20 research outputs found

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    A Model for Mapping Combined Effects of Quality of Service Parameters and Device Features on Video Streaming Quality of Experience

    Get PDF
    Maintaining quality of streaming video is challenged by network faults resulting into freezes and rebufferings on the video. On top of the network effects, device features have impacts on the image of the video frames displayed during streaming. Despite the simultaneous impacts of video quality from network and device, previous studies considered individual impact of network parameters or devices as influencing factors to propose Quality of Experience (QoE) models. This study proposed QoE model by mapping combined effects from both network and device on video streamed QoE. An experiment to study the effects of video quality from combined effects of network and device over the wireless involved 35 subjects. Combination of packet loss, packet reordering, and delay were emulated using network emulator following Design of Experiment methodology. Through analysis of variance, the study found that packet loss had the highest impact, followed by device features, reordering, and delay on the video QoE. From the combined effects, two-way interactions and three-way interactions had significant effects on the video QoE. Through additive and linearity behavior of the input factors from network and device on video streaming QoE, a multi-factor model was derived. Keywords: Design of Experiment (DOE); Mean Opinion Score (MOS); Quality of Experience (QoE); Quality of Service (QoS); Video Quality Assessmen

    Prediction of Visual Behaviour in Immersive Contents

    Get PDF
    In the world of broadcasting and streaming, multi-view video provides the ability to present multiple perspectives of the same video sequence, therefore providing to the viewer a sense of immersion in the real-world scene. It can be compared to VR and 360° video, still, there are significant differences, notably in the way that images are acquired: instead of placing the user at the center, presenting the scene around the user in a 360° circle, it uses multiple cameras placed in a 360° circle around the real-world scene of interest, capturing all of the possible perspectives of that scene. Additionally, in relation to VR, it uses natural video sequences and displays. One issue which plagues content streaming of all kinds is the bandwidth requirement which, particularly on VR and multi-view applications, translates into an increase of the required data transmission rate. A possible solution to lower the required bandwidth, would be to limit the number of views to be streamed fully, focusing on those surrounding the area at which the user is keeping his sight. This is proposed by SmoothMV, a multi-view system that uses a non-intrusive head tracking approach to enhance navigation and Quality of Experience (QoE) of the viewer. This system relies on a novel "Hot&Cold" matrix concept to translate head positioning data into viewing angle selections. The main goal of this dissertation focus on the transformation and storage of the data acquired using SmoothMV into datasets. These will be used as training data for a proposed Neural Network, fully integrated within SmoothMV, with the purpose of predicting the interest points on the screen of the users during the playback of multi-view content. The goal behind this effort is to predict possible viewing interests from the user in the near future and optimize bandwidth usage through buffering of adjacent views which could possibly be requested by the user. After concluding the development of this dataset, work in this dissertation will focus on the formulation of a solution to present generated heatmaps of the most viewed areas per video, previously captured using SmoothMV

    Perceptually Optimized Visualization on Autostereoscopic 3D Displays

    Get PDF
    The family of displays, which aims to visualize a 3D scene with realistic depth, are known as "3D displays". Due to technical limitations and design decisions, such displays create visible distortions, which are interpreted by the human vision as artefacts. In absence of visual reference (e.g. the original scene is not available for comparison) one can improve the perceived quality of the representations by making the distortions less visible. This thesis proposes a number of signal processing techniques for decreasing the visibility of artefacts on 3D displays. The visual perception of depth is discussed, and the properties (depth cues) of a scene which the brain uses for assessing an image in 3D are identified. Following the physiology of vision, a taxonomy of 3D artefacts is proposed. The taxonomy classifies the artefacts based on their origin and on the way they are interpreted by the human visual system. The principles of operation of the most popular types of 3D displays are explained. Based on the display operation principles, 3D displays are modelled as a signal processing channel. The model is used to explain the process of introducing distortions. It also allows one to identify which optical properties of a display are most relevant to the creation of artefacts. A set of optical properties for dual-view and multiview 3D displays are identified, and a methodology for measuring them is introduced. The measurement methodology allows one to derive the angular visibility and crosstalk of each display element without the need for precision measurement equipment. Based on the measurements, a methodology for creating a quality profile of 3D displays is proposed. The quality profile can be either simulated using the angular brightness function or directly measured from a series of photographs. A comparative study introducing the measurement results on the visual quality and position of the sweet-spots of eleven 3D displays of different types is presented. Knowing the sweet-spot position and the quality profile allows for easy comparison between 3D displays. The shape and size of the passband allows depth and textures of a 3D content to be optimized for a given 3D display. Based on knowledge of 3D artefact visibility and an understanding of distortions introduced by 3D displays, a number of signal processing techniques for artefact mitigation are created. A methodology for creating anti-aliasing filters for 3D displays is proposed. For multiview displays, the methodology is extended towards so-called passband optimization which addresses Moiré, fixed-pattern-noise and ghosting artefacts, which are characteristic for such displays. Additionally, design of tuneable anti-aliasing filters is presented, along with a framework which allows the user to select the so-called 3d sharpness parameter according to his or her preferences. Finally, a set of real-time algorithms for view-point-based optimization are presented. These algorithms require active user-tracking, which is implemented as a combination of face and eye-tracking. Once the observer position is known, the image on a stereoscopic display is optimised for the derived observation angle and distance. For multiview displays, the combination of precise light re-direction and less-precise face-tracking is used for extending the head parallax. For some user-tracking algorithms, implementation details are given, regarding execution of the algorithm on a mobile device or on desktop computer with graphical accelerator

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Scalable light field representation and coding

    Get PDF
    This Thesis aims to advance the state-of-the-art in light field representation and coding. In this context, proposals to improve functionalities like light field random access and scalability are also presented. As the light field representation constrains the coding approach to be used, several light field coding techniques to exploit the inherent characteristics of the most popular types of light field representations are proposed and studied, which are normally based on micro-images or sub-aperture-images. To encode micro-images, two solutions are proposed, aiming to exploit the redundancy between neighboring micro-images using a high order prediction model, where the model parameters are either explicitly transmitted or inferred at the decoder, respectively. In both cases, the proposed solutions are able to outperform low order prediction solutions. To encode sub-aperture-images, an HEVC-based solution that exploits their inherent intra and inter redundancies is proposed. In this case, the light field image is encoded as a pseudo video sequence, where the scanning order is signaled, allowing the encoder and decoder to optimize the reference picture lists to improve coding efficiency. A novel hybrid light field representation coding approach is also proposed, by exploiting the combined use of both micro-image and sub-aperture-image representation types, instead of using each representation individually. In order to aid the fast deployment of the light field technology, this Thesis also proposes scalable coding and representation approaches that enable adequate compatibility with legacy displays (e.g., 2D, stereoscopic or multiview) and with future light field displays, while maintaining high coding efficiency. Additionally, viewpoint random access, allowing to improve the light field navigation and to reduce the decoding delay, is also enabled with a flexible trade-off between coding efficiency and viewpoint random access.Esta Tese tem como objetivo avançar o estado da arte em representação e codificação de campos de luz. Neste contexto, são também apresentadas propostas para melhorar funcionalidades como o acesso aleatório ao campo de luz e a escalabilidade. Como a representação do campo de luz limita a abordagem de codificação a ser utilizada, são propostas e estudadas várias técnicas de codificação de campos de luz para explorar as características inerentes aos seus tipos mais populares de representação, que são normalmente baseadas em micro-imagens ou imagens de sub-abertura. Para codificar as micro-imagens, são propostas duas soluções, visando explorar a redundância entre micro-imagens vizinhas utilizando um modelo de predição de alta ordem, onde os parâmetros do modelo são explicitamente transmitidos ou inferidos no decodificador, respetivamente. Em ambos os casos, as soluções propostas são capazes de superar as soluções de predição de baixa ordem. Para codificar imagens de sub-abertura, é proposta uma solução baseada em HEVC que explora a inerente redundância intra e inter deste tipo de imagens. Neste caso, a imagem do campo de luz é codificada como uma pseudo-sequência de vídeo, onde a ordem de varrimento é sinalizada, permitindo ao codificador e decodificador otimizar as listas de imagens de referência para melhorar a eficiência da codificação. Também é proposta uma nova abordagem de codificação baseada na representação híbrida do campo de luz, explorando o uso combinado dos tipos de representação de micro-imagem e sub-imagem, em vez de usar cada representação individualmente. A fim de facilitar a rápida implantação da tecnologia de campo de luz, esta Tese também propõe abordagens escaláveis de codificação e representação que permitem uma compatibilidade adequada com monitores tradicionais (e.g., 2D, estereoscópicos ou multivista) e com futuros monitores de campo de luz, mantendo ao mesmo tempo uma alta eficiência de codificação. Além disso, o acesso aleatório de pontos de vista, permitindo melhorar a navegação no campo de luz e reduzir o atraso na descodificação, também é permitido com um equilíbrio flexível entre eficiência de codificação e acesso aleatório de pontos de vista

    The quality of experience of emerging display technologies

    Get PDF
    As new display technologies emerge and become part of everyday life, the understanding of the visual experience they provide becomes more relevant. The cognition of perception is the most vital component of visual experience; however, it is not the only cognition that contributes to the complex overall experience of the end-user. Expectations can create significant cognitive bias that may even override what the user genuinely perceives. Even if a visualization technology is somewhat novel, expectations can be fuelled by prior experiences gained from using similar displays and, more importantly, even a single word or an acronym may induce serious preconceptions, especially if such word suggests excellence in quality. In this interdisciplinary Ph.D. thesis, the effect of minimal, one-word labels on the Quality of Experience (QoE) is investigated in a series of subjective tests. In the studies carried out on an ultra-high-definition (UHD) display, UHD video contents were directly compared to their HD counterparts, with and without labels explicitly informing the test participants about the resolution of each stimulus. The experiments on High Dynamic Range (HDR) visualization addressed the effect of the word “premium” on the quality aspects of HDR video, and also how this may affect the perceived duration of stalling events. In order to support the findings, additional tests were carried out comparing the stalling detection thresholds of HDR video with conventional Low Dynamic Range (LDR) video. The third emerging technology addressed by this thesis is light field visualization. Due to its novel nature and the lack of comprehensive, exhaustive research on the QoE of light field displays and content parameters at the time of this thesis, instead of investigating the labeling effect, four phases of subjective studies were performed on light field QoE. The first phases started with fundamental research, and the experiments progressed towards the concept and evaluation of the dynamic adaptive streaming of light field video, introduced in the final phase

    Enhancing Visual and Gestural Fidelity for Effective Virtual Environments

    Get PDF
    A challenge for the virtual reality (VR) industry is facing is that VR is not immersive enough to make people feel a genuine sense of presence: the low frame rate leads to dizziness and the lack of human body visualization limits the human-computer interaction. In this dissertation, I present our research on enhancing visual and gestural fidelity in the virtual environment. First, I present a new foveated rendering technique: Kernel Foveated Rendering (KFR), which parameterizes foveated rendering by embedding polynomial kernel functions in log-polar space. This GPU-driven technique uses parameterized foveation that mimics the distribution of photoreceptors in the human retina. I present a two-pass kernel foveated rendering pipeline that maps well onto modern GPUs. I have carried out user studies to empirically identify the KFR parameters and have observed a 2.8x-3.2x speedup in rendering on 4K displays. Second, I explore the rendering acceleration through foveation for 4D light fields, which captures both the spatial and angular rays, thus enabling free-viewpoint rendering and custom selection of the focal plane. I optimize the KFR algorithm by adjusting the weight of each slice in the light field, so that it automatically selects the optimal foveation parameters for different images according to the gaze position. I have validated our approach on the rendering of light fields by carrying out both quantitative experiments and user studies. Our method achieves speedups of 3.47x-7.28x for different levels of foveation and different rendering resolutions. Thirdly, I present a simple yet effective technique for further reducing the cost of foveated rendering by leveraging ocular dominance - the tendency of the human visual system to prefer scene perception from one eye over the other. Our new approach, eye-dominance-guided foveated rendering (EFR), renders the scene at a lower foveation level (with higher detail) for the dominant eye than the non-dominant eye. Compared with traditional foveated rendering, EFR can be expected to provide superior rendering performance while preserving the same level of perceived visual quality. Finally, I present an approach to use an end-to-end convolutional neural network, which consists of a concatenation of an encoder and a decoder, to reconstruct a 3D model of a human hand from a single RGB image. Previous research work on hand mesh reconstruction suffers from the lack of training data. To train networks with full supervision, we fit a parametric hand model to 3D annotations, and we train the networks with the RGB image with the fitted parametric model as the supervision. Our approach leads to significantly improved quality compared to state-of-the-art hand mesh reconstruction techniques
    corecore