource
adjustment is set between −z and +z to avoid significant changes, where 0 <
z < 1 is a proportion of the currently allocated resource, and a negative value
means scale-down and a positive value means scale-up. In one time step, the
agent keeps taking actions until the resources of all the VNFs of each slice is
updated. If the granularity in the state observation is x, the total number of
actions is 2z/x, and the action space A can be given by

A = {ac|ac = z − 2z · c · x, c = 0, 1, . . . ,
2z

x
} (7)

where action ac means that the agent chooses to increase the allocated resource
of the current VNF by ac%; and negative value denotes the decrease in allocated
resources. The case ac = 0 indicates that the agent does not change the sched-
uled resources in the current time step. When the resources of all the VNFs
in the network have been scheduled, the time step moves to the next and new

9



requests will be received from the controller. In this way, the agent can schedule
multiple VNFs of different slices in a discrete manner at one time step while
keeping the action space linear with 1/x. The process is summarised in Alg. 1.

Algorithm 1: Generation of action sets

Input : adjustment limit, control granularity x
Output: action set A

1 Initialise the adjustment range ra = 2 · z;
2 Calculation number of actions ra/x;
3 for each action ac in A do
4 Set action indicting number c to each action ;

/* Generating resource adjustment value for ac */

5 ac = z − 2z · c · x ;

6 end

4.1.3. Reward

Unlike supervised learning, in which each sample has a corresponding label
indicating the preferred output of the learning model, the agent in RL relies
on reward signal to evaluate the effectiveness of actions and further improve
the policy. Therefore, the design of reward function is crucial in the training
process of RL. In slicing resource scheduling problem, the overall objectives
are to minimise the SLA violations of slices, guarantee the performance, while
maximising the resource utilisation of physical nodes. Specifically, the reward
function is crafted to relate with the performance of slices and the resource
utilisation of the substrate network.

The performance of one slice depends on each VNF of the slice deploying on
different nodes. This is different from traditional virtual network embedding,
where the virtual nodes have no order requirement and are independent of each
other. However, in network slicing, traffic has to flow through predefined ordered
VNFs, and the performance degradation of any VNF would affect the overall
slicing performance. To take this into consideration, the performance reward
P of a slice sm is defined to combine two parts: SLA violations and wasting of
resource, and is given by

P (sm) =

{ ∑
d∈NP

η · evio(sm), if um,d > alm,d∑
d∈NP

ζ · alm,d

um,d
, otherwise

(8)

Here, the first case indicates that the allocated resource to a VNF is not enough
to satisfy the SLA requirement, and η is the penalty parameter for the SLA
violation. vio(sm) denotes the number of SLA violation in one slice. For each
type of resources allocated to a VNF, if the allocated resource is less than the
required amount, it counts as one violation. Then vio(sm) is the sum of the
violations on every VNF belonging to slice sm. The exponent is used to model
the impact of multiple VNFs with insufficient resource on the slice, since all the
VNFs are correlated in one slice; and the second case indicates the inefficient
utilisation of resources, which could lead to low revenue and energy waste, and ζ

10



is the resource wasting penalty. The penalty constants η, ζ imply the weights of
the optimal objectives, and can be adjusted for different services. By combining
the resource utilisation of the substrate network with performance, the reward
function is expressed by:

rt =
∑
sm∈S

P (sm) + ϕ
∑

Ns∈NP

∑
Res

alm,Ns∑
ResNs

(9)

where ϕ is the utilisation penalty constant and t denotes the current time step.
Similar to [22], the agent does not use any instant reward for the learning, but
aim to maximise the cumulative discounted reward, since the reward getting
from the adjustment of the allocated resource of one VNF does not represent
the whole slice.

4.2. Policy network

The agent relies on the policy network to select actions for resource schedul-
ing. The policy network takes the state image as input and outputs a prob-
ability distribution over action set. We construct a multi-layer CNNs [15] to
represent the policy network in our design. CNNs have been used successfully
to solve many problems in visual recognition and computer vision, and have
been proven as an efficient tool in extracting features from images without hand
craft efforts [14]. The built policy network is a sequence of layers. It consists of
four convolutional layers, with two MaxPooling2D layers following the second
and fourth convolutional layer. The first two convolutional layers are with 32
kernels. After the first pooling layer, the number of kernels are doubled. Then,
the output of the second pooling layer is flattened to one dimensional vector
and passed through a fully connected layer. ReLU activations are used for all
layers except the output layer. The output layer uses a SoftMax activation for
the purpose of probabilistic actions. At each time step, the scheduler uses the
policy network to decide how to adjust the resources allocated to the slices.

4.3. Training Algorithm

We train the policy network and optimise its performance in an episodic man-
ner. In each episode, the agent will receive a sequence of resource requests and
adjust the resources allocated to each VNF of every slice using the policy net-
work. In each training iteration, we conduct multiple episodes for the resource
requests sequence to explore the probabilistic space of possible actions using the
current policy. The (state, action, reward) tuple is recorded at each time step
to calculate the discounted cumulative reward. Then a baseline method [29] is
used to construct the baseline bt utilising the average of the returned discounted
reward

∑∞
t=0 γ

trt across all episodes. Then policy gradient is leveraged to train
the built network using the constructed baseline. The policy gradient can be
expressed as

g = E[

Le∑
t=0

(
∑
t′=t

γt
′−trt′ − bt)∇θlogπθ(at|st)] (10)

11



where Le is the length of the episode, and πθ(at|st) represents the current policy
with parameters θ.

For updating the policy network parameters, we employ RMSProp [28],
which is a gradient-based optimisation technique. The updating process can
be derived as:

E[g2]t = ρE[g2]t−1 + (1− ρ)g2t

θt+1 = θt −
lr√

E[g2]t + ε
gt

(11)

where gt is the gradient at the current step, E[g2t ] is the averaged accumulated
past squared gradients, ρ is the decaying factor that indicates how important is
the new gradient, θ is the parameters, and ε is the smoothing constant to avoid
dividing zero. Due to the complexity of the network, the resulting gradients may
yield a high variance. The key idea of using RMSProp is to focusing on updating
the learning rate lr based on the gradients for each step. The learning rate lr is
divided by the Root Mean Squared (RMS) error, the root of an exponentially
decaying average of squared gradients

√
E[g2]t + ε. As a result, the updating

method normalises the gradient to achieve adaptive learning rates. It decreases
the rate for large gradient to avoid exploding, and increases the rate for small
gradient to avoid vanishing.

5. Performance Evaluation

In this section, we present the numerical simulations to demonstrate the
effectiveness of the proposed dynamic slicing resource scheduling scheme.

5.1. Experiment Setup

To evaluate our method, a random topology with five physical nodes is gen-
erated. We assign three types of resource, naming CPU, storage and bandwidth
capacities to each physical node with 50 resource units respectively. In each
episode, 5 network slices with a total of 25 VNFs are deployed into the net-
work using a random allocation. The requested resource for each VNF in a
slice follows a uniform distribution between 1 and 20 resource units during each
time-step of the service. Then 5 sequences of time-varying resource requests are
generated and assigned to each slice. The new resource demands are uniformly
chosen between increasing or decreasing between −0.5 to 0.5 of the currently
allocated resources. The duration of the slice follows an exponential distribu-
tion with an average of 150 time steps. The training network of the scheme was
built as CNN with 9 layers and a total of 382441 parameters. Theano [33] is
employed as the backend to build the policy network. The parameters of the
network are initiated following a uniform distribution.

In each training iteration, we run 300 epoch simulations to calculate the
cumulated rewards, and then update the network. The discount factor is set
as γ = 0.995. The policy network parameters are updated using the RMSProp
algorithm with a learning rate of γ = 0.0001 and ρ = 0.9. Unless otherwise

12



1

3

9

27

81

80% 90% 100% 110% 120% 130% 140% 150% 160% 170% 180% 190% 200%

Sl
ic

in
g

Pe
rf

or
m

an
ce

Average network load

DRL
Greedy
Best Effort
Random

Figure 3: Slicing performance under different levels of network load.

specified, the results below are from training for 500 training iterations. The
proposed method is compared against three agents, a greedy agent, a static agent
and a random agent respectively under four service load pressure. The greedy
agent is implemented following by the method in [25]. It allocates resources as
much as possible to satisfy the requested amount, increasing or decreasing the
resources to the amount that is nearest to the demands for each slice. Therefore,
the greedy agent focuses on optimising the resource utilisation rate of slices. The
best-effort agent is a semi-static allocating method. If one slice requires more
resources, it will try its best to satisfy the requirements or allocate as much
resource as can be afforded from the available resources, but once allocated, the
agent does not scale down the resources even the resource utilisation is low. For
this manner, the best-effort agent focuses on reducing the the SLA violation.
The random agent allocates a random percentage of the demanding resource to
each request.

5.2. Performance Evaluation

We evaluate the performance and demonstrate the effectiveness of the pro-
posed scheme. The agents are compared and measured in three aspects, the
QoS of slices in terms of the performance, the average SLA violation, and the
resource utilisation of the substrate network under different levels of network
loading. The results are shown in Figs. 3 - 5.

When the required resource by all the slices are less than the resource pro-
vided by the substrate network, the scheduling decision making is easy for all
methods, since they don’t have to make balanced allocation between all the
slices to ensure the E2E performance. Therefore, we choose high network loads
scenarios that require the scheduling scheme to obtain a whole image of the
network and make intelligent decisions to achieve both high E2E performance
and low SLA violations.

The performance measurements of slices are shown in Fig. 3. To get a
complete evaluation of the proposed scheme, we have carried out more exper-

13



iments to show the performance of slices under light network loads between
80% to 100%, medium loads between 110% and 150% and high loads that are
in the range of 160% to 200%. The E2E performance of slice is calculated by
collectively considered the performance of all VNFs belongs to the same slice.
Therefore, the E2E performance is determined by each VNF in that slice, which
is measured by the allocated resources and the utilised resource of that VNF.
The number of unmet VNF is counted and smoothed by a sigmoid function,
and the performance for each slice is given by

Perform(sm) =
∑
d∈NP

∑
ResNd

sigmoid(evio(sm))
(12)

and then the overall slicing performance is calculated as the summary of each
slice

∑
sm∈S Perform(sm). As shown in the figure, the DRL agent performs

better than the other agents under various levels of network loads. This can be
attributed to the fact that the DRL agent leverages the E2E slicing model to
discover the correlations between different slices and capture the holistic picture
of the resource allocation and utilisation of the whole network, and therefore
can achieve a globally optimal allocation rather than trying to satisfy all the
demands of a single slice.

Fig. 4 depicts the comparison of average SLA violation. Similar to the slicing
performance, the SLA of a slice depends on the allocated and used resources.
But different from performance, SLA is used to measure the degree of how the
resource demands of a slice are fulfilled. As a result, the SLA violation is derived
as:

Violation =
1

|S|
∑
sm∈S

∑
d∈NP

vio(sm) ∗ (1− alm,d
um,d

) (13)

The result shows that the proposed DRL-based dynamic scheduling scheme has
the smallest SLA violation among all the agents. The DRL agent balances the
resource distribution not only between the VNFs in the same slice but also
between the slices. As a result, the number of times of violation occurring on
the VNF is less in the same slice, leading to a lower violation.

Fig. 5 illustrates the comparison of average resource utilisation of the agents.
The utilisation of one substrate node is calculated as the total allocated resources
to the VNFs of various slices of the whole capacity. The average utilisation of
substrate nodes can be expressed as

Utilisation =
1

N

∑
d∈Np

∑
sm∈S alm,d∑
ResNd

(14)

The random is not shown in the figure since with random actions, the aver-
age utilisation is always around 75%. From the figure, we can see that our
scheme outperforms greedy and achieves a similar utilisation as static. Since
the static agent aims to maximise the utilisation only, the results validate that

14



120% 150% 180% 200%

Average network load

1

2

3

4

5

6

7

8

S
L
A

 v
io

la
ti
o
n

DRL

Greedy

Best Effort

Random

Figure 4: Average SLA violation of four agents under different levels of network load.

120% 150% 180% 200%

Average network load

90%

95%

100%

S
u
b
s
tr

a
te

 n
e
tw

o
rk

 u
ti
lis

a
ti
o
n DRL

Greedy

Best Effort

Figure 5: Average substrate nodes resource utilisation under different levels of network load.

our method can achieve high efficiency in resource utilisation while guaranteeing
slicing performance.

Finally, we investigate the convergence behaviour of the proposed scheme.
To understand the convergence of the scheme, we look deeper into one specific
scenario, in which the scheme is trained to optimise the resource allocation under
service load of 150% in Fig. 3. Fig. 6a plots the learning curve of total reward
improved as training. The DRL Max is the maximum reward across all the
epochs at each iteration. The DRL Mean is the averaged reward. As the training
goes, both values increase due to the improvement of the scheduling scheme. The
gap between max and mean values narrows, which shows the convergence of the
model. Fig. 6b depicts the scheduled averaged slicing performance under the
policy at each episode. As expected, we see that the proposed scheme improves
the performance by each iteration. At the beginning, the policy is no better
than neither best-effort or greedy allocation methods, but after 20 iterations
the DRL is better than both methods. The results show a good convergence

15



-50

-45

-40

-35

-30

-25

0 50 100 150 200 250 300

To
ta

l r
ew

ar
d

Traning episode 

DRL Mean

DRL Max

(a) Total reward by episode

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300

Sl
ic

in
g 

pe
rf

or
m

an
ce

Traning episode 

DRL

Greedy

Best Effort

(b) Slicing Performance by episode

Figure 6: The learning curve illustrating the training improves the total reward and slicing
performance during the training.

speed of the proposed scheme.

6. Conclusions

In this paper, we have solved the key challenges in designing the dynamic re-
source scheduling method for network slicing, and have proposed a data-driven
resource scheduling scheme. The proposed E2E slicing model has treated the
VNFs in one slice as a whole and have achieved a global optimisation. The
developed DRL-based scheduling scheme has solved the slicing resource man-
agement challenge in an asymmetric information scenario without using the
user-related data, due to the model-free and dynamic online learning features.
CNN has been used to improve the feature extraction of the DRL to consider
the network resources and slice requirements at the same time. The experiment
results have shown that the proposed scheduler outperforms the heuristic, best-
effort and random approaches and can improve the resource utilisation of the
physical network while guaranteeing the QoS.

Acknowledgment

This work was supported by Huawei Technologies under the HIRP project
(Contract No.: HO2017050001C6).

References

[1] Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., & Flinck, H. (2018). Net-
work Slicing and Softwarization: A Survey on Principles, Enabling Tech-
nologies, and Solutions. IEEE Commun. Surv. Tutorials, 20 , 2429–2453.

[2] Ahmed, E., Yaqoob, I., Hashem, I. A. T., Shuja, J., Imran, M., Guizani,
N., & Bakhsh, S. T. (2018). Recent Advances and Challenges in Mobile
Big Data. IEEE Commun. Mag., 56 , 102–108.

16



[3] Alliance, N. (2015). Next Generation Mobile Networks: 5G white paper .
Technical Report.

[4] Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A.
(2017). Deep Reinforcement Learning: A Brief Survey. IEEE Signal Pro-
cess. Mag., 34 , 26–38.

[5] Caballero, P., Caballero, P., Banchs, A., Banchs, A., De Veciana, G., De Ve-
ciana, G., Costa-Perez, X., & Costa-Perez, X. (2017). Network slicing
games: Enabling customization in multi-tenant networks. In IEEE INFO-
COM 2017 - IEEE Conference on Computer Communications (pp. 1–9).
IEEE.

[6] Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., & Yang, B.
(2018). Machine learning based mobile malware detection using highly
imbalanced network traffic. Information Sciences, 433-434 , 346–364.

[7] Cheng, X., Wu, Y., Min, G., & Zomaya, A. Y. (2018). Network Function
Virtualization in Dynamic Networks: A Stochastic Perspective. IEEE J.
Select. Areas Commun., (p. Early Access).

[8] Foukas, Xenofon, Patounas, Georgios, Elmokashfi, Ahmed, & Marina, Ma-
hesh K (2017). Network Slicing in 5G: Survey and Challenges. IEEE
Commun. Mag., 55 , 94–100.

[9] Gai, K., & Qiu, M. (2018). Optimal resource allocation using reinforcement
learning for IoT content-centric services. Applied Soft Computing , 70 , 12–
21.

[10] Gai, K., & Qiu, M. (2018). Reinforcement Learning-based Content-Centric
Services in Mobile Sensing. IEEE Network , 32 , 34–39.

[11] Gai, K., Qiu, M., Liu, M., & Zhao, H. (2018). Smart Resource Allocation
Using Reinforcement Learning in Content-Centric Cyber-Physical Systems.
In Smart Computing and Communication (pp. 39–52). Springer, Cham.

[12] Huang, H., Yin, H., Min, G., Jiang, H., Zhang, J., & Wu, Y. (2017). Data-
Driven Information Plane in Software-Defined Networking. IEEE Commun.
Mag., 55 , 218–224.

[13] Jiang, M., Condoluci, M., & Mahmoodi, T. (2016). Network slicing man-
agement & prioritization in 5G mobile systems. In European Wireless (pp.
197–202).

[14] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet Classi-
fication with Deep Convolutional Neural Networks. Commun. ACM , 60 ,
84–90.

[15] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proc. IEEE , 86 , 2278–2324.

17



[16] Li, C., & Qiu, M. (2019). Reinforcement Learning for Cyber-Physical Sys-
tems: with Cybersecurity Case Studies. CRC Press.

[17] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement
learning, . (pp. 1–14). arXiv:1509.02971.

[18] Lopez, D., Ordonez-Lucena, J., Ameigeiras, P., Ramos-Munoz, J. J., Lorca,
J., & Folgueira, J. (2017). Network Slicing for 5G with SDN/NFV: Con-
cepts, Architectures, and Challenges. IEEE Commun. Mag., 55 , 80–87.

[19] Miao, W., Min, G., Wu, Y., Huang, H., Zhao, Z., Wang, H., & Luo, C.
(2019). Stochastic Performance Analysis of Network Function Virtualiza-
tion in Future Internet. IEEE J. Select. Areas Commun., 37 , 613–626.

[20] Mijumbi, R., Gorricho, J. L., Serrat, J., Claeys, M., De Turck, F., & Latre,
S. (2014). Design and evaluation of learning algorithms for dynamic re-
source management in virtual networks. In NOMS 2014 - 2014 IEEE/IFIP
Network Operations and Management Symposium (pp. 1–9). IEEE.

[21] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-
stra, D., & Riedmiller, M. (2013). Playing Atari with Deep Reinforcement
Learning, . arXiv:1312.5602.

[22] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Pe-
tersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through
deep reinforcement learning. Nature, 518 , 529–533.

[23] Retal, S., Bagaa, M., Taleb, T., & Flinck, H. (2017). Content delivery
network slicing: QoE and cost awareness. In ICC 2017 - 2017 IEEE Inter-
national Conference on Communications (pp. 1–6). IEEE.

[24] Richart, M., Serrat, J., Baliosian, J., & Gorricho, J. L. (2016). Resource
Slicing in Virtual Wireless Networks: A Survey. IEEE Trans. Netw. Serv.
Manage., 13 , 462–476.

[25] Riggio, R., Rasheed, T., & Narayanan, R. (2015). Virtual network func-
tions orchestration in enterprise WLANs. In 2015 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM) (pp. 1220–
1225). IEEE.

[26] Rost, M., & Schmid, S. (2016). Service Chain and Virtual Network Embed-
dings: Approximations using Randomized Rounding, . arXiv:1604.02180.

[27] Rost, Peter, Mannweiler, Christian, Michalopoulos, DIomidis S, Sartori,
Cinzia, Sciancalepore, Vincenzo, Sastry, Nishanth, Holland, Oliver, Tayade,
Shreya, Han, Bin, Bin Han, Bega, Dario, Aziz, Danish, & Bakker, Hajo
(2017). Network Slicing to Enable Scalability and Flexibility in 5G Mobile
Networks. IEEE Commun. Mag., 55 , 72–79.

18

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1604.02180


[28] Ruder, S. (2016). An overview of gradient descent optimization algorithms.
arxiv.org , . arXiv:1609.04747.

[29] Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015).
Trust Region Policy Optimization. jmlr.org , . arXiv:1502.05477.

[30] Shi, H., Lin, Z., Zhang, S., Li, X., & Hwang, K.-S. (2018). An adaptive
decision-making method with fuzzy Bayesian reinforcement learning for
robot soccer. Information Sciences, 436-437 , 268–281.

[31] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D.
(2016). Mastering the game of Go with deep neural networks and tree
search. Nature, 529 , 484–489.

[32] Taleb, T., Nakao, A., Du, P., Kiriha, Y., Granelli, F., Gebremariam, A. A.,
& Bagaa, M. (2017). End-to-end Network Slicing for 5G Mobile Networks.
Journal of Information Processing , 25 , 153–163.

[33] Theano Development Team (2016). Theano: A Python framework for fast
computation of mathematical expressions, . arXiv:1605.02688.

[34] Vassilaras, S., Gkatzikis, L., Liakopoulos, N., Stiakogiannakis, I. N., Qi, M.,
Shi, L., Liu, L., Debbah, M., & Paschos, G. S. (2017). The Algorithmic
Aspects of Network Slicing. IEEE Commun. Mag., 55 , 112–119.

[35] Wu, Y., Hu, F., Min, G., & Zomaya, A. Y. (2017). Big Data and Compu-
tational Intelligence in Networking . CRC Press.

[36] Xie, Y., Liu, Z., Wang, S., & Wang, Y. (2016). Service Function Chaining
Resource Allocation: A Survey, . arXiv:1608.00095.

[37] Yang, Z., Merrick, K., Jin, L., & Abbass, H. A. (2018). Hierarchical Deep
Reinforcement Learning for Continuous Action Control. IEEE Trans. Neu-
ral Netw. Learning Syst., (pp. 1–11).

[38] Zuo, Y., Wu, Y., Min, G., & Cui, L. (2019). Learning-based network path
planning for traffic engineering. Future Generation Computer Systems, 92 ,
59–67.

19

http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1608.00095

	Introduction
	Related Work
	The System Model
	Network model
	End-to-end slicing model

	A Dynamic 5G Network Slicing Resource Scheduling Scheme
	Learning Algorithm
	State representation
	Action space
	Reward

	Policy network
	Training Algorithm

	Performance Evaluation
	Experiment Setup
	Performance Evaluation

	Conclusions

